
Reconfiguration of Graph Colorings
by

K. B. Zeven

to obtain the degree of Bachelor of Science
at the Delft University of Technology,

Student number: 5375444
Project duration: April 26, 2023 – July 19, 2023
Thesis committee: W. Cames van Batenburg, TU Delft, supervisor

A. Bishnoi, TU Delft, supervisor
R. Fokkink, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

For this thesis, we consider two k-colorings of a graph G adjacent if one can recolor one into the other by
changing the color of one vertex. The reconfiguration graph of a graph G on k colors Ck (G) is the graph for
which the vertices are the k-colorings of G , and an edge is between two k-colorings if they are adjacent. We
further investigate the diameter of the reconfiguration graph on k colors: diam(Ck (G)).

The general conjecture the thesis is based around says that diam(Ck (G)) = n+µ(G) for every graph G and
k ≥ ∆(G)+ 2. This conjecture is confirmed for various families of graphs, for example the complete graph
Kn and complete bipartite Kn,m . This thesis will prove the lower bound of the conjecture for the family of
complete r -partite graphs G = Kx1,x2,...,xr , utilising an approach from Cambie et al. for the proof. Furthermore
we give an algorithm that computes the k-colorings of G , the reconfiguration graph Ck (G), and its diameter
diam(Ck (G)) and give a few results on this diameter for small graphs.

iii

Layman Abstract

Many problems have multiple possible solutions, and sometimes these solutions may seem similar. To un-
derstand how similar they are, we need to define a way to compare two solutions. In this thesis, we will use
graphs to represent networks. Graphs consist of vertices (points) and edges (connections between points).

Our specific problem involves graph colorings, which are functions that assign colors to each vertex in
such a way that no two connected vertices have the same color. When we use ’k’ colors for such a coloring,
we call it a ’k-coloring’ of the graph.

To analyze these colorings, we consider two k-colorings of a graph to be adjacent if we can change the
color of one vertex in one coloring to transform it into the other coloring. The ’reconfiguration graph’ of a
graph on k colors, denoted as ’Ck (G)’, is a graph where each vertex represents a k-coloring of the original
graph, and an edge is drawn between two k-colorings if they are adjacent.

We can estimate the similarity between two k-colorings by studying the maximum distance between
them, known as the ’diameter’ of the reconfiguration graph, denoted as ’diam(Ck (G))’. This represents the
longest sequence of color changes required to transform one coloring into the other.

The main idea of this thesis revolves around a conjecture, which suggests for any given graph G and k
(where k is greater than or equal to the number of connections any vertex in G can have, plus two), that
the longest sequence of color changes needed to transform one valid k-coloring of G to another is equal to
the number of vertices in G plus a certain parameter associated with the graph called the matching number
’µ(G)’.

In this thesis, we will focus on proving the lower bound of this conjecture for a specific family of graphs
called complete ’r -partite’ graphs, denoted as ’G = Kx1,x2,...,xr ’. These graphs have vertices divided into r
groups, and every vertex within a group is connected to every vertex in other groups. We will utilize an ap-
proach developed by Cambie et al. to prove the lower bound.

Additionally, we will present an algorithm that can compute the different k-colorings of the graph G , as
well as the reconfiguration graph Ck (G). We will also calculate the diameter of this reconfiguration graph:
diam(Ck (G)). Finally, we will provide some results on the diameter of the reconfiguration graph for small
graphs using our algorithm.

v

Contents

1 Introduction 1
1.1 Defining the main problem . 2
1.2 Motivation and outline . 3

2 Cereceda’s conjecture and an easier version 5

3 Lower bound on the diameter 7
3.1 Helping construction, based on Cambie et al. 7
3.2 Results for complete graph and complete bipartite graph . 8

4 On r -partite graphs 11
4.1 An introduction: G = K1,1,...,1,2,2,...,2, with a 1’s, and b 2’s. 11
4.2 Complete r -partite graphs . 11

4.2.1 Matching number for r -partite graphs G = Kx1,x2,...,xr 12
4.2.2 Lower bound for diameter of complete r -partite graphs G = Kx1,x2,...,xr 13

4.3 Return to G = K1,1,...,1,2,2,...,2 . 14

5 Finding diameter using Sagemath 17
5.1 The algorithm. 17
5.2 Results on smaller graphs . 19

6 Conclusion 21

A Sagemath code 23

Bibliography 25

vii

1
Introduction

In mathematics and many other fields, often certain problems do not have unique solutions. These solutions
may be similar to each other in some way, and one may like to analyse their similarities. To more accurately
explore the extent of similarity between solutions, we introduce the concept of reconfiguration.

Reconfiguration problems are optimization problems that focus on analyzing the solutions or state spaces
of a problem and measuring the distance between them. The notion of distance varies depending on the
specific problem being studied. A classic example that illustrates this idea is the Rubik’s cube. By rotating the
sides of the cube, we can transform it from one arrangement to another, aiming to achieve a solution where
each face has a single color. The efficiency of solving the cube is determined by the number of rotations
needed to reach the desired state.

In this thesis we will focus on graphs and the reconfiguration of graph colorings. When it comes to defin-
ing the distance between two graph colorings, numerous approaches exist, with some seeming more intuitive
than others. When we look back at Rubik’s cube, we can define a step, or a distance of one, to be a single ro-
tation of a side. After one such step we still have a proper arrangement of the cube. Consequently, the overall
distance from any initial cube arrangement to the solution with monochromatic faces is measured by the
number of rotations required to reach that state.

We would like to do something similar to graph colorings of a graph G : by defining a step to be a recoloring
of a single vertex, the total distance between two colorings α and β of a graph G is the number of vertex
color swaps. Likewise we want to have a proper coloring of the graph every single step as well, hence we are
restricted to which vertices we can swap.

We go over a few basic definitions from graph theory. A graph is a tuple G = (V ,E), where V are called
the vertices of the graph, and E ⊆ (V

2

)
are called the edges of the graph, so an edge is between two vertices. A

proper k-coloring of the graph G is a function f : V → {1,2, . . . ,k} such that: uv ∈ E =⇒ f (u) ̸= f (v). From this
point onwards, we will refer to proper k-colorings as just “k-colorings".

Currently, the reconfiguration problem lacks a precise definition. To address this, we aim to establish
a clear measure of the distance between any two k-colorings of a graph G using mathematical notation to
facilitate discussions about the reconfiguration problem. To achieve this, we introduce the concept of a re-
configuration graph, denoted as Ck (G) on k colors. The reconfiguration graph is constructed as follows:

• The vertices of Ck (G) are the k-colorings of G .

• There is an edge between two vertices of Ck (G), i.e. two k-colorings of G , if the k-colorings are different
in only one vertex.

With this definition, we can directly associate the distance between two k-colorings with the distance
between the corresponding nodes on the reconfiguration graph. It is worth noting that the reconfiguration
graph consists of vertices that are graphs themselves, which may require visualization for better comprehen-
sion. Therefore, let us examine a segment of the cycle graph C3 along with its reconfiguration graph C4(C3)
on 4 colors:

1

2 1. Introduction

A

B C

A

B C

A

B C

A

B C

A

B C

A

B C

Check for yourself that the edges between the k-colorings in the figure are correct. Note that the total
number of vertices of C4(C3) is equal to 4 ·3 ·2 = 24.

The distance between two k-colorings α and β by itself can vary per k-coloring, hence it makes sense to
look at the maximum distance between any two k-colorings, which we can now say is the diameter of the
reconfiguration graph, i.e. diam(Ck (G)).

1.1. Defining the main problem
Note that Ck (G) is only non-empty if k ≥χ(G) = min

{
m : ∃ proper m-coloring

}
, otherwise known as the chro-

matic number. If we define the degree of a vertex in G to be: deg(v) = |{w ∈V (G) : v w ∈ E(G)}|, one can prove
that χ(G) ≤∆(G)+1, where ∆(G) = maxv∈V deg(v), otherwise known as the maximum degree of G . The proof
is based on induction and greedily coloring the vertices of the graph, and is given here:

Proof. Start with |V (G)| = 1, G is has no edges, hence ∆(G) = 0, and G has to be colored with 1 color, meaning
χ(G) = 1 ≤ 0+1 =∆(G)+1. Suppose that the induction hypothesis, i.e. χ(G) ≤∆(G)+1, is true for |V (G)| = k−1.
Let G now have k vertices, and label the vertices v1, v2, . . . , vk . Then the induced subgraph G[G−{vk }] has k−1
vertices and hence can be colored with at most χ(G − {vk }) ≤∆(G − {vk })+1 colors.

Now vk has degree deg(vk), amd all edges neighbouring vk are in G−{vk }. If deg(vk) ≤∆(G−{vk }), we have
∆(G) =∆(G − {vk }) and we use an available color from the (∆(G − {vk })+1)-coloring of G − {vk } for vk , which
must exist since we are using more colors than neighbours of vk . This gives a ∆(G)+1 coloring of G , and thus
a (∆(G)+1)-coloring of G . If deg(vk) >∆(G − {vk }), in the worst case scenario, vk is incident to all colors used
in the coloring of G−{vk }, which has at most∆(G−{vk })+1 colors, therefore having to use a new color outside
the coloring. This gives at most a ([∆(G − vk)+1]+1)-coloring of G . Since now∆(G) = deg(vk) ≥∆(G−{vk })+1
we find a (∆(G)+1)-coloring of G .

We find χ(G) ≤∆(G)+1 in both instances, and we conclude the proof.

This upper bound on the number of colors needed to color a graph, means when we color the graph with
one more color, i.e. ∆(G)+ 2 colors, we have a ‘free’ color for every vertex v ; free in the sense that it does
not appear on v nor on any neighbor of v . This allows any vertex to be recolored, giving us more insight on
the connectedness of the reconfiguration graph with ∆(G)+ 2 colors. It is good to note that the reconfigu-
ration graph with ∆(G)+2 colors is indeed connected [9], namely that the maximum distance between two
k-colorings is proven to be bounded from above by 2n, where n is the number of vertices. It is possible that
this upper bound can be lowered to a more tight bound, one which will be shown later.

In contrast, if we used k = ∆(G)+1 colors for our reconfiguration graph, it might be disconnected. One
such case was brought fourth in Cereceda’s 2007 paper [7] on page 24. In this paper, the general case of the
Lm graph is discussed: Lm is the graph with vertices {v1, v2, . . . , vm , w1, w2, . . . , wm} with edges between each
vi w j with i ̸= j . A smaller example L3 is shown here for convenience. L3 is the complete bipartite graph
K3,3 with a perfect matching removed; now ∆(L3)+1 = (3−1)+1 = 3. To show that the reconfiguration graph
C∆(L3)+1(L3) is disconnected, consider the coloring as shown here.

1.2. Motivation and outline 3

α1,1 α1,2 α1,3

α2,1 α2,2 α2,3

Since we are only allowed to use three colors, here green, blue and red, we cannot go to any other coloring,
as any vertex is adjacent to two other colors, hence fixing its color in place. With ∆(L3)+2 colors, this could
be averted.

One more concept needs to be introduced before the main problem can be written down, namely match-
ings. A matching M of a graph G is a subset of the edges from G , such that no two edges in M share an
endpoint. The size of the maximum matching, i.e. the largest matching, in the graph G is called the matching
number and is denoted by µ(G).

For certain types of graphs it is known that the diameter of the reconfiguration graph on∆(G)+2 colors is
bounded from above and below by the quantity n+µ(G), where n is the amount of vertices of the graph. The
following is then conjectured:

Conjecture 1. For every graph G, it holds that for k ≥∆(G)+2

diam(Ck (G)) = n +µ(G).

This conjecture originally stems from the 2022 paper from Cambie et al. [6], which, if true, is a tight
bound on Proposition 5.23 proven in Cereceda’s 2007 paper [7]. The main goal of our thesis is to prove the
lower bound of this diameter for a family of graphs called complete r -partite graphs. A complete r -partite
graph G = Kx1,x2,...,xr , where x1 ≤ x2 ≤ . . . ≤ xr , is a graph where the vertices are V (G) =⋃r

i=1 Si , where each Si

is an independent set with |Si | = xi for each 1 ≤ i ≤ r , and the edges are between every two vertices not in the
same independent set. The main theorem of this thesis we will prove is formulated as follows:

Theorem 1. For any complete r -partite graph G = Kx1,x2,...,xr , we have

diam
(
C∆(G)+2(G)

)≥ n +µ(G).

1.2. Motivation and outline
The problem of reconfiguration on graph colorings has some interesting applications in other fields of sci-
ence. For instance, the connectivity of the reconfiguration graph, i.e. finiteness of the diameter of the recon-
figuration graph, is linked to the mixing time of certain Markov chains. Mixing time of a Markov Chain refers
to the time needed for the chain to be ’close’ to a steady state distribution; when the mixing time converges at
most polynomially fast in the size of the problem instance it is called rapidly mixing [10]. The Markov chain
used to sample k-colorings of a graph G , denoted by the Glauber dynamics, is rapidly mixing, only if Ck (G)
is connected. Note that the connectivity is only a necessary condition, in that the converse need not be true,
which was proven in this paper by Łuczak [12].

Another application comes up in computer science and time complexity [1]. This paper by Belavadi et al.
proves that Ck+1(G) is connected for every k-colorable H-free graph G if and only if H is an induced subgraph
of the path graphs P4 or P3 +P1. It is then also stated that these G are exactly the family of H-free graphs for
which figuring out for every k, whether there is a k-coloring of G , is polynomial time solvable [11].

As mentioned, in this thesis, we will prove the lower bound on the diameter diam(Ck (G)) ≥ n +µ(G) for r -
partite graphs. Before we get to r -partite graphs, we will look into what is known, starting off with a side
venture to Cereceda’s conjecture in chapter 2, which is an analogue problem which asks the same question
on connectivity of the reconfiguration graph, but instead of considering the maximum degree ∆(G) of G for
the colorings of G , it considers the degeneracy dg(G) of the G . After which we proceed with the known lower
bounds for complete graphs and complete bipartite graphs in chapter 3, and technique used to figure out
the lower bound. In chapter 4, we prove the desired lower bound for r -partite graphs and look into the spe-
cific example G = K1,1,...,1,2,2,...,2, which can be viewed as a merge of complete graphs and complete bipartite
graphs. Lastly we manually compute the diameter for some small non-complete graphs using Sagemath in
chapter 5.

2
Cereceda’s conjecture and an easier version

As described in the introduction, we start off with a related problem to using (∆(G)+ 2)-colorings for the
reconfiguration graph, namely with the degeneracy dg(G) of G instead of the maximum degree ∆(G) of G .
The degeneracy dg(G) of G can be defined as follows: dg(G) = k if one can find an ordering of the vertices
(v1, v2, . . . , vk) such that there are at most k edges between {vi } and {v1, v2, . . . , vi−1} for all i ∈ {2,3, . . . ,k}. Note
that the number of edges between {vi } and {v1, v2, . . . , vi−1} for any i is bounded from above by the degree of
vi , therefore: dg(G) ≤ maxv∈V deg(v) = ∆(G), hence the relation between the two reconfiguration problems.
We show Cereceda’s conjecture made in his 2007 paper [7] and prove an easier version.

Conjecture 2 (Cereceda’s Conjecture). If a simple graph G = (V ,E) has degeneracy dg(G), then

diam
(
Cdg(G)+2(G)

)=O
(
n2) ,

where n = |V (G)|.
If this conjecture is true, this bound is tight, since the family of path graphs Pm was found to have a

quadratic lower and upper bound on the diameter of the reconfiguration graph on 3 colors [3]. Furthermore,
the reconfiguration graph on 5 colors of planar bipartite graphs was also found to have a quadratic diameter
[5].

We can prove an easier version of this conjecture, which was proven in Cereceda’s paper:

Theorem 2 (Weakened Cereceda’s Conjecture). If a simple graph G = (V ,E) has degeneracy dg(G), then

diam
(
Cdg(G)+2(G)

)=O
(
2n)

,

where n = |V (G)|.
Proof of Theorem 2. We apply induction on the number of vertices |V (G)| = n. For the base case we go directly
to n = 2. For n = 0 or n = 1 the hypothesis is true, however visually uninteresting, and mostly trivial. For n = 2
we do have some neat graphs to show, namely we have two cases:

• If there are no edges, we have two isolated points, and thus dg(G) = 0. Our reconfiguration graph C2(G)
then consists of the following 4 vertices (graphs).

1 2 1 2

1 21 2

Thus diam(C2(G)) = 2 ≤ 22.

5

6 2. Cereceda’s conjecture and an easier version

• If there is an edge between the two vertices, we have dg(G) = 1. Then C3(G) consists of the following 6
vertices (graphs).

1 2 1 2 1 2

1 21 21 2

Thus diam(C3(G)) = 3 ≤ 22.

Now suppose that for all m ≤ n, for a simple graph H = (V ,E) with |V (H)| = m vertices and degeneracy dg(H)
we have diam

(
Cdg(H)+2(H)

)=O (2m). Consider then a simple graph G = (V ,E) with |V (G)| = n+1 and degen-
eracy dg(G). By definition we can find an ordering (v1, v2, . . . , vn , vn+1) of the vertices of G such that there are
at most dg(G) edges between vk and {v1, v2, . . . , vk−1} for all k ∈ {2,3, . . . ,n +1}.

We now apply the induction hypothesis on the induced subgraph G[S] ⊂G of the vertices S = {v1, v2, . . . , vn},
i.e. to go from any coloring α′ of S to another coloring β′ of S, using only dg(G)+2 colors, the amount of steps
is bounded by c ·2n where c is a constant. Define the steps needed to go from α′ to β′ by s1, s2, . . . , sc·2n , where
each step si changes the color of one vertex from {v1, v2, . . . , vn}.

If you were to follow these steps on G instead of G[S] you might run into a problem with the color of vertex
vn+1. Since there are at most dg(G) edges going between vn+1 and {v1, v2, . . . , vn}, and we have dg(G)+2 colors
to use, we always have at least

dg(G)+2−|N (vn+1)∪ vn+1| = dg(G)+2−|N (vn+1)|− |vn+1| ≥ dg(G)+2−dg(G)−1 = 1

free color for vn+1 to change to.
To apply one of the steps si from the induction hypothesis, vertex vn+1 might clash with the new coloring.

We know now however that there is always a free color, hence, every time we want to apply one of the steps si

from the induction hypothesis, we add another step ri before si , which recolors vertex vn+1 to the free color,
such that no issues arise with coloring. Once every vertex in {v1, v2, . . . , vn} has the correct coloring, if vertex
vn+1 is not the right color yet, we add a final step f which recolors vertex vn+1 to the correct color.

Finally, we find that to get from a coloring α of V (G) to a coloring β of V (G), we need, in order, at most the
following steps

r1, s1,r2, s2, . . . ,rc·2n , sc·2n , f .

The total amount of steps needed between any two colorings α and β of V (G) using dg(G)+2, and thus the
diameter of the reconfiguration Cdg(G)+2(G), adds up to be at most∣∣{r1,r2, . . . ,rc·2n }∪ {s1, s2, . . . , sc·2n }∪{

f
}∣∣

= | {r1,r2, . . . ,rc·2n } |+ | {s1, s2, . . . , sc·2n } |+ ∣∣{ f
}∣∣

= c ·2n + c ·2n +1 = c · (2n +2n)+1 = c · (2 ·2n)+1 = c ·2n+1 +1 =O
(
2n+1) .

Note that an exponential lower bound is nowhere near as good as a quadratic bound, nor any polynomial
bound. Far better approximations can be found in the 2019 paper by Bousquet and Heinrich [5], where it
is proven that if k ≥ dg(G)+2, then diam(Ck (G)) = O

(
ndg(G)+1

)
, improving to a polynomial bound, but not

necessarily quadratic. However, the paper also proves that if k ≥ 3
2 (dg(G)+ 1), then diam(Ck (G)) = O

(
n2

)
,

which is precisely the bound in Cereceda’s conjecture, but the condition on k is now not tight enough to
prove the conjecture.

Now that we have explored the related problem, we move on to the problem with the maximum degree,
which is where our main focus lies.

3
Lower bound on the diameter

We would like to show for any complete graph G = Kn and complete bipartite graph G = Kn,m with n,m ∈Z≥0,
a lower bound for the diameter with respect to the maximum degree ∆(G) of G , i.e. diam

(
C∆(G)+2(G)

) ≥
n +µ(G), where µ(G) is the matching number of G . Aside from that, looking at specific examples might help
with understanding the problem when wanting to look at r -partite graphs.

3.1. Helping construction, based on Cambie et al.
To prove the lower bound stated in the introduction of this chapter for certain graphs G , we will be using a
certain extension of this graph. This extension was introduced to me in a 2022 paper from Cambie et al. [6],
and will be heavily used for finding the lower bound on the diameter in question. Suppose that G is a graph,
and take M to be a maximum matching of G . We now construct the extension Ĝ = (V ,E) as follows:

• ∀v ∈V (G), v ∈V (Ĝ).

• if e ∈ E(G), then e ∈ E(Ĝ)

• if a,b,c,d ∈V (G) and ab,cd ∈ M and ac ∈ E(G), then bd ∈ E(Ĝ).

Notice that Ĝ is dependent on our choice of matching M . If it is clear from the context what our matching is,
or our choice of M does not matter, we do not specify the matching. We also notice from the definition that
we only add edges to G , so G ⊆ Ĝ , and hence χ(G) ≤ χ(Ĝ). Also note that a proper k-coloring of Ĝ , is also a
proper k-coloring of G . We now prove a sufficient condition for the lower bound we want to achieve.

Lemma 1. If G has a perfect matching M and for this M we have χ(Ĝ) ≤ k, then

diam(Ck (G)) ≥ n +µ(G).

Proof. To prove this lemma, we consider an arbitrary k-coloring α of Ĝ and then construct a k-coloring β of
Ĝ which we can prove is at least n +µ(G) distance away from α.

Consider the endpoints of the edges of the matching, e.g. x y ∈ M with x, y ∈ V (G). We construct the k-
coloring β of Ĝ by switching the colors on the edges in M . So for instance, for our two vertices x and y , we get
β(x) =α(y) and β(y) =α(x).

To show β is in fact proper, let x ∈ V (G) be arbitrary. Since M is perfect, let y ∈ V (G) such that x y ∈ M
and suppose for the sake of contradiction xz ∈ E(Ĝ) and β(x) = β(z). We know z ̸= y , since x y ∈ M and
thus β(x) ̸= β(y). As M is a perfect matching, let z ′ be the vertex such that zz ′ ∈ M , and thus β(z) ̸= β(z ′).
Now as xz ∈ E(Ĝ), we have xz ∈ E(G) or y z ′ ∈ E(G) by construction of Ĝ . If xz ∈ E(G), then β(x) ̸= β(z),
which is contradictory. If y z ′ ∈ E(G), then α(y) ̸= α(z ′), but then by definition of β we get β(x) ̸= β(z), again
contradictory.

The distance between α and β can be bounded by changing colors along the matching. Consider one
edge of the matching, i.e. x y ∈ M , with α(x) = i ,α(y) = j (and thus β(x) = j ,β(y) = i). If all the other vertices
do not interfere, the fastest way to switch the colors of the vertices is to change the color of x to a free color
m, then change y to the desired color i and then change x to the desired color j .

7

8 3. Lower bound on the diameter

Note that if a free color does not exist, the lower bound still stands, since ∞> n +µ(G).
Hence per edge of the matching we need to change the color of both endpoints, plus at least one extra

change of an endpoint to a free color per matching. Thus

diam(Ck (G)) ≥
∑

e∈M
(|{v ∈ e}|+1) = n +µ(G).

This finsishes the proof.

Since not every graph has a perfect matching, this lemma is only applicable in some cases. We can how-
ever modify our proof to show a sufficient condition for all matchings:

Lemma 2. If at least one of the following is true:

(a) χ(Ĝ) ≤ k −1

(b) χ(Ĝ) ≤ k and k ≥∆(G)+2

then
diam(Ck (G)) ≥ n +µ(G).

Proof. The proof is essentialy the same as Lemma 1.We need one more step to construct β however, since not
every vertex is saturated by the matching. For all such vertices v , let β(v) be outside of α(v)∪⋃

w∈N (v)β(v). In
situation (b) this is certainly possible, because there is a free color at v . In situation (a) this could mean that
β(v) introduces a color outside the range of χ(Ĝ), and thus makes β a ((k −1)+1)-coloring of Ĝ , and thus a
k-coloring of G .

The switching argument stays the same, and we also need to change the colors of all vertices v not satu-
rated by M . This means we now have:

diam(Ck (G)) ≥ | {v : ∀e ∈ M , v ̸∈ e} |+
∑

e∈M
(|{v ∈ e}|+1) = n +µ(G),

and we are done.

This is a lot more useful. One immediate consequence of Lemma 2 is a lower bound for complete graphs.

3.2. Results for complete graph and complete bipartite graph
We find for the complete graph Kn (where n ∈ Z≥0) that, since Kn cannot be extended, for any matching
M of Kn , K̂n = Kn , thus χ(K̂n) = χ(Kn) = n = (n − 1) + 1 = ∆(Kn) + 1. Thus we have: diam(Cn+1(Kn)) =
diam

(
C∆(Kn)+2(Kn)

) ≥ n +µ(Kn). If you are wondering, the matching number for the complete graph Kn is
equal to µ(Kn) = ⌊n/2⌋, hence the bound is more precisely equal to: diam

(
C∆(Kn)+2(Kn)

)≥ ⌊ 3n
2 ⌋.

Next we aim to prove the lower bound for the complete bipartite graph G = Kn,m . To prove this we need
an extra result, which was proven by Cambie et al. [6], under Proposition 3(1).

Corollary 1. If χ(G)
(
χ(G)−1

)≤ k −1, then

diam(Ck (G)) ≥ n +µ(G).

Proof. Suppose χ(G)
(
χ(G)−1

) ≤ k − 1. Let α be fixed a χ(G)-colouring of G . Assume that M is a perfect
matching of G ; if this is not the case, we add an extra edge to every vertex unsaturated by M , and then add
the newly created edges to our matching M such that M is now perfect. We require a (k −1)-coloring of Ĝ ,
hence we give every vertex v the tuple-color (α(v),α(w)), where v w ∈ M , call this coloring f̂ . We now check
that this coloring of Ĝ is indeed proper.

Suppose x, y ∈V (G), x y ∈ E(Ĝ) and f̂ (x) = f̂ (y), then (α(x),α(x ′)) = (α(y),α(y ′)), where xx ′, y y ′ ∈ M . Then
we have α(x) = α(y) and α(x ′) = α(y ′). Since x y ∈ E(Ĝ), we have x y ∈ E(G) or x ′y ′ ∈ E(G) by construction of
Ĝ . If x y ∈ E(G), then α(x) ̸= α(y), and if x ′y ′ ∈ E(G), then α(x ′) ̸= α(y ′) by propriety of α. Both cases are
contradictory, hence the coloring f̂ is proper.

Since for v w ∈ M we have α(v) ̸= α(w), we have χ(G)(χ(G)− 1) different (α(v),α(w)) tuples, and thus
we have at most a χ(G)(χ(G)−1)-coloring of Ĝ . By combining our first assumption and Lemma 2a, we have
proven the lower bound.

3.2. Results for complete graph and complete bipartite graph 9

We then immediately get the following result:

Corollary 2. For bipartite graphs G, we have

diam(Ck (G)) ≥ n +µ(G)

for all k ≥ 3.

Proof. Bipartite graphs G have χ(G) = 2, hence we have for k ≥ 3 : χ(G)
(
χ(G)−1

) = 2 ·1 = 2 ≤ k −1, thus by
Corollary 1 the lower bound on the diameter holds.

Now that we have an approach to getting the desired lower bound on the diameter and some results on
the complete graph and complete bipartite graphs, we can begin with more general family of graphs, the r -
partite graphs, and get results on the lower bound of the diameter for the reconfiguration graph such graphs.

4
On r -partite graphs

We have showed for the complete graph and for the complete bipartite graph, that the lower bound for the
diameter of the reconfiguration graph holds. A next step could be to look at a mix, or a merge, of the two. In
general, we want to look at r -partite graphs, graphs that be partitioned into r independent sets, i.e. can be
colored in r -colors or more. More specifically, we look at complete r -partite graphs of the form G = Kx1,x2,...,xr ,
where x1 ≤ x2 ≤ . . . ≤ xr ,

∑r
i=1 xi = n and each index i belongs to a different ind. set Si of size xi , and there is

an edge in between every two vertices not belonging to the same ind. set.

4.1. An introduction: G = K1,1,...,1,2,2,...,2, with a 1’s, and b 2’s.
This graph consists of a independent sets of size 1 and b independent sets of size 2, meaning we have a +2b
vertices and

(a+b
2

)
edges. The graph can be visualised as followed, with the edges removed for clarity.

S1 S2 Sa
Sa+1 Sa+2 Sa+b

. . .
. . .

Before we determine a lower bound on the diameter of this graph, we give a few important details. When
looking at the degree of a vertex v from an set of size 2, the degree is equal to a +2b −2 as there is no edge
to itself, and no edge to the other vertex in the set. For a vertex v from an set of size 1, the degree is equal to
a+2b−1 as there is no edge to itself. Therefore the maximum degree∆(G) is equal to a+2b−1. By definition,
the chromatic number χ(G) is equal to a +b.

We now apply the construction Ĝ on our graph G . Note that for any matching we chose, we cannot ex-
tend G past the a + 2b vertices, thus Ĝ ⊆ Ka+2b , and thus χ(Ĝ) ≤ χ(Ka+2b) = a + 2b. By Lemma 2a we find
immediately

diam(Ca+2b+1(G)) = diam
(
C∆(G)+2(G)

)≥ n +µ(G).

Hence the case for ∆(G)+2 for the reconfiguration graph holds. We can however do a lot better; with a
specific choice of matching our extension need not have a chromatic number of a +2b. A proof for this will
be given later. Since we now that we have an idea of how to handle the smaller case of G = K1,1,...,1,2,2,...,2, we
want to directly tackle the general problem for complete r -partite graphs.

4.2. Complete r -partite graphs
As noted before, we look at G = Kx1,x2,...,xr , where x1 ≤ x2 ≤ . . . ≤ xr ,

∑r
i=1 xi = n and each index i belongs to a

different ind. set Si of size xi , and there is an edge in between every two vertices not belonging to the same
ind. set. We again start of with a few facts about this graph.

11

12 4. On r -partite graphs

α1

α2

...

αx1

S1

β1

β2

β3

...

βx2

S2

ρ1

ρ2

ρ3

ρ4

...

ρxr

Sr

. . .

For starters, by our definition, it is clear that the chromatic number is equal to r . For the maximum
degree we need to look at a vertex in the smallest ind. set S1. Such a vertex has degree n − x1. Notice that
n −x1 ≥ n −x2 ≥ . . . ≥ n −xr , so this is the maximum degree.

The chromatic number of the extension Ĝ can be at most n, since that is the total amount of vertices. By
Lemma 2a, if we assume the worst case scenario where the chromatic number is equal to n, then we have
diam(Cn+1(G)) ≥ n+µ(G). Notice that ∆(G)+2 = n−x1+2, thus if x1 = 1, we get ∆(G)+2 = n+1, but then we
get diam

(
C∆(G)+2(G)

)= diam(Cn+1(G)) ≥ n +µ(G), which is precisely what we need.
Hence if x1 = 1 we are already done, but in general x1 is not equal to 1. From now on we assume x1 ≥ 2.

We need to refine our extension Ĝ such that we do not get the worst case scenario.

4.2.1. Matching number for r -partite graphs G = Kx1,x2,...,xr
In order to refine the extension, we need to know how to construct a maximum matching inside the r -paritite
graph which does not add too many edges for the extension graph Ĝ . We give the following lemma for the
matching number for complete r -partite graphs.

Lemma 3. For any complete r -partite graph G = Kx1,x2,...,xr , the matching number is equal to

µ(G) = min{n −xr ,⌊n/2⌋} .

Proof. Depending on the size of our independent sets, we have to do our matching differently. It turns out
the following two cases are sufficient to find the matching number:

Case 1: When xr ≤ ⌊n/2⌋, we first define a bijection f : {1,2, . . . ,n} →V (G) where

S1 = f ({1,2, . . . , x1})

S2 = f ({x1 +1, x1 +2, . . . , x1 +x2})

...

Sr = f

({
r−1∑
i=1

xi +1,
r−1∑
i=1

xi +2, . . . ,n

})

We then match f (i) ↔ f (i +⌊n/2⌋) for 1 ≤ i ≤ ⌊n/2⌋. Since xi ≤ xr ≤ ⌊n/2⌋, the matching connects pairs
from different independent sets Si and S j . Furthermore, if n is even, all vertices are matched, hence we
have a perfect matching, and if n is odd, we have 2⌊n/2⌋ = n −1 vertices that are matched, i.e. all but
one, hence making it a maximum matching.

Case 2: When xr > n/2, our final independent set Sr is larger than all other independent sets combined, as∑r−1
i=1 |Si | = ∑r−1

i=1 xi = n − xr < n/2 < xr = |Sr |. To this effect, let M be the matching between all vertices
from

⋃r−1
i=1 Si to the vertices of Sr , leaving some vertices from Sr unsaturated.

To prove this is a maximum matching, we use Berge’s Theorem [2], which states that this matching is
maximum, if and only if there is no augmenting path with the matching, i.e. there is not a path that
starts and ends on unmatched vertices, and alternates between edges in and not in the matching.

In our case, the unmatched vertices are all inside Sr , and Sr is independent, hence any augmenting path
starts and ends with an edge outside the matching. Since the augmenting path must alternate between

4.2. Complete r -partite graphs 13

edges in- and outside of the matching, we must have an odd amount of edges in the augmenting path.
However, the only unmatched vertices are in Sr , and all edges in the matching are linked to Sr , making
this impossible. Thus our matching is indeed maximum.

We find that the matching number in case 1 is of the size ⌊n/2⌋, and in case 2 we have a matching of size
n −xr , thus the matching number of any complete r -partite graph G is µ(G) = min{⌊n/2⌋,n −xr }.

We claim that both constructions given in the proof are beneficial for our extension, in the sense that it
proves the lower bound.

4.2.2. Lower bound for diameter of complete r -partite graphs G = Kx1,x2,...,xr
We need a few other results to prove what we need.

Lemma 4. For any graph G and every maximum matching M of G, we have χ(Ĝ) ≤ 2s + 1 whenever M can
be partitioned into s disjoint sub-matchings M1, M2, . . . , Ms , such that for all 1 ≤ i ≤ s, Mi induces a bipartite
subgraph of G. Furthermore, if M is perfect we have: χ(Ĝ) ≤ 2s.

Note: “Mi induces a bipartite subgraph" means that the endpoints of Mi induce a bipartite subgraph.

Proof. Suppose M can be partitioned into s disjoint sub-matchings M1, M2, . . . , Ms , such that for all 1 ≤ i ≤ s,
Mi induces a bipartite subgraph of G . Then every Mi also induces a bipartite subgraph of Ĝ . Hence in Ĝ
we only need 2 colors to color the endpoints of each Mi . Therefore we need at most 2s colors to color every
vertex saturated by M . The vertices that are unsaturated by M form an independent set S, otherwise M would
not be a maximum matching. Thus we need at most 2s+1 colors to color all vertices of the graph Ĝ . If M was
perfect, S does not exist, and we need only 2s colors.

Theorem 3. For any complete r -partite graph G = Kx1,x2,...,xr , we have

diam
(
C∆(G)+2(G)

)≥ n +µ(G).

Proof. Reminder that for x1 = 1 we were already done, hence we assume x1 ≥ 2. For Case 2, where xr >
⌊n/2⌋, we chose a matching M between the vertices

⋃r−1
i=1 Si to the vertices of Sr . Hence we can partition

the matching into disjoint sub-matchings Mi between Si and Sr , which all induce a bipartite subgraph of
G . Hence we have r − 1 sub-matchings, and thus by Lemma 4 we find χ(Ĝ) ≤ 2(r − 1)+ 1. Since x1 ≥ 2 by
assumption and x1 ≤ x2 ≤ . . . ≤ xr , we have n − x1 =∑r

i=2 xi ≥∑r
i=2 x1 ≥ 2(r −1), and thus χ(Ĝ) ≤ 2(r −1)+1 ≤

n − x1 +1. By Lemma 2a we have proven the lower bound for n − x1 +2 = ∆(G)+2 colors, which is what we
needed.

For Case 1 it gets more complicated. Let M be the maximum matching described earlier for Case 1. Define
N (S1) be the set of vertices connected to S1 by an edge from M . By our choice of f (1), . . . , f (n) we know that
N (S1) can intersect with at most two other independent sets Si and S j . To this effect, we define the following
sets:

B1 = {N (S1)∩Si }

B2 =
{

N (S1)∩S j
}

A1 = {v ∈ S1|∃w ∈ B1 : v w ∈ M }

A2 = {v ∈ S1|∃w ∈ B2 : v w ∈ M }

Note that the union of A1 and B1 induces a bipartite subgraph of G , and if A2 and B2 are non-empty, so
does the union of A2 and B2. Hence we can choose a small enough amount of submatchings s for Lemma 4.

If A2 is non-empty, we have two submatchings A1 ↔ B1 and A2 ↔ B2, and we can choose the rest of the
edges in M as submatchings, so we get: s = |M |− (|A1|−1)− (|A2|−1) = ⌊n/2⌋− x1 +2. By Lemma 4 we know
that Ĝ can be colored with 2s +n − 2⌊n/2⌋ = 2(⌊n/2⌋−x1 +2)+n − 2⌊n/2⌋ = n − 2x1 + 4 ≤ n − x1 + 2 colors,
since x1 ≥ 2. If A2 is empty, we have one submatching A1 ↔ B1 and we again let the rest of the edges of
M be submatchings, and we get: s = |M | − (|A1| − 1) = ⌊n/2⌋− x1 + 1. By Lemma 4, Ĝ can be colored with
2s +n −2⌊n/2⌋ = [2⌊n/2⌋−2x1 +2]+n −2⌊n/2⌋ = n −2x1 +2 ≤ n −x1 colors, again since x1 ≥ 2.

In both cases we find χ(Ĝ) ≤ n−x1+2 =∆(G)+2, and thus by Lemma 2b, we have found the correct lower
bound for the diameter of the r -partite graphs.

14 4. On r -partite graphs

4.3. Return to G = K1,1,...,1,2,2,...,2
We have proven the general case of the lower bound of the diameter for complete r -partite graphs, however
only for k-colorings of G where k = ∆(G) + 2. Through choosing a specific matching, we can reduce the
number of colors required while achieving the same lower bound on the diameter. This is not as clear to do
for general r -partite graphs, but for specific examples it could be done. Hence we return to our original merge
G = K1,1,...,1,2,2,...,2 and analyse the possible matchings.

Earlier we assumed the worst case for the extension Ĝ , namely that it had a chromatic number of a+2b; in
that case it did not matter since we had an independent set of size 1, which as we saw earlier proves the lower
bound regardless. By picking the right matching, we can lower the chromatic number of Ĝ by a substantial
amount, which in turn gives a better indication of how many colors the reconfiguration graph actually needs.

Lemma 5. For G = K1,1,...,1,2,2,...,2, with a 1’s, and b 2’s, we have for k ≥ a +b +1 :

diam(Ck (G)) ≥ n +µ(G).

Since the chromatic number of G = K1,1,...,1,2,2,...,2 with a 1’s and b 2’s is equal to a+b, every (a+b)-coloring
in Ca+b(G) is frozen, in that no vertex can be recolored. Hence it makes sense to look at reconfiguration
graphs of G on more than a +b colors.

Proof. For this proof, we need to consider the parity of a and b.

Case 1: a is even and b is even.

Then any maximum matching is a perfect matching. Since we have an even amount of sets of size 2, we
can split the ind. sets into pairs, and do the following for each pair: If {a,b} and {c,d} are two ind. sets,
then ac, ad ,bc,bd ∈ E(G) by completeness of G , but notably ab,cd ̸∈ E(G) by independence. For the
matching then take ac,bd ∈ M , as by the construction of Ĝ , since ab ̸∈ E(G) =⇒ cd ̸∈ E(Ĝ), and vice
versa. Hence no edge is added in these ind. sets. Move on to the next pair and do the same until all are
covered.

We can apply the same idea for the even amount of ind. sets of size 1, between any pair {x} and {y} there
is x y ∈ E(G), let x y ∈ M , no edge gets added to Ĝ by completeness of G . Move on to the next pair until
all are covered.

S1 S2 Sa−1 Sa
Sa+1 Sa+2 Sa+b−1 Sa+b

. . .
. . .

We have now chosen a matching such that no edge gets added in the extension, which means Ĝ = G
and thus χ(Ĝ) =χ(G) = a +b. Thus by Lemma 1 we find diam(Ca+b(G)) ≥ n +µ(G).

Case 2: a is even and b is odd

Then any maximum matching is a perfect matching; we can try as before with creating a matching
which does not add edges in Ĝ , however, for this parity, it is not possible to do so.

Add the edges to the matching M in the same way as above for all but two ind. sets of size 1, and all but
one ind. set of size 2. For these sets {x, y}, {a} and {b}, take xa, yb ∈ M . Since ab ∈ E(G), x y will be added
in Ĝ . This means Ĝ has a +2 ind. sets of size 1 and b −1 ind. sets of size 2, giving a chromatic number
for Ĝ of (a +2)+ (b −1) = a +b +1.

S1 S2 Sa−1

Sa

Sa+1 Sa+b−1 Sa+b

. . .
. . .

By Lemma 1 we then get diam(Ca+b+1(G)) ≥ n +µ(G).

4.3. Return to G = K1,1,...,1,2,2,...,2 15

Case 3: a is odd and b is even

We have an odd amount of vertices so there will be one vertex not covered by the maximum matching
M . By pairing all the independent 2-sets together, and all but one independent 1-set together as before,
we do not add edges and we get χ(Ĝ) = a +b.

S1 S2 Sa
Sa+1 Sa+2 Sa+b−1 Sa+b

. . .
. . .

Then using Lemma 2a we get diam(Ca+b+1(G)) ≥ n +µ(G).

Case 4: a is odd and b is odd

We have an odd amount of vertices so there will be one vertex not covered by the maximum matching
M . By pairing all but one independent 2-sets together, and all but one independent 1-set together
as before, and adding one edge between the leftover ind. 1- and 2-sets, we get no added edges, so
χ(Ĝ) = a +b.

S1 S2 Sa
Sa+1 Sa+b−1 Sa+b

. . .
. . .

Then using Lemma 2a we get diam(Ca+b+1(G)) ≥ n +µ(G).

In general we have found that we can bring down the chromatic number of Ĝ , and therefore the number
of colors for the reconfiguration graph can be brought down to a+b+1 and the lower bound on the diameter
will still hold. We notice that the choice of matching is crucial to getting the best lower bound.

5
Finding diameter using Sagemath

While having proven the lower bound for r -partite graphs is good progress, a bigger issue is that most, if not
almost all graphs are not complete r -partite graphs. These graphs are not great to work with analytically,
hence some computer work is in order. For this chapter we will write the code for making the reconfiguration
graph, which is not trivial, we then analyse some graphs and give some results on the diameter. For this we
use the extension Sagemath, since it has many packages related to graph theory; the code written can be
found in appendix A.

5.1. The algorithm
To check the diameter of the reconfiguration graph of a certain graph with an algorithm, we first of all need to
define the reconfiguration graph, i.e. both vertices and edges have to be coded in. After that we can compute
the diameter with an already implemented command.

In Sagemath, a coloring of a graph is a dictionary, where the keys are vertices, and calling “coloring[vertex]"
gives the color used for that vertex in the coloring. We can hence check if two colorings are adjacent by check-
ing in how many vertices the coloring differs, which is what the following code does:

1 def is_adjacent(coloring1, coloring2):
2 diff_count = 0
3 for vertex in coloring1.keys():
4 if vertex in coloring2:
5 if coloring1[vertex] != coloring2[vertex]:
6 diff_count += 1
7 if diff_count > 1:
8 return False
9 else:

10 return False
11 return diff_count == 1

We can then add the edges for the reconfiguration graph, by going over all k-colorings and adding an
edge when two colors are adjacent. Defining the k-colorings we want, is not as easy. There is a function in
Sagemath called "all_n_colorings" but it has limitations. The biggest limitation is when asking for all k-
colorings, where k is larger than the amount of vertices |V |: then the function gives back 0 since it does not
consider |V |-colorings as valid k-colorings. This essentially means we have to define our own valid colorings
in order for our algorithm to work.

17

18 5. Finding diameter using Sagemath

1 def all_extended_colorings(graph, max_color):
2 all_colorings = []
3 chi = graph.chromatic_number()
4 for m in range(chi, max_color + 1):
5 color_dict = {v: None for v in graph.vertices()} # Initialize with empty colors
6 stack = [(0, color_dict)] # Start with the first vertex and the initial color dictionary
7

8 while stack:
9 vertex_index, current_color_dict = stack.pop()

10

11 if vertex_index == len(graph.vertices()):
12 if len(set(current_color_dict.values())) == m: # Check if all colors are used
13 all_colorings.append(current_color_dict.copy())
14 continue
15

16 vertex = graph.vertices()[vertex_index]
17 neighbors = graph.neighbors(vertex)
18 neighbor_colors = [current_color_dict[n] for n in neighbors \
19 if current_color_dict[n] is not None]
20 available_colors = [color for color in range(1, max_color + 1) \
21 if color not in neighbor_colors]
22

23 for color in available_colors:
24 new_color_dict = current_color_dict.copy()
25 new_color_dict[vertex] = color
26 stack.append((vertex_index + 1, new_color_dict))
27 return all_colorings

Since this excerpt of the code is bulky, we go through the code step by step:

1. We initialize with an empty list all_colorings for the colorings we want.

2. We go through the colorings where exactly m colorings are used, where m ranges from the chromatic
number to our maximum amount of colors k.

3. In the main for loop we initialize with an empty dictionary for a coloring where every vertex is a key
and first gets the color "None".

4. We then create a stack data structure, which starts with a tuple containing the vertex index “0" and
the initial (empty) color dictionary. The stack will store pairs of vertex indices and color dictionaries
for backtracking. We then do a while loop which continues until the stack is empty, i.e. it processes
vertices and their color dictionaries until all possible colorings have been explored.

5. We then pop from top of the stack a vertex index and its corresponding color dictionary, and we check
if vertex index is the last one, and all m distinct colors are used. If so, we add a copy of the coloring to
all_colorings.

6. We then continue with our code; we look at the vertex assigned to the vertex index, the vertex’ neigh-
bours and their colors which are already assigned, and check which colors are still available.

7. We then iterate over the available colors, create a copy of the current color dictionary to avoid modifying
it directly, assign the current color from the loop in the new color dictionary, and finally pushes a tuple
containing the incremented vertex index and the new color dictionary onto the stack. It simulates the
recursive call by adding the next vertex and the updated color dictionary for future exploration.

8. Finally, after the main loop, the function returns the all_colorings list containing all the valid ex-
tended colorings of the hypercube graph.

This way the code explores all possible combinations of colors for each vertex, and we get all colorings as
desired. The rest of the code is straight forward and can be found in Appendix A.

5.2. Results on smaller graphs 19

5.2. Results on smaller graphs
We analyse a few classes of graphs. We will also give the total number k-colorings of G , for this we will
utilise the chromatic polynomial P (G ,k) of G [8], which calculates just that. To start off we have the cy-
cle graphs Cn . The maximum degree of these graphs are equal to 2 for all n. Plugging in the code for
G = graph.CycleGraph(n) with ∆(Cn)+2 = 4 colors will give us the following table.

→ graph C3 C4 C5 C6 C7 C8

→ diameter 4 6 7 9 10 12
→ #4-colorings 24 84 240 732 2184 6564

This is exactly what we expect, since one can show µ(Cn) = ⌊n/2⌋ and one can show that every diame-
ter in the table conforms to n +µ(G). In fact, Cambie et al. proved that for cycles Cn the upper and lower
bound of n +µ(G) on the diameter diam(Ck (Cn)) holds (see Lemma 21 [6]). Note that n = 9 takes a very
long time to load, it is actually too much for the windows sage cell. The polynomial for the cycle graph Cn

is equal to P (Cn ,k) = (k − 1)n + (−1)n(k − 1). Therefore P (C9,4) = 19680, P (C10,4) = 59052, and so on. The
number of k-colorings on Cn increases exponentially when increasing n, but should increase polynomially
when increasing k. In both cases the diameter will take an even longer time to compute.

When we use 3 colors instead of 4, we get the following table:

→ graph C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

→ diameter +∞ 6 +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
→ #3-colorings 6 18 30 66 126 258 510 1026 2046 4098

We can get more values for the diameter with using less colors, but most diameters are infinite. Inter-
estingly, C4 does not conform with the other cycles, in that the diameter of its reconfiguration graph for 3
colors is finite. We can show that the 4-cycle graph C4 is equivalent to the complete bipartite graph K2,2, i.e.
C4

∼= K2,2. According to the Cambie et al. paper we cited before we can prove for complete bipartite graphs
that the diameter of the reconfiguration graph on 3 colors is bounded from above by n +µ(G) (see Theorem
20 in [6]).

For hypercubes Qn we have results for n = 2 and n = 3, but Q2 is just equal to the cycle graph C4, and
we already have results for this graph. To obtain the 3-dimensional cube graph, we can use the command
G = CubeGraph(3), and we get the following table

→ k=colors 3 4 5

→ diameter 12 +∞ 12
→ #k-colorings 114 2652 29660

One can figure out the chromatic polynomial of Q3, the cube graph, in Maple or Wolframalpha and find
out that P (Q3,k) = (k −1)k(133−290k +282k2 −159k3 +55k4 −11k5 +k6). The next item in the table would
have k = 6 and thus P (Q3,6) = 198030, which is almost a factor 10 larger than the previous item. Due to
time restrains, figuring out the diameter for k = 6 could not be done. Interestingly k = 4 gives a disconnected
reconfiguration graph, however, this is not the case for k = 5 or more interestingly k = 3. In the code in
Appendix A there is an extra bit of code written to find two disconnected colorings if the diameter is infinite:

20 5. Finding diameter using Sagemath

1 if diameter == +Infinity:
2 # Find the connected components in the reconfiguration graph
3 components = connected_components(reconfig_graph)
4

5 # Print the disconnected colorings
6 disconnected_colorings = []
7 counter = 0
8 for component in components:
9 disconnected_colorings.append(component[0])

10 counter += 1
11 if counter == 2:
12 break
13 print("Disconnected Colorings:")
14 for coloring in disconnected_colorings:
15 print(coloring)

By letting the code run over the case where k = 4 we find a coloring of Q3 which is frozen in its coloring.

A

B E

D

F

C

G

H

Every single vertex in this coloring is adjacent to 3 other colors, which forces its own color to be the 4th color.
Note that the cube graph Q3 is equivalent to the L4 graph mentioned in the introduction. Apparently, coloring
with three colors does not give a disconnected reconfiguration graph.

6
Conclusion

After starting with a variant of the main problem, i.e. Cereceda’s conjecture, and going over the known proofs
of the diameter for complete graphs and complete bipartite graphs, which gave us a useful tool, the extension
graph Ĝ , we were able to prove the lower bound on the diameter for r -partite graphs G : diam

(
C∆(G)+2(G)

)≥
n +µ(G). For this we had to figure out a working matching for the r -partite graph, in order to get as few extra
edges as possible in the extension. Furthermore we determined the diameter of the reconfiguration graph for
a few smaller graphs.

The original conjecture was that for all graphs G we have diam
(
C∆(G)+2(G)

) = n +µ(G), meaning we still
have an upper bound to consider. An indication on how to attempt such a proof can be found in the 2018
paper made by Bonamy and Bousquet [4] under Lemma 5, which proves an upper of 2n bound for the re-
configuration graph of Kn on k colors: diam(Ck (Kn)). For this proof you have two colorings α and β, and
one creates a new directed graph Dα,β in which V (Dα,β) = V (Kn) and x y ∈ E(Dα,β) iff α(y) = β(x). This di-
rected graph has only cycles and paths, both of which can be resolved via careful recoloring. This bound can
be lowered to ⌊3n/2⌋ according to Cambie et al. [6] using the same directed graph argument. The author
of this thesis was able to prove this improved upper bound for complete graphs using an inductive method,
also using the same approach as above, but has not attempted yet on generalising the argument for complete
r -partite graphs. It would be interesting to see whether such a generalisation is possible or not.

For our algorithm, the number of k-colorings of a graph G increases quite quickly for certain graphs.
In our case, the hypercube grows insanely fast, where even an increase of 1 color can increase the amount
of colorings by a factor 10, which might not seem like much, but our algorithm is not a polynomial time
algorithm.

Future research can therefore look into the upper bound of diam(Ck (G)) and come up with a proof for
complete r -partite graphs. The tactic used for proving the lower bound, which was heavily based on that
of Cambie et al., proved to be fruitful for complete r -partite graphs, and perhaps it may also be helpful for
proving the lower bound for non-complete r -partite graphs, although they are harder to work with due to
their non-completeness. Lastly the author is sure a more elegant version of the algorithm can be coded which
can run larger reconfiguration graphs, and they encourage anyone to optimise the code.

21

A
Sagemath code

1 from itertools import combinations
2 from sage.graphs.connectivity import connected_components
3

4 def all_extended_colorings(graph, max_color):
5 all_colorings = []
6 chi = graph.chromatic_number()
7 for m in range(chi, max_color + 1):
8 color_dict = {v: None for v in graph.vertices()} # Initialize with empty colors
9 stack = [(0, color_dict)] # Start with the first vertex and the initial color dictionary

10

11 while stack:
12 vertex_index, current_color_dict = stack.pop()
13

14 if vertex_index == len(graph.vertices()):
15 if len(set(current_color_dict.values())) == m: # Check if all colors are used
16 all_colorings.append(current_color_dict.copy())
17 continue
18

19 vertex = graph.vertices()[vertex_index]
20 neighbors = graph.neighbors(vertex)
21 neighbor_colors = [current_color_dict[n] for n in neighbors \
22 if current_color_dict[n] is not None]
23 available_colors = [color for color in range(1, max_color + 1) \
24 if color not in neighbor_colors]
25

26 for color in available_colors:
27 new_color_dict = current_color_dict.copy()
28 new_color_dict[vertex] = color
29 stack.append((vertex_index + 1, new_color_dict))
30

31 return all_colorings
32

33 def is_adjacent(coloring1, coloring2):
34 # Check if two colorings are adjacent by differing in exactly one vertex
35 diff_count = 0
36 for vertex in coloring1.keys():
37 if vertex in coloring2:
38 if coloring1[vertex] != coloring2[vertex]:
39 diff_count += 1
40 if diff_count > 1:

23

24 A. Sagemath code

41 return False
42 else:
43 return False
44 return diff_count == 1
45

46

47 # Specify the value of k
48 k = 4
49

50 # Construct the hypercube
51 G = graphs.CubeGraph(3)
52

53 # Generate all possible vertex colorings with k colors
54 valid_colorings = all_extended_colorings(G, k)
55

56 # Create a new graph for reconfiguration
57 reconfig_graph = Graph()
58

59 # Add vertices to the reconfiguration graph
60 for coloring in valid_colorings:
61 reconfig_graph.add_vertex(str(coloring))
62

63 # Add edges to the reconfiguration graph
64 for i, j in combinations(valid_colorings, 2):
65 if is_adjacent(i, j):
66 reconfig_graph.add_edge(str(i), str(j))
67

68 # Calculate the diameter of the reconfiguration graph
69 diameter = reconfig_graph.diameter()
70

71 if diameter == +Infinity:
72 # Find the connected components in the reconfiguration graph
73 components = connected_components(reconfig_graph)
74

75 # Print the disconnected colorings
76 disconnected_colorings = []
77 counter = 0
78 for component in components:
79 disconnected_colorings.append(component[0])
80 counter += 1
81 if counter == 2:
82 break
83 print("Disconnected Colorings:")
84 for coloring in disconnected_colorings:
85 print(coloring)
86

87 else:
88 # Print the diameter
89 print("Diameter:", diameter)

Bibliography

[1] Manoj Belavadi, Kathie Cameron, and Owen Merkel. Reconfiguration of vertex colouring and forbidden
induced subgraphs, 2023. URL http://arxiv.org/abs/2206.09268.

[2] Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences, 43(9):
842–844, 1957. doi: 10.1073/pnas.43.9.842. URL https://www.pnas.org/doi/abs/10.1073/pnas.
43.9.842.

[3] M. Bonamy, M. Johnson, I. Lignos, V. Patel, and Daniel Paulusma. Reconfiguration graphs for vertex
colourings of chordal and chordal bipartite graphs. Journal of combinatorial optimization., 27(1):132–
143, January 2014. URL http://dro.dur.ac.uk/10709/.

[4] Marthe Bonamy and Nicolas Bousquet. Recoloring graphs via tree decompositions. European Journal of
Combinatorics, 69:200–213, 2018. ISSN 0195-6698. doi: https://doi.org/10.1016/j.ejc.2017.10.010. URL
http://arxiv.org/abs/1403.6386.

[5] Nicolas Bousquet and Marc Heinrich. A polynomial version of cereceda’s conjecture, 2022. ISSN 0095-
8956. URL https://www.sciencedirect.com/science/article/pii/S0095895622000041.

[6] Stijn Cambie, Wouter Cames van Batenburg, and Daniel W. Cranston. Optimally reconfiguring list and
correspondence colourings, 2022. URL arXiv:2204.07928.

[7] Luis Cereceda. Mixing graph colourings. PhD thesis, London School of Economics and Political Science,
2007.

[8] Fengming Dong, K. Koh, and Kee Teo. Chromatic Polynomials and Chromaticity of Graphs. 06 2005.
ISBN 978-981-256-317-0. doi: 10.1142/5814.

[9] Martin Dyer, Abraham Flaxman, Alan Frieze, and Eric Vigoda. Randomly coloring sparse random graphs
with fewer colors than the maximum degree. Random Struct. Algorithms, 29:450–465, 12 2006. doi:
10.1002/rsa.20129.

[10] Mark Jerrum. Counting, sampling and integrating: algorithms and complexity. Springer Science & Busi-
ness Media, 2003.

[11] Daniel Král’, Jan Kratochvíl, Zsolt Tuza, and Gerhard J. Woeginger. Complexity of coloring graphs without
forbidden induced subgraphs. In Andreas Brandstädt and Van Bang Le, editors, Graph-Theoretic Con-
cepts in Computer Science, pages 254–262, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN
978-3-540-45477-9.

[12] Tomasz Łuczak. Torpid mixing of the wang-swendsen-kotecky algorithm for sampling colorings. Journal
of Discrete Algorithms - JDA, 3, 03 2005. doi: 10.1016/j.jda.2004.05.002.

25

http://arxiv.org/abs/2206.09268
https://www.pnas.org/doi/abs/10.1073/pnas.43.9.842
https://www.pnas.org/doi/abs/10.1073/pnas.43.9.842
http://dro.dur.ac.uk/10709/
http://arxiv.org/abs/1403.6386
https://www.sciencedirect.com/science/article/pii/S0095895622000041
arXiv:2204.07928

	Introduction
	Defining the main problem
	Motivation and outline

	Cereceda's conjecture and an easier version
	Lower bound on the diameter
	Helping construction, based on Cambie et al.
	Results for complete graph and complete bipartite graph

	On TEXT-partite graphs
	An introduction: TEXT, with TEXT 1's, and TEXT 2's.
	Complete TEXT-partite graphs
	Matching number for TEXT-partite graphs TEXT
	Lower bound for diameter of complete TEXT-partite graphs TEXT

	Return to TEXT

	Finding diameter using Sagemath
	The algorithm
	Results on smaller graphs

	Conclusion
	Sagemath code
	Bibliography

