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Abstract

The pursuit of faster and more precise mechatronic systems necessitates the use of inventive
mechanical designs and advanced control schemes. In recent years, flexible elements have
seen increased use as they enable the development of high-precision motion systems in a wide
variety of applications ranging from semiconductor fabrication to precision surgery. Although
these flexures provide ample benefits for systems that require lightweight elements and
predictable behavior, structural vibrations can restrict their effectiveness in achieving precise
positioning. This motivates the need for vibration suppression in motion systems, particularly
those with flexible components. To that end, smart structures with embedded transducers and
a suitable control algorithm can be used to actively damp the underlying structure’s resonance
modes, although time-varying parameters and uncertainties from various sources can degrade
the performance of the vibration controller. In this thesis, an adaptive control scheme is
developed to maintain the desired damping performance regardless of system variations. The
method employs adaptive notch filters in a cascade arrangement to track multiple modal
frequencies of a smart flexible structure, then tunes a positive position feedback controller
for multimodal damping with a straightforward adjustment rule. The adaptation is shown
to be fast, accurate, and efficient, with clear advantages in suppressing the vibrations of
time-varying and uncertain systems. The method also provides key features absent from
other adaptive damping implementations, including the ability to effectively estimate modal
frequencies using brief transient signals typical of damped structures, as well as signals
buried in noise. Finally, the adaptive scheme is validated experimentally with a flexible beam,
showcasing its strong potential for practical applications.
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Chapter 1

Introduction

1.1 Background

Speed and precision are important performance objectives in high-tech mechatronic systems.
As an example, photolithography machines must offer constantly improving throughput and
resolution to keep pace with technological demand [1]. However, structural resonance modes
occurring at specific frequencies can amplify disturbances and lead to undesirable mechanical
vibrations, placing limitations on the performance of different machine components.

To alleviate this issue, stiffer and lighter structures are designed to shift the resonance
modes beyond the frequency band of excitation, but there are limits to this approach stem-
ming from design and material restrictions. Flexible structural elements, which are used in a
growing number of applications including precision motion stages and deployable mecha-
nisms, can introduce further complications. Flexures provide selective compliance, enable
monolithic designs, largely eliminate friction, and offer improved mechanical repeatability
through exact-constraint designs [2, 3]. Such structures are very lightly damped and, as a
consequence, their flexible vibration modes are amplified. These vibrations must be attenu-
ated in order to prevent system failure and achieve the desired performance. For example,
flexible manipulators can have excessively long settling times and imprecise positioning if
their oscillations are not sufficiently suppressed.

1.2 Vibration Control

Vibration suppression is a well-researched topic in various applications including flexible
space structures, vehicle suspensions, atomic force microscopy, acoustic control, and active
optics [5–8]. Suppression methods include vibration isolation, disturbance rejection, and
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Figure 1.1: Flexible link manipulator [4].

dissipating vibration energy from the structure through damping. All of these methods fall
under the wider umbrella of active vibration control (AVC) [8].

Vibration isolation is usually used to prevent the propagation of a particular disturbance
with a clear transmission path to a target system. However, the structure’s dynamics remain
unchanged and disturbances from other sources may still excite it. Other methods directly
counteract disturbances using a feedforward control configuration, usually employing adap-
tive algorithms like filtered-x least mean squares (FxLMS) [9]. However, a reference signal
correlated to the disturbance must be available, and the disturbance rejection is localized
with no guarantee of global suppression.

On the other hand, damping offers a comprehensive approach for controlling structural
vibrations as the control effort is focused on attenuating the resonance modes. Damping
can also be used to supplement vibration isolation methods. For example, both methods are
used to suppress lens vibrations in photolithography machines [10]. Vibration isolation is
used to prevent the transmission of disturbances from the floor to the wafer stepper, in which
case acoustic vibrations become the dominant source of disturbances, making it necessary to
damp the system as well.

From the wide array of vibration suppression strategies, this research focuses on active
damping methods using smart structures with integrated actuators and sensors. Compared to
passive methods which add damping through mechanical measures [11], active damping is
more suitable for high-speed precision systems owing to the negligible amount of added mass
and the lack of restrictions on the structure’s design. The versatility provided by the control
algorithm also enables the use of a plethora of advanced control techniques and facilitates
damping of broadband resonance modes. Actively damped smart structures are thus able to
provide superior vibration suppression capabilities.
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Figure 1.2: Block diagram of an actively damped smart structure [12].

1.3 Uncertain and Time-Varying Systems

A limitation of commonly used active damping methods is their ineffectiveness in com-
pensating for uncertainties and systems variations. Exact controller tuning may be difficult
due to uncertainties arising from model approximations, inaccurate system identification, or
variations in manufacturing. In addition, some systems have time-varying dynamics which
typical AVC schemes do not account for, such as manipulators with variable payloads or
deflecting flexures with variable stiffness. Such parametric changes can shift the modal
frequencies of the system and de-tune the vibration controller. As a result, the controller can
either destabilize the system or deteriorate its active damping performance.

In order to properly control uncertain systems, either robust or adaptive control methods
can be used. Each method has its own set of properties that makes it suitable for controlling
a particular process. Robust control techniques used in active damping include integral
resonant control [13, 14], H∞ control [15, 16], and µ synthesis [17]. These methods ensure
that the system remains stable and has sufficient performance when uncertainties are present.
However, robust controllers have fixed parameters; they are designed for a predetermined
and bounded uncertainty set, but do not adapt in real-time to system variations [18]. Sliding
mode control, which is suitable for nonlinear systems, has also been used in AVC [19, 20].
The method exploits the phase plane of a system to define a switching function that adjusts
the controller gain, ensuring that the system converges to the desired phase plane trajectories.
However, this type of control can result in high frequency chattering and limit cycles [21]
that require increased control complexity to eliminate [22].
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In contrast to robust control, adaptive methods compensate for system variations by ad-
justing the controller parameters. When designing an adaptive controller, both the parameter
estimation and controller adjustment methods need to be appropriately selected from a range
of available options. The adaptive controller’s performance is usually limited by the chosen
parameter estimation method and its convergence speed.

While adaptive controllers are generally slower than robust controllers in responding to
system variations, they are not limited to a particular uncertainty set. With a sufficiently
fast and accurate estimator, adaptive methods can effectively provide optimal damping
performance regardless of system variations. Robust controllers are suitable for applications
where the range of uncertainties can be clearly defined or approximated, but even in those
cases, the performance is likely to be sub-optimal across system variations. Robust controllers
also rely on large loop gains to achieve robustness, which increases control effort and
sensitivity to noise. For these reasons, the focus of this thesis is on adaptive control techniques
for active damping.

1.4 Problem Statement

Structural resonance modes can introduce undesired vibrations that are particularly restrictive
in flexible structures. In order to achieve the required tracking and motion performance, these
modes can be actively damped using vibration control methods. However, the performance of
a vibration controller may deteriorate in the presence of time-varying and uncertain systems,
in which case an adaptive control scheme can be employed to ensure that the controller
accounts for these variations and maintains the desired performance.

The aim of this research is to develop a simple yet effective method for adaptive structural
damping. Particular attention is given to implementing the method for damping flexible
structures with multiple target modes. It should be possible to obtain estimates using transient
vibrations of actively damped structures, which requires a fast and accurate estimator and
a simple adjustment law for the vibration controller. To ensure its accuracy, the estimator
should have low bias, lack sensitivity to noise, and react to different rates of variation in
system parameters. A crucial consideration is maintaining the stability of the system in
cases where the estimation error is large. In addition, the computational complexity of the
adaptive method should be kept to a minimum to ensure that adaptation occurs within a
suitable timescale without requiring powerful processors. Computational efficiency can be
particularly beneficial in applications with large-scale industrial operations or high complexity
like distributed control. Finally, the method should have a simple tuning process for practical
use.
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1.5 Thesis Outline

This thesis is organized as follows:

• Chapter 2 introduces the fundamentals of structural vibrations, active damping, and
adaptive control, and explores various methods that could be utilized in adaptive struc-
tural damping. The chapter also discusses previously investigated adaptive damping
methods and provides the literature gap motivating this research.

• Chapter 3 presents the main contributions of this thesis in a journal paper format.
The research motivation and concepts introduced in Chapters 1 and 2 are briefly
summarized in the paper’s introduction. Following that, the adaptive damping scheme
is proposed, and its performance is investigated with simulations and an experimental
setup using a flexible beam.

• Chapter 4 provides additional insights into the main contribution of this thesis.

• Chapter 5 offers concluding remarks and recommendations for future work.

• Finally, several appendices elaborate on the methods and experimental details used
throughout this thesis, with the aim of providing further information should the reader
require it.





Chapter 2

Literature Survey

This chapter provides background information and summarizes the literature reviewed for
this thesis. It is structured as follows:

• Section 2.1 provides the necessary background on structural dynamics and concepts
in vibration control, as well as the choice of controller for implementing the adaptive
damping method.

• Section 2.2 introduces key concepts in adaptive control and discusses state-of-the-art
adaptive methods used in vibration control. In addition, various parameter estimation
and controller adjustment methods, as well as their strengths and limitations, are
discussed in the context of adaptive damping.

• Section 2.3 elaborates on the literature gap and provides the motivation for the main
contribution of this thesis.

2.1 Active Damping

2.1.1 Structural Dynamics

The equation of motion of a 1 degree of freedom (DOF) system is expressed as:

ξ̈ +2ζ ωnξ̇ +ω
2
ξ = k2

n f (2.1)

where ξ is the generalized displacement, ζ is the damping ratio, ωn is the natural
frequency, kn is a modal constant, and f is the applied force. System dynamics can be clearly
analyzed in the frequency domain via a Laplace transformation of Equation 2.1 using the
Laplace variable s to obtain the compliance transfer function:
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G(s) =
k2

n
s2 +2ζ ωns+ω2

n
(2.2)

Continuous structures like flexures are distributed parameter systems with an infinite
number of DOFs, meaning their dynamic behavior is governed by an infinite number of
flexible modes. Figure 2.1 visualizes the modes of a simple continuous structure using
various domains.

Figure 2.1: Structural mode visualization in the spatial, temporal, and frequency domains
[23].

The use of modal coordinates is preferred for continuous systems as they simplify the
dynamics of the structure into a linear combination of its vibration modes. In the vibration
control of flexible structures, a certain number of non-negligible flexible modes within the
control bandwidth are considered, and the rest of the modes are truncated from the model.
This effectively approximates the continuous system as a summation of mass-spring-damper
models each described by Equation 2.2

2.1.2 Collocation

In a collocated system, the actuator and sensor are attached to the same DOF by occupying
the same physical location. To enable the exchange of energy between the active controller
and the structure, the actuator and sensor signals must be dual power conjugates whose
product describes the transfer of energy (for example, force actuators must be paired with
translation sensors). Actuator-sensor pairs that are collocated and dual enable the use of
control laws that supply only a finite amount of energy to the mechanical structure and thus
provide a robustly stable control system [10].
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The open loop transfer function of a truncated and collocated system at DOF l is given
by:

Gll(s) =
m

∑
i=1

φi(l)2

s2 +2ζiωn,is+ω2
n,i

+Rll (2.3)

where i indexes m modes, which is the number of modes with frequencies within the
control bandwidth, φ is the mass-normalized modal amplitude, and Rll is a positive term that
describes the quasi-static correction of higher frequency modes lying outside the bandwidth,
also known as the residual mode term.

In the frequency domain (s = jω), Gll is a monotonously increasing function of ω ,
resulting in an alternating resonance and anti-resonance pattern. This corresponds to the
pole-zero interlacing seen in Figure 2.2. The benefits of this interlacing property are shown in
the system’s Bode plot (Figure 2.3). The phase is always between 0 and −180◦ and stability
is guaranteed. In the case of system variations, the poles and zeros remain on the left hand
plane, guaranteeing robust stability as well [8].

Figure 2.2: Pole-zero map of an undamped (left) and lightly damped (right) collocated
structure [8].

Note that unless self-sensing actuators are used, exact collocation is not achievable in
real systems [24]. Some nearly-collocated systems may have negative residual terms that
affect the interlacing property, in which case robust stability is not guaranteed. In practice,
near-collocation is sufficient for active damping purposes.

2.1.3 Piezoelectric Transducers

Piezoelectric materials generate mechanical strain proportional to externally-applied electric
fields, and are commonly used as transducers in smart structures. They are light, stiff, highly
sensitive, consume little power, have a wide frequency band, and can be easily integrated
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Figure 2.3: Bode plot of a lightly damped collocated structure [8].

into structures, making them suitable for precision and active damping applications [25]. As
an example, bending transducers are usually bonded to beams and generate axial strain from
an electric field applied in the poling direction P. This is shown in Figure 2.4.

Figure 2.4: Piezoelectric bending transducer [8].

Actuator and sensor placement plays a large role in the performance of the active damping
controller, and can be optimized based on different criteria. Examples include maximizing
the applied modal forces and moments, minimizing the control effort, or maximizing the
degree of observability [12]. Several criteria result in optimal placement at locations of
maximum strain energy.

2.1.4 Spillover

The collocated system given by Equation 2.3 describes a system with a finite number of
dominant modes and assigns a constant term to account for truncated higher frequency modes.
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Control spillover refers to the excitation of these residual and otherwise uncontrolled modes
by feedback control, which can generally degrade the performance of the closed loop system
[8].

The ideal behavior of an active vibration controller would be to target a specific mode and
leave the response of the uncontrolled modes unchanged, which cannot occur in practice due
to spillover. Uncontrolled modes can change in magnitude and their resonance frequencies
can shift, making it more difficult to tune controllers for multimodal control. The effects of
spillover strongly depend on the feedback control scheme used, and should be taken into
account when selecting a control method.

2.1.5 Control Authority

Control authority refers to the ability of the actuators to shift the closed loop poles of the
system. Active damping requires little control effort and does not substantially affect the
system dynamics, which makes it a low authority control (LAC) method. On the other hand,
motion control is a high authority control (HAC) method as it requires high gain and has
significant influence on the closed loop poles. In a HAC/LAC strategy, active damping is
used to improve the bandwidth of the motion controller and make it more robust to parametric
variations [26]. Figure 2.5 shows an example of such a control structure.

Figure 2.5: HAC/LAC structure with motion control and active damping [26].

LAC methods require limited knowledge of the system, as opposed to HAC methods
which require a well-defined model. In the case of collocated active damping, robust stability
can be theoretically achieved without any information about the system. However, achieving
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the desired performance may require knowledge of the system (e.g., natural frequencies) and
applied disturbances, in addition to suitable degrees of controllability and observability [8].

2.1.6 Vibration Controller

A suitable controller C(s) is required to actively damp a structure with the transfer function
given by Equation 2.3. A simple way to achieve this is through direct velocity feedback
(DVF) [27]. However, DVF has several limitations. Its constant feedback gain gives it
insufficient high frequency roll-off, and finite actuator dynamics might affect closed loop
stability and performance. DVF also utilizes high control force at all frequencies. It is more
advantageous to restrict control effort in the frequency range of interest and avoid actuator
saturation.

To solve the problems associated with DVF, Goh and Caughey [28] proposed the positive
position feedback (PPF) control method to focus control effort on the modal frequencies
and reduce sensitivity to high frequency dynamics. PPF works by measuring a generalized
displacement signal y which is positively fed back through a second order low pass filter to
counteract the disturbance d. Figure 2.6 shows a block diagram of the PPF control loop with
filter frequency ω f , damping ratio ζ f , and gain g used to damp a single mode of a collocated
structure.

Figure 2.6: PPF block diagram.

For sufficient damping performance, the PPF second order filter is tuned such that
ω f = ωn and ζ f > ζ . Bode plots of the plant G(ω), controller C(ω), and closed loop T (ω)

are shown in Figure 2.7. When a disturbance excites a mode of a structure with a perfectly
tuned PPF controller, the structure phase shifts the disturbance by −90◦, and the controller
phase shifts the measured position signal once again by −90◦. The control force is thus
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a periodic counter-vibration signal with equal frequency to the disturbance. The low pass
filter lifts the periodic disturbance from the rest of the vibration spectrum and ignores high
frequency dynamics. This can be seen as providing active flexiblity at frequencies lower than
ω f , active damping around ω f , and active stiffness at frequencies higher than ω f .

Figure 2.7: Bode plot of a 1 DOF plant, PPF controller, and the closed loop system.

Increasing the feedback gain increases closed-loop damping, but comes at the expense of
the gain margin. The gain determines the magnitude of the added counter-vibrations, and
a large enough value will cause the system to become unstable. The closed loop stability
condition is given by 0 < gG(0)< 1 [8].

Multiple PPF filters placed in parallel can be used to damp multiple modes. However,
low frequency spillover occurs as a result of the active flexibility provided by PPF as seen
in Figure 2.8. When damping the second mode, the first mode changes in magnitude and
frequency and quasi-static amplification occurs, but the third mode is unaffected as there
is no high frequency spillover. Thus when designing a multimodal PPF controller, filters
targeting higher frequency modes should be tuned first. Several methods were developed
to deal with the issue of PPF spillover, including the use of bandpass filters [7, 29, 30] and
fractional order control [31].

Leo and Griffin [32] provide an in-depth approach to PPF design through pole allocation
and describe the effects of varying the different PPF parameters. They conclude that the PPF
filter frequency ω f is the key design parameter, as the closed loop damping performance is
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Figure 2.8: Bode plot showing the effects of PPF spillover on uncontrolled system dynamics.

highly sensitive to small changes in ω f . PPF can be made robust against system variations
by widening the filter bandwidth close to the mode, but the damping performance can suffer
as a result.

Other suitable collocated active damping methods include negative position feedback
[33, 34], integral resonant control [35, 36, 14, 37], and negative derivative feedback [38, 39].
Each method comes with its own set of advantages and disadvantages in terms of spillover,
control effort, and required knowledge of model parameters. In this thesis, PPF is used in the
development of the adaptive damping scheme for a variety of reasons:

• Minimal knowledge about the structure is required, and the performance depends
mostly on the selection of one parameter, the filter frequency ω f , which has a simple
tuning relationship with respect to the mode frequency (ω f = ωn). If the modal
frequencies can be tracked, then the adjustment mechanism of the adaptive controller
becomes a trivial problem.

• Stability is maintained in case the estimation of ωn is inaccurate and the PPF filter is
incorrectly tuned, as the stability of PPF is solely dependent on its gain. The lack of
high frequency spillover with PPF is also an advantage in such cases.
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• PPF is a low-authority control method, where the control effort is focused at the mode
frequencies.

• Strain measurements from integrated piezoelectric sensors can be used directly in PPF
without additional differentiation/integration steps.

• An adaptive scheme developed for PPF as the vibration controller can be potentially
applied in other modal collocated damping methods, where knowledge of the mode
frequencies can be used to tune the controller.

2.2 Adaptive Damping

As discussed in Section 1.3, a suitable adaptive damping scheme is required to compensate
against uncertainties and variations in structural dynamics. In addition, low frequency
spillover caused by PPF and nonlinearities from piezoelectric transducers can make it
difficult to accurately tune filters for multimodal damping as the closed loop poles shift in
frequency. For these reasons, it is essential to use adaptive control to track the frequencies of
the modes and tune the PPF filters accordingly.

Åström and Wittenmark define an adaptive controller as "a controller with adjustable
parameters and a mechanism for adjusting the parameters" [40]. The adaptive control
problem is to find a method of adjusting a controller when the characteristics of the process
and its environment are unknown or changing. Fixed gain controllers are not able to deliver
the desired performance in such cases, making it necessary to use adaptive control. The steps
for designing an adaptive controller are given by [40, p. 27]. These are discussed here in the
context of adaptive damping.

Step 1: Characterize the desired behavior of the closed loop system.

The desired behavior of the closed loop system is to retain its damping performance regardless
of system variations or uncertainties, where the desired damping performance is specified by
the control designer.

An example of undesirable behavior is shown in Figure 2.9. Here, the vibration controller
is initially tuned to damp 3 modes of a time-varying collocated structure, and the structural
response has a 2% settling time of about 0.19 s. This is a vast improvement when compared
to the settling time of the undamped structure, which is about 0.73 s. However, as time
passes, the structural modes shift in frequency, and the performance of the PPF controller
with fixed parameters starts to deteriorate. The modes are each shifted by 25% at the 2 s
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mark, causing them to lose about 2 dB of peak attenuation with a settling time of 0.23 s. At
the 4 s mark, a 50% variation in the modes causes an additional 2 dB amplification and a
settling time of 0.31 s, which is about 60% higher than that of the tuned system. An adaptive
vibration controller would behave to counter such changes in performance and maintain the
desired damping levels.

Figure 2.9: Effects of active damping controller de-tuning.

Step 2: Determine a suitable control law with adjustable parameters.

As discussed in Section 2.1.6, PPF control will be used for active damping.
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Step 3: Find a mechanism for adjusting the parameters.

The adjustment mechanism is discussed in Section 2.2.1 and the estimation method is
discussed in Section 2.2.2.

Step 4: Implement the control law.

2.2.1 Adaptive Scheme

Commonly used adaptive schemes are listed here:

• Gain scheduling (GS) changes the controller parameters based on certain predeter-
mined operating conditions that describe the process variations. This works especially
well when there is a measurable variable that provides information about the operating
point. A mapping is then established between the measurement and controller parame-
ters, either with a function or a lookup table [40]. The control structure is shown in
Figure 2.10.

Figure 2.10: Gain scheduling block diagram.

GS is generally used to control systems with predictable variations, or nonlinear
systems by computing linear approximations at different operating points like in
autopilot systems. In AVC, it has been implemented in a disturbance rejection scheme
by using the observed disturbance model to adjust the controller [41].

• Model reference adaptive control (MRAC) sets the performance specifications using
a reference model that meets those specifications. In other words, the reference model
provides the desired response of the system to a command signal, which is fed to both
the reference model and the actual system. A diagram of the MRAC structure is shown
in Figure 2.11.

The key MRAC problem is to find an adjustment mechanism that minimizes the error
e = y− ym and results in a stable system. Baz and Hong [43] use MRAC to adjust
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Figure 2.11: MRAC block diagram [42].

PPF parameters, where the reference behavior is given by a third order system with an
optimal integral of time multiplied by absolute error (ITAE).

• Self tuning regulators (STR) combine online identification and controller design
to adaptively control a system. The identification method aims to obtain accurate
estimates of the plant model which are then used to design the controller. There
are many variations in the choice of design and estimation methods, leading to many
different possible combinations. The STR method makes use of the certainty equivalent
principle, where the estimates are treated as if they were equal to the true parameters
of the system. The STR structure is shown in Figure 2.12.

Figure 2.12: STR block diagram [40].

A popular controller design method is adaptive pole placement, which adaptively
places the closed loop poles such that the desired dynamics are achieved. In some
applications, it is possible to eliminate the separate identification and controller design
steps and instead directly update the controller parameters [44].
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For adaptive PPF tuning, the filter frequency ω f is the key design parameter, and for
sufficient damping it should be tuned to be equal to the mode frequency ωn. When controlling
multiple modes, each parallel PPF filter should be tuned to the frequency of the corresponding
mode. STR is the most suitable scheme in this case as it enables the use of estimates of the
system (in this case, modal frequencies) in order to tune PPF parameters through a simplified
form of pole placement. As the system adapts to changes in modal frequencies, the controller
design step is considerably simplified since the filter frequencies can be simply set equal to
the estimated mode frequencies. The proposed adaptive damping control and identification
loop is shown in Figure 2.13.

Figure 2.13: Adaptive damping block diagram.

Because the collocated layout used in active damping guarantees robust stability, uncer-
tainties in the estimates which lead to incorrect tuning cannot destabilize the system in theory.
Owing to the low pass filtering action of the PPF, high frequency spillover is avoided, so
underestimated frequencies do not pose an issue. However, if the PPF is tuned at a frequency
higher than the actual frequency, low frequency spillover may amplify the modes which can
cause performance to quickly deteriorate. Consequently, the estimation method must be as
accurate as possible.

2.2.2 Modal Frequency Estimation

The goal of this section is to explore various methods to be used for modal frequency
estimation. Since information about disturbances is usually unavailable in active damping
applications, this is an output-only estimation problem. It should be possible to estimate
modal frequencies when a structure experiences broadband excitations and by using its
damped transient response. The observability of modes, which depends on the placement of
sensors, is also an important factor for achieving effective estimation.
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Online parameter estimation is more challenging than offline estimation since the mea-
sured signal is provided to the estimator during regular operation of the system. This places
fundamental constraints on how well the online estimator can perform as the availability
of sufficient information is limited. In order to obtain estimates, the structure must be per-
sistently excited, but this is usually not an issue in motion control applications particularly
when the system operates at high speeds. Nevertheless, in cases where the frequencies have
changed during a pause in the excitation, the estimator must quickly converge to the values
of the modal frequencies when the system is excited once again.

Another aspect to be considered in frequency estimation is the structure’s dynamic re-
sponse. For instance, some structures exhibit closely-spaced modes that can be misinterpreted
as a single mode due to their proximity. This can occur because of the structure’s geometry,
particularly in cases where there is some degree of symmetry like plates or parallel mech-
anisms. The presence of dynamic imbalances or multiple components that share similar
natural frequencies can also give rise to closely-spaced modes [45]. In these cases it is
crucial to keep track of the mode frequencies and spacing in order to tune the active damping
controller accordingly. Figure 2.14 shows examples of structures where this phenomenon
can occur.

(a) Three-story building [46]. (b) Compliant stage [47].

Figure 2.14: Examples of structures with closely-spaced modes.

The relative magnitude of the modes (dynamic range) can also affect the estimator’s ability
to detect them. If one mode is significantly lower in magnitude than another, its contribution
to the amplitude of the system response is also reduced and the damped signal decays quickly,
making it more difficult to estimate. Active damping is usually used to attenuate the most



2.2 Adaptive Damping 21

prominent modes, but the relative magnitudes become an issue when multiple modes need
to be adaptively damped. Mainly, the convergence speed when estimating low magnitude
modes can be slow [48].

There are two main approaches for frequency estimation or tracking. One method is to
identify the system and extract the frequencies of the poles. This can be done parametrically
with adaptive filters, requiring prior knowledge of the general structure of the model. The
frequencies can also be non-parametrically estimated from the frequency spectrum of the
response. Some of these methods are introduced in this section, with additional details and
other methods discussed in Appendix A.

Short-Time Fourier Transform

The short-time Fourier transform (STFT) utilizes the fast Fourier transform (FFT) on portions
of the output signal to obtain its frequency spectrum as a function of time. Although this
method can provide accurate estimates and is simple to implement, it has several limitations:

• A block of data must be collected for each estimate, which can be inefficient in
real-time operations.

• Introducing the window function improves the time resolution, but degrades the
frequency resolution.

• The fixed window length means that the time and frequency resolutions are fixed for
the entire length of the signal.

• Occurrence of spectral leakage and biased frequency estimates.

STFT has seen frequent use in AVC and similar applications:

• Creasy et al. [7, 29] use PPF for acoustic energy absorption in acoustic cavities and
payload fairings. An STR scheme is implemented to track and update filter parameters
where STFT obtains the frequencies of zeros around each target pole and uses these
values to update the frequencies of the PPF filters. STFT is implemented using a
buffer to accumulate measurements. The resulting controller is able to track about 20%
changes in the mode frequencies, with an implementation time of about 0.4 s. However,
a running average of the estimates is used to maintain stability, which increases the
implementation time to about 8 s.

• Mahmoodi et al. [49] use a modified PPF to control a cantilever beam and adapt the
filter gain and frequency. The authors use STFT and pick the peaks with the highest
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magnitudes to update the filter frequencies. An MRAC scheme is also used to derive
a control law and provide additional control force when needed. Adaptation takes
about 0.9 s since sufficient amounts of data need to be stored in the buffer for accurate
estimation.

Parametric System Identification

Online system identification is usually used in adaptive control schemes. This is done with
adaptive, auto-tuning filters that use certain algorithms to update their coefficients based on
changes in the system. The algorithms minimize a certain cost function, which is usually
the mean square error between the output of the adaptive filter and the desired signal. The
filter’s coefficients converge to a solution when the cost function is minimized. The filter
then repeats this process at each sampling period as new data becomes available. The block
diagram of this process is shown in Figure 2.15.

Figure 2.15: Real time parametric system identification block diagram.

Different algorithms are available to determine the update used for obtaining the next
estimates. The choice of algorithm usually depends on the desired convergence performance,
computational complexity, and filter stability. Examples include the least mean squares
(LMS) and recursive least squares (RLS) algorithms.

Parametric system identification has been implemented in various AVC applications:

• Rew et al. [48] use RLS to estimate an autoregressive (AR) model of a plate structure
and Bairstow’s root-finding algorithm to decouple the modes for frequency extraction.
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The estimates are then used to tune a PPF controller for attenuating 3 modes of the
structure when it is excited using a banded random signal. The convergence speed was
in the order of milliseconds to seconds, and was found to be slower and more biased
when estimating modes with lower magnitudes.

• Malik et al. [50] use the filtered-u least mean squares (FuLMS) method to track the
natural frequency and damping ratio of a single mode of a structure and update a PPF
controller. The downside of this approach is that it requires accurate information on
the disturbance and its source, which can be impractical.

• As for more recent developments, Ma and Ding [51] use time-dependent AR models,
functional subspaces, and ridge regression to track fast dynamic changes and obtain
up to 4 natural frequencies. The method achieves improved model parsimony (identi-
fication with a small amount of data). In the experimental setup, 15 accelerometers
are used to measure the structural response in order to reduce the computational load
of the algorithm. A proper functional subspace and several parameters must also be
selected to ensure accurate identification. Such advanced methods are promising, but
the complexity and computational load are largely increased for a small improvement
in performance.

Adaptive Line Enhancers

The adaptive line enhancer (ALE) was developed to address different problems regarding
the retrieval of sinusoidal signals, including the enhancement of signals buried in noise and
tracking signals with time-varying frequencies. Building on the concept of active noise
cancellation (ANC), Widrow et al. [52], Griffiths [53], and others developed the ALE to track
instantaneous frequencies with minimal prior knowledge about the signal. Both ANC and
ALE methods separate periodic and stochastic components in a signal, but ANC methods
require measurements of the signal and an additional reference input that is correlated to the
noise, whereas ALE methods use a single measurement of the signal [54].

A block diagram of the ALE structure is shown in Figure 2.16. The input signal y(n)
is filtered by an adaptive filter which outputs the signal y′(n). The error e(n) between
the input and filtered signals is then minimized by an adaptive algorithm which usually
uses time domain gradient algorithms to continuously update the adaptive filter coefficients.
By selecting an appropriate adaptive filter structure, the resulting output y′(n) becomes an
enhanced (i.e., noiseless) estimate of the input y(n). The difference between parametric
system identification and ALE methods is that in the former, the filter approximates the
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system model, whereas in the latter, filter adaptation is used for signal enhancement and
frequency tracking.

Figure 2.16: ALE block diagram.

ALEs can be efficiently used for frequency tracking and extended to track multiple
sinusoids. For example, a bandpass filter with unity gain and zero phase shift at its center
frequency can be used as the adaptive filter in Figure 2.16. This results in a notch filter
between the input signal and the error term. When the error is minimized, the adaptive notch
filter (ANF) converges to the frequency of the signal. There are countless improvements
and variations of the ALE scheme that use different filter types, algorithms, and structures
to improve its performance. As an example of the improvements made, Hsu et al. [55]
developed an ALE method that guarantees globally convergent estimation for all frequency
values. In addition, ANFs in parallel [56], cascade [57], or lattice [58] structures can be used
to simultaneously track multiple frequencies.

The small estimation bias and the signal-to-noise ratio (SNR) improvements provided
by ALEs allow them to track frequencies accurately. Certain ALEs can directly provide
frequency estimates from their filter coefficients, bypassing the need to use pre-filters,
root-finding algorithms, or transfer function evaluation in contrast to parametric system
identification. Furthermore, ANFs usually update a single filter coefficient per estimated
frequency, which effectively halves the number of adapted parameters when compared to
estimating a structural model of the form given by Equation 2.3.

ANFs have not seen much use as estimators in AVC applications. Mahmoodi et al.
[59] use an ANF to estimate the response frequency of a beam and adjust an acceleration
feedback vibration controller. The structure is excited periodically at a particular mode
frequency and then changed to a different mode frequency, and the ALE is able to detect this
change and tune the AVC controller accordingly. However, the potential of using ALEs for
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multimodal tracking in active damping with transient signals has not been investigated, and
its performance has not been explored in different active damping scenarios.

ANFs may also be used directly to damp the modes of a structure [60–65]. However,
using notch filters for mode suppression can cause pole-zero flipping if they are not tuned
exactly, which can cause a closed loop pole to move into the positive real plane and lead to
instability [8]. In contrast, using ANFs to estimate modal frequencies and adaptively tune
PPF filters provides a control scheme with robust stability. As discussed in Section 2.1.6,
systems damped with PPF remain stable regardless of the adapted filter frequency.

2.3 Research Gap

Based on the background information and methods discussed thus far, the desired properties
of the frequency estimator can be summarized as follows:

• Multiple mode tracking. This is important for damping flexible structures where
broadband dynamic modes are excited and must be suppressed. All the discussed
methods are able to track multiple modes.

• Real-time operation with fast, accurate, and efficient estimation. Real-time imple-
mentation in adaptive damping applications requires estimation to be fast and accurate,
especially when estimates must be obtained using brief transient signals and high
precision is required. The estimation speed and accuracy depend on the properties and
parameter settings of the estimator itself, the number of parameters to be estimated, the
capabilities of the hardware used, and the sampling frequency. STFT-based methods
must collect sufficient amounts of data before analyzing a signal, while the other meth-
ods update with each sample. To extract modal frequencies from the STFT spectra,
additional algorithms might be required like interpolation to enhance the estimates.
Both ANFs and parametric system identification methods exhibit slower convergence
when estimating low-magnitude modes, but there are measures to combat this. System
identification methods usually update more filter coefficients to estimate the same num-
ber of frequencies as ANFs. They also require pre-filtering or additional operations
after estimation to extract the frequencies from decoupled equations, whereas ANFs
can directly obtain the frequency estimates from filter coefficients without additional
computations. ANFs are generally less computationally complex than other methods
[66].
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• Detects closely-spaced modes. This necessitates a suitable frequency resolution,
which STFT lacks. In ANFs, this property depends on the bandwidth of the notch filter,
which can be adjusted.

• Wide dynamic range. Parametric system identification schemes used in active damp-
ing applications have shown that lower magnitude modes are slower to estimate. ANFs
are able to estimate modes with different magnitudes by varying the step size of the up-
date algorithm used for each notch, although prior knowledge of the mode magnitudes
is required.

• Sufficient frequency tracking range. All frequency estimates are limited by the
sampling frequency. Parametric system identification and ANF estimates are generally
able to converge to the "correct" frequencies starting from large initial distances. The
tracking range is not a relevant property for STFT methods as they rely on spectral
data to obtain frequency estimates.

• Noise sensitivity. Parametric system identification methods are highly sensitive to
noise, while ALEs have good noise attenuation. STFT methods do not filter out noise,
but usually this does not significantly affect the peaks of the spectrum. ALEs can be
used to pre-filter signals used as inputs for the other estimation methods, but this is
slightly redundant as ALEs can simultaneously enhance signals and accurately estimate
their frequencies.

• Minimal or straightforward parameter selection/tuning. In order to implement
adaptive damping control with suitable generality, it would be beneficial to have a
simple parameter selection process for the estimator and require a minimal amount
of knowledge about the system to be controlled. ANFs and parametric identification
methods usually have a low number of parameters that can be fixed at certain values,
especially when the nature of frequency variation is consistent. An adaptive step size
in the update equation or RLS covariance-resetting [67] can be used if there are large
changes in the timescale of frequency variation. An example of this is a change in
the mass of a payload causing sudden and large variation in the modal frequencies
which the estimator should be able to track. STFT-based methods require the choice
of a suitable window size, which can be difficult without approximately knowing the
extents of frequency variation in the system.

A vast majority of the literature investigates adaptive damping for the case of single
mode damping. Few studies have investigated adaptive multimodal damping methods, but
the majority of these utilize RLS in AR-based parametric system identification which is
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computationally intensive, sensitive to noise, requires root-finding or pre-filtering, and suffers
from inaccuracy when estimating modes with lower magnitudes. STFT-based methods are
relatively slow since sufficiently long blocks of data must be used for accurate spectral
analysis.

The problem of implementing an adaptive scheme for AVC applications with suitable
properties relating to performance, simplicity, and practical implementation leaves much
to be desired. The potential of using ANFs for multimodal frequency estimation has not
yet been investigated in AVC applications. ANFs therefore present an underutilized and
promising option for multimodal frequency estimation in active damping. They provide a
direct estimation method which outputs the instantaneous frequencies of a signal, and can
provide fast and unbiased estimates in an efficient manner. They also require a low number
of tuning parameters and are insensitive to noise.

Based on the literature gaps discussed above, the objectives of this research are:

• Develop an adaptive vibration control scheme using PPF for damping multiple modes
of flexible structures and a suitable ANF estimator to ensure the effective estimation of
modal frequencies.

• Focus on practical implementation details such as the use of damped transient signals
for estimation, fast and accurate convergence of estimates, computational efficiency,
ability to estimate closely-spaced modes, dynamic range, tracking range, noise sensi-
tivity, and simple parameter tuning.

• Validate the adaptive damping scheme and investigate its performance and behavior in
different conditions using simulations and experimental tests.





Chapter 3

Adaptive Multimodal Damping of
Flexible Structures

3.1 Introduction

Speed and precision are important performance objectives in mechatronic systems where
high throughput and motion resolution are desired. For example, wafer scanners used
in the semiconductor industry are crucial in enabling modern technological development
through the continuation of Moore’s law, and must consequently keep up with the demand
for microchips while maintaining nanometer-level precision. However, vibrations due to
structural resonance modes can limit the performance of such systems as they can induce
undesirable oscillations. These vibrations are particularly problematic in systems that utilize
flexures, where structural damping is sacrificed to achieve lightweight, minimally constrained
designs with high repeatability. Vibration suppression is thus necessary to counteract the
excitation of lightly damped flexible modes and obtain the desired performance.

Structural resonances can be attenuated by damping the structure passively or actively.
Passive damping methods use mechanical measures like elastomer layers or tuned mass
dampers. However, these solutions are only effective within a narrow range of frequencies
and can add significant mass to lightweight structures. Active damping methods utilizing
low-mass actuators, sensors, and multimodal control algorithms are better suited for such
applications. These are often referred to as active vibration control (AVC) methods.

One of the main issues in commonly used AVC methods is the lack of robustness against
uncertainties and systems variations. For example, a manipulator with a variable payload
or a deflecting flexure will have time-varying dynamics which typical AVC schemes do not
account for. In addition, uncertainties may arise from model approximations, inaccurate
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system identification, or variations in manufacturing. As a result, the detuned controller can
either destabilize or deteriorate the active damping performance of the system.

Two main approaches have been used to implement robust AVC. The first option involves
the use of robust controllers designed with fixed parameters to ensure stability and suitable
performance in the presence of uncertainties. Previously investigated solutions include inte-
gral resonant control [13, 14], H∞ synthesis [15, 16], and µ synthesis [17]. These methods
were shown to be effective but rather limited since designing a suitable controller requires a
priori knowledge of the system model and its uncertainties. The resulting performance varies
across uncertainties and is only sufficient within a predetermined and bounded uncertainty
set.

In contrast, adaptive methods can be used to achieve robustness by adaptively tuning
a vibration controller with minimal a priori knowledge of the structure. Given accurate
estimates of the system parameters, an adaptive controller with a suitable adjustment law
can maintain the desired damping performance for virtually any variation or uncertainty.
Adaptive control has attracted much attention in AVC [68, 32, 69, 70, 50, 71–73].

The practical implementation of AVC for flexible structures requires a simple yet effective
estimation method to track the frequencies of multiple resonance modes and use the estimates
to adaptively tune a vibration controller in real time. Frequency tracking should be possible
using readily available measurements from the AVC loop without requiring knowledge of
disturbances as they can be difficult to measure. For effective vibration suppression, the
estimates must converge accurately and in the same timescale as the vibration response of
the structure, particularly if it is characterized by the quickly decaying transient response
of actively damped structures like flexible manipulators. Other desired properties of the
estimator include low computational complexity, operation in low signal-to-noise ratios
(SNR), and having a minimal number of parameters to be manually adjusted.

The estimation and tracking of multiple frequency components of a signal in real time has
been widely investigated, with applications ranging from power systems [74] and mechanical
fault detection [75] to autonomous driving [76]. Non-parametric methods based on the fast
Fourier transform (FFT) have been used to estimate modal frequencies for AVC and active
noise control applications [29, 49, 77]. FFT provides a simple approach for time-frequency
analysis, but it requires sufficiently long datasets to provide accurate estimates, suffers
from spectral leakage, and has poor resolution for identifying modes with closely spaced
frequencies. Several methods improve on these limitations, but they come at the cost of
increased computational burden [78].

On the other hand, parametric methods use prior knowledge about the model structure
and update the estimation parameters with each sample, allowing for fast, high-resolution
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estimation. In AVC, Rew et al. use recursive least squares (RLS) to estimate an autoregressive
(AR) model of a plate structure for multimodal damping with an adaptive positive position
feedback (PPF) controller [48]. However, AR estimation is highly sensitive to noise and
can provide inaccurate estimates. Such methods also require additional steps in the form of
pre-filtering or a root-finding algorithm to separate the estimated transfer function into its
modal components and determine the mode frequencies [79].

The problem of implementing an adaptive scheme for AVC applications with suitable
properties relating to performance, simplicity, and practical implementation leaves much to
be desired. In this paper, we aim to fill that gap by using adaptive notch filters in a cascade
structure (CANF) to track the frequencies of multiple structural resonance modes, then tune
a modal vibration controller using the estimates. In this work, PPF control is used to test
and demonstrate the method. Adaptive notch filters (ANF) have been used to directly damp
resonance modes [60–65], but inexact ANF tuning for mode suppression can cause pole-zero
flipping and destabilize the system. An ANF was also used to track the frequency of a single
mode for PPF tuning [59]. However, the potential of using ANFs for multimodal frequency
estimation has not yet been investigated in AVC applications.

The developed adaptive scheme is shown to be stable regardless of the estimation accuracy,
and the PPF controller can be easily tuned with the estimated frequencies using a simple
adjustment rule. The CANF estimator provides fast and accurate convergence, even in
low SNR, and directly provides estimates of each frequency without requiring additional
decoupling steps. Instead of computing a large number of filter coefficients, the update
algorithm of the CANF adapts a single parameter for each mode to be actively damped. In
addition, a variable update step size is used to account for time-varying signal amplitudes,
adapt to different frequency tracking scenarios, and simplify the process of manual parameter
selection.

The remainder of this paper describes the proposed method in detail then investigates
its performance in tracking and damping multiple modes of a flexible structure. Section 3.2
briefly introduces some principles of active damping and PPF control. Section 3.3 introduces
the CANF method used for frequency estimation and discusses the overall adaptive scheme.
Section 3.4 investigates the performance of the developed method using simulations, and
Section 3.5 presents experimental results obtained by adaptively damping a flexible beam
with piezoelectric transducers. Finally, Section 3.6 provides some concluding remarks and
insights into potential future work.
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3.2 Active Damping with Positive Position Feedback

The transfer function describing the compliance of a structure with a single degree of freedom
(DOF) can be represented in the Laplace domain as:

G(s) =
k2

n
s2 +2ζ ωns+ω2

n
(3.1)

where s is the Laplace variable, kn is a modal constant, ζ is the damping ratio, and ωn is
the natural frequency. Continuous systems like flexible structures exhibit an infinite number
of elastic modes and their dynamics can be expressed as a linear combination of the system’s
modes. For such systems, collocated control, where actuators and sensors are located at the
same DOF, is often employed to ensure robust open loop stability [10]. This is clear when
the collocated open loop transfer function Gll (s) is analyzed at a given DOF l:

Gll(s) =
m

∑
i=1

φi(l)2

s2 +2ζiωn,is+ω2
n,i

+Rll (3.2)

where i indexes m modes, φ is the mass-normalized modal amplitude, and Rll is a quasi-
static approximation of high frequency dynamics called the residual mode. This model
describes a system with a finite number of dominant modes and assigns a constant term to
approximate truncated high frequency modes outside the control bandwidth. As shown in
Figure 3.1, Gll (s) exhibits an alternating pattern of poles and zeros on the left half plane
and its phase never falls below −180◦, showcasing the stability benefits of using collocated
control. This remains the case regardless of system variations, guaranteeing robust stability
of the plant [8].

An ideal active vibration control method would be able to damp certain modes of a
structure and leave other dynamics unchanged. However, feedback action may lead to
spillover and excite modes outside the control bandwidth, making it more difficult to design
controllers for multimodal damping. The goal is thus to find a suitable vibration controller
C (s) that actively damps multiple modes of Gll (s) without affecting its robust stability or
significantly exciting uncontrolled modes. To that end, positive position feedback (PPF) was
originally proposed by Goh and Caughey to overcome the stability limitations of conventional
velocity feedback in the presence of unmodelled dynamics [28]. Figure 3.2 shows a block
diagram of the PPF control loop used to damp a single mode of a collocated plant.

Here, d is the disturbance acting on the structure, y is a position output, and C (s) is the
transfer function of the PPF filter, a second-order low pass filter with gain g, cutoff frequency
ω f , and damping ratio ζ f . Although PPF can be designed using optimal control methods, the
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Figure 3.1: Pole-zero map and Bode plot of a structure with collocated actuation and sensing.

Figure 3.2: PPF block diagram.

following tuning rule is sufficient for damping structures and is used throughout this paper
[32, 80]:

ω f = ωn (3.3)

The filter damping ratio ζ f and feedback gain g are chosen such that the targeted reso-
nance peak is sufficiently damped. The gain value also determines the stability of the system
with the following condition [8]:
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0 < gG(0)< 1 (3.4)

In practice, this condition does not restrict the damping performance since large gain
values are not normally used.

The closed loop transfer function of interest describing the relationship between the
disturbance input and position output is:

T (s) =
G(s)

1−C(s)G(s)
(3.5)

Figure 3.3 is used to highlight the properties of PPF for tuning the 2nd mode of a
collocated structure. The root locus plot shows that all poles remain on the left half plane
except for one branch that moves towards the positive real axis, representing the effect of
violating the condition given by Equation 3.4. The magnitude plot shows that apart from
successfully damping the 2nd mode, PPF only causes spillover at frequencies lower than
its cutoff frequency ω f . This lack of high frequency spillover is a major benefit of using
PPF, as the damping performance is insensitive to both known and unknown high frequency
dynamics. Finally, the phase plot provides intuitive insight into the workings of PPF. When
a disturbance excites a structural mode and the position measurement is passed through a
second-order low pass filter tuned to that mode, the resulting control signal is −180◦ shifted
in phase relative to the original disturbance, providing a periodic counter-vibration signal
equal to the disturbance in frequency but opposite in direction.

Multiple PPF filters placed in parallel can be used to damp multiple modes using a single
actuator. However, control spillover makes it difficult to tune filters for low frequency modes.
Figure 3.3 shows that coupling from damping the 2nd mode causes the 1st mode to shift in
magnitude and frequency, in addition to amplifying the quasi-static region. Several methods
were developed to decrease spillover and facilitate the design of multimodal PPF, including
the use of bandpass filters [7, 29, 30] and fractional order control [31].

Leo and Griffin [32] concluded that the PPF filter frequency is the key design parameter,
since small changes in its value result in large changes in the closed loop damping ratio.
The controller gains may also be fixed as the frequency varies without much variation in
performance [48]. The method can be made more robust by increasing ζ f to widen the filter
bandwidth close to the target mode, but this comes at the cost of reduced mode suppression
[81]. Opting for adaptive PPF can provide a powerful solution for a variety of reasons:

• PPF can be difficult to tune in the multimodal damping case due to time-varying
parameters, control spillover, actuator nonlinearities, among other reasons. An adaptive
scheme circumvents this issue.



3.2 Active Damping with Positive Position Feedback 35

Figure 3.3: PPF root locus and Bode plots showing stability and damping action in the
frequency domain.

• PPF performance is mostly sensitive to the filter frequency ω f . Since minimal structural
knowledge is needed, full system identification is not necessary. This allows the use
of efficient frequency trackers for estimation and does not require the use of complex
adjustment mechanisms as the tuning rule is simple: ω f = ωn.

• PPF is a low authority control method. The control effort is focused on the mode
frequencies and its influence on other system dynamics is relatively low. In cases
where the frequency tracker gives inaccurate estimates and incorrectly tunes the PPF
filter, the collocated layout maintains robust stability and the high frequency roll-off of
PPF avoids potential performance and stability degradation caused by high frequency
dynamics.

In addition, an efficient adaptive scheme developed for PPF tuning can be applied either
partially or fully to other AVC methods where the mode frequencies can be used as tuning
parameters, including negative position feedback [33], integral resonant control [35, 37], and
negative derivative feedback [38].
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3.3 Modal Frequency Estimation with Cascaded Adaptive
Notch Filters

In this section, adaptive line enhancement (ALE) is investigated for tracking multiple frequen-
cies for PPF tuning. ALE is a spectral estimation technique developed to address different
problems regarding the retrieval of sinusoidal signals, including the enhancement of signals
buried in noise and tracking unknown signals with time-varying frequencies. Building on the
concept of active noise cancellation, Widrow et al. [52], Griffiths [53], and others developed
the ALE to enhance noise-corrupted signals with minimal a priori knowledge about the input
signal. Figure 3.4 shows a block diagram of a typical ALE.

Figure 3.4: ALE block diagram.

The aim of the adaptive filter H (z) is to enhance the input signal y(n) at discrete time n
by filtering out its noise components. This is done by minimizing the error signal between
the input signal and the output y′ (n) of the adaptive filter using a certain adaptive algorithm.

For PPF tuning, the generalized position of the excited underdamped structure is used
as the input to the ALE. This response consists of a sum of frequency components to be
estimated given by the following equation:

y(n) =
k

∑
i=1

Ai(n)sin(ω0,i(n)n)+ v(n) (3.6)

where i indexes k frequency components, A(n) is the time-varying amplitude, ω0 is
the time-varying frequency, and v(n) consists of other signal components which can be
considered as Gaussian white noise. Depending on its structure, the ALE’s adaptive filter
can efficiently track the instantaneous frequencies ω0,i of the signal that it is enhancing as it
is decomposed into its separate components.
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Several ALE structures and filter types have been explored, including finite impulse
response (FIR) and infinite impulse response (IIR) filters [54]. An FIR filter requires a larger
number of filter weights to provide adequate line enhancement performance compared to an
IIR filter. As a result, despite its more complex structure, the smaller IIR filter length means
fewer parameters to be adapted and generally better numerical behavior [82]. Additionally,
FIR filters require further computations to determine the frequency estimates from the filter
coefficients, whereas IIR filter coefficients can directly provide this information [83].

The IIR ALE developed by Kwan and Martin [84] is used here for its stability, simplicity,
quick convergence, and computational efficiency in tracking multiple frequency components
[66]. For operation with a single frequency component, the adaptive filter H (z) in Figure 3.4
has the transfer function of a bilinearly transformed second-order bandpass filter given by:

H(z) =
Y ′(z)
Y (z)

=
1− r2

2
(1+ z−1)(1− z−1)

1−2rcos(ωp)z−1 + r2z−2 ; 0 ≪ r < 1 (3.7)

where r is the pole radius and ωp is the normalized pole frequency. This structure can be
more intuitively described by analyzing the transfer function between the input to the ALE
and the error, given by the following equation:

N(z) =
E(z)
Y (z)

= 1−H(z) (3.8)

As shown by Figures 3.5 and 3.6, N (z) is a constrained notch filter with a bandwidth
determined by r and a zero-transmission frequency at ωp. The zeros are set to lie on the unit
circle and the poles are constrained by the radius r to lie on a line between the origin and the
zeros. This ensures stability, prevents numerical issues through zero-pole cancellations, and
simplifies the adaptation process [85]. A suitable constant value of r can be chosen to fix the
notch bandwidth, leaving ωp to be updated using an adaptive algorithm. The central notch
frequency converges to the input signal frequency ω0 as the error is minimized, making it an
adaptive notch filter (ANF).

It is also possible to establish a linear relationship between the adapted parameter and the
notch frequency [84]. This is done with the following substitutions:

α =
√

1+ r2 −2rcos(ωp) and β = 1− r2 (3.9)

which gives the following bandpass filter transfer function:

H(z) =
β

2
(1+ z−1)(1− z−1)

1− (2−β −α2)z−1 +(1−β )z−2 (3.10)
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Figure 3.5: Magnitude transfer function of a second-order ANF.

Figure 3.6: Pole-zero configuration of a second-order ANF.

The normalized frequency estimate is then obtained through its relation to the new
parameters α and β :

ω̂ = 2sin−1

 α

2
√

1− β

2

≈ α

(
1+

β

4

)
(3.11)
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where the linear approximation applies for small values of α and β . The value of β is
only related to r and is thus fixed, whereas α is related to ωp and should be updated. The
update equation is based on a least-squares solution for minimizing ||e(n)2 ||:

α(n+1) = α(n)−µe(n)s′(n) (3.12)

where µ is a fixed step size and s′ (n) is a sensitivity signal describing the gradient of
the error with respect to the parameter α . The sensitivity signal s′ (n) can be easily obtained
from intermediate signals of the bandpass filter H (z) as shown by Figure 3.7.

Figure 3.7: Signal flow diagram of H (z).

To keep the update independent of the amplitude and enable greater dynamic range, the
update can be normalized using the sensitivity signal, making the estimator particularly
suitable for estimating frequencies from transient signals and tracking modes with various
magnitudes. The normalized equation is:

α(n+1) = α(n)−µ
e(n)s′(n)

||s′(n)||2 +δ
0 < δ < 1 (3.13)

where δ is a constant to prevent numerical issues from division.
To extend the ANF application for tracking multiple frequencies, the cascaded ANF

(CANF) structure shown in Figure 3.8 can be used to obtain the different sensitivity terms
associated with each frequency component. The resulting transfer function is that of a notch
comb filter. For the estimation of k frequencies, k (k+1)/2 bandpass filters (Hi(z)) and k
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sensitivity filters (Si(z)) are required. For example, 9 total filters are required to track 3
frequencies.

Figure 3.8: Cascade structure of adaptive notch filters.

The advantage of the CANF structure over other parallel [56] and cascade [57] structures
is that all filters are updated using the last error signal, which allows for estimates with
small bias, avoids frequency tracking conflicts, is computationally efficient, and does not
require further root-finding as the frequencies are directly obtained from the updated filter
coefficients.

Once converged, the sensitivity outputs are orthogonal which allows for an approximation
of the Gauss-Newton algorithm to be used with less computational burden. As a result, only
k parameters are updated using k decoupled equations of the form given by Equation 3.13,
each used to update a single parameter αi corresponding to a bandpass filter Hi (z). The
Gauss-Newton approximation can become slow when estimates are far from convergence,
but remains faster than alternatives like the steepest descent approach typically used in least
mean squares filters [84].

When the rate of frequency variation is unknown, the fixed step size used to update each
notch can become a limiting factor. In cases where the modal frequencies are far from the
initial estimates or vary substantially in a short amount of time, the step size must be large
enough to converge quickly to a suitable estimate. In other cases where the estimates have
converged or are slowly drifting, the step size must be small enough to prevent excessive
oscillations and steady-state errors in the estimate. To solve this issue, a time-varying step
size is implemented using the method developed by Mayyas and Momani [86]. The method
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adjusts the step size based on the notch distance from the target by minimizing the mean
squared error of the coefficient α:

E[e2
α ] = E[(α∗(n)−α(n))2] (3.14)

The step size used in Equation 3.13 is determined at each time step by the following
equation:

µ(n) =
|η(n)|
ρ(n)

=
1
κ

|γη(n−1)+(1− γ)e(n)e(n−1)|
γρ(n−1)+(1− γ)e2(n)(s′2(n)+ ε)

; 0 < γ < 1 (3.15)

where η and ρ are used to track the previous step size estimate, κ is a scaling factor, γ is
a weight that controls the quality of estimations, and ε is a constant used to avoid numerical
issues. In the overall adaptive scheme, this method substitutes the manual selection of step
size µ with the parameter κ , which provides a more intuitive choice as it is used to scale
the adaptive step size to a suitable range of values. The parameter γ determines the excess
mean-square error, but it can be safely set to a value close to 1 as the damping method is
not very sensitive with respect to variations in γ . With the benefits of additional adaptability,
the variable step size modification only adds a small number of addition and multiplication
operations and utilizes available CANF signals.

The overall adaptive damping scheme is summarized in Figure 3.9. The CANF obtains k
modal frequency estimates from the response of a collocated plant. The update algorithm
uses the CANF output signals to adapt the notch coefficients and the variable step size. The
estimates are then extracted from the notch coefficients and used to tune a PPF controller for
damping k modes of the structure.

Figure 3.9: Overall adaptive damping scheme.
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3.4 Simulations

Simulations of the adaptive scheme were carried out in MATLAB Simulink to analyze its
performance. A time-varying structure was implemented using the transfer function given
by Equation 3.2 with variable natural frequencies. Table 3.1 lists the control and estimator
parameter values used throughout this section. Note that these tuning parameters are mostly
fixed at suitable values that, as will be shown, work for various operating conditions and
situations. The frequency estimates are obtained from the adapted parameters αi at each step
using Equation 3.11.

Table 3.1: Controller and estimator simulation parameters for single mode and multimodal
simulations.

Parameter Symbol Single Mode
Multiple Modes

Mode 1 Mode 2 Mode 3

PPF gain g 0.6 1 0.5 0.5
PPF damping ratio ζ f 0.3 0.3 0.3 0.3
ANF pole radius r 0.99 0.99 0.99 0.99
Normalization division constant δ 0.1 0.1 0.1 0.1
VSS weighting factor γ 0.97 0.97 0.97 0.97
VSS division constant ε 0.1 0.1 0.1 0.1
VSS scaling factor κ 5000 5000 5000 5000

The first set of results are used to showcase different characteristics of the ANF when used
to estimate the modal frequency of a single DOF system. Figure 3.10 shows the convergence
behavior of the frequency estimate when the open loop system is excited sinusoidally from
rest at the frequency of the mode (50 Hz). Starting from an initial estimate of 25 Hz, the
estimates quickly converge to the correct frequency of the mode. This result mainly serves
as a simple validation of the ANF since it was originally developed to isolate and enhance
sinusoids in particular. The figure also shows the effect of changing the step size value, which
clearly provides a trade-off between the estimation speed and the overshoot and settling time
of the estimate.

Figure 3.11 shows the estimation results using the transient response of the same 1 DOF
system, obtained by exciting it with pulse disturbances. The ANF effectively estimates the
mode frequency despite the decaying response. Although a spike in the estimate occurs
with each pulse excitation due to the initial lack of sufficient signal information, it quickly
converges back to the mode frequency.
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Figure 3.10: Frequency estimation simulation results using the position output of a sinu-
soidally excited 1 DOF structure.

Figure 3.11: Frequency estimation simulation results using the transient position output of a
1 DOF structure.
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Figure 3.11 also compares between ANF estimates using the regular and normalized
update equations given by Equations 3.12 and 3.13. To carry out the comparison, the pulse
disturbance amplitude is increased throughout the simulation. The results show that unlike
the regular update, the normalized update provides robustness against variations in the
magnitude of vibrations, allowing the ANF to obtain faster estimates from small disturbances
and maintain its convergence behavior given large disturbances.

Figure 3.12 shows the benefits of using a variable step size. Similar to the normalized
update equation with a fixed step size, the variable step size provides insensitivity against
the vibration magnitude. On top of that, the variable step size sufficiently adapts the ANF
to different frequency estimation scenarios. In this case, the mode of the 1 DOF structure
has a sharp increase in frequency at the 1 s mark. It is shown that using fixed values of
µ at the boundaries of the variable case degrades the performance when compared to the
variable case. A large, fixed value of µ causes large oscillations and a small value increases
convergence time. On the other hand, the variable case adapts µ to achieve reliable estimates
in situations with different disturbances and frequency variations.

Figure 3.12: Frequency estimation simulation results with a time-varying mode frequency
showing the benefits of using a variable step size.

Although a suitable parameter value must be selected for the two types of update equations
(µ for the fixed step size update and κ for the variable step size update), the variable step size
provides the advantage that κ is tuned to scale µ to a certain range within which it can vary.
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In contrast, fixing the value of µ might limit the performance in situations like those shown
in Figure 3.12. Either method can thus be used depending on how the structure’s parameters
vary.

Figure 3.13 provides more insight into the adaptation of the variable step size. The system
is excited by the same pulse disturbance every second, and the modal frequency changes both
gradually and sharply. The ANF is able to quickly and accurately track the frequency at all
times as it is adapted based on the ANF error and sensitivity signals. A large error signal, for
example caused by an incorrect initial estimate (0 s) or a change in the mode frequency (1.33
s), leads to an increase in the step size to eliminate the error quickly. Conversely, a large
sensitivity signal (2 s) decreases the step size to prevent large fluctuations in the estimate.
Once the estimate has settled on a slowly changing (0.5 s) or a fixed (1.5 s) frequency value,
a larger step size is tolerated as the sensitivity decreases.

Figure 3.13: Frequency estimation simulation results showing the effect of ANF signals on
step size adaptation.

The next result in Figure 3.14 compares between a fixed PPF tuned to damp a mode
at 50 Hz and an adaptive PPF tuned using the frequency estimates obtained by an ANF
with a variable step size. Starting with an incorrect initial frequency of 25 Hz, the adaptive
PPF is quickly tuned to 50 Hz and its performance is identical to that of an exactly tuned
fixed PPF. As the mode frequency gradually increases above 50 Hz, one can clearly see the
degradation in the damping performance of the fixed PPF compared to the adaptive PPF,
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which sufficiently suppresses the vibrations and maintains a lower settling time with each
disturbance. Given a large enough difference between the mode and filter frequencies (6 s
and later), the fixed PPF ceases to provide any vibration suppression.

Figure 3.14: Single mode damping performance of adaptive PPF tuned using ANF estimation.

Note that while spikes occur in the estimate when the structure is first excited, quick
convergence to the mode frequency and the properties of PPF as discussed in Section 3.2
prevent this from deteriorating the damping performance. It is also shown that the frequency
estimate obtained from the damped closed loop system is nearly identical to the estimate
obtained from the open loop system, but it stops tracking earlier. This is to be expected
as the damped response decays faster and the ANF is no longer provided with a sufficient
input signal. Regardless, the estimate quickly converges to the mode frequency at the next
excitation of the structure.

Figure 3.15 shows the performance of the adaptive damping scheme applied to simul-
taneously estimate 3 modes of a time-varying structure and damp them. It is clear that the
previously discussed advantages of the method extend to the multimodal damping case. In
this example, using the frequency estimates once they have settled at t = 9 s, the first mode is
tracked with 0.84% error, the second mode with 0.22% error, and the third mode with 1.56%
error.

In addition, Figure 3.16 shows the active damping performance in the frequency domain.
At first (t = 0 s), the adaptive PPF initially tuned to 15 Hz lower than the mode frequencies
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Figure 3.15: Performance of adaptive multimodal PPF in the time domain.

Figure 3.16: Performance of adaptive multimodal PPF in the frequency domain before and
after the convergence of estimates.
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does not damp the first mode and only slightly damps the higher frequency modes. Towards
the end of the simulation (t = 9 s), the adaptive controller effectively attenuates 12 dB of the
first mode, 8 dB of the second mode, and 7 dB of the third mode, whereas the detuned fixed
PPF provides significantly less damping.

Figure 3.17 shows the method’s performance when damping three closely spaced modes
separated by 5 Hz. Frequency tracking is shown to be effective even in this extreme case,
although there is a loss in the accuracy of the estimates (e.g., after t = 9 s). The smaller the
difference between the modal frequencies, the more difficult and less reliable the estimates
become. However, the pole radius r may be increased to achieve better mode separation as it
controls the bandwidth of the adaptive notch filters. The estimates also exhibit interchanging
behavior as two notches swap estimates (t = 8.2 s), but this does not affect the damping
performance as all frequencies continue to be detected and tracked.

(a) Time domain performance.
(b) Frequency domain performance before and
after convergence.

Figure 3.17: Performance of adaptive multimodal PPF with closely spaced structural modes.

Figure 3.18 shows a repetition of the previous tests but with modes having different
magnitudes. From the lower to the higher frequency modes these magnitudes are 6 dB, 0 dB,
and -6 dB. The adaptive scheme is able to estimate the frequencies and maintain sufficient
damping with all three modes. Note that none of the estimator parameters were changed
from those used in previous examples, but if the difference between the mode magnitudes
becomes too large then either the scaling factor κ or – if using a fixed step size – the step
size µ must be tuned according to the magnitudes of each estimated mode.

When estimating multiple frequencies simultaneously and the estimates are initially far
from convergence, the coupling between the notch filters can create complications as the
approximated Gauss-Newton update assumes orthogonal notch sensitivities (i.e., decoupled
notches). This is tested in Figure 3.19 by varying the difference ∆ fi between the initial
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(a) Time domain performance.
(b) Frequency domain performance before and
after convergence.

Figure 3.18: Performance of adaptive multimodal PPF with structural modes of different
magnitudes.

estimates and the constant mode frequencies. It is shown that the larger the difference, the
longer it takes to estimate the corresponding frequency. In this particular case, the estimator
requires two pulse excitations before it can track the three modes when the initial estimate
for each mode is offset by 99 Hz from the modal frequency.

Figure 3.19: Adaptive multimodal PPF performance with different estimate initialization.
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Finally, Figure 3.20 shows the effects of noise on the CANF performance. Band-limited
white noise with power Pn is added to the structure’s output signal and this summation is used
as the CANF input. It is shown that for different magnitudes of noise power, the estimator
performance remains largely the same. In the case when Pn = 1× 10−3, the CANF input
signal is effectively buried in noise, but the estimates remain accurate. This constitutes a
major advantage of using CANF for real time frequency tracking and adaptive damping.

Figure 3.20: Adaptive multimodal PPF performance in the presence of varying levels of
noise in the input signal.

3.5 Experimental Validation

An experimental test was used to validate the performance of the adaptive damping method
in a real active damping implementation. The test structure is a vertically-oriented cantilever
beam made from aluminium. The beam is shown in Figure 3.21 and its properties are given
by Table 3.2.

A piezoelectric stack actuator (PiezoDrive SA050520) is attached to the base of the beam
and used to generate disturbances. For AVC using PPF, piezoelectric patch transducers (PI
P-876 DuraAct) are used for both actuation and sensing. Piezoelectric transducers add little
mass, operate in a wide frequency band, and can be easily integrated into structural elements,
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Figure 3.21: Cantilever aluminium beam with piezoelectric stack and patch transducers.

Table 3.2: Experimental beam parameters.

Parameter Value

Length (cm) 27
Length from clamping point (cm) 25.1
Width (cm) 4
Thickness (mm) 1.5
Elastic modulus (GPa) 70
Density (kg/m3) 2700

making them suitable for precise active damping applications [25]. Piezoelectric sensors are
usually used for PPF control as they output a signal proportional to the strain of the patch,
which is used as the generalized position measurement. The patch actuators and sensors are
attached as pairs to the same DOFs but at opposite sides of the beam, thus providing the
collocated system described in Section 3.2. The following experiments make use of the pair
of patches attached close to the base of the beam as it is a high strain location suitable for
measuring multiple bending modes.

The overall experimental setup is shown in Figure 3.22. A TI LAUNCHXL-F28379D
development kit with the TMS320F28379D microcontroller (MCU) is used to implement the
adaptive control algorithm. A charge amplifier circuit is used to convert the charge signal
of the piezoelectric sensor into a voltage signal and condition the input to the analog-to-
digital converter (ADC). The disturbance and control signals generated by the controller are
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amplified by BD300 amplifiers before being sent to their respective actuators. Discretized
models of a CANF and an adaptive PPF controller are implemented in MATLAB Simulink,
which is then used for code generation, MCU monitoring, and data logging. Figure 3.23
shows a block diagram with the various elements and connections within the control system.

Figure 3.22: Experimental setup.

The beam was identified to determine its resonance modes for testing purposes. This was
done using a chirp signal ranging from 1 Hz to 500 Hz. Figure 3.24 shows the collocated
transfer function between the control force u and the strain measurement y, and Table 3.3
shows the magnitude and frequency values of the three identified bending modes.

Table 3.3: Experimentally identified mode frequencies and magnitudes.

Mode Frequency (Hz) Magnitude (dB)

1 23.5 18.3
2 127.2 9.3
3 328.9 8.3

Three different controllers were used to damp the three identified modes of the beam: a
PPF controller with incorrect fixed tuning, a PPF controller tuned to the modal frequencies,
and an adaptive PPF controller with incorrect initial estimates. Table 3.4 lists the estimation
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Figure 3.23: Block diagram of the control system used for experimental validation.

Figure 3.24: Frequency response of the beam with collocated piezoelectric transducers.

and control parameters used in the experiment. The PPF gains were selected for suitable
multimodal damping of the modes given in Table 3.3. Most parameters are kept the same
as the simulations, with the exception of κ which was set to provide a suitable step size
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range for each estimate. This was necessary to increase the estimation sensitivity of higher
frequency modes because of the relatively low magnitude of the modes.

Table 3.4: Controller and estimator experimental parameters.

Parameter Symbol
Modes

Mode 1 Mode 2 Mode 3

PPF gain g 0.1 0.08 0.02
PPF damping ratio ζ f 0.3 0.3 0.3
ANF pole radius r 0.99 0.99 0.99
Normalization division constant δ 0.1 0.1 0.1
VSS weighting factor γ 0.97 0.97 0.97
VSS division constant ε 0.1 0.1 0.1
VSS scaling factor κ 500 5 5

Figure 3.25 shows the experimental results of the adaptive PPF scheme. The stack
actuator is used to disturb the beam with pulses at regular intervals starting at 15 s, and the
resulting vibrations are effectively suppressed by the adaptive PPF.

The frequency estimation plots show that by the time the beam settles from its first excita-
tion, estimates for the first two modes have already converged within 1 Hz of error. However,
estimation of the third mode is slow and requires multiple excitations for convergence. This
can be attributed to a combination of the mode’s relatively small magnitude in the collocated
transfer function, as well as the significant high-frequency roll-off in the non-collocated
transfer function between the stack disturbance at the base and the patch sensor. In the
experimental case, the final errors between the estimates and the identified modes result from
a combination of factors:

• Estimator bias. This is the true error between the CANF input signal frequencies and
the provided estimates. CANF bias is usually extremely low and can be improved by
further reducing the notch bandwidth through increasing the pole radius r.

• Spillover. As explained in Section 3.2, actively damping one mode with PPF can
cause another mode to shift in frequency. The adaptive PPF accounts for the effects of
spillover, which can partially explain a slight discrepancy between the identified open
loop modes and the estimated frequencies in the closed loop, particularly for lower
frequency modes.

• System variations. Modes shifting in frequency were observed between experiments.
This might occur for a variety of reasons, including the clamping conditions and
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Figure 3.25: Experimental results showing the adaptive damping and modal frequency
estimation performance of the method on a vibrating flexible beam.

variations in the screw used to pre-tension the stack actuator. Several experiments
in succession might also cause system variation, which is more prominent at higher
frequencies. The estimator accounts for these variations as intended, contributing to
the difference between the estimates and the identified modes.



56 Adaptive Multimodal Damping of Flexible Structures

The damping performance of the adaptive PPF controller is also compared to tuned and
de-tuned PPF controllers with fixed parameters in Figure 3.26. The adaptive PPF quickly
surpasses the detuned PPF in vibration suppression performance despite starting with the
same tuning frequencies. This is because the first two modes are quickly and accurately
estimated by the CANF within 0.2 s of the first excitation as shown in Figure 3.25. As for
the tuned fixed PPF, it initially outperforms the adaptive PPF as seen by the comparing the
vibration signals at 15 s, but their damping action matches once the estimates for the first
two modes have converged. The following excitations of the beam are then damped with
similar results between the two controllers, showing the effectiveness of the adaptive method
and its behavior as a well-designed PPF controller regardless of a priori knowledge about the
modes and their variation.

Figure 3.26: Experimental results comparing the performance of the adaptive PPF controller
to non-adaptive controllers.

3.6 Conclusion

This paper presented a simple yet effective adaptive method for actively damping multiple
modes of an uncertain or time-varying structure. Adaptive notch filters in a cascade structure
(CANF) are used to provide quick and accurate frequency estimates of multiple modes simul-
taneously and in real time. The frequency estimates are then used to tune an adaptive positive
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position feedback (PPF) controller for multimodal damping with a simple adjustment rule.
The estimator only requires available position measurements used in the PPF control loop
and can estimate modal frequencies using transient structural vibrations, allowing the method
to be used in applications like precision motion systems where any additional disturbance or
noise injection for identification purposes would degrade the motion performance. Further-
more, the method is computationally efficient, requiring fewer operations than alternative
estimation methods and avoiding the need for additional prefiltering or root-finding. The
method also showcases consistently effective performance with noisy signals. A variable
update step size is used to further improve the frequency tracking performance and allow the
estimation to adapt to different vibration amplitudes as well as different scenarios of modal
frequency variation. Simulations and an experimental test using a flexible beam were used
to investigate and validate the method’s effectiveness, showing its applicability in practical
implementations.

For future work, the use of adaptive notch filters can be explored further to achieve
effective tracking. This may be done by using different adaptive filter structures, notch
structures, and update algorithms. Different estimator parameters may also be adapted, for
example by updating the notch pole radius (i.e., notch bandwidth) depending on the distance
to convergence and the spacing between the modes to obtain better estimates. The proposed
method utilizes a single parameter κ to scale the range of the step size, but an improved
variable step size algorithm that eliminates the need to manually select any parameters would
further simplify the method. In addition, the CANF can be easily extended for use with other
modal AVC methods where tuning is largely dependent on accurate knowledge of the modal
frequencies. Implementation in PPF and other AVC methods can also be extended using
real-time optimization-based design to maximize the damping performance at each time
step. Finally, the strengths of the method can be further highlighted in smart structures with
distributed or networked actuation and sensing, as the slow convergence of the 3rd mode
encountered in Figure 3.25 can be alleviated using sensors at high strain locations for each
mode. Estimates from different measurements can be used to enhance the overall adaptive
damping scheme without adding much complexity due to the method’s high efficiency.





Chapter 4

Discussion

The following sections discuss additional aspects of the adaptive damping scheme with the
aim of providing further insights into the method and motivating future developments.

4.1 Sensitivity Analysis and Parameter Selection

In Section 2.3, one of the desired properties of the method was to minimize the complexity
of parameter tuning. Although many parameters are used in the overall adaptive damping
scheme, steps were taken to significantly reduce the design burden by simplifying the
estimation problem to 1 estimated value per damped mode and implementing a variable
step size in the update equations to compensate for different tracking scenarios. The results
obtained in Sections 3.4 and 3.5 have shown that fixed values can be chosen for most
parameters in vastly different situations without a loss in performance.

Figure 4.1 shows the effects of different method parameters on the frequency estimates.
The following can be inferred from the figure:

• It is clear that the PPF parameters – the feedback gain and filter damping ratio used
to damp each mode – have negligible effects on the estimates. As a result, PPF filters
may be designed as usual without having to take the estimator into consideration.

• The estimates are slightly more sensitive to the pole radius r of the ANF as it defines
the notch bandwidth, leading to larger steady-state estimation bias at lower values of r
due to the wider notch. It was shown that a fixed value of r = 0.99 was sufficient for
many situations. An exception is the estimation of closely-spaced structural modes,
since choosing a suitable value of r can adjust the notch bandwidth to resolve closer
frequencies.



60 Discussion

Figure 4.1: Sensitivity analysis of the parameters used in the overall adaptive damping
scheme.

• Estimation sensitivity with respect to the parameter γ is almost negligible, but lower
values will cause larger steady-state estimation errors. A fixed value of γ = 0.97 was
sufficient for many situations. This value can be adjusted in cases where a particular
maximum steady-state error is desired [86], although r also influences this behavior
and its effects should be considered in tandem.

• The estimates are shown to be quite sensitive to the scaling factor κ , which is used to
scale the range of the variable step size. The estimation becomes slower with large
values of κ , and diverges with smaller values. This parameter effectively replaces the
fixed step size as the principal tuning parameter of the method. An update equation
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with normalization (Equation 3.13) can be used in cases where the nature of system
variations is known by setting a suitable value for the fixed step size. In more general
cases, the variable step size should be used but scaled to an appropriate range of
values using κ . Section 3.5 has shown that when modes of significantly different
magnitudes are adaptively damped, different scaling values should be used for each
mode. Otherwise, the estimates will converge at different rates. However, this is
not a significant issue in active damping applications since the controlled modes at a
given DOF are usually higher magnitude modes with a stronger influence on structural
vibrations. For example, Figure 3.25 shows that using the estimates of the first 2 modes
to damp a flexible beam significantly improves the settling time, despite having not yet
converged to the frequency of the 3rd mode which has a much lower magnitude. In
applications where damping lower magnitude modes is desired, rough knowledge of
the relative mode magnitudes can be used to tune the values of κ .

To summarize, the estimation behavior is robust to PPF tuning parameters, and the
parameters can be simply fixed at certain values without a loss in generality. One exception
is the scaling factor κ , which is the main tuning parameter of the method and must be chosen
appropriately.

4.2 Comparison with AR Estimation

A commonly used method to obtain system parameters for adaptive AVC applications is para-
metric system identification using recursive estimation of an AR model (see Section 2.2.2).
This method has been successfully used to estimate multiple structural mode frequencies
and damp the modes using PPF [48], and thus serves as a suitable point of reference for the
method developed in this thesis.

Figure 4.2 shows the estimation performance of both methods using a 3 DOF structure
damped with PPF and forced sinusoidally at the frequencies of its modes. This is an ideal
yet impractical case, and is only used for the purpose of comparison. Similarly to [48], the
forgetting factor of the recursive estimator is set to be 0.995, a value suitable for structural
identification. The main benefit of the recursive AR estimation method is its fast convergence
regardless of the initial conditions. In contrast, the rate of CANF convergence depends on
the initial guess provided, but this can be adjusted by tuning the update step size or κ if using
a variable step size.

Figure 4.3 compares the two methods when the same structure is excited by an impulse
disturbance to obtain its transient response. The performance of the AR estimation method
is significantly deteriorated in this case, with two slowly converging mode estimates, a
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Figure 4.2: Frequency estimation results comparing CANF to AR estimation using the
response of a damped structure with sinusoidal excitation of its modes.

Figure 4.3: Frequency estimation results comparing CANF to AR estimation using the
response of a damped structure excited with an impulse disturbance.
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diverging 3rd estimate, and overall divergence at the moment of the impulse disturbance.
This can possibly be improved by using a certain amplitude threshold for tuning the PPF
controller with the estimates, but convergence remains poor even after the initial period of
divergence. In the figure, the AR estimates begin to converge towards the 2nd and 3rd mode
frequencies at 200 Hz and 300 Hz, but as the response becomes mainly dominated by the
frequency of the first mode at 100 Hz, both estimates start decreasing. A main advantage
of using CANF is that once a mode is tracked by one ANF, it becomes decoupled from the
other ANFs which efficiently start to estimate other modes.

Another disadvantage of AR estimation compared to CANF is its poor performance when
using noisy measurements for estimation. Figure 4.4 compares between the two methods
when white noise is present in the measurement. The noise power used is 1×10−8, which
is significantly lower than the noise power tolerated by CANF (see Figure 3.20). Note that
despite directly exciting the modes with sinusoidal disturbances and the added noise, the AR
method fails to estimate the frequencies.

Figure 4.4: Frequency estimation results comparing CANF to AR in the presence of low
power measurement noise.

In addition, recursive AR estimation is computationally more complex and requires
pre-filtering or root-finding in order to decouple the poles of the estimated system and extract
the modal frequencies [66]. When it comes to modal frequency estimation, CANFs therefore
provide many advantages over conventional real time system identification.
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4.3 Extension to Other AVC Methods

The generality of the developed method allows it to be applied in combination with other
AVC methods that require accurate modal frequency estimates to provide sufficient damping.
Here, negative derivative feedback (NDF) is used for validation. NDF feeds back a structural
velocity signal through a bandpass filter tuned to the frequency of the mode to be damped
[38]. It can also be extended to the multimodal damping case by using multiple bandpass
filters in parallel, each tuned to a target mode.

The following figures show the time and frequency domain damping performance when
using CANF estimates to tune an NDF controller with the same estimator parameters as
those used in the PPF case. The results show that the CANF estimates are successfully used
to damp the modes of the structure, but with substantial steady state estimation errors of the
higher frequency modes. The reason for this is that the damping performance of NDF is
quite robust and can sufficiently damp modes with inexactly tuned filters, leading to a quickly
decaying response even when the estimates have not yet accurately converged. As a result,
the estimates do not converge by the time the response has mostly settled. Nevertheless, there
is a need for tracking frequency variations in which the controller loses robustness, as shown
by the figure. All 3 modes are generally tracked and active damping is maintained.

(a) Time domain performance.
(b) Frequency domain performance before and
after convergence.

Figure 4.5: Adaptive damping results using CANF with NDF.



Chapter 5

Conclusion and Recommendations

In this thesis, an adaptive damping scheme was developed to suppress multiple structural
modes. A clear motivation was first established for active damping in general and adaptive
damping in particular. The underlying issue of concern was the suppression of undesired
vibrations to achieve the desired system performance. An adaptive approach was considered
to ensure that the vibration controller achieves sufficient damping regardless of system
variations and uncertainties.

A comprehensive background and literature review was conducted to identify different
vibration suppression methods with a focus on active damping. Collocated PPF control was
chosen as the basis of this research due to its properties. Mainly, the simple filter adjustment
law, the reliance on only one estimation parameter per damped mode, its robust stability, and
its effective performance all make PPF a method that complements adaptive schemes well.
Adaptive methods used in AVC were also investigated, and their strengths and weaknesses
were discussed. This led to the identification of a research gap in the use of ANFs for AVC
applications, which provide direct modal frequency estimates without requiring extraneous
parameter estimation or excessive computations.

An overall adaptive scheme was then developed using PPFs in parallel for multimodal
damping and ANFs in a cascade structure for multimodal frequency estimation. A variable
step size was also used in the ANF update equation to account for different mode and
disturbance magnitudes, and ensure quick convergence of estimates regardless of the rate
of change of modal frequencies. The method was then validated using simulations and
experimental results. It was able to provide the desired estimation and damping performance
quickly and accurately for up to 3 modes. This was shown for a number of scenarios,
including the adjustment of incorrectly tuned filters from various initial estimates and tracking
different variations in frequency. The method was also able to provide quick and accurate
estimates and damp prominent modes given extremely brief transient signals from pulse
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excitations of a flexible beam. Additional benefits of the method include its insensitivity to
noise and computational efficiency.

A cascade structure of adaptive notch filter was used in this thesis to achieve effective
multimodal tracking for adaptive damping purposes. The ANF concept can be explored
further through various structures (e.g., parallel and lattice layouts) and update algorithms
(e.g., RLS) if potential improvements can be made. In addition to the use of a variable step
size, different estimator parameters may also be adapted to achieve better performance. An
example of this is to adapt the notch pole radius r, starting with a large notch bandwidth
for quick initial convergence, and decreasing the bandwidth as the estimate converges to
minimize steady-state error. Similarly, adapting the notch bandwidth according to the
estimated frequency distance between the modes can be used to obtain higher resolution
estimates of closely-spaced modes. The proposed method has one tuning parameter (κ) used
to achieve effective estimation by scaling the range of the variable step size used in the notch
update. An improved variable step size algorithm that also takes the relative mode magnitudes
into account would serve to further automate the method by effectively eliminating the need
for manual parameter selection.

There is potential in using CANF with other modal vibration control methods such as
negative position feedback and acceleration feedback. This was shown in Section 4.3 using
NDF. Different methods may be used depending on the application, required robustness,
tolerated spillover, and the types of actuators and sensors used. Implementation in PPF
and other AVC methods can also be extended by using the estimates in real-time control
optimization algorithms to maximize the performance at each time step. In addition, the
method can be implemented in smart structures using distributed and networked actuation
and sensing [87]. Doing so can improve the estimates by measuring the structural response at
the locations of highest strain energy for each mode. This could avoid the issue encountered
in Figure 3.25, where only one collocated actuator-sensor pair was used and estimation of the
3rd mode was relatively slow due to its low magnitude at that particular location. A single
ANF or a cascade of several ANFs can be used per sensor signal, and the distributed estimates
can be processed to obtain more reliable estimation and better adaptive damping performance.
For further validation, additional experimental testing is required using structures with
distributed actuation and sensing as well as time-varying parameters.

There are also numerous estimation methods that are potentially applicable for adaptive
damping and may be explored in future research on the topic. For example, certain modal
parameter identification methods can algebraically estimate natural frequencies and damping
ratios of a mechanical system with multiple DOFs using a position measurement [88, 89].
Another example is the Hilbert-Huang transform, a non-parametric method that can be used
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to identify time-varying vibrating systems and obtain instantaneous frequencies [90]. It
is also capable of analyzing nonlinear data, and its performance has been investigated in
analyzing seismic dynamics [91] and monitoring structural health [92]. The method could be
promising for analyzing nonlinearities in structures and piezoelectric materials, building on
the use of the Hilbert transform for modal analysis and detecting nonlinearities [93, 89]. Two
frequency estimation methods not discussed in the main contents of the report, the wavelet
transform and the phase locked loop, are discussed in Appendix A.

Overall, the adaptive damping scheme meets the criteria and desired properties listed
in Section 2.3. There is great potential for implementing the developed method in practi-
cal applications, particularly in motion control systems with flexible elements and smart
structures.
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Appendix A

Frequency Estimation Methods

A.1 Parametric System Identification

The least-squares regression analysis method can be used effectively for parameter estimation
if the system model is linear in its parameters. The regression model is:

ŷ(i) = φ1(i)θ1 +φ2(i)θ2 + ...+φn(i)θn = φ
T (i)θ (A.1)

where y is the measured variable, θ are the model parameters to be determined, and φ

are regressors, which are known functions that may depend on other known variables. Note
that the regressors used in the model should be appropriately chosen to prevent underfitting
or overfitting of data. The model is indexed by i which represents discrete time. Parameters
are estimated by determining the values that minimize the difference between the measured
output and the estimated output (computed using Equation A.1). The cost function to be
minimized is:

V (θ , t) =
1
2

t

∑
i=1

(y(i)−φ
T (i)θ)2 =

1
2

ET E (A.2)

where the term inside the brackets is the squared residual (error) between the estimated
and the measured output. If ΦT Φ is nonsingular, the solution to the least squares problem is
given by:

θ̂ = (ΦT
Φ)−1

Φ
TY = P(t)ΦTY (A.3)

where Φ =
[
φ T (1) φ T (2) ... φ T (t)

]T
and Y =

[
y(1) y(2) ... y(t)

]T
.

For adaptive control purposes, the estimation can be done recursively (RLS) by using the
estimate at the previous time step to predict the next estimate:
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θ̂(t) = θ̂(t −1)+K(t)ε(t) (A.4)

where K(t) is related to the regressors and ε(t) = y(t)− φ T (t)θ̂(t − 1) is the error in
predicting the signal y(t) one step ahead based on the estimate θ̂(t − 1). This gives an
intuitive estimate update as it depends on the previous estimate plus a correction term related
to the error.

If the parameters are time-varying, several methods can be used to enhance estimation
depending on the nature of the variation. If the parameters change suddenly, P(t) from
Equation A.3 can be periodically reset to αI where α is a large multiplier and I is the identity
matrix. This causes K(t), which describes the step size in Equation A.4, to become large in
order to adapt to abrupt changes in the system. If the parameters change slowly over time, a
forgetting factor λ may be used to weigh the relative importance between past and present
errors. The cost function in this case is:

V (θ , t) =
1
2

t

∑
i=1

λ
t−ie2(i)(y(i)−φ

T (i)θ)2 (A.5)

where λ is between 0 and 1. When λ is 1, all previous errors are equally considered. As
λ approaches 0, past errors play a smaller role. A smaller value makes the algorithm more
adaptable to changes, but more sensitive to noise as well.

To summarize, RLS is an adaptive filter algorithm used to recursively determine the filter
coefficients that minimize a cost function such as the one given in Equation A.5. This concept
can be used to identify systems in real time. A linear dynamical system can be represented
as an auto regressive moving average (ARMA) model:

H(z−1) =
B(z−1)

A(z−1)
=

b1z−1 +b2z−2 + ...b2pz−2p

1+a1z−1 +a2z−2 + ...+a2pz−2p (A.6)

where A(z−1) describes the AR part, B(z−1) describes the MA part, and p is the number
of modes to be estimated. Since the denominator contains information about the natural
frequencies, estimation of only the AR part is required. This can be restructured into the
form given by Equation A.1 by defining the regressor φ(i) and estimated parameter vector
θ(i) as:

φ(i) =
[
−y(i−1) −y(i−2) ... −y(i−2p)

]T
(A.7)

θ(i) =
[
a1(i) a2(i) ... a2p(i)

]T
(A.8)
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Then an RLS adaptive filter is implemented to find the parameters that minimize Equation
A.5. Note that this only utilizes the output measurement y, which is suitable for the active
damping problem where no disturbance information is available. The model order must be set
in advance, and simple inputs like step inputs may not be enough for accurate identification.
In order to obtain the p natural frequencies from the resulting characteristic equation A(z−1),
it must be decoupled into second order equations. This can be done numerically with a
root-finding algorithm.

A(z−1) = 1+a1z−1 +a2z−2 + ...+a2pz−2p = z−2p
p

∏
k=1

(z2 + pkz+qk) (A.9)

An alternative method to root-finding is to pre-filter the structure’s output signal y to
decouple it into different modal components before using it in the estimation block. Each
component of the separated signal can then be used to estimate individual second-order
models corresponding to different modes, and the mode frequencies can be obtained analyt-
ically instead of numerically [79]. Regardless of the approach used, the estimated natural
frequencies can then be obtained from the decoupled characteristic equation coefficients:

ω̂(k) =
1
Ts

cos−1(−pk/2
√

qk) (A.10)

A.2 Phase Locked Loop

A phase locked loop (PLL) generates an output signal with a frequency equal or related to
the frequency of the input signal. More precisely, the PLL controls the phase of its output
signal in such a way that the phase error between the signals reduces to a minimum. Keeping
the input and output phase in lock results in equal input and output signal frequencies.

Figure A.1: Phase locked loop block diagram [94].

The components of a basic PLL are:
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• Phase detector. Compares the output frequency with a reference frequency and
generates an error signal. This is usually a multiplier which outputs two components:

ViVo = Aisin(ωit +φi)×Aosin(ωot +φo) =

AiAo

2
[cos((ωi −ωo)t +φi −φo)− cos((ωi +ωo)t +φi +φo)]

(A.11)

The first component is a low frequency oscillating term proportional to the angular
(ωt +φ ) difference between the signals, and the second component is a high frequency
oscillating term. In digital implementations of the PLL, a phase frequency detector
can be used for the same purpose [94].

• Loop filter. This is usually a low pass filter that eliminates the high frequency com-
ponent generated by the phase detector in Equation A.11. This leaves the component
proportional to the angular difference between the signals. In the case where ωi = ωo,
this term becomes a DC offset proportional to the phase difference.

• Voltage controlled oscillator (VCO). The VCO produces an output whose instanta-
neous frequency depends on the input voltage (which is proportional to the angular
difference). The VCO increases the output frequency if there is a positive angular
difference and decreases the frequency if there is a negative angular difference between
the signal. When the loop is just turned on, the VCO outputs a predetermined center
frequency (called the free-running or quiescent frequency).

By feeding back the VCO output to the phase detector, the phase error tends to drive the
PLL into a steady state locked condition with zero frequency error and finite phase error. The
VCO eventually outputs a frequency that is equal to the reference frequency.

PLLs can be treated like any feedback loop, where different component parameters define
the transient response, bandwidth, and steady-state error in the output. There are also two
additional properties of importance:

• Lock range. This is the range of input frequencies over which the loop remains in the
lock condition once it has captured the input signal. This depends on the VCO gain.

• Capture range. This is the range of input frequencies around the VCO center fre-
quency onto which the loop can lock when starting from the unlocked condition. If
the reference frequency is outside the capture range then the PLL can’t lock to it. This
range is usually smaller than the lock range and depends on the low pass filter’s cut-off
frequency.
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With PLLs, some knowledge about the frequency content must be known a priori in order
to set suitable values for the capture range and lock range, and the various components (loop
filter, VCO) must be tuned accordingly.

PLL in AVC:

• Algrain et al. [95] track the frequencies of periodic disturbances with a PLL and use
the estimates to tune an analog bandpass filter for disturbance attenuation. It is possible
to extend this method for tracking multiple frequency components using multiple PLLs
and bandpass filters, but some knowledge of each component’s frequency range must
be known beforehand.

• Leo and Griffin [32] use a PLL to identify the frequency of a single structural mode
during transient vibrations. The PLL is able to track changes in the frequency of a
mode within a small variation range. The estimate is then used to tune a PPF filter for
controlling a flexible beam.

• McEver and Leo [96] further test the PLL and PPF combination in the case of broad-
band excitations, showing that the Signal to Noise Ratio (SNR) determines whether the
PLL will lock onto the target frequency or not. Since the presence of higher frequency
modes with large amplitudes reduces the SNR when tracking a single frequency, the
PLL fails to lock onto the target mode.

In conclusion, the PLL is effective at tracking a signal’s frequency and locking onto it
as it varies, as long as the signal remains within the lock range and the SNR is not too low.
This makes it a simple and recommended method for tracking a single dominant mode of a
structure. However, it cannot be used to track multiple modes without additional PLLs and
filtering (e.g., modal filters). In addition, there are many parameters to assign that demand
partial knowledge of the frequency range of the signal, which might not always be available.

A.3 Short-Time Fourier Transform

The Fourier transform cannot be used for real-time frequency estimation of non-stationary
signals because it does not provide temporal information about the frequency components.
Time-frequency analysis methods were thus developed to overcome this issue. This class of
methods constitute a non-parametric approach for identifying systems using their frequency
spectra.

The short-time Fourier transform (STFT) considers small portions of the non-stationary
signal as stationary. The fast Fourier transform (FFT) is then performed on each stationary
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portion along the signal to obtain its frequency spectrum as a function of time. To do this,
a window function of fixed length is moved along the signal from start to end and an FFT
is taken at each stationary section. The window function is zero-valued outside its given
interval. When the waveform is multiplied by the window function, the overlap between
them is included while the rest of the signal is not considered.

The STFT equation is shown below. It includes the window function w(t − τ) and a
translation parameter τ which translates the window through time. Compared to the regular
Fourier transform, the only new component is the window function. This gives the desired
time localization property and the transform becomes a function of both frequency and time.

F(τ,ω) =
∫ +∞

−∞

f (t)w(t − τ)e−iωtdt (A.12)

Figure A.2a shows a periodic signal that changes in frequency from 10 Hz to 50 Hz then
back to 10 Hz. The STFT method divides it into portions denoted by the red dashed lines,
such that the frequency estimated from each portion is constant. Figure A.2b shows the STFT
spectrogram of the signal, which gives the frequency spectrum as it varies with time. After
obtaining the spectrum, an algorithm such as peak picking can be used to obtain the mode
frequencies.

(a) Signal. (b) STFT spectrogram.

Figure A.2: STFT spectrogram of a periodic signal with time-varying frequency.

The Gabor limit, based on the Heisenberg uncertainty principle, shows that localization
in both time and frequency cannot be achieved, and that one resolution comes at the cost of
the other:

∆t∆ f ≥ 1
4π

(A.13)

The choice of window function depends on the desired frequency resolution (ability to
resolve similar frequencies), dynamic range (ability to resolve dissimilar amplitudes), and
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sensitivity to noise. Windows that balance between these properties include the Hann and
Hamming windows.

FFT methods have a computational complexity of the order O(Nlog(N)). There are
several improvements on the FFT method that increase the accuracy of the estimate and can
separate sinusoids more closely spaced than the resolution limit (superresolution), but these
also increase the computational cost [78].

A.4 Wavelet Transform

It is not possible to know which frequencies exist at different time instances as shown by
Equation A.13, but it is possible to know which frequency bands exist at different time
intervals. Low frequency components have long time periods, so a good frequency resolution
(poor time resolution) should be used. High frequency components appear as short bursts,
necessitating a good time resolution (poor frequency resolution).

The wavelet transform (WT) uses this principle to overcome the limitations of STFT
by analyzing a signal with different frequencies at different resolutions. This is known
as multiresolution analysis. It offers simultaneous localization in the time and frequency
domains. Figure A.3 compares between the temporal and spectral resolutions of STFT and
WT. In STFT, the resolution is fixed in size, so it is not possible to enhance the estimation
based on the signal frequencies. In WT, as the frequency increases, the time resolution is
improved.

Figure A.3: STFT and WT resolution grids.
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The basis functions used in the Fourier transform are sines and cosines. In WT, wavelets
are used as both the basis functions and act as window functions. An example of a wavelet is
the Morlet wavelet shown in Figure A.4.

Figure A.4: Morlet wavelet.

The continuous wavelet transform (CWT) replaces the exponential term in FT by a
wavelet ψ(t).

F(τ,s) =
1√
|s|

∫ +∞

−∞

f (t)ψ∗
(

t − τ

s

)
dt (A.14)

where s is the inverse of frequency, and is used to change the width of the wavelet and its
central frequency as it passes across a signal (scaling). This gives WT its multiresolution
property as it is able to resolve both high and low frequency components with good resolution.
Expanded wavelets can better resolve low frequency components, while shrunken wavelets
are better for resolving high frequency components.

Figure A.5: Wavelet scaling.

All the windows used are thus dilated, compressed, shifted versions of the mother wavelet
ψ(t). The scaled wavelets are each multiplied by the signal to obtain a spectrogram relating
frequency, time, and amplitude. Calculating wavelet coefficients at every possible scale
produces a lot of data. If s and τ are chosen to be discrete then the WT will generate less
data. If they are based on powers of 2 (dyadic), then analysis becomes much more efficient
and accurate.

WT offers the following advantages over STFT:
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• Faster computation than the Fourier transform. The computational complexity is O(N).

• Simultaneous localization in time and frequency domains.

• Can separate finer details in a signal.

One disadvantage is that the choice of wavelet basis function affects the estimation
performance, as it must closely match the data. In general, WT works very well when
analyzing known non-sinusoidal shapes such as heartbeats.

Tan et al. [97] propose a method that improves the time period for modal identification
with CWT. This is done by correcting the results with a pattern search error minimization
algorithm. The resulting method can obtain accurate estimates of the frequency, damping
ratio, amplitude, and phase of multiple highly damped and closely spaced modes, and requires
shorter sampling periods than the classical CWT method. The proposed method was applied
experimentally on an optical vibration isolation platform with 2 modes separated only by 1
Hz. The improved method reduces the sampling time by 70% while maintaining accurate
estimates.

Klepka and Uhl [98] use CWT to separate signals into their components for easier system
identification with RLS. The CWT bandwidth is updated according to the RLS frequency
estimates. The decoupled second-order equations are then used to analytically determine the
parameters (as opposed to [48], which uses RLS and a numerical root-finding algorithm to
decouple the equations).

WT methods have seen little, if any, implementation in AVC. Relevant cases include the
use of WT in simulations to estimate mode frequencies and tune adaptive notch filters [99],
as well as implementation of WT in FxLMS-based ANC [100].





Appendix B

Experimental Setup

The experimental setup used to test the adaptive damping method consists of a flexible beam
with piezoelectric transducers. The various components are shown and labeled in Figure
3.22, and a block diagram of the overall control system is shown in Figure 3.23.

B.1 Cantilever Beam

The structure used for damping is a cantilever aluminium beam that is oriented vertically and
clamped at one end (see Figure 3.21). Due to its flexibility, the beam exhibits multiple lightly
damped resonance modes in a suitable frequency range for testing the adaptive method. The
parameters of the beam are given by Table 3.2.

B.2 Piezoelectric Transducers

For active damping control, P-876.A12 DuraAct patch transducers are used for both actuation
and sensing, with actuator-sensor pairs situated in collocated layouts at opposite sides of the
beam. For the experimental tests in this thesis, the collocated pair near the base of the beam
was used. A patch consists of a piezoceramic plate, electrodes, and a polymer coating that
provides electrical insulation and mechanical preload. The patches are attached to the beam
using epoxy glue, and have soldering points for voltage connections. Table B.1 summarizes
the specifications of the patch transducers.

In addition, a PiezoDrive SA050520 piezoelectric stack actuator, as shown in Figure
B.1, is used to generate disturbances at the base of the beam, including pulse disturbances
for generating transient structural responses. The specifications of the stack actuator are
provided in Table B.2.
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Table B.1: Piezoelectric patch transducer specifications.

Specification Value

Dimensions (mm × mm × mm) 61×35×0.5
Operating voltage range (V) -100 to 400
Min. lateral contraction (µm/m) 650
Rel. lateral contraction (µm/m/V) 1.3
Blocking force (N) 265
Min. bending radius (mm) 20
Capacitance (nF) 90 ± 20%
Piezoceramic height (µm) 200

Figure B.1: Beam clamp and piezoelectric stack actuator.

Table B.2: Piezoelectric stack actuator specifications.

Specification Value

Length (mm) 20
Cross section (mm × mm) 5×5
Operating voltage range (V) -30 to 150
Range (µm) 31 ± 10%
Blocking force (N) 900
Capacitance (µF) 1.8 ± 20%
Resonance frequency (kHz) 74 kHz

Special care must be taken when using piezoelectric stack actuators. High tensile loads,
unequally distributed and off-axis loads, bending moments, and torque should all be avoided.
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In this setup, a ball end is attached to the end of the stack interfacing with the beam to
improve the loading conditions. The stack actuator should also be preloaded, particularly if
it is used in tensile operation. This is achieved in this case by tightening a screw against the
stack.

B.3 Amplifiers

B.3.1 Actuator Drivers

PiezoDrive BD-300 amplifiers (shown in Figure B.2) were used to obtain the high voltage
signals required to drive the piezoelectric patch and stack actuators. The specifications of the
amplifier are shown in Table B.3.

Figure B.2: BD-300 amplifiers.

Table B.3: BD-300 amplifier specifications.

Specification Value

Supply voltage (V) 12-30
Input voltage range (V) 0-3
Input impedance (kΩ) 5-10
Output voltage (V) 300
Differential output (V) ± 300
Gain 101
Peak current (mA) 50
RMS current (mA) 11
Small signal bandwidth (kHz) 20
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Figure B.3 shows the wiring diagram of the amplifier for driving a piezoelectric patch
bender. The same configuration is used to drive the stack actuator as well. A 0-3 V input can
be used to provide a ± 300 V output range, with a 1.5 V input corresponding to a 0 V output.
Note that both actuators must be driven using their provided operating voltage ranges, which
are both well within the amplifier output range.

Figure B.3: BD-300 wiring diagram for a piezoelectric bender [101].

B.3.2 Charge Amplifier

A simple charge amplifier circuit was also used to condition the measurement signal of
the piezoelectric patch sensor. The main function is to produce a suitable voltage output
proportional to the charge of the sensor by integrating the generated current. The charge
amplifier circuit is beneficial in this experimental setup for a variety of reasons:

• It enables quasi-static measurements and generally improves low frequency measure-
ments.

• The amplifier gain is determined by a feedback capacitor. As a result, scaling the
measurement is simplified for testing purposes, which is important for data acquisition
purposes as discussed in Sections B.4 and B.6.

• Components with capacitance parallel to the sensor (e.g., cables) can introduce distur-
bances. The charge amplifier negates this effect.

• Measurement drift is prevented. In contrast, drift was observed in the absence of signal
conditioning circuitry.
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A circuit diagram of the charge amplifier is shown in Figure B.4. An operational amplifier
(OP497) is used with a feedback capacitor (C f ) for integration. A feedback resistor (R f ) in
parallel with the capacitor provides a discharge path to prevent saturation. In addition, an
input resistor (Ri) is used to protect against electrostatic discharge. Table B.4 presents the
circuit parameters used in this thesis.

Figure B.4: Charge amplifier circuit [102].

Table B.4: Charge amplifier specifications.

Specification Value

Supply voltage (V) ± 10
Feedback resistance R f (MΩ) 1
Feedback capacitance C f (nF) 82
Input resistance Ri (Ω) 100

The transfer function between the charge of the sensor and the amplifier voltage output
is:

Vo

Q
=−

R f s
(R fC f s+1)(Ri(Cp +Cc)s+1)

(B.1)

The two poles of the transfer function are ω1 = 1/R fC f and ω2 = 1/Ri(Cc +Cp), and
the gain at the flat frequency band is determined by 1/C f . The Bode plot is shown in Figure
B.5. The lower cutoff frequency is around 2 Hz and the flat region gain was selected to
appropriately scale the measurement signal for the data acquisition system described in
Section B.4. The effects of the charge amplifier on the collocated beam transfer function are
shown in Section B.6.
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Figure B.5: Bode plot of the charge amplifier transfer function.

B.4 Microcontroller

The Texas Instruments C2000 Delfino MCU F28379D LaunchPad™ is used to implement the
control method. It is an evaluation and development tool with a TMS320F28379D MCU and
80 pin connections. The MCU offers 200 MHz dual-core 32-bit CPUs with single-precision
floating point, trigonometric, and complex math units, as well as two programmable control
law accelerators which execute code independently of the CPUs. The MCU also provides 1
MB of flash memory, 16-bit or 12-bit ADCs, comparators, 12-bit DACs, and numerous other
features and additional components for extending its functionality. The development board
provides connections to 4 ADCs, 2 DACs, and various digital pins.

The experimental setup utilizes the 2 available 12-bit DACs to send the control and
disturbance signals for amplification and actuation with the piezoelectric patch and stack
actuators. In addition, one 16-bit ADC module with differential inputs is used to convert
the piezoelectric sensor measurements fed through the charge amplifier. The differential
input type uses 2 pins of a single ADC module to measure a differential signal, making it
suitable for piezoelectric sensor measurements. The input voltage to each pin of the ADC
must remain within 0-3 V, and should therefore be scaled using the feedback capacitance of
the charge amplifier. Ideally, the full scale voltage range of the ADC should be utilized to
maximize usage of the available resolution. At the same time, the ADC input signal should
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Figure B.6: F28379D development board.

be saturated at a certain voltage (e.g., by using a Zener diode) to prevent unintended ADC or
MCU damage.

Compared to conventional data acquisition, monitoring, and control applications like the
CompactRIO from NI, the TI Launchpad provides several advantages:

• It is a low-cost and portable testing tool.

• Code for the MCU can be generated using Matlab and Simulink embedded coder
packages, making it incredibly easy to convert simulations from Simulink into code
used for experimental testing with only slight modifications. An additional benefit is
the availability of a vast amount of Matlab libraries, packages, and Simulink blocks that
significantly simplify code generation for complex methods. Note that these functions
and blocks should operate in discrete time.

• Monitoring and acquiring experimental data can be done simply through Simulink
output blocks, or more preferably, the Data Inspector tool.

• Building and uploading code to the MCU is quite fast, which can be useful if the
experiment requires many test runs with code adjustments in between.

• The MCU has numerous features which were not explored in this thesis, including the
control law accelerators, enhanced pulse width modulation, and real-time parameter
tuning.

Disadvantages of using the Launchpad and similar kits include:

• Low number of ADCs and DACs for I/O interfacing. Experiments that require many
sensors can be implemented in a limited manner using sequential ADC inputs.
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• Relatively limited input voltage range. Signal conditioning is thus required to prevent
damages to the ADC and controller.

• Possibly insufficient processing speed for computationally complex applications.

In conclusion, the choice of hardware for control testing mostly depends on the compu-
tational and I/O requirements of the method, as well as personal preferences in regard to
flexibility, portability, and the software used for code generation and monitoring (unless the
code is manually written ).

B.5 Code Generation and Monitoring with Simulink

This section serves as a basic guide for using the Simulink Embedded Coder Support Package
for Texas Instruments C2000 processors. MathWorks documentation for setting up and using
the package is readily available. The primary goal of this section is to use thesis examples to
show the basic process and provide practical tips.

Once the packages are installed, the Simulink blocks used to interface with the controller
should be available to use. The first step is to apply model and hardware settings using the
’Configuration Parameters’ menu. This can be accessed from the main Simulink window by
going to the ’Modeling’ tab and selecting ’Model Settings’. In ’Configuration Parameters’,
under the ’Solver’ tab, a fixed step size should be used with a suitable sample time and a
discrete solver. The start and stop times of the test can also be set in this tab. Note that in
some cases, monitoring may start late in the test run after the code is uploaded to the board,
in which case a delay in the start time can be useful.

Figure B.7: Simulink solver settings for MCU code generation.

In the ’Configuration Parameters’ menu, select the ’Hardware Implementation’ tab. Here,
the appropriate type of board should be selected. Under ’Hardware board settings’, in the
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’Build options’ group, the ’Boot from flash’ option should be checked in case the default
memory provided by the MCU is not enough for the application. Next, go to the ’External
mode’ group and select the ’serial (using xcp)’ communication interface. This enables data
logging and monitoring with Simulink using the Data Inspector tool, which can also be used
to export data to Matlab for processing.

Figure B.8: Simulink hardware implementation settings for MCU code generation.

The model shown in Figure B.9 is a simple example of using a general purpose input/out-
put (GPIO) pin. This was used to turn an LED on at the 8 second mark using a digital clock
and a conditional switch. Note that in general, all blocks should operate in discrete time
and as continuous alternatives will not be accepted by the code generator. Another thing
to consider is to set all generated signal data types to ’single’ in the ’Signal Attributes’ tab
found in the ’Block Parameters’ menu for each block. since the processor operates with
single precision. This has to be done for source blocks but not other blocks as they inherit
the data type by default. An easy way to debug data types is by going to ’Debug’ tab in
the main Simulink window and selecting ’Base Data Types’ under ’Information Overlays’.
Finally, after connecting the LED to a GPIO pin on the board and ground, and selecting the
corresponding GPIO number in the GPIOx block parameters menu, you can run the model by
going to the ’Hardware’ tab in the main Simulink window and selecting ’Monitor & Tune’.
After the code has finished building and uploading, the LED should hopefully turn on after 8
seconds.

Next, Simulink implementation of the adaptive damping method for code generation is
shown in Figure B.10. This is in many ways similar to the adaptive control loop shown in
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Figure B.9: Basic LED Simulink model.

Figure 2.13. Here, only 3 blocks are used to interface with the controller: 1 ADC block and
2 DAC blocks.

Figure B.10: Adaptive damping Simulink model.

In the top block group, a discrete disturbance signal is generated, converted to single
data type, and multiplied by a gain value with Vin representing the desired input voltage to
the stack actuator and ga representing the amplifier gain. The disturbance signal d is then
logged by clicking on the signal path, selecting the ’Signal’ tab from the main toolbar, and
selecting ’Log Signals’. Logged signals can be monitored using the Data Inspector under
the ’Hardware’ tab. The disturbance is then offset by 1.5 V to ensure that a 0 V disturbance
yields a 0 V amplifier output, and finally the disturbance voltage Vd is converted to bits. For
the 12-bit DAC, this is done with the following equation:

bd =Vd
b12

Vmax
=Vd

212 bits
3 V

(B.2)
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In the bottom block group, the same process is repeated for the control force signal
sent from the PPF controller to the other DAC. Through the block parameters menu, the
appropriate DAC channel can be selected corresponding to the pin connections. The DACs
can also be forced to saturate on input overflow in case the input exceeds 3 V, which is
definitely a safer option.

A 16-bit ADC with differential inputs is used to convert the conditioned sensor signal.
The ADC module, resolution, sampling time, and input channels corresponding to the pin
connections are all set inside the block parameters menu of the ADC. The measurements in
bits are converted to volts and an offset is applied similarly to the DAC signals. The -1 gain
is only required here because the sensor to ADC connections were physically flipped. The
output measurement is then available for estimation and control.

Another important consideration is the implementation of discrete adaptive filters for PPF.
A discrete time varying transfer function Simulink block can be used for this purpose with
coefficient inputs obtained using the bilinear (Tusin) transform with a sampling period ts:

s =
2
ts

z−1
z+1

(B.3)

For the continuous second-order low pass filter used in PPF:

L(s) =
ω2

f

s2 +2ω f ζ f s+ω2
f

(B.4)

The discretized transfer function using Equation B.3 is:

L(z) =

ω2
f t2

s

ω2
f t2

s +4+4ω f ζ f ts
(1+2z−1 + z−2)

1+(
2ω2

f t2
s −8

ω2t2
s +4+4ω f ζ f ts

)z−1 +(
ω2

f t2
s +4−4ω f ζ f t

ω2
f t2

s +4+4ω f ζ f ts
)z−2

(B.5)

Figure B.11 shows the contents of the ’Adaptive PPF’ block from Figure B.10. Figure
B.11a shows the Simulink model of 3 PPF filters in parallel for damping 3 modes, and
Figure B.11b shows the block diagram of a single adaptive PPF filter in discrete form. The
coefficient inputs are given by Equation B.5 using the CANF frequency estimates to set the
filter cutoff frequency.

Figure B.12 shows the contents of the ’CANF’ estimation block from Figure B.10. This
consists of the cascaded notch filter structure and an update block. Figure B.13 shows
the bandpass and sensitivity filter structures used in the CANF. Similarly to the adaptive
PPF case, these filters could be implemented using discrete time varying transfer function
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(a) Parallel PPF filters. (b) Adaptive PPF filter.

Figure B.11: Adaptive PPF Simulink models.

Simulink blocks, but direct implementation of the form given by Kwan and Martin [84] is
preferred for consistency.

Figure B.12: CANF Simulink model.

(a) Bandpass filter. (b) Sensitivity filter.

Figure B.13: CANF adaptive filter Simulink models.

Lastly, Figure B.14 shows the contents of the CANF update block which implements the
update algorithm. A single update block diagram is shown here, but this is easily extended to
the case of estimating multiple mode frequencies by adding an identical structure for each
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frequency with its own parameters. The variable step size algorithm implementation is shown
in Figure B.15.

Figure B.14: ANF update Simulink model.

Figure B.15: ANF VSS Simulink model.

B.6 System Identification

With the experimental setup completed and the required code generated by Simulink, the
beam with collocated piezoelectric transducers was identified. This was done using a chirp
signal input with a frequency range that includes the modes to be damped. Note that the
starting chirp frequency should be set at a reasonable value (e.g., 1 Hz), as lower values will
require significantly more time for identification and should only be used if necessary.
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Figure B.16 shows the identified frequency response of the system with different cases of
signal conditioning. The frequency domain identification without any signal conditioning is
as expected from the collocated system, although the gain should be adjusted to fit the ADC
and DAC voltage range. The low frequency measurement is sufficient without using a charge
amplifier, possibly because the ADC uses a switched capacitor input circuit. However, the
time domain signal exhibits bias which also varies with time. A voltage amplifier circuit can
be used to scale the gain and fix the time domain signal, although this significantly affects
low frequency measurements and their coherence. Using the charge amplifier achieves good
results in both time and frequency domains.

Figure B.16: Frequency and time response of the system with different cases of signal
conditioning.

Figure B.17 shows the frequency response of the beam using the piezoelectric patch
for sensing in two actuation cases. Patch actuation and sensing provides the expected
collocated response, while piezoelectric stack actuation at the base of the beam gives a
non-collocated response. It can also be seen that higher frequency modes are excited less by
stack disturbances due to the negative slope in magnitude, which further explains the results
in Figure 3.25 since the excitation and detection of the 3rd mode are relatively diminished
compared to the first 2 modes.
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Figure B.17: Frequency response of the beam with different actuation points.





Appendix C

Code

C.1 Simulating Time-Varying Structures

The ’Varying Transfer Function’ Simulink block from the Control System toolbox was used
to simulate structures with time-varying mode frequencies. To obtain a transfer function with
the form given by Equation 2.3, a sum of multiple 2nd order blocks were used. The Matlab
script for generating the transfer function coefficients is given below:

1 % Manually set these parameters

2 Tf = 4; % Simulation time (s)

3 fs = 5000; % Sampling frequency (Hz)

4 k = 3; % Number of modes

5 % Mode damping ratios

6 z = [0.005, 0.005, 0.005];

7 % Mode frequency vector (see freqgen function)

8 w = 2*pi*[25, 50, 75, 150, 200, 250];

9 % Type of frequency variation (see freqgen function)

10 wtype = 'gradual';

11

12

13 ts = 1/fs; % Sampling time (s)

14 L = Tf*fs; % Length of signal

15 t = (0:L-1)'*ts; % Time vector

16

17 % Time series of the mode frequencies and time varying TF coefficients

18 wn = freqgen(w,L,wtype);

19 for i = 1:k

20 wa(i) = timeseries(wn(:,i),t);

21 b0(i) = timeseries(0.02*wn(:,i).^2,t);
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22 a0(i) = timeseries(wn(:,i).^2,t);

23 a1(i) = timeseries(2*z(i).*wn(:,i),t);

24 end

The function freqgen is shown below with instructions in the comments:

1 function wn = freqgen(w,L,wtype)

2

3 % Generates frequency vectors to simulate time varying modes

4 % ==============================Inputs=============================

5 % w: input frequency vector, dependent on wtype

6 % L: length of simulation signal

7 % wtype: type of frequency variation

8 % 'constant': frequency is constant throughout simulation

9 % length(w) should be equal to # modes

10 % example w for 2 modes: w = [10,20]

11 % 'instant': frequency instantly changes

12 % length(w) should be 2x # modes

13 % frequency setpoints: odd w are initial values,

14 % even w are final values

15 % example w for 2 modes: w = [10,20,30,40]

16 % 'gradual': frequency gradually increases then decreases

17 % length(w) should be 2x the number of simulated modes

18 % frequency setpoints: odd w are min values,

19 % even w are peak values

20 % example w for 2 modes: w = [10,20,30,40]

21 % 'hybrid1': frequency gradually then instantly increases

22 % 'hybrid2': frequency increases like hybrid1 then decreases

23 % length(w) should be 3x the number of simulated modes

24 % frequency setpoints: in sequences of triplets,

25 % 1st w is min value, 2nd is peak ramp value,

26 % 3rd is the "instant jump" value

27 % example w for 2 modes: w = [10,20,30,60,70,80]

28 %

29 % ==============================Outputs=============================

30 % wn: generated frequency vector with length L

31

32 wlen = length(w);

33

34 switch wtype

35 case 'constant'

36 n = wlen;

37 wn = zeros(L,n);
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38 for k = 1:wlen

39 wn(:,k) = w(k);

40 end

41

42 case 'instant'

43 if mod(wlen,2) ̸= 0

44 disp('Need 2 w values for each mode with this wtype');

45 return

46 end

47 n = floor(wlen/2);

48 wn = zeros(L,n);

49 for k = 1:n

50 wn(1:L/2,k) = w(2*k-1);

51 wn(L/2:L,k) = w(2*k);

52 end

53

54 case 'gradual'

55 if mod(wlen,2) ̸= 0

56 disp('Need 2 w values for each mode with this wtype');

57 return

58 end

59 n = floor(wlen/2);

60 wn = zeros(L,n);

61 for k = 1:n

62 wn(1:L/2,k) = w(2*k-1):(w(2*k)-w(2*k-1))/(L/2):w(2*k)-...

63 (w(2*k)-w(2*k-1))/(L/2);

64 wn(L/2:L,k) = w(2*k):-(w(2*k)-w(2*k-1))/(L/2):w(2*k-1);

65 end

66

67 case 'hybrid1'

68 if mod(wlen,3) ̸= 0

69 disp('Need 3 w values for each mode with this wtype');

70 return

71 end

72 n = wlen/3;

73 Lr = round(L/5);

74 wn = zeros(L,n);

75 for k = 1:n

76 wn(1:3*Lr,k) = ...

w(3*k-2):(w(3*k-1)-w(3*k-2))/(3*Lr):w(3*k-1)-...

77 (w(3*k-1)-w(3*k-2))/(3*Lr);

78 wn(3*Lr:5*Lr,k) = w(3*k);

79 end

80
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81 case 'hybrid2'

82 if mod(wlen,3) ̸= 0

83 disp('Need 3 w values for each mode with this wtype');

84 return

85 end

86 n = wlen/3;

87 Lr = round(L/3);

88 wn = zeros(L,n);

89 for k = 1:n

90 wn(1:Lr,k) = ...

w(3*k-2):(w(3*k-1)-w(3*k-2))/(Lr):w(3*k-1)-...

91 (w(3*k-1)-w(3*k-2))/(Lr);

92 wn(Lr:2*Lr,k) = w(3*k);

93 wn(2*Lr:3*Lr-1,k) = flip(wn(1:Lr,k));

94 end

95

96 otherwise

97 disp('Wrong wtype input, see function comments.')

98 end

C.2 Bairstow’s Method

This code was used to simulate the recursive parametric system identification method for
frequency estimation in the method comparison results of Section 4.2. The estimation method
is discussed in detail in Appendix A.1. Bairstow’s method is used to efficiently find the roots
of the estimated polynomial given by Equation A.9. In Simulink, the ’Recursive Polynomial
Model Estimator’ block from the System Identification toolbox was used to estimate an
AR model, and the coefficient estimates were then fed to a Matlab function block to run
Bairstow’s method recursively.

Figure C.1: Simulink implementation of recursive AR model estimation with Bairstow’s
root-finding algorithm.
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1 function [p,q] = bairstow(a,n,e,p0,q0)

2 % Bairstow's method for root-finding

3 % ==============================Inputs=============================

4 % a: estimated polynomial coefficients

5 % n: number of estimated pole pairs/modes

6 % e: convergence tolerance

7 % p0 and q0: initial guesses for decoupled equation coefficients

8 % ==============================Outputs=============================

9 % p and q: decoupled equation coefficients used for frequency ...

estimation

10

11 % MANUALLY initialize p and q (should be zeros(n,1) but that ...

returns an error)

12 p = zeros(3,1);

13 q = zeros(3,1);

14

15 % # poles = 2x # modes

16 np = 2*n;

17

18 while true

19 % Calculate b coefficients

20 b = zeros(np+1,1);

21 b(1) = a(1); b(2) = a(2) - p0(n)*b(1);

22 for k = 3:np+1

23 b(k) = a(k) - p0(n)*b(k-1) - q0(n)*b(k-2);

24 end

25

26 % Calculate c coefficients

27 c = zeros(np,1);

28 c(1) = b(1); c(2) = b(2) - p0(n)*c(1);

29 for k = 3:np

30 c(k) = b(k) - p0(n)*c(k-1) - q0(n)*c(k-2);

31 end

32

33 % Construct matrices

34 Mp1 = [b(np), c(np-2); b(np+1), c(np-1)];

35 Mp2 = [c(np-1), c(np-2); c(np)-b(np), c(np-1)];

36 Mq1 = [c(np-1), b(np); c(np)-b(np), b(np+1)];

37 Mq2 = [c(np-1), c(np-2); c(np)-b(np), c(np-1)];

38

39 % Calculate change in p and q

40 dp = det(Mp1)/det(Mp2);

41 dq = det(Mq1)/det(Mq2);



108 Code

42 pn = p0(n) + dp;

43 qn = q0(n) + dq;

44

45 % Check convergence and recurively calculate output coefficients

46 % p and q are sorted in reverse -> p(1) is the last value found

47 if (abs(pn-p0(n))/abs(p0(n)) < e) && (abs(qn-q0(n))/abs(q0(n)) ...

< e)

48 p(n) = pn;

49 q(n) = qn;

50 % Recursively iterates for further factorization if needed

51 if n > 2

52 [prec,qrec] = bairstow(b(1:np-2),n-1,e,p0,q0);

53 p = p + prec;

54 q = q + qrec;

55 % Once only one 2nd order polynomial is left, the last ...

values of p

56 % & q are simply the values of b

57 elseif n == 2

58 p(1) = b(2);

59 q(1) = b(3);

60 end

61 break;

62 end

63

64 % Set new initial values

65 p0(n) = pn;

66 q0(n) = qn;

67 end
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