
 
 

Delft University of Technology

Mapping high-resolution soil moisture and properties using distributed temperature
sensing data and an adaptive particle batch smoother

Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; Hatch, Christine E.; Sayde, Chadi; Selker,
John; Tyler, Scott; Cosh, Michael H.; van de Giesen, Nick
DOI
10.1002/2016WR019031
Publication date
2016
Document Version
Final published version
Published in
Water Resources Research

Citation (APA)
Dong, J., Steele-Dunne, S. C., Ochsner, T. E., Hatch, C. E., Sayde, C., Selker, J., Tyler, S., Cosh, M. H., &
van de Giesen, N. (2016). Mapping high-resolution soil moisture and properties using distributed
temperature sensing data and an adaptive particle batch smoother. Water Resources Research, 52(10),
7690-7710. https://doi.org/10.1002/2016WR019031
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/2016WR019031
https://doi.org/10.1002/2016WR019031


RESEARCH ARTICLE
10.1002/2016WR019031
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distributed temperature sensing data and an adaptive particle
batch smoother
Jianzhi Dong1, Susan C. Steele-Dunne1, Tyson E. Ochsner2, Christine E. Hatch3, Chadi Sayde4,
John Selker4, Scott Tyler5, Michael H. Cosh6, and Nick van de Giesen1

1Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft,
Netherlands, 2Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma, USA, 3Geosciences
Department, University of Massachusetts, Amherst, Massachusetts, USA, 4Department of Biological and Ecological
Engineering, Oregon State University, Corvallis, Oregon, USA, 5Department of Geological Sciences and Engineering,
University of Nevada, Reno, Reno, Nevada, USA, 6Hydrology and Remote Sensing Laboratory, U.S. Department of
Agriculture, Agricultural Research Service, Beltsville, Maryland, USA

Abstract This study demonstrated a new method for mapping high-resolution (spatial: 1 m, and tempo-
ral: 1 h) soil moisture by assimilating distributed temperature sensing (DTS) observed soil temperatures at
intermediate scales. In order to provide robust soil moisture and property estimates, we first proposed an
adaptive particle batch smoother algorithm (APBS). In the APBS, a tuning factor, which can avoid severe par-
ticle weight degeneration, is automatically determined by maximizing the reliability of the soil temperature
estimates of each batch window. A multiple truth synthetic test was used to demonstrate the APBS can
robustly estimate soil moisture and properties using observed soil temperatures at two shallow depths. The
APBS algorithm was then applied to DTS data along a 71 m transect, yielding an hourly soil moisture map
with meter resolution. Results show the APBS can draw the prior guessed soil hydraulic and thermal proper-
ties significantly closer to the field measured reference values. The improved soil properties in turn remove
the soil moisture biases between the prior guessed and reference soil moisture, which was particularly
noticeable at depth above 20 cm. This high-resolution soil moisture map demonstrates the potential of
characterizing soil moisture temporal and spatial variability and reflects patterns consistent with previous
studies conducted using intensive point scale soil moisture samples. The intermediate scale high spatial res-
olution soil moisture information derived from the DTS may facilitate remote sensing soil moisture product
calibration and validation. In addition, the APBS algorithm proposed in this study would also be applicable
to general hydrological data assimilation problems for robust model state and parameter estimation.

1. Introduction

Remote sensing observed soil moisture products are essential for our understanding of climatic and hydro-
logical processes [Seneviratne et al., 2010; Koster et al., 2003; Taylor et al., 2012] and improving modeling
skills [Crow and Ryu, 2009; Chen et al., 2011; Koster et al., 2010; Hazenberg et al., 2015; Niu et al., 2014; Wood
et al., 2011]. However, validating remote sensing products and downscaling coarse resolution products to
model scales are both necessary and challenging [Crow et al., 2012; Famiglietti et al., 2008]. This is because
mapping the soil moisture field using intensively collected point-scale soil moisture samples, or dense net-
works of point scale soil moisture sensors is usually logistically infeasible [Steele-Dunne et al., 2010]. Innova-
tive techniques proposed in recent years, e.g., cosmic-ray neutron probe [Zreda et al., 2008] and GPS
interferometric reflectometry [Larson et al., 2008], can provide areal mean soil moisture values over an area
with a diameter of a few hundred meters. However, these techniques cannot provide soil moisture spatial
variability information within the measurement area.

Distributed Temperature Sensing (DTS) has the potential to provide unique insights into the link between
soil moisture observations at meter to intermediate and footprint scales [Ochsner et al., 2013]. This may sub-
stantially improve our knowledge of soil moisture scaling and footprint-scale soil moisture validation. DTS
measures environmental temperature with a spatial resolution less than 1 m and temporal resolution less
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than 1 min [Selker et al., 2006]. Soil thermal properties are a function of soil moisture, and hence the soil
heat transfer process can be monitored to estimate soil moisture. One category of DTS methods is called
active DTS, in which electrically generated heat pulses are used. Soil temperature change due to these heat
pulses can be used to estimate soil moisture using either empirically calibrated or physically based equa-
tions [Sayde et al., 2010; Ciocca et al., 2012; Striegl et al., 2012]. Active DTS is relatively accurate, especially at
low soil moisture contents [Sayde et al., 2010; Ciocca et al., 2012; Striegl et al., 2012]. However, the large pow-
er requirement for generating heat pulses can be a logistical obstacle for field implementations. Further,
the active DTS method is also sensitive to any air gaps between the DTS cable and the soil [Sourbeer and
Loheide, 2015]. Passive DTS estimates soil moisture only using naturally occurring soil temperatures. In an
early passive DTS study [Steele-Dunne et al., 2010], soil temperatures measured at three depths were used to
estimate soil thermal diffusivity. Soil moisture could then be inferred, provided the relationship between
soil thermal diffusivity and soil moisture relationship was known. The passive DTS method overcomes sever-
al challenges in the active DTS method, but it also has several limitations. First, soil thermal diffusivity is
insensitive to soil moisture for a wide range of soil moisture values. Second, physically reasonable estimates
cannot be obtained from the inversion approach of Steele-Dunne et al. [2010] when solar radiation is low.
Third, it is difficult to determine the soil thermal diffusivity to moisture relationship along the cable, when
the spatial variability of soil properties is high. Finally, the passive DTS method is very sensitive to uncertain-
ty in cable depths.

Dong et al. [2015a] tackled the first two of these challenges using data assimilation. In their study, a fully
coupled soil water, heat and vapor transfer model (Hydrus-1D) [Simunek et al., 2009] was used to provide
so-called a priori soil moisture and temperature profiles. Soil temperature observed at two depths (5 and
10 cm) were sequentially assimilated using the ensemble Kalman filter (EnKF) [Evensen, 2003] to update the
prior guessed soil temperature and moisture profile.

In a subsequent study, a particle batch smoother (PBS) was used by Dong et al. [2015b] to estimate soil mois-
ture using series of soil temperature observations. The evolution of the soil temperature within a certain time
window may contain more information on soil moisture, since the rates of heating and cooling may be better
observed. Thus, a batch smoothing technique is more suitable, i.e., using all the soil temperature observations
within a certain period of time (batch window) to update the soil moisture estimates within this window. The
Ensemble Smoother (ES) [Van Leeuwen and Evensen, 1996] assumes the prior distribution is normally distribut-
ed, and hence the ES may provide inaccurate estimates when the prior distribution is highly non-Gaussian
[Van Leeuwen and Evensen, 1996]. The ‘‘particle’’ approach, in which the entire distribution is mapped using
Monte Carlo sampling points, has been shown to be superior to ensemble techniques when the Gaussian
assumption is violated, and particle approaches are particularly effective in parameter estimation [Dechant
and Moradkhani, 2011; DeChant and Moradkhani, 2012; Moradkhani et al., 2012]. In a follow-up study, Dong
et al. [2016a] used synthetic tests to show that soil moisture, soil hydraulic properties, and soil thermal proper-
ties could be jointly estimated using soil temperatures. Instead of using approaches that estimate the model
parameters separately, joint model state-parameter estimation approach can significantly reduce the compu-
tational cost [Han et al., 2014]. They also demonstrated that soil hydraulic properties control the temporal vari-
ation of soil moisture, which eventually leads to different soil temperatures. Being able to determine the soil
hydraulic and thermal properties in this manner solves the third challenge without the need for time-
consuming and labor-intensive field measurements. It was also demonstrated that jointly estimating model
state and parameters provide more accurate and robust estimates of the soil moisture. The final challenge,
that of uncertainty in the cable depths, was addressed by Dong et al. [2016b]. The cable depths were consid-
ered as free parameters and jointly updated with other model states and parameters. Tests using both syn-
thetic tests, and point sensors with known depths show that the PBS method can provide accurate cable
depth estimates. Most importantly, the soil moisture estimates were only marginally worse than those
obtained when the cable depths were perfectly known. By comparing the estimates from four sites with same
climatic forcing but different soil textures, they also demonstrated the potential of detecting the spatial vari-
ability of the soil moisture and properties using the PBS.

All of the data assimilation developments to date have been tested and developed using synthetic data
and observations from point in situ temperature sensors. In this study, the Particle Batch Smoother will be
applied to real Distributed Temperature Sensing data from the Soil Moisture Active Passive (SMAP) Marena
Oklahoma In-Situ Sensor Testbed (MOISST) [Cosh et al., 2010, 2016].
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In order to apply the algorithm to real data, techniques that can avoid severe particle weight degeneracy
are required to provide accurate estimates. Increasing the number of the particles is usually effective in
reducing the effects of particle weight degeneracy if the initially chosen number of particles was too small.
But, when 100 or more particles were used, further increasing the number of the particles provides little
benefit [Dong et al., 2015b]. Using a different likelihood function may also be helpful in avoiding particle
weight degeneracy, as shown in the Generic Particle Filter (GPF) approaches [Sawada et al., 2015]. However,
a factor that determines the shape of the likelihood function (r in) [Sawada et al., 2015] must be determined
prior to performing data assimilation, and the appropriate value of this factor is still unknown for DTS appli-
cations. Hence, this study will use the tuning factor proposed by Dong et al. [2016a] to avoid particle weight
degeneracy. The tuning factor tunes the likelihood function and increase the acceptance probability of the
particles, can effectively avoid the particle weight degeneracy and provide robust estimates [Dong et al.,
2016a, 2016b]. Due to the spatial variabilities of soil and vegetation properties and the fact that all the prior
guesses were drawn from the same distribution, the error of the forward model may vary in space. Hence,
the value of the tuning factor that can provide the optimal estimates may also vary in space. This indicates
a reasonable tuning factor has to be determined every meter along the DTS cable.

Due to the limited scale of the prior studies, it was possible to determine a temporally constant tuning fac-
tor by trial and error [Dong et al., 2016a]. To apply the PBS to real DTS data, an objective, automatic proce-
dure is needed to determine an appropriate tuning factor.

The purpose of this study is twofold. First, an adaptive Particle Batch Smoother (APBS) will be proposed,
and tested using a series of synthetic tests. In this APBS algorithm, the tuning factor will be automatically
determined to avoid severe weight degeneration. Second, we will evaluate this APBS algorithm using real
DTS data. The estimated soil moisture and properties will be validated using data collected at a nearby site.

2. Method and Materials

2.1. Study Area and Data Collection
All data used in this study were collected at the Soil Moisture Active Passive (SMAP) Marena Oklahoma In-
Situ Sensor Testbed (MOISST). This is a field site located at the Oklahoma State University Range Research
Station approximately 13 km southwest of Stillwater, Oklahoma. The goal of the testbed is to facilitate the
validation of remote sensing measurements from SMAP with in situ sensors distributed around the globe
[Cosh et al., 2010, 2016]. Figure 1 shows the layout of the site. The predominant soil series is Grainola silty
clay loam (fine, mixed, active, thermic Udertic Haplustalfs), which are moderately deep, well-drained soils
formed in material weathered from shale. However, the soil texture varies significantly with depth and land-
scape position. Vegetation across much of the site is typical of tallgrass prairie with some localized areas
representative of cross timbers vegetation [Fuhlendorf and Engle, 2004]. Five-minute meteorological data
including precipitation, solar radiation, humidity, air temperature, and wind speed were obtained from the
Oklahoma Mesonet site at Marena from April to June 2011 [McPherson et al., 2007]. Hourly soil moisture
observations from the Hydra probes (Hydra Probe II, Stevens Water Inc., Portland, OR, USA) at depths of 2.5,
5, 10, 20, and 50 cm at Site B (one of four MOISST base sites) were used here. Soil thermal conductivity at
saturated soil water content (ksat) and soil water content at 33 KPa (h33) were also measured for evaluating
the estimated soil thermal and hydraulic properties.

The DTS equipment, solar panels, and two calibration baths were located at Site B. Fiber-optic cables (50/
125 lm multimode) were installed at approximately 5, 10, and 15 cm depths along an approximately ‘‘hour
glass’’-shaped path (658m in total). Dong et al. [2015a] showed that soil temperatures at two depths provide
sufficient information to estimate soil moisture and soil properties. So, here soil temperature observed by
the upper two cables will be used.

Cable temperatures were measured using an Oryx DTS (Sensornet, UK), with an integration time of five
minutes, and calibrated using the approach outlined by van de Giesen et al. [2012]. The relatively high bulk
density and clay content of the subsoil, the terracing on the western side of the loop, some rocks near the
surface on the eastern side, and the thick vegetation cover made cable installation difficult. Several sections
of the cable had to be hand-dug after the plow pass (crossing terrace berms and/or at tight turns). In these
sections, the cables depths are too irregular to be used. This study is limited to the DTS data collected along
a 71 m transect extending eastward from site B (See Figure 1). This is one of the smoothest sections because
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the surface was flat and the
tractor and plow could follow
a straight line. Furthermore,
the soil texture along this
transect is comparable to
that at Site B, which also facil-
itates validation of the results.
The DTS temperature data
used here were collected
from 19 April to 31 May 2011.

2.2. Model State and
Parameter Estimation
2.2.1. Forward Model
The forward model used in
this study is that presented
by Dong et al. [2016b], in
which a canopy energy bal-
ance scheme is included in
the Hydrus-1D model. Soil
water movement is solved
using the Richards equation,
and the vapor transport is
considered as a flux term in
the Richards equation [Simu-
nek et al., 2009]:
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where h is soil water content
(m3m23) at time t (s), and z is the vertical coordinate (m). The soil hydraulic conductivity curve and soil
water retention curve are presented as:
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where Ks is the saturated hydraulic conductivity (ms21), KTh and KTT are the isothemal and thermal total
hydraulic conductivities, respectively, and KLh is the isothermal unsaturated hydraulic conductivity for the liq-
uid water, Se is the effective saturation, l, m, n, and a are empirical shape parameters and hr and hs are the
residual and saturated soil water contents (m3m23). Soil heat transport is simulated using the soil heat con-
duction equation, which also includes the heat convection terms caused by the liquid water and vapor fluxes:

@CpT
@t

1L0
@hv

@t
5

@

@z
kðhÞ @T

@z

� �
2Cw

@qLT
@z

2L0
@qv

@z
2Cv

@qv T
@z

2Cw ST

(4)

where T is soil temperature (K), Cw, Cv, and Cp are the volumetric heat capacities of water, vapor, and moist
soil (Jm23K21), L0 is the volumetric latent heat of vaporization of liquid water (Jm23), qL and qv are the

Figure 1. Field layout of DTS cable at Oklahoma MOISST site. Soil moisture and temperature
point sensors are installed at Sites A, B, and C. The DTS equipment was housed at Site B.
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flux densities of liquid water and vapor (ms21), and kðhÞ is apparent soil thermal conductivity (Wm21K21).
The thermal conductivity is approximated using the model proposed by Lu et al. [2007].

The soil surface energy balance was solved by the algorithm outlined in Oleson et al. [2010]. Its inclusion
means that the model can be used to simulate the soil water, heat, and vapor transport in vegetated areas
as well as in bare soil conditions. The required model forcing data are incoming shortwave solar radiation,
precipitation, air temperature, relative humidity, and wind speed. At depths greater than 50 cm, soil temper-
ature variations during the day are limited [Bateni and Liang, 2012]. Hence, a soil depth of 1 m was assumed
to ensure the validity of the zero gradient lower boundary condition for soil heat transfer. The time step of
the Hydrus-1D simulations is adapted according to the numerical convergence [Simunek et al., 2009], and is
approximately 1 min in this study.

As shown in equation (1) and (4), soil water and heat transfer are coupled processes. For example, soil
thermal conductivity (kðhÞ) is a function of soil moisture. This means vertical soil heat transfer will depend
on soil moisture conditions. Further, the soil vapor (qv ) transfer, or the soil evaporation, depends on both
soil moisture and soil temperatures, which also acts an important link between soil moisture and soil tem-
perature. As a consequence, any factor that affects soil moisture will be eventually reflected in soil tem-
perature observations. Hence, soil hydraulic properties can also be estimated using soil temperatures
[Dong et al., 2016a]. The improved soil hydraulic properties will, in turn, benefit the forward model, and
provide more robust estimates. In addition to soil moisture, the key model parameters to be estimated in
the PBS are the soil hydraulic properties (i.e., residual water content (hr), saturated soil water content (hs),
air entry value (a), shape parameter (n), and saturated conductivity (Ks)), soil thermal property (i.e., saturat-
ed soil thermal conductivity, ksat) and leaf area index (LAI). The vegetation optical and structural proper-
ties presented by Oleson et al. [2010] were used as the nominal values.
2.2.2. Particle Batch Smoother (PBS)
An ensemble of model states is evolved in parallel using the forward model:

xi
t5f xi

t21; ui
t;bi

t

� �
1wi

t (5)

where xi
t is a vector of the model states (h and T in this study) of the ith particle at time t, ui

t is the perturbed
forcing data, bi

t is a vector of model parameters, wi
t is the model error, and f is the forward model [Morad-

khani et al., 2012]. The model estimates are related to the observation space by:

ŷ i
t5hðxi

tÞ1vi
t (6)

where ŷ i
t is the simulated observation vector, h is an operator relating the prior estimated states (xi

t) to the
measured variable, and vi

t is the observation error [Moradkhani et al., 2012]. Instead of assuming observation
depths are perfectly known, it was updated as a free variable. Hence, the operator h was constantly
changed according to the estimated observation locations.

The posterior distribution of interest is the joint distribution of the model states (i.e., soil temperature and
moisture profile from 0 to 1 m) and model parameters (e.g., soil thermal and hydraulic properties) over a
certain time interval (window length). The posterior distribution is mapped using particles with associated
weights:

pðxt2L11:t;bt2L11:tjy1:tÞ5
XN

i51

wi
td xt2L11:t2xi
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where fxi
t2L11:t;bi

tg denotes the ith particle, wi
t is its weight, and d is Dirac delta function [Moradkhani

et al., 2005a], and L is the window length. Soil temperatures within a longer window length usually con-
tain more soil moisture and soil property information. However, increasing the window length will also
increase the dimension of the estimates at each updating step, which may lead to degraded estimates
[Dong et al., 2015b]. As shown in Dong et al. [2016b], assimilating soil temperature observations within
a batch window of 12 h can provide robust soil moisture and property estimates. Since the experiment
setting is similar to Dong et al. [2016b], a window length of 12 h is also used here. The parameters were
assumed to be constant within each batch window, i.e., bi

t2L11:t5bi
t . When the transition prior is used

for the proposal distribution for importance sampling [Dong et al., 2015b], the weights can be estimated
as:
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and normalized particle weights, respec-
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where R is the error covariance of the observations, no is the number of soil temperature observation
depths, and b is a tuning factor (� 1) to avoid particle weight degeneration [Dong et al., 2016a,b].

Perturbing the estimated parameter set is usually required to avoid parameter impoverishment [Moradkhani
et al., 2005b]:

bi
t5bi

t1�b (11)

where �b is normally distributed noise with zero mean, and standard deviation (Std) of s. In this study, s is
determined as follows:

s5max 0;Q02StdðbtÞð Þ (12)

where Q0 is a prescribed threshold [Su et al., 2011], which is set to be 20% of the initial parameter standard
deviation. A discussion of the choice of Q0 can be found in Su et al. [2011], Aksoy et al. [2006], and Dong
et al. [2016b].

Resampling, which replaces the particles that have negligible weights with the particles that have large weights,
is needed in the PBS. The systematic resampling method is used in this study, which was considered to outper-
form other resamping schemes in most scenarios [Doucet and Johansen, 2009]. The particles with large weights
are more likely to be resampled, and particles with negligible weights will be eliminated. After resampling, all
the particle weights were set to be 1=N. When the prior estimates have large errors, most of the particles will be
eliminated and only a few particles will be kept after resampling [Dong et al., 2016a]. This dramatically reduced
particle range usually cannot encompass the observations and leads to constantly overconfident estimates. To
deal with this problem, a tuning factor (b) is usually needed in the PBS [Dong et al., 2016a].
2.2.3. Adaptive Particle Batch Smoother
The adaptive particle batch smoother is essentially the same as the PBS algorithm described above, except
that the tuning factor for each batch window is determined by maximizing the reliability of the soil temper-
ature estimates. The probabilistic metric of reliability is calculated using the Quantile - Quantile (Q-Q) plot,
which indicates whether the estimated uncertainty (particle range or ensemble spread) is appropriate. For
each batch window, the quantile of the predictive distribution is calculated at each time step at each obser-
vation depth within the batch window [Moradkhani et al., 2012; Dechant and Moradkhani, 2014]:

ztj ;j5
1
N

XN

i51

ki (13)

where N is the number of the particles, ztj ;j is the quantile of the predictive distribution calculated at time tj

depth j, ki 5 1 when observed soil temperature is larger than the ith particle simulated soil temperature at
time tj, and ki 5 0, otherwise [Madadgar and Moradkhani, 2014]. In the perfect case, the distribution of ztj ;j

should follow the uniform distribution (U½0; 1�). If ztj ;j are clustered at the middle range, it indicates that the
uncertainty is overestimated. The uncertainty is underestimated when the ztj ;j are clustered around the tails.
In the case where ztj ;j is constantly lower/higher than U½0; 1�, it indicates the estimates are biased [Thyer
et al., 2009]. The differences between the ztj ;j and U½0; 1� are measured by reliability (ar):

Table 1. Generation of Perturbed Inputs (Soil and Vegetation Property and Forcing)
for Each Particle

Variable Error Distribution Mean Std. Bound

Sand (%) Uniform 15, 75
Silt (%) Uniform 0, 100—Sand
qbðg=cm3Þ Uniform 1.1, 1.7
Air temperature (8C) Gaussian, additive 0 0.05
Precipitation (mm) Gaussian, multiplicative 1 3 0.2
Radiation (W=m2) Gaussian, multiplicative 1 3 0.075 -, 1350
Relative humidity (%) Gaussian, multiplicative 1 3 0.05 -, 100
Wind speed (Km/h) Gaussian, multiplicative 1 3 0.2
Vegetation parameters Gaussian, multiplicative 1 3 0.2
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where nt denotes the total number of time steps within the batch window. For example, when hourly soil
temperatures were observed at two depths and a window length of 12 h was used, n0 was two and nt was
12. Consequently, the reliability of this batch window will be estimated using 24 observations. Reliability (ar)
varies from 0 (zero reliability) to 1 (perfect reliability). Dong et al. [2016a] demonstrated that the PBS can
provide robust estimates, once this b value is within a reasonable range. Hence, b is varied from 0 to 1 in
increments of 0.05 and the optimal b is that which yields the largest reliability in the APBS. In the APBS,
rerunning the forward model for the assimilation window is not required. The only increased computational
cost compared to the PBS algorithm is the iteration of the weight udpating step and resampling step, which
is negligible [Dong et al., 2015b]. Consequently, using APBS is a more cost-effective way of avoiding particle
weight degeneracy, compared with simply increasing the number of particles in the PBS. This adaptive
approach may be particularly suitable for the cases when particle weight degeneracy is severe, or the prior
estimates have large errors. Under such circumstances, the prior distribution may be less capable of

Figure 2. Soil temperature estimates at 5 (first column) and 10 cm (second column), the Q-Q plot (third column), and the posterior distribution of the estimated model parameter using
hs as an example (fourth column) in one batch window. The top row is the case when b 5 0, which is equivalent to open loop. The second row are the estimates using b51:0, i.e., no tun-
ing is used. The last row uses an automatically determined b, which is 0.3 in this specific window.
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encompassing the truth, which also means little model parameter and state information can be inferred
from the soil temperatures. Hence, updating the particles using the original PBS (i.e., b 5 1) will unavoidably
lead to overconfident estimates and reduced ar. Further, the parameter estimates will also be overfitted to
model or observation errors. While in the APBS method, a small tuning factor will be used to maximize the
ar. Using a small tuning factor will allow the particle range to grow to encompass the observations in the

Figure 3. (a–f) The estimated soil hydraulic and thermal properties and (g) LAI. The soil water retention curve and the soil thermal conductivity curve calculated using the estimated soil
properties are shown in (h) and (i). The true model parameters are shown at the final time step. The shaded area represents the range of the particles.

Figure 4. Estimated (a) upper and (b) lower cable depths using the PBS and APBS. The true cable depths are shown at the final time step.
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following steps. Further, since a small tuning factor is used, the model parameters are less likely to be
overfitted.

2.3. Data Assimilation Experiments
First, we will show the necessity of using the adaptive particle batch smoother (APBS) to avoid severe parti-
cle weight degeneracy and to improve the estimates. A single illustrative synthetic test is used to compare
the original particle batch smoother (i.e., b51:0) to the APBS. In this synthetic test, the truth was generated
using the forward model with perturbed forcing data (Table 1). Soil textures and soil bulk density drawn
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from the distributions
described in Table 1 were
used to generate the true
parameters. To account for
uncertainties in the cable
depths in real DTS applica-
tions, it is assumed the cable
depths are poorly known.
Hence, cable depth values are
drawn from the uniform dis-
tributions U[3 cm, 7 cm] and
U[8 cm, 12 cm] for the upper
and lower cable, respectively.
Synthetic DTS observations
were generated by adding
zero mean Gaussian distribut-
ed noise to the synthetic true
soil temperatures. As a con-
servative assumption, the
observation error used in this
study is 0.58C. An open-loop
run (OL), in which the par-
ticles are run in parallel with-
out performing any data
assimilation, was used to
evaluate the improvement
made by the different PBS
algorithms. For the OL run,
the model parameters were
generated using randomly
sampled soil properties as
described in Table 1. In the
PBS algorithms, the initial
guess for the cable depths for
each particle were drawn
from a Gaussian distribution
with standard deviation of
1 cm, and mean of 5 cm for
the upper cable, and 10 cm
for the lower cable. The cable
depths were jointly estimated
with soil temperature and
moisture profiles, soil hydrau-
lic properties (hr, hs, a, n, Ks),
soil thermal property (ksat),
and LAI in both PBS schemes.

Next, we will investigate the
robustness of the APBS algo-
rithm using a multiple truth
test. We repeated the experi-
ment described above 15
times, where using 15 differ-
ent truths, generated using
randomly sampled model
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parameters. Dong et al. [2016a] demonstrated that
setting b50:25 in the original PBS algorithm (note as
PBSb) yields significantly improved estimates. A com-
parison of the PBSb and the APBS may provide
insight to the benefits of using an adaptive tuning
factor in the PBS, rather than simply assuming some
arbitrary value. Hence, in this multiple truth test,
three PBS schemes, i.e., PBS, PBSb, and APBS, were
compared.

Finally, the APBS algorithm was tested using the real
DTS data from the SMAP MOISST. The APBS estimated soil moisture and soil properties were evaluated
using the data collected from an observation site approximately 70 m away. First, we examined the variabil-
ity in the estimated cable depths. Then, we validated the estimated thermal conductivity and field capacity
against observed values, and compared estimated soil moisture along the cable to that observed with in
situ Hydra probes at the nearest enclosure (Site B). Finally, we used the estimated soil moisture to quantify
spatial variability in moisture along the cable and consider possible sources of this variability.

Increasing the total number of the particles can increase the diversity of the particles, and hence potentially
increase the number of the effective particles (Neff). However, when observations are located at the tails of
the priors, most of the particles will be discarded. For these cases, increasing the number of the particles
results in little benefits. As shown by Dong et al. [2016a,b], 300 particles are sufficient to capture the model
state-parameter space after proper tuning. Due to the computational demand, further increasing the num-
ber of the particles was not considered. Hence, as a conservative choice for the APBS algorithm, 300 par-
ticles were used in this study.

3. Results and Discussion

3.1. An Illustrative Case
Figure 2 illustrates how the value of b influences the Q-Q plot, and hence how the Q-Q plot can be used to
determine b adaptively. In the top plot, b50:0, which means that the state and parameters were not
updated. This is equivalent to an open loop simulation. Figures 2a and 2b show that the posterior estimate
is biased. As a result, Figure 2c shows that the predicted quantile is constantly above the cumulative uni-
form distribution. At the other extreme, Figures 2e–2h show what happens when b51:0. Because the obser-
vation error was so small with respect to the a priori estimate, only a few particles were preserved after
resampling (Figures 2e and 2f). Consequently, the Q-Q plot shows that the predicted quantiles are clustered
in the middle range, which indicates that the estimated posterior is overconfident (Figure 2g). This also indi-
cates that the particle weights are significantly degenerated. As a result, the posterior of the model parame-
ter, e.g., hs, is concentrated on a few particles, and therefore cannot encompass the true value (Figure 2h).
Figures 2i and 2j show the impact of selecting a tuning factor that maximizes the reliability of the soil tem-
perature estimates. More particles are accepted in the posterior distribution which also benefits the model
parameter estimation. Though the mode of the posterior is biased, the range of the posterior is still wide
enough to encompass the truth (Figure 2l). In this case, the Q-Q plot shows that predicted quantiles are
almost perfectly aligned with those from a uniform distribution (Figure 2k).

Table 2. The Correlation of the Estimated and The True Model
Parameters Using Different PBS Schemes

Par. PBS PBSb APBS

hr 0.41 0.89 0.91
hs 0.44 0.88 0.91
a 20.15 0.52 0.62
n 0.46 0.93 0.95
Ks 0.54 0.69 0.88
ksat 0.13 0.74 0.55
h33 0.37 0.92 0.90
LAI 0.71 0.94 0.96
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Figure 8. The evolution of the tuning factor (b) in the APBS and the PBS-025 using one single truth for illustration.
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Figure 3 compares the convergence of the model parameter estimates when b is set to 1.0 (PBS) to the case
when b is estimated using the APBS. In this specific illustrative case, the PBS fails to converge to the true
parameters (Figures 3a–3g). The evolution of the parameter estimates is also quite unstable, even at the
end of the experiment, which suggests that the PBS overfits the model parameter to the model error. The
APBS provides significantly improved soil hydraulic properties, compared to the PBS approach (Figures 3a–
3e). This yields a nearly perfectly estimated soil water retention curve (Figure 3h). Among the five soil
hydraulic properties, the a and Ks parameters provide the poorest agreement with the true values. This is
because these two parameters are less sensitive to the soil temperature evolution than the other parame-
ters [Dong et al., 2016a]. The prior guessed thermal conductivity, ksat, is very close to the truth in this specific
case. Both PBS and APBS provide degraded estimates of ksat and that thermal conductivity curve (Figures 3f
and 3i). Because the soil moisture drives dynamics in soil thermal properties, the soil hydraulic properties
are easier to estimate than the soil thermal properties [Dong et al., 2016a]. The prior guessed LAI is already
very close to the truth (Figure 3g). Both the PBS and the APBS have converged to the true LAI at the final
time step. However, it is noticeable that the estimate from the PBS varies considerably during the simulation
period.

The estimated upper and lower cable depths using PBS and APBS for this synthetic, illustrative case are
shown in Figure 4. The prior guess for the cable depth of the upper cable was biased by approximately
1.5 cm. Both the PBS and the APBS draw the prior estimate closer to the truth, and result in an error of less
than 0.5 cm for both methods. The estimated lower cable depth is less accurate compared to the upper
cable in this specific case (Figure 4b). The solar signal is damped exponentially with depth, and hence it is
more difficult to estimate the depth of the lower cable [Dong et al., 2016b].

Table 3. The RMSE of the Estimated Soil Moisture and Soil Temperature Using Different PBS Schemes at Five Depthsa

State App. 2.5 cm 5 cm 10 cm 20 cm 50 cm

Moisture PBS 0.041 0.042 0.041 0.040 0.042
PBSb 0.022 0.023 0.024 0.028 0.032
APBS 0.022 0.023 0.023 0.026 0.031

Temperature PBS 0.656 0.541 0.509 0.505 0.494
PBSb 0.417 0.342 0.285 0.255 0.251
APBS 0.339 0.275 0.258 0.253 0.249

aThe values are averaged from 15 tests using randomly sampled truths.
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Figure 5 shows the soil moisture estimates using the two PBS schemes. Because the PBS yielded little
improvement in the soil hydraulic properties compared with the prior (Figure 3), the estimated soil moisture
from the PBS is very similar to the OL estimates at all depths. On the other hand, the APBS benefits from
the near perfect soil property estimates from approximately 10 May onward (Figure 3). Hence, it provides
very accurate surface soil moisture estimates. Soil moisture at depth has little response to the climatic forc-
ing at the upper boundary during the simulation period. Furthermore, only 5 and 10 cm soil temperatures
were assimilated in this study, which has limited correlation with the soil moisture in the deeper profiles.
Thus, the APBS algorithm mainly benefits the root zone soil moisture estimates through model physics, i.e.,
increasing or decreasing soil water content at surface will eventually lead to a wetter or drier root zone soil
moisture. Hence, the impact of the errors in the initial condition increases with depth (e.g., Figure 5e). This
may indicate longer-term simulations are necessary for the PBS algorithms to yield to improvements at
depth. The estimated soil moisture at depth might be improved by employing bias correction methods
analogous to those employed by Ryu et al. [2009], De Lannoy et al. [2007], Dee and Da Silva [1998], and Mon-
sivais-Huertero et al. [2016].

3.2. A Multiple Truth Comparison of Different PBS Schemes
The previous section showed results from a single synthetic case. Figures 6 and 7, and Table 2 summarize
the results when this experiment was repeated 15 times for different synthetic ‘‘truths.’’ Figure 6 shows a
comparison of the true and the estimated cable depths when b is set to 1.0 (PBS), a fixed value of 0.25
(PBSb) or determined using the adaptive PBS (APBS). The PBSb and APBS estimated cable depths and sepa-
ration distances with similar accuracies, which were better than that of PBS approach. Similar to the illustra-
tive case, the depth of the lower cable proved difficult to estimate.

The estimated model parameters and the correlations between the estimates and the truths are shown in
Figure 7 and Table 2. In general, the PBS estimated model parameters are the least correlated with the true
parameters, compared with the PBSb and APBS. This is consistent with a previous study [Dong et al., 2016a],
which demonstrated that when no tuning factor is used (i.e., PBS), the PBS algorithm will have severe
weight degeneration problems, which eventually lead to unreliable estimates. The PBSb and APBS provide
similar results. In general, the correlations between the truth and the APBS estimated model parameters are
higher than that of PBSb .

Figure 10. (a) The estimated upper and lower cable depths along a 71 m DTS transect, (b) the distribution of the estimated 71 m cable
depths, and (c) the distribution of the estimated cable distances.
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The evolution of b values from a single truth
in the APBS is presented to provide a more
detailed comparison of the APBS and PBSb

method (Figure 8). As shown in section 2.2.3,
the use of b is essential to ensure the particle
range is just wide enough to encompass the
observations. If the observation is already
within the prior range, a b value as high as
0.9 will encompass the observation. On the
contrary, when the particle ranges are too
narrow to encompass the observations (i.e.,
particle degeneracy), zero or small b value
should be used to breed the particles. Hence,
the optimal value of b is not a simple func-
tion of the state, forcing, or parameter, but a
combination of circumstances that may lead
to particle degeneration, e.g., the model
structural error, the model forcing uncertain-
ties, and the variance and the accuracy of
the model parameters. As a consequence,
the value of b or the factors that leads to par-
ticle weight degeneracy cannot be decoded
by simply using the model forcing or soil
state observations. Assuming a single value
of 0.25 for b reduces the likelihood that the
observation is beyond the particle range, but
does not ensure this to be the case.

As a result of the similarity in the soil proper-
ties, the PBSb and APBS also provide very
similar soil moisture estimates (Table 3).
Using the PBS yields the poorest soil mois-
ture estimates, the RMSE of which is approxi-
mately twice as high as that of the PBSb and
APBS. The necessity of using the tuning fac-
tor in the PBS is also shown in the soil tem-
perature estimates. The RMSE of PBS
estimated soil temperature is above 0.58C for
depths � 20cm, which is even larger than
the observation error. Using a tuning factor

of 0.25 (PBSb) can significantly avoid the particle weight degeneration, and leads to a sharp decrease in the
soil temperature RMSE. When the adaptive tuning factor is used (APBS), the soil temperature RMSE were fur-
ther reduced at depth above 10 cm.

The results from the multiple truth tests presented in this section show several key points in successfully
implementing the PBS algorithm. The PBS algorithm updates the model states and parameters by placing
more weight on the particles that have a better fit to the observations, and discarding the particles that
have little weight. Hence, when the range of the particle estimates is small, the prior distribution mapped
by the PBS is very unlikely to contain the global optimal parameter sets. As a result, the PBS estimates can
be unreliable, which is consistent with a previous study [Dong et al., 2016a]. The PBSb uses a tuning factor
of 0.25, which makes the particles more acceptable in the resampling process. This will allow the prior distri-
bution for the model states and parameters to have heavier tails, which is more likely to encompass the
observations. As a result, the estimates were greatly improved compared to those from the PBS (Tables 2
and 3). However, until now, the tuning factors had been obtained by trial and error, and assumed to be con-
stant in time. In order to implement the PBS to real DTS data, it is essential that the tuning factor can be

Figure 11. (a) The distribution of the estimated soil thermal property
(ksat) and (b) soil hydraulic property (h33) along the 71m DTS transect.
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determined objectively and automatically for each section of cable. The APBS can also be considered as a
more statistically meaningful way of tuning the PBS algorithm. For each batch window, the APBS finds a b
value that gives the largest reliability of the soil temperature estimates, i.e., a b value that optimally
addresses uncertainties of the estimates. For example, when the particle spread is small, small tuning factors
should be used to breed the particles. Conversely, when the particle spread is large, a large tuning factor
can be used to make full use of the soil temperature information. Thus, the APBS is shown to be superior
than PBSb in most of the model state and parameter estimates.

3.3. Implementing APBS in a Real DTS Experiment
Figure 9 shows the temperatures measured at approximately 5 and 10 cm using DTS from 19 April 2011 to
29 May 2011. The diurnal cycles of the observed soil temperatures due to solar radiation (Figure 9b) are
clearly visible. The daily amplitude of soil temperature is lower on days with precipitation and low radiation
(e.g., 24–29 April). Some spatial variation is observed, e.g., lower temperatures between 30 and 42 m, and
higher temperature between 50 and 60 m. These variations could be due to differences in soil texture and/
or vegetation cover, and variations in cable depths.

Figure 10 shows the estimated cable depths along the 71 m DTS transect at the SMAP MOISST site. The
average depths of the upper and lower cables are 5.28 and 9.35 cm, respectively. The average estimate of
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Figure 12. The estimated soil moisture along the 71 m DTS transect at five depths. The black solid line is the soil moisture measured at
site B. Each thin blue line represents soil moisture estimates for one meter of cable, and the mean estimated soil moisture of the 71 m
cable is shown as the blue solid line.
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the separation distance between the two cables
is approximately 4 cm. These estimates are plau-
sible given the plow configuration. The spatial
variability can be attributed to the impact of soil
roughness on the cable installation.

Histograms of the estimated saturated soil ther-
mal conductivity (ksat) and h33 along this 71 m
DTS transect are shown in Figure 11. These are
the only two parameters for which validation
measurements were available at the nearby site
B. The prior guessed ksat is approximately 1.9
W=mK, which is significantly higher than the
measured value. The average of the APBS esti-
mated ksat values was drawn closer to the refer-
ence value, with an average of 1.77 W=mK along
this 71 m transect.

The mean of the prior estimated h33 is approxi-
mately 0.2 m3=m3, which is significantly lower
than the field measured reference value. When
soil temperature observations from the DTS are
assimilated, the mean of the estimated h33 of
this 71 m transect is 0.27 m3=m3.

The time series of the estimated soil moisture
using the DTS observed soil temperature is
shown in Figure 12, and compared to the
observed soil moisture at the reference site. Due
to the significantly biased estimated soil hydrau-
lic properties (Figure 11b), the OL is biased com-
pared to the reference site. When soil
temperature is assimilated, the APBS removes
the biases between the OL and the reference
soil moisture at depths above 20 cm. At 50 cm,
the soil moisture estimates are dominated by
the initial guess for soil moisture. Therefore, no
significant improvement is shown in the APBS
estimates, compared to the OL.

In Figure 13, the mean soil moisture in each
meter of DTS cable is plotted against key soil
properties as well as the cable depths in order to
rule out any relationship between the estimated
soil moisture and the estimated cable depths.
From Figures 13a and 13b, it is clear that there is
no correlation between the estimated cable
depths and the temporal mean of the soil mois-
ture. This means the spatial pattern in soil mois-
ture is not merely an artefact of uncertainty in
the cable depth estimation. On the other hand,
the temporal mean of the soil moisture along
this 71 m transect has the strongest correlation
with h33. This suggests that the spatial variability
of the soil moisture across this transect is primar-
ily attributed to the spatial variability of the soil
hydraulic properties.

2 5 8
0.2

0.26

0.32

upper cable (cm)

T
M

 (
m

3 /m
3 )

(a)

8 10 12
0.2

0.26

0.32

Lower cable (cm)

T
M

 (
m

3 /m
3 )

(b)

0.1 0.25 0.4
0.2

0.26

0.32

θ
33

 (m3/m3)

T
M

 (
m

3 /m
3 )

(c)

1 2 3
0.2

0.26

0.32

λ
sat

 (W/mK)

T
M

 (
m

3 /m
3 )

(d)

Figure 13. (a and b) The temporal mean (TM) of soil moisture at
2.5 cm as a function of estimated cable depths, (c) soil hydraulic, and
(d) thermal properties. Each symbol represents the temporal mean of
2.5 cm soil moisture estimated at one meter of the DTS cable.

Water Resources Research 10.1002/2016WR019031

DONG ET AL. HIGH-RESOLUTION SOIL MOISTURE MAPPING USING DTS 7705



Figure 14 shows the soil moisture at depths � 20 cm across this transect. Soil moisture along this 71 m of DTS
cable at 2.5 cm shows a fast response to the climatic forcing. The impact of the forcing dramatically decreases
with depth. Hence, the rapid increases in wetness following precipitation and the slow drying down are more
evident in the soil moisture at 2.5 cm. The horizontal stripes apparent in the soil moisture estimates represent
spatial variability. As shown in Figure 13, variance of the estimated soil moisture can be well explained by the
soil hydraulic properties, which is likely due to variations in soil texture. Below 20 cm, little spatial or temporal
soil moisture variability is observed. Similar to Figure 13, soil moisture estimates at this depth still have a
strong correlation with estimated soil hydraulic properties (h33), with a correlation coefficient of 0.48. This
means the variations of soil moisture due to spatial patterns in soil texture are still visible. Other factors, e.g.,
microtopography and vegetation, may also have impacts on the soil moisture spatial variability.

Figures 15a and 15b show the evolution of the statistics of the soil moisture spatial variability along this
transect, taking 2.5 cm soil moisture for illustration. No clear temporal pattern is shown in the standard devi-
ation of soil moisture, except that the spikes after rainfall. In data assimilation, no perturbation for precipita-
tion is used for days with zero precipitation, while a large multiplicative error is used for large precipitation
events. Hence, the larger standard deviation of the soil moisture is likely to occur during or shortly after rain-
fall events. The standard deviation of the soil moisture is not shown to be a strong function of the areal
mean soil moisture (Figure 15c). It also seems the soil moisture standard deviation slightly increases with
increased mean soil moisture, while several previous studies show soil moisture standard deviation reaches
the peak value when areal mean soil moisture is in the range of 0.17–0.23 m3=m3 [e.g., Vereecken et al.,
2007; Famiglietti et al., 2008]. However, various relationships between soil moisture and standard deviation
at intermediate scales were also found in previous studies, as summarized in Brocca et al. [2007]. The time
scale used for deriving standard deviation-mean soil moisture relationships also varies widely, which can
range from a few days to one year or longer, as summarized in Famiglietti et al. [1998]. This might indicate
the standard deviation-mean soil moisture relationship is sensitive to observation errors, soil properties, sea-
sonal impacts, and climatic forcing of the study area. The DTS data presented in this study are approximate-
ly 40 days. Hence, it might be helpful to further test the validity of the standard deviation-mean areal soil
moisture relationship detected along this transect by collecting longer DTS records.

The coefficient of variation (CV) of the soil moisture along this transect has a clear temporal signature (Fig-
ure 15b). In general, the CV of soil moisture at 2.5 cm is low during rainfall events (e.g., 1 May). The value of
CV increases during the dry down period (e.g., 1–12 May). This makes sense as soil moisture is essentially
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reinitialized by precipitation events, with sharply increased soil water content and decreased CV. The CV of
the soil moisture will start to increase again in the subsequent dry down process. CV is also shown to be a
strong function of the areal mean soil moisture (Figure 15d), which is consistent with previous studies [e.g.,
Famiglietti et al., 2008; Brocca et al., 2010; Bell et al., 1980]. This highlights the potential of using DTS to
observe and monitor the temporal and spatial soil moisture variability.

4. Conclusion

In this study, we demonstrated the potential of mapping meter resolution soil moisture and soil properties
along a 71 m DTS fiber optic cable using an adaptive Particle Batch Smoother (APBS). The estimated soil
moisture and properties were evaluated using field measurements at a nearby site. Results show that the
coefficient of variation and areal mean soil moisture relationship are consistent with previous studies [e.g.,
Famiglietti et al., 2008; Brocca et al., 2010; Bell et al., 1980]. This indicates that the high-resolution (spatial:
1 m, and temporal: 1 h) soil moisture pattern mapped using the DTS has the potential of providing insight
into the spatial and temporal evolution of soil moisture. This is the first study that tests the data assimilation
algorithms using real DTS data collected from a complex field installation, and demonstrates the feasibility
of assimilating DTS observations for high-resolution soil moisture monitoring. The high-resolution soil mois-
ture information derived from DTS could improve our understanding of soil moisture scaling techniques,
e.g., in Crow et al. [2012], and in particular will facilitate the validation of the downscaled soil moisture prod-
ucts [e.g., Kim and Barros, 2002; Piles et al., 2011; Peng et al., 2015]. In addition to soil moisture, high-
resolution soil properties and vegetation properties (LAI) can also be obtained, which are of potential inter-
est for modeling and experimental studies [e.g., Hazenberg et al., 2015; Niu et al., 2014; Wood et al., 2011].

The presented algorithm assumes the soil hydraulic and thermal properties are uniformly distributed in the
profile (from 0 to 1 m). As tested using data collected from four heterogeneous soil texture profiles in Dong
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et al. [2016b], limited impacts were shown on the estimates at the shallow depths, when the assumption of
homogeneous soil texture profile is violated. However, there is a need to further explore the impacts and
the potential solutions of estimating soil moisture using soil temperatures at places where the soil hydraulic
property profiles are strongly heterogeneous in the top 10 cm. The topography of the study area is flat, and
the ground water table is relatively deep. Hence, minimal lateral water flow is expected, particularly at shal-
low depths. However, at locations where lateral soil moisture transport is significant, an alternative forward
model (e.g., Hydrus-2D) should be used to account for lateral moisture transport and the sate vector should
include sates and soil properties along the cable.

Due to the difficulties in installing the cable at this site with relatively uneven terrain and dense vegetation,
the present study used data collected by only part of the DTS cables. The maturity of fiber optic cable installa-
tion techniques in recent years [Sayde et al., 2014] may be helpful in providing high-quality DTS observed soil
temperature for cables up to kilometers in length. Using hourly measured DTS soil temperature data at two
shallow depths already yields quite promising results. This suggests that hourly DTS data is sufficient, which
will significantly reduce the data management and processing efforts in the large scale DTS experiments.

In this study, an adaptive PBS approach (APBS) was presented that automatically tunes the PBS to avoid
severe weight degeneracy and improve parameter estimation. This obviates the need to assume that the
tuning factor is a constant, and allows the tuning factor to be determined ‘‘on-the-fly’’ in a statistically mean-
ingful way. The proposed APBS approach should also be valuable in other smoother applications in which
parameter estimation might be desirable e.g., stream flow prediction, snow water equivalent estimation,
and soil moisture reanalysis [e.g., Moradkhani et al., 2005a; Dechant and Moradkhani, 2011; DeChant and
Moradkhani, 2012; Margulis et al., 2015; Dunne and Entekhabi, 2005; Montzka et al., 2011; Yan et al., 2015].
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