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Abstract Surface meltwater ponding has been implicated as a major driver for recent ice shelf collapse as
well as the speedup of tributary glaciers in the northeast Antarctic Peninsula. Surface melt on the NAP is
impacted by the strength and frequency of westerly winds, which result in sporadic foehn flow. We
estimate changes in the frequency of foehn flow and the associated impact on snow melt, density, and the
percolation depth of meltwater over the period 1982–2017 using a regional climate model and passive
microwave data. The first of two methods extracts spatial patterns of melt occurrence using empirical
orthogonal function analysis. The second method applies the Foehn Index, introduced here to capture foehn
occurrence over the full study domain. Both methods show substantial foehn‐induced melt late in the melt
season since 2015, resulting in compounded densification of the near‐surface snow, with potential
implications for future ice shelf stability.

Plain Language Summary Surface melt and the ponding of water on the surface has been linked
to recent ice shelf collapse in the northeast Antarctic Peninsula, which includes the Larsen C ice shelf, one of
the regions in Antarctica that is most vulnerable to a changing climate. Melt can be caused either by high
temperatures or by foehn winds, that is, a hot, dry wind on the downwind side of a mountain range. To
determine when foehn winds occurred from 1982 to 2017, and how much surface melt they produced, we
use two methods. The first method finds recurring patterns of melt on the northeast Antarctic Peninsula
from both satellite observations and models and determines which patterns are produced by foehn
conditions. The second method uses simulated atmospheric conditions to determine when and over how
much surface area foehn conditions occur and then calculates the melt produced at the same time. Both
methods find high levels of foehn‐inducedmelt after the summer melt season occurring since 2015, resulting
in high‐density snow near the surface in regions where foehn winds are common. If similar conditions
persist into the future, late‐season and autumn melt could have substantial ramifications for the health of
the Larsen C ice shelf.

1. Introduction

Surface melt on the northeast Antarctic Peninsula (NAP) impacts the mass balance of grounded ice as well
as ice shelf stability (Barrand et al., 2013; Kunz et al., 2012; Scambos et al., 2004). Besides producing melt-
water runoff on the grounded part of the NAP (Hock et al., 2009), surface melt can indirectly lead to ice loss
through the process of ice shelf hydrofracture, whereby preexistent crevasses on floating ice shelves fill with
accumulating meltwater, leading to the ice shelf disintegration and tributary glacier speedup and thinning
(Glasser & Scambos, 2008; MacAyeal & Sergienko, 2013; Rott et al., 1998, 2011; Scambos et al., 2000,
2004; van der Veen, 1998; Vaughan & Doake, 1996; Weertman, 1973). The potential contribution to global
sea level rise from tributary glaciers resulting from the removal of the Larsen C ice shelf (LCIS) has been esti-
mated at <2.55 to 2,100 mm and <4.2 to 2,300 mm (Schannwell et al., 2018).

The fate of surface meltwater, that is, meltwater in the first meter of the snowpack, depends on the condi-
tions of underlying firn. Anomalously low accumulation, enhanced firn compaction, liquid water
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percolation, and/or refreezing can all lead to firn air depletion (Kuipers‐Munneke et al., 2014), in turn limit-
ing additional meltwater storage and promoting hydrofracture. While the surface of the LCIS was found to
be lowering due to a combination of surface melt and basal melt into the early part of this century (Holland
et al., 2015; Pritchard et al., 2012; Shepherd et al., 2003), surface height has increased since 2009 due to
reduced surface melt (Adusumilli et al., 2018), estimated at a loss of 1–2 days in melt duration from 1999
to 2017 (Bevan et al., 2018).

While the annual mean temperature over the NAP is 3–5 °C lower than over the western AP at the same
latitude (Morris & Vaughan, 2003; Van Wessem et al., 2015), strong melt pulses can be produced by the
foehn effect (Luckman et al., 2014), an episodic warm, dry air flow on the lee slopes of the NAP (Elvidge
& Renfrew, 2016). Studies focusing on the 2010–2011 summer have calculated foehn frequencies of 20%
in January to March (King et al., 2017) or 30% from November to March (Luckman et al., 2014).
Observations in other seasons have found that foehn is more prevalent in winter and spring
(Wiesenekker et al., 2018) and that 23% of the annual melt actually occurred in winter (Kuipers Munneke
et al., 2018). Recent years (2015–2017) have shown a series of strong, late‐season foehn‐induced surface melt
events (Bozkurt et al., 2018; Kuipers Munneke et al., 2018; Wiesenekker et al., 2018). However, due to the
limited spatial and temporal coverage of contemporaneous atmospheric, surface melt, and firn records, it
remains unclear how widespread these events are and how they influence snowpack conditions. Regional
climate models that couple an atmospheric model with a firn model provide a useful tool to address
this question.

In this study, we use output of the Modèle Atmosphérique Régionale (MAR) regional climate model v3.9 at
a 7.5‐km resolution as well as remote sensing microwave observations to present a long‐term (1982–2017),
spatially comprehensive, record of foehn intensity, surface melt, and firn conditions over the NAP.
Empirical orthogonal functions (EOFs) analysis allows us to capture the primary spatial patterns (modes)
of surface melt occurrence and compare modeled patterns to those retrieved independently from the space-
borne passive microwave (PMW) record. Composite modeled fields calculated from the EOF time series
then allow us to characterize the atmospheric conditions responsible for patterns of melt occurrence that
can be discerned on the surface. Subsequently, we introduce the Foehn Index (FI), which captures foehn
occurrence over both space and time, as a complementary method that quantifies foehn‐induced melt from
the perspective of the near‐surface atmosphere. A comparison between the two methods links large‐scale
atmospheric drivers to estimates for foehn at the surface. Both methods identify high foehn‐induced melt
in recent years in autumn (March and May) subsequent to the peak melt season (December, January, and
February); this sequence of years is anomalous in the context of the long‐term record. As a case study of
the effects of persistent late‐season foehn‐induced melt, we use the concurrent modeled snowpack time
series during these periods to investigate the impact of sporadic foehn‐induced melt events on the
firn layer.

2. Data
2.1. Regional Climate Model MAR

The MAR is an atmospheric regional climate model coupled to the Soil Ice Snow Vegetation Atmosphere
Transfer scheme surface model (De Ridder & Gallée, 1998), containing the multilayer snow model
Crocus (Brun et al., 1992). MAR has been evaluated extensively over Greenland (e.g., Fettweis et al.,
2017) as well regions of Antarctica (Agosta et al., 2019; Amory et al., 2015). An evaluation of an earlier ver-
sion of MAR (v3.6, run at a 10‐km resolution) found that the model underestimates melt frequency over the
NAP in comparison to satellite estimates (Datta et al., 2018). To remedy this bias, we use an updated version
of MAR (v3.9), which contains updates to the cloud scheme (Fettweis et al., 2017). Figure S1 in the support-
ing information compares both model versions with observations over the 2004–2005 melt season, showing
that melt occurrence is enhanced in the new version. Melt occurrence exceeds satellite estimates at the
northern edges of the LCIS but is comparable to QuikSCAT ft3 (see section 2.2) estimates at the southwes-
tern inlets. This suggests that while MAR v3.9 may overestimatemelt in the northern LCIS, this version com-
pares better to satellite estimates overall. A comparison of radiation budget components in both versions
during December 2004 (Figures S1e–S1i) shows increased cloud cover, longwave radiation, and decreased
values for all other radiation budget components. Wind direction (WD) values continues to compare well
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with values with those calculated at the Larsen ice shelf autonomous weather station; the limited impact of
slower modeled wind speeds on melt is discussed in Datta et al. (2018).

Daily melt occurrence estimated byMAR, for the purposes of this study, requires that total meltwater produc-
tion simulated by MAR exceeds 1 mm water equivalent per day, a threshold previously applied in studies
over Greenland (Franco et al., 2012). We note that the majority of meltwater is refrozen in the snowpack
and does not contribute to runoff.

2.2. Remote Sensing Data

Spaceborne microwave satellite data are only weakly affected by the presence of clouds, which is useful for
detecting melt occurrence over cloudy regions such as the NAP. Moreover, they provide a long historical
record of surface melt occurrence (from 1972 onward), encompassing our full study period (1982–2017).

PMW sensors, here at a 25‐km resolution, detect liquid water from the increase in brightness temperature
(Tb) associated with the presence of liquid water (Ashcraft & Long, 2006; Mote et al., 1993; Tedesco, 2007;
Ulaby & Stiles, 1980). The algorithm used in this study is a threshold‐based method based on the winter
mean Tb value, such that melt occurrence is determined when brightness temperatures exceed a threshold
(Tc), determined by the winter mean brightness temperature (Twinter) and a limit (ΔT), in this case set to
30 K. This algorithm is described by Zwally and Fiegles (1994):

Tc ¼ Twinter þ ΔT (1)

Additionally, surface melt over the LCIS is derived from the Copernicus Sentinel‐1 C‐band synthetic aper-
ture radar (SAR) data, here at 100‐m resolution. The reduced backscattering coefficient of wet snow com-
pared to dry snow/firn allows for the identification of surface melt based on satellite time series (Nagler
et al., 2016). The Sentinel‐1 SAR archive of descending passes over the LCIS was converted into a time
series of backscatter σo image by implementing (i) thermal noise removal, (ii) radiometric calibration,
and (iii) terrain correction using Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM) (Gorelick et al., 2017). The backscatter σo image time
series were subsequently corrected for variations in incidence angle by applying a gamma (γo) correction
(Small, 2011).

3. Materials and Methods
3.1. EOF Analysis

EOF analysis (Lorenz, 1956) is a method to associate a spatial pattern with a time series, reformatting K
observations of a data vector x to a set of M vectors u (modes or principal components), whose elements
are linear combinations of type x; a subset of M vectors can then capture the majority of variability in the
data set in a simplified way (Wilks, 1995).

In this study, K is a daily time series of maps of sustained melt occurrence, as determined from both PMW
and MAR over the period 1982–2017. Melt occurrence is calculated at the daily scale as a moving 5‐day sum
on the melt time series, in order to capture sustained melt at a synoptic time scale. This value is transformed
into a z score, that is, the number of standard deviations (SDs) from the period (1982–2017) mean daily value
with the annual cycle removed. The final modes are spatial maps. The composite values for atmospheric
variables are constructed by restricting the days used to those preceding the day when an EOFmode is strong
(i.e., when the PC time series value exceeds 0.03) and then subtracting each of these daily atmospheric values
(excepting WD) by the 1982–2017 seasonal mean (e.g., December, January, and February for summer) in
order to compute an anomaly. This allows us to capture anomalous atmospheric conditions that typically
initiate a melt pattern.

3.2. Foehn Index

This method, denoted as the FI, constructs a single time series that expresses what areal extent of the NAP is
foehn flow for what period of time. The FI is derived from simple criteria that have previously been applied
to in situ weather station observations (Cape et al., 2015; Speirs et al., 2013); here we use hourly outputs from
MAR at 2 m above the surface. The initiation of a foehn event (If) is associated with a change from a previous
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time step characterized by an increase in temperature (ΔT) of 1 °C, a decrease in relative humidity (ΔRH) of
5%, and an increase in wind speed (ΔWS) of 3.5 m/s, with the further requirement that WD should be wes-
terly (Steinhoff et al., 2014). The foehn event ceases when one of these conditions fails in reference to the
hour preceding foehn initiation. Foehn hours are hours (h) of a day (d) and grid cell (g) when

If g; d; hð Þ ¼ 1 if ΔT ¼ þ1°C; ΔRH<−5%; ΔWS>3:5 m=s; WD westerly (3)

The WD condition is determined by calculating the direction normal to the spine of the AP mountain range
and then defining WD values 30° west or east of this value as westerly. As different sensitivities were tested
with similar results, we opted to use the formula unchanged from previous literature (Steinhoff et al., 2014).

FI (in units of hr * m2) integrates the foehn hours over the region (i.e., total grid cells G), by

FI dð Þ ¼ ∑G
g¼1∑

24
h¼1If g; d; hð Þ (4)

Finally, the total meltwater production coincident with foehn flow (Mt in units ofGt) is computed as the sum
of total meltwater production simulated in the region (Gm) when the FI is positive.

Mt ¼ ∑Gm
g¼1∑

D
d¼1∑

24
h¼1If g; d; hð Þ*M g; d; hð Þ (5)

The mask (Gm), used throughout in the results to indicate where foehn winds are most common, contains
those pixels where at least 2 days foehn flow has occurred consistently for more than 6 hr at any point over
the 1982–2017 period during the month of January (Figure 3f), that is, the month when the spatial extent of
foehn flow is smallest.

4. Results
4.1. Surface Melt Patterns: EOF Modes 1 and 3

Figure 1 shows the first three EOF modes from both MAR and PMW, that is, the dominant spatial patterns
for sustainedmelt occurrence and the associated variance explained by eachmode. Themodeled EOFmodes
show substantial similarity to those computed from PMW (Figures 1a–1c vs Figures 1d–1f). EOF 1, the domi-
nant spatial pattern showing strong melt occurrence over the whole region, explains 53% (50%) of the total
variance in the time series for MAR (PMW). We determine the main atmospheric drivers associated with
each EOFmode by calculating composite anomalies of modeled variables preceding strong instances of each
mode as in section 3.1.

Foehn conditions are characterized by strong westerly winds leeward of the APmountain range and a loss of
moisture over the NAP, conditions that conform to conditions preceding strong EOF 1 and 3 events. Wind
composites for EOFs 1 and 3 (Figures 1–1j) show anomalously high‐speed winds east of the AP while
near‐surface RH composite anomalies show high RH west of the AP and drying to the east (Figures S2e
and S2o). Cloud cover composite anomalies indicate that EOFs 1 and 3 both show cloud clearing at lower
levels in the atmosphere (below 680 hPa), while only EOF 1 shows clearing persisting into higher levels in
the atmosphere (i.e., above 680 hPa; Figure S2). We find that both modes are associated with high enhanced
sensible heat input over the NAP that is driven by the strong turbulent mixing induced by warm westerly
winds. EOF 1 is distinguished from EOF 3 by a higher net shortwave radiation anomaly and a stronger signal
for each radiation balance component (Figure S3), leading to enhanced melt over the LCIS. The association
of EOF 1 and EOF 3 modes with foehn flow is further corroborated by a direct comparison with the FI from
2015 to 2016 (Figure 2e and section 4.2); we find that for 78% (68%) of days when EOF 1 (EOF 3) modes are
positive, the FI is greater than zero.

EOF modes associated with foehn flow (EOF 1 or EOF 3) (Figure 2a) as well as high FI values (Figure S4c)
appear more prevalent prior to 2009, the turning point after which altimetry observations began to show
increasing surface height over the majority of the LCIS and a decrease in western inlets (Adusumilli et al.,
2018). However, in recent years, a series of high melt events (where the total melt production exceeded
one SD from the monthly mean) have occurred after the climatological melt season (Figure S4b and S4d).
Major melt events occurring in March and May 2016, captured in both modeled and observed EOF modes
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and denoted in Figure 2a and elsewhere with a pink X and O, are discussed below. (Figures 2 and S4e).
EOF2, which is not associated with foehn flow, is discussed in the supporting information.

4.2. Foehn Occurrence: The FI

The FI, estimating foehn occurrence directly from near‐surface atmosphere outputs over the NAP, is highest
between July and September (Figure S4c), when foehn winds affect a larger surface area (Figure 2d) than
they do during the summer (Figure 2c). Melt produced during increasingly warmer conditions in autumn
or spring is enhanced by the more intense foehn flow typical during these seasons. The monthly mean
(SD) percentage of melt concurrent with a positive FI shows a minimum of 6% (4%) in January and a max-
imum of 66% (15%) in September.

In recent years, meltwater production has declined in the summer months (coincident with low FI) and
increased during autumn, when the FI is high. Overall meltwater production in the NE basin during
December and January before 2009 was higher (averaging 27 ± 10 Gt) than in years after 2009 (averaging
16 ± 7 Gt), although the FI remained within one SD of the mean post‐2009. We find that during anomalous
late‐season melt events (March 2015–2017 and May 2016), values for total meltwater production, FI values,
and meltwater produced concurrent with a positive FI, all neared or substantially exceeded 1 SD of the
monthly mean (Figures S4b–S4d). We note that the meltwater produced basin wide during May 2016

Figure 1. EOF modes (1982–2017) for (a–c) PMW and (d–f) MAR daily, shown with total variance explained for each mode (as described in the text). (h–j) Wind
speed anomaly and wind direction calculated as composites when the PC time series value >0.03 for each EOFmode. PMW= passive microwave; EOF = empirical
orthogonal function; MAR = Modèle Atmosphérique Régionale.
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exceeds meltwater production in any February or March since 2009 (Figure S4a). In the following sections,
we use the 2015–2017 period as a case study for the effects of compounded autumn melt events on
the snowpack.

4.3. Foehn‐Induced Melt From 2015 to 2016 and the Effect on the Snowpack

Sentinel SAR data, available at a spatial resolution high enough to capture even limited foehn‐induced melt,
confirm high melt occurrence in the Gm region during the March 2016 and May 2016 periods. (Figures 3a
and 3f). Concurrent model outputs show anomalously high meltwater production due to the intrusion of
westerly winds with limited blocking flow for both events, with a stronger wind and temperature signature
shown in May (Figure S5). The May 2016 event is characterized by anomalously high surface density at the
northern edges of the LCIS (Figures 3j and 3m). During this period, we find that meltwater percolation
depth, that is, the maximum depth at which volumetric liquid water content exceeds 4%, exceeds 2‐m depth
for substantial portions of the western edge of the ice shelf (Figures 3k and 3n). We find that March 2016
melt event showed less melt production (Figures 3b and 3e) as well as shallower meltwater percolation
(Figures 3d and 3g) than the May 2016 event.

4.4. Temporal Evolution of the Snowpack, 2015–2017

To understand the cumulative effect of late‐season melt anomalies leading into the 2016–2017 melt season,
we map properties of the snowpack as vertical profiles averaged over the Gm region (Figure 2c) for daily
averages from July 2015 to July 2017 and for monthly averages over the study period. Liquid water profiles
similar to the March events within 2015–2017 are found in 1988, 1993, and 1997 (Figure 4e) but have never
previously occurred in succession of years. The May 2016 event is unprecedented, during which the percola-
tion of liquid water exceeded a 2‐m depth (Figure 4f). During the 2016–2017 melt season, we find limited
liquid water present at substantial depths (Figures 4b, 4e, and 4f), unlike the 2015–2016 season
(Figure 4a). By January of 2017, and unlike previous January profiles, nearly all liquid water is retained at
the top of the snowpack (Figure S6a) and volumetric liquid water content exceeds 4% in only the first
0.3 m in the majority of the Gm region.

Figure 2. (a) Number of strong EOF occurrences/month, 1982–2017 period (i.e. pc > 0.03). (b) Meltwater production in the NE basin concurrent with a positive
foehn index. (c, d) Regions shown in white where more than two instances of sustained foehn flow have occurred over the given month over the 1982–2017
period (Gm). (e) Normalized values for the foehn index and PC time series for EOF 1–3 over the 2015–2016 period from July to June. X,O indicate March 2016 and
May 2016 melt events. EOF = empirical orthogonal function.
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Due to higher viscosity of wet snow and refreezing, the presence of liquid water has a substantial impact on
density in the upper layer (Figures 4c, 4d, and S6b–S6d). While January profiles in previous years were com-
parable to those of 2016 (Figure S6b), the winter (July) 2016 density profile, following the melt event in May,
showed anomalously high density in the upper level snowpack (i.e., above 0.4 m; Figure S6d).

From 2015 to 2017, the compounding densification due to late‐season melt reduced the capacity for addi-
tional refreeze in the modeled firn layer, resulting in enhanced runoff. Modeled meltwater production in
the Gm region during March of 2015–2017 exceeded 250% of the climatological average for March but
showed a decreasing trend for meltwater production (300%, 220%, and 190%, respectively) and refreeze
(240%, 220%, and 190%, respectively), while runoff increased (70%, 160%, and 210%, respectively).
Meltwater refreezing for May 2016 comprised 1674% of the climatological average for the months.

The depletion in firn air content accompanying anomalous late‐season melt reduces the capacity of firn to
retain melt near the surface in the following melt season, potentially leading to deeper percolation that heats
the firn column. In this version of CROCUS (Brun et al., 1992), when the snowpack reaches saturation, addi-
tional liquid water is retained in a reservoir, which can eventually be refrozen throughout the snowpack.
This formulation may artificially remove meltwater in firn at the bottom of the snowpack while generating
too much densification at the top. While the column model does not allow for lateral flow of water, thereby
ignoring englacial or basal pathways, future work with MAR will add meltwater pathways such as evapora-
tion and lake accumulation. Furthermore, MAR did not include the effects of blowing snow, which can
lower albedo and increase surface compaction, thus enhancing the effects of foehn‐induced melt on
the snowpack.

Figure 3. Six‐day composite Sentinel radar backscatter (dB) estimates around (a) 3 March 2016 (h) 2 May 2016. Coastlines/grounding lines provided from
MODIS, Mosaic of Antarctica (2004). Shown are the 2016 and mean meltwater production for March (b, e), May (i, l), snowpack density for March (c, f), May
(j, m), and maximum snowpack depth where liquid water content exceeded 4% for March (d, g) and May (k, n). MODIS = Moderate Resolution Imaging
Spectroradiometer.
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5. Conclusions

In this study, we extract foehn‐induced melt over the NAP from 1982 to 2017 using two methods applied to
regional climate model outputs; EOF analysis extracts atmospheric drivers for dominant surface melt pat-
terns while the FI is calculated based on near‐surface atmosphere outputs and then used to extract concur-
rent melt. The seasonal frequency of FI in this study conforms to earlier work finding a fall maximum and
summer minimum for foehn occurrence (Cape et al., 2015), and the modeled spatial extent for foehn flow
conforms to the same cycle. In recent years, both methods show lower values for foehn‐induced melt in
December and confirm a substantial increase during March (2015–2017) and May 2016, which are also
detected in SAR‐ and PMW‐based estimates as well as in previous work. We use these recent events as a case
study to discern the potential effect of late‐season melt on the snowpack, finding that, since 2015, a series of
anomalous bursts of late‐season melt have produced persisting densification in the upper level of the mod-
eled snowpack in the regions of the NAP where foehn flow is common.

Autumn and spring typically show greater intensity and spatial extent of foehn flow as well as a greater
potential for firn densification. Therefore, enhanced melt events during these shoulder seasons have the
potential to affect the percolation of liquid water into deeper layers and leave a lasting impact on the firn
layer, even if meltwater production in the summer continues to decrease in the future. Previous work has
proposed that ice shelf stability can be estimated from firn‐ice concentration (Alley et al., 2018) or firn air
content (Holland et al., 2011), presuming a seasonal cycle with firn air depletion during the summer

Figure 4. The effect of meltwater on the snowpack where foehn winds occur in January (mask shown in Figure 2). Mean daily liquid water content in kg water/kg
snow for (a) 2015–2016 and (b) for 2016–2017. (c and d) Same as Figures 4a and 4b for snowpack density. Average monthly liquid water content (in kg water/kg
snow) from 0 to 20 m into the snowpack for the 1982–2017 period for (e) May and (f) July. Note the change of scale in Figures 4e–4f.
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balanced by winter snowfall. Even occasional late‐season melt events may therefore disproportionately
affect the capacity of firn to retain liquid water and therefore ice sheet stability.
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