
 
 

Delft University of Technology

Dynamic transfer partial least squares for domain adaptive regression

Zhao, Zhijun; Yan, Gaowei; Ren, Mifeng; Cheng, Lan; Zhu, Zhujun; Pang, Yusong

DOI
10.1016/j.jprocont.2022.08.011
Publication date
2022
Document Version
Final published version
Published in
Journal of Process Control

Citation (APA)
Zhao, Z., Yan, G., Ren, M., Cheng, L., Zhu, Z., & Pang, Y. (2022). Dynamic transfer partial least squares for
domain adaptive regression. Journal of Process Control, 118, 55-68.
https://doi.org/10.1016/j.jprocont.2022.08.011

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jprocont.2022.08.011
https://doi.org/10.1016/j.jprocont.2022.08.011


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Journal of Process Control 118 (2022) 55–68

a

b

c

c
s
H
t
i
i
d
i
m
p
c
i

d
p
a
s
d

h
0

Contents lists available at ScienceDirect

Journal of Process Control

journal homepage: www.elsevier.com/locate/jprocont

Dynamic transfer partial least squares for domain adaptive regression
Zhijun Zhao a, Gaowei Yan a,∗, Mifeng Ren a, Lan Cheng a, Zhujun Zhu b, Yusong Pang c

College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
Shanxi Gemeng Sino-US Clean Energy R & D Center Co., Ltd., Taiyuan, 030031, Shanxi, China
Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, 2628CD, Netherlands

a r t i c l e i n f o

Article history:
Received 18 April 2022
Received in revised form 29 July 2022
Accepted 22 August 2022
Available online xxxx

Keywords:
Transfer learning
Dynamic partial least squares
Domain adaptive regression

a b s t r a c t

The traditional soft sensor models are based on the independent and identical distribution assumption,
which are difficult to adapt to changes in data distribution under multiple operating conditions,
resulting in model performance deterioration. The domain adaptive transfer learning methods learn
knowledge in different domains by means of distribution alignment, which can reduce the impact
of data distribution differences, and effectively improve the generalization ability of the model.
However, most of the existing models established by domain adaptation methods are static models,
which cannot reflect the dynamic characteristics of the system, and have limited prediction accuracy
when applied to dynamic system modeling under multiple operating conditions. The dynamic system
modeling methods can effectively extract the dynamic characteristics of the data, but they cannot
deal with the concept drift problem caused by the change of data distribution. This paper proposes
a new dynamic transfer partial least squares method, which maps the high-dimensional process data
into the low-dimensional latent variable subspace, establishes the dynamic regression relationship
between the latent variables and the labels, and realizes the systematic dynamic modeling, at the
same time, the model adds regular terms for distribution alignment and structure preservation, which
realizes dynamic alignment of data distribution difference. The effectiveness of the proposed method
is validated on three publicly available industrial process datasets.

© 2022 Published by Elsevier Ltd.
1. Introduction

Data-driven soft-sensing modeling strategies based on ma-
hine learning and multivariate statistical methods have been
uccessfully applied in the field of industrial process control [1].
owever, machine learning modeling methods need to satisfy
he assumption that the training data and prediction data are
ndependent and identically distributed (iid) [2]. In the actual
ndustrial process, the assumption of independent and identical
istribution is difficult to be satisfied due to the rapid changes
n production operating conditions and environment, resulting in
odel mismatch and a decrease in the prediction accuracy. This
henomenon of degrading model prediction performance due to
hanges in data statistical properties and underlying distributions
s known as concept drift [3].

The essence of the concept drift problem is that the training
ata streams used in the traditional machine learning modeling
rocess are static data streams, while the actual data streams
re time-varying dynamic data streams [4]. Due to resource con-
traints, the static data used for modeling cannot cover all pro-
uction conditions. When the operating conditions change, the

∗ Corresponding author.
E-mail address: yangaowei@tyut.edu.cn (G. Yan).
ttps://doi.org/10.1016/j.jprocont.2022.08.011
959-1524/© 2022 Published by Elsevier Ltd.
existing models cannot reflect the characteristics of the new con-
ditions, which will inevitably lead to model performance degra-
dation. For example, in the process of chemical production, the
performance of catalysts degrades and fails [5]; in the process of
solid waste incineration, the types of raw materials and physical
and chemical properties are different [6]; in the process of rolling
steel production, the specifications and batches of products pro-
duced are different, and the required operating conditions are
different [7].

In theory, re-acquiring data and training a new model can
solve the above-mentioned concept drift problem, but in prac-
tical applications, it is not easy to obtain enough training data,
especially labeled data, under a brand-new working condition,
some quality index data needs to be analyzed and obtained under
laboratory conditions, which is time-consuming, labor-intensive
and expensive.

Transfer learning [8] allows the use of data from different do-
mains and data distributions during training and testing, breaking
the traditional machine learning assumption that training and
testing data are independent and identically distributed. The data
under the existing working conditions are regarded as the source
domain, and the data under the unknown working conditions
are regarded as the target domain, by learning the knowledge of
the source domain and transferring the knowledge of the source

https://doi.org/10.1016/j.jprocont.2022.08.011
http://www.elsevier.com/locate/jprocont
http://www.elsevier.com/locate/jprocont
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jprocont.2022.08.011&domain=pdf
mailto:yangaowei@tyut.edu.cn
https://doi.org/10.1016/j.jprocont.2022.08.011
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omain to the target domain, the prediction accuracy on the
arget domain and the generalization ability of the model can
e improved. Domain adaptation method is the most commonly
sed method in transfer learning, it can improve the generaliza-
ion ability of the model by narrowing the data distribution gap
etween the source domain and the target domain.
Although related theories and methods of transfer learning are

ften found in the literature, most of them are based on classifi-
ation problems, and many transfer methods do not work well for
egression problems. The possible reason is that for classification
roblems, there are clear decision boundaries between different
ategories, through the transfer learning method, the decision
oundaries of different categories on the target domain will be
xpanded, which will help to improve the generalization ability
f the model at the target domain. But for regression problems,
he label space is continuous and there is no obvious decision
oundary [9]. For regression problems such as industrial soft
ensing, the situation is more complicated, because the actual in-
ustrial processes are mostly non-stationary time series [10], and
he data presents heteroscedasticity and dynamic characteristics,
herefore, the construction of soft sensing model should not only
onsider the problem of data drift, but also consider the dynamic
roblem of data. Most of the existing regression models are static
odels, in order to effectively improve the prediction accuracy
nd the generalization of the model, it is necessary to study the
ynamic transfer soft sensor model.
The data-driven soft sensor modeling method utilizes easily

ccessible auxiliary variables to establish a prediction model to
ealize the prediction of key quality indicators that are difficult to
easure directly [11,12]. Common soft-sensor modeling methods

nclude multivariate statistical methods represented by partial
east squares (PLS) [13], canonical correlation analysis (CCA) [14],
atent variable regression (LVR) [15], and machine learning meth-
ds represented by support vector machine (SVM) [16] and ex-
reme learning machine (ELM) [17]. As a modeling method for
upervised data analysis, partial least squares has been widely
sed in chemometrics and economics. The partial least squares
ethod projects the high-dimensional process data into the mu-

ually orthogonal low-dimensional latent variable space, which
an effectively eliminate the influence of data multicollinearity
hile reducing the dimension. The partial least squares method
xtracts the latent variables in the input (feature) space and the
utput (label) space respectively, so that the covariance between
he latent variables is maximized, and the quality variable is
xplained to the greatest extent while extracting the variation
nformation.

Most of the actual industrial process data has dynamic char-
cteristics, traditional multivariate statistical regression methods,
uch as principal component regression (PCR) [18], and partial
east squares (PLS) are all static models that cannot reflect the
ynamic characteristics of the system. To this end, a series of dy-
amically extended algorithms are proposed. Ku et al. proposed
DPCA [19] algorithm, which perform standard PCA analysis on

ime-lagged augmented data, this method fails to establish a dy-
amic relationship in the latent variable space, so it is still a static
odel in nature. Dong and Qin proposed the DiPCA [20] algorithm

o extract dynamic latent variables with the largest variance
elationship. Although this method establishes a dynamic model
f latent variables, as an unsupervised algorithm, it cannot be
sed for supervised regression soft sensing applications. Li et al.
roposed the DPLS [21] algorithm, which input the weighted
ombination of time-lagged data into the model to maximize the
inear combination of the latent variables in the feature space
nd the variance of the latent variables in the label space. Dong
nd Qin further improved the model, to achieve a dynamic model
DiPLS) [22] whose outer model is consistent with the inner
odel, making the model more interpretable.
56
Inspired by the above dynamic expansion method of partial
least squares, and considering the concept drift problem caused
by the difference of data distribution in the industrial process
of multiple working conditions, this paper proposes a dynamic
transfer partial least squares method (DTPLS), which maps high-
dimensional time-lagged augmented data into a low-dimensional
latent variable space, a dynamic regression model between latent
variables and labels is established, and the distribution dynamic
alignment regular term is added to the model to realize the
dynamic alignment of the distribution differences of the working
conditions. The direction of the data mapping can be obtained by
the Lagrange multiplier method to obtain a analytical solution.

The main contributions of this paper are as follows:
(1) This paper proposes a novel dynamic transfer partial least

squares algorithm (DTPLS) by considering the process dynamics
and distribution shift, which can solve the problem of concept
drift caused by the difference of data distribution in the industrial
process of multiple working conditions.

(2) Under the framework of structural risk minimization,
distribution alignment regularization and structure preservation
regularization are designed based on distribution differences and
smoothness assumptions, which effectively improve the general-
ization ability of the model.

The rest of the paper is organized as follows: Section 2 gives
a brief overview of related works, Section 3 reviews the existing
methods including traditional PLS and dynamic inner PLS, Sec-
tion 4 presents the proposed DTPLS algorithm and develops the
theoretical basis of the algorithm, Section 5 compares our algo-
rithm with existing methods on three public benchmark datasets
from industrial process, Section 6 presents theoretical analysis
and experimental verifications, Section 7 concludes the paper.

2. Related work

Complex industrial process data generally include: dynamic,
nonlinear, multi-scale, multi-modal and other process character-
istics [23–25]. Affected by the equipment inertia and closed-loop
control characteristics of the actual industrial control system,
the continuous observation values obtained by the monitoring
system are often sequence-related in time. Such a system whose
state variables change with time is called a dynamic system. The
samples generated by the dynamic system are time series with
autocorrelation, and the assumption of independent and identical
distribution among the samples is no longer satisfied.

The multi-modal characteristics of the data are due to the con-
tinuous adjustment of production equipment, raw materials and
environments with the change of production tasks, driven by the
diverse product market demands, resulting in the multi-working
conditions of the production process [26]. Multi-condition (multi-
modal) characteristics are caused by process nonlinearity, that is,
the process structure and parameters change due to the process
system operating at different equilibrium points. It is generally
considered that the working conditions are stable inside, and
there are different model structures or data distributions between
different working conditions.

Multi-condition soft sensor modeling methods can be di-
vided into multi-model integration methods and local modeling
methods. The multi-model integration methods divide the multi-
condition process into multiple single-condition processes to
establish models respectively, and use the corresponding single-
condition sub-model to predict [27]. The local modeling methods
are to select the samples with the highest similarity with the
current working condition data from the historical working con-
dition data for modeling, and the typical methods are the sliding
window(SW) and the just-in-time-learning(JITL) method [28,29].

The dynamic problem and the concept drift problem caused by
the change of data distribution are the two main problems in the
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ield of industrial multi-condition soft sensor, and there are rela-
ively few studies focusing on these two aspects simultaneously.
n order to achieve dynamic system modeling, Ku et al. Li et al.
ee et al. used direct data augmentation to extend the traditional
ultivariate statistical methods PCA, CCA, and PLS, respectively,
nd proposed DPCA [19], DCCA [30] and DPLS [31] method. How-
ver, this method of direct data augmentation cannot provide an
xplicit representation of the dynamic relationship of the system,
nd the extracted latent variables still have temporal correlations.
o this end, Dong and Qin proposed the dynamic inner model
odeling methods DiPCA [20], DiCCA [32], DiPLS [22], which
stablished the autoregressive relationship of latent variables in
he latent variable space, and expressed the dynamic relationship
f the system explicitly, make the model more interpretable. In
ddition, Xu et al. [33], Gao et al. [34] used slow feature analysis
SFA) method to establish an autoregressive model of a dynamic
ystem, providing a new idea for dynamic system modeling.
Aiming at the difference of working conditions caused by the

hange of data distribution under multiple working conditions,
iu et al. [35], Zhang et al. [36,37], Lou et al. [38] proposed com-
on feature extraction and special feature extraction method,
ommon features reflect the common information of the process
f multiple working conditions, and special features reflect the
nique information of each working condition. These methods
ivide the feature space into several orthogonal subspaces, and
onstruct statistics in each subspace to evaluate the process. The
bove research work provides a new research idea for multi-
ondition soft sensor modeling: different working conditions with
istribution differences have similar process mechanisms, using
he common features of similar working conditions and nar-
owing the feature differences between working conditions can
ffectively improve the modeling accuracy.
Under the framework of deep learning, Jiang et al. [9] used

n adversarial regressor to maximize the prediction error on
he target domain, and at the same time used an optimized
eature extractor to minimize the prediction error, realizing cross-
omain keypoint domain adaptive regression. Chen et al. [39]
sed an represent subspace distance to narrow the distribution
ifferences between different domains, and also proposed an un-
upervised transferable domain adaptation method for regression
roblems under the framework of deep learning. Du et al. [40]
sed the time-domain distribution matching method to match
he distribution of different periods to learn common knowledge
n different periods, which minimized the distribution differences
nd effectively improved the accuracy of regression prediction.
he transfer regression method based on deep learning has re-
eived extensive attention in recent years, and a large number
f studies have shown that the modeling method based on deep
earning can achieve better prediction results. However, deep
earning methods generally have many model parameters, poor
odel interpretability, long training time, and often require GPU
evices with large computing power.
In the field of actual industrial soft sensing, the economy

nd interpretability of the soft sensing model is the guarantee
or the model to move from theory to practical application. For
his reason, many researchers pay attention to the soft sensing
ransfer model under the shallow framework. Nikzad-Langerodi
t al. [41–43] reduced the distribution differences in different
omains by aligning the first and second moments of samples
nder the framework of nonlinear iterative partial least squares,
earned a domain-invariant representation of transfer regression
odel, and applied to the calibration of the instrument. Similarly,
uang et al. [44] used the Hilbert–Schmidt criterion to narrow
he distribution differences in different domains and proposed a
omain-adaptive partial least squares algorithm, and the method

s nonlinearly extended using the kernel trick.

57
The transfer learning methods of domain adaptation learn
common knowledge in different domains by means of distribu-
tion alignment, which reduce the influence of data distribution
differences and effectively improve the generalization ability of
the model. However, most of the models established by the
existing domain adaptation transfer methods are a static model,
which cannot reflect the dynamic characteristics of the system.
The dynamic system modeling methods can effectively extract
the dynamic characteristics of the data, but they cannot deal
with the concept drift problem caused by the change of data
distribution. Based on this, this paper proposes a new dynamic
transfer partial least squares modeling method, which maps the
high-dimensional process data into the low-dimensional latent
variable subspace, establishes the dynamic regression relation-
ship between the latent variables and the labels, realizes the
dynamic modeling of the system, at the same time, the model
adds a regular term for the distribution difference to realize the
dynamic alignment of the data distribution difference.

3. Existing methods

3.1. PLS

Given a feature input matrix X ∈ Rnxm, a label output matrix
Y ∈ Rnxd, where n is the number of samples, m is the input
feature dimension, and d is the output feature dimension. The
multivariate partial least squares algorithm decomposes the input
matrix X and the output matrix Y into the following bilinear
terms:

X = TPT+E =

A∑
a=1

tapa
T
+ E

Y = UQT+F =

A∑
a=1

uaqT
a + F

(1)

where T = [ t1,t2 · · · ,tA ] ∈ RnxA and U = [ u1,u2 · · ·uA, ] ∈ RnxA

are the input and output score matrices, respectively, P ∈ RmxA

and Q ∈ RdxA are the loading matrices, E ∈ Rnxm and F ∈ Rnxd

are the residual matrix, and A is the latent variable dimension,
which are generally obtained through cross-validation. PLS ex-
tracts the principal components ta and ua by projecting the input
and output matrices into their respective latent variable spaces
to maximize the covariance of the principal components ta and
ua. The regular mathematical expression is to solve the following
optimization problem:

max cov(ta,ua) = cTaY
TXwa (2)

s.t. ∥ ca ∥= 1, ∥ wa ∥= 1

where Xwa = ta, Yca = ua, wa is the input weight vector, and
ca is the output weight vector. The above objective formula can
be solved by the Lagrange multiplier method or the nonlinear
iterative method (NIPALS) [45].

3.2. DiPLS

It can be seen from the PLS objective that the model estab-
lished by the PLS algorithm is a static model. For the dynamic
data modeling problem, Dong and Qin proposed a dynamic PLS
algorithm DiPLS [22] as follows:

The sampled data obtained at time k are denoted as xk and yk,
and DiPLS establishes the following dynamic inner model in the
latent variable space:
uk = β0tk + β1tk−1 + · · · + βτ tk−τ + rk (3)
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here uk = yTkc, tk = xTkw, β = (β0, β1 · · · βτ )T is the vector
of autoregressive coefficients, rk is the residual, τ is the time-
lagged coefficient. The estimation ûk of the output score uk can
be achieved by a dynamic inner model:

ûk = β0tk + β1tk−1 + · · · + βτ tk−τ

= xTkwβ0 + xTk−1wβ1 + · · · + xTk−τwβτ (4)

= [xTkx
T
k−1 · · · xTk−τ ](β ⊗ w)

where, ⊗ is the Kronecker product. Maximize the covariance
between outer model uk and inner model ûk, the objective of
DiPLS can be constructed as:

max
N+τ∑
k=τ

cTyk[xTkx
T
k−1 · · · xTk−τ ](β ⊗ w) (5)

s.t. ∥ c ∥= 1, ∥ w ∥= 1, ∥ β ∥= 1

let Xi =
[
xixi+1 · · · xi+N

]T, for i = 0, 1, 2, . . . , τ ,
Zτ = [XτXτ−1 · · ·X0],
Yτ =

[
yτyτ+1 · · · yN+τ

]T
the above objective can be rewritten in matrix form:

max cTYτZτ (β ⊗ w) (6)
s.t. ∥ c ∥= 1, ∥ w ∥= 1, ∥ β ∥= 1

The Lagrange multiplier method can solve the above objective
formula.

4. Proposed method

4.1. Problem formulation

Define the existing working condition data Xs as the source
domain DS = {Xs, P}, and the unknown working condition data
Xt as the target domain DT = {Xt,Q }. The data from the source
domain obeys the probability distribution P(x), and the data from
the target domain obeys the probability distribution Q (x), P(x) ̸=

Q (x). h : X ∈ Rnxm
→ Y ∈ Rnxd is the mapping function

from feature space to label space. The purpose of multi-condition
transfer soft sensing is to learn an empirical label function ĥ : X ∈

Rnxm
→ Y ∈ Rnxd through the knowledge of existing operating

conditions (source domain), so that its expected error under un-
known operating conditions (target domain) is minimized, which
is:

min εT (ĥ, h) = EX∼Q

[
|ĥ − h|

]
(7)

According to the structural risk minimization (SRM) [46], ĥ =

argmin loss(h(x), y) + R(h), where loss(h(x), y) is empirical risk
on data samples, R(h) is the regularization term. For our task,
the target domain samples are unlabeled, we can only perform
the empirical risk minimization on the source domain. In or-
der to minimize the distribution difference between the source
and target domains, a distribution alignment regularization term
is added. Moreover, another regularization term for structure
preservation is added based on the smoothness assumption. We
will describe our method in detail.

4.2. Latent space empirical risk minimization

We build an empirical loss function by minimizing the squared
loss of the source domain output score us

k and its inner model
estimation ûs

k:

LL2 =
1
N

N+τ∑(
us
k − ûs

k

)2

k=τ

58
=
1
N

N+τ∑
k=τ

((
ysk

)T c −

[(
xsk

)T (
xsk−1

)T
· · ·

(
xsk−τ

)T]
(β ⊗ w)

)2

=
1
N

∥ Ys
τ c − Zs

τ (β ⊗ w) ∥
2 (8)

where Zs
τ and Ys

τ are the time-lagged data augmentation ma-
trices of the source domain data. Note that ∥ (β ⊗ w) ∥

2
=

(β ⊗ w)T (β ⊗ w) = 1, according to the triangle inequality, the
above formula can be further derived as follows,

∥ Ys
τ c − Zs

τ (β ⊗ w) ∥ ≤∥ Ys
τ c(β ⊗ w)T − Zs

τ ∥∥ (β ⊗ w) ∥

=∥ Ys
τ c(β ⊗ w)T − Zs

τ ∥ (9)

DiPLS builds a dynamic model by maximizing the covariance
of the score ûk of the inner model and the score uk of the
outer model, different from this method, this paper constructs a
dynamic model by empirical risk minimization. Although it can be
proved that the maximum variance and the minimum error are
equivalent, we can obtain an upper bound on the learning error
by formula (9), thereby effectively reducing the risk of overfitting.

4.3. Distribution alignment and structure preservation

In order to align the distribution of the source domain and
the target domain and reduce the distribution difference, on the
basis of the above empirical risk minimization, a distribution
alignment regular term is introduced, the source domain and the
target domain are aligned with the dynamic variance of the latent
variable space pivot to reduce distribution difference on domain
and target domain:

LDA = |
1
ns

(β ⊗ w)T
(
Zs

τ

)T Zs
τ (β ⊗ w)

−
1
nt

(β ⊗ w)T
(
Zt

τ

)T Zt
τ (β ⊗ w) | (10)

here Zs
τ and Zt

τ are the time-lagged data augmentation matrices
on the source and target domains, ns and nt are the number of
amples, respectively.
In addition, considering that the industrial process data is con-

trained by the physical mechanism, the value cannot be changed
uddenly, such as the collected liquid level, pressure, temperature
nd other signals should remain relatively stable in adjacent
ampling periods, and the realistic factors of oversampling in
he process of process data acquisition, this paper proposes a
moothness hypothesis: the difference between the data of adja-
ent sample points in the latent variable space should be as small
s possible. The above smoothness hypothesis constitutes another
egular term in this paper, structure-preserving regular terms:

SP =∥ Żs
τ (β ⊗ w) ∥

2
2 + ∥ Żt

τ (β ⊗ w) ∥
2
2 (11)

here, Żs
τ and Żt

τ are the first-order differences of the time-lagged
ata augmentation matrices on the source and target domains.

.4. Structural risk minimization

The above distribution alignment regular term, structure
reservation regular term and empirical distribution minimiza-
ion function together constitute the structural risk minimization
bjective of this paper:

in J =∥ Ys
τ c(β ⊗ w)T − Zs

τ ∥
2
F +λLDA+γLSP (12)

s.t. ∥ c ∥= 1, ∥ w ∥= 1, ∥ β ∥= 1

here λ and γ are tradeoff coefficients.
The overall architecture of the proposed approach is shown in

ig. 1.
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in different domains is achieved by aligning the variance of the latent variables, and the first-order difference of the augmented data in the source domain and the
target domain is minimized to maintain the structure of the data. LDA and LSP are the losses of domain adaption and structure preservation, respectively.
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Eq. (12) define an optimization problem for a multiple-input
multiple-output system, for a multiple-input single-output sys-
tem, c = 1, let Ys

τ = ysτ ∈ Rnx1, D =
1
ns

(
Zs

τ

)T Zs
τ −

1
nt

(
Zt

τ

)T Zt
τ ,

=
(
Żs

τ

)T Żs
τ +

(
Żt

τ

)T Żt
τ , Eq. (12) can be rewritten as:

in J =∥ ysτ (β ⊗ w)T − Zs
τ ∥

2
F +λ|(β ⊗ w)TD (β ⊗ w) |

+γ ((β ⊗ w)TΓ (β ⊗ w)) (13)
s.t. ∥ w ∥= 1, ∥ β ∥= 1

ue to DT
= D, eigenvalue decomposition can be performed on

t, D = VΛVT, Λ = diag(λ1λ2 · · · λk), let v = [v1v2 · · · vk] =

β ⊗ w)TV,

(β ⊗ w)TD (β ⊗ w) | = |(β ⊗ w)TVΛVT (β ⊗ w) |

= |v2
1
λ1 + v2

2
λ2 + · · · + v2

kλk|

≤ |v2
1
λ1| + |v2

2
λ2| + · · · + |v2

kλk|

= v2
1
|λ1| + v2

2
|λ2| + · · · + v2

k |λk|

= (β ⊗ w)TV |Λ|VT (β ⊗ w) (14)

here |Λ| = diag(|λ|1 |λ2| · · · |λk| ), let D′
= V |Λ|VT, from

qs. (13) and (14), an upper bound of empirical risk can be further
etermined, and the objective is:

inJ =∥ ysτ (β ⊗ w)T − Zs
τ ∥

2
F +(β ⊗ w)T(λD′

+ γΓ) (β ⊗ w) (15)
s.t. ∥ w ∥= 1, ∥ β ∥= 1

here (β ⊗ w) = (β ⊗ Im)w = (Iτ ⊗ w)β.
It can be seen from Eq. (15) that the objective function to be

olved is a convex function, and the closed-form solution can be
btained by the Lagrange multiplier method as:

∂ J
∂w

= 0 ⇒ w =

[
(β ⊗ Im)T(I +

λD′
+ γΓ(

ysτ
)T ysτ )(β ⊗ Im)

]−1

×
(β ⊗ Im)T

(
Zs

τ

)T ysτ(
ysτ

)T ysτ (16)

∂ J
∂β

= 0 ⇒ β =

[
(Iτ ⊗ w)T(I +

λD′
+ γΓ(

ysτ
)T ysτ )(Iτ ⊗ w)

]−1

×
(Iτ ⊗ w)T

(
Zs

τ

)T ysτ(
ysτ

)T ysτ (17)

s
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By solving the above formula, the weighting vector w can be
obtained. The scores of source domain can be computed by ts =

ts0, t
s
1, . . . , t

s
N+τ ]

T
= Xsw. Let tsi = [tsi , t

s
i+1, . . . , t

s
N+i]

T, we can
onstruct the time-lagged score matrix Ts

τ = [tsτ , tsτ−1, . . . , t
s
0].

he scores of target domain can be computed by tt = Xtw.
The inner model estimation ûs

τ = α0tsτ + α1tsτ−1 + · · · +

τ ts0 = Ts
τα, we can get the autoregressive coefficients vector

=

[(
Ts

τ

)T Ts
τ

]−1(
Ts

τ

)Tysτ .
The loading vectors of source and target domains can be

erived as
ps

= (Xs)Tts/ (ts)T ts, pt
=

(
Xt

)Ttt/ (
tt
)T tt.

Deflation of Xs, Xt and ysτ are performed as
Es

= Xs
− ts (ps)T ⇒ Xs, Et

= Xt
− tt

(
pt

)T
⇒ Xt, Fs =

s
τ − ûs

τ ⇒ ysτ .
Repeat the above steps until the required A latent variables

re extracted, and we get the weighting matrix W = [W,w], the
oading matrix P = [P, ps], the regression matrix R = W(PTW)−1

and autoregressive coefficients matrix B = [B, α].
The predict label for samples xtk in the target domain is calcu-

ated as
t
k = Sum([xtk, x

t
k−1, . . . , x

t
k−τ ]

TR ⊙ B) (18)

here ⊙ is the Hadamard product, Sum is the matrix element-
ise sum operator.
The steps of DTPLS algorithm are described in Algorithm 1.

.5. Hyperparameter selection

The DTPLS algorithm has 4 hyperparameters: the latent vari-
ble dimension A, the time-lagged coefficient τ , the structure-
reserving regular item tradeoff coefficient γ , and the domain
daptation regular item tradeoff coefficient λ. It can be seen
rom the algorithm that when γ and λ are both set to zero, the
lgorithm falls back to the DiPLS algorithm, When τ , γ and λ

re all set to zero, the algorithm falls back to the PLS algorithm.
n order to reduce the amount of calculation, the selection of
yperparameters in this paper adopts a two-step cross-validation
ethod. First, set γ and λ to 0, and obtain the latent variable di-
ension A and time-lagged coefficient τ through cross-validation.
econdly, according to the obtained latent variable dimension A
nd time-lagged coefficient τ , use cross-validation again to obtain

tructure-preserving regular tradeoff coefficient γ and domain
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Table 1
Comparison methods used in the paper.
Method NIPALS DIPALS DiPLS TCA+DiPLS CORAL+DiPLS DTPLS

Dynamic or static Static Static Dynamic Dynamic Dynamic Dynamic
Distribution alignment No Yes No Yes Yes Yes
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Algorithm 1 DTPLS algorithm
Input: Source domain data Xs , ys , target domain data Xt , latent variable dimension

A, time-lagged coefficient τ , tradeoff coefficient γ and λ

Output: Regression matrix R, autoregressive coefficients matrix B, target domain
label yt

1: (Initialization):Data normalization and initialize β = [1, 0 · · · , 0]T
2: for i in [1, A] do
3: while β not converged do

(Projection):
4: Calculate the input weight vector w by formula (16) and normalize w =

w/ ∥w∥

5: Calculate the autoregressive coefficient β by formula (17) and normalize
β = β/ ∥β∥

6: end while
(Regression):

7: Calculate the score vectors for Xs and Xt : ts = Xsw, tt = Xtw
8: Constructing the time-lagged score matrix Tsτ = [tsτ , ts

τ−1 · · · , ts0]

9: Calculate autoregressive coefficients vector α =

((
Tsτ

)T Tsτ
)−1(

Tsτ
)Tysτ

(Deflation):
10: Calculate inner model estimates Ousτ = Tsτ α

11: Calculate the loading vectors for Xs and Xt: ps =
(
Xs)T ts/

(
ts

)T ts , pt =(
Xt)T tt/

(
tt

)T tt

12: Calculate the residual matrix Es = Xs
−ts

(
ps

)T
⇒ Xs , Et = Xt

−tt
(
pt

)T
⇒ Xt ,

Fs = ysτ −Ousτ ⇒ ysτ
13: P = [P, ps], W = [W,w], B = [B, α]

14: end for
15: R = W(PTW)−1 ,
16: Calculate target domain label yt by formula (18)

adaptation regular tradeoff coefficient λ. Since the target domain
ata is unlabeled, we use the labeled source domain data for
ross-validation.
It is worth noting that there are many ways to optimize hy-

erparameters, such as random search, grid search, Bayesian op-
imization, heuristic algorithms, etc. The cross-validation method
hosen here is to prove the effectiveness of the method proposed
n the paper, and other more effective parameter optimization
ethods will be developed in the follow-up research.

. Experiments

To verify the effectiveness of the proposed method, we con-
ucted experiment on three publicly available industrial process
atasets, the Tennessee Eastman (TE), the Debutanizer, and the
ulfur Recovery Unit (SRU) datasets, respectively. The comparison
ethods include the Non-linear Iterative Partial Least Squares

NIPALS) algorithm in [45], Domin-invariant Iterative Partial Least
quares (DIPALS) algorithm in [41], Transfer component analysis
TCA) in [47], Correlation alignment (CORAL) [48] and Dynamic
nner PLS (DiPLS) algorithm in [22]. Among them, NIPALS is a tra-
itional soft sensor modeling method, DiPLS is a classical dynamic
atent variable modeling method, NIPALS and DiPLS are used as
he baseline. The rest are soft sensor methods based on transfer
earning. DIPALS aligns second-order statistics in the framework
f nonlinear iterative least squares. TCA performs marginal dis-
ribution alignment and CORAL performs second-order subspace
lignment. TCA and CORAL are unsupervised alignment methods,
n order to consider the distribution differences and dynamic
haracteristics of the system at the same time, we first use the
wo methods for distribution alignment, and then use DiPLS to
uild a regression model on the aligned data. We conclude the
omparison methods in Table 1.
 v
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Table 2
Prediction error of different methods on TEP dataset.
Method NIPALS DIPALS DiPLS TCA+DiPLS CORAL+DiPLS DTPLS

MSE 1.032 1.053 0.835 0.815 0.886 0.667
MAE 0.803 0.817 0.737 0.731 0.755 0.655
R2 0.296 0.282 0.431 0.445 0.396 0.545

5.1. TEP data set

TE dataset: The TE process dataset was created by Eastman
Chemicals, a chemical model simulation platform based on real
industrial processes [49]. The TE process consists of five main
units: reactor, condenser, compressor, separator and stripper,
with a total of 22 continuous process variables XMEAS(1–22),
12 manipulated variables XMV(1–12), 19 component variables
XMEAS(23–41). Select 22 continuous process variables XMEAS(1–
22) and 12 manipulated variables XMV(1–12) as input variables,
component variables XMEAS(38) as output variables, 500 data
as training set (source domain), 960 data is used as the test set
(target domain), and the data is pre-normalized.

First, the baseline model DiPLS latent variable dimension A =

, time-lagged coefficient τ = 3 is obtained by cross-validation.
n order to make a fair comparison and eliminate the influence
f the latent variable dimension and the time-lagged coefficient
n the model, fix the latent variable dimension A and the time-
agged coefficient τ , and obtain the domain adaptation regular
radeoff coefficient λ and structure-preserving regular tradeoff
oefficient γ through cross-validation again. The final predictions
f NIPALS, DIPALS, DiPLS, TCA, CORAL and our method (DTPLS)
nder TEP data are shown in Fig. 2. Because of the lower sam-
ling rate, there is only one measured value out of every five
ata points for the component variables XMEAS(38), the rest are
rtificial, so only 1/5 of samples are compared. For the NIPALS
lgorithm, the dimension of the latent variable is A = 5. For
he DIPALS algorithm, the dimension of the latent variable is

= 5, the regularization parameter λ = 2670. For the DiPLS
lgorithm, the dimension of the latent variable is A = 5, the
elay coefficient τ = 3. For the DTPLS algorithm, the dimension
f the latent variable is A = 5, the time-lagged coefficient τ = 3,
= 780, γ = 430. For TCA and CORAL, the parameters are the

ame as those of DiPLS, we only perform spatial transformation
ithout dimensionality reduction. The predicted error indicators
re shown in Table 2.

.2. Debutanizer data set

The debutanizer dataset [50] comes from a real industrial
ontinuous distillation process, which contains a total of 7 input
ariables, respectively x1 top temperature, x2 top pressure, x3
eflux flow, x4 flow to next process, x5 VI tray temperature, x6
ottom temperature 1, x7 bottom temperature 2, 1 output vari-
ble is the bottoms butane concentration. The entire dataset has
total of 2394 samples. This paper selects the first 1100 samples
s the training set (source domain) and the rest 1394 samples
s the test set (target domain). The final predictions is shown in
ig. 3. Due to the lower sampling rate, there is only one measured

alue out of every ten data points for the output variable, the
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Fig. 2. Prediction results of different methods on the TEP dataset.
Table 3
Prediction errors of different methods on the Debutanizer dataset.
Method NIPALS DIPALS DiPLS TCA+DiPLS CORAL+DiPLS DTPLS

MSE 0.034 0.032 0.019 0.035 0.019 0.012
MAE 0.146 0.135 0.010 0.122 0.100 0.074
R2 −0.057 0.004 0.401 −0.093 0.400 0.626

rest are artificial, so only 1/10 of samples are compared. For the
NIPALS algorithm, the dimension of the latent variable is A = 6.
For the DIPALS algorithm, the dimension of the latent variable
is A = 6, the regularization parameter λ = 420. For the DiPLS
algorithm, the dimension of the latent variable is A = 6, the time-
lagged coefficient τ = 19. For the DTPLS algorithm, the dimension
of the hidden variable is A = 6, the delay coefficient τ = 19,
λ = 480, γ = 5. For TCA and CORAL, the parameters are the
same as DiPLS, and we also only perform spatial transformation
without dimensionality reduction. The predicted error indicators
are shown in Table 3.
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5.3. SRU data set

The sulfur recovery unit dataset [51] is the upstream unit of
the distillation column dataset, and the data contains 5 input
variables and 2 output variables, input variables are x1 MEA gas
flow, x2 first air flow, x3 s air flow, x4 SWS zone gas flow, x5
SWS zone air flow, the output variables is H2S and SO2 con-
centration. The entire data set contains 10081 data samples. In
this paper, the first 5000 samples are used as the training set
(source domain), and the remaining samples are used as the test
set (target domain) to predict the SO2 concentration. The final
predictions is shown in Fig. 4. Due to the lower sampling rate,
there is only one measured value out of every ten data points for
the output variable, the rest are artificial, so only 1/10 of samples
are compared. For the NIPALS algorithm, the dimension of the
latent variable is A = 3. For the DIPALS algorithm, the dimension
of the latent variable is A = 3, the regularization parameter
λ = 67700. For the DiPLS algorithm, the dimension of the latent
variable is A = 3, the delay coefficient τ = 13. For TCA and
CORAL, the parameters are the same as those of DiPLS. For the
DTPLS algorithm, the dimension of the hidden variable is A = 3,
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Fig. 3. Prediction results of different methods on the Debutanizer dataset.
Table 4
Prediction errors of different methods on the SRU dataset.
Method NIPALS DIPALS DiPLS TCA+DiPLS CORAL+DiPLS DTPLS

MSE 2.52 × 10−3 2.46 × 10−3 1.42 × 10−3 2.33 × 10−3 1.44 × 10−3 0.59 × 10−3

MAE 0.037 0.037 0.029 0.037 0.029 0.018
R2 −0.007 0.015 0.433 0.070 0.425 0.766
the delay coefficient τ = 13, λ = 1900, γ = 700. The predicted
error indicators are shown in Table 4.

5.4. Experimental results

Through the comparative experiments on the above three
industrial process data sets, it can be seen that for the dynamic
industrial process data, the traditional static modeling method
(NIPALS) has limited modeling accuracy, while the domain adap-
tation method based on the static model (DIPALS) cannot fur-
ther improve the accuracy of the model. The dynamic modeling
method (DiPLS) and the dynamic transfer method (DTPLS) based
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on the dynamic model can effectively improve the prediction
accuracy of the model. This is because the static transfer method
(DIPALS) only aligns the latent variable variance of the feature
space. When the concept drift occurs in the process, the latent
variable method that only aligns the feature space cannot directly
reflect the drift characteristics of labels. It is worth noting that
although TCA and CORAL are also modeling methods based on
dynamic transfer, they have not been able to further improve
the prediction accuracy, and even the phenomenon of negative
transfer has occurred. This is because TCA and CORAL do not
consider the mapping relationship between features and labels
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Fig. 4. Prediction results of different methods on the SRU dataset.
during the transfer process, and the transfer process may de-
stroy the mapping structure of features and labels. By contrast,
the dynamic transfer method (DTPLS), on the basis of dynamic
modeling, aligns the variance of the latent variables in the label
space, and introduces the assumption of smoothness to maintain
the structure of the latent variables in the label space, which can
effectively deal with the problem of label concept drift.

5.5. Hyperparameter analysis

The dimension of the latent variable space is an important
parameter that constitutes the latent variable space, and the
latent variable dimension (1 ≤ A ≤ m) is generally obtained
through cross-validation. In order to observe the influence of the
latent variable dimension on the final prediction effect, different
dimensions were selected for experiments on different data sets.
Fig. 5 shows the variation of the final predicted mean square
error (MSE) with the dimension of the latent variable. It can be
seen from this figure that with the increase of the dimension
of the latent variable, the mean square error generally shows
63
a downward trend. When the dimension increases to a certain
value, the mean square error no longer decreases, forming the
so-called ‘‘elbow point’’. This is because when the latent variable
dimension is low, the model residual contains useful knowledge
related to labels. As the dimension gradually increases, the useful
knowledge learned by the model also increases gradually, when
the residual only contains noise, increasing the dimension at this
time will not only fail to improve the performance of the model,
but will tend to deteriorate the model. This feature is consistent
with the latent variable characteristics of PCA and PLS algorithms,
further indicating that the dynamic augmentation of data and
dynamic variance alignment do not affect the spatial structure of
latent variables.

The time-lagged coefficient is another important parameter of
the algorithm in this paper. For the actual industrial process, the
inherent time-lagged coefficient of the system can be obtained by
the method of system identification. For the data-driven model-
ing method, only the data is obtained, so the time-lagged coeffi-
cient can only be obtained by the method of cross-validation. In
view of the influence of the time-lagged coefficient on the sys-

tem prediction error, different time-lagged coefficients between
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Fig. 5. The influence of latent variable space dimension on prediction results.
Fig. 6. The influence of the time-lagged coefficient on the forecast results.
Fig. 7. The influence of latent variable space dimension and time-lagged coefficient on prediction results .
and 50 are selected, and the curve of the mean square error
hanging with the time-lagged coefficient is obtained as shown
n Fig. 6. It can be seen from this figure that when the selected
ime-lagged coefficient is smaller than the inherent time delay
oefficient of the system, the prediction error of the model grad-
ally decreases with the increase of the time-lagged coefficient.
hen the time-lagged coefficient is larger than the inherent

ime-lagged coefficient of the system, the model prediction error
tarts to increase. A large time-lagged coefficient will lead to a
ultiple expansion of the data, increasing the amount of data
perations, while a large time-lagged coefficient will lead to a
maller training error, which brings the risk of overfitting.
When the latent variable dimension and the delay time change

t the same time, we can further obtain the 3D mapping surface
raph of the mean square error with the change of these two
arameters, as shown in Fig. 7, the dark part of the figure is the
inimum point of the mean square error. It can be seen from

his figure that with the increase of the latent variable dimension
nd the delay time, the mean square error shows a downward
rend. When it exceeds a certain threshold, the mean square
rror begins to rise, which is consistent with the two-dimensional
nalysis process. In addition, it can be seen from the 3D surface
ap that on the SRU dataset, the overall model error function is
mooth and convex, and the system has a global optimal solution.
In order to verify the effectiveness of the domain adaptation
egularization term proposed in this paper, the latent variable
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dimension and the time-lagged coefficient are fixed on the three
data sets respectively, and structure-preserving regular tradeoff
coefficient is set to 0. The selection range of the domain adapta-
tion regular term is: [0, 20000], and the curve of the obtained
predicted label mean square error with the parameter of the
domain adaptation regular term is shown in Fig. 8. It can be seen
from this figure that for the TEP dataset and the Debutanizer
dataset, the mean square error of prediction can be effectively
reduced by giving a larger domain adaptation regular parameter.
For the SRU dataset, an appropriate domain-adaptive regular
parameter must be selected, and an excessively large domain-
adaptive regular parameter will cause the model performance to
deteriorate, resulting in negative transfer.

At the same time, in order to verify the effectiveness of the
structure-maintaining regular term proposed in this paper, the
dimension of the latent variable and the time-lagged coefficient
are fixed, and the domain adaptation regular tradeoff coefficient
is set to 0. The selection range of the structure-preserving regular
term is: [0, 20000]. The obtained curve of the predicted label
mean square error with the structure-maintaining regularization
parameter is shown in Fig. 9. It can be seen from this figure that
by giving a larger structure-maintaining regularization parame-
ter, the mean square error of the prediction can be effectively
reduced, and when the value of the regularization parameter ex-
ceeds a certain threshold, its numerical value has little influence
on the prediction result, so that the algorithm is not sensitive to

the selection of this parameter.
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Fig. 8. The influence of the domain adaptation regular term on the prediction results .
Fig. 9. The influence of structure-preserving regularization term on prediction results .
Fig. 10. The influence of structure-preserving coefficient and the domain adaptation coefficient on prediction results.
w

When the structure-preserving regular coefficient and the
domain adaptation regular coefficient change at the same time,
we can further obtain the 3D mapping surface graph of the mean
square error with the change of these two parameters, as shown
in Fig. 10. We can see that when both parameters are small,
the domain adaptation regularization parameter plays a domi-
nant role, and when both parameters are large, the structure-
preserving parameter plays the dominant role. However, the
overall trends tend to be flat, indicating that forecast errors are
not sensitive to these two parameters.

6. Theoretical analysis and experimental verification

6.1. Theoretical analysis

Most transfer learning theories stem from Ben-David’s pio-
neering work [52], for a binary classification problem, the target
domain error can be bounded by the following three terms:

εT (h) ≤ εS(h) + d1(DS,DT ) + min
{
EDS [|fS(x) − fT (x)|]

, EDT [|fS(x) − fT (x)|]
}

(19)

where εT (h) is the target error; the first term εS(h) is the source
error, which a training algorithm might seek to minimize; the
second term d1(DS,DT ) is the Total Variation Distance which
often used to express the difference between two distributions;
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the third is the difference in labeling functions across the two
domains, which is expected to be small. In above bound, the
distribution distance is the main problem.

Nikzad-Langerodi et al. [41] further extended the above theory
to take into account the latent variable space, proved that the
upper bound of the error is:

EX∼Q

[
|ĥ − h|

]
≤ EX∼P

[
|ĥ − h|

]
+

√
2D(NP̃ ∥ NQ̃ ) + η(g) +

√
8ζ

η(g) = inf(EP [|f ◦ g − h|] + EQ [|f ◦ g − h|]) (20)

ζ = max{D(NP̃ ∥ P̃),D(NQ̃ ∥ Q̃ )}

here, ĥ = f ◦ g , g is the mapping function from feature space
to latent variable space, g : X ∈ Rnxm

→ T ∈ RnxA, f is
the mapping function from the latent variable space to the label
space, f : T ∈ RnxA

→ Y ∈ Rnxd, ◦ is the compound operation
of the function. P̃ and Q̃ are the corresponding distributions of
latent variables in the source and target domains, NP̃ and NQ̃
are the normal distribution approximation of distribution P̃ and
distribution Q̃ , D(· ∥ ·) is the corresponding KL divergence. The
above content can be visually represented by Fig. 11.

The formula (20) shows that the upper bound of the target
domain error EX∼Q

[
|ĥ − h|

]
can be determined by the source

domain error E
[
|ĥ − h|

]
, the distribution difference
X∼P
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Fig. 11. Latent space representation.

2D(NP̃ ∥ NQ̃ ) between the source domain and the target do-
ain, the mapping error η(g) and the distribution approximation
rror ζ .
For dynamic systems with distribution differences, the dy-

amic modeling method presents higher modeling accuracy than
he static modeling method, and the dynamic modeling method
an effectively fit the data, so the source domain error EX∼P

|ĥ − h|
]
and the mapping error η(g) would be small.

According to the law of large numbers, when the sample size
f the source domain and the target domain is large enough, the
istribution can be effectively approximated by the normal dis-
ribution, so the distribution approximation error ζ in the latent
pace would be small too. Therefore, reducing the distribution
ifference between the source domain and the target domain
ecomes an effective means to reduce the error of the target
omain.
However, reducing the distribution difference will have an

mpact on the source domain error. For some domain adaptation
odels, such as pre-train fine-tuning models, the data are first

rained on the source domain, and then the models are fine-tuned
n the target domain. This type of model reduces the distribution
ifference at the expense of increasing the error in the source
omain. In that situation, source domain error and distribution
ifference cannot be analyzed separately as they are related to
ach other.
In contrast, our model introduces distribution alignment reg-

larization and structure preserving regularization in the frame-
ork of structural risk minimization, which is to optimize the
bjective J =∥ Ys

τ c(β ⊗ w)T − Zs
τ ∥

2
F +λLDA+γLSP , where the first

erm is to minimize the source domain empirical error, the sec-
nd term is to penalize data with large distribution differences,
he third term is to penalize unsmoothed data(such as mutation
ata, outliers). We achieve distribution alignment by aligning the
ariances of the source and target domains in the latent variable
pace, this approach is to learn domain-invariant representations
f the source and target domains data. This domain-invariant fea-
ure is a direct ‘cause’ of the dependent variable. The introduction
f data from different distributions will help to learn the domain-
nvariant features, thus improving model prediction accuracy and
aking the model more robust.
To verify the above analysis, we add error experiments on

ource domain. The experimental results show that when the
istribution alignment regularization and structure preservation
egularization are introduced, the error on the source domain can
e effectively reduced. The experimental results are presented in
he next subsection.
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6.2. Experimental verification

We can see from objective function (12) that when the distri-
bution difference regularization term λ and structure-preserving
regularization term γ are both set to zero, the algorithm falls
back to the DiPLS algorithm. So it is possible to observe whether
the distribution difference regular term works by giving a larger
value of λ. Fig. 12 shows the effect of the distribution difference
alignment term. We can see from Fig. 12 that the distribution
difference of the source domain and the target domain in the
latent variable space can be effectively narrowed by introducing
the distribution difference regular term.

When considering the source domain error, we use the same
model that predicts the target domain data to predict the source
domain data. Fig. 13 shows the effect of the distribution align-
ment regularization term parameter on the source domain error.
As the figure shows that when λ = 0, model is trained using only
source domain data. when λ > 0, model is trained using both
source and target domain data. We can see that the introduction
of distribution alignment regularization can effectively reduce the
source domain error.

Fig. 14 shows the effect of the structure preserving regu-
larization term parameter on the source domain error. From a
similar analysis above, we can conclude that the introduction
of structure preserving regularization can effectively reduce the
source domain error.

7. Conclusion

In this paper, a dynamic tranfer partial least squares domain
adaptive regression algorithm is proposed, which projects high-
dimensional process data into a low-dimensional latent variable
space, and establishes a dynamic regression relationship between
latent variables and labels in the latent variable space. At the
same time, based on the distribution difference and smoothness
assumption, the domain adaptation regular term and the struc-
ture preservation regular term are introduced, which effectively
reduces the influence of the data distribution difference and
improves the modeling accuracy of the system. Comparative ex-
periments on public datasets show that by dynamically learning
the features of the source and target domains in the latent vari-
able space, narrowing the distribution differences between the
source and target domains, and maintaining their respective data
structures can effectively improve predictive modeling precision.
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Fig. 12. Projections of source and target domain data on the first two latent variables of a DiPLS and a DTPLS model, respectively, on the Debutanizer dataset. The
middle part of the graph is a scatter plot, the upper and right parts of the figure are the frequency histogram and its corresponding kernel density estimate. It can
be seen from the figure that the DTPLS method can effectively reduce the distribution difference of latent variables, which is consistent with the theoretical analysis.
Fig. 13. The influence of distribution alignment regularization term on source domain error.
Fig. 14. The influence of structure preserving regularization term on source domain error.
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