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Abstract

As Machine Learning models are being applied to a wide range of fields, the potential impact that
these algorithms can have on people’s lives is increasing. In a growing number of applications, such as
criminal justice, financial assessments, job and college applications, the data points are indeed people’s
profiles. Therefore, in the presence of such sensitive attributes, the risk for algorithmic predictions
leading to discrimination should be carefully addressed. Among the state-of-the-art methods aiming at
solving such complex problems by taking fairness into account, path-specific causality-based methods
are selected in this work. In fact, causality-based fairness metrics are acclaimed in the literature for
satisfactorily capturing unfairness in Machine Learning models. In this work, selected state-of-the-art
causality-based methods and metrics are compared, emphasizing the methodological and experimental
differences between individual- and population-level fairness approaches. Based on these results, a
novel method Conditional Path-Specific Effect (CPSE) is proposed, with the goal of bridging the two
different approaches by leveraging the properties of conditional Path-Specific Effects. CPSE is tested in
comparison with other state-of-the-art methods, both on simulated and empirical datasets. The results
suggest a high potential of CPSE for successfully detecting and correcting unfairness.
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1
Introduction

In the last decade, the interest in ethical decision making has risen relevantly [17]. The supposed im-
partiality of Machine Learning compared to the mutable nature of human decision making has been
largely explored, as expressed in the words of Dr. Andrew McAfee: “If you want the bias out, get the
algorithms in.” [1]. Biases in human decision making are hardly verifiable. Indeed, bias has been shown
to be inherently present in human-made decisions [13]; these biases are mainly caused by unconscious
preferences, gut-feelings and personal background motifs. The main obstacle of human decision making
in applications with a high societal impact (such as human resources or criminal justice) is the difficulty
in probing and validating the reasons behind a certain decision, as most of the times the inherent human
bias is unconscious. Most of the time, humans are unaware of their biases and the reasoning behind
their decisions, leading to possible inconsistency and logical gaps. These unconscious biases can be
generally linked with discriminatory behaviour.

In the last decades, most of the applications have seen a steep increase of the use of Machine Learning
algorithms, mainly because of time, cost and accuracy efficiency. Since these algorithms are a human
creation, it is expected that these will decrease humans’ subjective interpretation of the data and will
be more easily controllable, as represented by McAfee’s quote. Nevertheless, it has been proven that
these algorithms can perpetuate existing social and cultural biases and introduce new ones [13], [14].
Furthermore, these algorithms are often not highly interpretable, hence also not controllable.

In the past years, numerous applications of Machine Learning leading to ethically arguable decisions
have been observed in practice; this phenomenon increased the awareness of the academic and indus-
trial environments. In fact, the majority of applications of Machine Learning algorithms can potentially
lead to detrimental societal consequences, enhancing existing inequities and creating new ones. The
source of this algorithmic bias can occur at all the stages of the learning mechanism, from data col-
lection to the interpretation of the model. In order to face this truly pervasive and severe issue, it is
fundamentally important to come up with strategies for identifying and mitigating the algorithmic bi-
ases. This topic has developed in a wide range of concomitantly investigated research questions among
the so named AI principles, such as fairness, accountability, interpretability, privacy, trust, safety,... [29].

This work will focus on Machine Learning algorithms having a societal impact. Specifically, in the
analysed applications, the data instances are people’s profiles and there is a set of sensitive attributes
that can potentially lead to discrimination. Some examples of these fields are loan and job applications,
criminal justice, exam grading, health-care decisions, insurance policies, ...
This project explores the fairness topic, specifically on the detection and correction of potential societal
discrimination by using a causality-based approach. The topic of fairness is highly subjective, rising
the attention towards the mathematical formulation of discrimination and fairness. The reader should
be aware that there is no straightforward objective definition of fair/unfair, thus the definitions used
in this work are the most reasonable and logical in the authors’ perspectives in order to cover many
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possible discrimination scenarios.
Two main different approaches prevail in the field of fairness of Machine Learning, focusing respec-
tively on individual- and population-level fairness. The former aims at ensuring fairness towards all
the single individuals of the population, while the latter has the scope of evaluating fairness along the
entire population with respect to the sensitive attribute. Although these approaches might seem similar,
they include substantial differences in terms of methods and assumptions, especially when referring to
causality-based metrics. The scope of this project is to compare the current state-of-the-art methods
and to bridge the gap between population-level fairness and the individual-level one, by leveraging
the advantages of each of these approaches. The newly proposed method will hence aim at predicting
individually fair outcomes, or at least more individually fair outcomes, by using the weaker level of
assumptions characterising population-level metrics.

The document is structured in the following way. In Chapter 2, a background on the fairness of
Machine Learning research is given, emphasizing the relevance and reasoning of causality applied to
fairness. Chapter 3 includes an introduction on causality; this chapter introduces the main definitions
and mathematical formulations that will be used in the project. The introduction of the most com-
monly used causality-based fairness metrics is covered in Chapter 4. Furthermore, the state-of-the-art
methods based on these metrics are compared in Chapter 5, both on simulated and real-world datasets.
Based on these results, the newly proposed method Conditional Path-Specific Effect is introduced in
Chapter 6, along with its application to various experiments in Chapter 7. This work is concluded in
Chapter 8, along with the addition of possible future works.
It is important to notice that the background on causality and fairness presented in this work has the
scope of helping the reader in understanding our novel method its research motivations. Hence, only a
selected part of the current literature content will be presented, according to the scope of this project.



2
Background on Fairness

The definition itself of fairness, and the terminology related to it, is a complex matter. Indeed, it has
been discussed about for years in ethical and philosophic terms ([28], [106], [10], [80]). In this chapter,
we will outline what the foundation of fairness is and which approach was used in this work.

Fairness is defined in [56] as “the absence of any prejudice or favoritism toward an individual or a group
based on their inherent or acquired characteristics”. More specifically, a decision can be considered
unfair towards an individual or group of people if it is based on grounds that are unreasonable or inap-
propriate [32]. Albeit the above definition is suitable for the context of decision making, the concept of
fairness can have different technical meanings across various sectors. For example, the authors of [39]
define fairness in economics as avoiding wage cuts in periods of high unemployment rates. This work
will be focused on fairness in decision-making, thus the former definition will be used. Specifically, in
the context of algorithmic fairness in Machine Learning.
Based on the previous definition, in this work it will be assumed that the concept of unfairness coincides
with that of discrimination. This is an assumption that could be argued against, as a non-discriminatory
decision is not necessarily a fair one. Nevertheless, a fair decision is necessarily non-discriminatory. I
deem that connecting unfairness and discrimination is a necessary first step in order to quantify certain
decisions’ fairness and to progress in the research of fairness of Machine Learning (ML).

The proposed definition of fairness is indeed highly subjective as it is based on common sense and is
context-specific. For this reason, people should be encouraged in working on domain-specific algorith-
mic fairness to collaborate with teams specialized in the sector. In fact, when working on fairness of
Machine Learning algorithms, it is important to bear in mind the purpose of the research itself, as
focusing too much on the mathematical formulation of the metrics could take attention away from the
broader meaning of fairness in the specific context. In particular, the authors of [32] point out that
there is a common assumption that the “fair Machine Learning” community seems to share: the exis-
tence of fairness definitions (i.e. metrics) that can be operationalized and, as long as these criteria are
satisfied, the fairness of the decision making algorithm is guaranteed. The authors of [32] argue that
this assumption could actually lead to a loss of attention on the substantive notions of fairness in the
real world. Nevertheless, I believe that this approach is a first and necessary step in order to make
further improvements in the research. Once scalable and reliable methods will be developed, it will be
possible to relax the underlying strict assumptions.

As a first step in this field, it is essential to take into account the possible bias in the data. Predic-
tive models indeed highly depend on the data they have been trained on. Therefore, biased data can
relevantly affect the learning process of Machine Learning algorithms, causing them to be unfair and
biased [40], [9], [16].People might naturally assume that predictive algorithms used to support the hu-
man in making decisions will do it by avoiding human bias. Nevertheless, it has been proven that these
models might lead to unfair decisions, judging subjects by their gender, race, or class [25]. In order to
understand and evaluate the fairness of a model, it is important to identify the causes behind the bias
of the data. in the first place. In this analysis the bias of data is split into statistical bias and societal

3
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bias, following the structure of [18] and [59]. In [56], a detailed summary of the different types of bias
is given.
Statistical bias corresponds to a mismatch between the real world and the data used to represent it when
training the model. In particular, among statistical bias, sampling bias is caused by a sampling proce-
dure that does not fully represent the population For instance, minorities could be under-represented in
the dataset. Another possible challenge regarding statistical bias is measurement bias. This bias refers
to datasets in which, due to historical or cultural reasons, the measurement error is higher for certain
sub-groups compared to others [100]. For instance, referring to dataset regarding loan applications,
immigrant communities were historically involved with informal lending systems [23]. This could be
a possible cause of measurement bias due to an under-estimation of the number of loans re-payed by
the immigrant community. Indeed, in this scenario the variable of re-payed loans would have a higher
measurement error for the immigrant community since it does not take into consideration background
historical factors.
Societal bias is usually harder to identify in a dataset, since it includes instances of discrimination that
are inherent in the societal system [94]. Societal bias is very complicated to address in Machine Learning
models, as it is a measure of an underlying social environment that is biased at first. It is then difficult
to recognize what characteristics of the environment can be taken as biased or unbiased.

In the research on fairness of Machine Learning, generally no distinction between classifications/predictions
and decisions is made. I deem this distinction highly relevant, as it is a direct consequence of the setting,
scope and dataset to which the Machine Learning algorithm is applied. The differences between these
two scenarios will now be presented.
When referring to classification and prediction tasks, the goal consists in maximising accuracy (or a
specific performance measure) with respect to the target variable. Indeed, the outcome predicted by
the Machine Learning algorithm represents an observed values, perceived as the true realization of the
target variable. By analysing this scenario under the fairness lens, the algorithm should ensure accurate
and fair predictions. It can be intuitively noticed that the balance between the accuracy and fairness
metric might lead to a conflict that has been referred to in the literature as the “accuracy-fairness trade-
off” [19], [104]. Hence on one side, the accuracy of the algorithm with respect to the observed target
should be satisfactorily. On the other side, it is important to take the label bias into account; this is a
result of a society that involves discrimination, stereotypes and social disparities. The balance between
these two objectives should be defined depending on the task and on the domain-related information.
The purpose of this work is to provide fairness-compliant algorithms, meaning that the accuracy of the
target label will follow as a secondary target. In the research on fairness of ML it has been argued
against the common misconception of data scientists that an accurate prediction is a good decision. By
considering fairness, not predicting the observed target correctly can be coherent with the purpose of
the prediction [99].
The second scenario for Machine Learning algorithms regards the decisions setting. This is funda-
mentally different from the previous classification/prediction task because it involves the presence of
selective labels [45],[16], [24], [59]. The decision can indeed be interpreted as a middle-step between the
observed features of an individual and his/her respective target label. Therefore, the presence/absence
of a target label will be subject to the previously taken decision. For instance, in the loan applications
example, the label referring to the repayment of the loan will be present in the dataset only if the
individual was granted the loan at first (positive decision outcome). These settings likely involve a high
number of missing values and highly biased selective labels. The fairness risk of training a ML algorithm
on this dataset involves achieving a sub-optimal solution and leveraging a positive feedback-loop that
could potentially be highly biased towards certain subgroups of the population. This scenario will not
be investigated in this work and is left for future work.

2.1. Notation

The variables notation that will be used throughout the document is the following:
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• A is the sensitive attribute, potentially leading to discrimination against individuals or groups of
people (e.g. gender, ethnicity, disability, ...).

• X is the set of non-sensitive features.

• Y is the true outcome. The true outcome is not necessarily fair but it has been observed or
measured, hence can be used as a training set for the algorithm. Some examples of the outcome
could be the choice made to assign a loan to a candidate or not, of hiring an applicant, of predicting
the potential re-offending of a parole,...

• Ŷ is the predicted outcome from Y . Differently form Y , the predicted outcome is considered to
be a fair version of Y , or at least a ‘fairer’ one.

The respective state spaces of these variables will be called with the following notation: X(·). For
instance, the state space of A is XA.
In the next section, different real world examples related to the research on fairness will be explored.

2.2. Real-World Examples

The following section includes some examples that have been analysed in the fairness of Machine
Learning community. They are particularly important because they are subject of ethical debates
on decision making. In all of these applications, artificial agents are used to optimize processes that
would normally take a long time to be assessed or to simply support the human decisions.
These examples will be referred to throughout the report in order to have some practical references that
can support the reader along the theoretical insights.

2.2.1. Parole Prediction

One of the main sectors used in analysing fairness of Machine Learning is the criminal justice system
[63]. In particular, algorithms are used in the sentencing and parole phase. Given a defendant, these
decision support tools should decide whether to release or detain a defendant before his/her trial. A
dataset often used in this setting is the COMPAS dataset [6].

2.2.2. Loan Applications

The fairness of Machine Learning algorithms is a very important topic also in the finance industry.
Indeed, it might be necessary to assess whether a person would be able to pay back a loan in order to
decide if it should be granted to him/her; it is useful in these cases to predict the future income of the
person applying for the loan. One of the most commonly used datasets in this application is the Adult
dataset from the UCI repository [50].

2.2.3. College Applications

Among the fields where Machine Learning is applied, human resources is one of the sector that in-
volve decisions affecting individuals. In general, when people are applying for working positions or
for university courses, individuals belonging to specific societal groups (by race and gender) might be
discriminated. In the fairness research the dataset regarding Berkeley College admissions is the most
popular one [12].
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2.3. Non-Causal Fairness Metrics

In the past, fairness has been mainly analysed through metrics that are based on observational criteria,
which means that they only depend on the joint probability distribution P (X,Y,A, Ŷ ). In this scenario,
X is the set of observed variables excluding the sensitive attribute A, Y is the possibly unfair outcome
of an algorithm, Ŷ is the estimated “fairer” outcome of the proposed algorithms. In the next definitions
a classification problem is considered, where the target label Y is binary. It is immediate to generalize
the following notions for prediction problems with continuous outcomes.
The below metrics have the purpose of quantifying the unfairness of a model. Since there is no objective
definition of fairness, formulating suitable metric involves subjectivity of the ethical interpretation of
the subject. For this reason, defining a suitable fairness metric is one of the most commonly debated
challenges of the topic. In many applications it might be convenient to create a domain-specific fairness
metric that is highly suitable for the targeted unfairness challenges. Nevertheless, this work will be
focused on using a general fairness metric that can ideally be applied to various applications. Further,
fairness metrics depend on the targeted subjects in different ways. Specifically, they can be categorized
in individual- or population-level metrics. The former has the aim to avoid discrimination towards
individuals, meanwhile the latter focuses on discrimination of groups of people (for example gender or
a racial groups).
In the state of the art, many fairness metrics have been defined. Specifically, in this section the most
popular non-causal metrics will be presented. It is interesting to point out that these metrics have
been proven to be incompatible among each others ([81], [44], [16]). It will be further explained that
non-causal fairness metrics fail to fully represent our idea of fairness. Indeed, in this work’s perspective,
solely causal-based metrics can achieve this result.

2.3.1. Demographic parity

A predictive algorithm is considered to satisfy demographic parity if, on average, it gives the same
predictions to the different groups [107]. In mathematical formulas, this corresponds to having Ŷ ⊥⊥ A
[26]. In our binary scenario, given y ∈ XY , then:

P (Ŷ = y|A = 0) = P (Ŷ = y|A = 1),

so the likelihood of a positive outcome should be the same across the different groups [72].
Demographic parity has been criticized, as it only contains information regarding the output and the
group. This is considered to be a criterion that is not suitable in some cases, which will now be presented.
First of all, demographic parity is always satisfied, as long as the groups of the sensitive attribute are
given the same opportunity (positive outcomes with the same rate); however, no information is given on
how the fractions are chosen in each group, risking to fall into positive discrimination [35]. Secondly, in
some examples there might be a legitimate correlation between A and Ŷ , for example the choice of the
department in the college admission example or the job qualifications in the loan applications example.
Since these are the most common scenarios in real world datasets, this work will relevantly focus on
these; a more detailed explanation will be given in the next sections.

2.3.2. Equalised odds / Equal opportunity

Equalised odds has the scope of giving the same positive predictor to the individuals in each group [35].
Then, when referring to a binary outcome, the rate of true positives and true negatives should be the
same across each group in a sensitive attribute. For a predictor Ŷ , this metric can be mathematically
formalized as:

P (Ŷ = y|A = 0, Y = y) = P (Ŷ = y|A = 1, Y = y), (2.1)

for all y ∈ XY , equivalently requiring Ŷ ⊥⊥ A|Y . With a binary classifier, this means that the false
positive rates and false negative rates should be the same along the different groups; thus, equalized
odds requires equality of error rates among the sub-groups defined by A. The origin of the name indeed
comes from the scope of matching the false positive rates and true positive rates for different values of
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the sensitive attribute.

Equal opportunity is a specific version of equalized odds, mainly focusing on false positive rates com-
pared to false negative rates:

P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ = 1|A = 1, Y = 1).

The motivation behind this metric is that typically, with a binary classifier, there is more interested
in not wrongly denying a desirable opportunity rather than providing an undeserved one; thus, the
probability of a subject being assigned a positive outcome, given that he/she truly belongs to the
positive class, should be equal for all the groups [101].
This metric has been criticized for not being able to describe possible societal bias in the dataset. For
instance, an algorithm that grants loans to individuals that have been able to repay previous loans
in the past can be considered. Regarding this, equal opportunity does not take into account that for
some societal groups it is harder to find a high-paying job, and hence to repay the loans. Without
capturing similar societal unfairness situations, equal opportunity and equalized odds might not be
suitable metrics in some contexts.

2.3.3. Fairness through Unawareness

The most intuitive procedure to avoid unfairness towards individuals from a specific group is to omit the
sensitive attribute A from the inputs of the model [34]. For example, when training the algorithm that
has as output the loan granting decision, data on ethnic (or gender) origin would be removed. Thus, the
estimate output Ŷ that ensures fairness through unawareness would be defined as Ŷ : XX ⇒ XY (in our
notation X does not include A). This method cannot actually guarantee a fair outcome. Indeed, in most
real world examples, sensitive attributes are correlated with other features in the dataset. For instance,
an algorithm could actually learn information regarding the gender of a person from his/her name.
Moreover, if historically a neighborhood is populated by people with the same ethnicity background,
the address of the house could potentially give information regarding the race of the subject. These
covariates are called proxy variables, potentially causing proxy discrimination [42]. Albeit fairness
through unawareness is commonly used in the industry because it is immediate and intuitive, most of
the times this method is not sufficient for removing discrimination.

2.4. Why Causality in Fairness?

In recent years, the use of causality in defining fairness has been increasing more and more. Causality-
based fairness seems to be the most promising pathway, as only by truly understanding the causes of
discrimination we can actually build a fair algorithm that is able to avoid it. Normally, when analysing
a human-made decision, there are certain questions that should be answered in order to evaluate the
fairness of the decision process; for instance, “was the gender the cause of her rejection?”. The analysis
of discrimination is commonly done by questioning the causal relations between the sensitive attribute
and the decision. The same reasoning can be applied to fairness in Machine Learning algorithms, by
formalising these questions as causal fairness metrics. It is indeed necessary to use causal reasoning in
order to justify the influence that certain individuals’ characteristics have on the model, specifically by
analysing the causal effect that the sensitive attribute might have on the outcome. Furthermore, causal
models can be helpful for modelling the underlying data generation mechanism [43].

In order to show the importance of causality in the evaluation of fairness, the example of Berkeley
college admissions is used. With an analysis on the overall dataset, it was shown that women had
on average an admission rate 10% lower than men. However, decisions were made on a departmental
basis, where the acceptance among females and males was the same. Therefore, when conditioning on
the department choice, the trend of females-males rates acceptance is different from the one of all the
applicants. This is commonly known as Simpson’s Paradox; it describes datasets where the subgroups
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of subjects do not represent the trends of the whole population [89]. In this specific case, the fairness
through unawareness method would not detect the unfairness of this dataset, as it would not recognize
the causal relationship between the gender and the choice of the department. Indeed, even though the
acceptance rate in each department is the same among men and women, women might be influenced by
their socialization to choose departments that are generally more selective, more crowded, leading to
an overall acceptance rate lower for women [12]. In [66], a detailed analysis of the Simpson’s Paradox
on a causal basis is given.
This is only one of the examples that shows how fairness cannot be assesses based only on the concepts
of association or correlation, but causality is a useful tool that can be used.

The above example shows the usefulness of considering the underlying causal relations among the data.
In this scenario, if the causal structure of the model had been taken into account, the causes of un-
fairness could have been revealed. Nevertheless, since distinct causal mechanisms can lead to the same
observational distribution, non-causal fairness metrics will generally fail in identifying the true causes
of discrimination. In conclusion, the causal framework is the most appropriate one for evaluating un-
fairness.



3
Introduction to Causality

In this chapter, an introduction to causality will be given. Causal models will be introduced, along with
the notation that will used in the document. Furthermore, the notion of identifiability will be explored
with its respective conditions depending on the graphical structures.

3.1. Notation and Definitions

Directed graphs can be useful for visualizing causal models. These are defined as:

Definition 3.1.0.1. Directed Graph [2] A directed graph G on the set of vertices W = {w1, w2, ..., wn}
is a subset of W ×W , where the members of G are called edges E.

A directed path in G from vertex u to vertex v is a sequence of distinct edges e1, e2, ..., ep with p ≥ 1 such
that there exists a corresponding sequence of vertices u = w0, w1, w2, ..., wp = v satisfying (wk, wk+1) ∈
G, for 0 ≤ k ≤ p − 1. In other words, a directed path is a sequence of two or more unique nodes
among which each successive node has an edge with its predecessor in the sequence [2]. In this work, by
(w0w1)→ is meant the edge going from w0 to w1; similarly, the notation w0 → w1 → w2 (or equivalently
(w0w1w2)→ ) is the path starting in w0, ending in w2 and passing by w1.
Among the useful definitions regarding directed graphs, cycles need to be introduced. A cycle is a
directed path beginning and ending at the same vertex and which passes through at least one other
vertex. This notion is useful in order to define a specific subgroup of graphs:

Definition 3.1.0.2. Directed Acyclic Graph [2] A Directed Acyclic Graph (DAG) is a Directed
Graph which does not contain cyclic connections of directed edges.

In the setting of this work, a DAG G is defined by the duple (W, E), composed by a set of vertices
(nodes) W and edges E . The nodes represent the different random variables used to describe the model,
meanwhile the edges denote a certain relationship, depending on the application of the DAG. It will be
shown that in the causal interpretation of DAGs the edges represent causal relations among the variables.

In general, the set of variables W can be split into a set of observed variables V and unobserved vari-
ables U , such that W = V ∪ U . The observed variables can be measured/observed in an experimental
or real-world setting, meanwhile the unobserved variables cannot be measured in practice. Referring to
the notation previously used when introducing fairness, the set of observable variables V is the union of
the set of the non-sensitive attributes X, the outcome Y and the sensitive attribute A, V = X ∪A∪Y .
To have a better understanding of unobserved variables in the fairness context, these might represent
the background factors that cannot be measured (for instance the influence of the socio-economic back-
ground on the covariates of an individual). While the set of V = {Vi}ni=1 are the endogenous variables,
hence measurable, U is the set of exogenous variables (also referred to as noise variables). As the name
suggests, the exogenous variables are root nodes (see Definition 3.1.0.7) by construction, as they are not
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descendants of any other observed variables. A common assumption that is made in many methods is
that Ui for all i are independently distributed. As an example of this notation, in Figure 3.1 a directed
graph is represented, where the set of observable variables V is V = A∪M∪Y and the set of unobserved
variables is U = UA ∪ UM ∪ UY .

It will be useful for the next chapters to define the notions of parents, children, ancestors, descendant,
topological ordering, root nodes in DAGs.

Definition 3.1.0.3. Parents, Children of a Node The parents and children of a node Vi ∈ V in
the Directed Acyclic Graph G are respectively defined as:

Pa(Vi) = {B ∈ V : (BVi)→ ∈ G}, (3.1)
Ch(Vi) = {B ∈ V : (ViB)→ ∈ G}. (3.2)

The parents Pa(Vi) will also be referred to as Pai. Furthermore, it is possible to introduce the set of
ancestors and descendants.

Definition 3.1.0.4. Ancestors Given a node Vi in the Directed Acyclic Graph G, the set of ancestors
of Vi is defined as AnG(Vi) = {X : {X → ...→ Vi} ∈ P}, where P is the set of all the paths contained
in G.

Definition 3.1.0.5. Descendants Given a node Vi in the Directed Acyclic Graph G, the set of de-
scendants of Vi is defined as DeG(Vi) = {X : {Vi → ...→ X} ∈ P}, where P is the set of all the paths
contained in G.

Once the ancestors and descendants have been defined, the topological order of a graph G is introduced
in [86] as:

Definition 3.1.0.6. Topological Order and Predecessors A topological order ≺G on the set of
nodes V in G is such that, given V1, V2 ∈ V , if V1 ≺G V2 then V2 /∈ AnG(V1). Given an order ≺G
defined on V , for any V1 ∈ V , pre≺G (V1) := {W ∈ V \{V1} : W ≺G V }.

As previously mentioned, unobserved variables are root nodes by construction. Root nodes are defined
in the following way:

Definition 3.1.0.7. Root Node Given a causal graph G with nodes V , a node Vi ∈ V is a root node,
Vi ∈ Ro(G), if it has no observed parents.

Analysing different graphical structures, it can be noticed that each variable has a different role in
the model also depending on the number of emitted/admitted edges. In order to clearly define the
most typical and significant structures that can be met in DAGs, it can be helpful to introduce specific
terminology for the next sections.
The presence of a node with two or more edges emitted towards different children is a common graphi-
cal structure; this network structure is called fork and it usually corresponds to three nodes, with two
edges emanated from the initial node. For instance, in Figure 3.2, the triplet (C,A, Y ) represents a fork.
Differently, a chain structure corresponds to three nodes with one arrow directed into and one arrow
directed out of the middle variable, called mediator. For instance, the mediator variable of Figure 3.2
is M . Finally, a collision node is a variable that has two or more edges directed into it; for instance, in
Figure 3.2 Y is a collision node.

In the next section, Causal Models will be presented, specifically uncovering the link between DAGs and
causal models.

3.2. Causal Models

In this section, causal models will be introduced. In particular, the section will focus on key con-
cepts of causality that will be used throughout the document. DAGs will be presented as a useful tool
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for representing causal models, specifically in the analysis of causal assumptions and in facilitating
observational-based causal inference [69].

3.2.1. Causal Graphs and Notation

Causal graphs can describe the causal assumptions regarding the data generating process through
structural causal models (also called structural equations model). Structural causal models are here
defined as:

Definition 3.2.0.1. Structural Causal Model (SCM) A structural causal model can be defined as
a triple (U, V, F ) [66] such that:

• V is the set of observed variables;

• U is the set of unobserved variables;

• F is a set of functions {f1, ..., fn} for each of the observed variables Vi ∈ V , such that Vi =
fi(Pai, UPai). These equations are known as structural equations;

• P (U) is a distribution over the unobserved variables U .

By Pai it is meant the set of nodes among the observed variables that are direct causes of the variable
Vi, also called observed parents of Vi. Meanwhile, UPai

is the set of direct parent of Vi among the
set of unobserved variables U . Albeit the unobserved variables are omitted from the model, these are
considered to be relevant for describing the causal mechanisms; they are also referred to as “noise terms”
or “errors”.
Intuitively, the structural equations are useful for representing how the variable Vi changes in response
to its direct causes Pai∪UPai

. These functions are called structural because they are actually invariant
from arbitrary changes in the other functions, as they describe which values the variables assumed based
on nature [66] [88]. For instance, the structural function fi corresponding to Vi will not change, even
if the function fj corresponding to the other variable Vj changes form. Indeed, as Pearl states in [69],
these functions actually describe the underlying real-world physical processes.

An example of a structural causal model can be the following. Given the causal graph in Figure 3.1,
its respective structural equations could have the following formulation:

A = fA(UA)

M = fM (A,UM )

Y = fY (M,A,UY ).

As previously explained, these equations are functions fi of the parents of the respective variable Vi,
both observed and unobserved. In this example, three different unobserved variables were used for
modelling the causal structure.

A

M

YUA UY

UM

Figure 3.1: Example causal graph with mediator and common cause for A and Y
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The edges of causal graphs have a duplicate interpretation: a probabilistic and a causal one. In the for-
mer, the edges give us information regarding the conditional dependencies among the variables; in the
latter the edges represent the causal relations in the data-generating process. Analysing the causal per-
spective, it is easier to understand why the exogenous nodes are defined as root nodes: when modelling
the causal structure of the dataset, it is chosen not to explain how unobserved variables are caused.
It is important to notice that in a causal graph the absence of an edge between two variables is a
stronger condition than an edge itself. Indeed, drawing an edge among two variables could mean that
there is a possible causal relation. Differently, not drawing the edge ensures a lack of causal relation.

A

M

Y

C

Figure 3.2: Example causal graph with unobserved variables

Properties of Causal Graphs

In this section, different characteristics of causal graphs will be analysed. It will indeed be shown how
DAGs are useful for deriving conditional independence relations among the variables.

By assigning a causal meaning to DAGs, an edge between two nodes can be interpreted as the source
variable being direct cause of the latter one. Two of the main properties of DAGs will be presented; specif-
ically, the Markov property and the d-separation one will be introduced. It was previously mentioned
that these graphical objects can have two (among many) functions: representing causal structures and
probability distributions. The following properties connect DAGs with probability distributions, without
involving any causal interpretation of the models. Nevertheless, by interpreting these properties with
causal lenses, a connection between the probabilistic relations and the causal structure of the model
can be made.
The Causal Markov Condition, as stated in [69], is the following:

Definition 3.2.0.2. Causal Markov Condition Any distribution generated by a Markovian model
M can be factorized as:

P (V1 = v1, V2 = v2, ..., Vn = vn) =
∏
i

P (Vi = vi|Pai = pai) (3.3)

where V1, V2, ..., Vn are the endogenous variables inM, and pai are the values obtained by the endogenous
parents of Vi in the causal diagram associated with M.

This condition is equivalent to stating that each variable Vi is independent on its descendants con-
ditioned on its parents Pai in G. Markovian models are associated with acyclic graphs with jointly
independent error terms. The property of Markovian models in Equation 3.3 is also called Factoriza-
tion Property.

Analysing the properties of Directed Acyclic Graphs, the concept of d-separation can be introduced, as
proposed in [69]. It is important to notice that the following proposed properties characterize DAGs,
independently on the causal meaning assigned. This property was explained with causal lenses in
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order to make the future content more intuitive to the reader. The notion of d-separation uncovers
information on the dependencies corresponding to all the datasets generated by the same given graph,
independently on the form of the structural equations.
The concept of blocking underlies the one of d-separation:

Definition 3.2.0.3. Blocking: A set S of nodes is said to block a path p if either

• among the nodes in the set S, at least one of the edges emitted by one of them is part of p; or

• p contains at least one collision node that is outside S and has no descendant in S

For instance, in Figure 3.1, the path (UAAMY )→ is blocked by both the sets S = {A} and S = {M},
as each of these variables emits an arrow along the path. The intuition of blocking will become clearer
in the next paragraph.
Analysing the probability distributions induced by DAGs, it can be useful to formulate a criterion in
order to predict conditional independence relations, for simple or more complex graphical structures. In
a DAG, two variables are said to be connected if there exists a connecting path (not necessarily directed)
among them. Meanwhile, two variables are d-separated if there exists no such path between them. The
former means that the two variables are possibly dependent, meanwhile the latter means that these are
independent. This can be intuitively understood based on the definition of the causal models and the
corresponding structural equations. Usually, two nodes in a causal graph are always connected, which
means that rarely two variables belonging to the same causal graph are independent among each others.
Nevertheless, when conditioning on a set of nodes S, it is possible to get further relevant information
regarding the independence relations conditioned on the set of variables S.

Definition 3.2.0.4. D-separation: If the set of variables S blocks all paths from the variable X to
the variable Y , it is said to “d-separate X and Y ”, and then X ⊥⊥ Y |S.

In order to understand the concept of d-separation, it can be useful to analyse the connection be-
tween blocking and conditional independence when only one path is present between the two variables.
Analysing the first condition of blocking, non-collider nodes with at least one emitting edge part of
p could potentially be nodes with two emitted arrows or with one entering and one emitting arrow
(transition nodes). In both of these scenarios, it can be shown that the extreme variables of the path,
following the notation of Definition 3.2.0.4 X and Y , are independent among each others when condi-
tioning on the non-collider node. For instance, analysing the path (AMY )→ in Figure 3.5a, the joint
probability of A and Y conditioned on M (assuming that P (M = m) > 0 ∀m ∈ XM ) can be written
as:

P (Y = y,A = a|M = m) =
P (Y = y,A = a,M = m)

P (M = m)

=
P (A = a|M = m)P (M = m)P (Y = y|M = m)

P (M = m)

= P (Y = y|M)P (A = a|M = m) ∀m ∈ XM , a ∈ XA, y ∈ XY =⇒ Y ⊥⊥ A|M.

The same procedure can be applied to scenarios where M has two emitted edges towards A and Y .
The intuition behind the second condition of the blocking definition follows from the fact that a collision
node blocks the dependence among its parents, hence blocking the respective path. When conditioning
on a set of nodes S that is part of the collision node or one of its descendants, the parents are dependent
among each others. Nevertheless, if the conditioned set is not part of the collision node or of its descen-
dants, the parents are actually independent. For instance, the following ideal model can be considered.
Both the weather conditions and the drivers’ sobriety are direct causes of the number of accidents (in
this example a collision node). The sobriety of a driver and the weather conditions are independent.
Nevertheless, by knowing if an accident has happened or not leads the sobriety state and the weather
conditions not to be independent anymore.
These consideration can be generalised to more complex causal structures, where X and Y are set of
nodes connected by multiple paths. Looking back at the example in Figure 3.1 and at the proposed
variables UA and Y , it was previously explained why the set S = {M} blocks the path (UAAMY )→.
Nevertheless, this set S = {M} does not block the path p = {(UAAY )→}, as M has no emitting arrow
in p and there is no collision node in p. Meanwhile, S = {A} block all the paths from UA to Y ; indeed,
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in both of the cases it presents an arrow emitting edge in the path. This means that the random variable
A d-separates UA from Y , leading to UA ⊥⊥ Y |A. In the next paragraphs, it will become clear why the
above conditioned independence relations are important when referring to identifiability conditions.

A

M

Y

Figure 3.3: Example causal graph with mediator for A and Y

It can be useful to consider models with unobserved common causes of multiple observed variables.In
these scenarios, the Causal Markov Condition (Definition 3.2.0.2) fails, and it is necessary to introduce
latent variables in order to describe the causal structure [55], [92]. Semi-Markovian causal models can
be defined as:

Definition 3.2.0.5. Semi-Markovian Model A modelM is semi-Markovian if the DAG G associated
to the model includes a set of observable variables V = {V1, ..., Vn} and latent variables U = {U1, ..., Ud}.
By construction, every latent variable is a root node.

As no restrictions are imposed on the co-dependencies of the unobserved variables, it can be noticed
that Markovian models are a subgroup of semi-Markovian models, specifically characterized by jointly
independent error terms of SCMs [69]. In Semi-Markovian models dependence relations among the
unobserved variables lead to useful insights regarding causal relations among the observed variables.
These models can be graphically illustrated by representing hidden variables in DAGs with nodes Ui

that have one or more children nodes. In order to simplify the graphical structure of semi-Markovian
models, it is possible to analyse a semi-Markovian projection instead. This is defined in [97] like:

Definition 3.2.0.6. Projection The projection of a DAG G over V ∪ U on the set V , denoted by
PJ(G, V ), is a DAG over V with bi-directed edges constructed as follows:

• Add each variable in V as a node of PJ(G, V ).

• For each pair of variables Z, Y ∈ V , if there is an edge between them in G, add the edge to
PJ(G, V ).

• For each pair of variables Z, Y ∈ V , if there exists a directed path from Z to Y in G such that
every internal node on the path is in U , add edge (ZY )→ to PJ(G, V ) (if it does not exist yet).

• For each pair of variables Z, Y ∈ V , if there exists a divergent path between Z and Y in G such
that every internal node on the path is in U (X ← Ui → Y ),add a bi-directed edge Z ←→ X to
PJ(G, V ).

This projection is called Acyclic Directed Mixed Graphs (ADMGs), as it can be used in support of
DAGs for analysing semi-Markovian models [102]. An ADMG is a mixed graph without directed cycles,
containing both directed edges → and bi-directed arrows ↔. Bi-directed arrows between two nodes
Vi and Vj are used to represent graphical causal structures like Vi ← U → Vj , where U is a hidden
confounder. For instance, Figure 3.4b is the ADMG of Figure 3.4a. The bi-directed arrow between M
and Y hence represents the co-dependency between the unobserved variables UM and UY , also possibly
represented as a common unobserved cause of M and Y .
When considering ADMGs, it is useful to introduce the notion of district. Following the definition in
[87]:

Definition 3.2.0.7. District A district D in an ADMG G with vertex set V is any maximal set of
nodes in V that are mutually connected by bi-directed paths which are themselves entirely in D.
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The variables in a district are thus connected by confounded paths. These are represented with bi-
directed arrows in ADMGs, while in DAGs as paths where all directed arrowheads point at observed
nodes, and never away from observed nodes. The districts of a graph are disjoint, and can thus be
either composed by single observed nodes or set of observed nodes that are connected by confounded
paths. More intuitively, any two observed variables that share a common unobserved parent belong to
the same district. For instance, in Figure 3.4b the disjoint districts are D1 = {M,Y } and D2 = {A}.In
a Markovian model, each node in the causal graph is a distinct district.

A M

U

Y

(a) Example Causal Graph with Unobserved Variables

A M Y

(b) Respective Acyclic Directed Mixed Graph

Figure 3.4: Example causal graph with its respective ADMG

3.2.2. Interventions and Counterfactuals

Intervention is a manipulation used for analysing causal relations among variables. This is a core con-
cept of causal inference. The main idea behind interventions is that by manipulating a variable A as
a ∈ XA, it is possible to analyse the consequence it has on a different variable Y . Hence, intervening on
a variable A as A = a with respect to Y means that the variable A is forced to take the value a and Y
assumes the value that it would naturally have following the intervention on A. Going back to causal
models, this means that all the children of A will also naturally change according to the new value of
A. This intervention procedure is useful, since the changes of the value of Y happen only in virtue of
the changes in the attribute A.

Using the approaches of [66] and [93], interventions can be formalised with both structural equations and
causal graphs. Starting from the structural equations, intervening on a variable Vi with the arbitrary
value vi ∈ XVi

corresponds to substituting the equation Vi = fi(Pai, UPai
) with the equation Vi = vi.

This corresponds to manipulating the model by fixing the value of Vi to vi, regardless of the causal
structure. As an example, analysing the graph in Figure 3.1 and the respective previously presented
structural equations, after intervening on A as a ∈ XA the structural equations are the following:

A = a

M = fM (A,UM )

Y = fY (M,A,UY ).

The formalization of interventions with causal graphs follows the same intuition. As a matter of fact,
it can be noticed that in this example the structural equations also correspond to a causal graph with
the same structure as Figure 3.1 but with the edges directed towards the intervened variable A elimi-
nated. Indeed, the structural equation corresponding to the variable (node) A is substituted with the
fixed value a. This procedure can be generalized for different causal structures and interventions, by
eliminating the edges entering into the intervened variable. This new causal graph representing the
intervention on A as a is referred to in the literature as Gā.

An intervention on Vi is denoted by the operator do(vi) [66], [71]; based on this concept, a do-calculus
has been proposed by [66], the foundations of which will be presented in the later sections.
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In the research on Machine Learning fairness, it is useful to analyse the output Y when the sensitive
attribute has been intervened upon. Indeed, this can be quantified with the interventional distribution
denoted by P (Y |do(a)) with a ∈ XA. In our notation, we will refer to P (Y |do(a)) as P (Y (a)) in order
to simplify further steps and to avoid confusion with conditioning of traditional statistics. The quantity
Y (a) is also denoted as potential outcome. The concept of conditional probability of Y given A should
not be confused with its interventional distribution. There is a relevant difference between the quanti-
ties P (Y (a)) and P (Y |A = a), as the former represents the distribution of the entire population of Y
if everyone had their A set to a, while the latter corresponds to the distribution of the individuals that
had the value of A equal to a.

The potential of structural equations as a modelling tool for interventions is supported by the modularity
property. This feature of invariance is useful for linking the probability distributions of interventional
and observed quantities. In [22], the Modularity property is defined in the following way:

Property 3.2.1. Modularity The pair (G, P (V )) obeys modularity if, for any node Vi ∈ V in G, its
conditional distribution given its DAG parents Pai is the same, no matter which variables in the system
(other than Vi itself) are intervened upon.

It is important to notice that this holds for the concept of manipulation (intervention) and not ob-
servation. The Modularity property is coherent with the previous definition of structural equations.
As it was mentioned in the introduction of SCMs (refer to Definition 3.2.0.1), these functions reflect
underlying relations among the variables that will remain unchanged, independently of changes in the
other variables (like interventions).

Another key property of interventional distributions is consistency. This is defined in [77] as:

Property 3.2.2. Consistency Given two (sets of) variables Vi, Vj ∈ V , the following holds:

Vj = vj =⇒ Vi(vj) = Vi, (3.4)

where vj ∈ Xj.

This property can be intuitively understood by analysing the meaning of interventions. Indeed, the
random variable Vi(vj) is the potential outcome of Vi if the variable Vj was set to be vj . In the scenario
where Vj is observed and is equal to vj itself, then it follows that the potential outcome Vi(vj) will be
the random variable Vi itself. The equality P (Vi(vj) = vi|Vj = vj) = P (Vi = vi|Vj = vj) is hence a
consequence of the consistency property. The intuitive reason is that an intervention corresponding to
an event that has already happened has no consequence on the rest of the variables of the model.

In the causality research, different approaches have been developed. Specifically, two main formalisms
have been developed for reasoning about causal questions: potential outcomes and DAGs. Single-World
Intervention Graphs (Single-World Intervention Graph (SWIG)s) are introduced in [74] and will be
applied in order to combine the graphical approach with the potential outcomes one. In these graphs,
as it can be noticed in Figure 3.5b, a “node” operation is made. This consists in splitting the node
corresponding to the intervention into the random variables itself and the particular value it has been
set through the intervention, which will be referred to as a ∈ MA. Thus, by considering Y (a) in the
respective SWIG, the node A would be split into a random half and a fixed half, where the fixed half
inherits the outgoing edges, while the random part the incoming edges. More formally,

Definition 3.2.2.1. Single-World Intervention Graph [74] The Single-World Intervention Graph
(SWIG) G(vj) for the intervention Vj = vj is constructed from G via the following steps:

• Node splitting: For every variable in Vj, the node Vj is split into a random and a fixed compo-
nent, respectively labelled Vj and vj. The random half inherits all edges into Vj in G and the fixed
half inherits all edges out of Vj in G.

• Labelling: For every random node Vi ∈ DeG(Vj)\Vj in G, the label is Vi(vj).

These graphical representations of potential outcome densities can be useful for understanding the
independence assumptions that interventional quantities involve, as these are needed in order to test



3.2. Causal Models 17

their identifiability. SWIGs help unify the potential outcome and graphical formalisms, as these tools
allow us to graphically interpret conditional independencies involving both factual and counterfactual
quantities. As potential outcomes analysis is based upon statements on counterfactual quantities, these
can be interpreted graphically through Single World Intervention Graphs.
In [74], multiple properties of SWIGs are presented. Given a SWIG G(a) with respective counterfactual

distribution P (V (a)), the Factorization and Modularity (respectively Equation 3.3 and Property 3.2.1)
characteristics can be extended to SWIG causal structures. Specifically, the following proposition holds:

Proposition 3.2.3. Under the FFRCISTG model (see Definition 4.2.0.3) associated with G, the dis-
tribution P (V (a)) over the variables in G(a) factorizes according to G(a).

Furthermore, if a model satisfies the Causal Markov Condition (Definition 3.2.0.2), then the d-separation
implies statistical independence on SWIGs. Additionally, the Modularity property for SWIGs holds
according to the following proposition of [74]:

Proposition 3.2.4. Under the FFRCISTG model associated with G, the pairs (G, P (V )) and (G(a), P (V (a)))
obey modularity.

The above property shows that the conditional density associated with P (V (a)) in G(a) corresponds to
the one associated with G after substituting to the random variable A the value a.
Both the Modularity and Factorization properties applied to SWIGs are important; the former one al-
lows to link the two sets of distributions on the original graph G and the SWIG G(a), while the latter
one enables the use of the d-separation criterion for SWIGs. The proof of these two properties can be
found in Appendix B.1 of [74].

Differently from simple interventional quantities, which could be expressed by the marginal interven-
tional distributions, for instance Y (a0) and Y (a1) with a0, a1 ∈ XA, counterfactuals imply a joint
distribution between the factual and the counterfactual. The models only involving the marginal distri-
butions of the interventional quantities are also called single-world models, meanwhile the ones involving
a joint probability distribution like P (X,Y (a0), Y (a1)) are referred to as cross-worlds models [74].
Single-world models are the most used ones in the causality research, as cross-worlds models involve
assumptions that are experimentally untestable and that are not intuitive [3]. Nevertheless, it will
be explained in the next sections how cross-world models can potentially be useful in certain fairness
metrics. Differently from standard interventions, in cross-world models all the involved variables are
not measured in the same world.

In causal inference, the concept of unit-level counterfactuals, based on interventions, is useful for quan-
tifying single unrealized or untrue events. In [69], counterfactuals are presented as values that answer
if questions, such as an hypothetical condition that has not happened in the real world. Unit-level
counterfactuals are a special type of intervention that is applied at an unit-level, answering what would
have happened if one of the unit features happened to be different. The computation of counterfactuals
is a common causal inference task, as they can be useful when counterfactual versions of the same unit
of a datasets are needed.

The computation of unit-level counterfactuals is different from the previously introduced interventional
quantities. An example that will make this distinction easier is now presented. Analysing the loan
application example (see Section 2.2), given XA = {a0, a1}, having a0 corresponding to males and a1 to
females, the interventional distribution of the outcome setting A = a0 is defined as P (Y (a0) = y) and
it describes the population distribution of Y as if everyone in the population had their gender value
set to males. Differently, when analysing the unit-level counterfactual distribution of a female subject
i, the goal is to assess the outcome that the same subject at that particular instant of time would have
if she was a male.
Formally speaking, setting the snapshot of a particular individual corresponds to setting a specific
instantiation of the back-ground variables U as the realization u. This set of unmeasured variables
can then determine all the other observable ones V through the structural equations, except for the
ones that have been intervened upon. Indeed, each instantiation U = u ideally corresponds to a single
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member in the population (the unit of the fairness setting) and can hence uniquely determine the values
of all the observable variables V [48], [52]. As previously mentioned, the unobserved variables describe
the background environment. For example, when the units of a dataset are people, U could include
knowledge, family situation, propensity to engage in physical activity, and many others; even though
these cannot be included in the model, they can potentially uniquely define each subject.
Unit-level counterfactuals are defined in [69] as the following:

Definition 3.2.4.1. Unit-Level Counterfactuals Let M be a SCM (Definition 3.2.0.1) with W =
V ∪ U and A ∈ V . Let Ma be a modified version of M, with the equation of A replaced by A = a.
Denote the solution for Y in the equations of Ma for the instantiation U = uby the symbol YMa

(u).
The counterfactual Ya(u) (Read: “The value of Y in unit u, had A been a”) is given by:

Ya(u) = YMa
(u). (3.5)

In the above definition,Ma represents the SCM subsequent to the intervention on A as a. This definition
reflects the intuition that the units are defined by the vector of background variables U , which determines
the response and snapshot of a specific behaviour of Y . Following the definition, the reasoning behind
the name of these quantities in [69] as unit-level counterfactuals is intuitive. The identification of these
unit-level counterfactuals will be presented in Section 3.3.2.

3.3. Identifiability

In causal inference, the identification of interventional quantities is a relevant topic. It might indeed be
useful to express interventional and counterfactual quantities as functions of the joint distribution of
observed quantities [98]. It is then necessary to first assess whether these distributions can be uniquely
identified in terms of observational distributions using the information included in the causal graphs.
Identifiability has been defined in [69] as the following:

Definition 3.3.0.1. Given a causal modelM and any computable quantity Q(M), Q(M) is identifiable
if it can be estimated consistently using statistical data without necessarily specifying the structural
equations of M.

For example, in this context Q(M) could be the interventional distribution P (Y (a)). Hence, to prove
non-identifiability of Q(M) it is sufficient to find two sets of structural equations for the model hav-
ing different values of Q but resulting in identical distributions of the observed variables of the modelM.

As it was mentioned in the previous section, when considering the necessary conditions for the identifi-
ability of interventional distributions, two different approaches can be taken. On one side, assumptions
based on causal graphs can be used [66]; this approach has the advantage of providing clear graphical
conditions for identifiability. Differently, the second approach consists in using assumptions on poten-
tial outcomes. Compared to the previous approach, the latter one replaces graphical conditions with
conceptually meaningful assumptions, allowing for a more interpretable approach when estimating the
interventional quantities from observed data [82]. In this work, in order to assess the identifiability
of causal quantities, both assumptions on causal graphs and on potential outcomes will be considered.
A combination of these could indeed potentially help the reader in better understanding the multiple
identifiability criterion.

3.3.1. Identification of Interventional Distributions

The goal of this section is to find the identification formula for the interventional distribution P (Y (a))
in the different possible causal structures. It will be shown that for Markovian models interventional
distributions are always identifiable, while this task is more complex for semi-Markovian models.
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In Markovian models it is always possible to identify interventional distributions. The generalized
identification formula for different causal structures and sets of variables is the Truncated Factorization
Formula [69] [49] [64], otherwise called “Manipulation Theorem” [93] or g-formula [77]. According to
this mathematical formulation, the interventional distribution P (V (a)), where V is the entire set of
observed variables, is identified by the following Theorem:

Theorem 3.3.1. Truncated Factorization Theorem For any Markovian model, the distribution
generated by an intervention A = a on a set V of endogenous variables, such that A ∈ V , is given by
the truncated factorization:

P (V (a) = v) =

{∏
Vi∈V \A P (Vi = vi|Pai = pai) if a consistent with v,

0 otherwise.
(3.6)

Here P (Vi = vi|Pai = pai) are the pre-intervention probabilities conditional on the parents of Vi.

The proof of the g-formula is provided in the Appendix A. The main idea behind the Truncated Factor-
ization formula is the following: the intervened model, so the post-intervention graph Gā, is a Markovian
model itself (Proposition 3.2.3). Thus, the Causal Markovian Condition can be applied to the new graph.
Because of the intervened variables, in the proof in the Appendix A it is indeed shown that Equation
3.3 yields to the Equation 3.6.

An example on Figure 3.2 will now be considered. It could be interesting to quantify the interventional
probability distribution P (V (a) = v) corresponding to the causal graph in Figure 3.2; in this example
we have V = {C, Y,M,A} with respective instances v = {c, y,m, a}. Applying the g-formula 3.6 to this
example, the following equation holds:

P (V (a) = v) = P (C(a) = c,M(a) = m,Y (a) = y)

= P (Y = y|A = a,C = c,M = m)P (M = m|A = a)P (C = c).

In the g-formula of Equation 3.6, the interventional quantity involves the entire set of observable vari-
ables V ; nevertheless, the interventional distribution on a selected set of variables could be considered,
for instance P (Y (a) = y). Hence, getting back to the original identification problem, the Truncated
Factorization formula 3.6 can be used in the following way by applying marginalization [84]:

P (Y (a) = y) =
∑

V \{A,Y }

∏
Vi∈V \{A}

P (Vi = vi|Pai = pai), (3.7)

where, as before, V is the set of observable variables. Since the intervention is not estimated on the
entire set of variables V , the interventional quantity is averaged based on the conditioned probabilities
of the variables that are not in Y and A. Specifically, the summation is executed over all the values in
the state space of the variables in V \{A, Y }. In the previous examples, this corresponds to:

P (Y (a) = y) =
∑

V \{A,Y }

P (Y = y|A = a,C = c,M = m)P (M = m|A = a)P (C = c)

=
∑

m∈XM ,c∈XC

P (Y = y|A = a,C = c,M = m)P (M = m|A = a)P (C = c),

where XM and XC are the state spaces of M and C respectively.

In the next paragraphs, the link between the Truncated Factorization formula (Equation 3.6) and the
d-separation applied to potential outcomes will be analysed. Specifically, this content will show the
usefulness of SWIGs in order to analyze independence relationships among random variables and po-
tential outcomes. It is important to comprehend these simplified examples in order to understand the
formulation of the edge g-formula for complex nested interventional quantities (it will be introduced in
Lemma 4.2.1).

The most simplified graphical structure for interventional quantities will now be considered. This
involves no observed or unobserved common causes between the treatment variable A and the outcome
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Y , for instance the DAG in Figure 3.5a. This condition on graphical structure is equivalent to the weak
ignorability condition [82]: Y (a) ⊥⊥ A. This means that, after the intervention on the variable A as
a is made, any information on the random variable A does not provide information on the outcome
Y . This assumption can be immediately noticed analysing the respective SWIG G(a) in Figure 3.5b
corresponding to the intervention on A as a in the causal structure of Figure 3.5a. More formally,
because of the d-separation between the nodes A and Y (a) due to the absence of edges connecting A
to Y (a) in Figure 3.5b, the weak ignorability assumption can be obtained considering the set S of the
d-separation criterion (Criterion 3.2.0.4) as S = {∅}. As a reminder, Property 3.2.4 of SWIGs justifies
the application of the d-separation criterion to these graphical tools.
In this scenario, since Y (a) ⊥⊥ A, we have:

P (Y (a) = y) = P (Y = y|A = a), (3.8)

meaning that the interventional distribution is equivalent to the conditional probability, regardless of
any mediator variables in the causal model.

A

M

Y

(a) Causal Graph

A a

M(a)

Y (a)

(b) Respective SWIG for Intervention on A as a

Figure 3.5: Example causal graph with its respective SWIG for intervention on A as a ∈ XA

Further generalizing the weak ignorability condition, when A and Y have measurable common causes,
for example in Figure 3.6a, the respective conditional ignorability assumption holds. For instance,
if node C is a common cause between A and Y , the conditional ignorability assumption consists in
Y (a) ⊥⊥ A|C [82]. In other words, this assumption means that, when intervening on A, the outcome
Y is independent of the information regarding the variable A conditioned on the common cause C.
Similarly to before, this assumption can be easily deduced from the SWIG in Figure 3.6b; this follows
from the d-separation of A and Y (a) given the variable C.
In this scenario, the interventional distribution P (Y (a) = y) is identifiable under the conditional ignor-
ability assumption Y (a) ⊥⊥ A|C and is decomposed as:

P (Y (a) = y) =
∑
c∈XC

P (Y (a) = y|C = c)P (C = c) (3.9)

=
∑
c∈XC

P (Y (a) = y|A = a,C = c)P (C = c) (3.10)

=
∑
c∈XC

P (Y = y|A = a,C = c)P (C = c). (3.11)

In the above equations, the first one is implied by the Law of Total probability, while the second and the
third ones by conditional ignorability (Y (a) ⊥⊥ A|C) and the consistency assumption (Property 3.2.2)
respectively. As it can be observed from the final equation, the interventional distribution is computed
as the association between the variables A and Y for each value of the confounder c ∈ XC , averaging
over all the values of C. This is equivalent to the g-formula 3.6 applied to Figure 3.6a.
The above formulation of the interventional distribution is also referred to as the adjustment formula
or back-door formula, which later will be introduced in Definition 3.12. The intuition behind Formula
3.11 consists in controlling or “adjusting” for the possible values the common cause C could assume.
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A

M

Y

C

(a) Causal Graph

A a

M(a)

Y (a)

C

(b) Respective SWIG for Intervention on A as a

Figure 3.6: Example causal graph Figure 3.2 with its respective SWIG for Intervention on A as a

The above independence relations can also be interpreted graphically by analysing the original causal
graph. Regarding the first setting, where no unmeasured variables and no common causes between A
and Y are present, the graphical interpretation consists in the absence of any back-door paths from
A to Y . By definition, the back-door paths from A to Y are all the paths in the causal diagram that
start with an arrow pointing into A [65] (refer to Criterion 3.3.1.2). Differently, analysing the setting in
which there is a common cause C between A and Y and all the variables are observable, the assumption
Y (a) ⊥⊥ A|C graphically corresponds to the variable C blocking all back-door paths from A to Y .

In the previous sections, the g-formula was presented as a useful tool in order to identify interventional
quantities when all of the variables are measured, hence when there is no need to introduce a latent space
(Markovian models). Nevertheless, in general causal structures the g-formula is not always applicable.
In Equation 3.11 it was shown that under certain assumptions it is possible to define a set of variables
(in the example C) such that it acts as an adjustment term for the identification formula. Covariate
adjustment is an useful identification formula; this is equivalent to the g-formula in Markovian models.
The adjustment formula can be defined as:

Definition 3.3.1.1. Adjustment Formula [79] Given a causal graph G over a set of variables V , a
set Z is called adjustment set for estimating the causal effect of A on Y , if, for any distribution P (V )
compatible with G, it holds that

P (Y (a) = y) =
∑
z∈XZ

P (Y = y|A = a, Z = z)P (Z = z), (3.12)

where Y,A,Z ∈ V , a ∈ XA, y ∈ XY .

The simplest adjustment set is the set of parent nodes of A, PaA. Indeed, the conditional ignorability
assumption (Y (a) ⊥⊥ A|PaA) always holds since the set PaA by definition d-separates Y (a) and A in
the respective SWIG G(a). Nevertheless, in some scenarios it might happen that the parents of A are
inaccessible for measurement (i.e. unobserved), leading the set PaA not to be a suitable adjustment set
for identifying Y (a). In these scenarios the Back-Door Criterion can be useful for defining a suitable
adjustment set.

The Back-Door criterion can be used for deriving a broad class of adjustment sets. Presenting the
definition provided in [69], we have:
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Definition 3.3.1.2. Back-Door Criterion A set of variables Z satisfies the back-door criterion
relative to a pair of variables (A, Y ) in a DAG G if:

1. no node in Z is a descendant of A; and

2. Z blocks every path between A and Y that contains an arrow into A (i.e. back-door paths)

The name Back-Door criterion comes from the terminology of back-door paths. A back-door path from
Vj to Vi in a DAG G is a path with no emitted edge from Vj (Vj ← ...Vi). The Back-Door criterion is
highly relevant, as if a set of variables Z satisfies it relatively to the couple (A, Y ), then the interventional
distribution P (Y (a) = y) is identifiable.
As an example, the causal graph in Figure 3.7 will be used for analysing the backdoor criterion relative
to (A, Y ). In the following graphs U is represented as dashed-edges emitting variable but it could also
be graphically drawn as one dashed bi-directional edge between A and M . It can be noticed that the
variable M guarantees that the back-door path A ← U → M → Y is blocked by M . Nevertheless, M
is a descendant of A, meaning that the first condition of the criterion is not satisfied.

A

M

Y

U

Figure 3.7: Example causal graph where back-door criterion is not satisfied

A Y

U

Figure 3.8: Example causal graph with unobserved common cause between A and Y

Like in the previous example, it can be proven that if a set Z satisfied the Back-Door criterion conditions,
then the formula 3.11 can be used. More formally, the following theorem from [66] can be analysed:

Theorem 3.3.2. Back-Door Adjustment If a set of variables Z satisfies the back-door criterion
relative to (A, Y ), then the causal effect of A on Y is identifiable and is given by the Adjustment
Formula in Equation 3.12.

Albeit the assumptions needed for the g-formula might be violated, in many scenarios it is possible to
select admissible adjustment sets for computing interventional distributions from observed data thanks
to the Back-Door criterion. Now the proof of Theorem 3.3.2, following the outline of [66] is given.

Proof. When the Back-Door criterion is satisfied on an admissible set Z, then it is possible to identify
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the interventional quantity as:

P (Y (a) = y) =
∑
z∈XZ

P (Y (a) = y|Z = z)P (Z(a) = z) (3.13)

=
∑
z∈XZ

P (Y (a) = y|Z = z)P (Z = z) (3.14)

=
∑
z∈XZ

P (Y = y|A = a, Z = z)P (Z = z). (3.15)

The first equality follows from the rule of Total Probability. The second one follows from the first
condition of the Back-Door criterion; since no node in Z is a descendant of A, then Z(a) = Z. The
third equality follows from the third condition of the Back-Door criterion; the back-door paths from A
to Y are blocked by Z, so the interventional distribution of Y with respect to A is equivalent to the
conditional one when conditioning on the value of Z (blocking the causal path). By expressing this
condition with conditional independence relations, Y (a) ⊥⊥ A|Z. The Adjustment Formula follows.

The intuition of the Back-Door Criterion follows from the blocking Definition (Definition 3.2.0.3). Look-
ing back at the Back-Door conditions, the selected set Z should not be descendant of A, as otherwise
it would be influenced by the intervention on the variable A, hence leading the intervention not to
propagate to Y along all the paths from A to Y . Furthermore, in order to ensure that the causal
relation between A and Y is fully represented, it is necessary to block the paths that might be source of
confounding. In fact, the paths with an arrow entering in A will not propagate the causal effect of A on
Y through an intervention, but they might still make these two variables dependent. By conditioning
on the set of variables Z that satisfies the back-door criterion, these spurious paths between A and Y
actually get blocked.
In many settings, it might be useful to estimate an interventional quantity for a selected set of data
values, specifically, by setting a condition on one or more variables that have been observed. For in-
stance, it could be convenient to estimate the Z-specific causal effect, thus estimating the causal effect
that A has on Y for a specific value of Z (such as z). These scenarios will be explored in the next sections.

In certain graphical structures, the Back-Door criterion is not applicable. In the presence of unobserved
variables, the front-door criterion can also be useful for the identification of interventional quantities.
This can be applied to causal graphical structures that do not satisfy the back-door criterion. Indeed,
frequently, it might happen that the back-door criterion cannot be used if a set of unobserved variables
has as descendants both the sensitive attribute A and the outcome Y , like in Figure 3.8. In these
scenarios, the back-door criterion is not applicable because there is a back-door path mediated only by
U , which is unobserved. Intuitively, the identifiability problem rises form the impossibility to distinguish
between the spurious correlation between A and Y due to the presence of U and the true causal effect
that A has on Y . Nevertheless, this would change if there was a mediator between A and Y , such as in
Figure 3.9. The intuitive reasoning behind the use of mediator for identifying the causal effect in these
scenarios will be explained in the next paragraph.

A M Y

U

Figure 3.9: Example causal graph front-door criterion
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Comparing the front-door criterion and the back-door criterion, the following consideration can be
made. While the first condition of the back-door criterion reflects the observations being unaffected
from the treatment, the front-door criterion can be useful for analysing causal models where the set Z
is affected by the treatment.

Definition 3.3.2.1. Front-Door Criterion A set of variables Z satisfies the front-door criterion
relative to a pair of variables (A, Y ) in a DAG G if:

1. Z intercepts all directed paths from A to Y ;

2. there is no unblocked path from A to Z ; and

3. all back-door paths from Z to Y are blocked by A.

Similarly to before, finding a set of variables Z such that the front-door criterion is satisfied corresponds
to confirming the identifiability of the interventional distribution.

Definition 3.3.2.2. Front-Door Adjustment If a set of variables Z satisfies the front-door criterion
relative to (A, Y ), then the causal effect of A on Y is identifiable and is given by the Adjustment Formula:

P (Y (a) = y) =
∑
z∈XZ

P (Z = z|A = a)
∑

a0∈XA

P (A = a0)P (Y = y|Z = z,A = a0), (3.16)

where a ∈ XA, y ∈ XY .

The intuition of this formula consists in applying multiple times the back-door formula to the same
causal structure. For instance, referring to Figure 3.9, the interventional quantity in Equation 3.16 can
be seen as:

P (Y (a) = y) =
∑

m∈XM

P (Y (a) = y|M(a) = m)P (M(a) = m). (3.17)

Indeed, given the value a that A is being intervened as, the causal effect it has on Y can be estimated
as an interventional distribution through the different values in the domain of M , averaged out on the
probability distribution respective the values that M would naturally assume after an intervention on A
as a. The two interventional quantities that are used in the right side of Equation 3.17 are identifiable
from observable quantities by using the back-door criterion.
In order to prove the identification formula the following steps can be taken:

P (Y (a) = y) =
∑

m∈XM

P (Y (a) = y|M(a) = m)P (M(a) = m)

=
∑

m∈XM

P (Y (m) = y)P (M(a) = m|A = a)

=
∑

m∈XM

P (Y (m) = y)P (M = m|A = a)

=
∑

m∈XM ,a0∈XA

P (Y = y|M = m,A = a0)P (A = a0)P (M = m|A = a).

Above, the first equality follows from the rule of total probability. The second one follows from the first
condition of the front-door criterion, stating that Z intersects all the directed paths from A to Y . The
second condition of the front-door criterion, stating that there are no back-door paths from A to M
(M(a) ⊥⊥ A) is used in the equality P (M(a) = m|A = a) = P (M = m|A = a). Lastly, the back-door
criterion can be used in order to identify P (Y (m) = y), since A blocks all the back-door paths from M
to Y ; it can be noticed that the condition of the back-door criterion stating that A is not a descendant
of M is already enforced in the second condition of the front-door criterion.

The presented Back-Door and Front-Door criterion are extremely useful for assessing the identification
of simple graphical structures that are often met in the literature. These criterion are critical for un-
derstanding the key aspects of identifiability in Semi-Markovian models and the respective challenges
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through the use of adjustment sets. These criterion will be useful for better understanding future con-
tent of this work.

Assessing identifiability of arbitrary Semi-Markovian graphical structures is relevantly more complicated
compared to Markovian Models. Further to the Back-Door and Front-Door criterion, a general iden-
tification algorithm for interventional distribution in Semi-Markovian models is presented in multiple
works. Specifically, the identification algorithm (ID Algorithm), proposed in [96] and simplified in [83],
is proposed. These results have been further explored in [85], by reformulating the ID Algorithm into a
one-line formula. Most of the respective proofs are presented in the working paper [75]. As this topic is
not the focus of this project, it will not be analysed it in detail. However, interesting insights regarding
the identifiability criterion that could potentially benefit the intuition behind the next chapters will be
introduced.

The identifiability criterion for semi-Markovian models is based upon the notion of districts, introduced
in Definition 3.2.0.7. In [83], districts are referred to as C-components. In this section, an identification
criterion for causal effects in semi-Markovian models will be presented. Specifically, it will focus on
the identification of P (Y (a) = y) with A and Y as disjoint sets of nodes. The main obstacle towards
identification of causal effects in semi-Markovian models is the presence of a hedge graphical structure.
Indeed, it will be proven that the above causal effect is identifiable if and only if an hedge structure
does not exist. In order to introduce the hedge structure, it is necessary to define C-forests.

Definition 3.3.2.3. C-forest [83] Let G be a semi-Markovian graph, where Y is a set of nodes. Then,
G is a Y -rooted C-forest if all nodes in G form a district, all observable nodes have at most one child
and AnG(Y ) = G

Based on this notion, it is possible to define a hedge structure in the following way:

Definition 3.3.2.4. Hedge [83] Let X, Y be disjoint sets of variables in G. Let F , F ′ be R-rooted
C-forests such that F ′ ∩ A = ∅, F ∩ A ̸= ∅, F ′ ⊆ F and R ∈ AnGā(Y ). Then, F and F ′ form a hedge
for P (Y (a) = y) in G.

For better understanding of hedge structures, it is possible to start by considering a C-forest F ′ that
does not contain A. Then, it is possible to extend F ′ by growing more branches, while retaining the
same root-set, becoming F . By adding new branches, A is intersected by F . The intervention on
A has the effect of removing some incoming arrows in F\F ′, leading to the hedge structure of the
graph. Hedges generalize the scenario where Y is a child of A and they are connected through a
bi-directed edge, leading P (Y (a) = y) not to be identifiable [96]. Referring to the Back-Door and
Front-Door criterion, this scenario was indeed not covered by the different conditions. By generalizing
these graphical structures considering both A, Y and the respective mediators in the same district, a
hedge structure can be defined. Indeed, it can be proven that:

Theorem 3.3.3. Hedge criterion [83] P (Y (a) = y) is identifiable in G if and only if there does not
exist a hedge for P (Y ′(a′) = y′) in G, for any A′ ⊆ A and Y ′ ⊆ Y , having a′ ∈ XA′ , y′ ∈ XY ′ .

Proof. The proof of the above Theorem will be provided, following structure in [96]. In particular,
it will now be proven that if a hedge structure exists for P (Y ′(a′) = y′), then P (Y (a) = y) is not
identifiable. The rest of the proof can be found in the original document.
Two R-rooted C-forests F and F ′ will be considered. First, it can be proven that P (R(a) = r) is not
identifiable in G. It is possible to define two modelsM1 andM2 with the same induced graph G such that
the observed distributions are the same P 1(R) = P 2(R) but such that the interventional distributions
are not, proving that indeed P (R(a) = r) is not identifiable in G. Once this has been proven, since
P (Y (a) = y) =

∑
r P (R(a) = r)P (Y = y|R = r), it is possible to construct P (Y = y|R = r) such that

the mapping between P (Y (a) = y) and P (R(a) = r) is one-to-one. Since P (R(a) = r) is not identifiable
in G, the same will hold for P (Y (a) = y).
The authors of [96] choose as M1 and M2 the models that assign to every variable the bit parity
(sum modulo 2) of its parents, meaning that every variable is binary. These two models differ from the
fact that in M2 the nodes in F ′ which have parents in F ignore the values of those parents. All the
unobserved variables U are fair coins in both of the models. It can be noticed that these two models
are observationally indistinguishable, as the bit parity of R is even since the unobserved variables are
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counted twice in both of the models. Nevertheless, given the hedge formed by F and F ′, any intervention
in F\F ′ will lead to two distinct distributions on R. The bit-parity circuit will be broken, which will
affect R in the first model but not in the second one, as the variables in F ′ with parents in F ignored
those specific terms in the sum.
Hence, it was proven that if there exists an hedge for P (Y ′(a′) = y′), then P (R(a) = r) is not identifiable
in G. This leads to P (Y (a) = y) not being identifiable because of the one-to-one mapping. The reader
can refer to [96] for the proof of the other statement of the if-and-only-if condition.

In this section the different guidelines for deriving the identification formula for interventional distribu-
tions in different causal structures have been presented. In particular, it has been explained how the
presence of unmeasured confounders can lead to further complications in this task. In general, once the
identifiability assumptions have been assessed, it is always possible to provide mathematical formulation
for interventional quantities using the observed-data distribution.
As previously mentioned, an entire identification algorithm is provided in [96] to be applied to semi-
Markovian models. The main idea of the identification algorithm can be found in the Appendix B. This
topic will not be explored further in details because it falls outside the scope of the project.
In the next paragraph, the powerful machinery of do-calculus is introduced, along with the relations
with the earlier introduced adjustment criterion.

Do-Calculus

The do-calculus is characterized by three rules; these rules are equalities that can be used to manipulate
interventional distributions. The final scope of this calculus is to turn interventional distributions into
observational ones. Even though these rules have not been explicitly introduced in this report yet,
many of the stated identification results could have been addressed by using do-calculus, for instance
the d-separation, the Back-Door or the Front-Door criterion.
In the below formulation, a causal graph G containing the disjoint sets of nodes A, Y, Z,D ∈ V is
considered. The do-calculus rules are the following:

• Rule 1:
P (Y (a) = y|Z = z,D = d) = P (Y (a) = y|D = d) if (Y ⊥⊥ Z|A,D)GA

, (3.18)

where GA is defined as the causal graph G in which all arrows leading to A have been deleted.
This rule is also called ignoring observations rule, as it states the equivalence of the interventional
distribution P (Y (a) = y|D = d) with or without observing the variable Z under specific graphical
conditions.
It was previously explained that node interventions on A can be graphically represented by cutting
the edges entering in the treatment variable A. As a matter of fact, given the causal graph GA
where A is set to a constant value a, the probability distributions of the different variables along
this causal graph are equivalent to the interventional distributions of the respective variables with
A set as a. Hence, intuitively, if (Y ⊥⊥ Z|A,D)GA

holds, then the variable Z is independent of Y
when intervening on the variable A and conditioning on D.

• Rule 2:

P (Y (a, z) = y|D = d) = P (Y (a) = y|D = d, Z = z) if (Y ⊥⊥ Z|A,D)GAZ
, (3.19)

where GAZ is the graph in which the arrows entering in A and the arrows emitted from Z are
deleted. The assumption (Y ⊥⊥ Z|A,D)GAZ

means that in the graph GAZ the variables {A ∪D}
block all the back-door paths from Z to Y . Indeed, when deleting the arrows emitted by Z, the
only paths remaining in the graph that connect Z and Y are the back-door paths (ending with
an entering edge in Z). Hence, since the condition on GAZ guarantees that {A ∪D} satisfy the
Back-Door criterion (refer to Definition 3.3.1.2) in the interventional graph GA (corresponding to
the intervention on A). Then, when conditioning on D, an intervention on Z by setting Z = z
has the same effect on Y as the conditioning on Z = z. Indeed, when all back-door paths are
blocked, then the spurious correlations between Z and Y are blocked, leaving the directed paths
from Z to Y unperturbed. It is important to notice that in the Back-Door criterion an additional
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assumption is required: {A ∪D} are not descendants of Z. Nevertheless, when intervening on A
and conditioning on D, even if they originally were descendants of Z, this requirement is met. In
conclusion, the operation of the intervention is the same as the one of conditioning.

• Rule 3:
P (Y (z, a) = y|D = d) = P (Y (z) = y|D = d) if (Y ⊥⊥ A|Z,D)G

ZA∗ . (3.20)

Here, we have A∗ = A\AnGZ
(D), which consists in deleting the arrows entering A if A does not

precede D. This rule means that it is possible to ignore an intervention on a variable A if this
operation does not influence Y through any uncontrolled path. Hence, it is possible to remove
the intervention on A if there are no unblocked paths from A to Y .
The most simplified scenario of the Rule 3 of do-calculus consists in transforming an interventional
quantity into an observational one. Specifically, by choosing Z = {∅} and D = {∅}, the condition
becomes (Y ⊥⊥ A)GA

. Hence, we have that, if there are no causal paths between A and Y ,
P (Y (a)) = P (Y ).

All of the adjustment formulas that were formulated in the previous section can be proven and derived
using the do-calculus rules. Even though these rules partly fall outside the scope of this work, Rule 1
(Eq. 3.18) and Rule 2 (Eq. 3.19) will be useful in Chapter 6.

3.3.2. Identification of Unit-Level Counterfactuals

Unit-level counterfactuals of a variable A = a on Y were introduced in Definition 3.2.4.1, denoting with
Ya(u) “the value of Y in unit u, had A been a”. Based on the definition of SCMs (Definition 3.2.0.1)
and of the consistency property (Property 3.2.2), since the structural equations remain invariant among
the entire population, the instances of background variables characterize similar individuals, leading to
specific values of the observed variables V and of the respective responses to interventions. Given an
arbitrary counterfactual, such as E[YA=a|X = x] with X being a set of observed covariates, in [68] a
three steps process is proposed in order to identify this unit-level intervention.

• Abduction: for a given prior U , compute the posterior distribution of U given the evidence
X = x, having P (U = u|X = x) for any arbitrary u ∈ XU ;

• Action: modify the model by removing the structural equations for the variables in A and
replacing them with the appropriate functions A = a with a ∈ XA, as previously seen in the
definition of interventions;

• Prediction: use the modified structural equations in the model and the posterior P (U |X = x)
to compute the expectation of Y .

Even though this procedure can be straightforward in datasets with a known generating process, it
might be hard in practice with real-world datasets. Indeed, it is necessary to make use of the structural
equations, which are usually not known in advance. Otherwise, assumptions on the form of these equa-
tions need to be made, specifically for estimating the posterior distribution P (U |X = x). A further
assumption in this approach is that the values of the unobserved variables are the same for observed
data points and their respective unit-level counterfactuals. It is important to notice that the unit-level
counterfactual quantities are identifiable if the involved interventional quantities are identifiable.

As an example of the identification of unit-level counterfactuals, the following Structural Causal Model
is given:

A = fA(UA)

M = fM (A,UM )

Y = fY (M,A,UY ).

In order to analyse the counterfactual for a unit with observed values (ai,mi, yi) by intervening on A = a,
then the following steps need to be taken. Given the functions (fA, fM , fY ), using the value (ai,mi, yi)
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it is possible to deterministically derive the values (ui
A, u

i
M , ui

Y ). Next, the unit-level counterfactuals
can be determined by solving the following system:

A = a

m = fM (a, ui
M )

y = fY (m, a, ui
Y ).

Differently, when the structural equations are not known, a deterministic approach is not possible.
Nevertheless, following the variational Abduction-Action-Prediction approach, it is possible to use the
inferred posterior distribution of the latent space, in this example P (U |A,M, Y ), in order to derive the
unit-level counterfactuals.



4
Causal Fairness Metrics

In the previous chapters, an overview on fairness and causality was given, motivating the focus on
causality-based fairness metrics. This chapter will introduce and compare the most commonly used
causality-based fairness metrics. In conclusion, path-specific metrics will be chosen as the most suitable
metrics for the research scope of this project.

Analysing causal fairness metrics, discrimination can be defined based on two different frameworks:
disparate impact and disparate treatment [9]. The former corresponds to decisions that do not ensure
a fair impact on all the classes (defined by the values of A). Meanwhile, the latter reflects decisions
that enact a disparate treatment for people who have similar attributes.
It will be shown that the disparate impact framework includes different fairness measures, such as the
Total Effect and the Effect of Treatment on the Treated. Differently, fairness notions corresponding to
mediation analysis like Direct Effect, Indirect Effect and Path-Specific Effect belong to the disparate
treatment framework.
An additional classification on fairness metrics will be made into individual-level and population-level
metrics. The advantages and disadvantages of these two frameworks will be analysed.

By using a consistent notation with respect to the rest of the work, in this section the treatment variable
(sensitive attribute) that is being intervened upon is A. The state space of this variable is assumed to
be XA = {a0, a1}. Specifically, A = a1 characterizes the possibly discriminated group of people. The
scope of the research on fairness is to evaluate the causal relations between the treatment variable A
and the outcome Y .

4.1. Total Effect and Effect of Treatment on the Treated

In this section, two of the most common causal fairness metrics belonging to the disparate impact frame-
work will be presented: the Total Effect and the Effect of Treatment on the Treated. Both of these
metrics are commonly used in the research on fairness; nevertheless, the drawbacks of these approaches
will be shown, specifically with respect to the purpose of this project.

The Total Effect has the purpose of estimating the total causal effect that the treatment variable has on
the outcome at a population level [20]. This can be done by comparing the interventional distributions
of Y (a0) and Y (a1), where a0, a1 ∈ XA. This effect measures the difference in the distribution of Y
once two distinct interventions on A are made (setting the variable to two different values, for example
a0 = 0 and a1 = 1). In particular, the literature focuses on evaluating the average Total Effect (also
called Average Treatment Effect):

TEa0,a1
(Y ) = E

[
Y (a0)

]
− E

[
Y (a1)

]
.

29
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The Total Effect is formulated as the difference between the mean outcome between the inactive and ac-
tive treatment scenarios, in this case the scenarios in which A is set to a0 and the one where A is set to a1.

A metric that is closely related to the Total Effect is the Effect of Treatment on the Treated [66]. This is
a counterfactual metric, measuring the mean response of the treatment variables on the active treatment
subjects (for instance with A = a1) [37]. The Effect of Treatment on the Treated is defined as:

ETTa0,a1(Y ) = E
[
Y (a0)|A = a1

]
− E

[
Y (a1)|A = a1

]
.

The probability distribution of P (Y (a1) = y|A = a1) is equivalent to the conditional distribution
P (Y = y|A = a1) by consistency (refer to Property 3.2.2), as it corresponds to intervening on variable A
setting it to a1 in data-points that already had the value of A equal to a1. Instead, P (Y (a0) = y|A = a1)
is a counterfactual quantity that can be interpreted as the “the probability that Y would be y had A
been set to a0, given that in the real world A = a1” [108]. The Effect of Treatment on the Treated is
commonly used in epidemiology [57] and in social experiments, to analyse their impact on participants
[37].

Both the Total Effect and the Effect of Treatment on the Treated are commonly used as fairness metrics
in the literature. Applied to the setting of research on fairness of an outcome Y with respect to the
sensitive attribute A, the Total Effect evaluates the overall effect that the sensitive attribute has on the
outcome. Moreover, it is a common practice in the state of the art to refer the subjects that have not
been treated as the ones belonging to the potentially discriminated group. This means that the Effect
of Treatment on the Treated can be interpreted as the total effect solely estimate among the potentially
discriminated demographic group defined by A.

The Total Effect and the Effect of Treatment on the Treated present different drawbacks as fairness
metrics. These metrics focus on evaluating the effect that the sensitive attribute has on the outcome
along all the causal paths in the graphical structures. Indeed, when the distinction of the effect among
the different pathways from A to Y is not relevant for the scope of the research, these metrics are
suitable. Nevertheless, in the fairness setting, not only we are interested in analysing the causal effect
of the sensitive attribute on the output of the ML algorithm, but it is also critical to evaluate in which
way this effect is propagated. What was now referred to as “ways” of propagation can be graphically
interpreted with the different paths from A to Y . The main weakness of these two fairness metrics
is thus not capturing the Path-Specific Effects that the sensitive attribute has on the outcome. This
concept is critical in the fairness research, as not all the causal paths from the sensitive attribute should
always be considered unfair. For these reasons, metrics focusing on the total effect are not considered
suitable for this research; a generalization of these metrics to Path-Specific Effects is preferred, allowing
for a more flexible interpretation of fairness on causal graphs. This concept will be explored in the next
section.

4.2. Path-Specific Effect

In this section, first an introduction on the motivation of Path-Specific Effect (Path-Specific Effect (PSE))
as a fairness metric will be given. Moreover, specific notations regarding edge interventions and the
respective identifiability conditions will be explored.

Since the research on causal fairness focuses on evaluating the causal effect that a sensitive variable A
has on an outcome Y , mediation analysis [82] [67] is a common approach. The scope of this analysis
is to decompose the causal effect of A on Y into the different causal pathways from A to Y in the
causal graph. For instance, it could be interesting to analyse the Direct Effect that A has on Y , which
corresponds to estimating the causal effect solely along the direct edge (AY )→ in the causal graph.
Similarly, the same intuition can be applied to the Indirect Effect (along all the indirect paths) and in
general to the Path-Specific Effect (i.e. effects corresponding to specific selected pathways from A to
Y ). In fact, in the fairness setting it might happen that only part of the pathways from the sensitive
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attribute to the outcome are considered illegitimate.
Generally, in our work and in most of the causal fairness works among the state of the art literature, it
will be assumed that the ethical interpretation of the causal pathways in the graphical structure of the
data is known. In order to assess which causal pathways can be considered allowed (fair) or not allowed
(unfair), researchers often rely on domain experts knowledge.

In order to comprehend the intuition of the Path-Specific Effect as a fairness metric, the following intro-
ductory example can be analysed. In Figure 4.1, the causal graph of a construction job hiring procedure
model is presented. Different variables can influence the hiring decision (Y ) in the model: the name
of the applicant (N), the gender of the applicant (A) and his/her physical strength (S), which is a
valuable skill for a construction job. By domain expert knowledge, it can be supposed that the direct
causal path from the gender variable to the hiring decision can is unfair, as it should not be allowed
for the gender to directly causally influence the outcome of the application decision. In order to assess
the causal effect that the gender has along this direct path (AY )→, the Natural Direct Effect can be
used. By analysing the other variables in the causal graph too, it can be noticed that the variable N ,
representing the names of the applicants, can be considered as a proxy for the gender variable. By proxy
it is meant that relevant information regarding the gender of the applicant can be deducted by his/her
name itself. Indeed, from an ethical perspective, the causal path (ANY )→ can be assumed unfair too.
Hence, two distinct paths of the causal graph from the sensitive attribute to the outcome are considered
to be unfair in this example. In order to assess the causal effect that A has on Y solely along the unfair
paths π : {(AY )→, (ANY )→}, the Path-Specific Effect can be used. The reason why the path (ASY )→
is considered a fair path is that, generally, it should be allowed to consider the physical strength of the
candidate in the hiring process, as it is a necessary skill for a construction worker.
The above example treated an ideal world, where it is immediate to understand when a causal path
can be considered fair or unfair. In general, this procedure is more complicated and consultation with
domain expertise is necessary.

A

N

Y

S

Figure 4.1: Example hiring process

Now that motivation behind path-specific metrics has been introduced, the Path-Specific Effect can be
defined as the following:

Definition 4.2.0.1. Path-Specific Effect Given a set of paths π part of a causal graph G, two variables
A and Y belonging to G such that a0, a1 ∈ XA, the Path-Specific Effect of A on Y along π is formulated
as:

PSEπ
a0,a1

(Y ) = E
[
Y (π, a1, a0)

]
− E

[
Y (a0)

]
. (4.1)

Here, the probability distribution P (Y (π, a0, a1) = y) is the probability that Y = y if along the path
π, A is intervened upon as a1, meanwhile, along the other paths not belonging to the set π, A is
intervened upon as a0. The Path-Specific Effect PSEπ

a0,a1
(Y ) has the scope of evaluating the effect

that A has on Y along π. By decomposing the Average Total Effect into the Path-Specific Effects
[8] of the sensitive attribute on the outcome, an effective and more interpretable fairness assessment
can be given. The sum of Path-Specific Effects along all the paths from A to Y is thus equivalent to
the Average Total Effect. It can be noticed that this metric is asymmetric with respect to the values
a0, a1 ∈ XA; the formulation of PSEπ

a0,a1
(Y ) follows from the ethical context and common practices in
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the fairness literature. In this work it is always assumed that A = a1 is the possibly discriminated group.

The Path-Specific Effect is a highly versatile metric. As a matter of fact, the Path-Specific Effect is a
general version of the Natural Direct Effect (NDE) and the Natural Indirect Effect (NIE), which instead
consist in selecting π as the direct edge and the set of indirect paths respectively.
Until now, this work has focused on node interventions (i.e. interventions corresponding to variables,
not edges). Nevertheless, when using mediation analysis, it is necessary to introduce and analyse the
concept of edge interventions. It is interesting to notice that node interventions are a specific subgroups
of edge interventions, in which all the edges emitted by the treatment variable are intervened upon
with the same value. In fact, the Total Effect is a special case of the Path-Specific Effect with π is the
entire set of paths from A to Y . In the next section, the definition and identifiability conditions of edge
interventions will be presented.

4.2.1. Identifiability of Path-Specific Effects

In this Section, first the identification of Path-Specific Effects will be defined with the edge g-formula
for arbitrary causal graphs G and arbitrary edge interventions. This identification formula will further
be applied to one of the graphical structures that was analysed in the previous chapters. Moreover,
the necessary identifiability assumptions will be given, considering both Markovian models (Definition
3.2.0.2) and semi-Markovian models (Definition 3.2.0.5).

Edge g-formula

In the previous Chapter 3.3.1 on identification of interventional distribution, the focus was set on node
interventions. When considering path-specific interventions, it is necessary to introduce the concept
of edge interventions. Differently from edge interventions, in node interventions the effect of a single
intervention is estimated along all the causal pathways emitted from the treatment node itself. Instead,
by analysing edge interventions, the causal effect is evaluated along specific edges of the causal graph.
In this section, a causal graph G with vertices V = {V1, ..., Vn} subject to arbitrary edge interventions
will be considered. The edge g-formula will be introduced and proven; this formula is used for the
identification of Path-Specific Effects and requires specific assumptions that will later be presented.

An overview of the notation used in [86] for defining edge interventions will now be given. The authors
of [86] introduced the concept of edge interventions, mapping a set of directed edges in the causal graph
G to values of their source nodes. By notation, given a node Vi, XVi

defines the state space of the
variable Vi, which is the set of all the values that the variable can assume. An edge from node Vi to
Vj will be referred to as (ViVj)→. Following the notation used in [86], α is the set of edges in a DAG
G along which the intervention is made. Since each edge is characterized by a source variable, so(α) is
defined as the set of source variables of the edges in α. For instance, by intervening on the edge (AY )→,
the value of the source node A is set to an arbitrary value a along that edge. Thus, the state space of
the set of edges α is defined as Xα = Xso(α), which is the Cartesian product of the state spaces of the
source variables of all directed edges in α. Xα corresponds to all the possible interventions that can
be done along the selected edges; the interventional values of these edge interventions are denoted as
aα ∈ Xα. If all edges share the same source node, for instance A, an element aα of Xα could still present
different values a ∈ A. As a matter of fact, it is important to take into account that conflicting value
assignments of A might be present in Xα, representing conflicting interventions along different edges.
This is coherent with how edge interventions were introduced, meaning that the same attribute could
be intervened upon as different values along distinct edges.
As an example, the causal graph in Figure 4.2 will be used. The following edge intervention is consid-
ered: A is set as a0 along (AM)→ and as a1 along (AY )→. Given this edge intervention, the respective
notation is the following: α = {(AM)→, (AY )→}, XA = {a0, a1}, Xα = {a0, a1}×{a0, a1}, aα = [a1, a0]
where aα ∈ Xα.
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Edge interventions are formally defined in [86] in the following way.

Definition 4.2.0.2. Response to Edge Interventions For every node variable Y , given a set of
edges α in G with a respective interventional element aα ∈ Xα, the potential outcome corresponding to
this edge intervention ηaα can be written with the following recursive definition:

Y (aα) = Y
(
a{(∗Y )→∈α}, {paα̂G(Y )}(aα)

)
, (4.2)

where paα̂G(Y ) = {W ∈ PaY |(WY )→ /∈ α}.

By notation, {paα̂G(Y )}(aα) is the interventional distribution of the nodes paα̂G(Y ) following the interven-
tional element aα. Y (aα) is the response of Y to the edge intervention ηaα that assigns the set of values
aα to the respective edges α. The above formulation is defined recursively, based on the lack of directed
cycles in DAGs. The edge-specific interventional distribution on the variable (or set of variables) Y can
be interpreted as the potential outcome such that the parents that belong to an edge in α are assigned
the interventional value in aα, while the other parents paα̂G(Y ) are set the value they would naturally
have after the same edge intervention on their respective parents.
Going back to the example in Figure 4.2, the following quantities were defined α = {(AM)→, (AY )→},
XA = {a0, a1}, Xα = {a0, a1} × {a0, a1}, aα = [a1, a0]. By using the above recursive definition, the
potential outcome of the previously introduced edge intervention can be interpreted in the following
way: the only parent of Y such that (∗Y )→ ∈ α is the source variable A itself, which is set to a0 along
this edge. M ∈ paα̂G(Y ) is subject to the intervention on the edge (AM)→, along which A is set to a1.
Furthermore, C ∈ paα̂G(Y ) is invariant for the intervention since it is not part of the descendants of A.
This potential outcome is referred to as Y (a0,M(a1)).

When considering nested counterfactuals, it is necessary to involve conditional independence relations
among interventional quantities characterised by both conflicting and not conflicting interventions. In
order to introduce the edge g-formula for arbitrary causal structures, it is important to also consider
the assumptions involved defining nested counterfactuals.
The authors of [86] introduced two distinct models, based on the respective assumptions made on the
dependence relations of interventional quantities. The former ones can be defined in the following way:

Definition 4.2.0.3. Single World Model (SWM) [86] The Single World Model associated with a
DAG G with nodes V = {V1, ..., Vd} is the set of all possible potential outcomes satisfying the assumption
that the elements: {

Vi(vpaG(Vi)) : Vi ∈ V
}

(4.3)

are mutually independent for every paG(Vi) ∈ XPaVi
.

For instance, for Figure 4.2, M(a) ⊥⊥ Y (a,m) for the same value of a ∈ XA. In [86], by Single World
Models the authors refer to the causal model Finest Fully Randomized Causally Interpretable Struc-
tured Tree Graphs (FFRCISTG) proposed in [76].
These assumptions can be easily tested by analysing the SWIG corresponding to the specific interven-
tion and causal structure. SWIGs have been introduced in [74] (see Definition 4.2.0.3) as a tool that
unifies the graphical and potential outcomes approaches used in causal inference, leading to a graphical
interpretation of the independence relations among potential outcomes. In Figure 4.3 the SWIG corre-
sponding to the interventional quantities M(a) and Y (a,m) of Figure 4.2 is presented. As it can be
noticed from this example, in order to represent interventional quantities, a “node” operation is made.
The node A is split in a random half and a fixed half, where the fixed half inherits the outgoing edges,
while the random part the incoming edges. The same holds for the variable M(a), as the interventional
quantity Y (a,m) = Y (a,M(a) = m) is the response to two interventions, one on M(a) and one on A.

In the identification of PSE, it is necessary to involve conflicting interventions along distinct edges too,
thus involving Multiple Worlds Models. The underlying assumption when involving multiple worlds is
presented by [86] in the following way.

Definition 4.2.0.4. Multiple Worlds Model (MWM) [86] The Multiple Worlds Model associated
with a DAG G with nodes V = {V1, ..., Vd} is the set of all possible potential outcomes satisfying the
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assumption that the elements:{
{Vi(paG(vi)) : paG(vi) ∈ XPaVi

} : Vi ∈ V
}

(4.4)

are mutually independent.

For instance, the above condition imposes that these sets of interventional quantities, for instance for
Figure 4.2, {M(a) : a ∈ {0, 1}}, {Y (a,m) : a ∈ {0, 1},m ∈ {0, 1}}, are mutually independent. By
Multiple Worlds Model the authors of [86] refer to the Non-Parametric Structural Equation Model with
Independent Errors (NPSEM-IE) presented in [66].
Single World and Multiple Worlds Models are characterized by assumptions made on the interventional
distributions. It is immediate to notice that the assumption in Formula 4.4 implies the assumption
4.3, hence Multiple World Models are a subgroup of Single World Models. Indeed, Pearl’s NPSEM-IE
model is a sub-model of Robins’ FFRCISTG model.

The edge g-formula makes use of the characteristics of Single World and Multiple Worlds Models. This
formula will now be introduced; note that both the Lemma and the Proof are taken from [86].

Lemma 4.2.1. Edge g-formula For a DAG G with vertices V = {V1, ..., Vd}, and an edge intervention
ηaα

on an edge set α, in Multiple Worlds Model for G we have that:

P (V (aα) = v) =
∏
Vi∈V

P (Vi = vi|vPaα̂
G(Vi), a{(∗Y )→∈α}), (4.5)

where paα̂G(Y ) = {W ∈ PaY |(WY )→ /∈ α}.

Proof. In this paragraph, the proof of the edge g-formula is presented. Given a causal graph G with
nodes V = {V1, ..., Vd} and topological ordering ≺G , the interventional distribution of the set of nodes
V , given the edge intervention ηaα , is the following:

P
(
V (aα) = v

)
=

∏
Vi∈V

P
(
Vi(aα) = vi|pre≺G (Vi)(aα) = vpre≺G (Vi)

)
=

∏
Vi∈V

P
(
Vi(vpaGα̂(Vi)

, a{(∗Vi)→∈α}) = vi|

{W (vpaGα̂(W )
, a{(∗W )→∈α}) = w : W ∈ pre≺G (Vi)}

)
=

∏
Vi∈V

P
(
Vi(vpaGα̂(Vi)

, a{(WY )→∈α}) = vi : W ∈ pre≺G (Vi)
)

=
∏
Vi∈V

P
(
Vi = vi|vpaGα̂(Vi)

, a{(WY )→∈α} : W ∈ pre≺G (Vi)
)
,

where the values vi, w, vpre≺G (Vi), vpaGα̂(·)
are consistent with v. In the above equations, the first one

follows from the Law of Total Probability. The second equality follows from the definition of the
responses of outcomes to edge interventions V (aα) in Definition 4.2.0.2, using recursive substitution
on the parents of the variables Vi. The third equality, instead, can be justified using the assumptions
that characterize Multiple Worlds Models, hence that the quantities in 4.4 are mutually independent.
Following this property, the potential outcome corresponding to Vi after the above edge intervention
ηaα

, is independent from the potential outcomes of the parents W ∈ pre≺G (Vi) induced by ηaα
, even

though they might involve conflicting interventional distributions. Based on this, the conditioning on
the potential outcomes that are parents of Vi can be ignored, as it does not influence the interventional
distribution on the different Vi with Vi ∈ V . The last equality is a consequence of the assumption that
in Single World Models, the elements in 4.3 are mutually independent, given that this assumption also
holds in Multiple Worlds Models.

Now, an example of the application of the edge g-formula will be given. The step-by-step identification
procedure for this example will be analysed. Moreover, it will be shown that this is equivalent to the
edge g-formula itself.
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Example

In this example, the causal graph in Figure 4.2 will be analysed. The nodes C,A,M, Y are assumed to
be discrete random variables, among which A is binary (XA = {a0, a1}). XC and XM are the domain
spaces of the variables M and C. In this causal graph, the Path-Specific Effect of A along (AY )→ will
be calculated. A is set as a0 along (AMY )→ and as a1 along (AY )→. Given this edge intervention, the
respective notation is the following: α = {(AM)→, (AY )→}, XA = {a0, a1}, Xα = {a0, a1} × {a0, a1},
aα = [a1, a0] where aα ∈ Xα. Since in this example the effect is estimated only along the direct edge
from A to Y , the Path-Specific Effect can be addressed as the NDE. Based on this, referring to the
causal graph in Figure 4.2, by intervening with A as a1 along (AY )→ and with A as a0 on (AMY )→,
the respective Path-Specific Effect can be defined in the following way:

PSEπ
a0,a1

(Y ) = E
[
Y (a0,M(a1))

]
− E

[
Y (a1)

]
, (4.6)

where π is the set of paths along which the effect is calculated: π = {(AY )→}. Following the notation
introduced in the previous chapters, the quantity Y (a0,M(a1)) represents the outcome Y when A is
set to a0 along the direct path and M , mediator of the indirect path, has the value it would naturally
assume when A is set to a1. It can be noticed that the formulation of the Path-Specific Effect involves
nested counterfactuals, such as Y (a0,M(a1)). These quantities cannot be identified with the previously
introduced node intervention methods, as they include conflicting value attributions of the treatment
attribute.

In the Path-Specific Effect in Equation 4.6 two interventional quantities need to be identified: Y (a1)
and Y (a0,M(a1)). The former is a node intervention, meaning that the treatment attribute A is set to
a1 along all the paths from A to Y . This can be identified using the Truncated Factorization formula
in 3.6. Differently, the latter Y (a0,M(a1)) can be identified with the following steps:

P (Y (a0,M(a1)) = y)

=
∑

c∈XC ,m∈XM

P (Y (a0,M(a1) = m) = y|M(a1) = m,C = c)P (M(a1) = m,C = c)

=
∑

c∈XC ,m∈XM

P (Y (a0,M(a1) = m) = y|M(a1) = m,C = c)P (M(a1) = m|C = c)P (C = c)

=
∑

c∈XC ,m∈XM

P (Y (a0,m) = y|C = c)P (M(a1) = m|C = c)P (C = c)

=
∑

c∈XC ,m∈XM

P (Y = y|A = a0,M = m,C = c)P (M = m|A = a1, C = c)P (C = c)

In the above equations, the first one can be immediately derived from the Law of Total Probability.
The second one follows from the Markov Factorization property (see Equation 3.3) applied to the SWIG
in Figure 4.3. Since the SWIGs are Directed Acyclic Graphs, the truncated factorization can be applied
on its respective nodes, hence P (M(a1) = m,C = c) = P (M(a1) = m|C = c)P (C = c) (see Property
3.2.3). The third equality follows from the independence condition Y (a0,m) ⊥⊥M(a1)|C; this condition
includes conflicting interventions on the treatment attribute, causing multiple worlds being involved.
This assumption is satisfied when considering Multiple Worlds Models. In the last equality, instead,
Single World Model assumptions were used. In particular:

M(a) ⊥⊥ A|C (4.7)
Y (a,m) ⊥⊥M(a), A|C (4.8)

∀a ∈ XA and ∀m ∈ XM , where the last assumption is equivalent to the following two combined:
Y (a,m) ⊥⊥ A|C and Y (a,m) ⊥⊥ M(a)|{A,C}, ∀a ∈ XA,∀m ∈ XM . The last equality can be derived
by noticing that, if Assumption 4.7 holds, then P (M(a1) = m|C = c) = P (M(a1) = m|A = a1, C =
c) = P (M = m|A = a1, C = c), since M(a1) = M on the event A = a1 (as intervening on a variable
with an event that has already happened does not have any effect on the outcome), following Property
3.2.1. The same procedure can be applied to Y (a,m) given Assumption 4.8.
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Differently from the cross-world assumptions, the single-world ones can be easily interpreted using
SWIGs, by leveraging their properties 3.2.3 and 3.2.4. In particular, specific graphical criterion can
be used in order to assess the conditioned independence assumptions. In this scenario, using the
d-separation criterion, it can be noticed that C d-separates M(a) from A in Figure 4.3, while C d-
separates Y (a,m) from the set of nodes {A,M(a)}. For instance, in the conditional independence
relation M(a) ⊥⊥ A|C can be interpreted as C always containing one emitted arrow in the paths from
M(a) to A. Instead, in order to graphically interpret Y (a,m) ⊥⊥ M(a), A|C, it is most immediate to
use the d-separation criterion by separately considering Y (a,m) ⊥⊥ A|C and Y (a,m) ⊥⊥ M(a)|{A,C}
in the respective SWIG.

A M

C

Y

Figure 4.2: Example Causal Graph

Y (a,m)A a M(a) m

C

Figure 4.3: Example SWIG of Causal Graph 4.2 for Y (a,m)

When estimating the causal effect on a subset of V , for instance P (V1(aα)), it necessary to marginalize
over the variables in V \V1, hence P

(
V1(aα) = v1

)
=

∑
V \V1

P
(
V (aα) = v

)
. Getting back to the example
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of the previous section, by applying the edge g-formula we get:

P (Y (a0,M(a1)) = y)

=
∑

c∈XC ,a∈XA,m∈XM

P (Y = y|M = m,A = a0, C = c)P (M = m|A = a1, C = c)P (A = a|C = c)P (C = c)

=
∑

c∈XC ,m∈XM

P (Y = y|M = m,A = a0, C = c)P (M = m|A = a1, C = c)P (C = c),

which is the same formula as the one derived in the previous set of equations.

This example can be also interpreted with the fairness approach. Specifically, in this scenario π =
(AY )→ is the unfair path, and the scope is estimating the effect of the sensitive attribute A on the
outcome Y along an unfair path.

Identification Assumptions

For single edges interventions, the interventional distributions are always identified under MWN as-
sumptions (Def. 4.2.0.4). Path interventions are a special case of edge interventions, as the treatment
is intervened upon not only along the single edges but actually entire paths starting from the treatment
attribute itself. Referring to the previous notation, according to path interventions α is not a set of
edges but a set of paths. The authors of [8] prove that the identification formula for path interventions
is the same as Equation 4.5, nevertheless further assumptions are needed in order to prove identifiability.

The concept of edge consistency is key for the formulation of the identifiability conditions. Since the
chosen paths α could potentially share certain edges, it is necessary that these path interventions are
edge consistent. A nested interventional quantity (like the Path-Specific Effect Vi(π, a0, a1)) is consid-
ered to be edge inconsistent if it involves interventions that are not compatible. For instance, if paths π1

and π2 share the same edge emitted from the source node, the path intervention that intervenes with A
as a0 along π1 and with A as a1 along π2 is edge inconsistent. Intuitively, this means that an outgoing
edge from A can only be assigned a single interventional value of A, being edge consistent with respect
to the path-specific intervention. Given a set of directed paths π, for every edge (AW )→ with W ∈ V ,
a respective path-intervention is edge consistent if the same value of A is assigned to all the paths in π
that have (AW )→ as a prefix. Hence, a path {A → W → ... → Y } can be assigned an arbitrary value
of A such that the edge (AW )→ is assigned one unique treatment value of A in the path-intervention.
The edge consistency condition will be formalised with the Recanting District Criterion 4.2.1.1.
Edge consistency is a necessary condition for the identifiability of path-specific interventions. It can
be interesting to notice that in the context of fairness, edge consistency is satisfied most of the times.
Indeed, if a mediator M is considered to be unfair (that should not be allowed) then generally all the
paths having as a prefix (AM)→ will be considered unfair too.

A graphical criterion that can be used to assess identifiability of path-interventions was introduced in
[8], proving that in DAGs with independent error terms the violation of assumption of Formula 4.4 occurs
in the presence of observed intermediate confounding. More precisely, this is known as the recanting
witness criterion, which represents a special case of edge consistency. This criterion is very useful for
interpreting cross-world assumptions with a graphical criterion. Two sets of edges π and π̂ will be
considered, along which the sensitive attribute is intervened upon as conflicting values (for instance as
a0 along π and a1 along π̂). The criterion used for identifying the potential outcome Y corresponding
to this nested intervention is the following [109]:

Definition 4.2.1.1. Recanting witness criterion Given a path set π, let Z be a node in G such
that:

1. there exists a path from X to Z which is a segment of a path in π;

2. there exists a path from Z to Y which is a segment of a path in π;

3. there exists another path from Z to Y which is not a segment of any path in π.



4.2. Path-Specific Effect 38

Then, the recanting witness criterion for the π-specific effect is satisfied with Z as a witness.

In order to explain this criterion, an example based on the causal graph in Figure 4.4 will be used. The
corresponding structural equations model can be considered as:

A = fA(ϵA)

L = fL(A, ϵL)

M = fM (A,L, ϵM )

Y = fY (A,L,M, ϵY ),

with ϵA ⊥⊥ ϵL ⊥⊥ ϵM ⊥⊥ ϵY . Given the effect of the path-intervention corresponding to A = a0 along the
set of paths π = {(ALY )→, (AY )→} and A = a1 along the rest of the paths π̂ = {(AMY )→, (ALMY )→},
it can be proven that the assumption Y (a0,m) ⊥⊥ M(a1) does not hold because of the intermediate
confounder L, satisfying the recanting witness criterion. In fact, by writing:

L(a0) = fL(a0, ϵL)

L(a1) = fL(a1, ϵL)

M(a1) = fM (a1, L(a1), ϵM )

Y (a0,m) = fY (a0,m,L(a0), ϵY ),

it can be immediately understood that, since L(a0) ̸⊥⊥ L(a1) due to the common error term, then
Y (a0,m) ̸⊥⊥ M(a1) ∀m. In this example, the recanting witness criterion was satisfied, leading to the
not-identifiability of the respective path-specific interventional distribution.
The above example can also be related to edge consistency. The causal graph in Figure 4.4 and the identi-
fication of the counterfactual quantity Y (a0, L(a0),M(a1)) corresponding to Y (a0, L(a0),M(a1, L(a1)))
will be considered. As it can be noticed, the identification of Y (a0, L(a0),M(a1)) through the edge g-
formula is prevented because of the node L, since the edge {(AL)→} follows two conflicting interventions
(edge inconsistent). In this example, L is a recanting witness. Intuitively, the name recanting1 follows
from the idea that the L has to behave as A was an active treatment (A = a0) along {(ALY )→}. Sub-
sequently, L needs to “disagree" with the previous statement, since along {(ALMY )→} the treatment
should not be active (A = a1). This recantation is impossible, since the two scenarios cannot hold
simultaneously.

A L M Y

Figure 4.4: Example causal graph with recanting witness node L

In general, in non-parametric structural equation models with independent error terms, the necessary
cross-world independence assumptions are violated if and only if the recanting witness criterion is
satisfied [3]. Since these assumptions are not intuitive and not empirically testable, special attention
should be put in assessing their validity [3].
The same criterion has been generalized to Semi-Markovian models in [82] with the recanting district
criterion, which will be presented in the next section.

1From the Cambridge Dictionary, to recant means: to announce in public that your past beliefs or statements were wrong
or not true and that you no longer agree with them
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Edge g-formula in Semi-Markovian Models

The recanting witness criterion can be useful for determining identifiability in Markovian models. In
order to assess the identifiability of Semi-Markovian models instead, the authors of [82] introduce the
recanting district criterion, which generalizes the recanting witness criterion [8]. Intuitively, this cri-
terion requires no conflict among the different districts (see Definition 3.2.0.7), instead of the single
variables (witnesses) for Markovian models.

Following the same notation and setting as before for the recanting witness, the recanting district
criterion is defined by Definition 2 of [82] as:

Definition 4.2.1.2. Recanting District Let G be an acyclic graph, A, Y sets of nodes in G, and π a
subset of proper causal paths which start with a node in A and end in a node in Y in G. Let Y ∗ be the
set of nodes not in A which are ancestral of Y via a directed path which does not intersect A. Then a
district D in an GY ∗ is called a recanting district for the π-specific effect of A on Y if there exist nodes
zi, zj ∈ D (possibly zi = zj), ai ∈ A, and yi, yj ∈ Y (possibly yi = yj) such that there is a proper causal
path ai → zi → ...→ yi in π, and a proper causal path ai → zi → ...→ yi not in π.

Based on our notation, Y ∗ = AnGV \A(Y ). The presence of a recanting district prevents the formulation
of Path-Specific Effects in terms of observed data. It is possible to express the Path-Specific Effect as
a functional of interventional quantities if and only if a recanting district does not exist for this effect.
Specifically, the cross-world counterfactual distribution can be written as a functional of interventional
distributions in the following way [82]. Given a path intervention of a along π and of a′ along π̂:

P (Y (π, a0, a1) = y) =
∑
V \Y

∏
D∈D(G)

P
(
VD(a{PaGπ (D)\D}∩A, a

′
{PaGπ̂ (D)\D}∩A, vPaG(D)\D) = vD

)
, (4.9)

where VD is the set of nodes in district D. The causal effect on these nodes is estimated by recursively
intervening on the direct parents that are not part of the district itself, taking into account the path
they belong to. Indeed, PaGπ (D)\D is the set of nodes with directed arrows pointing into D along π
but which are not in D. The outline of the proof follows the one of [82].

Proof. It will be proven that if a recanting district does not exist, then the Path-Specific Effect is
identifiable from interventional distributions. The proof of completeness (if a recanting district exists,
the effect is not identifiable) can be referred to in the Supplementary Material of [82]. As it will later
be mentioned, the completeness is proven by selecting two models on G presenting a recanting district
that induce the same observational distribution but different path-specific interventional ones.
Given {X1, ..., Xm} = Y ∗ = AnGV \A(Y ) the set of ancestors of Y excluding A and {Y1, ..., Yd} = Y ,
let the path-specific interventional distribution of Y after the intervention along π on A as a and as a′

along the rest of paths be:

P (Y (π, a, a′) = y) = P
(
Y1(π, a, a

′) = y1, ..., Yd(π, a, a
′) = yd

)
,

where a, a′ ∈ XA and y = [y1, ..., yd]. These single terms can be rewritten using specific interventional
terms xPaGY ∗ (Yi) that are consistent with the value assignment of the path-specific intervention, meaning
that when PaG(Xi) intersects A they are equal to a or a′ depending on π. Here, xPaG(Yi) are the
reference values of the parents of Yi. It is important to notice that in our notation, the ancestors
of a set of variables Y , AnG(Y ), is defined as AnG(Y ) ≡ {Vj |Vj → ... → Y in G}. By convention,
Y ∈ AnGV

(Y ), meaning that m ≥ d and {Y1, ..., Yd} ∈ {X1, ..., Xm}. By using this information and by
‘unrolling’ the previous interventional distribution, the same distribution can be written as:∑

xY ∗\Y ∈XY ∗\Y

P
(
X1(xPaG(X1)) = x1, ..., Xm(xPaG(Xm)) = xm

)
. (4.10)

This is the joint distribution among the entire set of variables Y ∗ = AnGV \A(Y ), marginalized by
summation with respect to Y = {Y1, ..., Yd}. In the above formula, the values xpaG(Xi) are consistent
with y1, ..., yd and with the values xY ∗\Y of the summation. Furthermore, when A ∩ PaG(Xi) and
Xi ∈ Y ∗, then the value a or a′ is assigned, depending on the set of paths π.
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For every Vi, Vj that are not joint by a bi-directed arrow, then the counterfactuals Vi(vPa(Vi)) and
Vj(vPa(Vj)) are independent, meaning that the joint distribution can be factorized into marginal ones.
The reasoning behind this is that by consistency (Definition 3.2.2), fixing all the observable parent
of Vi makes quantity Vi(vPa(Vi)) independent of any counterfactual quantity Vj(.) in the absence of
a bi-directed arrow from Vj to Vi. Furthermore, this factorization property can be applied to all the
counterfactuals belonging to the same district by using compositionality2.
Based on this, it is possible to rewrite 4.10 as:∑

xY ∗\Y

∏
X1,...Xkd

∈D∈DGY ∗

P
(
X1(xPaG(X1)) = x1, ..., Xk(xPaG(Xkd

)) = xkd

)
, (4.11)

where X1, ..., Xkd
∈ D and D is one of the districts in DG(Y ∗), the set of districts in GY ∗ . As the last

step, it is possible to use the consistency assumptions (see Property 3.2.2) of the interventional values
xPaG(X1) with the values on the summation, the assigned values of the variables in the district, and the
assignment to A. Based on this, in conclusion, the expression in 4.10 is equivalent to:∑

xY ∗\Y

∏
D∈DG

P
(
XD(xPaG(D)\D) = xD

)
.

In the above equation, xpaG(D)\D is the value assignment to the parents of the district D that are not
part of the district itself. These are consistent with the summation values xY ∗\Y and with the values
of the path-specific interventions on A. It is important to notice that the path-specific interventional
distribution can be written as a functional of interventional distributions only if the assignments of the
treatment attribute are not conflicting. As a matter of fact, if the district has two or more distinct
edges leading to it from A with different interventional values a and a′, it is not possible to find xPaG

such that it is consistent with the original intervention.
In [82], the proof is concluded by analysing the path-specific intervention with a respective recanting dis-
trict. Specifically, two causal modelsM1 andM2 with the same induced graph are proposed such that
the observed distributions are the same P 1(V ) = P 2(V ) but the induced interventional distributions
are distinct P 1(Y (π, a, a′)) ̸= P 2(Y (π, a, a′)). Hence, the interventional distribution is not identifiable
in G.

Equation 4.9 is based on the same concept of the edge g-formula (see Equation 3.6). Nevertheless,
since the nodes in the same district share correlated unobserved common causes, the path-specific
intervention needs to be evaluated separately on the different districts. In the proof it was shown that
the above factorization can be derived from applying the compositionality property to the conditionally
independent counterfactual variables, leading to the factorization of the respective joint counterfactual
distribution. The above formula can be then seen as an extension of the edge g-formula applied to graphs
with possibly mutually correlated hidden variables (semi-Markovian models). Indeed, it can be noticed
that, if the disturbance terms are all mutually independent, then the districts actually correspond to
the distinct observed covariates themselves, leading Equation 4.9 to be the original edge g-formula.
Because of the presence of correlated hidden variables, further exploration needs to be made in order
to understand if the single product factors of Equation 4.9 are actually identifiable. This can be done
using the identification algorithm (ID Algorithm) proposed in [96] and simplified in [83]; for the general
idea of this algorithm, the reader can refer to Section 3.3.1.

4.2.2. Semi-parametric Estimator for Path-Specific Effect

The Path-Specific Effect has been shown to be useful for evaluating the causal effect along a defined set
of paths. The respective identification formula is the edge g-formula (see Definition 4.2.1), providing
the link between nested interventional quantities and conditional observed distributions. An important
step in the application of this metric is defining a suitable estimator for the edge g-formula.

2Compositionality applied to counterfactuals states that if Vk(vPa(Vk)
) ⊥⊥ Vj(vPa(Vj)

)|Vi(vPa(Vi)
) and Vw(vPa(Vw)) ⊥⊥

Vj(vPa(Vj)
)|Vi(vPa(Vi)

), then Vi(vPa(Vi)
) ∪ Vw(vPa(Vw)) ⊥⊥ Vj(vPa(Vj)

)|Vi(vPa(Vi)
)
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Extensive studies on the performance of multiple semi-parametric estimators for identification formulas
have been done in recent years. Graphical models with hidden variables have also been considered in the
studies, bridging the gap between identification and estimation of causal effects [11]. These studies have
mainly focused on identification formulas for node interventional distributions, such as the standard g-
formula 3.6. Differently, due to the previously mentioned obstacles in the identifiability of Path-Specific
Effects, defining an estimator for the edge g-formula can be relevantly more complex compared to the
g-formula. In the literature, a more relevant focus has been put on the estimation theory of functionals
derived by the standard g-formula compared to the edge g-formula [11]. Recent studies have explored
the Natural Direct Effect and Natural Indirect Effect but to our knowledge these have not been fully
generalized for Path-Specific Effect [95].

The semi-parametric estimator for the edge g-formula used in this project is the plug-in estimator.
This consists in parametrically modelling the coefficients of the conditional distributions by maximum
likelihood estimator. The marginal distributions of the root nodes are instead empirically estimated
from the data.
The choice of the estimator of the edge g-formula is an important research topic. Given a causal graph
G with variables V , a dataset D induced by a causal model consistent with G and the parameters
βi corresponding to the conditional distributions P (Vi = vi|Pai;βi) with vi ∈ XVi

, then the plug-in
estimator ĝ(D;β) for the PSEπ

a1,a0
(V ) has the form:

ĝ(D;β) =
∏

Vi∈V \{A}

[
P
(
Vi = vi|a1{(AVi)→∈π}, a0{(AVi)→ /∈π}, PaGV \A(Vi);βi

)
−

P
(
Vi = vi|a0{(AVi)→∈π}, PaGV \A(Vi);βi

) ]
=

∏
Vi∈V \{A∪Ro(G)}

[
P
(
Vi = vi|a1{(AVi)→∈π}, a0{(AVi)→ /∈π}, PaGV \A(Vi);βi

) ]
Pn(Ro(G))−

[
P
(
Vi = vi|a0{(AVi)→∈π}, PaGV \A(Vi);βi

) ]
Pn(Ro(G))

=
1

n

∏
Vi∈V \{A∪Ro(G)}

[
P
(
Vi = vi|a1{(AVi)→∈π}, a0{(AVi)→ /∈π}, PaGV \A(Vi);βi

)
−

P
(
Vi = vi|a0{(AVi)→∈π}, PaGV \A(Vi);βi

) ]
.

In the above formulas, the set Ro(G) is the set of root nodes, introduced in 3.1.0.7. Related to this,
Pn(Ro(G)) is the empirical distribution of this set. In the third equality, this empirical distribution is
estimated as a mass function of 1

n . The above estimator of the PSE can be applied to any graphical
structure, as long as the identifiability conditions are satisfied.
Different semi-parametric estimators for NDE have been proposed in [95] as discussed in Appendix D. In
the next chapter, the performance of the plug-in semi-parametric estimator will be analysed by applying
it on simulated datasets.

4.3. Counterfactual Fairness

The Counterfactual Fairness metric characterizes a different class of causality-based fairness metrics
compared to the previously analysed ones. Fairness metrics could be classified as population-level and
individual-level metrics, depending on the target group chosen. On one side, the population-level fair-
ness metrics analyse unfairness among the overall population. For instance, the previously analysed
Path-Specific Effect focuses on evaluating unfairness at an aggregate level among the entire population,
by evaluating the expected value of the interventional distribution. Nevertheless, Population-based fair-
ness metrics do not guarantee to represent discrimination towards all the single individuals. Differently,
individual-level fairness metrics has the scope of quantifying the discrimination for each individual of
the population.
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The authors of [26] introduced the non-causal fairness metric Individual Fairness. The following defini-
tion will be useful for better understanding the concept of Counterfactual Fairness. Individual Fairness
is defined in [26] as:

Definition 4.3.0.1. Individual Fairness Given two individuals i and j having as values of covariates
X(i) = x(i), A(i) = a(i) and X(j) = x(j), A(j) = a(j) respectively, an outcome Y is individually fair if:

P (Ŷ (i) = y|X(i) = x(i), A(i) = a(i) ≈ P (Ŷ (j) = y|X(j) = x(j), A(j) = a(j)) if d(i, j) ≈ 0, (4.12)

where d(·, ·) is a metric that describes the similarity of two individuals based on how they should be
treated.

This metric is context and task specific; if d(i, j) ≈ 0 then the individuals i and j should be treated
similarly, in accordance to the disparate treatment framework. This is based on a distance measure
domain-specific distance measure d(·, ·). For instance by using a matching procedure [60], then two
very similar individuals with different sensitive attribute can act as the counterfactual of one another.
It can be noticed that the definition of this distance metric could lead by itself to possible implicit
discrimination, based on the context of the problem.

Many recent works have been focusing on individual fairness, among which the most used one is Coun-
terfactual Fairness, introduced in [48]. The authors define a predictor Ŷ to be fair towards an individual
belonging to the group a1 if it is the same prediction he/she would have got belonging to a different
demographic group a0. Hence, following the notation introduced in Section 3.2.2, given a Structural
Causal Model (U, V, F ) with V = A ∪X, Counterfactual Fairness is defined in [48] as:

Definition 4.3.0.2. Counterfactual Fairness Predictor Ŷ is counterfactually fair if under any
context X = x and A = a0,

P (ŶA=a0
= y|X = x,A = a0) = P (ŶA=a1

= y|X = x,A = a0) (4.13)

for all y ∈ XY and for any value a1 ∈ XA.

It is important to notice that the counterfactual quantity ŶA=a0
conditioned on A = a0 is equivalent

to the predictor Ŷ itself. This metric is an individual-level fairness metric as the intervened outcomes
are conditioned on the entire set of measurable quantities. This fairness definition is a general case of
the Individual Fairness definition provided in Formula 4.12, using as distance measure the similarity
between two individuals. Specifically, an observed individual i and his/her unit-level counterfactual
version j are considered to have d(i, j) ≈ 0. Counterfactual Fairness can actually be seen as a specific
scenario of the Individual Fairness.

In the research community of ethical algorithmic fairness, the use of counterfactuals related to sensitive
social attributes (e.g. race or gender) has been criticized due to ontological and epistemological-semantic
complications [46]. From an ethical perspective, the counterfactual manipulation of these social cat-
egories should not be allowed, as it could actually sharpen the “problematic associations between the
sensitive attributes at are the result of social and structural injustice in the first place.” [41]. Never-
theless, I believe that, following Haslanger’s point of view ([36], [36], [30]) of racial constructivism, the
manipulation of of sensitive attributes like race is justifiable if the purpose of the work is actually the
fighting and decreasing social falls like racism.

4.3.1. Path-Specific Counterfactual Fairness

Path-Specific Counterfactual Fairness (PSCF) has been first introduced in [15]. It is based on the
estimation of path-specific counterfactuals, meaning that the subjects’ counterfactuals are intervened
upon solely along certain pathways from A to Y . Hence, this metric includes characteristics of both
Path-Specific Effect Fairness and Counterfactual Fairness. Differently from the Path-Specific Effect in
Formula 4.1, PSCF focuses on detecting unfairness along the not allowed paths at an individual level.
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Furthermore, compared to Counterfactual Fairness in Equation 4.13, this metric evaluates the causal
effect along the different pathways. Following the approach in [105], the path-specific counterfactual
effect can be defined as:

PSCEπ
a0,a1

(Ŷ |x, a) = P (Ŷ(π,a0,a1)|X = x,A = a)− P (ŶA=a0
|X = x,A = a). (4.14)

Given the factual observations X = x and A = a, PSCE represents the counterfactual effect on Y of the
value intervention of A as a0 along π and with A as a1 in the rest of causal pathways. The counterfactual
notation symbolised with subscripts and not brackets as traditional interventions refers to the notation
introduced in Section 3.2.2. Indeed, it was previously mentioned that the identification of unit-level
counterfactuals involves inference made on the unobserved variables. This concept is based upon the
assumption that counterfactual versions of the same individual obtain the same values obtained by
unobserved variables.

4.4. Conclusion

In this section, different causal fairness metrics were evaluated. Two different frameworks were pre-
sented, depending on the scope of the metrics. Both the disparate impact and disparate treatment
frameworks were analysed, emphasising the advantages that path-specific metrics have. These metrics
are indeed capable of evaluating the causal influence of the sensitive attribute along arbitrary causal
pathways connecting the sensitive attribute to the outcome. The analysis of the paths as fair or unfair
allows for a more flexible and detailed evaluation of this causal effect, leveraging the information along
the ‘allowed’ pathways and mediators. Specifically, given a previous domain-based categorization of
these paths as allowed or not allowed, path-specific metrics are very suitable for representing fairness.
A further classification of the metrics was made, specifically into population-level and individual-level
metrics with their respective mathematical formulations. This classification depends on the focus of
the metric itself. Among individual-level metrics, Counterfactual Fairness and Path-Specific Coun-
terfactual fairness were presented, underlying the respective strengths and weaknesses. In particular,
Path-Specific Counterfactual Fairness was presented as a metric bridging the individual approach of
Counterfactual Fairness and the path-specific approach corresponding to path-specific metrics, hence a
promising metric in the fairness setting.



5
Existing Methods and Comparison

In this project, multiple causality-based state-of-the-art methods will be analysed. The scope of this
chapter is to compare the most promising methods in the literature, analysing both the methodology
and the performance on simulated datasets. In Section 5.1 the an overview of the methods will be given,
along with their objectives and conceptual differences. In Section 5.2, the methods will also be applied
to simulated datasets. First, the application of these methods will be described step-by-step; then, the
performance results will be analysed and discussed. The methods will be compared in terms of fairness
and accuracy. It will later be explained the relevance of these metrics and their estimation.
Overall, methods based on path-specific metrics will be selected as the most potential ones. In Chapter
4, by comparing the different causality-based metrics, it was motivated that path-specific ones (Path-
Specific Effect and Counterfactual Path-Specific Effect) seem the most suitable in a fairness setting. In
this Chapter, the empirical comparison of the methods will support this statement, leading this project
to focus on the methods Fair Inference on Outcomes [61] and Path-Specific Counterfactual Fairness [15].

5.1. Selected Methods

In this Section, three state-of-the-art methods will be presented. These methods has two different goals:
first to assess unfairness of a Machine Learning algorithm outcome Y with respect to certain predefined
metrics, then to predict a new fair, or at least fairer, outcome Ŷ . The analysed methods are Fair
Inference on Outcomes [61], Counterfactual Fairness [48] and Path-Specific Counterfactual Fairness
[15], respectively corresponding to the causality-based metrics of Path-Specific Effect, Counterfactual
Fairness and Path-Specific Counterfactual Effect, as the titles suggest. These methods were selected as
the most promising in terms of results and fairness constraints.

All the selected methods will lead to useful insights regarding the different causality-based used fairness
metrics. Since the Counterfactual Fairness [48] and Path-Specific Counterfactual Fairness [15] meth-
ods are focused on individual-level fairness, they involve further assumptions on the latent space and
generally the necessity of estimating the posterior distribution of unobserved variables. The main dif-
ference between these two methods consists in the classification of the different paths from the sensitive
attribute to the outcome. On one hand, the authors of [48] consider all these paths as unfair, while
in [15] prior information regarding the classification of the paths as allowed or not allowed is taken
into account. Differently, Fair Inference on Outcomes method [61] focuses on population-level fairness,
making use of Path-Specific Effect as a fairness metric.

44
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5.1.1. Fair Inference On Outcomes [61]

The method Fair Inference on Outcomes (FIO) has the scope of estimating a fair joint distribution of
the outcome and the observed variables satisfying constraints on Path-Specific Effect and reflecting as
much as possible the observed data distribution.
The joint data distribution of the observed variables p(Y,X,A) induced by a causal model is considered.
Following the above notation, Y is the outcome, A is the sensitive attribute XA = {a0, a1} and X is
the set of other variables, including the baseline factors C and mediators. It was already shown in
Definition 4.2.0.1 that the Path-Specific Effect of A on Y along the unfair set of paths π is defined as:

PSEπ
a0,a1

(Y ) = E
[
Y (π, a0, a1)

]
− E

[
Y (a1)

]
. (5.1)

In the first expected value, Y (π, a1, a0) is the output Y such that, along the pathways of interest π
variables vary as if the sensitive variable A were set to value a0, and along other pathways from A to
Y , variables vary as if A were set to a1. Instead, the term Y (a1) is the output value Y if A were set
to a1 along all the paths from A to Y . The intuition behind this metric has been covered in Section
4.2. Furthermore, in Section 4.2 the identifiability of the Path-Specific Effect has been investigated,
by defining the necessary conditions that need to be met by the causal model. Assuming that the
considered PSEπ

a0,a1
(Y ) is identifiable, the effect can be identified with the edge g-formula in Formula

4.5; for convenience, this identification formula will be referred to as gπa0,a1
(Y,X,A).

The purpose of the Fair Inference on Outcomes method (FIO) of [61] and [62] is transferring the inference
problem on the observed joint distribution p(Y,X,A) to a problem on p∗(Y,X,A), a distribution of the
fair world. The goal is indeed to define a fair distribution p∗(Y,X,A) that is as close as possible from
the observed distribution p(Y,X,A) but that satisfies the fairness constraint by limiting the respective
Path-Specific Effect to be close to zero. This method can be mathematically formulated with the
following constrained optimization problem, defining the fair world distribution as the one minimizing
the KL-divergence to p(Y,X,A) while constraining the Path-Specific Effect to lie in the boundary
interval ϵ−, ϵ+. This is defined as:

p∗(Y,X,A) = argminqDKL(p||q) (5.2)

subject to ϵ− ≤ gπa0,a1
(Y,X,A) ≤ ϵ+ (5.3)

In a finite sample setting with data D = {(Yi, Xi, Ai), i = 1, ..., n} drawn from the distributions
p(Y,X,A;β) parametrized by β, the above problem is equivalent to the following constrained maxi-
mum likelihood problem1:

β̂ = argmaxβLY,X,A(D;β) (5.4)

subject to ϵ− ≤ ĝ(D;β) ≤ ϵ+, (5.5)

where ĝ(D;β) is an estimator of the edge g-formula and LY,X,A(D;β) is the likelihood function parametrized
by β. The parameters β̂ will then be the estimated parameters corresponding to the fair distribution
p∗(Y,X,A), satisfying the constraint on the Path-Specific Effect and resembling at most the observed
data distribution. As previously discussed, the baseline estimator of the edge g-formula that will be
used in this work is the semi-parametric plug-in estimator ĝ(D;β), the formulation of which can be
found in Section 4.2.2. The performance of this estimator will be analysed in Section 5.3.
Usually, we have ϵ− = ϵ+ = ϵ, meaning that the optimization problem can be re-formulated like:

β̂ = argmaxβLY,X,A(D;β)
subject to |ĝ(D;β)| ≤ ϵ.

The FIO method focuses on population-level fairness, since it makes use of the PSE as a fairness metric.
A great advantage of this method compared to the two following ones is that it does not involve the
1Proof in the Appendix C
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estimation of the latent space distribution. Indeed, as long as the PSE identifiability conditions are
satisfied, the constraints can be formulated solely in terms of observational distributions. Further
details regarding the estimation of the new instances Ŷ from the posterior distribution p(Y |X,A; β̂) are
given in the Appendix.

5.1.2. Counterfactual Fairness [48]

The notion of Counterfactual Fairness is introduced in [48]. Referring to Definition 4.3.0.2, this metric
is an individual-level fairness definition based on unit-level counterfactuals (Definition 3.2.4.1), as it
corresponds to the intuition “what would the output be if the sensitive attribute of a specific individual
had been different”. Following the intuition of Counterfactual Fairness, two different individuals are
compared: an observed individual with an observed value of sensitive attribute and an hypothetical one
(called the unit-level counterfactual), corresponding to the set of covariate values the same individual
would have with a different sensitive attribute value. As previously mentioned, the unit-level counter-
factual approach in causal inference is defined by quantities that can never be observed empirically and
characterized by strong assumption that might be difficult to assess [21].

The method introduced in [48] aims at predicting counterfactually fair outcomes. This work is based
upon the following lemma, proven by the same authors:

Lemma 5.1.1. Let G be the causal graph of the given model (U, V, F ). Then Y will be counterfactually
fair if it is a function of the non-descendants2 of A.

Proof. Let W be any non-descendant of A in G. Then, following the notation introduced in Section
4.3, WA=a0(D) and WA=a1(D) have the same distribution, where D is the set of non-descendants of
A. This means that the distribution of any function Y of the non-descendants of A is invariant with
respect to the counterfactual values of A. In conclusion, a function Y of the non-descendants of A and
of the unobserved variables is counterfactually fair.

In order to provide a counterfactually fair outcome Ŷ , the authors of [48] aim at predicting an output
that is independent from the sensitive attribute and all of its descendants. This approach is different
from the Fairness through Unawareness method formulated Section 2.3.3. Indeed, in the approach of
[48] the descendants of the sensitive attribute that could possibly act as proxies for discrimination,
are not used for the prediction either. The condition expressed in Lemma 5.1.1 is actually a stricter
condition than Counterfactual Fairness itself. Albeit this condition is not necessary, it is sufficient for
guaranteeing Counterfactual Fairness in a predictor Ŷ .

The strategy of [48] consists in predicting the output Ŷ as a function of the non-descendants of A in the
causal graph G. Different approaches are defined by the authors, depending on the level of assumptions
needed. An overview of these approaches is the following:

• In the first level, Ŷ is built only using the observed non-descendants of the sensitive variable A,
meaning that Ŷ = hβ(D), where D is the set of nodes {Di : Di ∈ V and Di /∈ De(A)}. Here,
the parameter β of the function h minimizes the chosen loss function. The function h can be
an arbitrary function, such a regression or a neural network. This level has the benefit of not
implying any additional assumption on the unobserved space, but it also leads to some drawbacks.
Indeed, if in G all of the nodes are descendants of the sensitive attribute (D = {∅}), this approach
cannot be used. Albeit this is usually not the case because of the presence of root nodes, a high
loss of information regarding the descendants of A is definitely a limit of this approach.

• In the second level, the background latent variables are introduced as non-deterministic causes of
the observed ones. A unique unobserved variable is assumed to be parent of the observed descen-
dants of A, De(A). This would correspond to an ADMG with all the descendants of A belonging to
the same district (hence connected by bi-directed edges). Once the conditional distribution of the
latent variable P (U |X = x) has been estimated via variational inference, a predictor Ŷ = hβ(U,D)

2The definition of descendants nodes De(·) can be found in Definition 3.1.0.5.
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is trained. For every data point (x(i), a(i)) ∈ D, u(i) is sampled from the conditioned probability
distribution P (U |X = x(i)) (u(i) ∼ P (U |X = x(i))). Specifically, for every observed data-point
i, the dataset is augmented by sampling J instances from P (U |X = x(i)). The augmented
dataset will thus be composed by n × J data-points such as {u(i)

1 , x(i), a(i)}, ..., {u(i)
J , x(i), a(i)},

∀i ∈ {1, ..., n}. The fair prediction Ŷi for an instance (x(i), a(i)) ∈ D will then be the mean of
Ŷ j
i = hβ(u

(i)
j , d(i)) with respect to j varying in {1, ..., J}, where d(i) ∈ XD.

By using the definition of the predictor Ŷ = hβ(U,D), if D = {∅}, the fair predictor will only be
a function of the latent space, thus Ŷ = hβ(U). This would lead the coefficients β to be estimated
by training the model on {u(i)

1 , ..., u
(i)
J } for i ∈ {1, ..., n}.

• The third level used by [48] consists in introducing the latent variables ϵi as deterministic causes of
each of the observed variables. In this scenarios, additive error models are considered. Hence, the
distribution of the observed variable Vi given the parents Pai is defined as Vi = fi(Pai) + ϵi [70].
Once each ϵi has been deterministically estimated from the additive error model, the outcome
Ŷ = hβ(ϵ1, ..., ϵn, D) is estimated as a function of ϵi and the non-descendants of A.
In this level, a restricted functional class of the Structural Equations is used, characterized by
an additive error term. This form is broadly used in causality research to analyze causal graphs
[38], but it might not fully represent the original causal structure [31], [71]. Furthermore, in this
strategy it is assumed that the error terms ϵi are independent from the sensitive variable A, but
in practice this is not always true.

It is important to analyse the assumptions that the authors of [48] use. The number of assumptions
needed for the method increases accordingly to the level. While in the first level no specific assumptions
are needed, the second level assumes that there is a unique set of unobserved variables U that influences
all the observed descendants of A. Furthermore, the variable U should be independent from A. The
third level is based on stronger assumptions, as the causal generating models are assumed to be additive
noise models and that the error terms are independent from the sensitive attribute [43].

Different advantages and disadvantages of this method can be considered. It has the great advantage
of not relying on the complicated estimation of counterfactual quantities, since it consists in building
a predictor that does not use any variable that is descendant of A. As proven in Lemma 5.1.1, this
method satisfies Counterfactual Fairness formulated in Equation 4.13. Hence, if the assumptions on the
unobserved variables are met, defining an estimated outcome Ŷ that is a function of the non-descendants
of A ensures that Counterfactual Fairness is satisfied across all the individuals. Nevertheless, depending
on the level of the method, it is necessary to make assumptions and variationally or deterministically
estimate the unobserved space.
The main weakness of this method is not involving path-specific fairness, as relevant information is
lost in the estimation of the fair outcome. Indeed, albeit some paths might be considered allowed by
domain-specific experts, the respective mediators would not considered in the prediction. For instance,
in example of Figure 4.2 having as unfair path (AY )→, the mediator M would be ignored, even though
it is not a proxy for unfairness. Nevertheless, since no path-specific fairness is considered, no further
assumptions regarding the classification of the paths as fair and unfair is necessary. Albeit this might
seem a simplification of the domain-knowledge based assumptions, consulting expertise from the domain
background is still necessary for defining a causal graph, thus the interpretation of the causal paths is
a logical step of this process.

5.1.3. Path-Specific Counterfactual Fairness [15]

The aim of the method Path-Specific Counterfactual Fairness (PSCF) introduced in [15] is to build an
algorithm that outputs path-specific counterfactually fair predictions, as defined in Formula 4.14. This
metric focuses on both individual-level fairness and path-specific fairness. For an overview of the metric
itself, the reader can refer to Section 4.3.1.

The method introduced by Chiappa in [15] consists in correcting the outcome prediction at test time
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by considering the unit-level counterfactual versions along the unfair paths of the different individuals
belonging to the potentially discriminated group. As previously defined in Definition 3.2.4.1, the unit-
level counterfactual version of an individual is characterized by the set of covariate values it would have
assumed if that subject was part of the other sensitive group. Since this method takes into account
the fairness classification of the paths, this correction is done solely along the illegitimate paths. For
instance, assuming that the sensitive attribute is gender, when predicting the outcome for a female, the
individual is considered to be a male along the unfair pathways from A to Y . This means that, for every
mediator along an unfair path, it is necessary to estimate its unit-level counterfactual version by using
the respective unobserved parents. Unit-level counterfactuals are estimated in [15] by generalising the
abduction-action-prediction method introduced in Section 3.3.2.

Now that the intuition of the method has been introduced, an overview of the different steps involved is
given. The first part of the method consists in modelling the latent space of the causal model. Indeed,
in order to estimate the counterfactual versions of the individuals, it is necessary to estimate the re-
spective unobserved covariates’ posterior distributions. This is addressed with a variational approach,
by estimating the Gaussian approximations of the posterior distribution P (Ui|V ), for every unobserved
variable Ui. Here, Ui represents the unobserved variable parent of the mediator Vi from A to Y . Specif-
ically, a Monte-Carlo approximation with a Variational Auto-Encoder (VAE) is used in this task.
Once the posterior distribution of the unobserved space has been inferred, it is possible to estimate
the individuals’ path-specific counterfactuals. In order to do so, final predictions are estimated with
a Monte-Carlo sampling approach. By sampling from the Gaussian approximation of the unobserved
distributions ui ∼ P (Ui|V ) for every unobserved variable Ui, the values ui can be used for estimating
the counterfactual versions of the mediators along the unfair paths. In particular, by estimating the
values of the mediators with the sample values of the unobserved covariates and the estimated values of
the mediators’ parents, it is possible to define the path-specific counterfactual versions of the mediators
and hence of the outcome.
Overall, since the correction happens at test time, the mediators along the fair paths will not vary,
while the counterfactual versions of the mediators along unfair paths are estimated thanks to the re-
spective unobserved covariates. Hence, the outcome will be a function of the observed values of the
mediators along the fair paths and the counterfactual versions along the unfair ones. More precisely,
given an individual with A = a0 and uM ∼ P (UM |V ), for every mediator M lying on an unfair path, the
observed value is substituted by its counterfactual version, estimated as mCF ∼ P (M |uM , a1, pa

CF
M ),

hence considering the unobserved variables to remain unchanged in the observed individual and the
respective counterfactual version and changing only A as a1. Here, paCF

M is the set of observed and
counterfactual values of the parents of M , depending on whether they are located along unfair paths.
The procedure is repeated for J times; given every sample uj

i ∼ P (Ui|V ) with j ∈ 1, ..., J , the final
outcome Ŷ will be the average of Ŷ j with respect to j ∈ 1, ..., J , following the Monte-Carlo approach.
This procedure will be covered in more detail in the application of the method.
It is critical to notice that, differently from the previously introduced methods in which new parameters
β̂ have been estimated such that the fairness constraint was satisfied, this was not the case for PSCF.
As a matter of fact, this method uses the same original inferred observed distribution with corrections
made at test time in order to estimate the path-specific counterfactual values.

From the analysis of this method, different insights can be derived. By estimating the counterfactual
versions of every individual, it is necessary to estimate the respective values of the unobserved covari-
ates. As it can be intuitively understood, it is critical for the method to assess the independence of
these unobserved covariates from the sensitive attribute A. Otherwise, relevant (and potentially dis-
criminating) information regarding A could be included in the distribution of unobserved variables.
This would mean that the estimation of the counterfactuals would not be reliable, leading the method
to fail at ensuring fairness. In order to avoid this issue in the variational approximation of the latent
space, the variational auto-encoders enforce the independence of the latent space from A by using a
Maximum Mean Discrepancy penalization [53], [33]. The Maximum Mean Discrepancy measures the
distance between two probabilities, in this scenario the distributions of the Gaussian approximation
P (Ui|V ) for different values of A. This penalty term is added to the loss function of the VAE with a
weighting factor β that determines the independence relation. Even though the method PSCF is highly
flexible, the tuning of this additional term in the loss function of the variational auto-encoder might
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lead to loss of information and instability.

This method has the great advantage of predicting new outcomes that are fair towards all the individu-
als with respect to the classification of the paths into fair or unfair. This method combines path-specific
metrics with individually-fair predictions. Nevertheless, the introduction of the variational approach
for estimating the unobserved variables distributions by adding a new regularization term should be
regarded at with attention.

5.2. Comparison Methods

In the next sections the state-of-the-art methods will be applied to various simulated datasets. The
methods’ outlines were described in the previous section, but the details regarding their implementa-
tion will now be presented. This should assist the reader in comprehending how these methods work in
practice. Furthermore, the different performances will be discussed.

Two examples are taken into consideration, involving two distinct causal structures. The methods are
applied to datasets simulated from the proposed causal models, with the scope of assessing the fairness
of the model and providing a fair outcome Ŷ .

Overall, all of the presented methods perform satisfactorily in terms of population-level fairness. Fur-
thermore, since enforcing individual-level fairness is a stronger constraint compared to population-level
fairness, the methods of [48] and [15] will be outperformed by the one of [61] in accuracy of the predic-
tions. In addition, since the Fair Inference on Outcomes method [61] does not involve the estimation of
the latent space, it is highly more intuitive, also by not involving unit-level counterfactuals estimation
and hence not requiring assumptions on the latent space distribution.

5.2.1. Example 1 - Simulated Dataset

In this example, the causal structure of Figure 5.1 is considered. It is assumed that the only unfair
path is the direct one π = {(AY )→}. Hence, the Path-Specific Effect of this graph is equivalent to
the Natural Direct Effect. The variables M and A are assumed to be binary, generated using logistic
regression. Differently, Y and C are continuous. The simulated dataset has been generated in the
following way:

C ∼N (0, 1)

logit(P (A = 1|C)) ∼− 0.5 + 0.5C

logit(P (M = 1|A,C)) ∼0.1− 1.5C + 2A

Y =1 + 5C − 4A+ 2M + ϵ,

with ϵ ∼ N (0, 1). In the next paragraphs, the application of the different methods to this causal
structure will be shown.

Fair Inference On Outcomes [61]

In order to apply the Fair Inference on Outcomes method, first the conditional distribution of the
dataset are semi-parametrically modelled, consistently with the causal graph. Logistic regressions and
linear regressions are respectively used for binary and continuous outcomes. Given the causal graph,
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Figure 5.1: Example 1 Causal Graph

the regression model is:

C ∼ p(C),

logit(P (A = 1|C))) ∼ βa + βc
aC,

logit(P (M = 1|A,C))) ∼ βm + βa
mA+ βc

mC,

Y = βy + βa
yA+ βm

y M + βc
yC + ϵ.

Before solving the constrained optimization problem in Formula 5.4, it is necessary to definethe semi-
parametric plug-in estimator for the Path-Specific Effect. Through the edge g-formula, it is possible to
formulate the PSE as a function of observational distributions PSEπ

a0,a1
(Y ) = gπa0,a1

(Y,M,A,C), such
that:

gπa0,a1
(Y,M,A,C) =

∑
c∈XC ,m∈XM

(
E
[
Y |A = a0,M = m,C = c

]
− E

[
Y |A = a1,M = m,C = c

])
·

· P (M = m|A = a1, C = c)P (C = c).

The respective semi-parametric plug-in estimator ĝπa0,a1
(D, β) is:

ĝπa0,a1
(D, β) = 1

n

∑
i∈{1,...,n},m∈XM

(
E
[
Y |A = a0,M = m,C = ci;βY

]
− E

[
Y |A = a1,M = m,C = ci;βY

])
·

· P (M = m|A = a1, C = ci;βM ),

where ci is the i-th value of C in D and we have βM = {βm, βa
m, βc

m}, βY = {βy, β
a
y , β

c
y, β

m
y }, β =

{βM , βY }. The marginal distribution P (C = c) with c ∈ XC is empirically estimated from the data by
considering 1

n mass at every instance c of the data. This was previously shown in Section 4.2.2.
Now that the semi-parametric estimator of the Path-Specific Effect has been defined, the method consists
in estimating β̂M , β̂Y that are solutions of the optimization problem 5.4 with ϵ+ = 0.05 and ϵ− = −0.05.
The new parametric estimator β̂ is then the optimal set of parameters such that the new joint probability
distribution is close to the original one p(A,M,C, Y ), having ϵ− ≤ ĝπa0,a1

(D, β) ≤ ϵ+. Following the
original implementation of the work, the optimization algorithm used in the implementation is the
Constrained Optimization BY Linear Approximation algorithm (COBYLA). The discussion of different
optimization algorithms is left for future work.

Counterfactual Fairness [48]

The implementation of the method presented in [48] can be divided into the three different levels
that have been previously introduced. Throughout all of these levels, the predictor function hβ(·)
parametrized by β̂ is considered to be a linear regression for continuous outcomes and a logistic regres-
sion for binary ones.

Starting from the first level, the method consists in creating a predictor that only uses the variables
that are non-descendants of A. In this specific example, Ŷ = hβ̂(C), since C is the set of baseline
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features. As it can be intuitively noticed, albeit Counterfactual Fairness is satisfied, it does not provide
trustworthy predictions in terms of accuracy, since most of the information regarding the observed vari-
ables is not used. The implementation consists in fitting the following linear regression Y = βy+βc

yC+ϵ.

In the second level, the unobserved variables are modeled as non-deterministic causes of the observable
variables descendants of A. This assumption can be graphically represented as Figure 5.2. After esti-
mating the posterior distribution P (U |X = x(i)), for every data point (individual) i, J MCMC samples
are drawn from this distribution. These samples and the respective values of the baseline features C are
used as inputs of the functional hβ̂(·) used to estimate the fair outcomes Ŷ . Hence, for every data point

(x(i), a(i), y(i)), d augmented data points (x(i), a(i), y(i), u
(i)
j ) with j ∈ {1, .., J} can be sampled. Then,

Ŷi =
1
J

∑
j∈{1,...,J} hβ̂(u

(i)
j , c(i)), following the Monte-Carlo sampling procedure. In the implementation,

the posterior distribution is estimated using the probabilistic programming language Stan3.

A M

C

Y

U

Figure 5.2: Example 1 causal structure for Counterfactual Fairness [48] non-deterministic level

In the third level, a fully deterministic model with latent variables is built, by using additive error
terms. This consists in modelling the structural equations as arbitrary functions of the the variables’
respective parents plus an error term ϵi. For instance, in this scenario, it can be formulated as:

Y = βy + βa
yA+ βm

y M + βc
yC + ϵY , ϵY ∼ p(ϵY )

logit(P (M = 1|A,C)) ∼ βm + βa
mA+ βc

mC + ϵM , ϵM ∼ p(ϵM )

The error terms are estimated as residuals, for instance ϵM = M − M̂ . The values M̂ are estimated
by fitting a logistic regression on A and C. Similarly to before, the final predictor is a function of the
non-descendants of A and of the unobserved variables parents of the descendants of A, except of course
for ϵY . For this reason, the additive error terms and C are used as inputs of the predictor hβ̂(·), where
β̂ are estimated by fitting Y = hβ(ϵM , C) = βc

yC + βϵM
y ϵM .

Path-Specific Counterfactual Fairness [15]

It has been previously explained that individual-level fairness notions involve certain assumptions on
the unobserved space posterior distributions. The first step of the method [15] consists in formulating
the causal model by including the potential set of unobserved variables. In this example, the model can
be formulated as:

Hm ∼ pβHm
(Hm),

logit(P (M = 1|A,C,Hm)) ∼ βm + βa
mA+ βc

mC + βh
mHm,

Y = βy + βa
yA+ βm

y M + βc
yC + ϵ,

3Stan is a probabilistic programming language for statistical inference written in C++.
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with ϵ ∼ N (0, 1) and where Hm with marginal distribution pβHm
(Hm) is the set of unobserved variables

parents of M , as represented in Figure 5.3.

A M

C

Y

Hm

Figure 5.3: Example 1 causal structure for Path-Specific Counterfactual Fairness [15] with latent variable Hm

In order to achieve Path-Specific Counterfactual Fairness with the approach of [15], it is necessary to
estimate the posterior probability distributions of the latent variables for the mediators between A and
Y given all the observable variables, so in this case pβHm

(Hm|A,C,M). This is done by training Varia-
tional Auto-Encoders composed by encoders and decoders. The encoder has the purpose of estimating
the Gaussian approximation of the probability distribution of the latent space, by outputting the mean
and standard deviation of the distribution; the decoder aims at reconstructing the original observed
distribution, in this case of M given A,C,Hm. As a matter of fact, the Variational Auto-Encoder
formulates the Gaussian approximation qµ̂,σ̂(Hm|A,C,M,L) by providing the estimated mean µ̂ and
standard deviation σ̂ of the distribution.

Once the VAE has been trained, it is possible to estimate the path-specific counterfactually fair out-
come Ŷ by using a Monte-Carlo approach. As previously mentioned, given an individual, the goal of
the method proposed by Chiappa is to estimate the output by ‘correcting’ the unfair output setting
on the unfair paths the values as the ones of the counterfactual version of the selected individual. In
this specific example, since there are no mediators on unfair paths, this corresponds to predicting the
outcome with the correction made on the sensitive attribute along the direct path from A to Y only.
In particular, this is done for the individuals belonging to the ‘disadvantaged’ group (A = a1). The
reasoning behind this method has already been presented in the previous section.

After estimating the Gaussian approximation of posterior distribution of Hm, qµ̂,σ̂(Hm|A,C,M), the im-
plementation of Monte-Carlo sampling approach will now be explained for a subject {a(i) = a1, c

(i),m(i)}.
First, after drawing J MCMC samples h(i)

mj ∼ qµ̂,σ̂(Hm|a(i), c(i),m(i)) with j ∈ {1, ..., J}, then the path-
specific counterfactual outcome Ŷ

(i)
PSCF is predicted as:

m
(i)
PSCFj ∼ pβM

(M |a(i), c(i), h(i)
mj)

Ŷ
(i)
PSCF =

1

J

J∑
i=1

E
[
Y |a0, c(i),m(i)

PSCFj ;βY

]
.

It can be noticed how the fair outcome for an individual i (Ŷ (i)
PSCF ) is estimated for the counterfactual

value of sensitive attribute a0. If there had been additional mediators on the unfair paths, it would
have been more intuitive to understand why it was necessary to estimate the posterior probability of
the latent variables. Indeed, since the latent space is assumed to be unchanged among the real and
counterfactual worlds, this is a necessary step to estimate the counterfactual values of the mediators
descendants of A. In the next example, a more suitable causal structure will be considered.
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5.2.2. Example 2 - Simulated Dataset

In this example, the causal structure represented in Figure 5.4 will be used. The only path that is
assumed to be allowed is the one (ALY )→, while the others are considered to be unfair.
The performance of the different methods will be applied to the following simulated dataset:

C ∼Binom(n, 0.7)

logit(p(A = 1|C)) ∼− 0.5 + 0.5C

logit(p(M = 1|A,C)) ∼− 0.5− 1C + 4A

logit(p(L = 1|A,C,M)) ∼− 0.5− 0.4C − 2A+ 3M

Y =1 + C + 5A− 4M + 3L+ ϵ,

with ϵ ∼ N (0, 1). Now, the different methods will be applied to this simulated dataset.

A M

C

L Y

Figure 5.4: Example 2 Causal Structure

Fair Inference On Outcomes [61]

The application of the Fair Inference On Outcomes method to this causal structure is nearly equivalent
to the previously presented example.
After parametrically modelling the distributions by making use of logistic regressions for binary variables
and linear regressions for continuous ones, the coefficients of the respective fair distribution are estimated
as solutions of the constrained optimization problem. Specifically, the set of estimated parameters
β̂ = {β̂Y , β̂L, β̂M} will be such that the estimated Path-Specific Effect is bounded. In this causal
structure the Path-Specific Effect can be estimated with the plug-in estimator in the following:

ĝπa0,a1
(D, β̂) = 1

n

∑
i∈{1,...,n},m∈XM

(
E
[
Y |A = a1,M = m,C = ci; β̂Y

]
P (M = m|A = a1, C = ci; β̂M )

− Ê
[
Y |A = a0,M = m,C = ci; β̂Y

]
P (M = m|A = a0, C = ci; β̂M )

)
·

· P (L = l|M = m,A = a0, C = ci; β̂M ),

where β̂M = {β̂m, β̂a
m, β̂c

m}, β̂Y = {β̂y, β̂
a
y , β̂

c
y, β̂

m
y , β̂l

y} and β̂L = {β̂l, β̂
a
l , β̂

c
l , β̂

m
l }. Hence, the fair dis-

tribution defined by β̂ will be such that the Path-Specific Effect is bounded between ϵ+ and ϵ−, while
guaranteeing the likelihood function to be maximised.

Counterfactual Fairness [48]

The application of the method [48] to this causal structure is similar to the previously shown example.
The main differences in this scenario are the following. In the non-deterministic method, the unobserved
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latent variable is modeled as a parent of both Y , L, M , as these variables are the descendants of A.
Differently, in the deterministic scenarios both the additive error terms ϵL, ϵM will be estimated, leading
the predictor to have the form hβ̂(C, ϵL, ϵM ) = β̂c

yC + β̂ϵM
y ϵM + β̂ϵL

y ϵL.

Path-Specific Counterfactual Fairness [15]

Differently from the other two methods, modifications to the previous implementation need to be made
with respect to this causal structure. Specifically, in Example 1 the PSE is equivalent to the NDE,
while in this causal structure unfair indirect paths are present.
For the previously explained reasons, the variables’ distributions are modelled according to:

Hm ∼ pβHm
(Hm),

Hl ∼ pβHl
(Hl)

logit(P (M = 1|A,C,Hm)) ∼ βm + βa
mA+ βc

mC + βh
mHm,

logit(P (L = 1|A,C,M,Hl)) ∼ βl + βa
l A+ βc

lC + βm
l M + βh

l Hl,

Y = βy + βa
yA+ βm

y M + βc
yC + βm

y M + ϵ,

where Hm and Hl are the unobserved variables respectively parents of M and L, as it can be noticed
in Figure 5.5 and ϵ ∼ N (0, 1).
Variational Auto-Encoders are used for estimating the Gaussian approximations of pβHm

(Hm|A,C,M,L)
and pβHl

(Hl|A,C,M,L), referred to as qµ̂m,σ̂m(Hm|A,C,M,L) and qµ̂l,σ̂l
(Hl|A,C,M,L). Thereafter,

the Monte-Carlo approach that was previously introduced is used for estimating the path-specific
counterfactually fair outcomes of the individuals belonging to the potentially discriminated group
(A = a1). Specifically, given an individual i with {an = a1, c

(i),m(i), l(i)}, the aim of the method
is to predict Ŷ

(i)
PSCF as the outcome the subject would have obtained by having the sensitive at-

tribute equal to the complementary value a0 along the unfair paths, hence every path except for
(ALY )→. Like in the previous example, after drawing J samples h

(i)
mj ∼ qµ̂m,σ̂m

(Hm|an, cn,mn, ln)

and h
(i)
lj ∼ qµ̂l,σ̂l

(Hl|an, cn,mn, ln) with j ∈ {1, ..., J}, then the output is estimated for each of them in
the following way:

m
(i)
PSCFj ∼ pβM

(M |a0, c(i), h(i)
mj)

l
(i)
PSCFj ∼ pβL

(L|a(i), c(i),m(i)
PSCFj , h

(i)
lj )

Ŷ
(i)
PSCF =

1

J

J∑
i=1

E
[
Y |a0, c(i), l(i)PSCFj ,m

(i)
PSCFj ;βY

]
.

It can be noticed that, since M and Y are connected to A through unfair paths, m(i)
PSCFj and Ŷ

(i)
PSCF

are estimated by inputting the different value of the sensitive attribute (a0). Differently, since L is
along a fair path, the input value corresponding to the sensitive attribute remains unchanged, without
corrections made on the conditioning values. It is now more intuitive to understand the necessity of
estimating the posterior distribution of the latent variables. Indeed, the counterfactual versions of
the mediators and the observed one share the same values of unobserved variables. This means that,
independently on the fairness or unfairness of the paths connecting a mediator, the sampled values of
the unobserved variables will remain unchanged.

5.3. Results

In this section, the results of the application of the state-of-the-art methods to the datasets simulated
from the graphical structures of Figure 5.1 and Figure 5.4 (Example 1 and Example 2 respectively) will
be presented. The performances of the methods will be compared in terms of fairness and accuracy.
Regarding the dataset, a sample of 6000 data points was simulated, among which 80% was used for
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Figure 5.5: Example 2 causal structure for Path-Specific Counterfactual Fairness [15] with latent variables Hm and Hl

training and the rest for testing and validating. The results show the performance of the methods on
the test set, after being trained on the training set.
The methods are compared according to three different metrics. In prediction tasks, with continuous
outcomes, the Mean-Squared Error (MSE) is used for measuring accuracy. The MSE is estimated as
1
n

∑
i(Yi− Ŷi)

2 with i ∈ {1, ..., n} and measures the accuracy of the prediction with the average squared
difference between the the observed values Yi and the outputs of the methods Ŷi. PSE and Average
Treatment Effect (ATE) are used for measuring the population-level fairness of the predictions. It has
been previously motivated why the PSE is relevant for this work; evaluating the ATE of the predictions
could lead to further interesting insights regarding the different methods’ characteristics.
Albeit both accuracy and fairness of predictions are measured, they do not have the same relevance in
the evaluation of the methods. As mentioned in Chapter 2, in the considered setting, the focus of this
work is set on defining a method that returns a fair output.Even though the fairness of the predictions
represents the key measure to consider in this work, it is also important to evaluate how the method
performs in the prediction task itself with accuracy metrics.

The compared methods are Fair Inference on Outcomes (FIO [61]), Path-Specific Counterfactual Fair-
ness (PSCF [15]), Counterfactual Fairness ( [48]). Furthermore, other baseline methods will be applied to
the same dataset, as the comparison with their performance will support the evaluation of the methods.
These baseline methods are the Unconstrained Method and the Fairness Through Unawareness Method;
the former aims at predicting the output with maximum accuracy, without any constraints on fairness
set, while the latter simply ‘ignores’ the sensitive attribute in the prediction/classification task (refer
to Section 2.3.3). The performance of the Fairness through Unawareness method is included in the
comparison, confirming that this non-causality based metric is not be suitable for detecting unfairness
in causal models presenting mediators that are proxies for discrimination.

In the next sections, the results of the application of the methods on Example 1 and Example 2 simulated
datasets will be presented. Furthermore, the performance of the plug-in estimator will be discussed.

5.3.1. Results Example 1

First of all, the results of the methods applied to the dataset simulated from the causal model of Ex-
ample 1 will be analysed. The application of the different methods is straightforward in this scenario,
since it was shown that the PSE matches the NDE.

In Table 5.1, the results corresponding to PSCF, FIO, Counterfactual Fairness, Unconstrained and Un-
aware methods are presented. By analysing these results, it can be immediately noticed that the method
with highest accuracy is the Unconstrained one (lowest MSE of 0.8). As expected, this leads to high (in
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absolute value) PSE and ATE. Indeed, no fairness constraints are enforced.

The results of the Fairness Through Unawareness method (ignoring sensitive attribute) present a PSE
value close to 0. This might seem counter-intuitive, as in the previous sections it was argued that this
method is not suitable for guaranteeing unfairness since some mediators in the dataset could act as
proxies for discrimination. Nevertheless, since in this dataset the only unfair path is the direct one from
A to Y , all the mediators M lie on an allowed path, meaning that they should be rightfully considered
in the prediction. However, this does not hold for the ATE; indeed, by using M in the prediction with
no fairness constraints, the Average Treatment Effect on all the paths is not null.

Both the methods FIO and PSCF succeed at ensuring nearly null Path-Specific Effect, meaning that these
methods achieve the path-specific fairness constraint. The higher Average Treatment Effect encountered
in FIO can be positively interpreted as the consequence of enforcing a high causal effect through the
allowed paths. Indeed, if the effect along the unfair paths is almost zero while the one along the entire
set of paths is high, it can be deducted that the allowed paths are being sufficiently leveraged in order
to predict Ŷ with high accuracy. Since PSCF is focused on individual-level fairness, due to the increased
strength of the fairness constraints, the accuracy of the predictions is lower (higher MSE compared to
FIO). This is the consequence of a high accuracy for data-points not belonging to the sensitive group
and low accuracy for the potentially discriminated group. As a matter of fact, as mentioned earlier
in the method introduction, the outcomes of the data-points i that are not part of the sensitive group
(Ai = 0) are equivalent to the observed ones, meaning that Yi = Ŷi. Differently, the predicted value Ŷi

of potentially discriminated data-points i with Ai = 1 is corrected by using the respective counterfac-
tual values on the unfair paths. In this example, the Maximum Mean Discrepancy (MMD) penalty term
hyper-parameter is set to β = 0; since no mediators belong to unfair paths, the choice of this value is
not relevant for the results.

The Counterfactual Fairness method aims at ensuring individual-level fairness, without taking into
account the fairness/unfairness of the different paths. As previously discussed, one of the main disad-
vantages of this approach is discarding relevant information that is transmitted through the fair paths
and that could improve the predictions’ accuracy. Differently, when analysing the fairness metrics, the
method’s performance is successful. It has been proven in Section 4.3.0.2 that the condition enforced in
the Counterfactual Fairness method in [48] is a stricter constraint on the predicted outcome Ŷ compared
to Counterfactual Fairness itself. Hence, by ensuring counterfactual fairness on every individual, also
population-level metrics such as PSE and ATE are met, leading these metrics to be nearly null. The
non-deterministic level and the level 1 achieve fairness with the drawback of the relevantly low accuracy.
Overall, since the assumptions made in the different levels of the Counterfactual Fairness method are
met in this graphical structure, as it was simulated with an additive error model with independent noise
terms, the performance of the method in terms of fairness is successful.

Method MSE PSE ATE

Unconstrained Method 0.8 -11 -9.3
Unaware Method 4.8 0.0001 -0.9

Constrained FIO [61] 9.0 -0.02 -1.8
PSCF [15] 11.1 0.0001 1.1

Counterfactual Fairness [48] - deterministic level 18.8 0.001 0.002
Counterfactual Fairness [48] - non deterministic level 21.1 0.001 0.0003

Counterfactual Fairness [48] - level 1 25.1 0.0001 0.00001

Table 5.1: Results Example 1 causal structure

In general, it can be useful to compare the performance of the method on different causal structures,
specifically by adding unmeasured variables to the model. The same graphical structure of Figure 4.2 is
used, but with an additional unobserved variable with edges towards A and Y . In the literature, this is
referred as a common unobserved confounder between A and Y . The simulation procedure is presented
in the Appendix J.1.5. In this causal structure, the path-specific effect is still identifiable with the edge
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g-formula, so the previously introduced metrics can be compared again. It can indeed interesting to
analyse the performance if one or more assumptions of a model are violated.

In Table 5.2, the performance per each method is presented. Analysing the results, it can be noticed
that both the Unconstrained and Unaware methods fail at ensuring fairness of the outcomes Ŷ , as
expected. Furthermore, the additional unobserved confounding leads to a loss in accuracy compared to
the previous example. Analysing the Constrained FIO method, this outperforms the other state-of-the-
art methods in terms of accuracy, still satisfying the constraint on the PSE. This is also the case for the
method PSCF, since the graphical structure satisfies the underlying assumptions of the method; indeed,
the unobserved variable is not a parent of the mediator M . Nevertheless, the accuracy is relevantly
lower compared to the other methods, due to a high MSE in the groups with A = 1. This loss in accuracy
is not due to the additional unobserved confounding, but only depends on the simulations procedure.
It can be noticed that the non-deterministic level of Counterfactual Fairness performs worse compared
to the example with no unobserved variables. Indeed, the assumptions required by the non-deterministic
level of Counterfactual Fairness are not satisfied in this example. The unique unobserved variable mod-
elled by the method (represented in Figure 5.2) is assumed to be independent from A, which is not the
case in this graphical structure, as the unobserved variable parent of Y is also parent of A. Nevertheless,
the performance is promising in terms of fairness and accuracy.

Method MSE PSE ATE

Unconstrained Method 3.3 -9.3 -7.5
Unaware Method 20.4 0 -0.4

Constrained FIO [61] 8.9 -0.01 -1.8
PSCF [15] 42.2 0.0001 1.1

Counterfactual Fairness [48] - deterministic method 11.8 0.001 0.002
Counterfactual Fairness [48] - non deterministic method 15.9 -0.07 -0.08

Table 5.2: Results Example 1 causal structure with additional unobserved variable parent of A and Y

5.3.2. Results Example 2

In Table 5.3, the results from the application of the methods to the datasets generated by the causal
model in Example 2 are represented. In this scenario, the PSCF method is proposed for different values
of the MMD penalty term hyper-parameter β, with both β = 0 and β = 100.
It can be noticed that in this Table the results reflect similar patterns as the previous Table 5.1. Dif-
ferently from the previous causal structure, the PSE here is not equivalent to the NDE, meaning that
the Fairness Through Unawareness method in this example does not ensure path-specific fairness, as
expected. Similarly to before, the Constrained FIO method is the best performing one in terms of
balance between accuracy and path-specific fairness. Indeed, while having PSE = −0.07 on the test
set, the MSE is also relevantly lower compared to the other state-of-the-art methods. In this example,
due to the absence of additional unobserved variables in the causal model, not relevant change can
be noticed among the performance of PSCF with different values of β. Analysing the Counterfactual
Fairness method instead, the accuracy of the method increases by varying the level of the method, hence
by increasing the needed assumptions. The reason behind the better performance in terms of accuracy
of the deterministic model compared to PSCF is that the stricter assumptions are met, specifically in
this example the additive noise terms were indeed independent among each others. Again, the fairness
metrics for this method are nearly zero.

In the next paragraph, a simulation procedure with additional unobserved variables will be considered.
The same graphical structure of Figure 5.4 is used, with the addition of different unobserved variables.
Specifically, in Table 5.4, the results corresponding to the causal structure with an unobserved variable
parent of both M and Y is considered. Differently, in Table 5.5, two unobserved variables are consid-
ered: a parent of M and Y and a parent of A and L. The details regarding the simulation procedure
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Method MSE PSE ATE

Unconstrained Method 1.0 -3.4 -3.1
Unaware Method 14.4 -0.2 -0.6

Constrained FIO [61] 1.7 -0.07 0.7
PSCFβ=0 [15] 8.7 0.06 0.05
PSCFβ=100 [15] 8.8 0.06 0.06

Counterfactual Fairness [48] - deterministic 3.6 0.01 0.001
Counterfactual Fairness [48] - non deterministic 12.8 0.004 -0.001

Counterfactual Fairness [48] - level 1 14.9 0.00001 0.00001

Table 5.3: Results Example 2 Causal Structure

can be found in the Appendix J.2.6. In both of these scenarios, unobserved confounding of the couples
of variables (M,Y ) or (L,A) is involved. It is important to notice that the Path-Specific Effect is
identifiable in both of these graphical structures, according to the recanting district criterion.

In Table 5.4 no relevant difference can be found compared to the previous Table corresponding to the
same graphical structure without the additional unobserved variables. This probably happens because
the additional unobserved variable is not a parent of A too. Nevertheless, the pattern changes when con-
sidering the results in Table 5.5. First of all, it can be noticed that the PSCF method improves in terms
of fairness when considering β = 100 compared to β = 0, since the former penalizes the dependency
between the unobserved variables used for the predictions and A. Similarly, the Counterfactual Fairness
method performs less fairly compared to the previous scenarios, even though path-specific fairness is
still achieved. Similarly to before, this probably happens due to the violation of the assumptions made
in the deterministic level of the method.

Method MSE PSE ATE

Unconstrained Method 4.2 -1.2 -1.3
Unaware Method 4.7 0.02 -0.06

Constrained FIO [61] 4.4 -0.04 -0.2
PSCFβ=0 [15] 4.8 -0.002 -0.02
PSCFβ=100 [15] 4.8 -0.003 -0.02

Counterfactual Fairness [48] - deterministic 5.7 0.0001 0.001

Table 5.4: Results Example 2 Causal Structure Unobserved MY

Method MSE PSE ATE

Unconstrained Method 4.2 -1.3 -1.4
Unaware Method 5.4 0.02 -0.3

Constrained FIO [61] 4.5 -0.04 0.4
PSCFβ=0 [15] 4.9 0.09 0.02
PSCFβ=100 [15] 5.0 0.008 0.02

Counterfactual Fairness [48] - deterministic 5.4 0.01 0.02

Table 5.5: Results Example 2 Causal Structure Unobserved MY , LA

5.3.3. Performance Plug-in Estimator

In the implementation of the FIO method, the semi-parametric plug-in estimator for the edge g-formula
was used. In the next paragraphs, the performance of this estimator will be evaluated, empirically
showing that it is suitable for the goal of this project. In order to analyse the performance of the
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plug-in estimator, an empirical study has been done. The plug-in estimator of the edge g-formula will
be applied to different causal structures; the next paragraph will focus on evaluating the characteristics
of the estimator.

The simulation procedure corresponding to the graphical structure of Example 1 is considered, specifi-
cally the simulation procedure introduced in J.1.3. The performance of the estimator on different causal
models can be found in the Appendix E. Before moving into the analysis of the estimator, the steps for
deriving its true sampling distribution is explained. Given the simulation procedure, an arbitrary num-
ber d of datasets composed by n data-points are simulated. By using the plug-in estimator for the PSE
quantity of each dataset, the true sampling distribution of this estimate can be derived. The standard
deviation of the sampling distribution (standard error) can be useful for quantifying the variability of
the estimator. It can hence be used as a measure of precision, describing the variability of the estimator
among the experiments.

As a first step, the consistency of the estimator will be analysed. The true sampling distribution is
derived for d = 1000 datasets of different sizes n. By varying the sample size, it is indeed possible to
check the consistency of the estimator in a simulation procedure. Indeed, in Table 5.6 the Standard
Deviation of the true sampling distribution for each of these simulation procedures by sample size n is
presented. It can be noticed that the Standard Deviation varies as expected, given by the square root
of n in the denominator of its mathematical formulation. Furthermore, the consistency of the estimator
is supported by the convergence to zero of the standard error for the simulation procedure increasing
n.

n Standard Deviation

100 0.42
1000 0.13
4000 0.06
8000 0.04

100000 0.01
1000000 0.004

Table 5.6: Plug-in Estimator Performance on datasets with n data-points

In order to evaluate the performance of the estimator, a further analysis on the empirical distribution
of the estimator can be made. The empirical distribution is derived from the application of bootstrap
sampling with replacement to a given dataset Dn. The plug-in estimator is applied to each bootstrap
sample, hence composing the bootstrap distribution. The bootstrap approximates the shape of the
true sampling distribution by simulating replicate experiments based on the observed data Dn. By
comparing the variability of this distribution with the true sampling distribution, relevant information
regarding the performance of the estimator can be deduced. In order to simplify the comparison among
the two distributions, the analysis is made on the shifted ones, centering the distributions in 0. Since
the bootstrap distribution will be centered around the estimate and not the true value, unlike the true
sampling distribution, these distributions are shifted to wipe out the initial bias.

In Figures 5.6a, 5.6b the two shifted distributions are represented. The variances of the two distributions
are compared. The standard deviation of the bootstrap and true sampling distributions are highly
comparable, respectively 0.05726 and 0.05737. Furthermore, it might be interesting to compare the two
shifted distributions in terms of quantiles and cumulative distributions in Figures 5.7a, 5.7b.
By the similar variability of the two distributions, it can be deduced that the inherent variance of the
estimator is not high. Indeed, the noise in the bootstrap distribution is comparable to the inherent
variance of the estimator without bootstrapping.
Overall, the semi-parametric plug-in estimator seems suitable for the tasks of this project. In Appendix
E these results are also supported by analysing the estimator on another causal structure.
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(a) Shifted true sampling distribution (b) Shifted bootstrap distribution

Figure 5.6: Original and Shifted Distribution

(a) Quantile-Quantile plot Bootstrap distribution and
True Sampling Distribution (b) Cumulative bootstrap and true sampling distribution

5.4. Conclusions

Overall, the experiments were really useful for evaluating the performance of the selected state-of-the-art
methods and for comparing them among each others. Different metrics have been used, both portraying
the fairness and accuracy of the prediction. The methods performed as expected, as the strengths and
weaknesses underlined in the methodology section were also portrayed in the results. Furthermore, the
peculiar accuracy and fairness trends of the methods were encountered in all the graphical structures,
specifically analysing the trade-off between accuracy and fairness. Particularly interesting was the
variation of the graphical structures with the addition of unobserved variables, as the strength of the
assumptions used in the different methods could be emphasized.

Analysing all of the state-of-the-art methods, different conclusion can be made regarding their perfor-
mances. These experiments gave an additional confirmation that the Fairness through Unawareness
method is not suitable for detecting and correcting unfairness in scenarios with mediators along unfair
paths. The Counterfactual Fairness method and Path-Specific Counterfactual Fairness method both
involve the estimation of the latent space of unobserved variables, since they focus on individual-level
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fairness. This has shown to possibly lead to instability due to the assumptions made on the unob-
served variables. In both of the methods it is indeed necessary to ensure that the estimated unobserved
variables are independent from the sensitive attribute. Differently, the population-focused FIO method
does not involve assumptions on the unobserved variables. For this reason, this method is actually
more interpretable and intuitive. Furthermore, the PSE is bounded in a small interval and the accuracy
is higher compared to the other methods. Albeit its inability of portraying individual-level fairness,
this method seems highly promising. Similarly, the path-specific individual-level fairness achieved by
Path-Specific Counterfactual Fairness method has a lot of potential in the fairness setting in combining
path-specific fairness and individual-level fairness.
At the end of the chapter, the performance of the semi-parametric plug-in estimator used in the imple-
mentation of the FIO method for estimating the PSE was analysed. An empirical study of the properties
of this estimator shows that it is indeed suitable for the tasks of this method.



6
Fairness through conditional

Path-Specific Effect

In this chapter, the newly proposed method will be presented. With this method, the authors aim
at proposing an alternative version of Fair Inference on Outcomes method (FIO) [61] by attempting
to bridge the gap with individual-level fairness, represented by Path-Specific Counterfactual Fairness
method (PSCF) [15]. Both of these methods have been presented in Chapter 5. It will be shown that,
compared to PSCF, this novel method has the advantage of leveraging the identifiability conditions of
Path-Specific Effect via the edge g-formula (Definition 4.2.1), providing nearly individually-fair predic-
tions by avoiding assumptions on the posterior distributions of the unobserved variables. This newly
proposed approach is based upon conditional Path-Specific Effects; it will therefore be referred to as
Conditional Path-Specific Fairness (CPSF).

This chapter will be structured in the following way. First, conditional Path-Specific Effects will be
introduced. In particular, the motivation regarding the focus on individual-level fairness will be given,
along with the intuition, definition and identifiability conditions of conditional Path-Specific Effect.
Moreover, the novel method will be introduced and compared to the original versions of FIO [61] and
PSCF [15].

6.1. Conditional Path-Specific Effect

The conditional Path-Specific Effect can be a useful tool for estimating and evaluating the Path-Specific
Effect on distinct subgroups of individuals. Albeit the concept of conditional Path-Specific Effect is
closely related to the overall Path-Specific Effect, relevant focus should be put on the identifiability
conditions of such effects. These topics will be extensively covered in the next two sections.

6.1.1. Motivation of Conditional Interventional Distributions

Comparing population-level and individual-level fairness metrics, different strengths and weaknesses
can be assessed in both. It was previously explained that effects such as the Path-Specific Effect are
population-level fairness metrics, as they consist in defining the effects among the entire population.
By using the Path-Specific Effect as a fairness metric, the effect along certain unfair paths is estimated
among the entire population.Intuitively, when addressing the fairness topic, a constraint on the PSE
consists in limiting the significance of this effect when considering as treatment a sensitive attribute
and as the outcome a decision that might lead to potential discrimination.
Population-level metrics have been questioned for not addressing individual-level [48]. As a matter of
fact, even though a model is fair at a population level with respect to a sensitive attribute, it could

62
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still happen that among subjects with the same sensitive attribute, half of the individuals is negatively
discriminated and the other half is positively discriminated [48].
Population-level fairness metrics have relevant advantages, based on the overall identification theory
that has been explored in the past years. If the respective identifiability conditions are met, it is then
possible to apply the edge g-formula and to identify this effect without considering further assumptions
on the latent space. It was shown that this is instead a necessary step when considering individual-level
fairness.
In this chapter, conditional Path-Specific Effect will be introduced as a metric that bridges individual-
level and population-level fairness metrics.

The identification of conditional Path-Specific Effect is useful for estimating the PSE on certain sub-
groups of the population [54]. Intuitively, if a given dataset is fair towards the different subgroups of the
population, then it will also be fair towards the entire population. Nevertheless, it is important to notice
a fair model towards the entire population does not imply fairness among the different demographic
subgroups. These subgroups can be in general defined by post-treatment variables or pre-treatment
variables, corresponding to descendants or not descendants of the treatment attribute respectively. In
the context of fairness, the focus is set on the baseline features, usually representing the demographic
attributes characterized by specific values of the pre-treatment covariate C. In Appendix F, an exam-
ple describing the difference between the use of a certain covariate as a conditioning attribute and as a
treatment attribute will be given.

The concept of conditional effect can be seen as closely related to the individual-level fairness approach.
In most of the real-world scenarios, by analysing population-level fairness metrics separately among
the different demographic groups, it is possible to have a clearer idea on how to interpret and evaluate
fairness at an individual level. Indeed, it can often be assumed that the different individuals can be
satisfactorily represented by the specific demographic subgroup they are part of.
Overall, ensuring that the dataset is fair towards the subgroups of the population can be seen as a step
towards individual-level fairness, without involving the complexity that characterizes the estimation of
individuals’ counterfactuals.

In this paragraph, an example regarding the relevance of evaluating fairness on different demographic
subgroups is given. A hiring process with the gender A as the sensitive attribute can be considered.
In this scenario, the purpose of the research would be to evaluate the Path-Specific Effect of A on the
hiring decision Y given certain unfair paths. Albeit the estimated effect among the entire population
is assumed to be low, it might still be interesting to separately evaluate the effect that A has on the
hiring decision in younger generations and older generations. When assessing the fairness of the dataset
using population-level metrics, the goal is usually to prove that this effect is on average very low. Nev-
ertheless, it might happen that the younger generations are actually positively discriminated, while the
older generations negatively discriminated. In other words, this means that the effect of the gender
on the hiring decision among younger generations leads to more beneficial results for women rather
than for men. Differently, when analysing older generations applicants, it means that the causal effect
can be interpreted as a negative discrimination (lack of incentive) on female applicants. In this con-
text, this phenomenon could be interpreted by analysing an hiring scenario in which younger females,
usually applying for entry-level positions, are more encouraged to apply compared to older females,
typically looking for higher-level positions involving more responsibilities. This is actually realistic,
as nowadays companies often need to ensure a specific yearly percentage of overall hired women (e.g.
female quotas). Unfortunately, it often happens that companies tend to advantage younger female ap-
plicants compared to older ones because of the range of responsibilities involved with the requested jobs.

The choice of the conditioning subgroups is a widely-discussed question in the literature, as the estima-
tion of causal effects on subgroups of the population is a relevant topic in many applications ([5], [91]).
Among the proposed methods, most of them make use of the Propensity Score ([27], [58], [4], [7], [47]).
The Propensity Score (PS) is defined as the probability of being assigned to a specific treatment value
conditional on all the other relevant covariates. Different methods can be implemented based upon
the propensity score estimation, such as PS matching, PS stratification, Inverse Probability Weighting
using PS [27]. The propensity score is particularly useful in applications such as personalised medicine,
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in which it is relevant to evaluate the probability of treatment assignment depending on the other co-
variates values. In the setting of the research of fairness of Machine Learning, approaches based upon
the propensity score are not necessarily useful, as the treatment variable is actually a demographic
attribute, such as gender or race; hence, this means that in most of these scenarios the estimation of
the propensity score is not relevant for the scope of the research. Furthermore, in other methods in
the literature, the subgroups of the population are chosen by defining different scores that summarize
relevant information regarding the individuals [90]. In various applied contexts, it can also be useful to
analyse the relevance of the different covariates on the outcome and to choose the best conditioning set
by using covariate selection methods ([103], [73], [51]).
The choice of the conditioning set is not part of the focus of this work. This aspect of the conditional
PSE is left for future work.

The identification of conditional interventional distributions is a common identifiability question in the
causality research. This has been treated in the past years by many authors, such as Pearl in [69]. A
complete algorithm based on graphical conditions aiming at identifying conditional node-interventional
distributions has been developed in [84], referred to as Compete Identification Algorithm for Condi-
tional Effects (IDC). Following this work, the authors of [54] developed a framework based on potential
outcomes with the goal of applying these results to nested counterfactuals, such as the ones involved
in path-specific interventions; this last algorithm is called Compete Identification Algorithm for Condi-
tional Path-Specific Effects (PS-IDC).
In Section 6.1.2 the algorithm for identifying conditional node-interventional distributions proposed in
[84] (IDC) will be presented. In particular, it will be shown how under certain graphical conditions it
is possible to use the Rule 2 of do-calculus in order to identify conditional interventional distributions.
Next, in Section 6.1.3, the application of this method to conditional path-specific interventional distri-
butions will be described, following the approach of [54] (PS-IDC). These will be generalized in order
to analyse the identification of conditional path-specific interventional distributions on any arbitrary
graphical structure. Furthermore, in both of these sections, the application to the research on fairness
of Machine Learning will be taken into consideration.

6.1.2. Do-Calculus for the Identifiability of Conditional Interventional Dis-
tribution

The method introduced in [84] has the goal of estimating the conditional interventional probability
P (Y (a) = y|C = c), where A,C, Y are disjoint and arbitrary sets of nodes in a causal graph G and
a ∈ XA, y ∈ XY , c ∈ XC . This algorithm is applicable to any graphical causal structure. Nevertheless,
as previously mentioned, the interest of this project is focused conditional path-specific interventional
distributions. Thus, only the results that will be useful for introducing the algorithm for the identifica-
tion of conditional path-specific interventional distributions (PS-IDC) will be presented.
The algorithm IDC returns the identification formula of the needed conditional interventional distribu-
tion in terms of observational quantities. The algorithm is able to succeed in the identification of these
distributions, as long as the identifiability conditions are met.

In this section, the algorithm IDC will not be presented in detail. Indeed, the formalization of the
identification of the conditional path-specific effect will already be covered in detail in Section 6.1.3.
As shown in the previous chapters, node-interventional distributions are a specific case of path-specific
ones. Hence, the identification algorithm PS-IDC will also cover the scenarios encountered in IDC. The
scope of this section is instead showing that the Rule 2 of do-calculus (Formula 3.19) can be leveraged
for identifying conditional interventional distributions, as shown in the algorithm IDC [84]. For this
reason, in this section the algorithm will be simplified by taking into account causal structures that
completely satisfy the condition of Rule 2 of do-calculus, which are also the typical causal structures
of the datasets analysed so far in the report. This is a strong assumption that will be alleviated in the
next section on conditional path-specific interventional distributions, by considering arbitrary graphical
structures.

Typically, in the fairness research setting, the demographic conditioning set C is a set of root nodes
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(Definition 3.1.0.7). In the previous chapters it has been explained that the scope of this project is
partly set on analysing the effect of the sensitive attribute A on the outcome Y . The motivation for
focusing on conditional interventional distribution rose from the interest of estimating causal effects
on specific subgroups of the population. These subgroups are defined by the covariate C, including
certain demographic information. Generally, the covariate C is a non-descendant of A, specifically a
set of root nodes. Indeed, if the demographic attribute is a mediator between A and Y , then it is
important to inspect whether this mediator is considered to be along a fair or unfair path; this means
that descendants of A are generally not suitable conditioning sets, as previously discussed.
Even though it might seem that the necessary condition corresponding to Rule 2 is a strong assump-
tion, this holds in the previously analysed graphical structures. It will be explained why this condition
holds in these scenarios. It is important to notice that these graphical structures are very specific and
simplified, with the purpose of showing how to apply the Rule 2 for the identification of conditional
interventional distributions. Nevertheless, the algorithm IDC can be applied to any arbitrary causal
structure.

The Rule 2 of do-calculus can be leveraged for identifying conditional interventional distributions, as
long as the respective graphical condition is satisfied. Referring to the notation used in Rule 2 in
Formula 3.19 ( P (Y (a, z) = y|D = d) = P (Y (a) = y|D = d, Z = z) if (Y ⊥⊥ Z|A,D)GAZ

), the following
is taken into consideration. D can be defined as the null set D = {∅} and Z as the conditioning variable
C. Following these assignments, the Rule 2 of do-calculus corresponds to

P (Y (a, c) = y) = P (Y (a) = y|C = c) if (Y ⊥⊥ C|A)GAC
.

In the above condition, the causal graph GAC corresponds to the original causal graph with the arrows
emitted by C and the arrows entering A deleted. In the mentioned graphical structures, the set of de-
mographic covariates C is a root node set. Following the previously mentioned graphical assumptions,
since the demographic variables set C does not have any edge entering from other observed covariates,
the condition (Y ⊥⊥ C|A)GAC

holds, assuming that the disturbance terms are mutually independent. In
general, it will then be possible to identify P (Y (a) = y|C = C) as P (Y (a, c) = y), according to Rule
2. As an example, Figure 6.1b can be referred to, corresponding to the original causal graph in Figure
6.1a. Hence, in this causal graph, P (Y (a) = y|C = c) = P (Y (a, c) = y) =

∑
m∈XM

P (Y = y|A =
a,M = m,C = c)P (M = m|A = a,C = c).

A M

C

Y

(a) Causal Graph G

A M

C

Y

(b) Example Corresponding Causal Graph GAC

Figure 6.1: Graphical structure G with respective representation of GAC

In conclusion, when analysing causal graphs with mutually independent error terms and fulfilling certain
structural requirements, it is possible to use Rule 2 of do-calculus to simplify the conditional interven-
tional distribution into a joint interventional distribution.
In the above paragraphs, a big assumption was made regarding the causal structure of the variables.
Even though this structure is encountered in the commonly analysed datasets in the context of fairness
of ML (COMPAS, UCI Adult, ...), it is important to generalise the identifiability of interventional distri-
bution to any causal structure. This will further be explored in the next section analysing conditional
path-specific interventions. All of the results presented in the next section can be equivalently proven
also for simple node interventions, thus for IDC.
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6.1.3. Conditional Path-Specific Interventional Distribution

In the previous section, it was shown how do-calculus can be used for identifying conditional inter-
ventional distributions. This section will focus instead on the more generic conditional path-specific
interventional quantities.
Through IDC, in [84] it was shown that it is possible to identify conditioned interventional distributions
by making use of the Rule 2 of do-calculus, simplifying it into a joint interventional distribution. The
authors of [54] leverage these results in order to build an algorithm (PS-IDC) that identifies conditional
path-specific interventional distributions.

Notation and Definitions

The relevant notation and definitions that will be useful in this chapter will now be presented. The
concept of potential outcomes has already been introduced in the previous chapters; in this paragraph,
these will be defined following the notation in [54].
A causal graph G with nodes V = {V1, ..., Vn} is given. The parents of each Vi are denoted as Pai. It
is possible to define the set of potential outcomes V in the following way:

V ≡ {Vi(pai)|i ∈ {1, ..., k}, pai ∈ XPai}, (6.1)

where XPai
is the state space of the parents of Vi, Pai. In the above notation, the single potential

outcomes Vi(a) can be defined by using a recursive substitution, similarly to the one used in [83] for
edge interventions:

Vi(a) ≡ Vi(aA∩Pai , {Vj(a)|Vj ∈ Pai\A}). (6.2)

Here, Vi(a) is the response Vi after the intervention on the attribute A as a ∈ XA. Based on recursive
substitution, the parents of Vi that belong to A are set as a, meanwhile all the parents of Vi that are
not in A are recursively defined as the values they would have if A was set to a. It will be useful to
notice that the notation aA∩Pai consists indeed in setting the set A∩ Pai as a. For instance, in Figure
4.2, Y (a) = Y (a,M(a), C(a)). In general, when Y is a set of nodes, Y (a) is the set of {Yi(a)|Yi ∈ Y }.
By using the above notation, the authors of [54] allow for the use of potential outcomes such as A(a).
If A is composed by a single variable, then by the Equivalence 6.2 A(a) is the random variable A itself,
not the interventional value a. This can also be generalized for set of variables.

For the next steps, it is useful to introduce the consistency property. In Property 3.2.2, the consistency
property was defined as:

B = b =⇒ Vi(b) = Vi, (6.3)

where B ∈ V and b ∈ XB . This property can be interpreted as P (Vi(b)|B = b) = P (Vi|B = b). Equiv-
alently, the consistency property can be defined in terms of node interventions on multiple treatment
variables, for instance Vi(a, b). In this scenario, the consistency property can still be applied. Specifi-
cally, following the recursive definition of potential outcomes in the Equivalence 6.2, given two disjoint
sets A,B ∈ V , Vi ∈ V \(A ∪B), a ∈ XA, b ∈ XB :

B(a) = b =⇒ Vi(a, b) = Vi(a). (6.4)

This can be proven by applying the Equivalence 6.2 to both Vi(a, b) and Vi(b). Indeed,

Vi(a, b) = Vi(aA∩Pai
, bB∩Pai

, {Vj(a, b)|Vj ∈ Pai\{A ∪B}})

meanwhile for Vi(a):

Vi(a) = Vi(aA∩Pai
, {Vj(a)|Vj ∈ Pai\A}) = Vi(aA∩Pai

, {Vj(a)|Vj ∈ Pai\{A ∪B}}, bB∩Pai
}).

Now that the useful notation introduced in [54] has been presented, the next paragraphs will focus

on the use of potential outcomes calculus in order to identify conditional path-specific interventional
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distributions.

In [54] a new framework called po-calculus is introduced; this is based upon do-calculus and potential
outcomes. The po-calculus enables the generalization of do-calculus to nested counterfactuals. In fact,
while the do-calculus is not suitable for treating path-specific interventions, as they involve multiple
worlds, po-calculus can overcome these obstacles.
Single World Interventional Graphs (refer to Definition 4.2.0.3) have been introduced in the previous
chapters as an useful tool for unifying the approaches of identifiability based on potential outcomes
and on graphical conditions. Following the notation in [54], given a DAG G and x ∈ XX , X ∈ V , G(x)
is the SWIG corresponding to G in which the nodes belonging to X are split into two nodes, with one
half assigned the arbitrary value x. The notation G(x, z) corresponds to the node splitting operation
applied to both X and Z with respective interventional values x and z.
It was previously shown how the Rule 2 of do-calculus can be useful for simplifying conditioned interven-
tional distributions. The authors of [54] use the same approach through potential outcomes, rephrasing
the do-calculus Rules in terms of conditional independencies implied by SWIGs. Following this approach,
the Rule 1 and Rule 2 of po-calculus are presented. Given a causal graph G containing the disjoint
set of nodes A, Y, Z,D ∈ V the following relations on the potential outcomes and the respective SWIGs
G(a), G(a, z) hold.

• The Rule 1 of po-calculus states that:

P (Y (a) = y|D(a) = d) = P (Y (a) = y|D(a) = d, Z(a) = z) (6.5)

if
(
Y (a) ⊥⊥ Z(a)|D(a)

)
G(a)

, (6.6)

• Rule 2 of po-calculus states that:

P (Y (a, z) = y|D(a, z) = d) = P (Y (a) = y|D(a) = d, Z(a) = z) (6.7)

if
(
Y (a, z) ⊥⊥ Z(a, z)|D(a, z)

)
G(a,z)

. (6.8)

An important result regarding these po-calculus rules is presented in [54]: the Rule 1 and Rule 2 of
do-calculus respectively hold if and only if the Rule 1 and Rule 2 of po-calculus hold. This follows
from the definition of the two couples of graphs G(a, z),GAZ and G(a),GA along with the definition of
d-separation (refer to Definition 3.2.0.4).
The soundness of Rule 1 of po-calculus can be easily proven by using the d-separation criterion, which
is complete for SWIGs (see Property 3.2.4). If the random variable D(a) d-separates Y (a) and Z(a)
in G(a), then the variable Y (a) is independent of Z(a) given D(a). From this, Rule 1 of po-calculus
follows.
The proof of soundness of Rule 2 of po-calculus can be derived:

P (Y (a, z) = y|D(a, z) = d) = P (Y (a, z) = y|D(a, z) = d, Z(a, z) = z)

= P (Y (a, z) = y|D(a, z) = d, Z(a) = z)

= P (Y (a) = y|D(a) = d, Z(a) = z).

The first equation follows from the application of Rule 1 to the assumption
(
Y (a, z) ⊥⊥ Z(a, z)|D(a, z)

)
G(a,z)

.

The second equation follows from the equality Z(a, z) = Z(a), given by minimal labelling of Equiv-
alence 6.2 (it was previously shown that by Z(z) is meant the random variable itself). Furthermore,
the consistency property can be used to derive the third equation. According to 6.4, given the event
Z(a) = z, then by consistency D(a, z) = D(a) and Y (a, z) = Y (a). Intuitively, the intervention set
with an event that has already occurred can be ignored.

Before diving into the identifiability conditions presented in [54], it is important to understand how
the nested counterfactuals in Path-Specific Effects can be analysed by using graphical representations
based on SWIGs. Since the focus of this research is to focus on conditional Path-Specific Effects, it is
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necessary to graphically represent path-specific interventions with a potential outcome framework, so
that the Rule 2 of po-calculus can actually be applied to nested counterfactual quantities. The authors
of [78] introduce the concept of extended graph Ge, a graphical tool that enables the use of po-calculus
to nested potential outcomes. Thanks to this framework, the results of [84] can be applied to nested
interventions. Thanks to extended graphs, it is possible to represent the path-specific intervention
V (π, a0, a1), with V ∈ G and a0, a1 ∈ XA, in terms of potential outcomes on Ge. Hence, the concept
of intervening on the same attribute with different values depending on the selected paths in G can be
interpreted as multiple node interventions in Ge.

Given a DAG G with nodes V and edges E , it is possible to define the extended graph Ge [54] as follows.
In this project, the only treatment variable taken into consideration is the variable A. For this reason,
a specific version GeA of the extended causal graph will be considered. The graphical structure that
will now be presented can be easily generalised by selecting different treatment covariates, referring to
[54]. In fact, in the general version of Ge all the attributes can be intervened upon with path-specific
interventions.
A formal definition of the expanded graph GeA is now provided. The variable A is defined such that
|XA| > 1, where XA is the set of values that A can admit (state space of A). Ch(A) is the set of
children nodes such that there exists an edge {A → Ch(A)} in G. In the extended graph GeA, for each
children node of A, Vj ∈ Ch(A), a new variable is introduced; this leads to the creation of a new set
of variables ACh := {Aj |Vj ∈ Ch(A)}. Analysing the newly created variables, each Aj can assume the
same values as A, meaning that XA = XAj . The extended graph corresponding to the original graph
G with treatment variable A is then a causal graph with nodes {V ∪ ACh}, having the same set of
edges E with some modifications on (AVj)→ with Vj ∈ Ch(A). The edges going from A to its children
Ch(A) are deleted and replaced with the intermediate variables Aj and the respective edges (AAj)→
and (AjVj)→. In other words, the edges going from the sensitive attribute to its respective children
are modified by inserting specific mediators ACh having the same state space of A. In order for Ge to
be consistent with G, the edges (AAj)→ are deterministic equality relations, such as Aj(aj) = aj , with
aj ∈ XA. Specifically, each Aj ∈ ACh has a single parent A such that Aj(aj) is a constant random
variable corresponding to a point-mass at aj . It can be noticed that if A has d children, then there exist
|XA|d different graphs GeA, based upon the deterministic relations embodied by the edges (AAj)→. In
order to formalise this complicated graphical structure, the following definition is considered:

Definition 6.1.0.1. Extended Graph Given the DAG G with nodes V such that A ∈ V , the extended
graph GeA is defined by inserting the deterministic arrows from A to Aj, such that Vj ∈ Ch(A). The
deterministic relations Aj = aj, aj ∈ XA, are consistent with the path-specific interventions applied to
G. Then, the interventional distribution on the values v ∈ XV \A, induced by the extended graph GeA, is
identified as:

PGe
A
(V \A = v) =

∏
j:Vj /∈Ch(A)

P (Vj = vj |Paj = paj) ·
∏

j:Vj∈Ch(A)

P (Vj = vj |Paj\A = paj\aj , A = aj).

(6.9)

If the identifiability assumptions of the edge g-formula are met, the interventional distribution in Equa-
tion 6.9 is equivalent to the standard edge g-formula with path-specific interventions that are consistent
with the graphical representation GeA.
As an example, the extended graph corresponding to Figure 4.2 with A as the sensitive attribute is
presented in Figure 6.2. In this plot the children of A are M and Y , meaning that ACh = {AM , AY }.
It can be noticed that the red edges indicate deterministic relations. In this example, the path-specific
intervention of A = a0 along (AM)→ and A = a1 along (AY )→ in G consists in having AM = a0 and
AY = a1 in the extended graph GeA of Figure 6.2.

The extended graph Ge is a graphical tool that can be used to represent path-specific interventions.
Based on the definition of GeA, following the notation in [54], Ge(aπ) represents the interventional graph
corresponding to setting Aj = a1 if in the original graph we have that (AVj)→ ∈ π and setting Aj = a0
if (AVj)→ ̸∈ π. Furthermore, in [54] it is proven that, given a set of nodes Y , P (Y (π, a1, a0)) is iden-
tified in G if and only if P (Y (aπ)) is identified in the respective extended graph Ge(aπ). These two
distributions are indeed identified by the same functional, as it was shown in Definition 6.1.0.1. The
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Figure 6.2: Example Extended Causal Graph Ge

respective proposition and proof can be found in the Proposition G.0.1 of the Appendix.
Moreover, following the notation of [54], the graph Ge(aπ, z) is constructed using the usual node-splitting
operation on the nodes Z; moreover, in Ge(aπ, z) the newly introduced nodes Aj are set to their fixed
values, where Aj is a fixed copy of a1 if (AVj)→ ∈ π and and of a0 if (AVj)→ ̸∈ π. According to this
notation Ge(a0) corresponds to the SWIG G(a0).

In the above section the notation used in [54] is introduced, along with new graphical tools. It was
shown how path-specific interventions on A in G can be interpreted as multiple node interventions in
GeA. It is now possible to extend the Rule 2 of po-calculus to path-specific interventional distributions.

Identification of Conditional Path-Specific Effect

The general idea of the algorithm defined in [54] will now be presented. Similarly to the IDC algorithm,
the goal of [54] is to leverage Rule 2 of po-calculus in order to transform the conditional Path-Specific
Effect into a joint interventional distribution. First, the results of [54] applied to arbitrary causal struc-
tures will be presented. Subsequently, the same criterion will be simplified for the previously analysed
specific causal structures often encountered in the fairness research.

The identification of conditional path-specific interventional distribution will now be introduced for
generic causal structures. Given an extended graph GeA and the values y ∈ XY , c ∈ XC , in order to
identify P (Y (aπ) = y|C(aπ, c) = c), similarly to conditional node-interventional distributions, Rule 2
can be used for simplifying this distribution as a joint intervention on A and C. When the causal
structure satisfies the assumption of Rule 2 (Y (aπ, c) ⊥⊥ C(aπ, c))Ge(aπ,c), then the identification proce-
dure is immediate and follows directly from the application of Rule 2. In generic graphical structures,
this condition is not always satisfied. Nevertheless, this does not necessarily mean that the Rule 2 of
po-calculus cannot be leveraged in order to simplify the identification of the interventional distribution.
Albeit in some scenarios it is not possible to apply Rule 2 to the entire conditioning set C, it could still
be useful to apply it to a subset of the conditioning set. The following Corollary can indeed be used in
order to guarantee the existence of a unique maximal subset Z of C such that Rule 2 can be applied.

Corollary 6.1.0.1 ([54]). For any Ge(a) and any conditional distribution P (Y (a) = y|C(a) = c),
there exists a unique maximal set Z(a) = {Zi(a) ∈ C(a) : P (Y (a) = y|C(a) = c) = P (Y (a, zi) =
y|{C(a, zi)\Zi(a, zi)} = c\zi)} such that Rule 2 applies for Z(a, z) in Ge(a, z) for P (Y (a, z) = y|C(a, z) =
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c).

In the above corollary, a ∈ XA, c ∈ XC , y ∈ XY , zi ∈ XZi
, z ∈ XZ . The proof of [54] can be found in

the Corollary G.0.3.1 in the Appendix. Given this result, the authors of [54] introduce an important
theorem regarding the identification of conditional path-specific interventional distributions:

Theorem 6.1.1 ([54]). Let P (Y (π, a1, a0) = y|C(π, a1, a0) = c) be a conditional path-specific distribu-
tion in the causal model for G, and let P (Y (aπ) = y|C(aπ) = c) be the corresponding distribution in the
extended causal model for GeA. Let Z be the maximal subset of C such that P (Y (aπ) = y|C(aπ) = c) =
P (Y (aπ, z) = y|C(aπ, z)\Z(aπ, z) = c\z). Then, P (Y (aπ) = y|C(aπ) = c) is identifiable in GeA if and
only if P (Y (aπ, z) = y, C(aπ, z)\Z(aπ, z) = c\z) is identifiable in GeA.

In the above, a1, a0 ∈ XA, c ∈ XC , y ∈ XY , z ∈ XZ , c\z ∈ XC\Z .

Proof. The proof can be found in the Supplement material of [54]. An overview of the proof is presented
here, a more detailed version can be found in the original paper.
If P (Y (aπ, z) = y, C(aπ, z)\Z(aπ, z) = c\z) is identified in GeA, then also P (Y (aπ) = y|C(aπ) = c) is.
This can be easily proven by using the chain rule. Indeed, it is possible to write:

P (Y (aπ) = y|C(aπ) = c) = P (Y (aπ, z) = y|C(aπ, z)\Z(aπ, z) = c\z)

=
P (Y (aπ, z) = y, C(aπ, z)\Z(aπ, z) = c\z)

P (C(aπ, z)\Z(aπ, z) = c\z)
.

It follows immediately that if P (Y (aπ, z) = y, C(aπ, z)\Z(aπ, z) = c\z) is identified in GeA, also
P (Y (aπ) = y|C(aπ) = c) is identified in Ge with the above formulation. Notice that by definition
if P (Y (aπ, z) = y, C(aπ, z)\Z(aπ, z) = c\z) is identified in GeA, then also P (C(aπ, z)\Z(aπ, z) = c\z)
is. Differently, if P (Y (aπ, z) = y, C(aπ, z)\Z(aπ, z) = c\z) is not identified, there are two possi-
ble scenarios. The interventional distribution P (C(aπ, z) = c) can be either identified or not. If
P (C(aπ, z) = c) is identified, following the above equations, P (Y (aπ, z) = y, C(aπ, z)\Z(aπ, z) =
c\z) is identified if and only if P (Y (aπ, z) = y|C(aπ, z)\Z(aπ, z) = c\z) is. Since it was assumed
that P (Y (aπ, z) = y, C(aπ, z)\Z(aπ, z) = c\z) is not identified in GeA, the interventional distribu-
tion P (Y (aπ) = y|C(aπ) = c) is not either. If P (C(aπ, z) = c) is not identified, proving that
P (Y (aπ) = y|C(aπ) = c) is not identified is more complicated. Based on the theoretical insights
that were presented in the previous chapters, the cause of unidentifiability of P (C(aπ, z) = c) can be
due to either the presence of a hedge structure, or the presence of a recanting district. In [54], it is proven
that in both of these scenario the conditional interventional distribution P (Y (aπ) = y|C(aπ) = c) is
not identified in GeA.

Summarizing, two scenarios are possible in the identification of conditional path-specific interventional
distribution P (Y (aπ) = y|C(aπ) = c). If the condition of Rule 2 of po-calculus holds for the entire set
C, then it is possible to identify the conditional interventional distribution as P (Y (aπ, c) = y). If the
condition does not hold for the entire set C, it is still possible to graphically find the unique maximal
set that satisfies it in order to simplify the identification procedure by leveraging the application of
Rule 2. It was proven in Corollary 6.1.0.1 that a unique maximal set Z ⊆ C (possibly empty) such that
P (Y (aπ) = y|C(aπ) = c) = P (Y (aπ, z) = y|C(aπ, z)\Z(aπ, z) = c\z) always exists. In order to prove
the identifiability of P (Y (aπ, z) = y|C(aπ, z)\Z(aπ, z) = c\z), it is then necessary to prove that the joint
interventional distribution P (Y (aπ, z) = y, C(aπ, z)\Z(aπ, z) = c\z) is identifiable. If identifiability
holds for this quantity, then the chain rule can be used to identify P (Y (aπ, z) = y|C(aπ, z)\Z(aπ, z) =
c\z), similarly to the proof of Theorem 6.1.1, in the following way:

P (Y (aπ) = y|C(aπ) = c) = P (Y (aπ, z) = y|C(aπ, z)\Z(aπ, z) = c\z)

=
P (Y (aπ, z) = y, C(aπ, z)\Z(aπ, z) = c\z)

P (C(aπ, z)\Z(aπ, z) = c\z)
.

This expression allows us to generalize the identification of conditional path-specific interventional dis-
tributions, as long as the identifiability conditions of the joint interventional distribution are met.

Now, the scenario in which the entire conditioning set C satisfies the condition of the Rule 2 of po-
calculus will be analysed. Referring to Formula 6.7, in this scenario the conditioning variable D is the
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empty set and the variable Z is the set of demographic covariates C, graphically represented as root
nodes (see Definition 3.1.0.7). Hence, Rule 2 can be rewritten as:

P (Y (aπ, c) = y) = P (Y (aπ) = y|C(aπ, c) = c)

if (Y (aπ, c) ⊥⊥ C(aπ, c))Ge(aπ,c).

In the previously described dataset structure, C is not a descendant of A, meaning that the path-specific
intervention with A as a treatment attribute has no impact on the random variable C. Furthermore,
following the notation of [54], the intervened variable C(c) is equivalent to the random variables itself.
Hence, we have C(aπ, c) = C, leading to the graphical condition (Y (aπ, c) ⊥⊥ C)Ge(aπ,c), which holds in
these graphical structures (refer to 6.1.2). As a matter of fact, by analysing for instance the graph in
Figure 6.1b, since C only presents emitting edges in the original graph, when using the node-splitting
operation on C, the random variable itself is not connected to Y (aπ, c) anymore. It is thus possible to
simplify Rule 2 as:

P (Y (aπ, c) = y) = P (Y (aπ) = y|C = c)

if (Y (aπ, c) ⊥⊥ C)Ge(aπ,c).

In conclusion, in order to prove the identifiability of P (Y (aπ) = y|C = c) with the above presented
graphical conditions holding, it is sufficient to prove the identifiability of P (Y (aπ, c) = y). If the
identifiability conditions are met, this can be done with the edge g-formula. For instance, for Figure
6.1a:

P (Y (aπ, c) = y) = P (Y (a1,M(a0), c) = y) =
∑

m∈XM

P (Y = y|A = a1, C = c,M = m)P (M = m|A = a0, C = c).

(6.10)

There are different causal structure in which the conditional path-specific interventional distribution is
not identifiable due to the unidentifiability of the joint interventional distribution. In general, identifi-
ability conditions can be assessed with the Recanting District Criterion (refer to Definition 4.2.1.2). In
the next paragraphs, two examples will be given. In the first one, the conditional path-specific inter-
ventional distribution is not identifiable, while in the second one it is.

In Figure 6.3, the interventional path-specific distribution P (Y (a1,M(a0)) = y) can be identified,
while this is not possible for P (Y (a1,M(a0)) = y|C = c) because P (Y (a1,M(a0)) = y, C = c) is not
identifiable in G. In the previous chapters it was shown that the identification of Path-Specific Effects
is linked to the condition of absence of recanting districts. Indeed, referring to P (Y (a1,M(a0)) =
y) in G, no recanting district exists. This can be noticed by analysing the set of nodes that are
present in Y ∗ = AnG\A(Y ). In the graph G\A, the set of ancestors of the outcome is {M,Y }. In
GY ∗ these two nodes correspond to two separate districts of the model, leading to the absence of
recanting districts in GY ∗ . Hence, P (Y (a1,M(a0)) = y) can be identified. Differently, when considering
P (Y (a1,M(a0)) = y|C = c), it is first necessary to prove that P (Y (a1,M(a0)) = y, C = c) can be
identified. Nevertheless, it will now be shown that this is not possible due to the presence of a recanting
district. In this scenario, the target set is {C, Y }, meaning that {C, Y }∗ = AnG\A({C, Y }) is the set
{C,M, Y }. Differently from before, D(G{C,Y }∗) = {C,M, Y }, as all nodes are connected by bi-directed
edges in G{C,Y }∗ . This means that {C,M, Y } is actually a recanting district, since there are two edges
(AM)→ and (AY )→ with respectively different assigned values of A (a1 and a0). This result proves
that P (Y (a1,M(a0)) = y|C = c) for any c ∈ XC , a0, a1 ∈ XA, y ∈ XY is not identifiable in the causal
graph of Figure 6.3.

Differently, in Figure 6.4 P (Y (a1,M(a0)) = y|C = c) is identified in G. There, {C, Y }∗ = AnG\A({C, Y })
is the set of nodes {C, Y,M}. The respective districts are D(G{C,Y }∗) = {{C, Y }, {M}}. For the previ-
ously explained reasons, D

(
G{C,Y }∗

)
does not contain any recanting district, since M and Y are not in

the same district.
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Figure 6.3: Example Directed Acyclic Graph where P (Y (a1,M(a0)) = y|C = c) is not identified because
P (Y (a1,M(a0)) = y, C = c) is not identified

AC M Y

Figure 6.4: Example Directed Acyclic Graph where P (Y (a1,M(a0)) = y, C = c) is identified

Conclusion

The motivation behind this section on Conditional Path-Specific Interventional distributions is that, as
previously mentioned, it might be interesting to estimate the effect that the sensitive attribute has on
a subgroup of the population, for instance people from a specific age group, country of origin, family
background. The focus of this research on causal fairness of Machine Learning is to analyse the causal
effect that the sensitive attribute has on the final decision. Nevertheless, while the Path-Specific Effect
focuses on the effect that A has on Y on average among the entire population, the conditional Path-
Specific Effect could help in potentially ensuring that possible fairness requirements on this effect are
met among different subgroups of the population.
In the above section, the identification formula for path-specific conditional interventional distributions
was presented, along with the respective conditions. Specifically, closer attention was given to the
graphical structures that are used in this research, simplifying the identification of conditional path-
specific interventional distribution with the Rule 2 of po-calculus.

In the next section, the novel method proposed in this project will be presented along with its respec-
tive motivation, analysing the comparison with the Fair Inference on Outcomes [61] and Path-Specific
Counterfactual Fairness [15] methods.

6.2. Novel Method

In this problem definition, we are given a dataset consisting of a sensitive attribute A, an unfair output
Y and the rest of observed covariates X, along with a DAG representing the causal relations among the
variables and a classification of the paths from the sensitive attribute to the outcome as fair/unfair. The
set of baseline features is part of X, and it includes the demographic attributes C, generally represented
in the graph as root nodes. The main characteristic of this set is not being part of the descendants
of A. This graphical assumption has been justified in the previous section, by motivating that condi-
tioning the Path-Specific Effect on a set of mediators would miss the scope of the method. Indeed, by
definition of natural effects, the mediators assume the values they would naturally have subsequent to
an intervention on the sensitive attribute. Conditioning on a mediator would hence be in contrast with
the definition of fairness with Path-Specific Effect.

The method presented in this work consists in estimating a fair world distribution on the observed
variables p∗(A,X, Y ) that is not only fair among the whole population with respect to the sensitive
attribute A and the set of unfair paths, but it is also fair towards specific subgroups of individuals
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represented in the dataset. This is achieved by enforcing a constraint on the conditional Path-Specific
Effect of these subgroups, instead of the overall Path-Specific Effect. The demographic attribute defin-
ing these subgroups of individuals will be denoted as the set C1 ∈ C, possibly empty. C1 could include
a set of multiple covariates, up to include the entire set of demographic covariates C1 = C. As pre-
viously mentioned, in this project the choice of the conditioning variables C1 will not be analysed in
details. Nevertheless, in the next examples, it will be shown how the choice of C1 could influence the
performance of the method in terms of accuracy and balance between individual- and population-level
fairness. It will be shown how this novel method can be useful for bridging the individual-level and
population-level fairness approaches analysed so far.

The overview of the method CPSF (Conditional Path-Specific Fairness) will now be presented. In this
section the same notation of Fair Inference on Outcomes [61] will be used. In the next paragraphs,
it will be assumed that the demographic covariates are discrete, as it will make the next steps more
intuitive. This assumption can easily be refrained for continuous variables, by either constraining the
Path-Specific Effect conditioned on disjoint intervals of C1 and or on the observed instances of C1.
Given the discrete state space XC1 of the conditioning covariates, the formulation of the constrained
optimization problem is the following:

β̂ = argmaxβLY,X,A(D;β) (6.11)

subject to ϵ− ≤ ĝ(C1=c1)(D;β) ≤ ϵ+ ∀c1 ∈ XC1
. (6.12)

In the above constrained optimization problem, ĝ(C1=c1)(D;β) is a semi-parametric estimator for the
Path-Specific Effect conditional on the value C1 = c1. When C is the only observed root node of the
DAG, it can be noticed that if C1 is the entire set of baseline features, then the estimator ĝ(C1=c1)(D;β)
will actually not depend on the data D, as it will be solely a function of the parameters β. Differently,
in other scenarios the marginal distribution of C\C1 is empirically estimated from D. Similarly to
Chapter 5, the semi-parametric plug-in estimator applied to the edge g-formula will be used. Indeed,
in Section 4.2.2 the performance of this semi-parametric estimator has been analysed, concluding that
this estimator is suitable for the tasks of this project.
The constrained optimization problem is composed by an objective function that needs to be maximized
and by multiple constraints, depending on the number of variables included in C1 and on the respective
state spaces XC1 . It should now be clear how the fair distribution p(A,X, Y ; β̂) will achieve the scope
of the method: finding a joint distribution that is as accurate as possible compared to the original one,
and such that the outcome is fair towards all the subgroups defined by C1 with respect to A, by using
the Path-Specific Effect as a fairness metric.
Instead of choosing the conditioning set C1 as the entire set of demographic attributes C, it could be
interesting to apply a variable selection or dimensionality reduction in order to improve the performance
of the method. It would thus decrease the number of constraints, leading to less computational time
needed. Since this task falls outside the scope of this project, it is left for future work.

As mentioned in the previous section, the reason for choosing the conditional Path-Specific Effect on
the different demographic subgroups is mainly related to the contrast between the assumptions needed
in individual- and population-level fairness approaches. If the goal of a method is solely ensuring indi-
vidual fairness, the reader might think that it would be more intuitive to directly make use of one of the
counterfactuals-based methods [15] [48] analysed in Chapter 5. The choice of combining the method
of Fair Inference on Outcomes [61] with conditional Path-Specific Effect is a direct consequence of the
conclusions achieved by analysing and implementing selected state-of-the-art methods ([15] [48] [61])
focusing on population- and individual-level fairness. Indeed, it has been shown that individual-level
methods necessarily involve approximation methods for inferring the distribution of the unobserved
variables, necessary for accurately estimating counterfactuals. Differently, the Path-Specific Effect can
be formulated solely in terms of observational distributions, thanks to the edge g-formula. This leads
Path-Specific Effect based methods to be more intuitive and inherently more understandable. As a mat-
ter of fact, the reader could probably agree that methods based on unit-level counterfactuals, involving
multiple worlds and multiple versions of the same individual, can be complex and counter-intuitive to
the eyes of an inexpert (but also expert) user. Furthermore, it was shown that further assumptions need
to be considered regarding independence conditions among the unobserved variables, specifically with
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respect to the sensitive attribute; this can lead to potential instability of the method (refer to Chapter 5).

This proposed novel method CPSF aims at combining the advantages of the methods Fair Inference on
Outcomes [61] and Path-Specific Counterfactual Fairness [15]. Specifically, the strength of this method
relies in focusing on fairness constraints involving a more individual-level perspective compared to FIO
[61], but avoiding the variational approach in estimating the latent space and the use of counterfactuals
in PSCF [15]. In the section below, a comparison of this novel method with FIO and PSCF will be
presented, focusing on how the bridge between individual- and population-level fairness was achieved.
The advantages and disadvantaged of the new method CPSF will be further underlined.

6.2.1. Comparison With Other Methods

As anticipated, a methodological comparison of the new method CPSF (Conditional Path-Specific Fair-
ness) with Fair Inference of Outcomes [61] and Path-Specific Counterfactual Fairness [15] is proposed.
Subsequently, in Chapter 7, the performance of these methods in terms of fairness and accuracy will be
compared on simulated and real datasets. Eventually, further experiments on the choice of the condi-
tioning set and in-depth study on the optimization process will be done.

The CPSF method is based upon the FIO method [61]. It was previously explained that the proposed
method is an extension of FIO [61], by increasing the number of constraints on distinct subgroups of the
population. This means that, overall, the two methods are identical, with the exception of the formula-
tion of the constraints. Specifically, the new method CPSF is a more general version of the original one
FIO, by adding more flexibility regarding which demographic group the fairness constraint is focused
on. As a matter of fact, if the conditioning set C1 = {∅}, then the new method and the original one
are equivalent. There are also further scenarios in which the two methods are equivalent, specifically
when the identification formula of the Path-Specific Effect is equivalent to the one of Conditional Path-
Specific Effect. An example of these scenarios is covered in Appendix H. In general, we expect the new
method CPSF to increase the level of individual fairness compared to FIO; in the next paragraphs close
focus will be put in defining a suitable metric for evaluating individual fairness.

By comparing the new method CPSF and PSCF [15] various methodological differences can be analysed.
First of all, the PSCF method does not impose any correction on the prediction of the non-disadvantaged
group. As a matter of fact, while the new CPSF method predicts the outcomes of new instances based
on the new fair joint distribution p(A,X, Y ; β̂) for people in both the originally disadvantaged and not
groups, the PSCF method corrects the prediction at test time only for individuals belonging to the ini-
tially disadvantaged group. This means that in PSCF the Ŷ will be equivalent to the observed outcome
Y for individuals belonging to the originally non-disadvantaged group. Furthermore, as it has been
previously explained, the new method CPSF does not involve any assumption or estimation regarding
the latent space, since the edge g-formula is used as a fairness metric and constraint.
Even though CPSF and PSCF are hardly comparable at a population level, it is interesting to investigate
if the newly proposed method actually converges to the same level of individual fairness for certain con-
ditioning attributes C1. Specifically, we would expect the new method to compute a more individually
fair prediction the more ‘detailed’ C1 is. Indeed, if the set of values of C1 is capable of uniquely defining
every individual, a different constraint is enforced on every subject, leading to a more individually fair
prediction.

Because of the conceptual differences of individual- and population-level fairness, comparing these two
fairness approaches can be complex. In order to compare the results of the new method with hte ones
of FIO [61] and PSCF [15], it is necessary to make use of fairness metrics capable of portraying both
individually fair predictions without estimating the latent space. It was shown in Chapter 5 that Path-
Specific Effect can be applied to the different methods in order to evaluate population-level fairness,
by making only use of the original graphical structure and observed distributions. Differently, it has
previously been discussed that, in order to accurately estimate counterfactuals, it is generally necessary
to make assumptions and to estimate the values of the unobserved variables. Since the proposed method
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does not involve the estimation of unobserved values, it is necessary to find a different metric in order
to assess individual-level fairness.
Generally, individual-level fairness consists in evaluating the difference of outcomes of the observed
individual and his/her counterfactual version. The estimation of the counterfactuals without modelling
the unobserved variables. It has already been explained that estimating the unobserved variables is
very important for identifying counterfactuals; it is assumed that in the multiple worlds involved with
counterfactuals, the same individual will have the same values of the unobserved variables and the
non-descendants of A. The values of the unobserved variables will then help uniquely defining each
individual of the population. Differently, since our metric does not involve unobserved variables, we
will assume that the non-descendants of A (baseline features) are sufficient for defining the different
individuals. This is an approximation of the real world, since two distinct individuals might have the
same set of values c ∈ XC1

. Nevertheless, in the scenario in which C1 is unique for every individual,
the approximation can be highly accurate. The metric applied to the newly proposed method is the
following. Given an individual i, the metric is the following:

CF (i, β̂) = (Ŷ CF
i − Ŷi)IAi=a1

+ (Ŷi − Ŷ CF
i )IAi=a0

, (6.13)

where Ŷi is the outcome of the model given the solutions of the constrained optimization problem β̂,
while Ŷ CF

i represents the outcome of the counterfactual version of individual i. As a reminder, in this
report we have referred as the counterfactual version of an individual the set of values that his/her
covariates would have attained if along the unfair paths of the causal graph the sensitive attribute was
set to the opposite value of the observed one. These counterfactuals are estimated making use of the
edge g-formula; specifically, given an individual i with Ai = a1, it is done by estimating the value
E
[
Ŷ (a0, a1, π)|C = ci

]
with Formula 4.5. Here, Ŷ (a0, a1, π) is the outcome Ŷ by intervening A = a0

along π and A = a1 on the other paths. Instead, as a reminder, the estimation of the counterfactuals
in the metric 6.13 for PSCF method [15] consists in estimating E

[
Ŷ (a0, a1, π)|C = ci, U = ui

]
. Equiva-

lently, our metric will also be applied to individuals with Ai = a0.
This metric can be interpreted as a quantification of individual path-specific discrimination. The lower
the absolute values are for all the individuals in the population, the more individually-fair the prediction
Ŷ is.

From the application of the method, we would expect the method PSCF to perform with a very low
metric CF (i, β̂) (in absolute value) for individuals i belonging to the potentially discriminated group,
while higher for the others. Differently, we expect the new method to outperform FIO in terms of
CF (i, β̂), by returning overall lower values. Compared to PSCF, it will instead be outperformed when
considering individuals in the disadvantaged group and vice versa for the rest of the population.
The reader might have doubts regarding the use of counterfactuals in this method with the CF metric.
In fact, in the previous chapter it was mentioned that these can be counter-intuitive, as they involve
multiple worlds models. Nevertheless, it is important to notice that the newly proposed method does
not make use of counterfactuals, but they are only leveraged to build a suitable metric. This has been
done with the only purpose of comparing the new method to FIO and PSCF from an individual-level
perspective. This will be eventually shown to be a useful approach for comparing the different methods
and for evaluating their advantages and disadvantages.



7
Experiments

The goal of this section is to analyse the performance of the novel CPSF method in comparison with
FIO and PSCF. These methods will be applied on multiple datasets with different causal structures and
data generating processes.
The experiments will be structured in the following way. First, simulated datasets will be considered.
In particular, different generating processes corresponding to the causal structures of Example 1 and
Example 2 in Section 5.2 will be used. The different simulated datasets vary by the task of the al-
gorithm (prediction/classification), the state space of the conditioning attribute C and the presence
of unobserved variables. Furthermore, the methods will be applied to real-world datasets (COMPAS
Dataset and UCI Adult Dataset).

The results will be compared in terms of accuracy and fairness. Specifically, among the fairness metrics,
both the PSE and the counterfactual fairness metric CF (i, β̂) for i ∈ {1, ..., n} are taken into considera-
tion. This last metric will be referred to as the CF metric. Both the plots of CF (i, β̂) for i ∈ {1, ..., n}
and statistical measures of its distributions will be analysed. The terms MeanCF and V arCF respec-
tively refer to the mean and variance of the CF (i, β̂) values among all the data-points.
Overall, four different metrics will be used. All of these will be evaluated on the test set. The accuracy
is measured with the MSE for prediction tasks and with percentage of correct outcomes for the clas-
sification task. Population-level path-specific fairness is measured with the PSE, while individual-level
fairness with the mean and the variance of CF (i, β̂) among all the individuals i. Furthermore, plots
representing the conditional PSE for the different demographic subgroups and the distribution of the
CF metric also lead to useful deductions on the methods.

7.1. Simulated Datasets

In this section, the performances of the different methods will be compared on simulated datasets. This
allows for a more immediate interpretation of the results, since the data-generating process is known.
Both Example 1 and Example 2 causal structures (refer to Section 5.2) will be used. The causal model
of Example 2 is most suitable for this task, as the PSE is not equivalent to the NDE. For this reason,
the results corresponding to this causal structure will be covered in more detail.
The simulated datasets are composed by 5000 data points, among which 20% is used as a test set. The
results of the metrics and the plots refer to the test set of the datasets.

76
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7.1.1. Example 1 Structure

In this section, the methods will be applied to simulated datasets consistent with the causal graph in
Figure 4.2 (Example 1). In this causal graph, the only unfair path is the direct one (AY )→.

As a first example, the linear setting will be analysed. By linear setting, it is meant the data-generating
process in which the mediators and the outcome are modelled via linear regression. In Appendix H, an
example of a linear setting in which the FIO and CPSF method are equivalent is given.

The first simulated dataset to be taken into consideration is generated from the following linear model:

P (C = c) =


1
3 if c = 0
1
3 if c = 1
2
9 if c = 2
1
9 if c = 3

logit(P (A = 1|C)) ∼− 0.5 + C;

M =0.1 + 2C −A+ 3.5AC + ϵM ;

Y =1− C + 2A−M − 3AC − 0.5AM − 3CM + ϵY ,

where ϵM , ϵY
i.i.d.∼ N (0, 1). In Table 7.1, the results of the different methods applied to the simulated

dataset are shown. By analysing the accuracy of the methods, measured with the MSE, the PSCF and
CPSF methods are the less accurate, as expected due to the stricter constraints. Furthermore, Path-
Specific Fairness is achieved by all of the methods except of course for the unconstrained one. Hence,
by solely comparing the MSE and PSE metrics, the preferred method would be the original FIO method.
Nevertheless, the scope of this project is to take into account the individual-level fairness too. The mean
and variance of the CF values can be analysed, along with the plots found in Figure 7.1. These plots
present the density of the metric CF for each method, grouped by the value of the sensitive attribute.
In the plot corresponding to the PSCF method, it can be noticed that only the results for the data
points with A = 0 are represented, since for the rest of the data-points the CF metric is null. Even
though PSCF method focuses on individual-level fairness, the variance of CF is still higher than the
CPSF method. This happens because for individuals in the discriminated group (Ai = 1) by methodol-
ogy we have that CF (i, β̂) = 0, while for the rest of individuals Ŷi = Yi, meaning that the respective
CF (i, β̂) is high in absolute value, specifically nearly the same as in the Unconstrained method.
As expected, the novel method CPSF succeeds at achieving more individually fair predictions compared
to the original method FIO. This can be inferred by analysing the distribution of the CF metric along
with the respective mean and variance.

Method MSE PSE MeanCF V arCF

Unconstrained Method 0.9 -0.6 -0.2 1.7
FIO Method 1.04 -0.05 -0.3 1.6

PSCF Method 1.4 -0.0002 -0.005 1.1
CPSF Method (new) 1.3 -0.01 0.004 0.04

Table 7.1: Results Example 1 Causal Structure - linear discrete C

The CF metric is an indicator for individual-level fairness. In contexts with a discrete conditioning
attribute C, like in this simulated dataset, it can also be interesting to analyse the values of the con-
ditional Path-Specific Effect, comparing the original FIO method with the newly introduced CPSF. In
Figure 7.2 the different values of conditional PSE are presented, grouped by the different values of the
state space of the conditioning covariate C. The reader should focus on analysing and comparing the
difference in the x-axis scale of the two plots. As expected, the conditional PSE of the FIO method
highly exceeds the threshold [−0.05, 0.05], albeit having an overall PSE of −0.054. Differently, in the
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(a) Unconstrained Method (b) FIO Method

(c) PSCF method (d) CPSF Method

Figure 7.1: Plot of the Counterfactual Fairness metric

newly introduced method the conditional PSE are nearly zero, for any value of c ∈ XC .

Comparison by Conditioning Set

In this section, the same graphical structure and simulation procedure will be considered, by vary-
ing only the conditioning variable C. The scope of this section is indeed to evaluate the variation of
individual-level fairness with different conditioning sets, varying from discrete to continuous. The main
idea behind this comparison is that we would expect the measure of individual fairness to improve by
considering a more “detailed” set of conditioning variable. As a matter of fact, the more representative
of the different data-points the conditioning attribute is, the more individually-fair the CPSF method
should be. Similarly, as the number of constraints increases, we would expect the accuracy to decrease.

In Table 7.2, the results corresponding to the previous simulation process with C ∼ N (0, 1) instead
are presented. The simulation process can be found in Appendix J.1.2. Analysing the CPSF method,
the trend and values of the fairness and accuracy metrics do not seem too far apart compared to the
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(a) Original method FIO (b) CPSF Method (new)

Figure 7.2: Plot of the conditional Path-Specific Effect for different values of the conditioning attribute C

ones presented in Table 7.1 referring to the simulation procedure with discrete C. Nevertheless, the
comparison with the original FIO method is interesting. Indeed, compared to Table 7.1, the variance of
the CF metric for CPSF is higher. Nevertheless, the variance gap between the newly proposed method
and the original FIO is greater compared to the discrete C setting. These results reflect the intuitive
expectations of the method, also supported by a drop in accuracy of the CPSF method. Overall, the
CPSF method still outperforms the FIO method in terms of individual fairness, further improving the
performance gap compared to the discrete C simulation setting.

Method MSE PSE MeanCF V arCF

Unconstrained Method 1.0 -2.0 -0.9 5.1
FIO Method 1.6 -0.04 -0.8 2.8

PSCF Method 1.9 -0.0003 2.7 1.3
CPSF Method (new) 1.9 -0.05 -0.6 0.7

Table 7.2: Results Example 1 Causal Structure - linear continuous C

Classification Tasks

In this Section, the classification task will be analysed. The same graphical structure and simulation
procedure of the previous examples is kept, except for the outcome and mediator that are modelled via
logistic regression, leading to a classification setting. The modified setting is:

logit(P (M = 1|A,C)) ∼0.05− 1.5C + 2A− 0.05AC;

logit(P (Y = 1|M,A,C)) ∼− 1 + 5C − 4A+ 2M − 7AC − 3AM + 3CM.

The entire simulation process can be found in Appendix J.1.4. In classification tasks, the accuracy is
not measured anymore by MSE, but by the percentage of correct classifications in the test set.

In Tables 7.3 and the results of the simulation procedure with binary conditioning attribute C can be
found. Overall, the previously observed trends in the fairness metrics are met in this example too.
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Indeed, the CPSF method outperforms the FIO one in terms of individual-level fairness.
It is also interesting to notice that the CPSF method achieves higher accuracy compared to the FIO one.
Since logistic regressions are less interpretable compared to linear regression, given the multiplicative
and not additive weights, the decrease of accuracy due to additional constraints on the weights is
probably not as straightforward.

Method Accuracy PSE MeanCF V arCF

Unconstrained Method 94% -0.8 0.0003 0.9
FIO Method 52% -0.05 -0.2 0.5

CPSF Method (new) 62% -0.05 -0.2 0.3

Table 7.3: Results Example 1 Causal Structure - Classification binary C

Comparison by Unobserved Variables

In this section, the performance of the method in causal graphs presenting unobserved variables will
be evaluated. Specifically, the dataset is simulated by considering an additional unobserved variable
parent of both the variable A and Y (simulation procedure in Appendix J.1.5). By the recanting dis-
trict criterion, the PSE of this graphical structure is identifiable. We are interested in analysing the
performance of CPSF in semi-Markovian models. If the PSE is identifiable, we would expect CPSF to
still outperform FIO in terms of individual fairness.

In Table 7.4, the same trends observed in the previous examples are presented. Indeed, the novel method
CPSF presents a relevantly lower variance of the CF metric compared to the FIO method. Furthermore,
CPSF predictions are less accurate compared to the Unconstrained one, while almost as equally accurate
as FIO. In the Chapter 5.2 it was already explained that the performance of the PSCF method is not
relevantly affected by the additional unobserved confounder, both in terms of accuracy and fairness
because of the absence of any mediator on unfair paths in this causal model is the main reason.
In the next section regarding Example 2 causal structure, further experiments on causal graphs with
unobserved variables will be considered. In particular, interesting methods’ performances are observed.

Method MSE PSE MeanCF V arCF

Unconstrained Method 38.1 2.4 0.26 10.3
FIO Method 64.1 0.08 -0.09 10.7

PSCF Method 36.5 0.00001 -3.7 23.3
CPSF Method (new) 65.6 0.02 -0.5 5.0

Table 7.4: Results Example 1 Causal Structure - prediction binary C with unobserved variable

7.1.2. Example 2 Structure

Now, an examples of a linear regression model following the causal graph in Figure 5.4 analysed in
Example 2 of Chapter 5 will be analysed. As mentioned in Appendix H, in the presence of mixed terms
in the linear regression model, the Path-Specific Effect differs from the conditional Path-Specific Effect.



7.1. Simulated Datasets 81

A simulated dataset from the following regression model will be considered:

C ∼N (0, 1)

logit(P (A = 1|C)) ∼− 0.5− 0.5C;

logit(P (M = 1|A,C)) ∼− 0.5− C + 4A− 3AC;

logit(P (L = 1|M,A,C)) ∼− 0.5− 0.4C − 2A+ 3M − 0.6AC + 2AM + 0.5ACM ;

Y =1 + C + 5A− 4M + 3L− 2AC +AM +AL− 1.5AML+ ϵY ,

where ϵY ∼ N (0, 1). Similarly to the previous example, the different methods are implemented on the
simulated dataset. In this model, all of the variables are discrete, except for the conditioning attribute
C and the outcome Y , which are continuous.

In Table 7.6, the results are presented. Starting from the accuracy, the same trend of the previous causal
structure is encountered, characterized by a lowest accuracy for PSCF due to the individual focus; the
CPSF method is second-lowest, presenting a relevantly higher MSE compared to the FIO method and
to, of course, the unconstrained one. Due to the continuity of the conditioning variable C, a high
number of constraints is set in CPSF, theoretically equal to n. Albeit in the optimization problem CPSF
aims at maximising the likelihood of the data, the large number of constraints does not allow for high
accuracy of predictions. Moreover, as expected, the population-level path-specific fairness (measured
by the PSE) is achieved by all the methods, except of course for the unconstrained one. Differently, a
steep improvement of individual-level fairness of the CPSF can be observed compared to FIO, especially
supported by a relevantly lower variance of the CF metric. This is also shown in the plots of Figure
7.3, where the difference between the FIO and CPSF performances is emphasized. Indeed, by analysing
the domain of the CF difference metric, the CPSF method outperforms the others in terms of individual
fairness. As it was previously explained before, the subplot in Figure 7.3d corresponding to PSCF method
should be analysed by taking into account that for the potentially discriminated group (A = 1), the
method is completely individually fair, with a null CF metric.

Method MSE PSE MeanCF V arCF

Unconstrained Method 1.0 -4.9 2.5 63
FIO Method 6.6 -0.07 4.3 43.6

PSCF Method 16.15 0.002 -3.5 10.1
CPSF Method (new) 14.4 -0.04 0.3 8.6

Table 7.5: Results Example 2 Causal Structure - prediction continuous C

Method MSE PSE MeanCF V arCF

Unconstrained Method 1.0 -4.9 2.5 63
FIO Method 6.6 -0.07 4.3 43.6

PSCF Method 16.15 0.002 -3.5 10.1
CPSF Method (new) 14.4 -0.04 0.3 8.6

Table 7.6: Results Example 2 Causal Structure - prediction continuous C

Comparison by conditioning set

In this paragraph, the same simulation procedure of the previous example was considered, but with a
binary conditioning set C ∼ Bin(0.7). By varying the distribution of the conditioning set, we would
expect the performance of the CPSF method to improve the more ‘detailed’ the conditioning attribute
is. By considering a binary conditioning set, we hence expect the method to have a less individually
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(a) Unconstrained Method (b) FIO Method

(c) PSCF method
(d) CPSF Method

Figure 7.3: Plot of the Counterfactual Fairness metric

fair performance compared to the previous example in Table 7.6. The complete simulation process can
be found in Appendix J.2.3.

The results of the application of these methods to this simulated dataset can be found in Table 7.7. It is
interesting to observe that the newly proposed method does not highly outperform the original FIO one
in terms of individual fairness, as the variance of the CF metric is higher. Nevertheless, by comparing
the values of the conditional PSE for the binary values of C in Figure 7.4, it can be noticed that the
CPSF method satisfies path-specific fairness among all the population groups determined by the values
of C.

To support the intuition that the performance of CPSF improves the larger the dimension of the state
space XC is, another simulation procedure is considered. The setting is the same as the one in the
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Method MSE PSE MeanCF V arCF

Unconstrained Method 0.9 -3.4 1.0 25.6
FIO Method 1.7 -0.07 -2.6 30

PSCF Method 4.7 -0.001 -2.3 3.9
CPSF Method (new) 3.6 -0.05 -2.3 36

Table 7.7: Results Example 2 Causal Structure - prediction binary C

(a) Original method FIO (b) CPSF Method (new)

Figure 7.4: Plot of the conditional Path-Specific Effect for the binary values of the conditioning attribute C

previous two examples, but the variable C has the following distribution:

P (C = c) =


1
3 if c = 0
1
3 if c = 1
2
9 if c = 2
1
9 if c = 3.

Based on the theoretical considerations of the method, we would expect CPSF to perform better than
in the previous example with the binary conditioning variable C, but not as good as the one with
continuous variable C, the results of which are presented in Tables 7.7 and 7.6 respectively. The
simulation process can be found in Appendix J.2.2. In Table 7.8 the results of the application of the
methods to the new simulation procedure are presented. Differently from the previous example in Table
7.7, the method CPSF outperforms FIO in terms of individual fairness. Nevertheless, it can be noticed
that compared to Table 7.6 the gap between the CF metrics of CPSF and FIO is not as wide. Hence,
by comparing the CPSF method with FIO, the novel method is best performing when applied to the
simulated dataset with continuous C and generally an increase of performance is observed by increasing
the value |XC |.

Method MSE PSE MeanCF V arCF

Unconstrained Method 1.0 -3.4 -0.6 35.7
FIO Method 2.0 -0.05 -1.2 25.9

PSCF Method 4.5 -0.0001 -2.6 3.8
CPSF Method (new) 3.7 -0.01 0.6 6.9

Table 7.8: Results Example 2 Causal Structure - prediction discrete C
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Classification tasks

Similarly to the example of the previous causal structure, in this section the performance of FIO and
CPSF will be analysed for classification tasks. The simulated dataset has the same simulation procedure
as the previous examples, but the outcome is generated from a logistic regression function. In the
simulation procedure, we have

logit(P (Y = 1|L,M,A,C)) ∼ −1− C − 5A+ 4M − 3L+ 2AC −AM −AL+ 1.5AML.

The entire simulation procedures can be found in Appendix J.2.5 and Appendix J.2.4. In Tables 7.9 and
7.10 the results corresponding to the simulated dataset with continuous and binary conditioning variable
C respectively are shown. Overall, as in the classification task of the previous graphical structure, the
performance of the CPSF method has a less steep improvement in terms of fairness compared to the FIO
method, differently from the results of the prediction tasks. In Table 7.9, the expected trends of results
in accuracy and fairness are observed. Indeed, even though the accuracy of the CPSF drops compared
to the other two methods, the CF metric has mean and variance closer to zero, probably consequence
of a better performance as individually-fair classifications.
It is also interesting to compare the results of Tables 7.9 and 7.10 among each others. As it was
observed in the previous example, in a setting with a binary conditioning set, the CPSF method does
not outperform the original FIO one. Nevertheless, the drop of accuracy observed in Table 7.9 is higher
compared to the one in Table 7.10. As previously mentioned, this behaviour is due to the fact that a
binary C is poorly representative of the individuals in the population.

Method MSE PSE MeanCF V arCF

Unconstrained Method 89% 0.3 -0.2 0.3
FIO Method 78% 0.05 -0.03 0.3

CPSF Method (new) 65% 0.03 0.008 0.01

Table 7.9: Results Example 2 Causal Structure - classification continuous C

Method MSE PSE MeanCF V arCF

Unconstrained Method 93% 0.1 0.05 0.02
FIO Method 91% 0.05 0.03 0.01

CPSF Method (new) 88% 0.05 0.05 0.01

Table 7.10: Results Example 2 Causal Structure - classification binary C

Comparison by Unobserved Variables

In this section the comparison with datasets simulated from semi-Markovian models are presented. In
the first simulated dataset, a causal graph with an unobserved parent of both M and Y is considered.
In the second dataset, an additional unobserved variable that is parent of both A and L is considered.
The simulation procedure can be found in the Appendix J.2.6.
As a reminder, the PSCFβ=0 Method considered in the tables below has the hyper-parameter β of
the Maximum Mean Discrepancy set to 0. Differently, this values is equal to 100 for PSCFβ=100. For
this reason, we expect the PSCF method not to fully correct unfairness in the application to the second
simulated dataset. Indeed, PSCF with β = 0 assumes that the unobserved parents of the mediators
are independent from the sensitive attribute. Nevertheless, in the second simulated dataset L shares
unobserved parent with A, leading this assumption to fail. In the previous Chapter 5.2, it was shown
that selecting a higher value of β, like β = 100 improves the performance of PSCF in terms of PSE.
In both of the two considered graphical structures the PSE and conditional PSE are identifiable, accord-
ing to the recanting district criterion.
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In Tables 7.11 and 7.12 the results of these applications are presented, respectively for the first and sec-
ond simulated datasets. In both of the simulated datasets, the method CPSF presents a lower variance
of CF compared to FIO. Furthermore, as expected, it can be noticed that the PSCF is outperformed in
terms of population-level fairness (PSE) by both FIO and CPSF in Table 7.12. Compared to the previ-
ous simulated datasets, the PSE achieved by the predictions of PSCF method was generally relevantly
lower compared to the other methods. This results is indeed probably consequence of the additionally
unobserved confounding between L and A.

Method MSE PSE MeanCF V arCF

Unconstrained Method 4.2 -1.2 0.3 2.0
FIO Method 4.5 -0.05 1.1 2.3

PSCFβ=0 Method 4.8 -0.02 -0.9 0.4
PSCFβ=100 Method 4.7 -0.02 -0.9 0.4
CPSF Method (new) 4.9 0.02 0.9 0.3

Table 7.11: Results Example 2 Causal Structure - prediction continuous C with unobserved variable

Method MSE PSE MeanCF V arCF

Unconstrained Method 4.4 -1.3 0.2 1.8
FIO Method 4.7 -0.06 0.4 2.8

PSCFβ=0 Method 5.4 0.09 -0.6 0.4
PSCFβ=100 Method 5.4 0.008 -0.6 0.4
CPSF Method (new) 5.3 -0.05 0.9 2.0

Table 7.12: Results Example 2 Causal Structure - prediction continuous C with unobserved variables

7.2. Real-World Datasets

In this section, the newly proposed method will be applied to the real datasets COMPAS and UCI Adult.
This will give us interesting results in terms of robustness of the method in model misspecification
scenarios. The pre-processing procedure of the real-world datasets can be found in Appendix I.
Overall, the results corresponding to the COMPAS dataset are coherent with the expectation and with
the previous results. Differently, no conclusions can be derived from the results of the pre-processed UCI
Adult dataset because all of the methods (even the unconstrained one) present bounded conditional
PSE in the different demographic groups.

7.2.1. COMPAS Dataset

The COMPAS Dataset has been introduced in the previous Section 2.2 and in the Appendix I. In this
section, the CPSF, FIO and PSCF methods will be applied to the pre-processed real dataset. The scope
of this domain-specific example is to predict whether an inmate will reoffend in the future, by making a
recidivism classification. The outcome Y represents the recidivism decision, while the mediator M the
number of prior convictions. The sensitive attribute A stands for the race of the defendants and is a
binary variable, respectively for Caucasian an non-Caucasian subjects. In this example, the only unfair
path is the direct path from A to Y , meaning that the PSE coincides with the NDE.
Differently from the previously presented examples, in this dataset the demographic attribute is a set
of two distinct variables, representing the age (discrete) and gender (binary) of the defendant. In par-
ticular, the age of the defendants is divided into four main age groups.
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In Table 7.13, the results of the different methods are presented. Three different versions of the CPSF
method are applied, differentiated by the chosen conditioning attribute. In the first one the condition-
ing covariate only includes the gender, while in the second version only the age. At last, the CPSF is
applied with both the age and gender variables as conditioning sets. The results are coherent with the
previous performance on simulated datasets. Indeed, the constraint on PSE is achieved by both FIO
and CPSF. Furthermore, similar to the previous classification tasks, the CPSF actually presents a higher
accuracy compared to FIO. Analysing individual fairness instead, the CPSF (age and gender) relevantly
outperforms the FIO method. Instead, the other two CPSF versions are slightly better at detecting
individual fairness than FIO but not as well performing as CPSF (age and gender). By comparing the
three proposed versions of CPSF, it can be noticed that the accuracy decreases in CPSF (age and gender),
coherently with the additional number of constraints. This is indeed also supported by an increase in
individual-level fairness performance. In Figure 7.5, the conditional PSE by age group is represented.
The only method in which the conditional PSE falls outside the threshold area is the CPSF (age) in
Figure 7.5b, as expected.

Overall, it is interesting to see that the trends encountered in the simulation setting are also observed
in real-world datasets, corresponding to possible model misspecification scenarios.

Method MSE PSE MeanCF V arCF

Unconstrained Method 69% -0.7 -0.01 0.01
FIO Method 58% -0.06 -0.01 0.04

CPSF Method (gender) 65% -0.06 -0.01 0.004
CPSF Method (age) 65% 0.01 0.01 0.003

CPSF Method (age and gender) 63% -0.004 0.003 0.001

Table 7.13: COMPAS Real-World Dataset Results

7.2.2. UCI Adult Dataset

The results of the different methods applied to the UCI Adult pre-processed dataset can be found
in Table 7.14. The results are not quite relevant, as the unconstrained method already achieved the
requirements in terms of individual-level and population-level fairness, with a low conditional PSE among
all the demographic variables. For this reason, the application of the methods to these datasets will not
be analysed in detail. As previously mentioned, these peculiar results are probably due to the specific
pre-processing of the data that has been done.

Method MSE PSE MeanCF V arCF

Unconstrained Method 82% 0.002 -0.001 0.006
FIO Method 81% 0.004 -0.01 0.01

CPSF Method (new) 81% 0.003 0.001 0.01

Table 7.14: UCI Adult Real-World Dataset Results
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(a) CPSF Method conditioning on gender (b) CPSF Method conditioning on age

(c) CPSF Method conditioning on age and gender

Figure 7.5: Plot of the conditional Path-Specific Effect for the age groups



8
Discussion and Conclusion

Overall, analysing the results of the experiments in the chapter above, the CPSF method is a competitive
alternative to FIO and PSCF methods. This method has indeed the goal of bridging the population-level
approach of FIO with the individual-level one of PSCF. The performance of CPSF on simulated and
real-world datasets shows high flexibility and interpretability. In fact, by comparing the performance of
CPSF with the ones of FIO and PSCF, different conclusions can be made. Starting from the comparison
with the former, the CPSF method outperforms FIO in terms of individual-level fairness when the con-
ditioning set is sufficiently representative of the data-points. It was shown that by choosing a binary
conditioning set XC = {0, 1} the performance of CPSF is very similar to the one of FIO; by increasing
the state space, specifically from |XC | ≥ 4 a steep improvement of individual-level fairness is observed,
coherently with the more representative the conditioning set. Furthermore, due to the higher number of
constraints, a drop in accuracy of the CPSF method is observed, especially in prediction tasks. Similarly,
the decrease in accuracy is relevant in scenarios with a high number of constraints (high |XC |).
It has previously been discussed that the CPSF method is methodologically different to PSCF, but the two
methods can still be compared in terms of accuracy, Path-Specific Effect and individual-level fairness.
Overall, PSCF outperforms CPSF in individual-level fairness for the potentially discriminated group, as
the respective CF metric is null for all the corresponding data-points. For the rest of the data-points,
the CF metric of CPSF is generally lower in absolute value. The accuracy and interpretability of CPSF
emphasize its potential as an alternative of the original PSCF method, showing promising improvements.
Additional experiments on semi-Markovian models and real-datasets confirm the high flexibility and
stability of the CPSF method, showing similar trends as the previously mentioned ones in comparison
to FIO and PSCF methods.

The scope of this project was to analyse the field of fairness of Machine Learning and to possibly improve
the state-of-the-art methods. In this thesis, an overview on fairness of Machine Learning was given; in
particular, the motivation behind the choice of using a causal approach was explored. The state-of-the-
art causality-based fairness metrics and methods were compared, both methodologically and experimen-
tally. Their application on simulated datasets emphasised their advantages and drawbacks. Because
of their high flexibility and their scalability to arbitrary causal structures, path-specific causality-based
metrics were chosen as the most suitable for portraying the fairness of a model. Furthermore, by com-
paring individual- and population-level fairness methods, a significant gap was encountered, given by
the lack of individual focus in population-level fairness metrics and by the low interpretability and
complexity of individual-level fairness metrics. Because of these differences, a newly proposed method
CPSF was defined with the scope of bridging the two approaches, leveraging the strengths of both.
Overall, the performance the new method on simulated and real-datasets confirms its competitiveness
both in terms of fairness and accuracy. The method CPSF presents two main characteristics. First,
the outcomes can be considered to be more individually fair compared to state-of-the-art population-
level causality-based methods. Further, the strong assumptions on the latent space that characterize
individual-level methods are avoided, allowing for a more interpretable approach.

In conclusion, this thesis proposed a method CPSF with a high potential and flexibility that should
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be taken into account for future developments on the topic of Fairness of Machine Learning. Further-
more, an useful overview on the methodological and conceptual differences between individual-level
and population-level fairness approaches was given, which had not been done in the literature yet with
this perspective. Hopefully, this work will further lead to constructive debates regarding these two
approaches in fairness applications.

8.0.1. Limitations and Future Work

In the previous sections, different strengths of the CPSF method has been analysed. In this section, its
limitations will be presented, along with possible future works. First of all, it was previously mentioned
that one of the main strengths of this method is the absence of assumptions on the latent space distri-
bution. Nevertheless, there are certain conditions that need to be met with respect to the identifiability
of the conditional PSE. These were presented with the edge g-formula in Section 4.2.1 and in Section
6.1.3. Hence, when applying this method to a new causal structure, it is critically important to assess
the validity of these conditions on the causal graph. If these conditions are not met, the CPSF method
is then not applicable. The problem of unidentifiability has been widely discussed in the causality
literature, further research on the identification of PSE could be very useful in the fairness research.
It is important to point out that the original FIO method was also affected by similar identifiability
limitations. Furthermore, in the application of CPSF it was noticed that increasing the constraints in
the optimization problem often leads to an longer computational time. Future works should focus on
the choice of the most suitable optimization algorithms used in the constrained optimization problem.
Moreover, in the literature different semi-parametric estimators have been proposed for the edge g-
formula [84]. This work focused on the plug-in estimator, but further options should be considered in
order to increase the level of robustness of the estimator. Additionally, this work on conditional PSE
did not focus on the criterion for selecting the conditioning set, part of the baseline features. It has
previously been discussed in Section 6 that it might be interesting to identify a strategy for choosing the
suitable conditioning subset when the set of baseline features C includes a high number of covariates.
Lastly, it would be interesting to expand this method not only to prediction and classification tasks,
but also to decision scenarios with missing labels, as explained in the Chapter 2.
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A
Proof G-Formula

The proof of the Truncated Factorization formula proposed in this project will follow the approach
used in [71]. An additional proof based on Single World Intervention Graphs (SWIGs) has been recently
proposed in [74].
As mentioned in Section 3.2.2, interventions can also be interpreted graphically in a causal model.
Indeed, intervening on a set of variables Vk corresponds to deleting the edges entering the variables
in Vk, while the omitted edges are fixed to the arbitrary interventional values. In the next steps, the
original causal graph will be referred to as G, meanwhile the one corresponding to the intervention
Vk = vintk as G

vint
k

. In this proof, the do notation will be different from the rest of the project; in order
to simplify the possible formulation redundancies in the proof, the do() notation of Pearl will be used.
Specifically, P (V1 = v1, ..., Vk = vk, ..., Vd = vd|do(vintk )) will correspond to the previously introduced
P (V1(v

int
k ) = v1, ..., Vk(v

int
k ) = vk, ..., Vd(v

int
k ) = vd).

Theorem A.0.1. Truncated Factorization Formula For any Markovian model, the distribution
generated by an intervention Vk = vk on a set V of endogenous variables, such that Vk ∈ V , is given by
the truncated factorization:

P (V (vk) = v) =

{∏
Vi∈V \Vk

P (Vi = vi|Pai = pai) if vk consistent with v,
0 otherwise.

(A.1)

Here P (Vi = vi|Pai = paVi
) are the pre-intervention conditional probabilities.

Proof. In order to begin the proof of the Truncated Factorization formula, the property of Modularity
can be useful. This was formally introduced in Property 3.2.1. This property states that when interven-
ing on a variable or a set of variables Vk, the mechanisms corresponding to the other variables remain
invariant. In mathematical notation, given an intervention on a set of variables Vk that is disjoint from
Vj , this property can be formulated as:

PG(Vj = vj |Paj = paj) = P
G
vint
k (Vj = vj |Paj = paj), (A.2)

where G
vint
k

is causal graph G subsequent to the intervention on Vk as vintk . Using the above property,
the joint distribution of the set of observed variables V1, ..., Vd after the intervention on Vk as vintk ,
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assuming that the set V is discrete, can be written as:

P (V1 = v1, ..., Vk = vk, ..., Vd = vd|do(vintk )) = P
G
vint
k (V1 = v1, ..., Vk = vk, ..., Vd = vd)

=
∏

j∈{1,...,d}

P
G
vint
k (Vj = vj |Paj = paj)

=
∏

j∈{1,...,k−1,k+1,...,d}

P
G
vint
k (Vj = vj |Paj = paj)⊮(vk=vint

k )

=
∏

j∈{1,...,k−1,k+1,...,d}

P (Vj = vj |Paj = paj)⊮(vk=vint
k ).

In the above equalities, different properties have been used. The first equality follows the graphical
definition of intervention, indeed analysing an intervention on the variable Vk = vintk is equivalent to
analysing the causal graph G

vint
k

. The second equality follows from Equation 3.3, as G
vint
k

is also a
Markovian model by definition. The third equality is a consequence of the definition of G

vint
k

, as the
probability distribution of Vk consistent with this graph is non-null only if Vk = vintk . Lastly, the

Modularity property of Equation A.2 guarantees the third equality; indeed, P
G
vint
k (Vj = vj |Paj = paj)

is equivalent to P (Vj = vj |Paj = paj), as it represents the conditioned distribution corresponding to
the causal graph G

vint
k

.



B
Identification Formula - ID Algorithm

Once the districts D(G) of the graphical structure have been detected, it is possible to simplify the
identification of interventional distributions leveraging the structure of the unobserved variables. Based
on this simplification, interventional distributions can be factorized into the multiple interventional
distributions on the single districts. This is presented in Lemma 4 of [83], which can be found here:

Lemma B.0.1. Let M be a causal model with graph G with set of observed nodes V . Let y, a be value
assignments respectively belonging to XY and XA. Let D(G\A) = {D1, ..., Dk} with 0 ≤ k ≤ n. Then,

P (Y (a) = y) =
∑

V \(Y ∪A)

∏
i∈{1,..,k}

P (Di(V \Di = v\di) = di).

Here, the values of v and di are consistent with the intervention A = a.

The proof will follow the one in [83]:

Proof. Assume first that A = {∅} and that PaDi
is the set of parents of the district Di excluding Di

itself. Then, we have:∏
i

P (Di(V \Di = v\di) = di) =
∏
i

P (Di(PaDi
= paDi

) = di)

=
∏
i

∏
Vj∈Di

P (Vj(PaDi
= paDi

) = vj |pre≺G (Vj)\PaDi
)

=
∏
i

∏
Vj∈Di

P (Vj = vj |pre≺G (Vj))

=
∏
i

P (Vi = vi|pre≺G (Vi))

= P (V = v)

By marginalization, P (Y = y) =
∑

V \Y
∏

i P (Di(V \Di) = di). In the above equalities, the first one
follows from Rule 3 of do-calculus (see Formula 3.20), since the elements of Di are independent from
the variables V \{PaDi

∪ Di} when intervening on PaDi
. The second equality follows from the chain

rule of probability, referring to the topological ordering of observable nodes in G (Definition 3.1.0.6).
Regarding the third equality, for every term corresponding to the variable Vj in Di, the nodes pre≺G (Vj)
can either intersect or not with the nodes PaDi

. In either of these scenarios, the equality is satisfied by
using either Rule 2 or Rule 3 of do-calculus (Formulas 3.19, 3.20). The last two equalities follow from
grouping up the terms and the chain rule.
The same factorization can be applied to the quantity P (V (a) = v), by considering the causal graph
Gā, corresponding to the intervention do(A = a) on the entire set of nodes V .
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This iterative composition of the effect into districts is what characterizes the ID algorithm. The al-
gorithm itself will not bw explained in detail, as it falls outside the scope of the project. Nevertheless,
Lemma B.0.1 will be helpful for understanding the identification of Path-Specific Interventions 4.2.0.1.
The reader can explore further into the ID Algorithm by referring to the sources [96] and [83].



C
Objective Function Formulation

The objective functions of the optimization problems in (5.2) and (5.4) are equivalent. Indeed,

DKL

[
P (X;β∗)||P (X;β)

]
= EX∼P (X;β∗)

[
log

P (X;β∗)

P (X;β)

]
= EX∼P (X;β∗)

[
logP (X;β∗)− logP (X;β)

]
= EX∼P (X;β∗)

[
logP (X;β∗)

]
− EX∼P (X;β∗)

[
logP (X;β)

]
Hence, we have:

β̂ = argminβDKL

[
P (X;β∗)|P (X;β)

]
= argminβ

{
EX∼P (X;β∗)

[
logP (X;β∗)

]
− EX∼P (X;β∗)

[
logP (X;β)

]}
= argminβ

{
− EX∼P (X;β∗)

[
logP (X;β)

]}
= argminβ

{
− 1

N

N∑
i

logP (Xi;β)

}
= argminβ

{
c ·NLL

}
= argmaxβL(D;β)

Where c is a constant and NLL the negative log-likelihood. All the previous equalities can be proved
using probability rules. Among these, in the fourth equality, N of Xi

i.i.d.∼ P (X;β∗) were sampled and
the Law of Large Number for N that goes to infinity was used.
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D
Fair Inference on Outcomes - Detailed

Overview

In this Appendix, further details regarding the method Fair Inference on Outcomes method introduced
in [61] and further developed in [62] will be given. Different aspects of the method will be discussed,
such as the prediction procedure on the test set, the choice of the optimization algorithm, the estimator
of the edge g-formula and the algorithm training procedure.

D.1. Prediction at Test Level

The prediction step of the FIO method has been widely discussed in different works, emphasizing its
importance [61], [62],[15]. An original idea of the prediction procedure for new instances at test time
was introduced in [61]; given the limitations of this approach, this method was further developed by
the same authors in [62]. In the implementation of this project, the version of [62] was used.

In section 5.1.1, an overview of FIO method was given. In particular, it has been motivated the choice of
transferring the inference problem from the observed data distribution P (Y,X,A) to the fair distribution
P ∗(Y,X,A). Based on this introduction, we would expect the outcome y corresponding to new instances
{a, x} to be predicted as y = E∗(Y |X = x,A = a), where E∗ is the expected value induced by the fair
conditional probability distribution P ∗(Y = y|X = x,A = a). Nevertheless, further aspects of the
optimization problem need to be taken into account.
In the formulation of the optimization problem, a set of variables W ∈ V can be defined such that
P ∗(W = w|Pa(W )) = P (W = w|Pa(W )), for any value w ∈ XW . These are thus variables that are
shared between the observed and the fair distributions. These distributions depend on the solution of
the constrained optimization problem; for instance, if the coefficients corresponding to the posterior
distribution of W are not part of the input parameters of the constrained optimization problem β, then
it will hold that P ∗(W = w|Pa(W )) = P (W = w|Pa(W )). Generally, by using the plug-in estimator
for edge g-formula, both the baseline features (root nodes) and the sensitive attribute are not used in
the optimization algorithm, meaning that in the example given by Figure 4.2 W = {A,C}.
When predicting a new outcome using the fair distribution P ∗(Y = y|X = x,A = a) on new instances
{a, x}, these should be drawn from the fair distribution itself. Nevertheless, the new instances are
actually drawn from the observed data distribution P (X,A), which does not ensure that unfairness
is removed. Hence, it is important to find a respective fair version of the new instance {a, x}. The
values of {a, x} over the set of variables W can be seen as allowed inputs, since the observed and fair
distribution on these variables are equivalent, leading the set W to be potentially drawn from P ∗ itself.
In order to solve this problem, in [61], the new instances are averaged over the possible values of
V \ {W ∪ Y }, weighted by their fair probability P ∗. In fact, since it is not possible to estimate the

96



D.2. Algorithm Improvements and Choice of Estimator 97

values of the variables V \ {W ∪ Y } that the new ‘fair instance’ would obtain, they can be estimated
by how likely they are to be drawn from P ∗. Thus, in [61] the outcome Y is predicted by using
E∗[Y |W = w]. In the example of Figure 4.2 by using the plug-in estimator, given a new instance
{ai,mi, ci} with wi = [ai, ci], we have that the newly predicted outcome Ŷi is the following:

Ŷi = E∗[Y |W = wi] = E∗[Y |A = ai, C = ci] =
∑

m∈XM

E∗[Y |A = ai, C = ci,M = m]P ∗(M = m|A = ai, C = ci).

Analysing the approach of predicting new instances by averaging over the mediators values, it can be
noticed that a high lack of accuracy would be involved, as not all the information regrading the new
instances is considered. For instance, with this averaging operation, the outcomes of any two data points
with the same values of W are the same, independently of the other variables. In [62], the same authors
find an alternative training procedure in order to avoid the complication of predicting the outcomes of
new instances.
In the original FIO method, the constrained optimization problem is applied only to the training set.
Thus, at test time the averaging operation is used to apply the new ‘fair’ distribution to new instances
of the test time. Nevertheless, in [62] it is shown that training the model in a batch setting could
relevantly improve the predictions’ accuracy. It is hence assumed that the missing labels corresponding
to the test set are ‘missing at random’ labels. In order to take this into account, a new variable R is
introduced, where R = 0 denotes the missingness of the label Yi, R = 1 the opposite. All the historical
data points (training data) will have the value of R set to 1, meanwhile the rest of the data points (test
data) to 0. Based on this, the plug-in estimator will only be estimated on the training data points,
while the test data-points will be used for the cost function of the constrained optimization problem.
Indeed, given the number of training data points n1 and number of test data points n2, the likelihood
function for the dataset D composed by the data points {xi, ai, yi, ri} with i ∈ {1, ..., n1 + n2} will be:

n=n1+n2∏
i=1

P (X = xi, A = ai)P (Y = yi|X = xi, A = ai)
ri ,

where ri = 0 if the data point is part of the test data and ri = 1 otherwise.
In conclusion, by modifying the training procedure it is possible to predict the outcomes of new instances
without the averaging operation.

D.2. Algorithm Improvements and Choice of Estimator

In the new work [62], further improvements on the methodology and the choice of the estimator were
made. These involve a reparametrization of the likelihood function and the PSE, the choice of the inputs
of the optimization algorithm and the choice of the semi-parametric estimator for the edge g-formula.

Because of the computational challenges of the constrained optimization problem, a reparametrization
of the problem is made in order to express the PSE as causal parameters and the observed data likeli-
hood in terms of these parameters. In this way, the computational challenges are improved because the
constraints of the optimization problem will be box constraints, leading the resolution of the problem
to be more efficient.

Further modification have been proposed in [62] for improving the performance of the method. In the
original FIO method, only part of the likelihood is constrained. As a matter of fact, given a set of baseline
features C, the respective marginal density is not constrained, but estimated by using 1

n mass over all the
observed points belonging to XC . The improvement of [62] consists in using a hybrid/semi-parametric
empirical likelihood method in order to estimate the marginal distribution of C non-parametrically.
In the following theorem it is shown that constraining a larger part of the joint distribution will poten-
tially lead to a KL-closer fair distribution as a solution:
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Theorem D.2.1. Let p(V ) denote the observed data distribution, M1 = {p∗1(V ) = argminq(V )DKL(p||q),
s.t. ϵl ≤ g(q(V )) ≤ ϵu, and q(V1) = p(V1)}, and M2 = {p∗2(V ) = argminq(V )DKL(p||q), s.t.
ϵl ≤ g(q(V )) ≤ ϵu, and q(V2) = p(V2). If V2 ⊆ V1 ⊆ V , then DKL(p||p∗2) ≤ DKL(p||p∗1).

From the above theorem, it can be proven that constraining an additional part of the joint distribution,
for instance the distribution of C, can lead to a higher accuracy of the model’s predictions. Indeed, the
estimated probability distribution will be closer to the original one.

In both of the works of [61] and [62], different semi-parametric estimators for the edge g-formula are
considered. In [95] different consistent estimators for the edge g-formula are introduced: the plug-
in estimator, the inverse probability weighting estimator (IPW), Mixed estimator and the augmented
inverse probability weighting (AIPW). In this work only the plug-in estimator was used, nevertheless
for future work it is suggested to implement the same methods varying the used estimator in order
to improve its robustness. In the previous works, these estimators have mainly been applied to NDE
identification formulas, but they could potentially be generalized to arbitrary PSE in the future.



E
Estimator Performance

In this Appendix, further results regarding the performance of the semi-parametric plug-in estimator
on another causal structure are presented.
The simulation procedure of Appendix J.2.4 is considered, referring to the graphical structure of Figure
6.4.
In the below figures, the shifted bootstrap and true sampling distributions are presented, along with
Table E.1 useful for deriving the consistency of the estimator. The plots of the quantiles and the cu-
mulative distribution of the shifted versions show the similarity between their variability. The standard
deviation of the true sampling distribution and the bootstrap one are respectively 0.104 and 0.0097,
very comparable. The conclusions encountered in Chapter 5 can also be similarly inferred from this
example. The only aspect that differs in the two examples is the QQplot in Figure E.2, showing a slight
difference in the quantiles distributions. This is however a minor detail, that can indeed be ignored for
the scope of the project.

n Standard Deviation

1000 0.0165
2000 0.0111
4000 0.0076
8000 0.0054
... ...

100000 10−5

Table E.1: Plug-in Estimator Performance on datasets with n data-points

Figure E.1: True sampling distribution (left) and bootstrap distribution (right)
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Figure E.2: Quantile-Quantile plot (left) and cumulative distributions (right)



F
Conditioning or Intervening?

In this paragraph, the difference between conditioning and intervening will be explored. Specifically,
referring to a causal structure G, given an interventional distribution of a variable Y with respect to a
treatment variable A and an additional set of variables C, we are interested in analysing the difference
between using C as a further treatment attribute or as a conditioning one. Hence, the comparison
between P (Y (a) = y|C = c) and P (Y (a, c) = y) with c ∈ XC , a ∈ XA, y ∈ XY will be given. The
methodological difference has been covered in the Chapter 6.1.3, in this section the intuitive difference
will be analysed, in order to help the reader better understanding the motivation of the newly proposed
method CPSF based upon conditional interventional distributions.

An example illustrating the difference between P (Y (a) = y|C = c) and P (Y (a, c) = y) will now
be presented. When interpreting interventions, it is more immediate to use practical examples in
which the treatment variable can be controlled in experiments. For instance, applications of inter-
ventions in the field of personalised medicine can help in the intuition of the concepts. A research
on sleeping pills consumption is considered. The treatment variable in this example is the consump-
tion of sleeping pills (A = {0, 1} active treatment / non-active treatment). In this example, the
graphical structure is presented in Figure F.1, where Y is the approximated hours of sleep per night
(XY = {0, 1, ..., 24}), C is the time of going to bed (XC = {c ∈ R : 0 ≤ c ≤ 24}), W is the working
employment (XW = {employed, unemployed, student, retired, ...}).
The scope of the example is to analyse the causal effect that the sleeping pills have on the sleeping
behaviour of the individuals, specifically with respect to a threshold of 7 hours/night. In this example,
considering the interventional distribution P (Y (A = 1) > 7) answers the question: what is the effect
that the treatment (sleeping pills) has on the hours of sleep? Differently, by involving the age of the
applicants C, P (Y (A = 1, C = 21) > 7) corresponds to the question: what is the effect of the treatment
if the patients assume the sleeping pills and go to bed at 21h? Moreover by instead conditioning on
the time of going to bed, P (Y (A = 1) > 7|C = 21) answers the question: what is the effect of the
treatment on the people who normally go to bed at 21h?
The main conceptual difference between the interventional distributions P (Y (A = 1, C = 21) > 7) and
P (Y (A = 1) > 7|C = 21) is that by selecting individuals that go to bed at 21h, then additional informa-
tion is taken into consideration regarding the subjects, for instance their working state. Indeed, since C
is a child of A, the individuals going to bed at 21h are the ones with a certain working status, subjects
to specific stress that might influence the quality of sleep. Hence in P (Y (A = 1) > 7|C = 21), only
individuals in that specific condition are considered. Differently, P (Y (A = 1, C = 21) > 7) analyses the
sleeping behaviour of all the individuals, independently of their working status, if they happened to go
to bed at 21h. This concept is supported by the graphical representation of interventions, according to
which in this example the edges entering C would be eliminated.

This example shows that the difference between the two interventional distributions corresponds to the
scope of the intervention itself and to the question that we want to answer.
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A Y C

W

Figure F.1: Example Personalized Medicine



G
Conditional Path-Specific

Interventions Proofs

The following Propositions and proofs are introduced in [54].

Proposition G.0.1. Given a DAG G with distribution on the potential outcomes P (V). Consider
the corresponding element PGe

A
(V e) in the extended causal model associated with GeA(V ∪ ACh). Then

P (V (π, a1, a0)) = PGe
A
(V (aπ)).

Proof. By definition of the model G and structural equations:

P (V (π, a1, a0) = v) =
∑

ϵi:fi(a0Paπ
i
,a

1Paπ̂
i
,vPai\A)=vi

P (ϵ1, ..., ϵk),

where ϵi are the disturbance terms of the structural equations. Where for each Vi, Paπi is the subset of
Pai ∩A with an edge from Pai to Vi in π, and Paπ̂i is the subset of Pai ∩A with an edge from Pai to
Vi not in π. Similarly, for Ge(V ∪ACh),

PGe
A
(V (aπ) = v) =

∑
ϵi:fi(aπ

Pai∩Ai
,vPai\A)=vi

P (ϵ1, ..., ϵk),

where by aπPai∩Ai
is meant the interventional values consistent with the newly added nodes ACh. Since

the two equations are equivalent, the argument follows.

Proposition G.0.2. For any V ⊆ Y , p(Y (π, a, a′)) is identified in the ADMG GV if and only if
p(Y (aπ)) is identified in the ADMG Ge(V,ACh). Moreover if p(Y (aπ)) is identified, it is by the same
functional as p(Y (π, a, a′)).

Proof. The proof follows from the proof of the previous proposition.

Proposition G.0.3. If
(
Y (x, z) ⊥⊥ Z(x, z)|W (x, z)

)
Ge(x,z)

and T ⊆W then(
Y (x, t) ⊥⊥ T (x, t)|Z(x, t),W1(x, t)

)
Ge(x,t)

if and only if
(
Y (x, z, t) ⊥⊥ T (x, z, t)|Z(x, z, t),W1(x, z, t)

)
Ge(x,z,t)

,

where W1 = W\T .

Proof. By comparing the d-connecting paths between the pairs (Y (x, z, t), T (x, z, t)) in Ge(x, z, t) and
(Y (x, t), T (x, t)) in Ge(x, t), it can be noticed that the possible connecting paths from Y (x, z, t) to
T (x, z, t) in Ge(x, z, t) is a subset of the paths from Y (x, t) to T (x, t) in Ge(x, t). Then, if there exists a
set W1(x, t) in Ge(x, t) that blocks a path, then W1(x, z, t) also blocks the ones in Ge(x, z, t). Further,
by construction of Ge(x, z, t), if Z(x, t) blocks a path in Ge(x, t), then this is also blocked in Ge(x, z, t).
If instead a path is clocked by descendants of Z(x, t),W1(x, t), then the same will happen in Ge(x, z, t).
Hence, if (Y (x, t) ⊥⊥ T (x, t)|Z(x, t),W1(x, t))Ge(x,t), then (Y (x, z, t) ⊥⊥ T (x, z, t)|W1(x, z, t))Ge(x,z,t).
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We will now assume for contradiction that (Y (x, z, t) ⊥⊥ T (x, z, t)|W1(x, z, t))Ge(x,z,t) but that
(Y (x, t) ⊥⊥ T (x, t)|Z(x, t),W1(x, t))Ge(x,t) does not hold. If there is a connecting path in Ge(x, t) but
not in Ge(x, z, t), then it must contain a non-collider (introduced in Section 6.1.3) through an element
of Z. If this is still a possible connecting path in Ge(x, z, t), then there must exist a collider (with no
descendants in W1(x, z, t)) that blocks the path in Ge(x, z, t).
Hence, there must exist a path in Ge(x, t) from (an element of) Y (x, t) to (an element of) Z(x, t) given
W1(x, t). Furthermore, since in Ge(x, t) the node-splitting variable T (x, t) will not block this path
by construction, the previous consideration can be made for the entire set W (x, t). For this reason,
the assumption made

(
Y (x, z) ⊥⊥ Z(x, z)|W (x, z)

)
Ge(x,z)

is contradicted, leading to the if and only if

proposition.

Corollary G.0.3.1. For any Ge(a) and any conditional distribution p(Y (x)|W (x)), there exists a
unique maximal set Z(x) = {Zi(x) ∈ W (x)|p(Y (x)|W (x)) = p(Y (x, zi)|W (x, zi)\{Zi(x, zi)})} such
that Rule 2 applies for Z(x, z) in Ge(a) for p(Y (x, z)|W (x, z)).

Proof. This proof is based on the proposition G.0.3. Getting back to the Corollary, if two sets Z1(x)
and Z2(x) are fixed such that Rule 2 is satisfied with respect to Ge(x, z) for p(Y (x, z)|W (x, z)). If
Z1(x) ̸= Z2(x), specifically Z2(x) ⊆ Z1(x), then it is possible to define T (x) = Z1(x)\Z2(x). Based
on this, the hypothesis of Z2(x) being the maximal set is actually contradicted because, following the
proposition that was mentioned above, Z2(x) ∪ T (x) satisfies the Rule 2 condition.



H
Example Equivalence Path-Specific

Effect and Conditional Path-Specific
Effect

First, a model in which the application of CPSF is equivalent to FIO will be considered. This could
indeed help the reader in better understanding the similarity between FIO and CPSF. Then, different
data-generating processes will be considered.

The Figure 5.1 will be considered, where C is the set of conditioning covariates. The first analysed
linear setting is the most simplified one, as it does not include mixed terms in the regressions. This is
a special scenario, as the conditional PSE on C is equivalent to the PSE, meaning that the original FIO
method and the newly proposed CPSF are equivalent.
The considered linear model is the following:

C ∼N (0, 1)

logit(P (A = 1|C)) ∼βA + βC
AC;

M =βM + βC
MC + βA

MA+ ϵM ;

Y =βY + βC
Y C + βA

Y A+ βM
Y M + ϵY ,

where ϵM , ϵY
i.i.d.∼ N (0, 1). In this scenario, it is immediate to re-write the Path-Specific Effect via the

edge g-formula in terms of the linear coefficients β. By remembering that the fair path from A to Y is
considered to be (AMY )→, then the Path-Specific Effect is:

E[Y (a0,M(a1))]− E[Y (a1,M(a1))] =

=
∑
c∈Xc

(
βY + βC

Y c+ βA
Y a0 + βM

Y (βM + βC
Mc+ βA

Ma1)
)
P (C = c)

−
∑
c∈Xc

(
βY + βC

Y c+ βA
Y a1 + βM

Y (βM + βC
Mc+ βA

Ma1)
)
P (C = c)

=
∑
c∈Xc

(
βA
Y a0

)
P (C = c)−

∑
c∈Xc

(
βA
Y a1)

)
P (C = c)

=
∑
c∈Xc

(
βA
Y (a0 − a1)

)
P (C = c)

=βA
Y (a0 − a1).

In this simplified setting, it can be noticed that the Path-Specific Effect is independent of C, meaning
that the conditional PSE and the PSE are equivalent. In this specific example, in order to ensure that
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the PSE is equal to 0 for a1 ̸= a0, it is necessary to estimate β̂A
Y = 0.

The above example represents a simplified version of a causal model with linear structural equations.
Indeed, linear regressions including mixed coefficient terms could be considered. For instance, referring
to causal graph in 4.2, the following linear setting will be used:

C ∼N (0, 1)

logit(P (A = 1|C)) ∼βA + βC
AC;

M =βM + βC
MC + βA

MA+ βAC
M AC + ϵM ;

Y =βY + βC
Y C + βA

Y A+ βM
Y M + βAC

Y AC + βCM
Y CM + βAM

Y AM + ϵY ,

where ϵM , ϵY
i.i.d.∼ N (0, 1). In this causal model, following the same procedure are previously described,

it can be immediately proved that the Path-Specific Effect is:

E(a0,M(a1))− E(a1,M(a1)) =

=
∑
c∈Xc

(
βA
Y (a0 − a1) + βAC

Y (a0 − a1)c+ βAM
Y (a0 − a1)(βM + βC

Mc+ βA
Ma1 + βAC

M a1c)
)
P (C = c)

=
∑
c∈Xc

(a0 − a1)(β
A
Y + βAC

Y c+ βAM
Y (βM + βC

Mc+ βA
Ma1 + βAC

M a1c))P (C = c).

As it can be noticed, the formulation of the Path-Specific Effect is dependent on the covariate C, triv-
ially leading to distinct values of PSE and conditional PSE.



I
Causal Graphs of Real-World

Examples

In this section, the causal graphs of the real-world examples introduced in Section 2.2 will be presented.
In particular, the causal graphs of both the COMPAS Dataset and the UCI Adult dataset will be
analysed.

I.1. COMPAS Dataset - Parole Prediction

One of the most exemplifying causal structures of the fairness research is the one corresponding to the
COMPAS dataset model, introduced in Section 2.2. The causal graph corresponding to this dataset
is represented in Figure I.1a. The node C represents the set of demographic features gender and age,
the sensitive attribute A is the race, the mediator M is the number of prior convictions and Y is the
recidivism decision. The pre-processing of the dataset involved grouping the age covariate into four
main subgroups. The same approach of [61] was used.
From the causal structure, it can be noticed that the race has a possible direct causal influence on
both the number of prior convictions and the recidivism decision. Based on domain knowledge and
ethical intuition, the causal paths between the sensitive attribute A and the recidivism decision Y can
be classified as ethically plausible or not. Specifically, in the literature it is common to assume that it is
fair to consider the number of prior convictions in order to make the recidivism decisions; nevertheless,
this does not hold for the race. Hence, following the terminology of this work, the set of unfair paths is
π = {(AY )→}, referred to the color red in the Figure I.1b.

A M

C

Y

(a) Causal Structure

A M

C

Y

(b) Causal Structure with Unfair Paths
in Red

Figure I.1: COMPAS Dataset
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I.2. UCI Adult Dataset - Loan Application

The second example introduced in Section 2.2 regards the loan application setting. It was mentioned
that the most used dataset in this application is the UCI Adult dataset, the causal structure of which
is represented in Figure I.2a. The dataset includes job related variables for 48842 individuals. In
this dataset, the sensitive attribute A represents the gender of the applicants and the binary outcome
Y is the salary prediction of the candidate, classifying it as higher or lower than $50k/year. The
baseline features C include the age and nationality, while the mediator M represents the marital status.
Furthermore, L is the number of years of education and R the set of working-related features such as
the number of hours worked and the kind of occupation. The original dataset includes more variables
(14 in total); however, a similar approach to [110] was used for the pre-processing. Nevertheless, only
part of the working-related variables have been used; these are the number of hours spent working per
week and a binary variable stating whether the occupation is a private one or not. The same causal
structure presented in the literature is used in Figure I.2a. Nevertheless, we do not necessarily agree
with this causal structure, especially regarding the Marital Status. Indeed, the causal edge from the
feature gender A and the marital status M (binary variables for married or non-married status) is
not justified in a straightforward way in this context. By analysing the conditional distribution of the
marital status in Figure I.3, it can be noticed that among the Non-Married individuals (considered as
Divorced, Separated, Single, Widowed) a relevantly higher number of women joined the survey. This
could happen because in married couples it is more likely that men apply for a loan. Nevertheless, based
on our common knowledge a more suitable graph would include the Married status not as a mediator
but as a baseline feature.
The causal structure of the UCI Adult Dataset is represented in Figure I.2a. The respective classification
of causal paths from A to Y into fair and unfair paths is represented in Figure I.2b. The red edges
are considered unfair, and the dashed one are unfair as a consequence of the red ones. Indeed, for
instance, (LR)→ is unfair along the path A → M → L → R → Y , but fair along A → L → R → Y .
In the literature, it is assumed that the unfair paths are π = {A → Y,A → M → ... → Y }. As earlier
mentioned, we do not agree with this causal structure and classification of the causal pathways as fair
or unfair, nevertheless a similar approach to the state-of-the-art works was used.

A M L

C

R Y

(a) Causal Structure

A M L

C

R Y

(b) Causal Structure with Unfair Paths in Red

Figure I.2: UCI Adult Dataset
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Figure I.3: Count Plot of Marital-Status



J
Data Simulation

In this chapter, the different simulation dataset procedures will be presented, referring to the experi-
ments of Chapter 5.2 and Chapter 7.

J.1. Data Structure 1

The causal graph of Example 1 is presented in Figure J.1. In the next sections the different data
simulation procedures will be concisely presented.

A M

C

Y

Figure J.1: Data Structure 1 Causal Graph

J.1.1. Linear Prediction Setting Discrete C

P (C = c) =


1
3 if c = 0
1
3 if c = 1
2
9 if c = 2
1
9 if c = 3

logit(P (A = 1|C)) ∼0.5− C;

M =0.1 + 2C −A+ 3.5AC + ϵM ;

Y =1− C + 2A−M − 3AC − 0.5AM − 3CM + ϵY .
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Here, ϵM , ϵY
i.i.d.∼ N (0, 1).

J.1.2. Linear Prediction Setting Continuous C

C ∼N (0, 1);

logit(P (A = 1|C)) ∼0.5− C;

M =0.1 + 2C −A+ 3.5AC + ϵM ;

Y =1− C + 2A−M − 3AC − 0.5AM − 3CM + ϵY .

Here, ϵM , ϵY
i.i.d.∼ N (0, 1).

J.1.3. Linear Prediction Setting Binary C

C ∼Bin(0.7);

logit(P (A = 1|C)) ∼0.5− C;

M =0.1 + 2C −A+ 3.5AC + ϵM ;

Y =1− C + 2A−M − 3AC − 0.5AM − 3CM + ϵY .

Here, ϵM , ϵY
i.i.d.∼ N (0, 1).

J.1.4. Classification Setting Binary C

C ∼Bin(0.7);

logit(P (A = 1|C)) ∼− 0.5 + 0.5C;

logit(P (M = 1|A,C)) ∼0.05− 1.5C + 2A− 0.05AC;

logit(P (Y = 1|M,A,C)) ∼− 1 + 5C − 4A+ 2M − 7AC − 3AM + 3CM.

J.1.5. Linear Setting with Unobserved Variables

C ∼Bin(0.7);

U ∼N (1, 1);

logit(P (A = 1|C)) ∼− 0.5 + 0.5C;

M =− 0.1 + 1.5C − 2A+ 0.05AC + U + ϵM ;

Y =1− 5C + 4A− 2M + 7AC + 3AM − 3CM + 2U + ϵY .

Here, ϵM , ϵY
i.i.d.∼ N (0, 1).
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A M

C

Y

U

Figure J.2: Data Structure 1 with additional unobserved variable

J.2. Data Structure 2

The causal graph of Example 2 is presented in Figure J.3. Similarly to the previous graphical structure,
the different data simulation procedures will now follow.

A M

C

L Y

Figure J.3: Data Structure 2 Causal Graph

J.2.1. Prediction Setting Continuous C

C ∼N (0, 1);

logit(P (A = 1|C)) ∼− 0.5− 0.5C;

logit(P (M = 1|A,C)) ∼− 0.5− C + 4A− 3AC;

logit(P (L = 1|M,A,C)) ∼− 0.5− 0.4C − 2A+ 3M − 0.6AC + 2AM + 0.5ACM ;

Y =1 + C + 5A− 4M + 3L− 2AC +AM +AL− 1.5AML+ ϵY ,

where ϵY ∼ N (0, 1).
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J.2.2. Prediction Setting Discrete C

P (C = c) =


1
3 if c = 0
1
3 if c = 1
2
9 if c = 2
1
9 if c = 3

logit(P (A = 1|C)) ∼− 0.5− 0.5C;

logit(P (M = 1|A,C)) ∼− 0.5− C + 4A− 3AC;

logit(P (L = 1|M,A,C)) ∼− 0.5− 0.4C − 2A+ 3M − 0.6AC + 2AM + 0.5ACM ;

Y =1 + C + 5A− 4M + 3L− 2AC +AM +AL− 1.5AML+ ϵY ,

where ϵY ∼ N (0, 1).

J.2.3. Prediction Setting Binary C

C ∼Bin(0.7);

logit(P (A = 1|C)) ∼− 0.5− 0.5C;

logit(P (M = 1|A,C)) ∼− 0.5− C + 4A− 3AC;

logit(P (L = 1|M,A,C)) ∼− 0.5− 0.4C − 2A+ 3M − 0.6AC + 2AM + 0.5ACM ;

Y =1 + C + 5A− 4M + 3L− 2AC +AM +AL− 1.5AML+ ϵY ,

where ϵY ∼ N (0, 1).

J.2.4. Classification Setting Binary C

C ∼Bin(0.7)

logit(P (A = 1|C)) ∼− 0.5− 0.5C;

logit(P (M = 1|A,C)) ∼0.5 + C − 4A+ 3AC;

logit(P (L = 1|M,A,C)) ∼− 0.5− 0.4C − 2A+ 3M − 0.6AC + 2AM − 0.5ACM ;

logit(P (Y = 1|L,M,A,C)) ∼− 1− C − 5A+ 4M − 3L+ 2AC −AM −AL+ 1.5AML.

J.2.5. Classification Setting Continuous C

C ∼N (0, 1);

logit(P (A = 1|C)) ∼− 0.5− 0.5C;

logit(P (M = 1|A,C)) ∼0.5 + C − 4A+ 3AC;

logit(P (L = 1|M,A,C)) ∼− 0.5− 0.4C − 2A+ 3M − 0.6AC + 2AM − 0.5ACM ;

logit(P (Y = 1|L,M,A,C)) ∼− 1− C − 5A+ 4M − 3L+ 2AC −AM −AL+ 1.5AML.
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J.2.6. Prediction Setting with Unobserved Variables

A M

C

L Y

U

Figure J.4: Data Structure 2 Causal Graph with additional unobserved variable

C ∼Bin(0.7);

U ∼N (−1, 1);
logit(P (A = 1|C)) ∼− 0.5− 0.5C;

logit(P (M = 1|A,C)) ∼− 0.5− C + 4A− 3AC + U ;

logit(P (L = 1|M,A,C)) ∼− 0.5− 0.4C − 2A+ 3M − 0.6AC + 2AM + 0.5ACM ;

Y =1 + C + 5A− 4M + 3L− 2AC +AM +AL− 1.5AML+ 2U + ϵY ,

where ϵY ∼ N (0, 1).

A M

C

L Y

U1 U2

Figure J.5: Data Structure 2 Causal Graph with additional unobserved variables
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C ∼Bin(0.7);

U1 ∼N (−1, 1);
U2 ∼N (−1, 1);

logit(P (A = 1|C)) ∼− 0.5− 0.5C + U2;

logit(P (M = 1|A,C)) ∼− 0.5− C + 4A− 3AC + U1;

logit(P (L = 1|M,A,C)) ∼− 0.5− 0.4C − 2A+ 3M − 0.6AC + 2AM + 0.5ACM + U2;

Y =1 + C + 5A− 4M + 3L− 2AC +AM +AL− 1.5AML+ 2U1 + ϵY ,

where ϵY ∼ N (0, 1).
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