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I. Preface 
I have written this report as an assignment for the bachelor end project of the faculty Civil engineering 

and geosciences. My personal goal was to expand my knowledge of python and structural mechanics, 

by contributing to open source. This project felt to me like a basic developer bootcamp which pushed 

me to learn many things that are outside of coding in Python but are essential for large project 

development. Alongside this report, I have written over 2200 lines of code, which include: a working 

proof of concept module, unit tests for the module and documentation. The code is available on my 

GitHub page (Saheli, 2024), and I encourage readers to try out the tool by cloning and installing it. 

I would like to thank T.R. van Woudenberg for setting up the overarching Macaulay’s method project, 

of which this project is a continuation. His insights at the start helped guide me in the right direction, 

and I’m grateful for his support. I would also like to thank J.K. Moore for steering me toward becoming 

a better programmer and helping me get familiar with GitHub. Finally, I would like to thank all the 

students that worked on the Macaulay’s project before me, especially A.D.J. Baudoin as his examples 

and method were essential for debugging and testing the tool. 
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II. Summary 
This report describes the development of a Python based tool for 2D structural analysis in civil 

engineering, using the SymPy library (Meurer A, 2017) and applying the Macaulay method (Macaulay, 

1919) to enable symbolic computation for structural analysis. The tool serves as a proof of concept 

demonstrating the feasibility of symbolic computation in analyzing internal forces. 

Central to the project is the extension of existing SymPy modules, specifically the Beam module, to 

support 2D analysis by introducing new modules: "Column" and "Structure2D." The existing "Beam" 

module in SymPy, which computes vertical load effects, was used to handle shear forces and bending 

moments by creating a load equation for the vertical direction. To handle normal forces a "Column" 

module was proposed (although not implemented in this iteration), designed to compute horizontal 

load effects based on the material’s elasticity modulus, length, and cross-sectional area. The 

"Structure2D" module integrates both vertical and horizontal load computations by transforming a 2D 

structure into two corresponding 1D representations. This method enables separate computations for 

each direction, converting 2D problems into simpler 1D computations while preserving load and 

support behavior. 

The tool’s workflow involves users defining structure components (members, loads, supports) on a 2D 

grid. Once defined, the structure is "unwrapped" to map each member along a continuous line. Each 

load is split into its horizontal and vertical components and applied to the corresponding axis. Through 

examples, the report showcases the tool’s ability to calculate shear forces, bending moments, and 

reaction loads. 

Although the project successfully demonstrates the potential of symbolic computation for 2D 

structural analysis, several limitations exist. The tool currently lacks a functional Column module, 

restricting it to single horizontal reaction loads and limiting its ability to solve for horizontal deflections 

and axial forces fully. Additionally, the structure must be non-branching and linear, excluding complex 

configurations like truss networks. Material properties must be uniform across members, a constraint 

that simplifies the model but limits its real-world applicability. Addressing these limitations would 

involve developing a more advanced unwrapping algorithm for intersecting members and introducing 

a complete Column module. 

In summary, this prototype validates the possibility of a symbolic 2D structural analysis tool, providing 

civil engineering students and educators with an analytical framework that combines Macaulay’s 

method and modern symbolic computation. This tool lays the groundwork for future developments 

that could expand its functionality, to move away from proof of concept to a fully featured open-source 

product.  
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1. Introduction 
This project focuses on developing a 2D structural analysis tool using Python's SymPy library, with the 

Macaulay method as the main calculation technique. By using the symbolic computation power of 

SymPy alongside Macaulay’s method, the tool provides engineers and students with an symbolic way 

to model, analyze and understand the behavior of structures. This proof of concept demonstrates the 

potential of using symbolic computation for structural analysis, offering clear insights into how loads 

and supports affect internal forces and deflections. It also lays the foundation for future development, 

where additional features and functionalities could be added to enhance its capabilities. 

In structural engineering, calculating internal forces and deformations in 2D structures is essential for 

understanding the principles of Euler-Bernoulli beam theory. There are several methods available to 

perform these calculations, and one of the lesser-known approaches is the Macaulay method. This 

method uses singularity functions, which allow complex loading scenarios to be modeled as a single 

continuous equation. As the load position changes along the structure, the relevant singularity 

functions are activated, and as this is a single continuous equation only boundary and deformation 

conditions are needed. This concept is further expanded to 2D by the Macaulay method project 

(Woudenberg T. R., 2024) which is an overarching research project into the expansion and 

advancement of the Macaulay method. This 2D method is the foundation of this project.  

This leads to the central question of this report: 

"Is it possible to develop a symbolic 2D structural analysis tool in Python, using Macaulay’s method as 

the underlying mathematical framework?" 

To answer the main question of this report, the following structure will be used. In Chapter 2, the 

design and architecture of the tool are discussed, including how existing SymPy modules were 

leveraged to build the 2D structural analysis functionality. Key concepts such as the integration of 

vertical and horizontal load equations using new modules are introduced here. Chapter 3 presents a 

detailed use case example illustrating how to input structure data, add loads and calculate reactions, 

shear force and bending moment diagrams. Chapter 4 evaluates the performance and limitations of 

the proof of concept, focusing on the results of the Macaulay method in 2D analysis. Finally, Chapter 

5 offers a discussion on results and recommendations for further development. 
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2. Design of the Tool 
This Chapter outlines the design and architecture of the 2D analysis tool. It builds on the existing SymPy 

continuum mechanics modules, to implement 2D functionality efficiently. The Chapter introduces two 

new modules, "Column" and "Structure2D," which work with the existing Beam module to handle both 

vertical and horizontal load equations, enabling full 2D structural analysis.  

2.1 Overview of Existing SymPy Codebase 
Rather than developing new functionality from scratch, it is essential to leverage as much of the 

existing SymPy codebase as possible. This ensures efficiency and maintains backward compatibility, a 

core principle of open-source libraries like SymPy.  

Currently the SymPy library has a continuum mechanics module containing Beam, Truss, Cable and 

Arch sub modules.  

 

A brief overview of the existing continuum mechanics modules in SymPy:  

• Beam Module: This module uses singularity functions to solve a horizontal beam with applied 

loads. It is well-written, well-documented, and has a good input style.  

o Beam3D: This is copy of the original beam module with built in functionality to support 

forces acting from 3 dimensions, a lot of code is repeated here. This should have been 

merged into the original beam module.  

• Truss Module: Used to solve 2D statically determinate truss structures, this module does not 

use singularity functions for solving and uses a completely different input style that is not 

compatible with the beam module.  

• Cable Module: This module solves cables and is outside the scope of this project.  

• Arch Module: It solves problems related to a three-hinged arch (determinate) structure. This 

module is poorly documented and falls outside the scope of the project.  

 

The Beam module, with its well documented and flexible input style, serves as a good foundation for 

developing a 2D analysis tool. It already includes many of the required features, and any additional 

functionality can be integrated into a new module rather than creating duplicate code. This is 

especially important for ensuring consistency and avoiding issues, like those seen with the Beam3D 

module, which introduces code duplication by not being properly merged into the original module. 
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2.2 Overview of Design 
To implement 2D functionality while reusing as much existing code as possible, it is essential to analyze 

the current beam module and identify which parts can be leveraged (a detailed analysis of the beam 

module can be found in Appendix B - Overview of the Existing Beam Module). The beam module 

currently generates load equations for vertical forces acting on a straight horizontal beam. These 

vertical loads in the z-axis (aligned with the grid y-axis) create shear forces, which in turn cause bending 

moments, an important insight for understanding load behavior. 

Note: the terms "x and y" and "x and z" are used interchangeably in the code and in this report. 

Z and Y both represent the vertical axis and should be understood as referring to the same vertical 

direction.  

 

Initially, it appears that the module's focus on strictly vertical loads might limit its functionality. 

However, a vertical load can also represent the vertical component of a load acting in any direction. 

With this perspective, it becomes clear that when a straight beam is subject to loads at various angles, 

these angled loads can be decomposed into their x and y components. According to the Euler-Bernoulli 

beam theory, the vertical component acts as a shear force, while the horizontal component represents 

a normal force. These forces are independent because they act perpendicularly. 

This concept is demonstrated in Figure 2. In the top plot, a 20 kN load is applied at a 225° angle relative 

to the positive x-axis. To find the corresponding shear force equation, this load is decomposed into its 

vertical component by multiplying by sin(225°), yielding 14.14 kN. This value is then applied directly 

to the beam in the vertical direction, as shown in the bottom plot. The shear forces in these two plots 

are identical. 

  

 

Figure 2 Equivalence of vertical decomposition, with shear force graphs on the right. 

From these findings, it is clear that shear force and normal force can be calculated independently, 

provided all loads are decomposed into their vertical and horizontal components. The beam module 

can handle the vertical components, but currently, there is no module to compute horizontal load 

effects. To address this, a new module called "Column," will need to be developed to handle horizontal 
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loads. Each structure will then have a load equation for both axes: one for vertical deflection and one 

for horizontal deflection.  

By combining the beam module with the new column module, it becomes possible to generate load 

equations for both x and y directions. However, both modules are designed to work with one-

dimensional straight structures, with loads acting perpendicularly on the beam and normally on the 

column. See Figure 3 for a clarification of 1D vs 2D.  

 

Figure 3 Left: 1D beam/column (a straight line along the x axis), Right: a 2D structure consisting of two members connecting 
at an angle 

This setup presents a challenge for 2D problems, as neither module can directly process 2D 

coordinates. To solve this, the two modules must be integrated. This integration will be managed by a 

new master module, "Structure2D." The primary function of Structure2D will be to take 2D user inputs, 

split them into separate components for each axis, convert them into a format compatible with the 

beam and column modules, pass the data to these modules for computation, and then combine the 

results into a final 2D solution. A simplified overview is provided in Figure 4. 

 

Figure 4 High level overview of structure2d module 

The compatible format refers to a 1D beam or column with only its respective load components, 

achieved by laying the structure out as a continuous line. 2D structures can be "unfolded" to form a 

straight line, meeting the 1D input requirements of the beam and column modules. Let’s illustrate this 

for the vertical direction starting from Figure 5. By unfolding the structure, we isolate and apply the 

vertical components of all loads to their respective positions along this line. However, the shear force 

distribution is incorrect due to the limitations of standard Macaulay’s method. In a 2D structure, 

members can have angles so a load applied globally in the vertical direction might not act entirely 
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vertically on an angled member. This issue is illustrated in Figure 6, where a distributed load passed 

the first bend point acts on an angled member. Because the member is angled, the load isn’t exclusively 

vertically relative to the member, it also has a horizontal (normal) component. This results in the load’s 

effective contribution to the global vertical direction being lower than the distributed load’s full value 

of 6 kN/m. 

The solution to this problem lies in a 2D adaptation of Macaulay’s method, which compensates by 

introducing additional loads to achieve a statically equivalent situation for each direction. In (Baudoin, 

2024), these equations have been converted into an algorithm that adds the necessary compensating 

forces to maintain equivalence. This adjustment is demonstrated in Figure 7, where after adding the 

additional loads the shear force diagram aligns perfectly with the original 2D problem. 

 

 

 

Figure 5 2D structure with bend points and loads with shear force and normal force diagrams. 

 

 

Figure 6 Unfolded structure with identical loads from Figure 5 (Notice how the shear force starts off correctly but as it reaches 
the first bend it fails.) 
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Figure 7 Unfolded structure with added compensating loads on top of the original loads from Figure 5. Shear force diagrams 
are now identical. 

 

The same principle works for the horizontal normal loads. In Figure 8 additional loads are added based 

on the 2D Macaulay principle but this time in the horizontal direction. This again results in an identical 

normal force diagram.  

 

Figure 8 Source:  (Woudenberg T. R., 2024) Unfolded structure with added compensation loads on top of original loads, for 
the horizontal direction. 

After determining both shear and normal forces using the 2D Macaulay method, these forces are 

expressed as load equations. These load equations are then integrated according to the Euler-Bernoulli 

beam theory, resulting in two equations that represent deflection in the x and y directions. At this 

stage, however, it’s no longer possible to solve these equations independently, as each one relies on 

the other. Solving this requires treating them as a system of equations.  
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2.3 New Modules 
As discussed in Section 2.2 two new modules need to be created to handle 2D functionality. This 

Section will discuss the functionality of these new modules in detail. 

2.3.1 Column 

Note: This module is only proposed but due to time constraints not implemented in the proof of 

concept. 

The Column module is designed to work similarly to the Beam module but focuses on the horizontal 

direction, addressing loads applied along the length of the column. It uses properties of the column, 

such as its length, elastic modulus (E), and cross-sectional area (A). These properties are critical for 

determining how the column deflects horizontally under various normal forces. 

For each type of load applied to the column, an appropriate singularity function is used to represent 

the effect of that load. The order of the singularity function is selected based on the type of the load, 

as explained in mathematical theory. These singularity functions are then combined into a total load 

equation that represents the forces acting in the horizontal direction. This total load equation sums 

the effects of all applied forces along the column and follows the same principles used for beams in 

the vertical direction. 

An overview of the architecture of the column module can be seen in Figure 9 it based on the existing 

beam module design. The core functionalities are colored orange, and the secondary functionalities 

are colored yellow.  

 

Figure 9 Overview of proposed Column module architecture  
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2.3.2 Structure2d 

The Structure2D module serves as the central component of the tool, extending the capabilities of the 

existing Beam module to analyze two-dimensional structures. The module is designed to compute 

deflections, shear forces, and bending moments in both the vertical (z) and horizontal (x) directions 

using the singularity function approach (2D Macaulay method) as previously described. By decoupling 

the computations into two directions, the module simplifies the complexity of 2D structural analysis 

into two 1D problems. Which are then solved by the beam and column module independently. An 

overview of the architecture can be seen in Figure 10. 

 

 

Figure 10 Overview of structure2d module architecture 
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Module Functionality and Key Functions 
The Structure2D module serves as the core component of the tool, managing data and facilitating 

interactions between user inputs and computational functions. Building upon the existing Beam 

module, it introduces new capabilities to handle two-dimensional structures. This section details the 

functionality of the Structure2D module and its key functions and user interaction. 

 In the architecture of the code Figure 10, different components are color-coded for clarity: blue 

represents continuum mechanics modules (with the light blue the column module is included for 

completeness but not implemented in this proof of concept), purple indicates classes that primarily 

serve as data objects, orange are core functions that users interact with directly, and yellow are helper 

functions. 

The Structure2D module acts as a data management system, storing all information about the 

structure being analyzed. To make data handling easier, three additional classes are implemented to 

store data: Member, Node, and Load. These classes contain related data and compute necessary 

attributes, such as angles and equations for members, and the x and y components of loads. 

Users interact with the module primarily through core functions like add_member(), apply_load(), and 

apply_support(). When a user calls add_member(), the module creates a new Member object with 

the provided input and adds it to the list of members within the Structure2D instance. Similarly, nodes 

are managed by checking whether a node already exists at a given coordinate to avoid duplication, 

using the _add_or_update_node() function. This function checks if a node is present at the specified 

coordinates and either adds a new node or updates an existing one, which is essential when support 

reactions are added later. 

When using apply_load(), the function creates Load objects and adds them to the structure's list of 

loads. The Load class automatically splits any applied loads into their x and y components. It then calls 

the _find_applied_to() function to determine whether the load is applied to a node or a member, this 

function checks the coordinates of the load against existing nodes and members. For nodes, it 

compares the load's coordinates to each node's coordinates and checks if the difference is zero. For 

members, it uses the member's equation, computed by the Member class, and substitutes the load's 

x-coordinate into the equation, checking if the difference between the computed y-value and the 

load's y-coordinate is zero. There is a special case when a member is vertical, this case is handled 

separately. Once a corresponding member is found, a local x-coordinate is computed. 

If the applied load is a distributed load, the code uses the midpoint of where the distributed load is 

acting for the check. This saves one check but introduces a small limitation: distributed loads must act 

on one member only. The function returns a member ID, the local x-values (the coordinate along the 

member where the load is acting), and optionally the local end values if it’s a distributed load, or only 

the node ID if the load is applied to a node. 

  

Note: Why not compare directly, and why always check if the difference equals zero? In 

mathematics, there is no difference between 0.5, ½, and 4/8, as humans can immediately tell 

these all equal one-half. However, for computers, all of these are different, some even have 

different data types. Therefore, it is easier to take the difference and check if it equals zero to 

avoid confusion. 
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Next, the apply_load() function calls the _unwrap_structure() function, which "unwraps" the 

structure. This process involves mapping the members of the structure onto a continuous, linear axis, 

effectively transforming the 2D problem into a 1D one that can be analyzed using the Beam module's 

capabilities. The module then lays out each member sequentially along the unwrapped x-axis, using a 

cumulative sum of lengths. This method positions each member correctly relative to the others, 

maintaining integrity in the unwrapped form. During this process, each member and node are checked 

for loads that are acting on them, and then the local x-coordinates get updated with unwrapped ones. 

An example of how a structure is unfolded can be seen in Figure 11. 

 

 

Figure 11 Unwrapping visualization. Top: Original 2D structure, Bottom: Unwrapped structure. 

 

These unwrapped coordinates are also put in a list and added to the Structure2D attributes for 

unwrapped loads points and for unwrapped bend points. Finally, these two attribute lists are than 

converted into a format that can easily be passed into an algorithm described in (Baudoin, 2024). This 

algorithm takes coordinates of all loads and bend points and builds the actual equation for loads in 

the vertical direction.  

The apply_load() function then updates the beam's load equation using this algorithm. It translates 

the 2D loads into equivalent 1D loads along the unwrapped beam, considering the angles of the 

members and the positions of the loads. 

This approach has limitations. It assumes that the structure does not contain any branching or 

intersecting members and that members are added in order. There is no internal tracking of where 

each member is mapped on the unwrapped line beyond this cumulative process. In structures with 

branches or intersections, this method would fail because it lacks the capability to "cut" the structure 

into sections and reassemble them while keeping track of each member's position and orientation. 
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To address these limitations, future versions of the Structure2D module would need a more advanced 

unwrapping algorithm. Such an algorithm would handle branching and intersecting structures by 

systematically decomposing the structure into sections, logically reassembling them in onto the 

unwrapped axis, and tracking the relationships between members. This improvement would also 

remove the requirement for members to be added in a specific order, increasing the module's 

flexibility.  

When the user uses the apply_support() function, it calls the _find_unwrapped_position() function. 

This function finds the unwrapped x-location based on x and y coordinates to find the unwrapped 

position of the support. It calls the _unwrap_structure() function to obtain this data. Once this is 

complete, the apply_support() function checks what type of support is input and adds corresponding 

loads and boundary conditions to the unwrapped location. These loads are yet to be computed and 

are therefore added symbolically, representing reaction loads that can vary based on the type of 

support. apply_support() finally returns the symbols that represent the reaction loads.  

When the user wants to solve the structure, the solve_for_reaction_loads() function is used. This 

function takes all the reaction load symbols and passes them into the beam's 

solve_for_reaction_loads() function. This function returns the solved vertical and moment reaction 

loads only. This leaves the horizontal reaction loads still unsolved. To solve the horizontal reaction 

loads, a horizontal solver should be used, this solver should be part of the Column module. As 

previously mentioned, this module is not implemented. To get around this problem without 

developing the Column module, a simple solver is built. This solver only uses Newton's third law (𝛴𝐹 =

 −𝛴𝐹) to solve for simple equilibrium. This introduces a limitation where only one horizontal unknown 

support reaction can currently be solved. Once all the support reactions are solved, they are combined 

into a dictionary and saved as attributes of Structure2D. 

The plotting functions for shear force and bending moment are directly connected to the plotting 

functions of the Beam module. The shear_force() and bending_moment() functions are also 

connected to the Beam module directly, however, the Beam module only takes in the 1D unwrapped 

position. This needs to be converted to the unwrapped position by using the previously mentioned 

_find_unwrapped_position() function. When these functions are called without arguments, they 

return the full equation. If only an x-coordinate is provided, they compute the value at that unwrapped 

position. If both x and y coordinates are provided, they compute the value at the corresponding 

position in the 2D structure. 
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The summary() function works by calling two helper functions: _print_reaction_loads() and 

_print_points_of_interest(). The first function prints the reaction loads. The second function prints 

points of interest for shear force and bending moment. The points of interest for bending moment are 

the bend points and are directly taken from the Structure2D attributes. The shear force points of 

interest are the bend points and the points where a point load is acting. These points often have jumps 

in the graph and are therefore evaluated just before the point of interest and just after the point of 

interest. The values are computed using the previously mentioned shear_force() and 

bending_moment() functions. 

The draw() function handles drawing plots of the situation using matplotlib. It uses data from the 

attributes of Structure2D. It loops over all the member coordinates and adds them to the plot. After 

this, it loops over the loads. When looping over the loads, they are checked based on their order and 

whether they are a support reaction. Support reactions are marked with a different color. It is 

important to check the order of the loads, based on this, it's possible to determine the type of load 

whether it is a point load, distributed load, or a bending moment. Icons for the respective load are 

then selected and drawn. There is also a check to see if the load is positive or negative. If the value is 

negative, the load gets flipped. This is to ensure that the arrows representing the loads are pointing in 

the right direction. The loads also get checked for whether they are of symbolic value, if this is the 

case, a grey color is selected. Finally, the draw() function sets the grid to have an equal ratio and 

recomputes the vertical ticks on the y-axis to ensure a square grid.  
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3. Use case example 
In this Chapter, we demonstrate the implementation of the new modules described in Chapter 2 

through a step-by-step example. The example is solved using the newly developed Structure2D 

module. Readers can follow along with the example in Python using the structure2d fork from (Saheli, 

2024). The goal of this example is to solve the reaction loads and to determine the shear force and 

bending moment influence lines. The full code can be found in Appendix A - Example from Chapter 3 

Example 

Consider a two-dimensional structure shown in Figure 12, consisting of three connected members. 

The first member is 4 meters long and horizontal. The second member is connected to the end of the 

first member and is 5 meters long, forming an angle of arctangent (3/4) relative to the x-axis. The third 

member is also 5 meters long and forms an angle of arctangent (4/3) relative to the x-axis. There is a 

fixed support at the end of the third member. The sign convention used in this example is, forces acting 

downward and to the right are considered positive. Angles for loads are measured relative to the 

positive x-axis in the anticlockwise direction, and angles for members are measured relative to the 

positive x-axis in the clockwise direction. 

The material properties are defined as follows: Elasticity Modulus (E): 30000 kN/m² 

• Second Moment of Area (I): 1 m⁴ 

• Cross-sectional Area (A): 10000 m² 

The structure has two-point loads: 

• Fh: A horizontal load of 15 kN applied at the start of the first member, acting to the right 

(positive x). 

• Fv: A vertical load of 16 kN applied at the midpoint of the first member, acting downward. 

(negative y) 

Additionally, there are two distributed loads, noted as qv: 

• The first distributed load is 6 kN/m, applied along the entire length of the first member, acting 

downward (negative y). 

• The second distributed load is 6 kN/m, applied over the first half of the second member, also 

acting downward (negative y). 

 

 

Figure 12 Hand sketch of the example 
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 Let’s solve the example using the structure2d module. First, we import the Structure2d module from 

the SymPy library with sympy.physics.continuum_mechanics.structure2d. We then define the material 

properties: the elasticity modulus (E), the second moment of area (I), and the cross-sectional area (A). 

Next, we create an instance of the Structure2d class, assigning it to the variable s. This instance sets 

up the code to run method functions on the Structure2d object, as shown in Listing 1. 

 

 

Note that the line "%config InlineBackend.figure_format = 'svg'" is used in Jupyter notebooks to 

configure the output format of plots for better image quality. 

3.1 Input for structure2d 
Once the structure object is initialized, we need to input the example problem into the Structure2D 

object. This input consists of two main steps: adding members and adding loads. Both steps involve 

defining x and y coordinates on a two-dimensional grid, where the structure can be drawn. 

Additionally, the user can generate a plot of the structure at any step, allowing for easy visualization 

throughout the process. Values for loads can be either SymPy symbols or numerical values.  

3.1.1 Add members 

Let's build the structure from the example. Start by selecting an arbitrary reference point on the grid 

in this case, the reference point is chosen to be (0, 0). The first member is horizontal and 4 meters 

long, starting at the reference point and extending from left to right. Therefore, the coordinates for 

the start and end of this member are (0, 0) and (4, 0), respectively.  

For the two remaining members, the coordinates are less straightforward. Since Structure2D currently 

doesn't support adding members using angles and lengths directly, we must first convert these into 

sets of coordinates based on the geometry of the structure. This design choice was made to save time, 

there is a possibility to make a new function that can add members based on their angle and length. 

Suppose the second member is angled and extends from (4, 0) to (8, 3), and the third member extends 

from (8, 3) to (11, -1). These coordinates are determined by calculating the end points based on lengths 

and angles or from known coordinates in the problem.  

Once the coordinates are determined, we assign the material properties defined earlier to all 

members. The code to add the members is seen in Listing 2  

Listing 2 Adding members 

s.add_member(x1=0, y1=0, x2=4 , y2= 0, E=E, I=I, A=A) 

s.add_member(x1=4, y1=0, x2=8 , y2= 3, E=E, I=I, A=A) 

s.add_member(x1=8, y1=3, x2=11, y2=-1, E=E, I=I, A=A) 

Listing 1 Initializing Structure2D module 

from sympy.physics.continuum_mechanics.structure2d import Structure2d 

%config InlineBackend.figure_format = 'svg' 

E = 3e4 

I = 1 

A = 1e4 

s = Structure2d() 
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3.1.2 Plots (draw) 

At any point during the process of solving, it is possible to use the draw method to obtain a plot that 

shows the current state of the structure. This not only helps to visualize the result but also assists 

during the setup process by verifying the correct placement of members. The draw method offers 

several parameters that allow you to customize the visualization: 

• forced_load_size: A numerical value that forces all loads to be drawn with the specified 

magnitude, based on the grid units. This can help standardize the appearance of loads for 

better visual comparison, when load values are very high. 

• show_load_values: A Boolean value (True or False) that toggles whether the numerical values 

of the loads are displayed on the plot. Setting it to True will annotate the loads with their 

magnitudes. 

• draw_support_icons: A Boolean value (True or False) that determines whether icons 

representing the types of supports (fixed, pinned, roller) are drawn at the support locations. 

 

Let's use the draw method with these parameters to visualize the current state of the structure. Run 

Listing 3 to see the plot. 

Listing 3 Draw function 

s.draw() 

 

The output should look like Figure 13 the structure now appears identical to the example. 

 

Figure 13 Plot generated by the draw function. (structure only) 

 

  



16  

  

3.1.3 Add loads 

Now that the structure is set up, we can add loads to it. The Structure2D object provides two methods 

to apply loads: apply_load() for external loads and apply_support() for support reactions. In the 

example, there are four external loads: two-point loads and two distributed loads. 

The apply_load() method takes several parameters: 

• start_x and start_y: the coordinates where the load starts. 

• value: the magnitude of the load. 

• global_angle: the angle at which the load acts, measured in degrees from the positive x-axis. 

• order: the order of the load, based on the mathematical theory of singularity functions -1 for 

point loads and 0 for constant distributed loads. 

• end_x and end_y (optional): the coordinates where the load ends (required for distributed 

loads). 

Let's input the first two-point loads, Fh and Fv as seen in Listing 4 and Listing 5. Fh is a point load of 15 

kN acting at (0, 0) along the positive x-axis (0 degrees). 

Listing 4 Apply Fh point load 

s.apply_load(start_x=0, start_y=0, value=15, global_angle=0  , order=-1) 

Fv is a point load of 16 kN acting at (2, 0) downward (270 degrees) 

Listing 5 Apply Fv point load 

s.apply_load(start_x=2, start_y=0, value=16, global_angle=270, order=-1) 

For the distributed loads, we need to specify the start and end coordinates. For example, a distributed 

load of 6 kN/m acting downward between (0, 0) and (4, 0) is applied as: 

Listing 6 Apply first distributed load 

s.apply_load( 

    start_x=0, 

    start_y=0, 

    value=6, 

    global_angle=270, 

    order=0, 

    end_x=4, 

    end_y=0) 

Another distributed load from (4, 0) to (6, 1.5) is applied as: 

Listing 7 Apply second distributed load 

s.apply_load( 

    start_x=4, 

    start_y=0, 

    value=6, 

    global_angle=270, 

    order=0, 

    end_x=6, 

    end_y=1.5) 



17  

  

Next, we add the support reactions using the apply_support() method. This method takes the 

following parameters: 

• x and y: the coordinates of the support. 

• type: the type of support ('fixed', 'pin', 'roller'). 

In the example, we have a fixed support at (11, -1). The apply_support() method returns the symbolic 

reaction forces, these need to be assigned to variables (we will use these in the next step).  As our 

example has a fixed support, 3 reaction loads are returned.  

Listing 8 Apply fixed support 

Rv, Rh, T = s.apply_support(x=11, y=-1, type="fixed") 

 

In this code, Rv and Rh represent the vertical and horizontal reaction forces, and T represents the 

moment reaction at the fixed support. By using the apply_support() method, we have added support 

reactions to our structure. 

Let’s use the draw method in Listing 9 to visualize what we just added, this time we can set the 

show_load_values input to True to view the load values. 

Listing 9 Draw structure with load values visible 

s.draw(show_load_values=True) 

 

The output should look like Figure 14. We are done with the setup and have input all the information 

from the example into the structure2d class and are ready to solve. 

 

 

Figure 14  Plot generated by the draw function. (structure with loads and unknown reaction loads) 
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3.2 Solving reaction loads 
To solve the structure, we use the solve_for_reaction_loads() method of the Structure2d object. This 

method calculates the reaction forces at the supports and determines the shear force and bending 

moment equations along the structure. The method takes the following parameter: 

• *reaction_force_variables: Variables representing all reaction loads acting on the structure. 

In our example, we have reaction forces Rv, Rh, and T at the fixed support located at (11, -1). We pass 

these variables to the solve_for_reaction_loads() method to solve the structure, as seen in Listing 10. 

Listing 10 Solving reaction loads 

s.solve_for_reaction_loads(Rv, Rh, T) 

 

After running this code, the structure is in a solved state and the method will return the reaction loads. 

This means that the reaction loads at the supports have been determined, and the shear force and 

bending moment equations for each member have been calculated. 
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3.3 Output for structure2d 
With the structure solved, we can generate outputs to analyze the results. The Structure2D object 

provides several methods to display the results, including plotting the structure with loads and 

supports, printing a summary of the reaction forces and internal forces, and plotting the shear force 

and bending moment diagrams. 

First, we can print a summary of the solved reaction loads and internal forces using the summary 

method, as seen in Listing 11. This method takes an optional parameter round_digits to specify the 

number of decimal places for rounding, if set to None, it will display exact analytical values. Currently 

the exact analytical values in some cases are not always computed for the reaction loads resulting in 

numerical values, this is a known bug.  

Listing 11 Generate summary of solved state 

s.summary() 

In this summary, as seen in Listing 12: 

Reaction Loads: Displays the calculated reaction forces at the supports. The coordinates of the 

support are given in square brackets, and the unwrapped coordinate along the structure is given in 

parentheses. 

Points of Interest - Bending Moment: Lists the bending moment values at specific points along the 

structure.  

Points of Interest - Shear Force: Lists the shear force values at specific points along the structure.  

The location computation for the coordinates on the structure is not yet implemented for bending 

moments and shar forces, only the unwrapped coordinates are shown. The square brackets currently 

have place holders. 

Listing 12 Summary output 

===================== Structure Summary ===================== 
Reaction Loads: 
R_v   [11.00,-1.00]  (14.00)             = -55.0000000000000 
T     [11.00,-1.00]  (14.00)             = -435 
R_h   [11.00,-1.00]  (14.00)             = -15.0000000000000 
 
Points of Interest - Bending Moment: 
bending_moment at [x.xx,y.yy]  (0.00)    = 0 
bending_moment at [x.xx,y.yy]  (4.00)    = -80 
bending_moment at [x.xx,y.yy]  (9.00)    = -330 
bending_moment at [x.xx,y.yy]  (14.00)-  = -434.999979000000 
 
Points of Interest - Shear Force: 
shear_force at [x.xx,y.yy]  (0.00+)      = 0 
shear_force at [x.xx,y.yy]  (2.00-)      = -11.9999940000000 
shear_force at [x.xx,y.yy]  (2.00+)      = -28 
shear_force at [x.xx,y.yy]  (4.00-)      = -39.9999940000000 
shear_force at [x.xx,y.yy]  (4.00+)      = -41 
shear_force at [x.xx,y.yy]  (9.00-)      = -53.0000000000000 
shear_force at [x.xx,y.yy]  (9.00+)      = -21 
shear_force at [x.xx,y.yy]  (14.00-)     = -21.0000000000000 
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Next, we can redraw the structure as seen in Listing 13, now numerical values of the reaction loads are 

displayed. The result will look like Figure 15. 

Listing 13 Draw result including solved support reactions 

s.draw(show_load_values=True) 

 

We can also plot the shear force and bending moment diagrams using the plot_shear_force() and 

plot_bending_moment() methods, as seen in Listing 14. 

Listing 14 Plot shear force and bending moment diagrams 

s.plot_shear_force() 

s.plot_bending_moment() 
These methods generate plots of the shear force and bending moment along the length of the 

unwrapped structure, this can be seen in Figure 15. Note that due to current limitations, these 

diagrams are plotted along the unwrapped coordinate of the structure and are not overlaid onto the 

original two-dimensional geometry, this could be done another possible future enhancement for the 

module. 

 

Figure 16 Solved plots for internal forces Left: shear force graph, Right: bending moment graph 

Figure 15  Plot generated by the draw function. (solved structure) 
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Additionally, we can evaluate the shear force and bending moment at any point along the structure 

using the shear_force() and bending_moment() methods. These methods accept either an x 

coordinate or both x and y coordinates, as seen in Listing 15. 

Listing 15 Shear force and bending moment values at (2,0) 

print(s.shear_force(2,0)) 

print(s.bending_moment(2,0)) 

 

In this example, we evaluate the shear force and bending moment at the point (2, 0) on the structure. 

Due to current limitations, when using both x and y coordinates, the methods do not support 

evaluating values just before or just after a point where discontinuities may occur (e.g., at points of 

applied loads). This is important because shear forces can exhibit sudden jumps at these locations. As 

a workaround, if only the x coordinate is provided, the evaluation is performed along the unwrapped 

coordinate of the structure. This allows us to evaluate the values just before or just after a discontinuity 

by using a very small value dx as seen in Listing 16. 

Listing 16 Display shear force values just before a jump in the graph 

dx = 1e-6 

print(s.shear_force(2 - dx)) 

print(s.shear_force(2 + dx)) 
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4. Conclusion 
This project successfully demonstrated the possibility of developing a symbolic 2D structural analysis 

tool in Python using Macaulay's method as the mathematical foundation. The Structure2D module 

extends the existing SymPy Beam module, allowing it to handle 2D problems. It manages the 

complexity of 2D structural analysis by unwrapping the structure into a 1D equivalent, allowing for the 

separation and independent analysis of vertical and horizontal load effects. 

Through the development of the Structure2D module, the project leveraged the existing capabilities 

of the SymPy library, particularly the Beam module, to extend its functionality into two dimensions 

without duplicating code. By introducing new classes such as Member, Node, and Load, the tool 

effectively manages data and interactions between user inputs and computational functions. The 

unwrapping process transforms complex 2D structures into equivalent 1D representations, simplifying 

the analysis while preserving the integrity of the original structure. This tool offers significant 

educational value by providing a hands-on approach to learning structural analysis. It bridges the gap 

between theoretical concepts and practical application, allowing students and engineers to visualize 

and compute internal forces and deflections in 2D structures symbolically.  

The project's success also highlights the potential of open-source collaboration in advancing 

engineering tools. By making the code available on GitHub, it invites contributions from the 

community, inspiring further development and refinement of the tool. This collaborative approach can 

lead to the creation of new features and enhancements. 

In conclusion, the successful implementation of this proof of concept provides engineers and students 

with an symbolic approach to understanding structural behavior in two dimensions. It validates the 

central hypothesis that symbolic computation and Macaulay's method can be effectively combined to 

analyze 2D structures offering exact solutions and deeper insights into how loads and supports 

influence internal forces and deflections. 
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5. Discussion 
While the project achieved its primary goal of developing a symbolic 2D structural analysis tool, several 

limitations were identified that present possibilities for future improvement. These limitations are 

detailed in Appendix C - Limitations of the Proof of Concept, but a few of the important ones are 

described here. 

One significant limitation of the current implementation is the absence of a Column module, which 

would handle horizontal load effects and normal forces. Currently, the tool focuses only on vertical 

loads and bending moments, excluding horizontal components necessary for computing deflections. 

A new Column module could add a secondary solver to address these effects which would also resolve 

the current limitation of only one unknown horizontal support reaction. Addressing this limitation 

would be an ideal first focus for future development, as it is essential to expanding the tool’s 

functionality. Another limitation lies in the handling of complex structural geometries. The tool 

currently supports only non-branching, non-intersecting structures with members added in order. This 

restriction limits the analysis to simpler structures and excludes more complex frameworks like truss 

structures. Developing a more advanced unwrapping algorithm capable of handling branching and 

intersecting members would significantly increase the number of problems that could be solved with 

the tool. 

The assumption of uniform material properties across all members is another area for improvement. 

In practical engineering scenarios, structures often consist of members with varying elastic moduli, 

cross-sectional areas, and moments of inertia. However currently the beam module does not support 

different moments of inertia for beam sections. This needs to be developed first before the 

Sturecture2D module is upgraded and is therefore a lower priority. 

By addressing these areas, the tool can evolve beyond a proof of concept into a robust analytical 

resource for structural engineering students and educators. The synergy between classical engineering 

methods and modern computational techniques demonstrated in this project shows potential in 

educational environments. 
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Appendix A - Example from Chapter 3 
This is the example as one complete snippet of code that is used in Chapter 3, feel free to paste this in 

your IDE to try it out.  

from sympy.physics.continuum_mechanics.structure2d import Structure2d 

 

%config InlineBackend.figure_format = 'svg' 

 

E = 3e4 

I = 1 

A = 1e4 

 

s = Structure2d() 

s.add_member(x1=0, y1=0, x2=4 , y2=0 , E=E, I=I, A=A) 

s.add_member(x1=4, y1=0, x2=8 , y2=3 , E=E, I=I, A=A) 

s.add_member(x1=8, y1=3, x2=11, y2=-1, E=E, I=I, A=A) 

 

Rv, Rh, T = s.apply_support(x=11, y=-1, type="fixed") 

 

s.apply_load(start_x=0, start_y=0, value=15, global_angle=0  , order=-1) 

s.apply_load(start_x=2, start_y=0, value=16, global_angle=270, order=-1) 

 

s.apply_load( 

    start_x=0, 

    start_y=0, 

    value=6, 

    global_angle=270, 

    order=0, 

    end_x=4, 

    end_y=0, 

) 

 

s.apply_load( 

    start_x=4, 

    start_y=0, 

    value=6, 

    global_angle=270, 

    order=0, 

    end_x=6, 

    end_y=1.5, 

) 

s.solve_for_reaction_loads(Rv, Rh, T) 

 

s.summary(round_digits=None) 

 

s.draw(show_load_values=True) 
 



26  

  

Appendix B - Overview of the Existing Beam Module 
In Figure 17 the functionality of the Beam module is detailed. The module creates a beam class where 

loads can be applied using prebuilt load configurations. For instance, when a distributed load (order 0 

or higher) is added, the function automatically manages the inverse equation to turn the load off after 

a specified length. Another example is when a rotational hinge is applied the code automatically 

introduces the necessary boundary conditions and loads with the appropriate order. After all loads are 

added an equation for the entire beam is assembled after which the equation simply needs to be 

integrated to get the equations for shear force bending moment and deflection.   

 

 

Figure 17 Overview of the Existing Beam module 
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Appendix C - Limitations of the Proof of Concept  
Due to time constraints, several design choices have been made to limit the scope of the project and 

ensure the development of a functional proof of concept. These limitations include the following: 

• Sign Convention: A consistent sign convention is applied to all forces and reactions. The positive 

direction for the x-axis is to the right, and for the y-axis, it is downward. 

Reason: This is the standard convention used at Technische Universiteit Delft. Implementing a 

more general sign convention would require multiplying equations by negative values in various 

places where angles and directions are computed. Additionally, the drawing function 

automatically flips signs, which would necessitate an in-depth analysis of each equation to 

determine how to adjust the sign. 

• Column Module: The column module was not implemented. 

Reason: Developing this module would require building an entirely new system that functions 

similarly to the existing beam module. Since the principles and architecture used in the 

structure2D module could be applied to the beam module, building the column module is 

unnecessary for this stage as it would add little conceptual benefit. 

• Analysis Scope: The analysis considers only bending moments and shear forces, excluding other 

factors. 

Reason: This decision is a direct result of choosing not to implement the column module, which 

would have enabled the consideration of other forces. 

• Non-Branching Structures: The tool supports only non-branching or non-intersecting structures. 

Each member must be connected to only one other member at each end or remain 

unconnected. Members are added sequentially, following the unwrapping order of the structure 

from left to right or right to left. 

Reason: Branching requires "cutting" the structure into pieces before unwrapping. Implementing 

an algorithm to effectively do this is challenging, as it involves searching a tree structure and 

determining how to minimize the number of cuts. The current implementation is faster and 

simpler, assembling all members in order, end-to-end. 

• Uniform Material Properties: All members must have the same values for elastic modulus (E), 

cross-sectional area (A), and moment of inertia (I). 

Reason: The current code tracks only the coordinates of members, not their individual properties. 

Adding support for varied material properties would require significant changes in how members 

are tracked. 

• Support Restrictions: Supports can have only one unknown reaction force in the horizontal 

direction. 

Reason: The current solver is based on the beam module, which does not include a solver for 

horizontal forces. To work around this limitation, the tool allows only one free horizontal support 

reaction, making use of Newton's third law (𝛴𝐹 =  −𝛴𝐹) to solve for a simple equilibrium. 

 


