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1 Introduction and Problem Definition

The city of Amsterdam has recently installed environmen-
tal zones to reduce air pollution. The zones prevent diesel
engines from entering, which caused a surge of heavy elec-
tric garbage trucks in Amsterdam [1]. Unfortunately, these
heavy vehicles induce subsidence of the city’s ’grachten-
gordels’. To prevent this, the city of Amsterdam is ex-
ploring other methods of transportation [2]. In [3], Daub
presents a solution for the household waste collection,
using the autonomous vessels developed by the roboat
project to pick-up containers situated at 283 predefined lo-
cations 1. Resembling the current pick-up schedule, Ams-
terdam was divided into sections, with a weekly pick-up
day assigned to each section. In addition to household
waste, companies in the hospitality sector located near the
canals also generate waste. This waste however, is often
collected by third party companies [4]. Two consequences
of this system are: (i) no data is gathered and (ii) the
third party companies continue using the simpler heavier
garbage truck. In this paper, we consider the waste gener-
ated by hotels along the canals in order to address this.

We formulate a real-time waste collection inventory
routing problem and propose an efficient Adaptive large
Neighbourhood Search (ALNS) algorithm for the solu-
tion. In this problem, the vessels have a capacity of three
full containers, totalling a maximum weight of one ton.
A single depot exists, where the vessels are emptied and
recharged. When a vessel arrives to pick-up a container, it
is swapped with an empty one. In this system, each con-
tainer measures the amount of waste it contains and the
time since it was last served. Both parameters are then
combined into a score, i.e., the score increases with the
waste level and with the time since last visit. This score is
minimised by the ALNS algorithm to optimise the waste
collection problem. In Figure (1), a single vessel’s solution
for an arbitrary network is illustrated. In this example, the
vessel recently picked up container B, which is now on-

1The roboat project is a collaboration between the Amsterdam Insti-
tute for Advanced Metropolitan Solutions and the Massachusetts Institute
of Technology. In developing a fleet of autonomous floating vessels for
the city of Amsterdam, it investigates the potential of self-driving tech-
nology to change our cities. http://www.roboat.org

Figure 1: Illustration for a single vessel. The orange arcs repre-
sent the remaining route, the orange nodes represent containers.
Each container is indicated by its weight, time since last service
and the associated score (top - bottom). The grey arcs connect
the grey nodes in both directions. The rectangular vessel carries
one full and two empty containers. The red node is the depot.

board. Container B’s weight and time since service are
therefore very low. Since this container should not be re-
visited any time soon, the score equals zero. Containers
C and D both have a low score due to the large amount of
waste and the long time since being serviced respectively,
and are thus included in the vessel’s route. Container A
however, is less attractive to visit, since its score is rela-
tively high, and is thus excluded from the route.

The waste collection problem has existed since
1974, when Beltrami and Bodin aimed to improve the effi-
ciency of the New York City Department of Sanitation [5].
The efficiency of such departments was found to be highly
important, as up to 80% of waste disposal costs occur dur-
ing the collection phase [6], [7]. For this specific type of
optimisation problem, heuristics have been heavily used
due to the computational demand of real world problem
sizes.



Today, the rise of the Internet of Things (IoT) and
cheap electronics, allow the design of smart low cost and
low power power trash bins, that measure their weight, fill-
ing volume and temperature [8], [9].

The ALNS was introduced for a pick-up and De-
livery Problem with Time Windows (PDPTW) by Ropke
and Pisinger [10]. It was found to be advantageous to use
multiple competing subheuristic operators. Since then, the
ALNS has been used for different problems and with more
complex operators.

In this paper, an efficient ALNS algorithm is pro-
posed, which includes a roulette wheel selection mecha-
nism that chooses a single operator at each iteration based
on the operators past performance, accepts new solutions
based on simulated annealing , uses A* as the route plan-
ning algorithm and allows the infeasible regions to be
searched by having soft capacity constraints with penalty
terms in the objective function. This ALNS algorithm is
then compared to static problems to select the best per-
forming parameters. We evaluate the performance with a
case study of 86 hotels facing the canals in Amsterdam.
Besides, the concept of the collection system making use
of smart containers and small autonomous vessels is an-
other novelty.

2 Methodology

The methodology consists of two types of processes: (i)
real-time simulation of the environment each time step and
(ii) (re-)optimising a static waste collection problem with
the updated inputs generated by the environment. With
these two processes, the dynamic nature of the problem is
ensured. In Table (1), we provide the used notation. We
first present how the real-time simulation is handled and
then present the static waste collection problem which is
used to re-optimise the system at time steps where new
information is received.

2.1 Real-time simulation

First, at each time step, the progress of all vessels is sim-
ulated. If t exceeds the opening hour µt and lower than
the closing hour σ, all vessels move forward at a constant
speed. Their progress is saved as a fraction of the current
edge length, and once this fraction exceeds 1, the current
edge is deleted and the remaining progress is carried over
to the next edge. If the deleted edge contains a pick-up lo-
cation, the collected waste is registered and removed from
container’s waste level, wi,t, the container ηi,t is updated to
reflect the last visit time, the vessel’s remaining capacity
γk,t is adjusted and δ is subtracted from the progress of the
next edge.

Secondly, for each time step a vessel spends at the
depot, its battery level increases by κk. Note that each ves-
sel is at the depot for at least ∆ hours, before departing
again.

Thirdly, at each time step, each container generates
waste therefore the weight wi,t is updated. The amount

generated over all time steps in a day is equal to the ex-
pected amount of waste generation for each hotel.

Finally, at each time step, and for each vessel, the
remaining length of each route and the score of each con-
tainer λi,t, and thus the total score f (s)t, as explained by
equation (2) and (1), is recalculated.

2.2 The mathematical formulation for the static
waste collection problem

The waste collection problem is formulated as a MILP.
The objective function (1) is built up of three parts: costs,
score and distance travelled. The first cost, Ck, represents
the cost of using a vessel and variable zk keeps track of the
utilisation of each vessel k. Second cost term is related to
the score of each container and the third term is the trans-
portation cost. Additionally, ςk and ψk are added as penal-
ties for violating the capacity constraint of the vessel and
the battery capacity respectively. This allows the ALNS
to escape local optima by considering infeasible solutions
during the course of the algorithm. When the constraint is
not violated, the cost equals 0.

f (n)t =
∑
k∈K

Ckzk +
∑
k∈K

∑
i∈N

(ςk + λi,t)yi,k+∑
k∈K

∑
j∈N

∑
i∈N

∑
p∈P

(ψk + πi, j,t)xi, j,k,p (1)

Secondly, the score λi,t of each container is calcu-
lated at each t ∈ T by equation (2) which basically says
that the score is 0 when we are below the time and waste
level limits and at its maximum magnitude, -40, when we
are above those limits. When it between, the score depends
on the sensitivity to the waste level, ρ and sensitivity to the
time since last visit, ε.

λi,t =



0 if ηi,t < ξ

0 if ωi,t < ε

−40 if ηi,t ≥ ζ

−40 if ω ≥ ϑ
−ρωi,t − εηi,t, otherwise

(2)

The objective function is subject to several con-
straints including basic vehicle routing constraints with
single depot, capacity of the vessels, battery capacity and
time.

2.3 Adaptive large neighbourhood search

At each iteration of the ALNS, a single operator is chosen
through a roulette wheel selection mechanism and a neigh-
bouring solution s′ is proposed. This solution is evaluated
based on a simulated annealing approach. A solution with
a better score, f (s′)t < f (s)t is always accepted, while the
probability of accepting a worse solution is given by:

P(s = s′) = P
(
( f (s)t − f (s′)t) rnd() < T0cn

)
(3)

In this simplified form of simulated annealing [11],
the initial temperature T0 decreases by a cooling factor c



Table 1: Notations

Sets
K Set of vessels k ∈ K T set of time steps t ∈ T
N Set of nodes i, j ∈ N P Set of route sections p ∈ P
Parameters
πi, j Travel distance of arc(i,j).
µt, σ Lower and upper bounds for the time window for all vessels at time t.
δ Service duration of all containers.
∆ Depot time of all vessels.
ε, ϑ Lower and upper bounds for the pick-up waste level for all containers.
hi Binary indicating if node i is a pick-up location.
ξ, ζ lower and upper time limit between pick-ups for all containers.

dk,t
Maximum travel distance of vessel k at time t, based on its
battery level.

κk Charging speed of vessel k at the depot.
ρ Waste scoring factor of all containers.
ε Time scoring factor of all containers.
Ck Cost of using vessel k.
ςk Cost of surpassing the capacity of vessel k.
ψk Cost of surpassing the battery capacity dk,t of vessel k.
ωi,t Waste level of container i at time t.
ηi,t Time since container i was last served at time t.
λi,t The score associated with container i at time t.
S k,t Starting time of vessel k at time t.
Ri Number of rooms linked to container i.
s Current solution.
n Iteration step in the ALNS.
Binary Decision Variables
xi, j,k,p if vessel k traverses edge (i − j) as the p-th section of its route, 0 o/w.
yi,k 1 if vessel k picks up the waste on point i, 0 otherwise (binary).
zk,t 1 if vessel k is used at time t, 0 otherwise (binary).

at every iteration n. After the evaluation of the solution,
the performance of the chosen operator is registered as
f (s)t − f (s′)t. The probability of choosing this operator
during the next iteration is then based on its past perfor-
mance over the last 20 executions with respect to the other
operators. A predetermined probability order is awarded
to the operators Pop,rnk and to the operator category Pcat,rnk

based on their ranking. The probability of choosing a spe-
cific operator is thus given by their product: Pop,rnkPcat,rnk.
To obtain a more predictable CPU time, the stopping crite-
rion is set by a maximum number of iterations. Note that,
in this problem, not all vessels in K have to be used, and
not all customers in hi have to be visited, so the number of
customers or vessels removed does not necessarily equal
the number inserted.

There are various operators defined within the
ALNS algorithm. The following are the change operators:

• Swap Operator. Randomly removes a container from a
random vessel and swaps it with another randomly cho-
sen vessel and container.

• Reorder. Randomly chooses a container of a random
vessel and swaps the visiting order.

• Donate Operator. Randomly chooses a container in a
random vessel and donates it to another vessel. The re-
ceiving vessel and visit order are chosen based on the
minimum euclidean distance.

The destroy operators are given as:

• Random customer removal. Removes a random con-
tainer from a random vessel.

• Worst customer removal. Chooses a random vessel and
finds the worst performing container pick-up and re-
moves it for the vessel’s route.

• Remove random vessel. Removes the entire route of ran-
domly chosen vessel.

Finally, the following repair operators are used:

• Random customer insertion. Picks a random container
not in s and places it at random location on a random
vessel’s route.

• Closest customer insertion. Picks a random container
not in s and places it on the closest path of an existing
route.

• Greedy vessel insertion. Finds a vessel with no route
in s and builds a route until it reaches maximum capac-
ity or until no containers exist with non-zero waste, i.e.



λi,t > 0. The containers and their order are chosen by
consecutively selecting the closest option in terms of eu-
clidean distance.

2.4 A* path planning

The A* algorithm was first presented in [12] and can be
viewed as a heuristic extension of Dijkstra’s algorithm
[13].

Consider the simple network in Figure (2), where a
vessel travels from the depot to container A to C, and back
to the depot. Between A and C the route: depot - A-1-3-
4-6-C - depot is used. When container B is added by the
random customer insertion operator between A and C, the
A* algorithm will create a temporary route: A-1-2-B-5-6-
C. This temporary route is then inserted in the old route,
creating: depot - A-1-2-B-5-6-C - depot.

Figure 2: A detailed view of a graph network, showing how con-
tainer node A,B and C are connected. The depot and the network
connecting A and C to the depot is not shown.

3 Numerical Experiments

We performed numerical experiments for the Amsterdam
case presented in the introduction section.

3.1 Parameter selection for the ALNS

In this section, the simulated annealing initial temperature
T0, the simulated annealing cooling factor c, the number
of iterations n, the predetermined operator probability dis-
tribution Pop,rnk and operator category probability distri-
bution Pcat,rnk are investigated. The other parameters: κk,
dk,0, υ, Ck, ςk and ψk are set to 14.8 km/h, 40 km, 3.6 km/h,
5, 40 and 50 respectively.

In the dynamic version of the system, numerous ini-
tial situations exist, that can all require different strategies.
Here, the aim is to choose T0, c, Pop,rnk and Pcat,rnk in such
a way that the ALNS performs well in both cases.

First, looking at the simulated annealing, the score
of each container λi,t is uniformly set to -15. Then, for dif-
ferent values of T0 and c, the ALNS is run starting with an
initially empty solution and twelve available vessels, and
with an initially mediocre solution (named "full solution").
For the latter, a solution with the same number of pick-ups
as the best found solution was chosen, to contrast the op-
erator selection of the empty initial solution. The ALNS
was run 500 times and obtained the best average solution
for T0 and c equal to 5 and 0.997 respectively. To simulate

an ALNS that can only hill climb, the initial temperature
T0 was set to 10e-5 and the cooling factor to 1. For the
empty and full initial solution, the average score equalled
−471 ± 6.1 and 507 ± 0.2 respectively.

Next, since the initial solutions have shown to per-
form similarly, the influence of Pop,rnk and Pcat,rnk is inves-
tigated using only the empty initial solution. Since ALNS
has three categories, each containing three operators, the
probability is given by the following equation:

Pcat,rnk =
χ(3−rnk)

cat∑rnk=3
rnk=1 χ

(3−rnk)
cat

(4)

The value of χ(−) is ranged between 0.7 and 2.95. The
lowest score was achieved for χop = 2.5 and χcat = 2.05.

3.2 Benchmark comparison

Using the best performing parameters found in section
(3.1), we compare the ALNS to an exact approach (Gurobi
solver) under the static setting in two sets of experiments:
(i) small size problem where the optimal solution is avail-
able and (ii) full size problem where optimal solution is
not available and the best found solution is used instead.
We present the mean values for ALNS with a 99% confi-
dence interval. The ALNS is repeated 500 times for 850
iterations across all the experiments.

The small size problem consists of 19 nodes and 8
pick-up locations, sampled from the full size problem. The
pick-up locations are given a different score, ranging from
-1 to -12. The performance is measured in score, total
distance and number of vessels used as displayed Table
(2). It is shown that the ALNS approaches the optimal
solution by 1.6% on average with a CPU time of 3.5s.

Table 2: Results for the small size problem

ALNS Mean Low High
Score −31.4 ± 0.06 -31.85 -30.15
Distance (km) 5.5 ± 0.10 5.15 7.85
Pick-ups 6.1 ± 0.08 6 8
Time (s) 3.5 ± 0.05 2.97 5.25

Optimal Value
Score -31.9123
Distance (km) 5.1234
Pick-ups 6
Time (s) 5 × 104

No optimal result for the static full size problem (where
there are 402 nodes in total 86 of which are container loca-
tions) was available, the lowest found objective function,
i.e., score, still provides insights into the performance of
the algorithm. The same setup is used as in (3.1). The re-
sults are displayed in Table (3). From these results, it can
be seen that the algorithm approaches the best found score
for the full size problem by 4.2% on average.



Table 3: Results for the full size problem with ALNS

ALNS Mean Low High
Score -378 ± 1.1 -393.86 -344.42
Distance (km) 97 ± 0.66 86.14 122.27
Pick-ups 35.7 ± 0.08 33 36
Time (s) 6.0 ± 0.02 5.55 6.63

Best found Value
Score -393.86
Distance (km)) 86.14
Pick-ups 33

3.3 Dynamic experiments

The performance of the ALNS is measured over t =

{0, ..., 40320}, with t representing one minute. Here, the
performance is indicated by the overflowing frequency
when wi,t > ϑ. The values for µ0, σt, δ, ε, ϑ, ξ and ζ
are 7 am, 20 pm, 5 min, 50 kg, 300 kg, 6 h and 120 h re-
spectively. The maximum number of vessels is 20 and the
re-optimisation frequency is 12 min.

The value of ρ and ε represent the planner’s sensi-
tivity to the waste level wi,t and time since last visit ηi,t

while their ratio prioritises one’s scoring over the other. In
Figure (3), ρ and ε are varied.

Figure 3: The Number of overflowing containers for different
values of ρ and ε, using the ALNS

The ALNS is able to achieve a lower overflow and a
higher efficiency compared to a greedy method that works
based on a threshold value, without compromising on the
late pickups. Choosing these values means that over a one
month period, we can expect approximate 1728 pickups, 6
overflowing containers, 302 late pickups and an efficiency
of 32.6 kg per km travelled.

4 Conclusions and Future Directions

This paper presents a novel approach to the waste col-
lection problem for the canals in Amsterdam with au-
tonomous vessels and smart containers. An efficient
ALNS algorithm is proposed for the solution of the prob-
lem and thanks to re-optimisation, it is able to respond to
the environment’s waste generation in a dynamic fashion,
while avoiding overflowing of containers and improving
the routing efficiency. The computational time is small
enough to allow for a time step of one-minute.

Ongoing work investigates different waste generat-
ing scenarios and multiple re-optimisation strategies. Fu-
ture work could look into a heterogeneous set of containers
with different sizes, to reduce the number of late picks. Be-
sides, smarter, more complex operators can be investigated
to enable the ALNS converge to a better solution. Further-
more, stochastic version of this framework is a promising
future direction.
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