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Abstract. The implementation of effective and sustainable Structural Health 

Monitoring (SHM) systems for the evaluation of infrastructure conditions is critical 

to address the deterioration and damage experienced by structures worldwide. Given 

the vast number of structures involved, resorting to traditional in-situ visual 

inspections and data gathering methods is becoming increasingly unfeasible. 

Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) has 

recently gained attention as a viable solution for long-term SHM. This remote sensing 

technique combines multiple satellite radar images to measure changes in the Earth’s 

surface over time. Unlike conventional techniques, MT-InSAR does not require in-

situ installations and offers extensive coverage, enabling observations across diverse 

location and structures. 

However, the applicability of MT-InSAR monitoring depends on the relatively 

unpredictable distribution and location of permanent scatterers (PSs), which are 

influenced by surface characteristics and vegetation changes. Evaluating the 

reliability and capacity of MT-InSAR is therefore crucial to enhance its effectiveness 

in assessing the location and extent of structural damage. 

In this study, we present an effective approach to determine the optimal number 

and position of PSs for detecting different structural damage mechanisms. The 

approach is exemplified through a case study of a quay wall in Amsterdam, with data 

inputs simulated using the Finite Element Method. The proposed method has the 

potential to evaluate the feasibility of MT-InSAR for a broader range of scenarios, 

enabling to detect specific structural conditions. 

 

Keywords: MT-InSAR, Structural Health Monitoring, Permanent Scatterers, Sensor 

Placement, Quay Walls 
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1. Introduction  

Civil infrastructures deteriorate over time due to ageing and environmental impacts, making 

Structural Health Monitoring (SHM) increasingly important, especially as structures age 

beyond their design life. Current damage detection approaches primarily rely on visual 

inspections and non-destructive tests [1, 2], which are costly, labour-intensive and offer 

limited coverage [3, 4]. Multi-Temporal Interferometric Synthetic Aperture Radar (MT-

InSAR) offers a cost-effective, wide coverage alternative [5]. MT-InSAR processes a subset 

of pixels known as Permanent Scatterers (PSs), which exhibit stable backscattering 

characteristics over time [6]. The technique can achieve a millimetric accuracy [7] in 

displacement measurements, comparable to some conventional SHM methods.  

Numerous studies have demonstrated the MT-InSAR's efficacy in detecting 

displacements and indicating damage conditions [8-10], with previous research primarily 

focusing on identifying abnormal displacements as a key method for structural damage 

detection [11]. However, PSs present uncertainties due to their unpredictable locations and 

distribution [5, 12]. The effectiveness of MT-InSAR as a SHM method hinges on its ability 

to accurately reconstruct a structure's entire displacement pattern from the available PSs. 

Since displacement patterns and their evolution differ across various damage scenarios, the 

key to MT-InSAR's utility in SHM lies in the adequacy of PSs to capture these patterns 

comprehensively. 

To quantify such capability, this study aims to determine the necessary number and 

positions of PSs to fully and accurately reconstruct the displacement pattern corresponding 

to each damage scenario, using a structure-based inverse approach. Utilising displacement 

data, we retroactively identify optimal PSs locations, supported by a numerical model 

simulating the structure's damage progression. This model helps derive displacement data 

from damage onset to failure. By applying an Optimal PS Locations Selection (OPLS) 

algorithm, grounded in sparse sensor placement optimization principles [13], we aim to 

identify the optimal PS locations. 

2. Methodology 

The proposed structure-based inverse approach aims to determine the optimal PSs locations 

for a full detection of specific failure mechanisms, with the final objective of assessing MT-

InSAR's capabilities for different structures and different load scenarios. Firstly, possible 

damage mechanisms are determined for the target structure. Then, the evolution of 

displacement patterns for these damage mechanisms are simulated numerically. Finally, the 

displacement patterns are processed to identify the optimal PSs locations via OPLS, ensuring 

comprehensive capture of the entire damage behaviour. 

Possible Damage Mechanisms The first step consists in the identification of the 

potential damage mechanisms for the target, and the exclusion of those mechanisms that 

could not be detected by MT-InSAR monitoring. This filtering process is primarily guided 

by two criteria. Firstly, MT-InSAR can only detect surface movements of structures, and 

therefore any damage mechanisms that do not induce displacement on the surface of the 

structure should be disregarded. Secondly, considering the time intervals between each 

observation, MT-InSAR may fail to detect mechanisms characterized by very short duration 

from damage initiation to collapse. 

Evolution of Displacement Patterns Through numerical simulations, displacement 

patterns from the previously selected mechanisms can be extracted at various steps of the 

progressive damage evolution. These displacement patterns serve as the basis for identifying 

the optimal PSs locations. 



 

3 

Optimal PSs Locations Selection (OPLS) Once the displacement patterns are 

obtained from numerical simulation, the optimal PSs locations can be determined using the 

OPLS method. The vector of PSs displacements can be described by: 

𝒚 = 𝑪𝒙 ⑴. 
where 𝑪 represents the matrix of PSs locations and 𝒙 is the complete displacement vector of 

the structure, which represents a specific damage mechanism at a given time. In general, it is 

in a high-dimensional state and can be represented sparsely using a basis 𝚿: 

𝒙 = 𝚿𝒔 ⑵. 
where 𝒔 is a sparse vector indicating the active modes in 𝚿. 

The basis matrix 𝚿 in Equation 2 is generated from the numerical simulation. Each 

column of 𝚿 represents one structural point (a PS candidate), while each row corresponds to 

one time interval or load step during the damage evolution. Ideally 𝚿  contains all the 

information of one damage mechanism. No matter when MT-InSAR analysis is performed, 

we always can represent the MT-InSAR process as: 

𝒚 = 𝑪𝒙 = 𝑪𝚿𝒔 ⑶. 
To reconstruct the displacement data for the entire structure, the primary step involves 

obtaining the sparse vector 𝒔 using Moore-Penrose pseudoinverse [14]: 

𝒔 = (𝑪𝚿)†𝒚 ⑷. 

In this case, optimizing PSs locations equates to obtaining an optimal matrix 𝑪, 

ensuring minimal impact of disturbances in the detected displacement matrix 𝒚, like noise, 

on 𝒔  and, by extension, 𝒙 . This optimization problem can be re-framed as making the 

pseudoinverse 𝑪𝚿 as well-conditioned as possible.  

There are several methods available for controlling the condition number of a matrix 

[15, 16]. In this research, we opted for a specialized Quadrature-based Discrete Empirical 

Interpolation Method known as pivoted QR factorization [17]. This choice is favoured due 

to its simplicity, cost-efficiency and wide-applicability.  

For a potential damage mechanism, the pivoted QR factorization of a basis matrix 𝚿 

produces three matrices: an orthonormal matrix 𝑸, an upper triangular matrix 𝑹, and the 

measurement matrix 𝑪 identified by the pivot column: 

𝚿⊤𝑪⊤ = 𝑸𝑹 ⑸. 
Pivots provided by QR factorization indicate the ranking of potential PSs. 

Determining the optimal number of PSs to capture the tested structure's behaviour often 

necessitates additional steps. As mentioned, the primary objective of MT-InSAR is to 

reconstruct the entire displacement pattern accurately. Therefore, the discrepancy between 

the reconstructed displacement pattern and the ideal pattern in the basis matrix or simulated 

in numerical modelling serves as a verification method for determining the necessary number 

of PSs. While various reconstruction methods exist, ranging from linear to nonlinear mapping 

techniques [18, 19], here we used the simplest approach, i.e. linear mapping, to test the 

overall approach effectiveness. 

3. Case Study 

The proposed methodology was implemented to determine optimal PSs location for a historic 

quay wall, located on Marnixkade, representative of the ones situated in the city centre of 

Amsterdam. The quay wall geometry is depicted in  Fig. 1. The commercial software Diana 

FEA was used for the numerical simulation [20].  Further details on the structure and the FE 

model are available from previous studies [21]. 
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Fig. 1. Geometry of the Marnixkade quay wall [21]  

(A) Transversal cross-section and (B) Plan view. 

4. Analysis and Results 

As an initial theoretical scenario, the analysed structure was tested by simulating the 

incremental application of lateral forces until failure. Such forces are obtained by considering 

the redistribution through the soil to the masonry wall and the adjacent timber floor of vertical 

loads corresponding to a truck located on the road next to the quay at a distance of 4 m. In 

addition to enabling a relatively straightforward tracking of displacement evolution, this load 

case scenario led to considerable displacements at the quay wall top surface, meeting the 

criteria for potential damage mechanisms detectable by MT-InSAR, as detailed in Section 2. 

Fig. 2 shows the displacement pattern of the quay wall at the end of the incremental load 

application. 

 
Fig. 2. Horizontal displacement and deformed configuration of the quay wall at the final load step 

(Displacement scale factor: 10) 

The OPLS algorithm was applied to this displacement pattern. Following the ranking 

of nodes using pivoted QR factorization, we used the reconstruction error as a criterion for 

determining the required number of PSs, as outlined in Section 2. To ensure the accuracy of 

this determination, both the maximum absolute error and the mean square error, defined in 

terms of nodal displacements, were considered. The maximum absolute error was utilized to 

A B 
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quantify any abnormal deviations within the structure, while, the mean square error provided 

insight into the overall reconstruction behaviour, which is crucial. In total, the numerical 

model comprises 23,039 nodes, all of which serve as potential candidates for OPLS. In Fig. 

3, the reconstruction errors have been successfully minimized to 0.002793 mm by selecting 

three PSs. This level of precision significantly exceeds the submillimetric accuracy of MT-

InSAR [7]. 

  
(a) Maximum absolute error (b) Mean square error 

Fig. 3. Reconstruction error 

The precise location of the three selected PSs is depicted in Fig. 4. The top-ranked PS 

is positioned at the centre of the quay wall, coinciding with the area exhibiting the largest 

displacement pattern. The second and third PSs are situated on either side of this central PS, 

somewhat near the boundary of the quay wall area experiencing significant displacement. 

This demonstrates that a limited number of available PSs can effectively identified broad 

failure patterns within a structure. The approach can be extended to different failure 

mechanisms and structural sections, moving beyond the limit of specific pinpoint locations, 

in this way accommodating the uncertainties associated with the precise positioning of PSs. 

The approach has therefore the potential to establish the minimal point requirements needed 

to reliably detect likely deterioration processes and failure mechanisms across different 

infrastructure assets. 

 
Fig. 4. Optimal PSs locations 

5. Conclusion 

In this paper we introduced a structural-based inverse approach to establish a benchmark for 

evaluating the efficacy of MT-InSAR in detecting structural failures. The method involves 

initially identifying which failure mechanisms can be detected by MT-InSAR. For these 
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detectable mechanisms, numerical models simulate the entire failure process, and a selected 

failure configuration is analysed using the OPLS algorithm to identify optimal PS locations. 

The approach is validated through the application of lateral loads to a quay wall FE model, 

indicating its potential future applicability to different structures and failure mechanisms.  
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