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A B S T R A C T

Unmanned Aerial Vehicle (UAV) maneuver strategy learning remains a challenge when using Reinforcement
Learning (RL) in this sparse reward task. In this paper, we propose Subtask-Masked curriculum learning for RL
(SubMas-RL), an efficient RL paradigm that implements curriculum learning and knowledge transfer for UAV
maneuver scenarios involving multiple missiles. First, this study introduces a novel concept known as subtask
mask to create source tasks from a target task by masking partial subtasks. Then, a subtask-masked curriculum
generation method is proposed to generate a sequenced curriculum by alternately conducting task generation
and task sequencing. To establish efficient knowledge transfer and avoid negative transfer, this paper employs
two transfer techniques, policy distillation and policy reuse, along with an explicit transfer condition that
masks irrelevant knowledge. Experimental results demonstrate that our method achieves a 94.8% success rate
in the UAV maneuver scenario, where the direct use of reinforcement learning always fails. The proposed RL
framework SubMas-RL is expected to learn an effective policy in complex tasks with sparse rewards.
. Introduction

The advantages of the Unmanned Aerial Vehicle (UAV) successfully
xecuting 4D (dull, dirty, dangerous, and deep) tasks have attracted
ide attention in the defense industry (Choi et al., 2018; Hou et al.,
023). In the denied environments, the increasing potential threats
everely threaten the safety of UAVs (Jia et al., 2022; Sun et al.,
015). Despite numerous evasive maneuver strategies for evading an
ir-to-air missile, finding a maneuver strategy that can evade multiple
issiles remains an open problem that limits the survival probability

f UAVs (Yang et al., 2020; Yomchinda, 2015). It is urgent to improve
aneuver decision-making ability and enhance safety for the UAV.

Reinforcement Learning (RL) has been attached tremendous atten-
ion due to its human-level performance in challenging tasks such as
tari games, robotic control, and navigation tasks (Sutton and Barto,
018; Mnih et al., 2015; Levine et al., 2016). It is a promising way
o apply RL algorithms to solve the UAV maneuver decision-making
roblem (Hu et al., 2022). Regarding long-horizon tasks, the RL agent
epends on dense rewards to train and construct long-term decision se-
uences (Xu et al., 2022; Nagpal et al., 2020). However, reward signals
re highly sparse in the UAV maneuver decision-making problem due to
he lack of expert experience (Sun et al., 2021). To our best knowledge,
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Y. Li).

dealing with the sparse reward is still an open problem that hinders
wider applications of RL algorithms.

Recent developments in RL have improved exploration efficiency in
sparse reward tasks (Zhang et al., 2020; Sohn et al., 2018; He et al.,
2022). In the setting of hierarchical RL, the task is decomposed into
subgoals with finer time resolutions, and the action space is grouped
into different scales to form a high-level option that chooses low-
level policies (Bacon et al., 2017; Florensa et al., 2017; Eysenbach
et al., 2018). These goal-conditioned methods usually assume that each
subgoal belongs to different temporal scales, so as to select different
policies according to subgoals at each time step (Levy et al., 2017).
Unfortunately, in some complex tasks, the agent must handle different
subgoals simultaneously, e.g., multiple missiles in the UAV maneuver
scenario. Another example is the Super Mario game, where Mario
needs to jump across platforms and collect coins while evading Goom-
bas. However, goal-conditioned methods fail to handle these subgoals,
which may overlap in temporal scales.

Different from hierarchical RL, curriculum learning in RL aims to
construct a set of easier source tasks (a curriculum) inherited from
a target task, in order to accelerate learning speed (Narvekar et al.,
2020). Narvekar et al. (2016) proposed the concept of task dimension
simplification, which simplifies complex tasks with different degrees
of freedom and restrictions. For instance, we can remove coins or
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Fig. 1. The overall workflow of training an agent for a target task by SubMas-RL, which is composed of two key components. Subtask-Masked Task Generation (left module)
erves to generate a sequenced curriculum by masking one or more subtasks. Transfer-Masked Knowledge Transfer (right module) aims to transfer the knowledge learned from
ntermediate tasks to accelerate training in the target task.
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oombas in Super Mario games to generate an easier game. In contrast
o mutually exclusive subgoals, collecting coins and evading Goombas
n Super Mario games can be regarded as subtasks, which are allowed
o overlap in temporal scales. This idea provides a new perspective
or solving complex tasks which can hardly be decomposed into sub-
oals. However, the task dimension simplification method proposed
n Narvekar et al. (2016) relies on the knowledge of the domain’s
arameterization and lacks a practically general algorithm.

Drawing inspiration from Narvekar et al. (2016), this paper focuses
n a target task composed of a final goal and multiple subtasks. In
he UAV maneuver scenario, evading one missile can be considered
subtask, and the final goal is to reach the destination. For curricu-

um learning, we investigate task generation, task sequencing, and
nowledge transfer under the subtask setting. As a first step towards
urriculum development, we consider how to automatically generate
asier source tasks by removing one or more subtasks from the target
ask. The removal of subtasks reduces the difficulty while transform-
ng the target task’s Markov Decision Process (MDP), including state
pace and reward functions (Abel, 2022). It is significant to build the
onnection between tasks and construct inter-task mapping. Then, we
onsider how to automatically sequence source tasks into a curriculum
nder the subtask setting. Previous work employs MDP elements as
rdering metrics, such as initial state, reward function, and transition
istribution (Ivanovic et al., 2019). It is worth noting that the difficulty
f source tasks is not explicitly related to the above elements but
epends on subtasks. Finally, we consider how to transfer knowledge
etween tasks with different subtasks. Drawing inspiration from trans-
er learning, the knowledge encoded into trained source policies can
e used to accelerate the learning speed on the target task (Taylor
t al., 2007). Since two tasks have different subtask sets and state space,
nowledge transfer between tasks is not directly permitted under the
ubtask setting.

To address these problems, this paper proposes two critical con-
epts: subtask mask and transfer mask, which lay a foundation for
urriculum generation and knowledge transfer. Specifically, we develop
practical algorithm for the UAV maneuver strategy learning, called

he Subtask-Masked curriculum learning for RL (SubMas-RL). Fig. 1
epicts the overall workflow of training an agent for a target task
y SubMas-RL, including subtask-masked curriculum generation and
ransfer-masked knowledge transfer. The target task is composed of a
inal goal 𝑔𝑓 and a series of potential subtasks {𝜏1, 𝜏2, 𝜏3, 𝜏4}. Source
ask 1 is the result of masking one subtask in the target task, and
he task generation is transitive until source task 𝑛. After building a
equenced curriculum, the training starts from source task 𝑛 based on
L algorithms. The trained RL model on the previous task is leveraged

o guide the training of the next task. Knowledge transfer should be
orbidden when the agent faces a fresh subtask, e.g., 𝜏3 in Fig. 1.
inally, we obtain a target policy dedicated to the target task. The main

ontributions of this paper are summarized as follows: 𝐽

2

• We proposed a subtask-masked curriculum generation method to
generate a simpler task by masking partial subtasks in a complex
task while abstracting the subtask-related states and rewards.
Task generation and task sequencing are alternatively performed
to generate the sequenced curriculum, which allows efficient RL
by starting from learning on a simple scenario with one subtask
and progressively increasing the number of subtasks.

• We employed policy distillation and policy reuse techniques to
enable knowledge transfer from policies trained in source tasks
to the target task. In addition, we designed the state-dependent
transfer condition to prevent the negative transfer, based on
which policy distillation and policy reuse are then combined with
adaptive weights to stabilize the training.

• The proposed SubMas-RL algorithm is compared with three typ-
ical reinforcement learning algorithms, and results show that
our method can enable efficient exploration, achieving a success
rate of 94.8% in the UAV maneuver scenario where the direct
implementation of reinforcement learning always fails. Moreover,
we conducted an ablation study to investigate the effectiveness of
each module of the proposed method.

The rest of this paper is organized as follows. Section 2 provides
comprehensive background to the research area. Section 3 presents

he SubMas-RL algorithm. Section 4 provides experiment setup and
esults, and Section 5 provides a critical discussion on results. Section 6
ntroduces related works, and Section 7 draws the conclusion.

. Background

In this section, we formalize the standard RL problem and describe
ow it is typically solved by the deterministic policy gradient algo-
ithm. We then introduce curriculum learning in the context of RL. Fi-
ally, we present the definition of the UAV maneuver decision-making
roblem.

.1. Reinforcement learning

Consider a standard RL problem in which an agent interacts with
stochastic environment that follows an MDP, in order to maximize

umulative reward. An MDP is defined by the tuple  = ( ,, , 𝑅, 𝜚):
state space , an action space , a transition probability distribution
∶  ×  ×  → R, a reward function 𝑅 ∶  × →R, an initial

tate distribution 𝜚 ∶  → R, and a discount factor 𝛾 ∈ [0, 1). Without
rior knowledge about the transition and reward functions, the agent
tilizes its policy 𝜋𝜃 to collect a trajectory 𝜏 = {𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1,…}
or training. Denote the density at state 𝑠′ after transitioning for 𝑡 time
teps from state 𝑠 under policy 𝜋 by 𝑝

(

𝑠→ 𝑠′, 𝑡, 𝜋
)

. The agent improves
ts policy 𝜋𝜃 to maximize the expected return for each episode:
(

𝜋
)

= E 𝑅 𝑠, 𝑎 , (1)
𝜃 𝑠∼𝜌𝜋 ,𝑎∼𝜋𝜃 [ ( )]
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where 𝜌𝜋 (𝑠′) ∶= ∫
∑∞
𝑡=1 𝛾

𝑡−1𝜚(𝑠)𝑝
(

𝑠 → 𝑠′, 𝑡, 𝜋
)

d𝑠 is the (improper) dis-
counted state visitation distribution for the policy 𝜋 (Silver et al., 2014).
The state–action value function is defined as the discounted return
starting from (𝑠, 𝑎) ∈  ×:

𝑄𝜋 (𝑠, 𝑎) = E𝜏∼𝜋𝜃

[ ∞
∑

𝑡=0
𝛾 𝑡𝑅(𝑠𝑡, 𝑎𝑡) ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎

]

. (2)

Given a parameterized deterministic policy 𝜇𝜃(𝑠) which maps a state
to a specific action, the fundamental result underlying this problem is
the Deterministic Policy Gradient (DPG) theorem (Silver et al., 2014).
The policy gradient of the optimization objective (1) with respect to
deterministic policy 𝜇𝜃(𝑠) is

∇𝜃𝐽
(

𝜇𝜃
)

= E𝑠∼𝜌𝜇
[

∇𝜃𝜇𝜃(𝑠)∇𝑎𝑄𝜙(𝑠, 𝑎)
|

|

|𝑎=𝜇𝜃 (𝑠)

]

. (3)

where 𝑄𝜙(𝑠, 𝑎) is the Q-value function (2) parameterized by 𝜙.
To approximate the value function in a stable and robust way,

the DDPG algorithm (Lillicrap et al., 2015) integrates the successor
of DQN (Mnih et al., 2013) into DPG, including a replay buffer and
a target network. In addition, the TD3 algorithm introduces a clipped
Double Q-Learning variant to limit overestimation bias by taking the
minimum value between a pair of critics (Fujimoto et al., 2018):

𝑦 = 𝑟 + 𝛾 min
𝑖=1,2

𝑄𝜙′𝑖 (𝑠
′, 𝑎′). (4)

Moreover, the TD3 algorithm deploys a delayed policy update strat-
egy, which effectively eliminates the interplay between the actor and
critic updates. In this paper, we utilize the TD3 algorithm in the
proposed SubMas-RL algorithm to train deterministic policies.

2.2. Curriculum learning for reinforcement learning

Curriculum learning is a promising way to solve problems that
might be too difficult to learn from scratch. In the context of RL, a
curriculum can be typically constructed as a sequence of tasks or an
ordering structure over experience samples (Narvekar et al., 2020). This
paper focuses on task-level curriculum learning that encompasses task
generation, task sequencing, and knowledge transfer (Silva and Costa,
2018). Algorithm 1 summarizes the three main steps for building and
utilizing a curriculum.

Algorithm 1 Curriculum Generation and Utilization

Input: Target task  ◊

1  ⊙ ← createTasks( ◊) ⊳Task generation
2 C ← bulidCurriculum( ⊙,  ◊) ⊳Task sequencing
3 𝜋◊ ← learn(C,  ◊) ⊳Knowledge transfer
Output: Trained policy 𝜋◊ for the target task

Given a target (hard) task  ◊, task generation aims to create a set
f source (easier) tasks  ⊙. Denote the task set by  = { ◊,  ⊙}. Each
ask 𝑖 ∈  is formalized as an MDP (𝑖,𝑖,𝑖, 𝑅𝑖, 𝜚𝑖).
Task sequencing serves to organize the task set  into a directed

raph way (a curriculum C) that specifies the ordering of tasks. A task-
evel curriculum C = ( ,,  ) is a directed acyclic graph, where each
ertex 𝑣𝑖 ∈  is assigned with a single task 𝑖 ∈  . Each directed edge
𝑣𝑗 , 𝑣𝑘⟩ ∈  indicates that task 𝑗 associated with vertex 𝑣𝑗 should be
rained on before task 𝑘 associated with vertex 𝑣𝑘. All directed paths

in curriculum C are absorbed into a single sink node 𝑣𝑡 (the target
task  ◊). As the most common structure for task-level curriculum,
sequenced curriculum orders the task set as a linear chain. The indegree
and outdegree of each vertex in a sequenced curriculum are at most 1.

Knowledge transfer extracts and reuses the knowledge learned from
intermediate tasks to another within the curriculum. Transfer learning
methods provide an effective way to transfer knowledge across tasks.

The above three steps of curriculum learning can be used to create
tasks, order tasks, and solve the target task by progressively increasing
the difficulty.
 o

3

Fig. 2. UAV maneuver scenario where an evader attempts to reach the exit point while
evading missiles launched by the interceptor.

2.3. UAV maneuver decision-making problem

The considered scenario is constructed using a top-down design ap-
proach, which starts with a high-level objective and decomposes it into
smaller sub-objectives until a complete scenario is defined (Crespi et al.,
2008). The top-down design approach for the UAV maneuver scenario
involves identifying the overall objective of finding a maneuver strategy
that allows the evader to reach its destination safely. The sub-objectives
include interception of the evader by the interceptor, evasion of missiles
by the evader, and reaching the exit point located on the right side of
the battlefield. To achieve these sub-objectives, it is necessary to create
a comprehensive scenario that includes the evader and interceptor
randomly initialized on opposite sides of the battlefield, as shown in
Fig. 2. The interceptor is equipped with four mid-range missiles and
needs to continuously track down the evader and launch missiles at
intervals. The evader attempts to reach the exit point while evading
multiple missiles launched by the interceptor. By breaking down the
scenario into sub-objectives and defining the necessary components to
achieve each sub-objective, a top-down design approach can be used
to ensure that the ultimate goal of finding a maneuver strategy for the
evader to evade multiple missiles and reach its destination safely is
achieved.

The practicality of the considered scenario lies in its potential
applications in various real-world scenarios, particularly in military
operations such as air combat, wherein the ability of UAV maneu-
ver execution is critical. The proposed framework presents a means
to develop effective maneuver strategies, allowing for evading mul-
tiple missiles while reaching a destination safely. Furthermore, the
trained maneuver strategies can be employed during missions related
to surveillance, reconnaissance, or in search and rescue operations,
enhancing UAVs’ survivability in respective scenarios.

Regular maneuver strategies for evading missiles only consider
a single missile and cannot be directly applied to this scenario. A
promising approach is to apply RL algorithms in this scenario to train
a maneuver strategy. At each time step 𝑡, the evader obtains the obser-
vation 𝑠𝑡, including the state of the evader, interceptor, and missiles.

hen, the evader makes the decision 𝑎𝑡 to control the flight, leading to
he transition from the current state to the next. The evader continually
mproves its policy during training by maximizing cumulative rewards.
ext, we formalize the UAV maneuver decision-making problem as an
DP.
State Space. Following the definition in Hu et al. (2022), we inte-

rate all the system states into a high-level representation, including the
ual UAVs’ states and missiles’ states: 𝑠 = [𝑥, 𝑦, 𝜓, 𝑙, 𝜃AA, 𝜃ATA, 𝜙Exit , 𝑟1m,
1
m,… , 𝑟4m, 𝜙

4
m]. (𝑥, 𝑦) is the position of the evader, 𝜓 is the yaw angle
f the evader, 𝑙 is the distance between dual UAVs, 𝜃AA is the aspect
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Fig. 3. An overview of the SubMas-RL applied to a UAV maneuver task. The sequenced curriculum is generated by masking one or more missiles in the target task. Policy
distillation and policy reuse are employed to transfer knowledge between tasks.
angle between the line of sight (LOS) and the tail of the interceptor,
𝜃ATA is the antenna train angle between the nose of the evader and
the LOS, and 𝜙Exit is the azimuth angle of the exit’s central point. 𝑟𝑖m
is the distance between evader and 𝑖th missile, and 𝜙𝑖m is the azimuth
angle of 𝑖th missile. Note that the missile states are unavailable until
the interceptor launches the missile. Since the missile states are defined
with the constraints 𝑟𝑖m ≥ 0 and 𝜙𝑖m ∈ (−𝜋, 𝜋], choosing the default state
vector as [−1,−𝜋] guarantees that it does not fall within the domain
of valid state values. Thus, we assign default state vector [𝑟𝑖m, 𝜙

𝑖
m] =

[−1,−𝜋] and fill the ground truth once the missile is launched. This
can help to avoid potential issues related to numerical instabilities that
may arise if the default state vector is too close to the valid state values.

Action Space. The evader’s action is the turning angle between
the expected heading and yaw angle, chosen in a continuous space:
𝑎 = 𝛥𝜓 ∈ [− 𝜋

2 ,
𝜋
2 ]. We employ three-degree-of-freedom UAV dynamics

in the simulation platform, and the built-in controller converts the
expected turning angle into thrust, elevator, and baking angle.

Reward Function. Previous works regarding similar scenarios rely
n dense rewards tuned by human experts, where the missile is sim-
lified as an attack zone (McGrew et al., 2010; Hu et al., 2022).
nlike previous works, we do not simplify the missile and consider the
roportional-navigation guidance model of missiles (Yang and Yang,
996). Due to the lack of domain experience, it is impractical to design
dense reward function that considers multiple missiles. Thus, we

esign a sparse reward function based on the key events. The evader is
ewarded a 400 bonus for reaching the exit, a 50 bonus for evading one

missile’s attack, a −400 bonus for being shot down, and a −0.1 bonus
per time step.

Termination condition. The environment is terminated when the
evader reaches the exit point or is shot down. The maximum episode
length is 1200 steps, and one step is equivalent to one second in reality.
To avoid negative behavior, the evader is considered shot down if it
remains more than 10 steps outside the battlefield.

Due to sparse rewards and long-horizon decision sequences for
evading missiles, it is difficult to train this task by directly implement-
ing standard RL algorithms, especially when multiple missiles exist. In
this paper, we propose the SubMas-RL algorithm to facilitate efficient
RL in the UAV maneuver scenario by starting from learning on a simple
scenario with one missile and progressively increasing the number of
missiles.

Fig. 3 depicts the overview of the SubMas-RL applied to the UAV
maneuver task. The training aims to obtain a policy dedicated to the
target task, which involves evading 4 missiles and reaching the exit

(green square on the right). Each missile is considered a subtask, and

4

the source tasks are generated by masking one or more missiles. Source
task 4 is a naive navigation task without missiles, which can be solved
by an expert policy. The training starts from source task 3 by leveraging
the expert policy. The policy is trained by RL algorithms with the
techniques of policy distillation and policy reuse. Finally, we train the
evader on the target task and obtain the target policy. More details
about curriculum generation and knowledge transfer will be introduced
in Sections 3.2 and 3.3.

3. Methodology

The UAV maneuver decision-making problem is a long-horizon
task with sparse rewards. The agent (evader) aims to reach a final
goal (exit) while dealing with a series of subtasks (missiles). Due
to parallel subtasks and sparse rewards, the target task is too diffi-
cult to be directly trained by standard RL algorithms. Drawing from
curriculum learning, gradually increasing the task difficulty can fa-
cilitate progressive learning and improve performance in the target
task. Thus, we employ the curriculum learning framework to train
the RL model more efficiently. In this section, we first define the
concept of subtask mask and transfer task. Then, we propose two
critical modules: subtask-masked curriculum generation and transfer-
masked knowledge transfer, based on which we propose a practical
training algorithm, called Subtask-Masked curriculum learning for RL
(SubMas-RL) algorithm.

3.1. Definitions

According to Silva and Costa (2018), curriculum learning involves
task generation, task sequencing, and knowledge transfer. Under the
subtask setting, two questions naturally arise:

(i) How to automatically generate source tasks and build a se-
quenced curriculum using subtasks?

(ii) How to transfer knowledge among the sequenced curriculum
where each task has different subtask sets and state spaces?

We first take Super Mario games as an example to discuss the above
questions. The final goal of Super Mario is to reach the destination;
the subtasks are collecting coins and evading Goombas. Removing
Goombas in this game can reduce the difficulty and generate easier
games. Thus, a feasible solution for question (i) is to remove partial
subtasks. The agent can be trained in a Goombas-free game, and the
knowledge gained can be transferred to guide the training on the full
game. Note however, that the knowledge gained may be imperfect

to deal with the full game, as it does not include the new elements
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introduced by Goombas. For question (ii), it is significant to determine
the condition under which knowledge transfer can provide the correct
guidance. To provide a formal answer to the above questions, we
introduce two concepts, subtask mask and transfer mask.

Definition 1 (Subtask Mask). Given a target task  ◊ with a final goal 𝑔𝑓
and multiple subtasks 𝝉◊ = {𝜏1, 𝜏2,… , 𝜏𝑛}, subtask mask serves to mask
one or more subtasks 𝝉 ⊆ 𝝉◊ while removing subtask-related states and
rewards, in order to generate a smaller and easier (source) task  ⊙.

The subtask mask is used to generate a source task with fewer
subtasks automatically. As shown in Fig. 1 (the left module), source
task 1 is generated from the target task by masking one subtask,
e.g., 𝜏3 in this example. Meanwhile, state abstraction reduces the task
complexity by eliminating states and rewards related to the masked
subtasks (Abel, 2022). Section 3.2.1 formulates the subtask-masked task
generation method. Furthermore, these source tasks can be sequenced
into a task-level curriculum C. We introduce the implementation of
subtask-masked task sequencing in Section 3.2.2.

Knowledge transfer among the curriculum leverages prior knowl-
edge to guide exploration and facilitate efficient RL training. However,
knowledge is not always allowed to be transferred across tasks due to
different subtask sets. As shown in Fig. 1 (the right module), knowledge
transfer from source task 1 to the target task is prevented when the
agent faces a fresh subtask 𝜏3. For instance, in Super Mario games,
the agent trained in a Goombas-free task dedicates to jumping across
platforms and collecting coins. In a new task involving Goombas,
the knowledge about platforms and coins still works, but knowledge
transfer from a Goombas-free task to the full game should be forbidden
when Mario faces Goombas.

Definition 2 (Transfer Mask). Given a source task, which is generated
by masking subtasks 𝝉 in the target task, knowledge transfer from
source task to target task should be prevented (masked) when the agent
faces any fresh subtask 𝜏 ∈ 𝝉 which is not experienced in the source
task.

The transfer mask filters useless or even negative knowledge transfer,
thus enhancing transfer efficiency. The agent can adapt to a new
environment quickly by leveraging useful knowledge obtained from
the imperfect policy. In terms of exploration, when the policy fails to
provide correct guidance, the agent will then independently explore
the environment. The transfer-masked knowledge transfer method is
presented in Section 3.3.

3.2. Subtask-masked curriculum generation

We discuss how to construct a task-level sequenced curriculum
under the subtask setting. Specifically, we formalize the task generation
and task sequencing methods.

3.2.1. Task generation
In this subsection, we contribute a task generation method to gen-

erate source tasks from a target task (as a createTasks function in
Algorithm 1, line 1). Each source task has different subtask sets as well
as different difficulties.

Fig. 4 provides an overview of the subtask-masked task generation
process, which involves subtask mask and state abstraction. To generate
the source task  ⊙ from the target task  ◊, the subtask mask serves
to mask partial subtasks within the target task. Additionally, state
abstraction is used to eliminate irrelevant states from the target task.

Given a target task  ◊ =
(

◊,◊,◊, 𝑅◊, 𝜚◊, 𝝉◊
)

where 𝝉◊ =
{𝜏1, 𝜏2, ⋯ , 𝜏𝑛} is the subtask set. We apply the subtask mask in the
target task to generate a source task  ⊙ =

(

⊙,⊙,⊙, 𝑅⊙, 𝜚⊙, 𝝉⊙
)

,
where 𝝉⊙ is the subtask set in the source task, and 𝝉⊙ ⊂ 𝝉◊. The masked
subtasks are defined as 𝝉◊ = 𝝉◊ − 𝝉⊙.
⊙ o

5

Fig. 4. The overview of subtask-masked task generation. The source task  ⊙ is the
result of applying subtask mask and state abstraction in the target task  ◊.

We then construct an inter-task mapping between the target and
source tasks (Abel, 2022). We assume the subtask mask does not alter
the action space, i.e., ◊ = ⊙. The state vector of the target task is
denoted by 𝑠◊ =

[

𝑠1, 𝑠2,… , 𝑠𝑑◊
]

, where 𝑑◊ = dim(◊). In the absence
of the masked subtasks 𝝉◊⊙, we remove irrelevant states from the target
task (Abel, 2022). Thus, the state vector 𝑠◊ is decomposed into two
parts (see Fig. 4):

𝑠◊ =
[

𝑠⊙, 𝑠◊⊙
]

,

𝑠⊙ =
[

𝑠1, 𝑠2,… , 𝑠𝑑⊙
]

,

𝑠◊⊙ =
[

𝑠𝑑⊙+1,… , 𝑠𝑑◊
]

,

(5)

where 𝑠◊⊙ ∈ ◊
⊙ which is the masked state space only related with the

masked subtasks 𝝉◊⊙. Such inter-task mappings 𝛯 ∶ ◊ → ⊙ and
𝛹 ∶ ◊ → ◊

⊙ for state space, take a state from ◊ and map it into
a state in ⊙ and ◊

⊙ :

⊙ = 𝛯(𝑠◊), 𝑠◊⊙ = 𝛹 (𝑠◊). (6)

Following the definition of state abstraction in Abel (2022), the
ubtask mask does not alter the initial state distribution and transi-
ion probability distribution in the shared state space of  ⊙ and  ◊,
.e., ∀𝑠◊, 𝑠′◊ ∈ ◊, 𝑎 ∈ ,

𝜚⊙
(

𝛯
(

𝑠◊
))

= ∫◊
⊙

𝜚◊(𝑠◊)d𝛹 (𝑠◊), (7)

⊙(𝛯(𝑠′◊)|𝛯(𝑠◊), 𝑎) = ∫◊
⊙
∫◊

⊙

◊
(

𝑠′◊|𝑠◊, 𝑎
)

d𝛹 (𝑠◊)d𝛹 (𝑠′◊). (8)

We assume the reward function in the target task can be linearly
ecomposed according to subtasks:
◊
(

𝑠◊, 𝑎
)

= 𝑅𝑔𝑓
(

𝑠◊, 𝑎
)

+
∑

𝜏𝑖∈𝝉◊
𝑅𝜏𝑖

(

𝑠◊, 𝑎
)

, (9)

here 𝑅𝑔𝑓 (⋅, ⋅) and 𝑅𝜏𝑖 (⋅, ⋅) are the reward function of the final goal
𝑓 and subtask 𝜏𝑖, respectively. Since the subtasks 𝝉◊⊙ are masked in
he source task, the corresponding reward functions should also be
emoved from Eq. (9):
⊙
(

𝛯(𝑠◊), 𝑎
)

= 𝑅◊
(

𝑠◊, 𝑎
)

− 𝑅◊
⊙

(

𝑠◊, 𝑎
)

, (10)

here
◊
⊙

(

𝑠◊, 𝑎
)

=
∑

𝜏𝑖∈𝝉
◊
⊙

𝑅𝜏𝑖
(

𝑠◊, 𝑎
)

. (11)

Algorithm 2 summarizes the subtask-masked task generation
ethod. Taking different masked subtasks as input, Algorithm 2 is used

o generate various source tasks which compose the source task set  ⊙.
Next, we take a robot navigation task as an example and discuss

he shared knowledge between the target task and the source task.
n a full navigation task  ◊, an agent has access to the position

f the final goal and sensor observations of random obstacles. The
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Algorithm 2 Subtask-Masked Task Generation

Input: Target task  ◊, masked subtasks 𝝉◊⊙
1 𝝉⊙ ← 𝝉◊ − 𝝉◊⊙
2 ⊙ ← ◊

3 ⊙,◊
⊙ ← stateSpace(◊, 𝝉⊙, 𝝉◊⊙) ⊳Eq. (5)

4 𝛯,𝛹 ← interTaskMapping(◊,⊙,◊
⊙ ) ⊳Eq. (6)

5 𝜚⊙ ← initState(𝜚◊, 𝛯, 𝛹 ) ⊳Eq. (7)
6 ⊙ ← transitionFunction(◊, 𝛯, 𝛹 ) ⊳Eq. (8)
7 𝑅⊙ ← rewardFunction(𝑅◊, 𝛯, 𝛹 ) ⊳Eq. (10)
Output: Source task  ⊙, inter-task mapping 𝛯,𝛹

agent attempts to reach the final goal without collision. By removing
obstacles and masking sensor observations, this task can be reduced
to a more straightforward task  ⊙. Obviously, the shared knowledge
between two tasks is how to navigate to the final goal. In terms of
knowledge transfer, when the agent in  ◊ does not detect any obstacle,
it is allowed to utilize the shared knowledge regarding navigating to
the final goal. Therefore, the critical criterion for sharing knowledge
is whether the agent detects obstacles or, generally speaking, whether
new subtasks appear. The observation of obstacles stored in 𝑠◊⊙ can
erve as a criterion. When the agent detects obstacles, 𝑠◊⊙ returns the
round truth of obstacles; otherwise, it returns a default vector.

Drawing from the above example, we hereby present a criterion
or sharing knowledge. Define �̃�◊⊙ as a default state vector of 𝑠◊⊙. The
ondition 𝑠◊⊙ = �̃�◊⊙ means that the masked subtasks 𝝉◊⊙ do not appear
n the target task. Correspondingly, the reward that relates to these
ubtasks is equal to zero:
◊
⊙

(

𝑠◊, 𝑎
)

≡ 0, s.t. 𝛹
(

𝑠◊
)

= �̃�◊⊙ , (12)

According to Eqs. (10), (11) and (12), the rewards of target and
ource tasks are identical when 𝛹

(

𝑠◊
)

= �̃�◊⊙. The shared rewards
nsure that the knowledge learned in the source task is reusable in the
arget task. On the contrary, when 𝛹

(

𝑠◊
)

≠ �̃�◊⊙, one or more subtasks

n 𝝉◊⊙ appear, and 𝑅◊
⊙

(

𝑠◊, 𝑎
)

≠ 0. This indicates that the knowledge
fails to share under this condition, and knowledge transfer should be
prevented. More details about the transfer condition are introduced in
Section 3.3.1.

3.2.2. Task sequencing
A subtask set 𝝉◊ = {𝜏1, 𝜏2,… 𝜏𝑛} has 2𝑛 −1 non-void proper subsets.

That is, we can generate 2𝑛 − 1 source tasks by masking different
subtasks. However, not all of these source tasks are necessary for
building a curriculum. We hereby propose a method to build a task-
level sequenced curriculum that is composed of 𝑛 source tasks and the
target task (as a bulidCurriculum function in Algorithm 1, line 2). Our
sequencing method orders the source tasks according to the difficulty,
which depends on the number of involved subtasks. Specifically, the
source tasks with fewer subtasks are prioritized for training before those
with more subtasks.

Fig. 5 presents a schematic of building a sequenced curriculum from
a target task with 4 subtasks. Each subtask 𝜏𝑖 ∈ 𝝉◊ is manually ordered
y humans according to its complexity. For instance, in Super Mario
ames, the player usually finds that evading a Goomba is more complex
han collecting coins. Taking the most complex subtask 𝜏1 as input, a
ource task  ⊙

1 is generated from  ◊ (by Algorithm 2). These two tasks
re naturally ordered because of the fewer subtasks in  ⊙

1 . As such, the
ext step starts from  ⊙

1 and generates the source task  ⊙
2 , and so on.

ll tasks are integrated into a sequenced curriculum C.
Algorithm 3 summarizes the subtask-masked task sequencing

ethod. Each source task is generated from the last source task by

asking one subtask. Each directed edge ⟨𝑣𝑖, 𝑣𝑖−1⟩ ∈  indicates

6

Fig. 5. Building a task-level sequenced curriculum from a target task  ◊ with 4
subtasks. Task generation serves to create a new source task by masking one subtask.
Task sequencing specifies the ordering of tasks and finally builds a curriculum as a
linear chain.

Algorithm 3 Subtask-Masked Task Sequencing

Input: Target task  ◊

Input: Ordered subtask set 𝝉◊ = {𝜏1, 𝜏2,⋯ 𝜏𝑛}
1 Initialize: 𝑣0 ←  ◊, ← {𝑣0}, ← ∅,  ← { ◊}
2  ⊙

0 ←  ◊

3 for 𝑖 = 1, 2,⋯ , 𝑛 do
4  ⊙

𝑖 ← taskGenaration( ⊙
𝑖−1, 𝜏𝑖) ⊳Algorithm 2

5 𝑣𝑖 ←  ⊙
𝑖 ⊳Create a vertex

6  ←  ∪ { ⊙
𝑖 } ⊳Add a source task

7  ←  ∪ {𝑣𝑖} ⊳Add a vertex
8  ←  ∪ {⟨𝑣𝑖, 𝑣𝑖−1⟩} ⊳Add a directed edge
9 end
Output: A sequenced curriculum C = ( ,,  )

that task  ⊙
𝑖 should be trained on before task  ⊙

𝑖−1. The output is a
sequenced curriculum that orders the task set as a linear chain. This
method ensures each source task has fewer subtasks than the last
one. Furthermore, it should be noted that adjacent tasks demonstrate
variation in only one subtask. This suggests that sufficient subtask
knowledge can be effectively transferred between such adjacent tasks.

We may also consider more automatic sequencing strategies, such as
using a subtask set to calculate transfer potential (Svetlik et al., 2017;
Silva and Costa, 2018). However, we leave it as future work and focus
on how to transfer the knowledge learned from intermediate tasks to
improve performance in the target task.

3.3. Transfer-masked knowledge transfer

In this subsection, we propose the transfer-masked knowledge trans-
fer method (as a learn function in Algorithm 1, line 3). We present
the transfer condition under the subtask setting and employ policy
distillation and policy reuse techniques to enable knowledge transfer.

3.3.1. Transfer condition
A task-level sequenced curriculum is generated by Algorithm 3 to

solve a target task that is too difficult to learn from scratch. We expect
that the knowledge learned from the source tasks will help the agent
explore the target task. Note however, that the policy trained on one
task cannot be directly transferred to another since any two tasks
have different subtask sets, state spaces, and reward functions. When
transferring knowledge from a less related scenario, it may inversely
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Fig. 6. The training process and transfer condition for SubMas-RL.

urt the target performance, a phenomenon known as negative trans-
er (Wang et al., 2019, 2022). A feasible solution is to introduce a
ransfer condition to filter out irrelevant knowledge transfer (Hu et al.,
015; Liang et al., 2022). Next, we describe the training process and
resent the condition for knowledge transfer.

Fig. 6 depicts the training process and transfer condition for
ubMas-RL. We can train a policy or design an expert policy for the
asiest task  ⊙

𝑛 . Then, we leverage the policy 𝜇⊙𝑛 to guide the training
n next task  ⊙

𝑛−1 and produce a new policy 𝜇⊙𝑛−1. As such, the policy 𝜇⊙𝑖
rained in  ⊙

𝑖 is utilized to guide the training in  ⊙
𝑖−1, and so on. The

ransfer condition in Fig. 6 means that the knowledge transfer should
e masked when the agent faces a new subtask. Finally, we solve the
arget task  ◊ by leveraging the policy 𝜇⊙1 trained in  ⊙

1 , and obtain
the target policy 𝜇◊.

The transfer condition is whether the agent faces a new subtask.
Fig. 6 shows the transfer condition from the state perspective. Denote
𝛯 𝑖−1𝑖 (⋅) and 𝛹 𝑖−1𝑖 (⋅) as inter-task mappings from  ⊙

𝑖−1 to  ⊙
𝑖 . Following

the definition in (12), we define the transfer condition as

𝛹 𝑖−1𝑖
(

𝑠⊙𝑖−1
)

= �̃�𝑖−1𝑖 , (13)

where �̃�𝑖−1𝑖 is a default state vector which indicates that the new subtask
is not detected in  ⊙

𝑖−1. When the transfer condition (13) holds true, the
knowledge transfer is permitted. On the other hand, if 𝛹 𝑖−1𝑖

(

𝑠⊙𝑖−1
)

≠
𝑠𝑖−1𝑖 , the agent faces the new subtask, and the knowledge transfer is
prevented (masked). The transfer condition serves to filter negative
transfer and improve sample efficiency.

3.3.2. Policy distillation
Consider any two adjacent tasks  ⊙

𝑖 and  ⊙
𝑘 (𝑘 = 𝑖 − 1) within the

curriculum. Due to different state spaces, the policy cannot be directly
transferred from  ⊙

𝑖 to  ⊙
𝑘 . Policy distillation is an effective method

for transferring knowledge from one or more policies to an untrained
network (Rusu et al., 2015; Li et al., 2023; Zhang et al., 2022). With the
inter-task mapping functions 𝛯𝑘𝑖 and 𝛹𝑘𝑖 , policy distillation can work
for most standard RL methods by regularizing the policy 𝜇⊙𝑘 towards
the trained policy 𝜇⊙𝑖 (which we also call the guide policy). With the
guide policy 𝜇⊙𝑖 fixed, we provide an auxiliary reward 𝐷(𝑠, 𝑎) in  ⊙

𝑘 and
define a new objective to be optimized, i.e.,

max
𝜇⊙𝑘

E𝑠∼𝜌𝜇
[

𝑅⊙𝑘 (𝑠, 𝑎) + 𝛼𝐷 (𝑠, 𝑎)|𝑎=𝜇⊙𝑘 (𝑠)
]

, (14)

where

𝐷 (𝑠, 𝑎) = −‖‖
‖

𝑎 − 𝜇⊙𝑖
(

𝛯𝑘𝑖 (𝑠)
)

‖

‖

‖2
1
(

𝛹𝑘𝑖 (𝑠) = �̃�𝑘𝑖
)

. (15)

To encourage imitation, the auxiliary reward 𝐷 measures the nega-
tive Euclidean distance between the actions calculated by the policy 𝜇⊙𝑖
and 𝜇⊙. The mapping function 𝛯𝑘 ensures the state 𝑠 is mapped into
𝑘 𝑖

7

the state space in  ⊙
𝑖 . The indicator function 1 (⋅) indicates whether the

transfer condition holds true. When the transfer condition holds true,
the auxiliary reward works, such that the agent (the policy 𝜇⊙𝑘 ) learns
to imitate the guide policy 𝜇⊙𝑖 .

The weight 𝛼 in (14) determines the strength of policy distillation.
We employ an adaptive weight to find a trade-off between imitation
and exploration (Hu et al., 2023; Yang and Spaan, 2023). The goal is
to imitate the guide policy more with the larger 𝛼 in the beginning.
Meanwhile, if the agent can gradually find a trajectory to the final goal,
the smaller 𝛼 eliminates the influence of the guide policy. We define the
adaptive weight 𝛼 as

𝛼 = 1 − 𝛽, (16)

where 𝛽 reflects the success rate of reaching the final goal 𝑔𝑓 . To
provide a stable objective during training, 𝛽 is fixed within one epoch
and updated at the end of the epoch. When the agent can always reach
the final goal, 𝛽 is close to 1, such that the influence of 𝛼 fades away.
As a consequence, our method still solves the original problem.

3.3.3. Policy reuse
Our approach adopts the policy reuse strategy that directly lever-

ages a guide policy to sample trajectories, which facilitates rapid adap-
tation to a new task (Rosman et al., 2016; Fernández and Veloso,
2006). This strategy leads to better initial trajectories and improves
the jump-start by providing a strong initial point for the learning
algorithm (Taylor and Stone, 2007; Yang et al., 2022). The guide policy
can take the form of a rule-based policy, expert policy, or well-trained
policy (Ayeelyan et al., 2022).

We first present a composite policy 𝜇𝑐 , which is a mixture of the
guide policy 𝜇⊙𝑖 and the training policy 𝜇⊙𝑘 :

𝜇𝑐
(

𝑠𝑡
)

=
{

𝜇⊙𝑖
(

𝛯𝑘𝑖
(

𝑠𝑡
))

, if 𝛹𝑘𝑖
(

𝑠𝑡
)

= �̃�𝑘𝑖 ,
𝜇⊙𝑘

(

𝑠𝑡
)

, otherwise. (17)

When the transfer condition (13) holds, the composite policy (17)
directly reuses the guide policy 𝜇⊙𝑖 to produce an action. However,
the guide policy might dominate during training. To find a trade-off
between exploration and reuse, we propose a behavior policy 𝜇𝑏 which
follows an adaptive 𝜖-greedy strategy:

𝜇𝑏
(

𝑠𝑡
)

=
{

𝜇𝑐
(

𝑠𝑡
)

, with probability 𝜖,
𝜇⊙𝑘

(

𝑠𝑡
)

, with probability 1 − 𝜖.
(18)

Similar to (16), the adaptive probability 𝜖 varies with the success
rate 𝛽:

𝜖 = 𝜖0 (1 − 𝛽) , (19)

where 𝜖0 < 1 is the initial probability. With a low success rate 𝛽,
the behavior policy tends to choose the composite policy 𝜇𝑐 at the
beginning. As the success rate 𝛽 grows, the probability 𝜖 descends, such
that the agent reduces the dependence on the guide policy and collects
samples independently.

To stabilize the training, we clip the update of adaptive weights (16)
and (19) into a small range:

|𝛼𝑒𝑝𝑜𝑐ℎ − 𝛼𝑒𝑝𝑜𝑐ℎ−1| ≤ 𝛿𝛼 , (20)

|𝜖𝑒𝑝𝑜𝑐ℎ − 𝜖𝑒𝑝𝑜𝑐ℎ−1| ≤ 𝛿𝜖 , (21)

3.4. Training algorithm

Next, we integrate knowledge transfer strategies into an RL algo-
rithm. Since we leverage a behavior policy to sample trajectories, our
method is only compatible with off-policy RL algorithms. The auxiliary
reward (15) is designed for the deterministic policy and continuous
action space. Thus, we employ the TD3 algorithm (Fujimoto et al.,
2018).

To transfer the knowledge from  ⊙
𝑖 to  ⊙

𝑘 (𝑘 = 𝑖 − 1), we integrate

knowledge transfer strategies into TD3 algorithm (see Algorithm 4).
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Algorithm 4 Knowledge Transfer Based on TD3
Input: Guide policy 𝜇⊙𝑖 , task  ⊙

𝑘 (𝑘 = 𝑖 − 1)
1 Initialize: 𝑄𝜙1 , 𝑄𝜙2 , 𝜇𝜃 , 𝑄𝜙′1 , 𝑄𝜙′2 , 𝜇𝜃′
2 Initialize: 𝛽 ← 0, 𝛼 ← 1, 𝜖 ← 𝜖0, and  ← ∅
3 for each iteration do
4 for each time step do
5 𝑎𝑡 ← 𝜇𝑏(𝑠𝑡) + 𝛿, 𝛿 ∼  (0, 𝜎) ⊳Policy reuse (18)
6 𝑟𝑡 ← 𝑅⊙𝑘

(

𝑠𝑡, 𝑎𝑡
)

7 𝑟𝑑𝑡 ← 𝐷(𝑠𝑡, 𝑎𝑡) ⊳Policy distillation (15)
8 𝑠𝑡+1 ∼ ⊙

𝑘 (⋅|𝑠𝑡, 𝑎𝑡)
9  ←  ∪ {(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑟𝑑𝑡 , 𝑠𝑡+1)}
10 end
11 for each gradient step do
12 Sample 𝐾 transitions (𝑠, 𝑎, 𝑟, 𝑟𝑑 , 𝑠′) from 
13 𝑎← 𝜇𝜃′

(

𝑠′
)

+ 𝛿, 𝛿 ∼ clip
(

 (0, 𝜎),−𝑐, 𝑐
)

14 𝑦← (𝑟 + 𝛼𝑟𝑑 ) + 𝛾 min𝑖=1,2𝑄𝜙𝑖′
(

𝑠′, 𝑎
)

⊳Eq. (4)

15 𝜙𝑖 ← argmin𝜙𝑖
1
𝐾
∑

(

𝑦 −𝑄𝜙𝑖 (𝑠, 𝑎)
)2

16 if update policy then
17 Update 𝜃 by the deterministic policy gradient:
18 ∇𝜃𝐽 (𝜃) =

1
𝐾
∑

∇𝑎𝑄𝜙1 (𝑠, 𝑎)
|

|

|𝑎=𝜇𝜃 (𝑠)
∇𝜃𝜇𝜃(𝑠) ⊳Eq. (3)

19 𝜙′
𝑖 ← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙′

𝑖
20 𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′

21 end
22 end
23 𝛽 ← success rate of reaching the final goal
24 𝛼 ← clip

(

1 − 𝛽, 𝛼 − 𝛿𝛼 , 𝛼 + 𝛿𝛼
)

⊳Eq. (16), (20)
25 𝜖 ← clip

(

𝜖0(1 − 𝛽), 𝜖 − 𝛿𝜖 , 𝜖 + 𝛿𝜖
)

⊳Eq. (19), (21)
26 end
Output: Optimized parameters 𝜃∗ for 𝜇𝜃

The policy 𝜇⊙𝑖 trained in  ⊙
𝑖 serves as a guide policy. For each step,

he agent interacts with the environment to collect trajectories using
he behavior policy 𝜇𝑏 (Line 5). The reward is a mixture of the original
eward (Line 6) and auxiliary reward (Line 7). The actor and critics
re updated in terms of the TD3 algorithm (Lines 12–20). We count the
verage success rate 𝛽 (Line 23) for each epoch and update the adaptive
eights 𝛼 and 𝜖 (Lines 24–25). In summary, Algorithm 4 serves to train

he agent in  ⊙
𝑘 by leveraging the knowledge embedded in 𝜇⊙𝑖 .

Fig. 7 depicts the flow chart of SubMas-RL algorithm. Given a target
task and subtask set, the first module generates a sequenced curriculum
by alternately conducting task generation and task sequencing. For the
easiest task  ⊙

𝑛 , we can train a policy by RL algorithms (e.g., TD3) or
design a rule-based (expert) policy. Then, source tasks in the curriculum
are sequentially trained by reusing previous policies, and we finally
8

Algorithm 5 SUBMAS-RL

Input: Target task  ◊

Input: Ordered subtask set 𝝉◊ = {𝜏1, 𝜏2,⋯ 𝜏𝑛}
1 C ← buildCurriculum( ◊, 𝝉◊) ⊳Algorithm 3
2 Select the task  ⊙

𝑛 from C
3 𝜇⊙𝑛 ← training on  ⊙

𝑛 or given an expert policy
4 for 𝑖 = 𝑛,⋯ , 1 do
5 𝑘 ← 𝑖 − 1
6 Choose the task  ⊙

𝑘 from C
7 𝜇⊙𝑘 ← knowledgeTransfer( ⊙

𝑘 , 𝜇
⊙
𝑖 ) ⊳Algorithm 4

8 end
9 𝜇◊ ← 𝜇⊙0
Output: The target policy 𝜇◊ for  ◊

obtain the target policy 𝜇◊ dedicated to the target task  ◊. Finally, Al-
gorithm 5 summarizes the SubMas-RL algorithm, including curriculum
generation (Line 1) and knowledge transfer (Lines 4–8).

4. Empirical analysis

In this section, we apply the SubMas-RL algorithm to the UAV
aneuver scenario and evaluate the performance. The experiments

re conducted in an air confrontation simulation platform, XSimStu-
io, developed by Huaru Technology.1 XSimStudio has undergone a
igh-fidelity modeling and simulation development process and has
upported for Air Intelligence Game (AIG) as a competition platform.2

.1. Experiment environment and setup

The experimental scenario is the UAV maneuver task, as defined
n Section 2.3. Instead of learning from scratch, we apply the SubMas-
L algorithm to build a sequenced curriculum where each task has
ifferent numbers of missiles (see Fig. 3). Source task 4 is a simple
avigation task with no missiles. We design an expert policy for source
ask 4 to navigate the evader towards the exit. The training starts from
ource task 3 by leveraging the expert policy. The state spaces of all
asks are shown in Table 1.

To enhance the policy’s robustness, we randomly initialize the
ositions of both the evader and the interceptor in each episode of
he training process. Two metrics, episode return and success rate,
re employed to evaluate the performance of our approach. Episode
eturn is the cumulative rewards within one episode, and success rate
easures the probability of achieving a successful penetration. The
yperparameters are provided in Table 2; other hyperparameters follow

1 http://www.huaru.com.cn/product
2 http://cicc-aig.c2.org.cn/en/index.html

http://www.huaru.com.cn/product
http://cicc-aig.c2.org.cn/en/index.html
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Table 1
State space of source and target tasks.
Task State space

Target task
[

𝑥, 𝑦, 𝜓, 𝑙, 𝜃AA , 𝜃ATA , 𝜙Exit , 𝑟1m , 𝜙
1
m ,… , 𝑟4m , 𝜙

4
m
]

Source task 1
[

𝑥, 𝑦, 𝜓, 𝑙, 𝜃AA , 𝜃ATA , 𝜙Exit , 𝑟1m , 𝜙
1
m ,… , 𝑟3m , 𝜙

3
m
]

Source task 2
[

𝑥, 𝑦, 𝜓, 𝑙, 𝜃AA , 𝜃ATA , 𝜙Exit , 𝑟1m , 𝜙
1
m , 𝑟

2
m , 𝜙

2
m
]

Source task 3
[

𝑥, 𝑦, 𝜓, 𝑙, 𝜃AA , 𝜃ATA , 𝜙Exit , 𝑟1m , 𝜙
1
m
]

Source task 4
[

𝑥, 𝑦, 𝜓, 𝑙, 𝜃AA , 𝜃ATA , 𝜙Exit
]

Table 2
Hyperparameters in SubMas-RL.
Hyperparameter Value Note

Network architecture [256, 256]
Replay buffer size 106 ||

Number of epochs 300
Steps per epoch 104

Learning rate 3e−4
Batch size 128
𝜖-start 0.8 𝜖0
𝜖-clip 0.01 𝛿𝜖
𝛼-clip 0.01 𝛿𝛼

Table 3
Ablation experiments.

Algorithms Pd Pr 𝛼 𝜖

SubMas-RL
√ √

Adaptive Adaptive
w/oPd ×

√

∕ Adaptive
w/oPr

√

× Adaptive ∕
DecPd

√ √

Decayed Adaptive
DecPr

√ √

Adaptive Decayed

∙ Pd: Policy distillation; Pr: Policy reuse.

the default setting in OpenAI SpinningUp.3 It takes about 30 h to
train one task using a single machine (AMD Ryzen Threadripper PRO
3975WX CPU 3.5 GHz with 32 cores, two NVIDIA GeForce RTX 3090
24G GPUs, 128 GB RAM). All experiments are performed over 10 runs
with different random seeds.

4.2. Ablation study

We investigate each component of the proposed SubMas-RL algo-
rithm individually to answer the following questions: (i) Does the
policy distillation promote knowledge transfer? (ii) Does the policy
reuse enhance the sample efficiency? and (iii) How do the adaptive
weights 𝛼 and 𝜖 affect the performance? We design four ablation
algorithms (listed in Table 3): SubMas-RL without policy distillation
(w/oPd), SubMas-RL without policy reuse (w/oPr), SubMas-RL with
decayed weight 𝛼 in policy distillation (DecPd), and SubMas-RL with
decayed weight 𝜖 in policy reuse (DecPr). The results of ablation
experiments are presented in Fig. 8. Next, we present the main findings.

Policy distillation speeds up the knowledge transfer. The ab-
lation algorithm w/oPd disentangles the role the auxiliary reward
plays in knowledge transfer. In Fig. 8, we notice that both methods
can realize the same jump-start, indicating that policy distillation has
no impact on the jump-start. However, the comparison shows that
the w/oPd have a larger standard deviation and a lower asymptotic
performance than SubMas-RL. In addition, the w/oPd shows a slight
decrease following an initial increase (see the red curve in Fig. 8(a)).
We infer that a large jump-start resulting from the high success rate
reduces the strength of policy reuse, and the target policy dominates the
exploration. However, if policy distillation is not employed, the target
policy may learn slowly without the auxiliary reward and fails to adapt
to the new task quickly. As for the SubMas-RL algorithm, the agent can

3 https://github.com/openai/spinningup/tree/master/spinup/algos/tf1
 b

9

Fig. 8. Ablation study showing episode return (left) and success rate (right) curves of
SubMas-RL, w/oPd, w/oPr, DecPd, and DecPr over 10 seeds. The solid lines are the
average of all runs, and the shaded area is the standard deviation.

utilize the auxiliary reward to rapidly acquire the knowledge encoded
in the guide policy. Thus, policy distillation provides dense feedback
signals for the agent, accelerating the knowledge transfer.

Policy reuse enhances rapid adaptability for a new task. The
blation algorithm w/oPr independently collects samples with the tar-
et policy, and the proposed SubMas-RL algorithm samples using the
ehavior policy (18). Fig. 8 demonstrates that w/oPr suffers from a
old start and is unstable during the training. In contrast, SubMas-RL
iscovers better trajectories with fewer iterations, resulting in a big
ump-start and better asymptotic performance. Obviously, the policy
euse strategy plays a significant role in avoiding the cold start. Al-
hough a well-trained guide policy cannot directly achieve optimal
erformance in the new task, the shared knowledge involved in the
uide policy is conducive to sampling near the optimal trajectory.
he 𝜖-greedy strategy in policy reuse facilitates the balance between
tilization and exploration. That is, the agent concentrates on exploring
etter trajectories after achieving a big jump-start. We also notice that

https://github.com/openai/spinningup/tree/master/spinup/algos/tf1
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Fig. 9. Comparison study in target task showing episode return (left) and success rate
(right) of SubMas-RL, TD3, PPO, and SAC over 10 seeds. The solid lines are the average
f all runs, and the shaded area is the standard deviation.

/oPr achieves an average 50% success rate in source task 3, while the
erformance in the target task is very poor. In summary, policy reuse
ignificantly enhances rapid adaptability for a new task, especially for
ore challenging tasks.
The adaptive weights improve the convergence rate. The

eights 𝛼 and 𝜖 determine the strength of policy distillation and
olicy reuse, such that we can dynamically control the strength of
nowledge transfer. The proposed SubMas-RL algorithm adjusts weights

adaptively based on success rates. In ablation, we apply a linear decay
to weights 𝛼 and 𝜖 (DecPd and DecPr). In Fig. 8(a), we notice that
both DecPd, DecPr and SubMas-RL can achieve the same jump-start and
asymptotic performance in source task 3. However, in the following
tasks (Fig. 8(b)–(d)), DecPd and DecPr perform slightly worse than
SubMas-RL due to slower linear decay compared to adaptive weights. It
demonstrates that the adaptive weights speed up the convergence.

4.3. Comparison with baselines

In this section, we compare the proposed SubMas-RL algorithm with
three baselines: TD3 (Fujimoto et al., 2018), PPO (Schulman et al.,
2017), and SAC (Haarnoja et al., 2018). These baselines are employed
to learn the target task from scratch. In comparison, SubMas-RL lever-
ages the guide policy generated from the curriculum. The comparative
experiments aim to show how the sequenced curriculum benefits the
training.

Fig. 9 presents results of comparative experiments, where the
SubMas-RL curves are the same as in Fig. 8(d). We observe that SubMas-
RL is the only method that has a high success rate. TD3, PPO, and SAC
fail to learn the maneuver strategy, and the success rate holds zero
during the training. The episode return curves in Fig. 9 show that SAC
outperforms TD3 and PPO, which get stuck in local optima. We infer
that the better exploration ability of SAC plays an important role in this
long-horizon and sparse reward task. However, exploration becomes
more challenging with 4 concurrent subtasks, making it hard to devise
a successful trajectory without external guidance. SubMas-RL achieves
a significant jump-start and better asymptotic performance through the
benefits of sequenced curriculum and knowledge transfer.

Then, we evaluate the final policy’s performance across all ablation
and baseline algorithms. We select the best-performing seed from 10
seeds according to average episode return. Each trained policy executes
1000 episodes on the target task. Table 4 presents a comparison of
overall performance between ablations and baselines.

Table 4 shows that SubMas-RL achieves the best performance with
n average return of 466.34 and a success rate of 94.8%. Overall, al-
orithms trained with curriculum learning (SubMas-RL, w/oPd, w/oPr,

DecPd, DecPr) achieved better results than those without curriculum
learning (TD3, PPO, SAC) on average. It suggests that curriculum
learning can help tackle complex tasks beyond the capabilities of stan-
dard RL algorithms. However, an interesting exception is that w/oPr
shows worse performance compared to TD3 and SAC. Next, an in-depth
analysis is undertaken to investigate the underlying mechanisms of all
comparable algorithms.
 s

10
Table 4
Comparison of overall performance between ablations and baselines.
Algorithms Episode return Success rate

SubMas-RL 𝟒𝟔𝟔.𝟑𝟒 𝟗𝟒.𝟖𝟎%
w/oPd 340.65 80.80%
w/oPr −59.98 0.00%
DecPd 373.49 85.40%
DecPr 390.16 86.20%
TD3 64.61 0.00%
PPO −310.70 0.00%
SAC 77.17 0.00%

DecPd and DecPr outperform all comparative algorithms since they
preserve critical policy distillation and policy reuse modules, which
facilitate efficient knowledge transfer. However, DecPd and DecPr ex-
hibit inferior performance compared to SubMas-RL. This difference can
be attributed to the use of different weight types: adaptive weights
in SubMas-RL and linear decayed weights in DecPd and DecPr. In
ontrast to adaptive weights that decline rapidly after initial progress,
he linear decayed weights keep larger during the initial training stages.
owever, larger weights in DecPd and DecPr may enhance the strength
f knowledge transfer, thus hindering exploration and adaptation to
ew tasks.

The w/oPd approach yields an average return of 340.65 and a
uccess rate of 80.80%. In contrast to SubMas-RL, which uses policy

distillation to produce auxiliary rewards, w/oPd solely employs policy
reuse to improve samples. Due to the absence of dense rewards, it
takes a longer training period to transfer knowledge and results in
lower overall performance. This finding aligns with the expectation
that slower knowledge transfer increases the training period required
to attain comparable performance.

The performance of w/oPr is significantly worse than even TD3 and
SAC algorithms, which do not utilize curriculum. This finding raises
doubts about the previous finding that the curriculum can promote
training. The underlying issue with the poor performance of w/oPr
is the inefficient knowledge transfer, which even leads to negative
transfer (Wang et al., 2019). Compared with SubMas-RL, which employs
policy reuse for efficient sampling, w/oPr can only transfer knowledge
slowly through auxiliary rewards. As depicted in Fig. 8, w/oPr achieves
only a success rate of 50% in source task 3. As such, incorrect auxiliary
rewards are used to train subsequent tasks, which can mislead the train-
ing. Despite the curriculum providing guidance for training, efficient
knowledge transfer is also crucial for effective learning.

TD3, PPO, and SAC algorithms exhibit improvements in average
return during training, but they fail to achieve a positive success rate in
the target task due to sparse reward signals and long-horizon sequences.
It presents significant challenges for standard RL algorithms to explore
and exploit effectively. SAC outperforms the other two algorithms as it
incorporates an entropy term into its optimization objective to enhance
exploration and avoid local optima. The difference between TD3 and
PPO lies in the fact that TD3 employs a deterministic policy while PPO
adopts a stochastic policy. Therefore, the potential reason why TD3
outperforms PPO in this task is that the considered UAV maneuver task
contains a low degree of stochasticity.

4.4. Comparison with expert policy

We visualize the policies trained by SubMas-RL, thus understanding
hat SubMas-RL has learned to achieve the performance. Then, four

rained policies are tested in source and target tasks, respectively. The
esults rendered in XSimStudio are shown in the attached video.

Fig. 10 depicts two screenshots in XSimStudio, showing the per-
ormance of SubMas-RL policy in the target task. In the beginning,
he evader and interceptor are randomly initialized on two sides. In
ig. 10(a), we observe that the evader maneuvers upwards to occupy a

uperior position at first rather than directly towards the exit. When
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Fig. 10. Two screenshots of SubMas-RL policy in the target task. (a) The evader has learned to maneuver and evade four missiles continuously. (b) After evading missiles, the
vader reach the exit successfully.
Fig. 11. Two screenshots of the expert policy in the target task. (a) The evader always attempts to keep its direction vertical to the missile. (b) The evader successfully evades
ll missiles.
ntering the radar coverage of the interceptor, the evader begins to
aneuver and adjust its attitude, even if the interceptor has not yet

aunched a missile. When the interceptor launches missiles, the evader
urns to keep its speed direction (almost) vertical to the LOS of the mis-
iles. This strategy can maximize the energy consumption of missiles,
hich is similar to defensive dragging (Sun et al., 2021), but with no

ixed pattern. After approaching at a certain distance, the evader turns
o the missile and flies towards it. When the two sides are very close,
he evader violently maneuvers with a large roll angle to evade the
issile attack. As shown in Fig. 10(b), after dodging missiles, the evader
avigates to the destination successfully.

To figure out the similarity and difference between the SubMas-RL
policy and regular maneuvers, we design an expert policy based on
the defensive dragging strategy, which is employed by many teams in
AIG 2021. Defensive dragging means that the UAV horizontally turns
±90◦ for breaking away from the enemy missile, i.e., keeping its speed
direction vertical to the LOS of the missile (Sun et al., 2021). Fig. 11
depicts two screenshots in XSimStudio, showing the performance of the
expert policy in the target task. Once the interceptor launches missiles,
the evader only takes the closest missile into account and performs
defensive dragging. Compared Fig. 11 with Fig. 10, we can observe
that the trajectory of defensive dragging is steeper and more violent
than the SubMas-RL.

To compare the inherent features of two policies, we visualize the
azimuth angle of missiles (𝜙m) in Fig. 12. The angle 𝜙m reflects the rel-
ative geometry between the evader and missiles. In Fig. 12, curves with
different colors refer to different missiles. We can observe that curves
of two policies show almost the same trend in the relative geometry.
It demonstrates that SubMas-RL has learned a human-relevant behavior
without introducing shaping rewards regarding evading missiles. We
can also observe in Fig. 12(b) that the defensive dragging strategy
always keeps ±90◦ with the closest missile, regardless of other missiles.
The curve changed drastically before the missile explosion because
the missile missed the UAV and flew from one side to the other. In
comparison, SubMas-RL also attempts to keep ±90◦ before the missile
explosion, but it prefers to maneuver when approaching the missile.
11
Fig. 12. Curves of the azimuth angle of missiles during evading missiles.

In addition, it is interesting to note the differences between these
two policies. Once a new missile is launched, SubMas-RL reacts imme-
diately, and the curves show rapid changes, while defensive dragging
only considers the closest missile. Finding the strategy of evading
multiple concurrent missiles is the main difference between SubMas-RL
and defensive dragging. It is exciting that the SubMas-RL has learned a
new maneuver strategy that is similar to the defensive dragging, while
obtaining a new strategy regarding multiple concurrent missiles.

Finally, we compare the overall performance of SubMas-RL and
expert policy. Each policy is run on the source and target tasks for
1000 episodes, and we evaluate the average episode return and success
rate. Fig. 13 presents the performance comparison on SubMas-RL and
expert policy over source and target tasks. Taken as a whole, SubMas-

RL surpasses the expert policy overall, while the performance of both
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Fig. 13. Episode return and success rate of SubMas-RL (blue) and expert policy (green).

policies decreases as the task becomes more difficult. We can observe
that the expert policy suffers from a large decrease in the target task,
with only a 62.1% success rate. Multiple missiles and random environ-
ments are the major challenges for regular maneuvers. Due to the fixed
maneuver strategy, the expert policy fails to generalize its performance
in different situations with random initialization. In contrast, the S
UBMAS-RL algorithm utilizes randomized training environments and
exploratory to enhance the generalization and robustness of the policy.

5. Discussion

5.1. Results analysis

The results of our study suggest that progressively increasing the
number of subtasks can effectively induce an agent to master long-
horizon, sparse-reward tasks that are beyond the capabilities of stan-
dard RL algorithms. A similar work is Dynamic Multi-agent Curriculum
Learning (DyMA-CL) (Wang et al., 2020), which masters a large-scale
multi-agent scenario by starting from a small size of agents to more
agents. Our findings are consistent with those of DyMA-CL, revealing
that progressively increasing the difficulty of tasks can significantly
enhance the final performance for complex problems.

However, we also observed that in some cases, the curriculum
fails to improve performance or even worsens it compared to learn-
ing from scratch. The underlying reason for this phenomenon lies in
negative transfer, where ‘‘bad’’ guidance can hurt the learning process
of the student. In other domains such as vision, previous research has
demonstrated that negative transfer is a frequent occurrence but can be
overcome (Wang et al., 2019). In the context of reinforcement learning,
the negative transfer can be addressed by introducing specific condi-
tions, but it requires enough samples (Zhan et al., 2016). An important
contribution of our approach is the incorporation of an explicit transfer
condition to avoid negative transfer, which enables efficient knowledge
transfer through policy distillation and reuse techniques.

Our results on the UAV maneuver task demonstrate that the pro-
posed SubMas-RL can lead to human-relevant behavior, such as defen-
sive dragging observed in our experiments. More interestingly, mean-
ingful behaviors related to multiple concurrent missiles emerge nat-
urally from the interaction processes, without any need for reward
engineering. Our findings are consistent with those reported in similar
domains such as air combat, as demonstrated by the results of Sun
et al. (2021), which highlight the potential of autocurricula for complex
behavior emergence in air combat tactics. Additionally, Baker et al.
(2019) demonstrated that autonomous emergence of tool-use behav-
iors can also be achieved through multi-agent autocurricula. Overall,
our results further support the use of curriculum learning for solving

complex problems in a natural and autonomous way.

12
5.2. Limitations

Firstly, it is worth pointing out that SubMas-RL operates under the
ssumption that the target task can be decomposed into a final goal
nd multiple subtasks. Unlike existing goal-conditioned hierarchical RL
pproaches, SubMas-RL does not require subtasks to belong to different
emporal scales, but it does require them to be ordered into a se-
uence according to the difficulty. This condition restricts the practical
pplicability of SubMas-RL to specific domains.

Secondly, the proposed SubMas-RL only supports deterministic pol-
icy gradient algorithms, since the policy distillation term is measured
by the distance between specific actions. Nonetheless, stochastic policy
gradient algorithms are sometimes preferred to enhance policy explo-
ration. To enable the use of stochastic policy gradient algorithms with
SubMas-RL, the policy distillation term should be replaced by the KL
divergence between the guide and behavior policies.

Thirdly, our study is subject to potential constraints derived from
the designed scenario. A potential limitation of the scenario design
is assuming default missile launch intervals in the simulation envi-
ronment. Our study could benefit from introducing more randomness
among opponents in the designed scenario, as training against random
opponents has been shown to produce more robust policies (Vinitsky
et al., 2020; Wang and Zou, 2021; Xie et al., 2022). Another limitation
is that the number of missile threats and the launching platforms in
real-world scenarios may vary significantly, potentially limiting the
scalability of the proposed solution.

Finally, the constrained training scenario may result in solution
outliers and chances of failure. Due to electromagnetic interference
and sensor accuracy issues, the agent may fail to obtain accurate
observation information about missiles. Without perfect observation,
the trained policy cannot generate effective decision-making outcomes.
In addition, collisions among UAVs may occur due to spatial and
temporal limitations, which might cause damage or even disable the
UAVs. Future studies may incorporate more disturbances that may arise
in practice to strengthen the practicality of the approach.

6. Related work

Many different paradigms have been proposed to deal with the
sample complexity challenges in applying RL to long-horizon tasks
with sparse rewards. Transfer learning allows the RL agent to leverage
the knowledge from source tasks to benefit the learning in the target
task (Taylor and Stone, 2009). Transfer learning is generally employed
in curriculum learning to extract and pass on reusable knowledge
acquired in one task to the next. Still, it ignores how the source task is
generated (Zhu et al., 2020). Our method could easily combine other
transfer techniques, such as learning from demonstrations that collect
samples from different source tasks and reuse them through inter-task
mappings (Nair et al., 2018).

Multi-task learning co-learns a group of different tasks to optimize
the performance over all tasks simultaneously (Parisotto et al., 2015).
For example, the Distral algorithm trained a central student policy
along with several teachers learned in different source domains (Teh
et al., 2017). These methods assume that all tasks can be experienced
simultaneously and focus on generalized performance (Hessel et al.,
2019). In contrast, we focus on rapid adaptation and asymptotic perfor-
mance on the target task, and source tasks only serve as auxiliary tasks.
Continual/Lifelong learning, as an online version of multi-task learning,
concentrates on defying catastrophic forgetting and learning new skills
without forgetting previous knowledge (Naqushbandi and John, 2022).
Compared to these works where tasks are predefined and fixed (Abel
et al., 2018), the characteristic of our method is that the order of tasks
is well-designed to maximize performance on the target task.

Another related paradigm, meta-reinforcement learning, leverages
the task-solving skills trained on a variety of tasks to quickly adapt to a
new similar task within a few iterations (Finn et al., 2017; Gupta et al.,
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2018; Stadie et al., 2018). In fact, source policies in our method can be
regarded as the meta-knowledge in meta-RL to optimize adaptability
in the target task (Hu et al., 2021). In essence, meta-RL aims to train
for adaptability, whereas our work dedicates to a specific final task.
One possible combination to generalize our method with meta-RL is
to automatically infer subtask-related information by a latent context
network (Sæmundsson et al., 2018) rather than hard-coding inter-task
relationships in a domain-specific way.

Furthermore, the challenges of long-horizon tasks and sparse re-
wards become worse in multi-agent settings. Many multi-agent rein-
forcement learning (MARL) methods have shown promising results
in various tasks (Lowe et al., 2017; Rashid et al., 2020; Xia et al.,
2022), but they also suffer from high sample complexity and scalability
issues, especially when the number of agents is large. The integration
of MARL and curriculum learning is a promising direction for tackling
complex and multi-agent tasks. Wang et al. (2020) proposes a dynamic
curriculum learning approach that gradually increases the number of
agents in the environment to improve the learning efficiency of MARL,
and shows that it can be combined with transfer learning to further
enhance performance. Perhaps a possible direction is to extend our
method to the multi-agent setting, which will be further investigated
in our future work.

7. Conclusions

In this paper, we propose an efficient algorithm, Subtask-Masked
curriculum learning for Reinforcement Learning (SubMas-RL), to ad-
dress the complex UAV maneuver task with sparse reward settings. We
present the concepts of subtask mask and transfer mask for generating
a sequenced curriculum by masking subtasks while avoiding negative
transfer among the curriculum. We also introduce two transfer mech-
anisms across different curricula to accelerate the learning process,
which is extensively validated by simulations. Experimental results
demonstrate that the proposed algorithm achieves a high success rate of
94.8% in the UAV maneuver task with four concurrent missiles, where
direct implementation of standard RL algorithms often fails. Further-
more, SubMas-RL obtains a human-relevant strategy, and meaningful
behaviors related to multiple concurrent missiles emerge naturally from
the interaction processes. The main limitations of our study are the
assumption on subtasks and potential constraints derived from the
designed scenario.

Possible directions of future research include: introducing subtask
etrics to realize subtask sequencing and curriculum generation au-

omatically, combining the proposed approach with stochastic policy
radient algorithms to broaden its applicability, building a high-fidelity
imulation environment, designing more dynamic scenarios and oppo-
ents to further enhance the practicality, and leveraging distributed
ampling and diverse adversarial pools to enhance policy robustness.
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