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Abstract

Visible light sensing is a field of research that cre-
ates new possibilities for human-computer inter-
action. This research shows the viability of de-
signing a system for detecting hand gestures us-
ing a cost-effective detection circuit employing
3 light-sensitive photodiodes. The way this re-
search shows viability is by developing a machine-
learning model that works on 3D-structured sensor
data that is able to distinguish 10 different gestures
and deploying the model on a standalone Arduino
Nano 33 BLE microcontroller controlling the sys-
tem. Using a combination of Convolutional Neural
Networks and Recurrent Neural Networks it is pos-
sible to deploy a model called ConvLSTM-128 that
achieves an accuracy of 70% on a dataset of limited
size. This research acknowledges that the achieved
accuracy is not suitable for real-world use, but con-
cludes by outlining steps that could help future re-
search in increasing the accuracy. Furthermore, an
analysis of the 10 gestures shows that in order to
improve accuracy, the way some gestures are per-
formed might need alteration. Finally, a model size
of around 140Kb and an inference time of 660ms
show that this model is compact and fast enough to
be deployed in real-world applications.

1 Introduction
Touchless interfaces have the potential to augment or replace
the current-day human input devices we encounter. During
the COVID-19 pandemic, new demand for touchless human-
computer interfaces has risen because they make interaction
with public infrastructure more hygienic. Furthermore, they
can also make interaction possible in a more natural way [12].
For example, replacing or augmenting the physical buttons
that operate a vending machine with a touchless interface, has
a hygienic advantage because physical buttons no longer need
to be directly pressed.

Direct input of values into a system is usually done with
numbers and characters, however, another important way for
humans to interact with systems is through the use of ges-
tures. Gestures can range from large hand movements to intri-
cately small finger patterns and often provide a way to interact
with systems in a more natural way. For example, navigating
to the next page of a slideshow can be done with a swipe-left
gesture and controlling the volume of music playback could
be done with a rotating hand movement in the desired direc-
tion.

In 2022, an effort was made by 5 Computer Science stu-
dents to create a system for detecting gestures using an ar-
ray of OPT101 photodiodes on a custom PCB, controlled by
an Arduino Nano 33 BLE microcontroller. Machine learning
was identified as a possible solution to perform gesture recog-
nition, as it is a suitable option for when lots of varying inputs
need to be classified into the correct gesture. Convolutional
Neural Networks (CNNs) have been proposed in order to de-
tect gestures based on a 2D representation of an input sam-
ple, meaning that the input was transformed into an image
on which pattern recognition was performed [10]. Recurrent
Neural Networks (RNNs) have also been identified as a viable
option by [8], as they are well suited for classifying sequen-
tial (time-series) data. However, the constructed models were
not yet able to run on resource-constrained microcontrollers.

This research will aim to improve last year’s accuracy per-
formance. Furthermore, it will use new developments in the
Tensorflow Lite for Microcontrollers library1 (TFLM) that
allow the deployment of RNNs on platforms such as the
Arduino Nano 33 BLE. The research question is therefore:
”How to perform gesture detection on a testbed with one Ar-
duino Nano 33 BLE and three OPT101 photodiodes using
machine learning based on 3-D pre-processed data?”

The process of creating the system involves a number of
sub-questions:

• How to collect new training data?
• How to shape data in a suitable way for the chosen model

run on?
• What type of model can be used?
• What are the hyperparameters of the model?
• What is the accuracy of the model?
• What is the performance of the model on a microcon-

troller?
Research into other subjects like 2-D pre-processed data, as

well as digit and character recognition based on the same plat-
form, is being performed by other Computer Science Bache-
lor students. This paper will refer to the group as ‘the research
group‘ and mention their work whenever research effort has
been shared, for example when new data was collected.

This paper will include the following sections: Firstly,
background information about the types of machine learning
models used in the research is given in section 2, as well as
introducing previous work on the detection system created
in 2022. In section 3, the paper includes the methodology
for the research, describing how data collection and process-
ing will be structured. This paper’s main contribution will
be discussed in section 4. Research setup and results will be
discussed in section 5. Discussion of the research and the
potential difficulties encountered during model development
will be done in section 6. Section 7 states how this research
was performed in a responsible way. Finally, the paper con-
cludes and stipulates any further possible improvements on
the system in section 8.

2 Background
Until recently, computer programs were created in a way
where each input resulted in a predefined output of the pro-
gram. Every circumstance that the program would ever en-
counter, would result in a corresponding action that it should
take [16]. Creating this ruleset for when specific actions
should be performed, was entirely up to the programmer. This
strategy works for programs and systems for which every
conceivable input can reasonably be considered during devel-
opment. However, there are some tasks we like to automate
for which human ingenuity is not enough. This is where Ma-
chine Learning, a field that studies algorithms that can learn
from experience, comes in [16].

The photodiodes in the gesture detection system all pro-
duce an output signal that reflects the amount of light they
currently measure. Collecting the data during a pre-set sam-
ple time then produces a graph that looks like Figure 1. There
are three separate graphs for each of the photodiodes present
on the detection system. The vertical axis displays the nor-
malized light intensity observed, measured as 10-bit values
ranging from 0 to 1023 by the Arduino. The horizontal axis
displays the amount of samples collected, in this case 100

1https://www.tensorflow.org/lite/microcontrollers
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Figure 1: Example of swipe-up
measurement

Start End

Figure 2: Example
of swipe-up gesture

samples in 1 second. More information about sample collec-
tion is in section 3.

The gesture that was recorded is the ”swipe-up” gesture,
in which the user moves their hand from the bottom of the
detection system to the top, as displayed in Figure 2. Due
to the analog nature of this signal, some noise will always
be present in the collected measurement. Furthermore, hu-
mans cannot reproduce the same gesture with exactly the
same characteristics in front of the detection system multi-
ple times. A user might perform the gesture faster or slower
than normal, or they might move their hand slightly relative
to the detection system, resulting in differing measurements.
Finally, changing lighting conditions also result in different
measurement intensities. These features are the reason we
cannot devise a standard ”one-size-fits-all” algorithm for ges-
ture detection, the difference between measurements is sim-
ply too large. Therefore, we will employ machine learning to
teach the system to recognize gestures based on training data
collected for this research.

2.1 Previous work
In 2022, research into touchless gesture recognition has been
performed by 5 Computer Science students at the TU Delft
for completing their Bachelor research project:

Stijn van de Water conducted research on creating the cus-
tom printed circuit board (PCB) in order to house and control
three photodiodes with which intensity changes in ambient
light can be measured [13]. Furthermore, he created a circuit
with which the sensitivity of the photodiodes can be altered so
that they can work in varying lighting conditions. Addition-
ally, the output signal from the photodiodes is filtered with a
small filtering circuit. The PCB interfaces with one Arduino
Nano 33 BLE, on which further processing was performed by
other members of the 2022 research group. The custom PCB
will be referred to as the testbed in this research paper.

Dimitar Barantiev has performed research into the design
of the software for the gesture input receiver [3]. His findings
have identified possible ways of detecting gesture starts and
processing the signal using a mix of FFT, maximum division
and Linear Interpolation.

Femi Akadiri constructed a dataset to aid in the training
of models used for gesture recognition [2]. His research ex-
plored the impact certain features like ambient light, hand
size and sampling rate have on the final dataset. He also con-
structed tooling with which a dataset can easily be recorded,
which will be used for this research. For the results of this
paper, the dataset by Akadiri will not be used.

William Narchi researched how to develop a CNN in order
to perform gesture detection [10]. His research identified a
suitable CNN and a corresponding way to deploy the model
on an Arduino Nano 33 BLE microcontroller in a way that

the model is sufficiently compact and low-latency for real-
time operation.

Matthew Lipski researched the possibilities of recognizing
gestures using RNNs [8]. His research has shown that CNN-
LSTMs have produced a relatively high validation accuracy
but also noted that further work is required for improving the
accuracy. This research paper will be mainly focused on im-
proving the models identified by Lipski, as well as deploying
them to an actual microcontroller.

2.2 Recurrent or Convolutional
Until recently, most machine learning techniques have used
shallow-structured architectures [6]. This means that the data
is modelled very simply and structured with a shallow repre-
sentation. However, these models encounter difficulties when
dealing with real-world applications involving natural sig-
nals like the detection of gestures [6]. As seen in Figure 1,
data from the detection system is inherently sequential. This
means that when all data points, or timeframes, are shuffled,
the data loses its entire context. For this reason, using a neu-
ral network that is able to take the context into consideration
is vital. For this reason, numerous research into a field called
Deep Learning has been performed to explore the complex
structures that natural signals contain [6].

Two important developments in the field of Deep Learn-
ing are Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs). Both types of neural net-
works are used for classification of time-series data [16],
however, RNNs have proved difficult to train, containing mil-
lions of parameters, in the past [9]. Classical RNN mod-
els have had troubles with vanishing and exploding gradients
that occur when backpropagating errors across many time
steps [9]. Having the gradient ”explode” results in internal
model weights oscillating, while gradients ”vanishing” mean
that training the model takes a long time, or the model does
not train at all [7]. The LSTM (Long Short-Term Memory)
model introduced by Hochreiter and Schmidhuber [7] was
created in order to overcome the problem of vanishing gra-
dients by implementing LSTM as a memory cell with an effi-
cient algorithm enforcing constant error flow through the in-
ternal states of the cells. Model structures using LSTM will
become the most important models in this research, as they
have been identified as being suitable for classifying sequen-
tial data [16].

3 Methodology
This section will explain the methods used to approach the re-
search question. Figure 3 presents an overview of the work-
flow that is used for this research. Data Collection, Model
Development & Training and Model Validation form a cycle
as this is a continuous process during the research that is re-
fined each time more training data was available.

3.1 Data collection
Part of training a machine learning model is training it on
a varied set of data so that it can work on a representative
dataset based on real-world usage. For this reason, data was
collected from multiple participants in varying environments.
Because this research collected data from human participants,
the responsible professor contacted the TU Delft Human Re-
search Ethics Committee2 (HREC). Based on a risk analysis,

2https://www.tudelft.nl/en/about-tu-delft/strategy/
integrity-policy/human-research-ethics
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Figure 3: Outline of methodology

the committee has deemed this research as low-risk and pro-
vided the research group with approval to conduct research
with human participants. An informed-consent form has been
created for participants to consent to the research, and the
filled forms are stored on GDPR-compliant media and are not
part of the research data.

For collecting the data, the same PCB as last year was
used. The Arduino on the PCB contains a specialized ver-
sion of the detection code that outputs the three values of the
photodiodes at a set sample rate over serial communication,
which was then collected by a custom tool on a personal com-
puter. The programs for this were all used from last year’s re-
search, however, the research group quickly found out that we
would prefer to have more customizability for the software.
Tweaks to the software that have been made can be found in
the shared repository.3 Some notable improvements include:

• The control software supports all types of gestures, dig-
its and characters necessary for the research group.

• The control software is able to change the sampling rate
on the microcontroller.

• The control software shows a graph of collected mea-
surements and allows for removing individual measure-
ments when they are incorrect.

Some guidelines for using the board were set for ensuring
comparable measurements for all members of the research
group:

• Ensure the PCB lays flat on the table.

• Ensure that there are no super bright lights in the envi-
ronment.

• Ensure that the room is well-lit.

• Recalibrate the photodiode sensitivity when lighting
conditions change.

• Ensure a consistent distance between the PCB and the
participants’ hand, around 6 to 12 centimetres.

Each participant created an anonymized dataset containing
the gestures as displayed in Appendix A (as well as digits
and characters for other members of the research group). A
sample rate of 100 Hz was used and a sample duration of 1s
was employed. Participants were asked to perform the ges-
ture starting with their hand on the table and also ending with
their hand away from the sensors, this was done to ensure a
clean start and end period in each gesture. An exception was

3https://github.com/arnedebeer/CSE3000-DataCollection.git

made for the Rotate CW & CCW gestures, for which partici-
pants were asked to start performing a circular motion above
the board, after which the researcher clicked on the collec-
tion button numerous times. Each gesture was measured at
least 5 times in succession. At first, the research focused on
getting equal amounts of data on left and right-handed usage,
however, most of the participants were right-handed so the re-
search switched over to letting candidates pick their preferred
hand, more about this in section 7.

3.2 Model development
The development of models involves processing the data to an
appropriate form before inputting it in a model. Preprocess-
ing can improve the quality of the signal so that the model
can more easily train on important characteristics instead of
unwanted signal differences [3]. After preprocessing, the lay-
ers and hyperparameters of the model are defined and com-
piled using Keras [5]. This research analyzes two general
types of models, one purely based on an LSTM layer to-
gether with some modifications, and variations on another
model named ConvLSTM by [8]. Model development and
deployment code can be found in the GitHub repository [14].

Preprocessing
The final data processing pipeline utilizes a normalization
step. With a sample rate of 100 Hz, each measurement con-
tains 100 measurements over 1 second. The normalization
step converts each of the 3 10-bit photodiode readings sep-
arately into a normalized 32-bit floating point value ranging
from 0 to 1, this is done to account for differences in light
intensity readings across measurements. A reshaping step
was considered but did not make it into the final model, as
the main structure revolves around the shape that is accepted
by the primary LSTM layer, which coı̈ncides with the struc-
ture the data is already being collected in. Additionally, the
ConvLSTM models do internal reshaping that splits the input
into multiple ”frames” that can be fed to the first convolu-
tional layer so they accept the same input as the plain LSTM
models. This means that 3D-structured data can be fed to the
model as-is.

Model structure
The model structure is primarily composed of an LSTM
layer that accepts input in the following format: [batch,
timesteps, feature]. The predictions layer — the layer
that provides the final output — is a generic densely-
connected layer containing 10 nodes, one node for each of the
gestures we wish to classify. Multiple additions were condi-
tionally added in the code so that multiple model structures
could easily be tested. For example A dense layer could be
added before the predictions layer to see if that would aid the
LSTM layer in forming predictions. Furthermore, the LSTM
layer received the option to be embedded in a Bidirectional
layer so that the time-series data will be looked at sequen-
tially beginning from the start and beginning from the end.
The layer structure along with most hyperparameters of the
ConvLSTM models remained the same as proposed by [8] as
that proved to yield the best results. The most important vari-
ations in the hyperparameters of the models will be shown in
section 5.

3.3 Model validation
The data collected is grouped per candidate. This is done be-
cause each candidate also reflects a different environment, in
which the system should be able to work. For this reason, we
can only validate the model based on data it has never seen

https://github.com/arnedebeer/CSE3000-DataCollection.git


before, ideally from environments that are new. For this rea-
son, the entire dataset is split between groups of candidates,
instead of randomly shuffled as shown in Figure 4. The rea-
son this is done, is to have an accuracy rating based on sam-
ples that the model has never seen before. This way, when the
model is heavily overfit on the training data it cannot perform
as well when validating it with the test set, resulting in more
accurate performance metrics.

Dataset

S1 S2 S3S4 S5 S6S7S8 S9S10 S11 S12S13S14 S15 S16

Input

Shuffled random

Input Dataset

C1

S1S2S3 S4

C2

S5S6 S7 S8

C3

S9

C4

Split Train Test

Split Train Test
Shuffled random

Shuffled random S11 S12 S13 S14S15S16S10

Random split

"Candidate split"

Figure 4: Method to split train and test data

K-Fold Cross-Validation
To estimate reproducible model accuracy statistics, K-Fold
Cross-Validation is used [4]. The k unique groups that are
chosen will be split between candidates. For each unique
group, the model is fitted with a set of data where the group
itself is removed from the training set. The model is then
evaluated on the group that was removed from the training
set. Finally, the accuracy, loss and confusion are stored, the
model is discarded, and the cross-validation continues with
the next group. For the candidate models, a 5-fold and a 10-
fold will be performed.

3.4 Model deployment
Last year, [8] used TFLM version 2.4, which had no support
for certain RNN tensor operations. This research deployed
the latest version of TFLM built for the Cortex M4 archi-
tecture on the Arduino microcontroller, which has support
for unidirectional LSTM operators, as well as all previously
used Convolutional operators. Necessary libraries are added
to the repository as git submodules. The project was stati-
cally linked with the manually compiled library, however, in
more recent commits this was changed over to a non-statically
linked version of the library in order to figure out compatibil-
ity issues.

Detection system
Sensor data is collected with a sliding window buffer, this
means that we always store the last 100 frames in the buffer.
Each ”tick” of the microcontroller shifts the buffer and per-
forms a new measurement, at a rate of 100 Hz. Further-
more, an algorithm for detecting the start of a gesture is in
place. This algorithm is adjustable with two parameters, the
activation threshold and the window size. Every 200
ticks the microcontroller generates an average of the sensor
input it has seen for the last 100 frames, and sets it as the
activation threshold. The threshold is thus dynamically
updated to changing lighting conditions. For each tick, the
microcontroller checks if the last window size, 10 for ex-
ample, frames are below the threshold. If they are, the con-
troller waits for sample size / 2 ticks before starting the
preprocessing pipeline, which finally results in the controller
running inference on the model. The reason it has to wait

50 more ticks, is to wait for the gesture to complete so that
the sliding window buffer contains the gesture roughly in the
middle of the measurement. Essentially, it calculates whether
it has seen a dip in light intensity over the last few frames.

When the system detects a drop in light intensity, and there-
fore a possible gesture, the buffer is filled up to 100 measure-
ments. Then, the data is normalized and inference is run. In-
ference means that the model takes the input sample and pre-
dicts an output based on the sample and what it has learned
during training. Model prediction output is a list of weights,
of which the index of the largest value in the list is chosen to
be the actual output. The output of the inference is transmit-
ted to an attached computer over the serial connection.

Quantization
A model with a lot of trained parameters can become quite
large, which means that allocating the static memory and the
tensor memory on the microcontroller also takes up more
space [15]. The parameters and weights of the internal model
structures are stored as 32-bit floating point numbers, but
they can also be converted to 8-bit integers without losing
too much precision [1]. This is called quantization and has
the potential to reduce the space and runtime requirements of
the model drastically. Quantization is a built-in feature of the
TensorFlow-lite library.

Other Microcontrollers
Verifying whether inference and model output are correct on
the microcontroller can be done by loading the TensorFlow-
Lite model in Python, and running inference with the same
sample as the microcontroller. Both the microcontroller and
the Python interpreter should then output the same value.
During this research, running quantized models on the Ar-
duino Nano 33 BLE did not produce correct outputs for infer-
ence. For this reason, this research also performed inference
analysis on an ESP32-based development kit, containing the
ESP32 microcontroller that has double the memory (512Kb)
of the Arduino Nano 33 BLE (256Kb) in order to determine if
another platform is able to correctly run the models. Inference
times of both microcontrollers have therefore been included
in the results, while their output correctness is discussed in
section 6.

4 Implementation
This research will analyze the differences between several
variants of recurrent LSTM models. In order to analyze the
performance, a dataset containing around 1400 right-handed
gestures and 900 left-handed gestures was constructed to-
gether with fellow students in the research group. Further-
more, data processing, model training and model optimiza-
tion code in Python has been produced. Finally, model de-
ployment for two different microcontroller architectures has
been constructed with code in C and C++, containing pre-
processing, a gesture detection algorithm and inference using
the TFLM library. Final code used for aforementioned parts
of the research can be found in the same repository as the
model structure code [14].

5 Results
For baseline measurements, variations on the best performing
RNN model by [8] called ConvLSTM are used. Furthermore,
some variations of simple LSTM models are analyzed. In
summary, this section includes the metrics of the following
models:

• ConvLSTM x-unit (with x ∈ [16, 32, 64, 128])



• LSTM x-unit (with x ∈ [16, 32, 64, 128])
• LSTM 64-unit + Dense (D.) x-unit (with x ∈ [64, 128])
• LSTM 64-unit Bidirectional (Bd.) + Dense (D.) 128-unit
The reason we look at the LSTM unit size separately

from the extra added features like Dense and Bidirectional
is to evaluate whether they are able to actually boost perfor-
mance for an already ”maxed-out” LSTM layer. Furthermore,
adding a Dense layer greatly increases the size of the model
as lots of parameters have to be stored. The metrics that will
be reported for each model are the following:

• 5-fold accuracy & loss
• 10-fold accuracy & loss
• Original & Quantized model size
• Quantized inference time on Arduino Nano 33 BLE &

ESP32
ConvLSTM models are trained with 60 epochs and plain
LSTM models have been trained with 125 epochs, using
the Adam optimizer. The learning rate is left to the default
setting, which is 0.001. Models are quantified using the
TensorFlow-lite library optimizing with default settings.

Inference time is measured on the microcontroller with
timers that output the time in milliseconds the invoke()
function took to complete, preprocessing time is therefore not
measured. Results regarding the accuracy estimation based
on K-Fold cross-validation can be found in Table 1, model
sizes are shown in Table 2 and inference times are shown in
Table 3. Finally, a confusion matrix for the best performing
model can be found in Figure 5 to show what gestures are
easier to detect with an RNN and which ones are more chal-
lenging.

Figure 5: Confusion matrix of ConvLSTM 128-unit model based
on 10 folds of cross validation

6 Discussion
From Table 1 we can conclude that variants of the ConvL-
STM model outperform all variants of more simple LSTM
models. This implies that incorporating some convolutional
neural network layers in the model is able to boost accuracy
by a small amount for the same data. This can be due to con-
volutional layers being able to extract the specific features
that are important for classification in the samples.

5-fold 10-fold
Acc. Loss Acc. Loss

ConvLSTM 16 65.78% 1.09 67.31% 1.05
ConvLSTM 32 69.36% 1.12 69.66% 1.06
ConvLSTM 64 70.42% 1.29 69.98% 1.32
ConvLSTM 128 70.16% 1.52 70.72% 1.48
LSTM 16 63.72% 1.71 65.71% 1.50
LSTM 32 64.47% 2.40 66.32% 2.19
LSTM 64 65.60% 2.78 67.31% 2.52
LSTM 128 66.68% 2.55 68.12% 2.43
LSTM 64 + D. 64 67.98% 2.36 69.23% 1.97
LSTM 64 + D. 128 69.34% 2.43 68.6% 2.22
LSTM Bd. 64 66.09% 2.51 66.74% 2.42
LSTM Bd. 64 + D. 128 66.92% 2.19 69.29% 2.22

Table 1: K-fold metrics

Size
Original Quantized

ConvLSTM 16 391.0Kb 112.6Kb
ConvLSTM 32 420.7Kb 120.2Kb
ConvLSTM 64 504.7Kb 141.7Kb
ConvLSTM 128 770.9Kb 209.1Kb
LSTM 16 72.3Kb 22.0Kb
LSTM 32 149.7Kb 41.5Kb
LSTM 64 329.2Kb 86.8Kb
LSTM 128 786.4Kb 201.9Kb
LSTM 64 + D. 64 1714.8Kb 433.8Kb
LSTM 64 + D. 128 3356.0Kb 844.32Kb
LSTM Bd. 64 657.4Kb 172.1Kb
LSTM Bd. 64 + D. 128 6705.1Kb 1684.8Kb

Table 2: Trained model sizes

Inference speed
Arduino ESP32

ConvLSTM 16 369.6ms 826.8ms
ConvLSTM 32 499.4ms 844.5ms
ConvLSTM 64 658.5ms 919.0ms
ConvLSTM 128 1141.9ms 1269.9ms
LSTM 16 97.1ms 33.2ms
LSTM 32 253.2ms 80.8ms
LSTM 64 777.6ms 237.1ms
LSTM 128 2677.3ms 1670.8ms
LSTM 64 + D. 64 805.2ms 306.6ms
LSTM 64 + D. 128 DNF 398.2ms
LSTM Bd. 64 DNR DNR
LSTM Bd. 64 + D. 128 DNF DNR

Table 3: Quantized inference time
DNR: Did not run DNF: Did not fit

Furthermore, we can see that having a deeply connected
layer of 128 units (LSTM 64 + D. 128) is able to help the
model achieve a little higher accuracy, however, this comes at
a great model size penalty as can be seen in Table 2 so it is
not very feasible for resource-constrained microcontrollers.

Additionally, in Figure 5 we can see the confusion matrix
of the ConvLSTM 128-unit model based on 10 folds of cross-
validation. In a confusion matrix, the amount of prediction
mistakes a model makes during validation is recorded as well
as what the model actually predicted. This results in an image
in which gestures that are often predicted correctly have a
high value close to 1 on the diagonal, but gestures that the
model can predict less accurately will have a lower value. It
is also possible to see with what other gestures a model is
most confused.

A very noticeable example from the confusion matrix is the



confusion between zoom-in and zoom-out gestures. Zoom-in
and zoom-out are often confused with one other, but it is im-
portant to note that these two gestures also share some confu-
sion with the tap gesture. This can be explained by the motion
that is made before and after making a gesture, in which the
participant moves their entire hand into and out of the detec-
tor’s field of view. The actual zoom gesture only makes up a
fraction of the total input features that the model sees, mak-
ing it easily confused with any other gesture that is based on
the user moving their hand in and out of the field of view.
This can be explained by looking at the similarities in mea-
surements when manually observed in Figure 6, however, it
should be mentioned that not all zoom measurements look
like tap measurements. Based on the confusion matrix, we
can also conclude that the swipe gestures are the most easily
recognized of the 10-classification.

Figure 6: Two hand-picked samples showing the similarities of Tap
and Zoom gestures

Deployment
In order to get inference working natively on the microcon-
troller, the model needs to be converted to a TensorFlow-lite
model. Furthermore, the model then also needs to fit inside
the limited flash storage on the microcontroller. The largest
models in Table 2 will not fit in the standard flash memory
in common microcontrollers, however, they might be able to
fit on microcontrollers with additional external flash memory.
Finally, the microcontroller also needs space in memory to
allocate space for all tensors. An edge case in which a model
fits but does not run would be a possibility, however, with the
models tested this behaviour was not encountered. Models
that do not fit are referred to as ”Did Not Fit” (DNF) in the
table, and models that fit but are unable to run are referred to
as ”Did Not Run” (DNR). The models containing a bidirec-
tional LSTM layer were not able to run because of a missing
operator in TFLM. The LSTM 64 + D. 128 model was able
to fit on the ESP32 and not on the Arduino, this is due to
the greatly expanded flash storage that was available for that
controller.

Furthermore, LSTM models are a recent development in
the TFLM library and therefore not everything works as
smoothly as planned. For example: Running an LSTM model
with only 4 units on both microcontrollers results in a work-
ing system, however, when a quantized version is deployed,
the output is wrong. Output vectors from the model are al-
ways the same, regardless of input. This research has not
been able to establish a solution for this behaviour, but the
cause is probably found in the way models are quantized, as
executing the quantized model interpreters in Python also re-
sults in problems. For this reason, the inference speeds in
Table 3 on both microcontrollers are purely based on a run-
time analysis of the TFLM library’s invoke() method with
the applied model, regardless of its output.

Some notable results in Table 3 are that the microcon-
trollers both seem to perform differently in scenarios with and
without convolution. The ConvLSTM models run slightly
faster on the Arduino, while the more simple LSTM-only
models run faster on the ESP32. This could be explained by
looking at their underlying implementations, as both micro-
controllers have incorporated optimized functions for neural
networks, implemented for their native architectures. Adding
more deeply connected layers has a small performance im-
pact but a large model-size impact. In practice, all inference
times lower than 1000ms should be acceptable as this still
feels reasonably fast.

7 Responsible Research
This research uses data collected from human participants in
a real-world environment. For this reason, any possible bias
in the data could impact later system usage in a production
environment. For example, the dataset consists of 1400 right-
handed gestures and 900 left-handed gestures, which means
that the neural network has performed less training on left-
handed data. This could result in a system that is less respon-
sive and less accurate for left-hand users which is something
this research initially aimed to avoid. To achieve this, right-
handed participants were asked to also perform gestures with
their left hand in order to gather more data. This results in a
less biased dataset, however, it can be argued that data col-
lection with participants using their non-dominant left hand,
results in data that does not accurately represent actual left-
handed users. Some real left-handed participants are also in-
cluded in the dataset. The final dataset, however, still con-
tains more right-handed than left-handed measurements. As
the ratio between right- and left-handed people in the world
is around 90/10 [11], this research deems the achieved bias in
the dataset acceptable.

Another possible bias this dataset might include is individ-
ual sample bias. Gestures that resulted in hard-to-distinguish
features like rotation and zoom gestures have been collected
more often than simpler gestures like swiping. While the
baseline of gesture collection per participant was 5 measure-
ments per gesture, more were sometimes recorded and not
deleted afterwards. As we see in section 6, these gestures are
still hard to classify, so having more measurements for these
specific classes is justified.

Furthermore, during data collection and analysis, this re-
search selectively removed samples that are not representa-
tive of the expected sensor input in a final product. This
means that in cases where a participant was too early or too
late in performing the gestures, the resulting measurements
have been removed and performed again. This was done be-
cause this research trains the used models with limited data,
meaning that samples that were not up to the specifications
could impact final performance.

Finally, an ethical implication of this research can be that
the gesture detection system might not be as easy to use for
all users and that it could lead to frustration while using the
system in a production environment due to low accuracy. For
this reason, this research recommends having a backup option
for human-computer interaction, physical buttons for exam-
ple, in real-world scenarios.

8 Conclusions and Future Work
This research proves the feasibility of running a standalone
gesture detection system by constructing a workflow for
recording, processing and deploying models for gesture de-



tection. With a final accuracy of around 70%, the used mod-
els are not yet ready for real-world use. Especially when user
input has to result in a reliable action performed by the detec-
tion system. Every gesture now has more than 1/4th chance
of being predicted wrongly, which would be a major cause for
frustration in production deployments of the system. Model
accuracy is only marginally improved by employing more
complicated models and substantial accuracy improvements
can only be made by increasing the size of the dataset.

Recurrent Neural Networks have certainly shown their ca-
pabilities being almost on-par with Convolutional Neural
Networks in this research, so they are worth exploring more
once a larger dataset is available. For improving the dataset,
more criteria about lighting conditions could be set as this re-
search was not able to provide a fixed environment in which
all measurements were performed. Dataset augmentation can
also be done, this means that for each collected sample some
variant samples can be automatically generated, possibly aid-
ing the model in becoming more robust.

The 10-classification for gestures is feasible, however, the
zoom gestures are hard to distinguish. The easiest solution
to this problem could be swapping out zoom-in and zoom-
out for other kinds of gestures that are more distinguishable.
Other solutions can also be thought of. For example, extra
hardware on the board can be added to provide height in-
formation of the hand and fingers. Not only can this aid in
detecting the start of a gesture, it could also provide more
features for gestures in which the height of the hand above
the detection system changes, like tap and zoom.

Additionally, more research into deploying models on var-
ious microcontrollers is required. As LSTM models are rel-
atively new in TFLM they still require some workarounds to
get fully working. Furthermore, model quantization shows
unwanted behaviour which can be further analyzed. As in-
ference times are still relatively acceptable for deeply con-
nected layers, experimentation can be done with microcon-
trollers that offer lots of flash storage in order to store large
but simple models.
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