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Abstract

In this work the feasibility of a numerical wave tank using a hybrid particle-mesh method is investigated. Based on the Fluid

Implicit Particle Method (FLIP) a generic formulation for the hybrid method is presented for incompressible multi-phase flows

involving large density jumps and wave generating boundaries. The performance of the method is assessed for a standing wave,

and the generation and propagation of a solitary wave over a flat and a sloping bed. These benchmark tests demonstrate that the

method is a promising and attractive tool for simulating the nearshore propagation of waves.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the organizing committee of the 1 st International Conference on the Material Point Method.
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1. Introduction

The numerical modeling of flow problems in environmental fluid mechanics has made huge progress over the past

decades. While Eulerian mesh-based methods are widely used for solving the governing Navier-Stokes equations,

Lagrangian particle-based methods such as the Smoothed Particle Hydrodynamics (SPH) method are becoming in-

creasingly popular for problems involving violent free surface motion (see e.g. [1], [2]). While interface tracking in

Eulerian methods requires additional effort, interfaces are trivially captured by Lagrangian particle-based methods.

However, Lagrangian particle-based methods are known to be computationally much more demanding than Eulerian

mesh-based methods, on top of that, enforcing the incompressibility constraint in particle-based methods is far from

being trivial. Therefore, fluids are most often assumed to be weakly compressible in particle-based methods which, in

combination with explicit time stepping, leads to restrictively small time steps when applied to (nearly) incompress-

ible fluids.

This work outlines a hybrid Lagrangian-Eulerian (particle-mesh) method for simulating incompressible fluid flows by

presenting a generic formulation for the particle-mesh interaction and a strategy for efficiently solving the (Navier-

Stokes) equations on the background mesh. Building upon Fluid Implicit Particle (FLIP, [3]) and Particle in Cell

(PIC, [4]) concepts, the method has the combined advantages of Eulerian mesh-based and Lagrangian particle-based
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methods. For the proposed particle-mesh interaction procedure, the method is more geared towards a mesh-based

method than e.g. the material point method (MPM, [5]) and SPH.

More specifically, this work aims at developing a hybrid particle-mesh numerical wave tank, where both the air- and

the water-phase are modeled by means of Lagrangian particles. Therefore, several issues to achieve this objective are

addressed in this work: particularly, the implementation of wave-making boundary conditions and a method to deal

with sharp discontinuities in material properties are presented.

The remainder of this work is structured as follows: in Section 2 the governing equations are presented, Section 3

discusses the model formulation. In Section 4 the model performance is assessed by running different benchmark

tests. In Section 5 conclusions are drawn and an outlook for future research is given.

2. Governing equations

The motion of an incompressible fluid in a domain Ω ⊂ R
d, with d the spatial dimension, and time interval

I = (t0, tN) is described by the incompressible Navier-Stokes equations, comprising both the momentum balance and

the incompressibility constraint. For Newtonian fluids these equations respectively read as follows:

ρ
Du
Dt
= f − ∇p + ∇ · σ in Ω × I (1)

∇ · u = 0 in Ω × I (2)

in which u denotes the flow velocity, ρ the density, p the pressure, f the body force and the viscous stress tensor is

given by σ = 2μ∇su, with ∇s(·) = 1
2
∇(·) + 1

2
∇(·)T being the symmetric gradient operator and μ the dynamic viscosity.

In the framework of the hybrid particle-mesh methods, Eqs. (1)-(2) represent the equations to be solved at the back-

ground mesh.

3. Model formulation

A hybrid particle-mesh method typically consists of the following steps:

1. Particle-mesh projection; data from the scattered particles is projected onto the background mesh in order to

reconstruct continuous density and velocity fields.

2. Solving the mesh equations; the continuum equations (Eqs. (1)-(2)), are solved at the Eulerian background mesh.

3. Mesh-particle projection; given the solution obtained in step 2, particle properties are updated. For immiscible,

incompressible fluids this yields an update of the particle velocity (being representative for the change in particle

momentum).

4. Particle advection; the particle position is updated by moving the particles with an advective velocity.

Step 2 and 4 are entirely performed at mesh and particle level respectively, while step 1 and 3 take care of the coupling

between particles and the background mesh.

3.1. Particle projection to the mesh

Contrary to the common approach in the classical MPM [5], where (mass) integrals are replaced by summations

over the discrete set of particles, a least square fitting is proposed for the projection of the particle properties to the

mesh, following e.g. [6], [7]. Such an approach results in a smooth representation of the particle properties at the

background mesh. Similar techniques have been developed in the MPM community in order to achieve this (see

e.g. [8],[9]). An extensive discussion of the least square approach can be found in [6] and [10]. In essence, the

continuous density and velocity fields ρ and u are approximated in finite dimensional function spaces Vh ⊂ L2(Ω)

andVh ⊂ L2(Ω):

ρ ≈ ρh(x) =

nρ∑
i=1

Ni(x)ρi and u ≈ uh(x) =

nu∑
i=1

Ni(x)ui (3)
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where Ni(x) are the piecewise polynomial basis functions for the density field and the velocity field defined on the

elements of the background mesh. Moreover, ρi and ui denote the nodal degrees of freedom and the summation runs

over the number of nodal density unknowns nρ and velocity unknowns nu respectively.

Given Eq. (3), a least square projection of the particle properties onto the background mesh is obtained by solving:

∑
p

Ni(xp)Nj(xp)ρ j =
∑

p

Ni(xp)ρp (4)

∑
p

Ni(xp)Nj(xp)u j =
∑

p

Ni(xp)up (5)

for ρ j and u j the nodal density and velocity unknowns at the background mesh, respectively.

In these equations, ρp and up denote the particle density and - velocity of particle p. Ni, j are nodal basis functions

which are evaluated at the particle position xp, furthermore the summation runs over the set of particles in Ω.

3.2. Solving the mesh equations

The mesh equations (Eqs. (1)-(2)) are solved using the fractional-step method [11]. In this approach, the equations

for the velocity and the pressure are solved sequentially and coupled using an intermediate velocity field. The resulting

set of equations is discretized in space using the finite element method, where the velocity is approximated using Eq.

(3) and the pressure p is approximated in the finite-dimensional function space Qh ⊂ H1(Ω):

p ≈ ph(x) =

np∑
i=1

N̄i(x)pi (6)

with N̄i(x) the piecewise polyomial basis functions and pi the nodal degrees of freedom for the pressure. Furthermore,

the summation runs over the number of pressure nodal unknowns np.

The finite element discretization results in the following set of variational equations to be solved at the background

mesh (an extensive derivation of below presented fractional step approach can be found in [10]):

Given un
h, find the intermediate velocity u∗h ∈ Vh such that:

∫

Ω

u∗h · vhdΩ =

∫

Ω

un
h · vhdΩ + Δt

∫

Ω

g · vhdΩ ∀vh ∈ Vh (7)

Given the density field ρn
h and the intermediate velocity field u∗h, find the pressure pn+1

h ∈ Qh such that:

Δt
∫
Ω

1

ρn
h
∇pn+1

h · ∇qhdΩ =

∫
Ω

u∗h · ∇qhdΩ −
∮
∂Ω

h · nqhdΓ ∀qh ∈ Qh (8)

Given the updated pressure pn+1
h : find un+1

h ∈ Vh such that:
∫
Ω

un+1
h · vhdΩ =

∫
Ω

u∗h · vhdΩ − Δt
∫
Ω

1

ρn∇pn+1
h · vhdΩ ∀vh ∈ Vh (9)

In these equations, the time level is denoted by the superscript n with time intervalΔt, and the gravitational acceleration

g, the boundary term involving the given quantity h is more extensively discussed in Section 3.5. The viscous term

has been omitted although the method allows for including this term. Important to note is that both the velocity un
h

and the density ρn
h are determined by means of the particle-mesh projection (Section 3.1), and hence, no information

is stored at the mesh between consecutive time steps.

Given the saddle point nature of the incompressible Navier-Stokes equations, the velocity space Vh and pressure

space Qh must satisfy the inf-sup condition [12] in order to avoid spurious pressure modes. In this work, the stable

P0P1-element is used, having piecewise constant velocities and piecewise linear pressure approximations. Although

the method is not restricted to this particular element, it has the additional advantage that the particle-mesh mapping

(Eqs. (4)-(5)) becomes a local operation since piecewise constant basis functions are used for this projection. For

efficiently solving Eqs. (7)-(9), the FEniCS finite element package is used [13].
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Fig. 1. Mapping procedure: (a) cell centered velocity field; (b) velocity mapped to vertices; (c) division into sub-elements around barycenter.

3.3. Mesh-particle mapping

Solving the set of discrete equations yields a velocity field on the background mesh at the new time step, which

is used to update the velocity carried by the particles. This is done by adding the mesh velocity increment to the

particles, which is a common approach in the FLIP method. It is however known that a pure FLIP velocity update

can develop noisy particle velocity fluctuations [14]. These high-frequency fluctuations are absent in the PIC method,

where particle velocities are overwritten by the mesh velocity in every time step. However, this method is known to

be diffusive. In order to suppress the high-frequency fluctuations while avoiding the numerical diffusivity, a blended

PIC/FLIP update following [14] is proposed. Thus, the particle velocity is updated as follows:

un+1
p = αũn+1

h (xn
p) + (1 − α)

{
un

p + Δũn+1
h (xn

p)
}

(10)

with the subscript p denoting the particle index and the mesh velocity increment given by Δũn+1
h = ũn+1

h − ũn
h, where

ũn
h(xn

p) =
∑
i

Ñi(xn
p)ũn

i . Furthermore, the PIC fraction is denoted with 0 ≤ α ≤ 1.

Following [15] the interpolation functions Ñi(x) are the piecewise linear polynomials associated with the three sub-

elements having the barycenter of the element as shared node, with ũn
i the corresponding nodal velocities, Figure 1.

3.4. Particle advection

At the end of every time step, the particles are advected by solving the ordinary differential equation for each

particle:

dxp(t)
dt

= ũp(xp, t) where ũp(xp, t) =
∑

i

Ñi(xp)ũi(t) (11)

using the same velocity interpolant Ñi(x) as in Section 3.3.

Since this step is responsible for the advection of material properties through the domain, the advection scheme should

be accurate. As shown in [16] and [10], a forward Euler integration is not sufficient for this purpose. Instead, a three

step Runga-Kutta scheme was used [17].

3.5. Boundary conditions

3.5.1. Wave making boundary
Wavemaking boundaries are of special interest in the context of a numerical wave flume. Recalling the weak form

of the Pressure-Poisson equation (Eq. (8)) it is clear that the boundary term
∮
ΓN

h · nqdΓ can be used to enforce the

normal velocity, where ΓN is the part of the domain on which a Neumann condition for the pressure is specified and

the boundary velocity h can be specified according to a wavemaker theory. In order to avoid empty elements (i.e.

elements not containing any particles), a moving mesh approach is used. Since no information is stored at the back-

ground mesh between consecutive time steps, moving the mesh does not alter the governing equations. At the top

boundary of the numerical flume, the pressure is set to zero in order to simulate an open boundary. Correspondingly,

the (air) particles are free to move out- and inward through this boundary during the computation.
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3.5.2. Interface condition
In principle, the Lagrangian particles naturally track the air-water interface and no additional interface conditions

have to be specified (provided surface tension is neglected). However, in two-phase flow problems, discontinuities in

the pressure gradient occur due to the density jump at the interface. Ambiguous definition of the density in elements

crossed by the interface, may result in spurious oscillations (see, e.g., [18]). To suppress these spurious velocities it is

noted that in gravitational equilibrium the pressure gradient term exactly balances the gravitational acceleration, i.e.
1
ρ
∇p = g. So although the pressure gradient itself and the density itself are discontinuous at the interface, the term

1
ρ
∇p is continuous in gravitational equilibrium. Inspired by this observation, the pressure gradient term 1

ρ
∇p in Eq.

(9) is projected to a piecewise linear field. In other words, the task is to find r ∈ S such that:

∫

Ω

r · sdΩ =

∫

Ω

1

ρ
∇p · sdΩ ∀s ∈ S (12)

in which the function spaceSh ⊂ H1(Ω). Consequently, the problem for calculating the end-of-time step velocity (Eq.

(9)) becomes: find un+1
h ∈ Vh such that:
∫
Ω

un+1
h · vhdΩ =

∫
Ω

u∗h · vhdΩ − Δt
∫
Ω

rn+1 · vhdΩ ∀vh ∈ Vh (13)

This approach indeed effectively suppresses the spurious velocities near the interface.

4. Numerical examples

4.1. Standing wave

As a first benchmark test, a standing wave in a closed basin is considered, prescribing the air-water density ratio

between the two phases. This test provides useful insight in the amount of numerical diffusion and will indicate

whether or not the scheme is able to deal with large density differences between the phases. Model results are

compared with the analytical expression for the free surface elevation obtained from linear wave theory. Model

settings are listed in Table 1. A small amount of numerical diffusivity is added by blending the FLIP update with

a small PIC fraction (see Section 3.3). No detailed investigation of the critical time step was made, therefore a

conservative value of Δt = 0.001 s was used (corresponding to a Courant number of approximately 0.02). It is

however noted that this time step size is still typically O(102) larger than in weakly compressible approximations (e.g.

[19]).

Table 1. Model settings standing wave.

Model parameters Ω [0, 20] × [0, 10]m2 Computational domain

nx×ny 80×40 Regular triangular mesh (nx×ny×2 cells)

Δxp 0.02 m Particle spacing

α 0.02 PIC fraction

d 5 m Undisturbed water depth

H 0.5 m Wave amplitude

Δt 0.001 s Time step

k 2π/20 Wave number (2π/L)

Computational aspects 500000 Number of particles

15 s Simulated physical time

176 min Model run time

The simulated air-water interface and the resulting pressure fields for the water-phase are depicted in Figure 2 at

two different time instances. The resulting pressure fields are perfectly smooth and no pathological locking effects
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Fig. 2. Pressures in the water phase of a standing wave with H/d = 0.1 at t = 0 s (left panel) and t = 5.5 s (right panel).

Fig. 3. Theoretical and simulated surface elevation at x = 0.5L. Fig. 4. Total, kinetic and potential energy in standing wave.

are observed. Furthermore, the air-water interface is relatively well-maintained over time, although small free surface

disturbances are observed near the inflection points of the cosine wave (right panel of Figure 2).

The simulated amplitudes are compared with the analytical amplitudes at x = 0.5L = 10 m in Figure 3. A good cor-

respondence between simulated results and analytical values is found, although a slight amplitude decay is observed.

The diffusivity of the scheme is also observed when plotting the potential and the kinetic energy (non-dimensionalized

by the potential energy budget), Figure 4. A decay in total particle energy of approximately 40% in four wave periods

is observed. This is however smaller than the reported 69% in four wave periods for a comparable SPH simulation

[20].

4.2. Propagation of a solitary wave

As a test case to assess the performance of the scheme for large amplitude problems, the generation and propagation

of a solitary wave over a flat (Section 4.2.1) and over a sloping bed (Section 4.2.2) is considered. For the propagation

over the flat bed, a comparison is made with approximate analytical expressions [19] and results obtained using

the open-source DualSPHysics package [21]. Theory behind the forced generation of solitary waves by means of

piston wave makers can be found in, e.g., [22], providing the non-homogeneous Neumann boundary condition for the

numerical wave flume (Section 3.5).

Table 2. Model properties solitary wave generation.

Model parameters Ω0 [0, 15] × [0, 0.6]m2 Computational domain

nx×ny 500×20 Regular triangular mesh (nx×ny×2 cells)

Δxp 0.005m Particle spacing

α 0.03 PIC fraction

Δt 0.001 s Time step

d 0.3 m Still water depth

Computational aspects 360000 Number of particles

10 s Simulated physical time

176 min Model run time
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Fig. 5. Comparison between the analytical, the hybrid particle-mesh and the SPH solution for the generated solitary wave at t = 8 s. The left panel

corresponds to the H/d = 0.2 case, the right panel corresponds to the H/d = 0.35 case.

Fig. 6. Approximate computational times for the SPH model in various computing configurations and the developed hybrid particle-mesh method.

4.2.1. Solitary wave propagation over a flat bed
For the test case involving a flat bed, a solitary wave is generated in the domain initially defined by Ω = [0, 15] ×

[0, 0.6]m2. A time step Δt = 0.001 s is used, corresponding to a Courant number of approximately 0.02. Other

model parameters and computational aspects are listed in Table 2. The model is run for two different dimensionless

amplitudes H/d = 0.2 and H/d = 0.35. Results for both runs are depicted in Figure 5 at t = 8 s. A good agree-

ment is observed between simulated and analytical results, although model results are slightly lagging behind the

analytical solution, which can be attributed to numerical diffusion. However, this numerical diffusion is much more

pronounced for comparable SPH runs using DualSPHysics, Figure 5. In order to mimic the inviscid case in SPH,

the artificial viscosity (representing the viscosity term and enhancing numerical stability) is set to 0. Clearly, results

obtained with the SPH model (using the same particle spacing) are much more diffusive than results obtained with the

hybrid particle-mesh method. In terms of computational times, the developed model is able to compete with the Dual-

SPHysics implementation, as shown in Figure 6: running the hybrid particle-mesh simulation on a single core results

in a computational time of approximately 180 min, compared to approximately 500 min for the SPH computation on

a single core. The gain in computational time can be partly attributed to the less restrictive time step requirements in

the incompressible hybrid particle-mesh method compared to the weakly-compressible SPH model.

Based on the comparison presented above, it can be concluded that the results obtained with the hybrid particle-mesh

method are encouraging both in terms of accuracy and computational efficiency.

4.2.2. Solitary wave propagation over a sloping bed
A final example showing the capabilities of the model, is the breaking of a solitary wave on a submerged bar, placed

in a domain with a horizontal and vertical base of 13 m × 1 m. An unstructured, boundary-fitted triangular mesh is

used for this benchmark, containing approximately 25000 cells. Around 25 particles are initially placed in each cell.

In the domain, a solitary wave is generated with a relative amplitude H/d = 0.625. A time step of 0.001 s is used.

The process of wave propagation and wave breaking is presented in Figure 7, qualitatively revealing the important

nearshore wave processes: wave steepening (shoaling) around t = 4.5 s, wave plunging around t = 5 s, and wave

breaking around t = 5.5 s. Although not validated quantitatively, the test reveals the capability of hybrid particle-mesh

methods to simulate wave propagation up to and including wave breaking.

5. Conclusions and outlook

In this work, a hybrid particle-mesh approach for incompressible fluid flows was formulated and tested for various

free surface benchmark tests. The method was shown to combine various advantages of an Eulerian mesh-based
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Fig. 7. Soliton propagation including breaking on a submerged bar. Color shading indicates the pressures at the background mesh.

approach (enforcing incompressibility, fast and efficient solvers) with the advantages of a pure Lagrangian particle-

based approach (tracking interfaces of complex topography). Due to the implicit treatment of the pressure, smooth

and accurate pressure fields are obtained. Additional advantage of this approach compared to the weakly compressible

appoach is the mild time step requirement, thus rendering the method an attractive alternative to pure particle-based

methods such as SPH when setting up a numerical wave tank.

Future work will focus on numerical aspects of the scheme such as convergence issues, the amount of particles

required and, most importantly, the physical and theoretical underpinnings of the method.
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