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Abstract
The realization of a long-distance, distributed quantum network based on quantum memory
nodes that are linked by photonic channels remains an outstanding challenge. We propose a
quantum network node based on neutral alkali atoms coupled to nanophotonic crystal cavities
that combines a long-lived memory qubit with a photonic interface at the telecom range, thereby
enabling the long-distance distribution of entanglement over low loss optical fibers. We present a
novel protocol for the generation of an atom–photon entangled state which uses telecom
transitions between excited states of the alkali atoms. We analyze the realistic implementation of
this protocol using rubidium and cesium atoms taking into account the full atomic level structure
and properties of the nanophotonic crystal cavity. We find that a high fidelity entangled state can
be generated with current technologies.

1. Introduction

Quantum networks have been envisioned as the underlying platform for revolutionizing technologies
including secure communication [1, 2], distributed quantum computing [3, 4], and quantum enhanced
metrology [5–7]. At the same time, quantum networks provide avenues for studying fundamentals of
nature such as entanglement over large distances [8]. Elementary quantum networks with optical channels
and matter qubits have been demonstrated in multiple systems such as ions [9, 10], atoms [11–13], and
atom-like systems in solids [14–18]. However, all demonstrations so far have been restricted to two nodes
and limited distances due to low entanglement rates or short coherence times of the qubits.

In order to increase entanglement rates and the distance between network nodes, efficient light–matter
interfaces and low-loss optical channels are required. While free space optical links can provide low loss
channels [19, 20] they are hard to implement in metropolitan settings and face challenging atmospheric
conditions [21, 22]. Low-loss optical fibers exist in the telecom communication band and decades of
research and development have led to losses as low as 0.1419 dB km−1 [23]. Quantum networks can
leverage this technology by developing network nodes with high bandwidth, long coherence times, and
telecom wavelength operation.

Atomic qubits, including atom-like systems in solids, are promising candidates for quantum network
nodes (see figure 1(a)) as they combine long coherence time and quantum control with optical transitions.
Neutral atoms are particularly attractive as they are indistinguishable and provide highly coherent qubit
states and a coherent photonic interface. Individual neutral atoms can be trapped using optical tweezers
[24] and methods of scaling this approach to arrays of atoms have recently become available [25–28].
Efficient light–matter interfaces to these qubits can be established using optical cavities [29]. Many
important steps in achieving a quantum network with neutral atoms have been demonstrated including
quantum memory [30], atom–photon quantum gates [31, 32], and two-node entanglement [11, 12].
However, telecom operation of atomic network nodes remains challenging as nearly all atomic species that
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Figure 1. (a) Illustration of a quantum network based on neutral atoms. Here each node consists of an atom coupled to a
photonic crystal cavity, with clock states as the qubit states. Distant nodes are linked via telecom optical fibers. (b) Relevant
atomic levels of the diamond scheme. |0〉 and |1〉 are the qubit states. Starting from |0〉, a pulse Ω1 takes the electron to |e1〉. From
there a constant field Ωe excites the electron to |e2〉. Subsequently a single telecom photon is emitted into the cavity and coupled
to the optical fiber by decaying to |e3〉. Finally, a calibrated pulse Ω2 takes the electron back to |0〉.

are compatible with laser trapping and cooling do not have telecom wavelengths transitions from the
ground state. While frequency conversion can be employed to shift emitted photons from the near-infrared
and visible to the telecom range [13, 33], this process adds noise and has finite conversion efficiency.
Therefore, it can limit both the rate of entanglement generation and the fidelity of the entangled states.

Here, we propose a fiber-based quantum network with individual nodes of neutral alkali atoms coupled
to a nanophotonic crystal cavity (PCC) (see figure 1(a)) and a multilevel excitation protocol that yields
emission in the telecom range. We show that this node is capable of generating a high fidelity atom–photon
entangled state, which is the essential functionality required for distributing entanglement. The protocol is
robust under realistic conditions and we evaluate the performance including accurate simulations of the full
atomic level structure, the nanophotonic cavity design and its effect on the polarization purity of laser
excitation pulses. Compared to previous neutral atom proposals based on crossed, macroscopic cavities [34]
or ytterbium coupled to a nanophotonic crystal cavity [35], this protocol presents an alternative that is
compatible with well-controlled alkali ‘workhorse’ atoms such as rubidium and cesium and only requires a
single nanophotonic cavity. We establish the experimental feasibility of our protocol and show that it is
within reach of current technology.

In this article, we will first discuss the general scheme and implementation of the atom–telecom photon
entanglement generation with analytical and numerical estimates of the error scaling. This is followed by
the concrete implementation using alkali atoms, in particular rubidium and cesium, together with
numerical estimates of the error scaling. We then discuss the design and performance of a suitable telecom
photonic crystal cavity and finally demonstrate the feasibility of creating a high fidelity atom–photon
entangled state by analyzing the performance of the protocol for the full system.

2. The protocol

We consider the generic diamond level scheme [36, 37] shown in figure 1(b), which captures the general
structure of alkali atoms such as rubidium and cesium. The scheme has two parts; a qubit part consisting of
ground spin states |0〉 and |1〉 and a photon-generation part consisting of excited spin states |e1〉, |e2〉, and
|e3〉. To generate spin–photon entanglement, the qubit states are initially prepared in a superposition state
(|0〉 + |1〉)/

√
2. A laser-driven two-photon transition then transfers the population in the |0〉 state to the

excited state |e2〉, from which the atomic state coherently relaxes to state |e3〉 by emitting a telecom cavity
photon. Finally, a strong laser pulse transfers the population from |e3〉 back to the ground state |0〉. At the
end of this cycle, the qubit states are flipped (|0〉 ↔ |1〉) by a π pulse on the qubit transition and the cycle is
repeated. Ideally, this creates the state

|ψ〉 = 1√
2

(|0〉 |λL〉+ |1〉 |λE〉). (1)

Here |λE〉 (|λL〉) represents an early (late) telecom photon. This is a maximally entangled state between the
atomic qubit and a photonic qubit in a time-bin encoding, which can be used to distribute entanglement
between distant atoms through photonic Bell measurements [38].

The ideal evolution described above is in the absence of atomic spontaneous emission and cavity loss. To
estimate how such imperfections limit the quality of the spin–photon entanglement, we analytically
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Figure 2. (a) Error scaling with cooperativity for the analytical estimate (orange) and the numerical simulation (blue markers);
the solid line for simulation is a guide to the eye. The simulation is in agreement with the analytical prediction of the error
scaling. Two square pulses are used for both cases. For the simulation, the length of the second pulse is fixed to be 0.0002γ to
minimize the spontaneous decay from state |e3, 0〉. (b) Time evolution of the excitation pulses (top) and probability in different
states (bottom) for a cooperativity of c = 10 and optimized laser couplings with Gaussian pulses. The first pulse Ω1 (yellow)
depopulates |0〉 (dark blue). The presence of light field Ωe and the cavity leads to a transfer to state |e3〉 (orange). After the
photon has been emitted from the cavity, on timescale 1/κ, the resulting state is |e3, 0〉. A pulse Ω2 takes the population built in
|e3〉 to |0〉. In both plots γ1 = γ2 = γ3 = γ and κ = 2000γ.

estimate the dynamics of the scheme. In a suitable rotating frame, the coherent dynamics are governed by
the Hamiltonian

Ĥ = Ω1(t) |e1〉 〈0|+Ωe |e2〉 〈e1|+ Ω2(t) |0〉 〈e3|+ g |e3〉 〈e2| ĉ† + h.c., (2)

where h.c. denotes the Hermitian conjugate of the displayed expression and ĉ is the annihilation operator of
the cavity field. The atom–cavity coupling is characterized by g while atom–laser couplings are
characterized by Ω’s. Note that Ω1, Ω2 are time dependent while Ωe is constant. We have assumed all laser
frequencies (ωL1,ωLe, and ωL2) to be resonant with the relevant atomic transitions and that
ωcav + ωL2 = ωL1 + ωLe where ωcav is the cavity resonance frequency. We choose to have resonant driving
frequencies because we want to transfer population quickly between the excited levels to circumvent
spontaneous emission.

Spontaneous emission is described by Lindblad operators L̂1 =
√
γ1 |d1〉 〈e1|, L̂2 =

√
γ2 |d2〉 〈e2|, and

L̂3 =
√
γ3 |d3〉 〈e3|. Here, the decay rates are denoted by γ’s and we have introduced dump-levels (|di〉),

which allow us to disregard the evolution of the system following spontaneous emission from one of the
excited spin states. This amounts to a worst-case scenario where we assume that any spontaneous emission
brings the system to a state with zero overlap with the desired target state in equation (1).

We can analytically solve the equations of motion assuming the atom is initially in state |0〉 (the
dynamics are trivial if the atom is in state |1〉) with zero cavity photons. We describe the decay of the cavity
field through a Lindblad operator L̂c =

√
κĉ, where κ = κf + κl. Here, κf describes the desired outcoupling

to a fiber while κl describes intra-cavity loss. Note that such loss is detectable and thus only affects the
efficiency of the protocol. Adopting a stochastic wave function approach [39], we solve for the no-jump
evolution of the system described by the non-Hermitian Hamiltonian HNJ = Ĥ − (i/2)

∑
iL̂

†
i L̂i. We consider

Ω1(t) and Ω2(t) to be square pulses such that Ω1(t) = Ω′
1 is constant for t � t1 and zero otherwise while

Ω2(t) = Ω′
2 is constant for t1 � t � t2 and zero otherwise. This allows us to find the population ρ0,λ in state

|0〉 |λE〉 at the end of the sequence as detailed in appendix A.
Due to the symmetric nature of the excitation scheme before and after the qubit flip, the target state in

equation (1) can be estimated as F ≈ κρ0,λ/κf . Choosing Ω′
1 ∼ Cγ1, Ωe ∼ Cγ2, and γ1t1 ∼ ln(C)/C, we

find an error scaling of

1 − F ≈ ln (C)

C
, (3)

assuming Ω′
2 � Cγ3. Here, we have defined the cooperativity C = g2

κ(γ2+γ3) . Notably, the error quickly
decreases with the cooperativity allowing fidelities > 90% for modest cooperativities of C � 10 (see
figure 2(b)). Furthermore, we note that some errors which are currently included in our fidelity estimate
such as spontaneous decay from the |e1〉 and |e2〉 state may, in principle, be detected by the absence of a
telecom-photon. Employing such error-detection can therefore further boost the fidelity at the expense of a
slight decrease in success probability of the protocol.
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Figure 3. (a) A realistic implementation of the diamond scheme based on the cesium level structure. Here Zeeman sub-level
states mF = 0 of

∣
∣6S1/2, F = 4

〉
,
∣
∣6P3/2, F = 5

〉
,
∣
∣7S1/2, F = 4

〉
,
∣
∣6P1/2, F = 3

〉
act as |0〉, |e1〉, |e2〉, and |e3〉, respectively. A

transition to
∣
∣6P3/2, F = 3, mF = 0

〉
is allowed by selection rules, but it is off-resonant. All transitions are π polarized. (b) Scaling

of the maximum fidelity with cooperativity for polarization purities of 100%, 90%, and 80% for all the transitions. Solid lines are
a guide to the eye. Equal contribution from σ+ and σ− are considered in case of polarization impurity. All hyperfine sub-levels
and Zeeman sub-levels are considered in the simulation. The dips in the graph correspond to off-resonant couplings leading to
lower fidelity. The simulation variables are parameterized based on the decay rate (γ) from the 7S1/2 state given by 2π × 3.28
MHz. The decay rate from 6P3/2 is 2π × 5.2 MHz and 6P1/2 is 2π × 4.6 MHz corresponding to 1.58γ and 1.38γ respectively. The
cavity decay rate κ is assumed to be 200γ and consecutive square pulses are used for the optimization.

The analytical estimate of the error scaling is obtained by adiabatically eliminating certain coherences as
discussed in appendix A. To validate the estimate and further minimize the error, we numerically simulate
the dynamics by solving the full master equation. The result of such a simulation is shown in figure 2(b).
The simulation allows us to track the transfer of the initial population in state |0〉 during the
photon-generating loop. The fidelity is defined as the population that reaches the initial state (|0〉) after a
complete pulse sequence. To compare with the analytical results, we optimize the fidelity for a given
cooperativity by numerically finding optimal laser pulses. For a given value of atom cavity coupling g, the
algorithm optimizes Ω1, Ωe, and the length of the first pulse to maximize the |e3, 0〉 state population.
Following this, the population built in |e3, 0〉 is transferred to the initial state |0〉 by optimizing the Rabi
frequency Ω2 of the second pulse with a given length. Optimization can be extended to other pulse shapes
and timings as shown in figure 2(b). The minimal error found in the numerical simulation agrees with the
error scaling predicted by the analytical estimate (see figure 2(a)).

3. Implementation with alkali atoms

The generic level structure considered so far has to be implemented in real atoms. We consider cesium and
rubidium atoms since they have telecom transitions from the meta-stable first excited states and can be
trapped near a PCC [40–43] with strong light–matter coupling [42]. Here, we focus on an implementation
with cesium atoms while a similar implementation with rubidium atoms is discussed in appendix B.

Cesium has telecom transitions to 7S1/2 from both 6P1/2 and 6P3/2 with wavelengths 1360 nm (O band)
and 1470 nm (S band) respectively. These levels are split into hyperfine levels and further into Zeeman
sub-levels in the presence of magnetic fields. As a result, the atomic level structure includes many more
levels than required for the protocol. Nonetheless, by means of selection rules, laser frequencies, and a
suitable choice of qubit states, we can realize the diamond level scheme as shown in figure 3(a). We choose
magnetic field insensitive clock states,

∣∣6S1/2, F = 4, mF = 0
〉

,
∣∣6S1/2, F = 3, mF = 0

〉
, as our qubit states |0〉

and |1〉, respectively. The superposition of the clock states can be created by first initializing in the state∣∣6S1/2, F = 4, mF = 0
〉

via optical pumping and then applying a π/2 pulse between the clock states.
We choose π-polarized laser excitation pulses, which allow us to make use of the selection rules

ΔF = 0,±1 and ΔmF = 0 to realize the photon-generation part of the level scheme. We identify∣∣6P3/2, F = 5, mF = 0
〉

as |e1〉,
∣∣7S1/2, F = 4, mF = 0

〉
as |e2〉 and

∣∣6P1/2, F = 3, mF = 0
〉

as |e3〉 respectively.
The first pulse takes the population to

∣∣6P3/2, F = 5, mF = 0
〉

state. Depending on the strength and
spectrum of the pulse, it will also off-resonantly drive the transition to

∣∣6P3/2, F = 3, mF = 0
〉

state, but part
of this is coupled back into the cycle by Ωe. The transitions with ΔF = 0 have vanishing Clebsch–Gordan
coefficients when ΔmF = 0. This selection rule blocks all other off-resonant transitions in the scheme.

The above implementation in cesium is conditioned on polarization selection rules and is thus sensitive
to polarization fluctuations. Even a small percentage of erroneous polarization will result in coupling to
other levels and a high polarization purity is imperative for the implementation of the scheme. As we will
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see in the following section, the presence of nanostructures can have considerable effects on the polarization
of a beam in its vicinity. To understand the effects of impure polarization, we simulate the full atomic level
structure and consider small admixtures of σ+ and σ−-polarized light along with the intended π polarized
driving pulses. The effect of an imperfect polarization purity on the fidelity is shown in figure 3(b). As
expected, the fidelity is limited by the presence of other polarizations for high cooperativities. The coupling
to other hyperfine levels also causes a non-trivial dependence on the cooperativity with local minima
appearing when Ω or the cavity coupling g become comparable to the hyperfine splitting.

4. Nanophotonic crystal cavity and polarization purity

We design a PCC operating at telecom wavelengths to evaluate the expected cooperativities and effects on
the polarization, and thereby the fidelity of the above scheme, using finite-difference time-domain (FDTD)
simulations. PCCs have considerable flexibility in tailoring the atom–photon interaction through high
quality factors, small mode volumes, and the ability to deterministically couple multiple atoms [32, 40–42].
We design a cavity resonant at 1360 nm corresponding to the transition between 7S1/2 and 6P1/2 at 340 nm
thickness with a quality factor of 2 × 105 and a mode volume of 0.7 (λ/n)3 as shown in figure 4(a). Here n
is the refractive index of the PCC material which is taken here to be 2.016, corresponding to that of
commercially available silicon nitride. The contours of the atom–cavity coupling g are shown in figure 4(b).

The atom is coupled to the resonant mode of the cavity through the evanescent field which decays
exponentially with increasing distance from the surface of the structure. We consider trapping an atom in
the standing wave formed by an optical tweezer on the surface of a waveguide [40]. Figure 4(b) shows this
standing wave formation when the incident tweezer beam interferes with the reflected beam from the
waveguide. An atom can be loaded in the trap formed by the intensity maxima closest to the cavity by first
loading the atom into the tweezer from an magneto-optical trap and then adiabatically moving the tweezer
to the cavity surface [40]. Assuming critical coupling with a quality factor of 2 ×105, cooperativities of 50
can be achieved at the region of trapping which will allow high fidelity implementation. The assumption of
critical coupling will, however, reduce the collected photon number from the cavity to half, which would
affect the success probability but not the fidelity of the protocol.

We now look at how the polarization purities of the addressing beams are affected by the presence of
this cavity. The classical light fields Ω1, Ωe, and Ω2 can address the atom based on the direction set by the
quantization axis and the polarization requirement. Since we are interested in π polarizations for the
implementation of our scheme, we fix the cavity polarization axis (y axis based on the simulated
fundamental TE mode) to be our quantization axis. The requirement of π (set to be y) polarization for
classical fields (Ω) restricts their propagation direction to the x or z axis. With the propagation direction
fixed along the z axis, we simulate how the presence of the PCC affects the polarization purity of the
exciting beams near the PCC surface. Figure 5(a) shows the polarization purity of an 895 nm
(corresponding to the Ω1 field) y polarized plane wave incident normal to the surface of the PCC. The
addressing beams do not have to be focused tightly to achieve the desired Rabi frequencies and are therefore
modeled as plane waves. We find that the reflection from the PCC can have considerable effects on the
polarization purity of the driving pulses depending on the position where the atom is trapped. While being
confined by the standing wave optical trap, the atom still has some thermal motion and therefore samples
over a region determined by the trap geometry and the temperature of the atom [42]. This leads to an
effective average polarization purity as well as an average cooperativity for a given atomic temperature.
Positioning the atom in a region of high polarization purity is thus imperative for high fidelity
implementation of the scheme.

The position of the atom close to the surface of the cavity can be tuned by changing the thickness of the
cavity and thereby changing the trap position [40]. This tunability allows us to have control over the
effective polarization purity as well as the atom’s coupling to the cavity field. The trapping distance from
the surface and the corresponding polarization purity in the trapping region for different thicknesses of the
cavity is shown in figure 5(b) for a trapping field at 910 nm. In general, we find that polarization impurities
are higher when the atom is trapped closer to the cavity. The given polarization purity is an average over a
volume of 200 × 200 × 50 nm3 in the x, y, and z dimensions similar to observed sizes of atomic
wavefunctions near a PCC [42].

Along with the polarization purity, the trapping distance also determines the atom’s coupling to the
cavity field. The effective coupling experienced by the atom is directly proportional to the electric field of
the cavity mode at the position of the atom [44]. This electric field falls off exponentially with the distance
from the surface. Consequently, strong coupling requires the atom to be placed as close to the cavity as
possible. This leads to an apparent trade off between polarization purity which increases with trapping
distance and the atom–cavity coupling which decreases with trapping distance.
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Figure 4. (a) Design of a photonic crystal cavity along with the resonant mode profile at 1360 nm corresponding to the
transition between 7S1/2 and 6P1/2 of cesium. (b) Standing wave formation on a waveguide of width 876 nm and thickness of 340
nm when an optical tweezer beam at 910 nm is incident from above. Here the incident Gaussian is normalized at a distance of
∼ 2 μm from the cavity. A cross section of the waveguide is shown (dark rectangle). The atom can be trapped in the electric field
maxima closest to the surface. The contours show lines of constant atom–cavity coupling g (in units of 2π× GHz) exponentially
decaying from the center of the waveguide. Assuming critical coupling, i.e κf = κl , the corresponding cooperativities are in the
range from 5 to 260.

Figure 5. (a) A nanostructure modifies the polarizations of an incident light field near its surface. An 895 nm plane wave with
polarization in the y direction is incident on the waveguide (black rectangle) from the positive z axis. The time averaged
polarization purity around the waveguide is shown in the cross section. The region where the atom would be trapped based on
the intensity distribution in figure 4(b) is marked by a dashed white ellipse. (b) The trapping distance (blue squares) of the atom
from the surface of the device can be modified by changing the thickness of the waveguide. The corresponding polarization
purity also changes with thickness of the waveguide (orange dots for 895 nm and red triangles for 1469 nm). The polarization
purity is averaged over an area of 200 ×200× 50 nm3. Solid lines are a guide to the eye.

5. Combined results

To estimate realistic fidelities attainable for the diamond scheme, we simulate a cavity with a thickness of
340 nm, quality factor of 2 ×105, and extract cooperativity and polarization purity at the trapping region
from the FDTD simulations. Assuming critical coupling such that κf = κl, we attain a cooperativity of 35
averaged over the region where atom would be trapped. At this trapping region we find average polarization
purities of 93.89% for 852 nm, 94.99% for 895 nm, and 97.79% for 1470 nm plane waves incident from the
positive z axis. A polarization purity of 97.66% was found for the cavity field. Based on these polarization
purities, a fidelity of 0.93 can be achieved for the simulated average cooperativity of 35 with square pulses of
length 2.5 ns for Ω1 and 0.5 ns for Ω2. We note that reflections of the addressing beams from the PCC can
lead to position dependent variations of the corresponding Rabi frequencies. From the FDTD simulations
we estimate that such variations will reduce our fidelities by 2.5%. This error can be further reduced by
cooling the atom to lower temperatures using Raman sideband cooling or by using tighter traps [45].

Cavities of similar and higher quality factors have been made and pulses as short as 50 ps can be made
using commercially available electro optic modulators enabling realistic high fidelity implementation of the
scheme. Moreover, fidelities greater than 0.9 can be achieved with cooperativities as small as 15 for the
simulated polarization purity implying the possibility of high fidelity implementation even in lossy cavities
and higher temperatures of the atom. Additionally, further optimization of the cavity can be performed to
obtain higher atom–cavity coupling, higher polarization purity, and lower cavity losses to improve the
fidelities.
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6. Summary and outlook

A future distributed global quantum network will rely on quantum nodes with long coherence times, high
bandwidths, and telecom interfaces. We have proposed and analyzed the performance of a node architecture
that consists of an individual atom coupled to a nanophotonic crystal cavity which operates at telecom
wavelengths. We have shown that this node is capable of generating a high fidelity atom–photon entangled
state under realistic conditions taking both the full atomic level structure and the properties of the
nanophotonic cavity into account. We have analyzed the scaling of the fidelity with the cooperativity of the
atom–cavity system and find that fidelities larger than 0.9 are attainable with current state of the art
technologies.

Our assumptions are rather conservative and we expect that even higher fidelities are achievable. For
instance, lower temperatures of the atom would reduce the region over which the polarizations and Rabi
frequencies of the driving fields are averaged and would lead to higher fidelities. Furthermore, a careful
cavity design could enlarge the regions of high polarization purity and align them with the trapping region.
Additionally, based on recent results for strong coupling of atoms to nanophotonic crystal cavities at
780 nm, we anticipate that cavities with higher quality factors can be fabricated at longer wavelengths [46].

Finally, the proposed node architecture can be extended in several important directions. A multi-qubit
node can be achieved by coupling multiple atoms to the same cavity [47–49]. Operations between these
qubits can be enabled via photon mediated gates through the cavity. Such an architecture will enable
advanced network functionalities such as entanglement purification [50, 51] and quantum repeater
protocols [34, 52–54], thereby paving the way towards large scale multi-node quantum networks.
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Appendix A. Analytical estimates

Here we describe how to analytically solve for the dynamics of the scheme and estimate the performance of
the spin–photon entanglement generation. Our starting point is the Hamiltonian in equation (2). We
assume the atom is initially in state |0〉 and that the cavity field is vacuum

(∣∣0ph

〉)
. We focus on the

no-jump evolution of the state vector

|φ〉 = c0 |0〉
∣∣0ph

〉
+ c+ |+〉+ c− |−〉+ c2 |e3〉

∣∣1ph

〉
, (A.1)

subject to the non-Hermitian Hamiltonian HNJ = Ĥ − (i/2)
∑

iL̂
†
i L̂i with Lindblad operators as defined

below equation (2). We have defined the states |±〉 =
(
|e1〉

∣∣0ph

〉
± |e2〉

∣∣0ph

〉)
/
√

2. Note that the overall
population decay corresponds to the atom spontaneously decaying to one of the dump levels or that the
cavity photon in state |e3〉

∣∣1ph

〉
couples out into fiber (κf ) or is lost (κl). Explicitly including the population

buildup in these states would correspond to a consistent and probability preserving description of the
dynamics. However, since we are interested in a lower bound for the performance of the scheme, we simply
view any decay to a dump level as an undetectable decay into a state with zero overlap with the desired
target state (equation (1)). This allows us to neglect the dynamics following such a decay. Furthermore, we
first solve for the dynamics for a time period 0 � t � t1 where we assume that Ω1(t) = Ω′

1 is constant and
Ω2 = 0. We can therefore also neglect the dynamics following the outcoupling or loss of the cavity photon
and simply view this as a build up of population in the state |e3〉

∣∣0ph

〉
(which decays with rate γ3).

From the Schrödinger equation ( ∂
∂t |φ〉 = −iĤNJ |φ〉), we obtain equations of motion for the amplitudes

c0, c±, and c2. Assuming that Ω1 	
√

2Ωe, we can adiabatically eliminate the c± amplitudes and obtain

ċ0 = − 2γ2Ω
′2
1

γ1γ2 + 4Ω2
e

c0 + i
4gΩeΩ

′
1

γ1γ2 + 4Ω2
e

c2 (A.2)

ċ2 = −
(

2g2γ1

γ1γ2 + 4Ω2
e

+
κ+ γ3

2

)
c2 + i

4gΩeΩ
′
1

γ1γ2 + 4Ω2
e

c0, (A.3)
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where we have assumed for simplicity that all couplings are real. Solving for the c2 amplitude gives
c2(t) = iα

β
e−λt sinh(βt), where we have defined

α =
4gΩeΩ

′
1

γ1γ2 +Ω2
e

(A.4)

β =
1

4

√
((γ1γ2 + 4Ω2

e)(κ+ γ3) − 4γ2Ω
′2
1 + 4g2γ1)2 − 256g2Ω′2

1 Ω
2
e

γ1γ2 + 4Ω2
e

(A.5)

λ =
g2γ1 +Ω′2

1 γ2

γ1γ2 + 4Ω2
e

+
κ+ γ3

4
. (A.6)

The population, ρe3,1(t1), in state |e3〉
∣∣1ph

〉
at time t1 is |c2(t1)|2 while the population, ρe3,0(t1), in state

|e3〉
∣∣0ph

〉
at time t1 is

ρe3,0(t1) = κ

∫ t1

0
|c2(t)|2e−γ3(t1−t)dt. (A.7)

At time t1 the first laser (Ω1) is switched off and the second laser Ω2 is turned for a time t2 − t1 to transfer
any population in the state |e3〉 to state |0〉. Note that we choose t1 long enough to ensure that the
population in |0〉 is negligible at time t1. Assuming that Ω2 
 γ3, we can neglect any spontaneous emission
during the transfer and estimate the resulting population, ρ0,λ in state |0〉 |λE〉 at the end of the sequence as

ρ0,λ ≈ κf

κ
(ρe3,0(t1) + ρe3,1(t1)). (A.8)

The above sequence is repeated after the populations in the qubit states |0〉 and |1〉 has been flipped in
order to generate the spin–photon entangled target state. Due to this symmetric generation scheme, we can
estimate the overall fidelity of the generated spin–photon state with the target state as F ≈ κρ0,λ/κf , with
ρ0,λ as defined above. Here, we have assumed that if the photon is lost (with rate κl), this is a detectable
error. Heralding on a successful outcoupling to the fiber thus gives a success probability of κf/κ. In reality,
spontaneous emission, from e.g. the |e2〉 and |e1〉 states, may also result in the absence of a telecom photon,
but to obtain a lower bound on the fidelity, we have assumed that such errors are not detectable.

From equation (A.7), we find that

F ≈ κ|α|2

4|β|2
(

e−2(λ−iIm{β})t1

2(λ+ iIm {β}) − γ3
+

e−2(λ+iIm{β})t1

2(λ− iIm {β}) − γ3
− e−2(λ−Re{β})t1

2(λ− Re {β}) − γ3
− e−2(λ+Re{β})t1

2(λ+ Re {β}) − γ3

+
8|β|2(2λ− γ3)e−γ3t1

(β2 − (2λ− γ3)2)2 − 2(β2 + (2λ− γ3)2)(β ∗ )2 + (β ∗ )4

)
+

|α|2

|β|2
e−2λt1 |sinh(βt1)|2. (A.9)

Here Im{} (Re{}) is the imaginary (real) part and ∗ is the complex conjugate. In the limit κ 
 g,Ω1,Ωe, γ,
the above expression simplifies to

F ≈ 64g2κΩ′2
1 Ω

2
e

(4g2γ1 + γ1γ2κ+ 4κΩ2
e)((4g2 + γ2κ)(γ1γ3 − 4Ω′2

1 ) + 4γ3κΩ
2
e)

⎛
⎜⎝e

− 4(4g2+γ2κ)Ω′2
1

4g2γ1+γ1γ2κ+4κΩ2
e

t1
− e−γ3t1

⎞
⎟⎠ .

(A.10)
Defining the cooperativity C = g2

κ(γ2+γ3) and choosing Ω′
1 = aCγ1, Ωe = Cγ2, and γ1t1 = ln C/C, we

find an error scaling as 1 − F ∝ ln C/C in the limit C 
 1 as long as 4a2 � γ2/(γ2 + γ3). Note that we
need a � 1 for our adiabatic elimination to be valid. While the analytical expression provides insight on
how the parameters should scale to suppress the error, we also optimize the driving strengths (Ω) and the
time (t1) in the numerical simulations to find the minimal error.

Appendix B. Alternate implementations

The entanglement scheme presented in the main text is very general and suitable atomic level schemes can
be found for several atomic species and multiple choices of sub-levels. For cesium, apart from the clock
state implementation presented in the main text, one can also find a level scheme based on stretched states,
where off-resonant transitions are forbidden for pure polarizations. Schemes based on stretched levels have
an additional advantage of being insensitive to a subset of polarization impurities based on the level

8
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Figure B1. (a) A level scheme based on stretched states of cesium. Here the σ+ transition is sensitive to polarization impurities,
the σ− transition is insensitive to both π and σ+ polarizations, the cavity transition is insensitive to any σ+ polarizations, and
the final π transition is insensitive to any σ+ polarization. (b) A possible level scheme involving the rubidium atom with
stretched states. This scheme would allow attainment of telecom photons at 1530 nm

selections (figure B1(a)). However, the coherence time of stretched state qubits are smaller as they are more
sensitive to magnetic field fluctuations. Moreover, we find that for the given waveguide design the
polarization of σ+, σ− fields are not well maintained.

The generalised implementation shown in figure 1(b) can be extended to other systems with a telecom
transition from the first excited states. A possible implementation of the scheme in rubidium, another
widely studied atomic system, is shown in figure B1(b). Rubidium gives a selection of four different telecom
transitions based on the choice of excitation to levels 4D3/2 or 6S1/2 from its two first excited states 5P1/2

and 5P3/2 respectively. The implementation shown here makes use of the telecom transition between states
4D3/2 and 5P3/2 at a wavelength of 1530 nm. This transition in the telecom C band allows low loss fiber
propagation along with the ability to couple to telecom nodes of other memory platforms such as erbium
doped solid state crystal memories. A scheme similar to figure 3(a), making use of the magnetic insensitive
mF = 0 state can be implemented in rubidium for both 4D3/2 and 6S1/2. However, the hyperfine splittings
of rubidium are smaller compared to cesium making it more sensitive to polarization impurities.

Appendix C. Other sources of errors

Apart from the dominant error sources due to the polarization purity of the control fields that is affected by
the nanostructure and the off-resonant coupling to additional atomic levels, we consider additional noise
sources and estimate their contribution:

Amplitude noise: laser amplitude noise causes a variation in Rabi frequencies affecting our fidelity. We
estimate that with standard amplitude stabilization techniques these variations will be below 0.05% which
would lead to a 0.01% reduction of the entanglement fidelity.

Random light shifts: as the atom moves in the optical tweezer due to its temperature it experiences
varying light shifts from the trapping beam. These variation are <5 MHz for typical trap intensities [42]
which can lead to a small reduction of entanglement fidelity by 0.1%. However, these variations can be
avoided by using magic wavelength traps in the cesium implementation or by performing the protocol
stroboscopically with the trap being switched off during the entanglement generation [55].

Qubit dephasing in optical tweezers: the tight focussing of the trapping beam leads to fictitious magnetic
fields that can cause decoherence of the qubit states. An appropriate choice of magnetic fields can be used to
mitigate this effect [40]. For mF = 0 Zeeman states, as considered here for the cesium implementation of
our protocol, this source of error as well as dephasing caused by external magnetic field fluctuations is
negligible.

Scattering: even though the transition frequency of the atom is far detuned from the tweezer frequency,
the high intensity of the tweezer beam can cause off-resonant scattering leading to lower coherence times.
For realistic intensities, we expect the scattering rate to be at the Hz level, enabling sufficiently long
coherence times.

Polarization noise: commercially available polarization maintaining fibers offer polarization extinction
ratios around 25 dB. With these values we expect less than 0.05% fidelity reduction of the entangled
atom–photon state. Additional polarizers can be used to reduce this value further.

9
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Figure D1. Due to the atomic motion the shape of the emitted photon varies, which can limit the interference contrast in a
two-photon interference scheme. We find on average a 15% reduction in the overlap (shaded region) between the ideal photon
(orange) and the emitted photon (blue).

Appendix D. Entanglement of distant quantum nodes

Quantum network nodes can be entangled through beam splitter interference schemes which rely on the
indistinguishability of the photons. The variations of cavity coupling and Rabi frequencies in the trap
region will reduce the indistinguishability of the emitted photons which can affect the entanglement
fidelities of distant nodes. From our FDTD simulations, we estimate that overlap of emitted photons in case
of realistic Gaussian pulses can reduce by 15% on average due to Rabi frequency and cavity coupling
variations (see figure D1). The reduction in fidelity arising from such overlap mismatch can be mitigated by
time-filtering by which we can maintain high fidelity at the expense of entanglement rate [56].
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