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Abstract— The here reported work is part of a project on 
supporting grid resilience by asset management techniques. The 
present work focuses on support of decision-making after a few 
failures occurred that may be the start of many more. Methods are 
reviewed and new algorithms developed where the present 
IEEE/IEC standard does not provide. Two cases of early failures 
and wear-out are analyzed as examples for the data analytics.  

Keywords— early failures, Weibull, bathtub curve, censored 
data, hazard rate, weighted linear regression, similarity index, 
failure time prediction, redundancy, performance ratio 

I. INTRODUCTION

However reliable a grid may be, failures are likely to occur. 
Handling failure events adequately makes the grid more 
resilient. The present study focusses on events where failures 
start to occur which may or may not be the prelude to many more 
failures. Most likely, forensic investigations will be carried out 
to find the cause of failure. Such investigations may be time 
consuming and may not reveal the probability and rate of next 
failures. The data analytics that deals with these problems, are 
subject of the present paper. 

The present paper shows results of the Dutch FIND-GO 
project on asset management policies. The project is carried out 
by the utilities TenneT TSO and Stedin DSO in cooperation with 
IWO, TU Delft, GE and led by HAN University of Applied 
Sciences. Collaboration exists with ENTSOe (EU Network of 
TSOs). Several analysis methods relevant to grid resilience are 
reviewed, improved and complemented when deemed 
necessary. The focus is on developing algorithms to analyze data 
from failure incidents. An IEEE/IEC standard for dielectric 
breakdown data [1] forms a foundation for work. 

A project aim is to make analytics widely accessible. To that 
purpose a  freeware spreadsheet was developed, named IDA 
(IWO Data Analyzer). This freeware is relatively light-weight 
computing and should also work on computing power is  enough 
to be used on mobile phones and tablets should also work on 
mobile phones and tablets [2]. The main features of IDA are 
shown in Table I and are reviewed in the present paper. 

TABLE I. FEATURES OF THE DATA ANALYZER 

Goal Approach Features 
Data 
characterization

(W)LR Parameter 
Estimation

Weibull parameters 

Weibull Plot Beta + Regression confidence 
intervals 

Probability and 
time 

Converter Time and/or F into R, f, h 

Time of next 
failure for right 
cenored case 

Analytic Estimated time of next failure 
with confidence limits 

Comparison of 
distributions 

Quantify 
similarity 

Similarity Index over infinite 
[0,∞) and finite [0,τ] domain  

Life extension Periodic servicing Optimize cycle with given OPEX 
and CAPEX 
Estimate average lifetime, hazard 
rates, cost rates 
Compare performance of 
optimized and chosen cycle 

It is noteworthy, that the paper relates to specific cases rather 
than setting up a general asset maintenance strategy for large 
asset populations like MV cable [3] [4].  

The structure of this paper is as follows: 

• Hazard rate bathtub models and the various stages of
component lifecycles are discussed first. Of special
interest are early failures and wear-out. The difference
between early failures and teething is addressed as well.

• Redundancy as strategy to warrant system functionality
is discussed with its limits. A redundancy performance
ratio is defined based on hazard rate, repair rate and
configuration

• Two example cases are introduced to illustrate the data
analytics. The first case concerns early failures that
strike after a circuit has been tested successfully. The
second case concerns wear and end-of-life of a
connection.

• Next, the failure data analysis with the developed
methods is demonstrated: plotting, parameter estimation 
and a review of the characteristics.

• Then predictions are made about reliability and times of
future failures along with redundancy considerations.

The research on data analysis of early failures is funded by the 
Netherlands Ministry of Economic Affairs and Climate through the RvO 
agency, Grant ref. nr. TEUE418008, TKI Project FINDGO. 

The research into approximation of weights for linear regression received 
support from the EU H2020 R&I program and RvO under ECSEL grant 
agreement No 826417 (Project Power2Power). 
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II. LIFECYCLE STAGES

The Weibull distribution applies to situations where the time 
to breakdown is represented by the one breakdown path out of 
many that has the lowest time to failure time t. The hazard rate 
ℎ(𝑡𝑡) of a single Weibull distribution is: 

ℎ(𝑡𝑡) =
𝑓𝑓(𝑡𝑡)
𝑅𝑅(𝑡𝑡)

=
β ∙ 𝑡𝑡β−1

αβ
(1) 

Here 𝑓𝑓 is the distribution density, 𝑅𝑅 the reliability function, 
α and β are the scale respectively shape parameter. If β < 1, the 
hazard rate is declining, i.e., becomes less significant over time 
as in teething processes (also called child disease or mortality). 
If β = 1, the hazard rate is constant as in random failure. If β > 
1, the hazard rate is rising, i.e., becomes increasingly significant 
over time as in wear-out failure processes. 

The lifecycle of products is often discussed in terms of a 
bathtub curve. This is the plot of the normal hazard rate ℎ𝑛𝑛 . 
Various degradation mechanisms may compete in each product. 
Usually, the hazard rates of (at least) one teething (ℎ𝑡𝑡 ), one 
random failure (ℎ𝑟𝑟 ) and one wear process (ℎ𝑤𝑤 ) appear in a 
bathtub. As these dominate in various periods, they may be 
regarded as stages. The hazard rates of competing processes add 
to the total hazard rate ℎ𝑛𝑛: 

ℎ𝑛𝑛 = ℎ𝑡𝑡 + ℎ𝑟𝑟 + ℎ𝑤𝑤 (2) 

For instance, if a circuit consists of multiple components in 
series, the degradation mechanisms in all components compete. 
The total hazard rate bathtub of the circuit is formed by summing 
all relevant hazard rates in a similar fashion. The competition 
between processes can also occur in a single component. 

Occasionally, a batch may consist of subgroups such as 
specification compliant and non-compliant products. The non-
compliant or defective products can work initially, but may wear 
fast (ℎ𝑓𝑓𝑓𝑓) [5]. This leads to a hazard rate ℎ𝑑𝑑 for the defective 
products shaped as a compressed bathtub. If, for convenience, 
the teething and random processes are assumed to be the same 
as with the normal batch, ℎ𝑑𝑑 becomes: 

ℎ𝑑𝑑 = ℎ𝑡𝑡 + ℎ𝑟𝑟 + ℎ𝑓𝑓𝑓𝑓 (3) 

If normal and defective products are mixed in one batch, the 
resulting bathtub depends on the fractions 𝑝𝑝𝑛𝑛 of normal and 𝑝𝑝𝑑𝑑 
of defective products with 𝑝𝑝𝑛𝑛 + 𝑝𝑝𝑑𝑑 = 1. With 𝑅𝑅𝑛𝑛 and 𝑅𝑅𝑑𝑑 being 
the reliability functions of the normal and defective batch, the 
combined bathtub curve has hazard rate ℎ𝑐𝑐 [5]: 

ℎ𝑐𝑐 =
𝑝𝑝𝑛𝑛 ∙ ℎ𝑛𝑛 ∙ 𝑅𝑅𝑛𝑛 + 𝑝𝑝𝑑𝑑 ∙ ℎ𝑑𝑑 ∙ 𝑅𝑅𝑑𝑑

𝑝𝑝𝑛𝑛 ∙ 𝑅𝑅𝑛𝑛 + 𝑝𝑝𝑑𝑑 ∙ 𝑅𝑅𝑑𝑑
(4) 

Characteristic for a mix is a hump where the hazard rate is 
temporarily dominated by failure of defective products. The 
resulting bathtub curve is shown in Fig. 1. When the defective 
products become extinct, the curve of the mixture returns to the 
curve of the normal products. 

In the following, we discuss the stages teething, random 
failure, early failure (of fast wear) and wear-out failure. Of 
particular interest are ‘early failures’, literally meaning failures 
that occur compared to normal life cycles. Both teething and 
defect wear cause early failures, but their natures are distinct. 

Fig. 1. Example of three bathtub curves: Compliant (Normal) products 
according to (2); non-compliant (Defective) products according to (3) and a mix 
of both product types (4). 

A. Teething
The hazard rate ℎ𝑡𝑡 for teething processes is declining from

its (infinite) maximum at t=0. It is reducing in importance from 
the very beginning. Teething problems are generally tackled 
with quality control by in factory product screening and testing 
combined with onsite commissioning tests after installation. The 
screening process pre-ages all products up to the moment that 
teething drops below a defined level of acceptance. In the 
example of Fig.1, that moment might be 𝑡𝑡 ≈ 0.1 yr . After 
screening and testing, normally the surviving components are of 
good quality. An adequate operational stage of random failure 
with an acceptable, low hazard rate is expected to follow, 
ultimately ending in a wear-out phase.  

If possible, screening is designed such that it specifically 
accelerates teething and not the other processes. Often however, 
screening also causes some aging by other processes inevitably. 
As a consequence the delivered products are already somewhat 
aged. This can often, but not always, be ignored in data analysis. 

B. Random Failure and Servicing of Wear
Random failure is unrelated to age and its hazard rate ℎ𝑟𝑟 is

constant unless operational circumstances change. Additional 
preventive measures may lower ℎ𝑟𝑟, while intensified exposure 
to external threats may enhance ℎ𝑟𝑟. E.g., if a layer of soil above 
the cable is removed, it becomes more vulnerable to external 
activities like digging. Random failure at a low hazard rate is 
desirable in operations and can often be achieved by preventive 
maintenance. For instance, various types of wear can be 
(practically) reset by periodic servicing (either time-based or 
condition-based). It may be noted that periodic renewal is not 
suitable for teething process.  

If wearing products can be periodically renewed by 
servicing, the hazard rate is repeatedly reset to zero and takes the 
form of a sawtooth function (section 9.1.1 in [6]). The average 
sawtooth hazard rate ℎ𝑎𝑎𝑎𝑎𝑎𝑎 can be viewed as the constant hazard 
rate that comes with a random failure process. The hazard rate 
ℎ𝑎𝑎𝑎𝑎𝑎𝑎 is given by (cf. [7] and section 9.1.1.3 in [6]): 

ℎ𝑎𝑎𝑎𝑎𝑎𝑎 =
−ln�𝑅𝑅(𝑇𝑇)�

𝑇𝑇
(5) 
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Here, T is the service cycle and 𝑅𝑅 the reliability function. 
The shorter T, the lower ℎ𝑎𝑎𝑎𝑎𝑎𝑎, but also the higher the operational 
expenses costs (OPEX). The total expenses (TOTEX) due to 
replacement (capital expenses, CAPEX) and servicing (OPEX) 
can be minimized to yield an optimized service cycle Topt [7]. 

C. Wear 
As explained above, wear does not only occur at the end of 

normal life but is also encountered as one of the types of early 
failures. E.g., wear of defective products causes failures much 
earlier than specified for normal products. Early failures due to 
fast wear can be distinguished from teething when installed 
products are successfully tested and put into operation, but 
failures start to occur after a (much too short) period [5]. There 
is a distinct difference between teething and fast wear of defects.  

Contrary to teething, the hazard rate of wear (fast or normal) 
has its minimum (ℎ = 0) at 𝑡𝑡 = 0 and keeps increasing from 
then on. The time between failures will shorten from the very 
beginning. This does not always show in a bathtub curve, but is 
apparent if the failure data of the defective products can be 
separated from the mixed data. Then the real hazard rate shows. 

If the fast-wearing products constitute only a fraction of the 
total batch, then this defective group gets extinct at some time. 
This is the declining part of the hump (Fig. 1). Though it looks 
similar to teething, the hazard rate of the defective products 
alone is actually still rising. The decline is not due to a declining 
hazard rate, but due to extinction of defective products. The 
hazard rate of a single process is determined as ℎ = 𝑓𝑓/𝑅𝑅 (1). In 
a bathtub curve like Fig. 1, the various distributions are mixed. 
At the hump, not the 𝑅𝑅𝑑𝑑 of the fast-wearing defective fraction is 
used, but rather the total surviving fraction 𝑝𝑝𝑛𝑛 ∙ 𝑅𝑅𝑛𝑛 + 𝑝𝑝𝑑𝑑 ∙ 𝑅𝑅𝑑𝑑 . 
Therefore, the righthand side of the hump does not represent the 
hazard rate of the defective fraction well, but can be very biased. 

Fast wear deviates from normal wear by an abnormally low 
Weibull scale parameter 𝛼𝛼. The shape parameter, 𝛽𝛽 > 1. Until 
forensic investigations shed light on the cause of early failures, 
a big unknown and often a big challenge is to determine how 
large the fraction 𝑝𝑝𝑑𝑑 is. Is it worthwhile to repair and continue 
operation? Or should all components be replaced preventively? 

When (normal or fast) wear starts, the worst is yet to come 
and decisions about repair or replace may become urgent issues. 
Important related questions are: Are the failures deviant from 
expectations? Will new failures occur in the near future? At what 
rate will failures occur? 

D. Single Distribution Approach 
According to (4), the hazard rate can be quite complicated. 

The statistical analysis may seem overwhelming too. However, 
if events occur where the hazard rate of a single process 
dominates, the data analytics can often be approximated by 
applying a single Weibull distribution [5]. This simplifies the 
data analytics considerably. This is also the approach of the data 
analysis discussed here. Although the mentioned methods can 
deal with teething and random failure as well, the presently 
reported work particularly aims at dealing with cases of early 
and normal wear. 

III. CONFIGURATION CONSIDERATIONS 
Grid components may fail, but the prime responsibility of 

utilities is to supply electric power. Redundancy by multiple 
distribution alternatives is a common strategy to warrant the grid 
functionality despite failures.  

For instance, if a connection consists of two or more parallel 
circuits that each can supply the full required power, then failure 
of a single circuit does not need to interrupt the power supply. 
During the repair of the failed circuit, the connection will be 
more vulnerable, because of less redundancy. With the 
occurrence of a next failure, the connection may fail depending 
on the degree of redundancy. So, adequate response to failure 
can shorten the period of elevated vulnerability. Redundancy 
and speedy repair together decrease the hazard rate of 
connection failure. Here it is discussed to what extent parallel 
paths and repair can be sufficient countermeasures. 

A. Redundancy and repair 
Redundancy can be achieved with various alternatives 

(including emergency generators etc.). Here, we discuss the 
hazard rate of a system of identical parallel circuits and its 
relation to the hazard rate of single circuits. It is assumed that 
the hazard rate is a (semi)-constant for a defined coming period.  

Let the hazard rate of a serviced single circuit be ℎ1 = ℎ; of 
a double circuit ℎ2 and of a triple circuit be ℎ3. In this approach, 
we assume that the ruling distribution is Exponential (which is a 
special Weibull case) with expected lifetime θ = 1/ℎ . Also, 
assume one failed circuit can be repaired at a time, with a 
constant rate μ. Such conditions influence the impact of 
redundancy [6]. The resulting impact of the present choices is 
shown in Table II. The bathtub curves of a single and a double 
are compared in Fig. 2. Table III shows a numerical example.  

The impact of redundancy can also be rated with a 
performance ratio 𝑝𝑝𝑟𝑟. Here it is defined as the ratio of the single 
circuit hazard rate divided by hazard rate ℎ𝑥𝑥 of an alternative x: 

𝑝𝑝𝑟𝑟,𝑥𝑥 =
ℎ1
ℎ𝑥𝑥

 (6) 

TABLE II.  IMPACT OF REDUNDANCY ON THE HAZARD RATE AND STEADY 
STATE AVAILABILITY (CF. CH.8 IN [6]).  

Connection 
configuration 

Single 
circuit Double circuit Triple circuit 

Hazard rate ℎ1 = ℎ ℎ2 =
2ℎ2

2ℎ + μ
 ℎ3 =

6ℎ3

9ℎ2 + 4μℎ + μ2
 

Availability 
𝐴𝐴1
=

μ
ℎ + μ

 

𝐴𝐴2

=
μ2 + 2μℎ

μ2 + 2μℎ + 2ℎ2
 

𝐴𝐴3

=
μ3 + 3μℎ + 6μℎ2

μ3 + 3μ2ℎ + 6μℎ2 + 6ℎ3
 

Performance 
ratio 

𝑝𝑝𝑟𝑟 =
ℎ1
ℎ1

= 1 
𝑝𝑝𝑟𝑟 =

ℎ1
ℎ2

= 1 +
μ
2ℎ

 𝑝𝑝𝑟𝑟 =
ℎ1
ℎ3

= 1.5 +
2μ
3ℎ

+
μ2

6ℎ2
 

TABLE III.  TYPICAL EXAMPLE WITH ℎ = 0.01YR−1 AND 𝜇𝜇 = 26YR−1. 

Connection 
configuration 

Single 
circuit Double circuit Triple circuit 

Hazard rate 0.01 0.000,008 0.000,000,009 
Availability 0.9996 0.999,999,7 0.000,000,000,7 
Performance 
ratio 1 1,300 1,100,000 
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Fig. 2. Comparison of the hazard rates of a single and a double circuit. 

The higher 𝑝𝑝𝑟𝑟,𝑥𝑥,  the greater the effectiveness of the 
alternative x. If the hazard rate is a constant, 𝑝𝑝𝑟𝑟,𝑥𝑥  is the ratio 
between the MTBF of the alternative θx and of the reference θ1. 
Fig. 3 shows 𝑝𝑝𝑟𝑟 for the three configurations in Table II. 

The assumption of a constant hazard rate will generally not 
be met, but it provides a convenient approximation. If a forecast 
is made for a coming year and the hazard rate is not expected to 
change much during the year, it can be chosen (semi)constant 
and adapted per year. This is the semi-constant approach. 

An illustration of the semi-constant approach is to apply it to 
the bathtub curve with a defective fraction 𝑝𝑝𝑑𝑑 = 10% (Fig. 1). 
Fig.2 compares the resulting bathtub curve of a double circuit 
connection to that of a single circuit. The inset shows the hazard 
rate at the hump due to the early failures on a double logarithmic 
scale. If the requirement would be that hazard rate of the 
connection remains <10-4 (meaning that such a connection 
should have an MTBF of 10,000 yr), then the double circuit 
appears sufficient to overcome the early failures (Fig. 2). 
Furthermore, it postpones the moment that the wear-out phase 
exceeds the high hazard rate levels (e.g., ℎ=10-3 or 10-4 yr-1). 

Comparing Fig. 2 and Fig. 3, it can be seen that redundancy 
is particularly effective when the hazard rate h1 is low. In the 
wear-out phase the hazard rate steeply rises and the performance 
ratio 𝑝𝑝𝑟𝑟,𝑥𝑥 collapses. Redundancy is a good strategy during the 
random failure phase and the onset of the wear-out phase. 
However, it is not a robust remedy once wear-out is advanced 
considerably. 

B. Redundancy impact on reliability requirements 
Depending on their strategic value, various critical hazard 

rate levels can be defined for components, substations and 
connections. The reasoning is often based on the acceptable 
number of incidents within a series of comparable assets. E.g., 
if a utility has 500 installed transformers and would accept a 
transformer to fail once per 20 yr maximum, the hazard rate 
apparently must be smaller than 1/(500∙20 yr)=10-4 yr-1. It is 
quite common to demand hazard rates for events below 10-4 yr-1 

or 10-5 yr-1. 

  
Fig. 3. Comparison of performance ratios. 

After the definition, the challenge is to assess the hazard rate. 
In distribution grids, assets may be employed in large numbers 
and hazard rates may be readily determined from the number of 
failures and the number of such assets in operation. However, 
transmission grids are usually built of much less, but far more 
strategic, assets. The number of assets in operation multiplied by 
the acceptable maximum hazard rate may remain <1. A critical 
hazard rate may then unwittingly be exceeded without failure. 
As a consequence, the utility may not be aware that the system 
hazard rate is higher than acceptable [8]. 

Regular replacement of cable connections and substations 
can have lead times of several years due to planning, design, 
permits, production, and installation. The discussion about 
performance ratio shows that indications of a starting wear-out 
phase should be taken seriously in order to take timely actions.  

C. Example cases 
The present paper reports on the data analytical methods as 

used in the framework of asset management. A widely 
accessible data analyzer was aimed at. At this point, two 
example cases are introduced to illustrate the issues to be solved 
and the available techniques. The examples concern an early 
failure case and a wear-out case. 

The early failure case is taken from Section 9.4.3 in [6]. This 
concerns two parallel HV cables with each 100 cable joints. The 
quality control through factory tests and test after installation 
were passed successfully. The cable system was planned for 
>40 yr. However, 5 early failures occurred within 4 months 
(Table IV). The cables were not redundant, and therefore each 
failure caused an industrial black-out.  

The wear-out case is about failures in a HV cable system that 
had been in operation for more than 30 yr. After more than 28 
yr, a phase-to-earth fault caused the voltage on the healthy 
phases to rise to about the phase-to-phase voltage for about 6 
hours. This was believed to trigger electrical treeing in the cable 
paper insulation. After more than 1.5 yr, a first failure occurred 
in the cable insulation. The cable system was redundant. Since 
the pressurized cable system required preconditioning before 
recommissioning, a repair takes about 2 weeks (or more).  

In both cases statistical evaluations were carried out 
followed by forensic investigations. With repeated faults in both 
cases, doubts were growing about the integrity of the systems.  

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.01 0.1 1 10 100

single circuit
double circuit

h
(y

r-1
) →

t (yr) →

Random Wear
Defects

RandomTeething

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.1 1 10
h

(y
r-1

) →
t (y) →

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0.01 0.1 1 10 100

triple circuit
double circuit
single circuit

p r
→

t (yr) →

Random Wear

Defects

RandomTeething

SoutheastCon 2022

578Authorized licensed use limited to: TU Delft Library. Downloaded on January 19,2023 at 13:14:55 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV.  OVERVIEW OF FAILURE DATA FOR BOTH CASES 

Early failures t1 t2 t3 t4 t5 
Failure time (yr) 0.159 0.208 0.247 0.274 0.293 
Wear-out failures t1 t2 t3 t4  
Failure time (yr) since installation 30.02 32.02 35.16 35.74  
Failure time (yr) since voltage event 1.595 3.597 6.737 7.315  

Therefore, the ultimate question in both cases became 
whether to continue repair or to replace. 

In order to be prepared for fast response to such incidents, 
methods and techniques were developed. The algorithms and 
facilities are combined in a spreadsheet for wide accessibility 
and is made available as freeware [2]. 

IV. ISSUES TO BE STUDIED 
In the following, both cases are analyzed step by step. The 

steps are: 

• Characterization by plotting and parameter estimation 

• Predictions of probabilities and times of failure 

• Comparison of observations and references 

These steps are discussed in the following sections. 

A. Characterization and Data Review 
As a first step, the data are reviewed with a Weibull plot and 

by parameter estimation. The plot follows the IEEE / IEC 
guidelines [1]. The estimated parameters and the best fit are 
obtained with ordinary linear regression (LR) or weighted linear 
regression (WLR). The variables are the plotting positions 𝑍𝑍𝑖𝑖 
and log(𝑡𝑡𝑖𝑖). The developed IDA allows switching between LR 
and WLR. 

The choice for (W)LR and not for the maximum likelihood 
(ML) method is not fundamental but offers advantages. Firstly, 
(W)LR provides analytical solutions which allows convenient 
error calculations in parameters and is fast. Secondly, graphical 
representation and parameter estimation are fully aligned. 
Thirdly, both beta and regression confidence intervals can 
conveniently be drawn. The developed application also runs on 
light-weight computing devices like mobile phones and might 
find its way into smart devices. 

The WLR method employs weights 𝑤𝑤𝑖𝑖  for processing the 
data 𝑡𝑡𝑖𝑖. These 𝑤𝑤𝑖𝑖 are the inverse of the 𝑍𝑍𝑖𝑖,𝑛𝑛 variances [9] [10],  
Computing these weights can be demanding for data sets of tens 
of failure times. With the development of the analyzer IDA, a 
weight approximation algorithm was developed [5] [11]:  

1
𝑤𝑤𝑖𝑖,𝑛𝑛

≈  
1

𝑖𝑖 − 0.5
−

0.1
(𝑖𝑖 − 0.3445)3 +

0.125 ∙ (𝑖𝑖 − 1)1.4

(𝑛𝑛 + 0.343)1.656 ∙ (𝑛𝑛 − 𝑖𝑖 + 0.8)0.75

 (7) 

This algorithm has an error ≤ 1% for each individual weight 
𝑤𝑤𝑖𝑖 for sets with a sample size up to n=500 and < 2.8% for sets 
with size up to n=2000. Compared to the maximum weight in 
the set (per 𝑛𝑛), the error of weights is ≤ 0.34% (for 𝑛𝑛 = 2) and 
decreasing with increasing 𝑛𝑛. It is also suitable for non-integer 
indices 𝑖𝑖 that can occur in adjusted ranking with censoring [1]. 
Equation (7) enables WLR with light-weight computing. 

As for the present failure data (Table IV) of the early failures 
as well as in the wear-out case, there is a set of 𝑟𝑟 observed failure 
times 𝑡𝑡𝑖𝑖  (𝑟𝑟 = 5  and 𝑟𝑟 = 4,  respectively). The sample size 𝑛𝑛 
(i.e., the total number) of observed plus future faults is unknown 
in both cases. However, next failure times will be larger than the 
already observed data, i.e.: 𝑡𝑡𝑖𝑖 > 𝑡𝑡𝑟𝑟  for 𝑖𝑖 > 𝑟𝑟 . Such cases are 
called (singly) right censored cases and adjusted ranking is not 
needed. In other cases, the condition that future failure times 
𝑡𝑡𝑖𝑖 > 𝑡𝑡𝑟𝑟 may not hold, for instance, if some assets were put into 
operation later and consequently may live shorter than presently 
observed failure times. Equation (7) is easier and more precise 
than the recommended practice in the present standard [1]. 

For plotting and parameter estimation an assumption must 
be made about 𝑛𝑛. As an exercise, often a sequence of future 
failure numbers 𝑘𝑘 = 𝑛𝑛 − 𝑟𝑟 is explored. A typical sequence is 
𝑘𝑘 = 0, 1, 3, 10, 30.  These 𝑘𝑘  values represent the respective 
qualifications of: ‘no more failures of this kind to follow’, ‘only 
one more failure are to follow’, ‘a few more failures are to 
follow’, ‘considerably more failures are to follow’, ‘many more 
failures are to follow’. A next challenge is to estimate which 
situation is most applicable given the already observed failures. 
This is discussed below. 

For review of the two example cases, the estimations 𝑎𝑎𝑘𝑘 and 
𝑏𝑏𝑘𝑘 for the Weibull parameters α and β are shown in Table V. 
The failure times and times since the previous time are shown in 
Table VI. The data are plotted in Fig. 4 with the best fits and 
90% regression confidence intervals. WLR was used for plotting 
and parameter estimation. A review of data could be as follows. 

As for the early failures, 𝑏𝑏𝑘𝑘 > 1 for all k, which makes it a 
clear wear mechanism. The time between failures is in the order 
of days (0.01yr ≡ 3.65d). The associated high hazard rate is in 
the order of 10 − 100 𝑦𝑦𝑦𝑦−1. The time-between-failures show 
very little scatter and keep even consistently shortening with 
increasing 𝑖𝑖 (Table VI). This means in a fixed time interval the 
number of failures increases, which means the distribution 
density 𝑓𝑓 is on the rise. Weibull density functions with β > 2 
are bell shaped and the region for curving upward is at the very 
start of the bell meaning most failures are still to come. The 
hazard rate rises even more than 𝑓𝑓  (ℎ = 𝑓𝑓/𝑅𝑅  and 𝑅𝑅 < 1 ). 
Therefore, the hazard rate is not only high, but still consistently 
rising. The situation bears a great resemblance to the region 𝑡𝑡 ≈
0.5 yr in Fig.1 at the onset of the fast wear curve and of the hump 
(which ever is applicable).  

TABLE V.  ESTIMATED WEIBULL PARAMETERS FOR VARIOUS 𝑘𝑘 

Early failures k = 0 k = 1 k = 3 k = 10 k = 30 
ak (yr) 0.261 0.280 0.313 0.393 0.523 

bk 4.90 4.36 3.96 3.60 3.42 
Wear-out k = 0 k = 1 k = 3 k = 10 k = 30 

ak (yr) 5.81 7.38 10.49 20.9 48.2 
bk 1.74 1.53 1.39 1.269 1.214 

TABLE VI.  FAILURE TIMES AND TIMES BETWEEN FAILURES 

Early failures t1 t2 t3 t4 t5 
𝒕𝒕𝒊𝒊 (yr) 0.159 0.208 0.247 0.274 0.293 

𝒕𝒕𝒊𝒊 − 𝒕𝒕𝒊𝒊−𝟏𝟏 (yr) 0.159 0.049 0.038 0.027 0.019 
Wear-out t1 t2 t3 t4  

𝒕𝒕𝒊𝒊 (yr) 1.595 3.597 6.737 7.315  
𝒕𝒕𝒊𝒊 − 𝒕𝒕𝒊𝒊−𝟏𝟏 (yr) 1.595 2.002 3.140 0.578  
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Fig. 4. Weibull plot of the early failures and the Wear-out data. In both cases 
a number of future failures 𝑘𝑘 = 10 is used as an example. 

As a first conclusion for the early failures, the problems seem 
to have just started and the worst is yet to come. 

As for reviewing the wear situation, the failure times scatter 
more about the best fit (Fig. 4). With a time between failures in 
the order of 2 yr the influence of seasons may have an effect. 
This may cause a bigger scatter in data and the wider confidence 
intervals. The times between failures on average are also 
considerably longer than with the early failures. Unlike the early 
failure case, the development of intervals is not very consistent. 
In the beginning the intervals lengthen, but then drastically 
shorten (Table VI). The question might rather be whether the 
present average ℎ is acceptable or signaling an end-of-life.  

B. Predictions of Probabilities and Failure Times 
After characterization and review, parameters are estimated 

and a plot is available. A Weibull distribution is defined and that 
can be used for further evaluations like time to next failure and 
probability of failure in a given period.  

As mentioned above the estimated Weibull parameters 
depend on the assumed sample size 𝑛𝑛 . Various methods are 
being explored to estimate 𝑛𝑛  from the data. Such a method 
exploits the shape of the probability density 𝑓𝑓(𝑡𝑡). That method 
was qualitatively addressed above, but a quantitative exercise 
employing a similarity index is discussed in [12] and section 9.4 
of [6]. The present early failures case shows a great similarity to 
cases with large sample sizes. However, for data that scatter 
much, the method remains less conclusive. Positive is that the 
method also indicates that a high similarity is not going to be 
reached which prevents drawing wrong conclusions [6]. The 
statistical significance is still being studied. As for the early 
failures case with discussed findings of a high hazard rate, the 
absence of redundancy and the expectation that the problems 
only just began, preventive replacement is recommended. Still, 
next failure times can be estimated as explained below. 

As for the wear-out case, the data scatter makes this case less 
clear cut at this stage. The matter of estimating total sample sizes 
after a relatively small number of failures is an ongoing study 
subject as yet. However, predictions of probabilities and next 
failure times can provide deeper insights. 

TABLE VII.  PREDICTED NEXT FAILURE TIMES WITH CONFIDENCE LIMITS 

Early failures tr = 0.293 k = 1 k = 3 k = 10 k = 30 
<tr+1> - tr (yr) - 0.039 0.026 0.020 0.019 
tr+1,10% - tr (yr) - 0.006 0.003 0.002 0.002 
tr+1,50% - tr (yr) - 0.032 0.020 0.015 0.014 
tr+1,90% - tr (yr) - 0.081 0.056 0.044 0.041 

Wear-out tr = 7.315 k = 1 k = 3 k = 10 k = 30 
<tr+1> - tr (yr) - 3.99 2.61 2.06 2.06 
tr+1,10% - tr (yr) - 0.51 0.31 0.23 0.23 
tr+1,50% - tr (yr) - 3.04 1.91 1.48 1.35 
tr+1,90% - tr (yr) - 8.79 5.89 4.69 4.29 
 

In the following, predictions are made firstly about the next 
failure times and associated confidence limits. Next the 
influence of the degree of redundancy on the predictions is 
considered. As may be noticed from Table V, the estimated 
shape parameters 𝑏𝑏𝑘𝑘 vary with 𝑘𝑘, but the variation is modest in 
the range 𝑘𝑘 = 1, . . ,30. As a result, the times do vary with 𝑘𝑘, but 
also modestly.  

The distribution of the remaining failures after 𝑡𝑡𝑟𝑟  can be 
estimated employing the Beta function [5]. Let θ ≥ 𝑡𝑡𝑟𝑟 be a time 
after which the remaining 𝑛𝑛 − 𝑟𝑟 last failures will occur. If the 
complete set of 𝑛𝑛 failures is distributed according to a given 
Weibull distribution 𝐹𝐹(𝑡𝑡),  then θ can be associated with  
probability value 𝐹𝐹θ = 𝐹𝐹(𝑡𝑡 = θ). In the present approach, the 
estimated parameters in Table V, define such distributions. For 
each 𝑘𝑘 > 0, we can calculate an 𝐹𝐹θ with given θ.  

The probabilities 𝑝𝑝  that correspond to the future failure 
times are uniformly distributed over [𝐹𝐹θ, 1]. Next, a coordinate 
𝑞𝑞 can be defined as: 

𝑞𝑞 =
(𝑝𝑝 −  𝐹𝐹𝜃𝜃)
(1 −  𝐹𝐹𝜃𝜃)

 (8) 

The expected next failure time 〈tr+1〉 and its A% confidence 
limit 𝑡𝑡𝑟𝑟+1,𝐴𝐴% can then be found by the following expressions: 

〈tr+1〉 = � 𝑡𝑡�𝐹𝐹𝜃𝜃 + 𝑞𝑞 ∙ (1 − 𝐹𝐹𝜃𝜃)� ∙ 𝑓𝑓𝐵𝐵(𝑞𝑞; 1,𝑛𝑛 − 𝑟𝑟)d𝑞𝑞
1

0
 (9) 

𝑡𝑡𝑟𝑟+1,𝐴𝐴% = 𝑡𝑡 �𝐹𝐹𝜃𝜃 + (1 − 𝐹𝐹𝜃𝜃) ∙ 𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖(𝐴𝐴%; 1;𝑛𝑛 − 𝑟𝑟)� (10) 

𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖 is the inverse Beta distribution and 𝑓𝑓𝐵𝐵 the Beta density 
function. In our analysis, we chose θ = 𝑡𝑡𝑟𝑟. Table VII shows the 
expected time to the next failure with the 10%, 50% and 90% 
confidence limits for the early failures and wear-out cases. The 
facility is built into the freeware data analyzer. 

Although 𝑛𝑛 is not known, in both cases the moment of the 
next failure changes only modestly with 𝑛𝑛 c.q. 𝑘𝑘. The biggest 
change in 〈tr+1〉 and the confidence limits 𝑡𝑡𝑟𝑟+1,𝐴𝐴% is with small 
𝑘𝑘, but all estimates are still well in the same range. This holds 
for both cases. 

 
Fig. 5.  Treeing on paper insulation. This is not a breakdown, but it disturbs 
the electric field and weakens the insulation. It will cause a fault ultimately. 
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As for the early failure case, the estimates confirm the 
dramatic situation. The next failure can be expected in the order 
of a few days. And this industrial cable is not redundant.  

As for the wear-out case, forensic studies meanwhile showed 
that the failures were due to extensive electrical trees growing in 
the paper insulation (cf. Fig. 5). Based on the visual inspections, 
𝑘𝑘 is rather in the range of tens or hundreds than only one. The 
next failure is expected in about 2 yr (Table VII). The system is 
redundant. Is frequent repair workable or unjustifiable then? 

C. Redundancy revisited 
With redundancy, a failure of one circuit does not down the 

power supply by the system. However, as explained above, 
redundancy loses effectiveness with increasing hazard rate. In 
the wear-out case, the hazard rate is at such a level that about 
every 2 yr a repair is necessary. Apart from the burden of 
personnel planning and high OPEX, the redundancy may not be 
adequate anymore in preventing blackouts. This is investigated 
by estimating the hazard rate of the connection. 

The hazard rate for electrical tree failures can be determined 
with (1) and the estimated parameters (Table V). However, it 
should be noted that the distribution based on 𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘 defines 
the failure behavior of the electrical trees. The hazard rate of the 
electrical trees ℎ𝑒𝑒 is adapted from (1): 

ℎ𝑒𝑒(𝑡𝑡) =
𝑏𝑏𝑘𝑘 ∙ 𝑡𝑡𝑏𝑏𝑘𝑘−1

𝑎𝑎𝑘𝑘𝑏𝑏𝑘𝑘
 (11) 

 Originally, the circuit contained 𝑛𝑛 growing electrical trees 
that are competing for failure. The circuit behaves as a series 
system of electrical trees (section 7.3 in [6]) and the hazard rates 
of the trees must be summed. Ergo, the circuit hazard rate ℎ1 
equals: 

ℎ1 = 𝑛𝑛 ∙ ℎ𝑒𝑒 (12) 

The connection hazard rate ℎ2 is given in Table II and can 
be rewritten as: 

ℎ2 =
2ℎ12

2ℎ1 + μ
=

2 ∙ (𝑛𝑛 ∙ ℎ𝑒𝑒)2

2 ∙ 𝑛𝑛 ∙ ℎ𝑒𝑒 + μ
 (13) 

The repair rate μ = 26.1 yr−1 as mentioned above. This is 
the Markow chain approach with (semi)-constant hazard rates 
and a single repair crew. Other assumptions will lead to 
somewhat different equations. E.g., having multiple repair crews 
will increase μ and lower ℎ2. So, the precise formulation of (13) 
can vary if alternative case specific assumptions are made. 

Table VIII shows the results for ℎ1 and ℎ2 at 𝑡𝑡𝑟𝑟 and at the 2 
consecutive years. Having the forensic findings that 𝑘𝑘 is rather 
in the range of tens or hundreds, the hazard rates are determined 
for 𝑘𝑘 = 10, 30, 100 which corresponds to the total number of 
electrical trees (i.e., failures to be) per circuit 𝑛𝑛 =  14, 34, 104. 

The results show that the connection hazard rate is in the 
range of about 0.3-0.25, which means that such a connection will 
suffer a black-out every 30 to 40 yr. If the requirement is that a 
connection hazard rate ℎ2 < 10−4 yr typically, then the present 
case needs urgent attention. 

 

TABLE VIII.  HAZARD RATES OF INDIVIDUAL CIRCUITS AND OF THE 
REDUNDANT CONNECTION 

Circuit fault at time (yr) k = 10 k = 30 k = 100 
h1 (yr-1) tr 0.640 0.572 0.546 
h1 (yr-1) tr +1 0.662 0.588 0.559 
h1 (yr-1) tr +2 0.683 0.603 0.571 

Connection fault at time (yr) k = 10 k = 30 k = 100 
h2 (yr-1) tr 0.030 0.024 0.022 
h2 (yr-1) tr +1 0.032 0.025 0.023 
h2 (yr-1) tr +2 0.034 0.027 0.024 

 

V. DISCUSSION AND CONCLUSION 
The present work is part of a project by Dutch utilities, 

research organizations and industry. The broad aim is to align 
views on resilience in the grid and asset management methods. 
Here, we review the data analytics that are presently applied in 
case of a (usually small) set of failures, that potentially is the 
start of an escalating issue. 

The foundation for the analysis are IEEE/IEC guidelines [1]. 
However, the decision-making in various cases requires answers 
to questions beyond the guidelines. A research program is 
ongoing aiming at decision-making support in case of scarce 
data and emergency situations. Examples of questions concern 
the number of failures to follow, when next failures can be 
expected, etc. Often the issue behind the questions is whether 
assets should continue to be repaired or all should be replaced. 
Another prime question is often to quantify to what extent two 
distributions are the same, meaning whether the observed failure 
behavior matches a reference (such as specifications). 

A range of techniques has been and still is developed. The 
present paper illustrated the mainstream of failure data analytics 
to support grid resilience. The focus in the present paper was to 
recognize wear-out and to interpret early failures properly. As 
shown, early failures after a seemingly successful testing are 
often not teething but fast wear of weak products. These can be 
discriminated by the Weibull shape parameter. 

Another subject beyond the standard is evaluation of 
redundant systems. From various cases in the project, it is 
evident that redundancy is usually effective to prevent 
interruption by random failures which normally have a low 
hazard rate. The effectiveness of redundancy is strongly reduced 
with increasing hazard rate. A performance ratio is defined to 
quantify the approximate quality of the redundancy. 

The paper discussed two cases: a typical early failures case 
and a wear-out case. Both examples concern cases that called for 
drastic measures. The paper shows how such conclusions can be 
reached. 

Work on sample size estimation and similarity of 
distributions were mentioned, but briefly discussed here.  

A secondary aim in the resilience project is to disclose the 
data analytics to a wide audience. To that purpose software is 
made available that is accessible in utility asset management 
departments and small businesses. Many techniques including 
an interactive Weibull plot and weighted linear regression are 
cast in algorithms that can be handled by typical, widely 
accessible, office software like a spreadsheet. This is made 
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available as freeware [2] for non-commercial purposes and for 
education. 

The present analyzer bundles facilities for plotting Weibull 
data with both Beta and regression confidence limits. It allows 
to estimate parameters by weighted or ordinary linear regression 
and it provides basic calculators to convert time into distribution 
functions and vice versa. With the analyzer it is possible to 
optimize the cycle for periodic maintenance based on OPEX and 
CAPEX, and to predict the time of the next failure.  
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