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Executive summary 

Emission-free zones are being instituted in cities in the Netherlands to combat the emissions caused 

by transportation activity, as they are responsible for a significant part of global CO2 emission due to 

fuel combustion. Operators of large commercial vehicle fleets are looking at alternatives for fossil fuel 

trucks, like e-trucks, to be able to keep servicing locations in cities where the emission free zones are 

instituted. E-truck fleets need sufficient charging infrastructure and power capacity at the distribution 

centres they operate from, of which the availability is not guaranteed. The issue of actors not being 

able to access the power grid capacity they require to electrify their delivery vehicle fleet cannot be 

solved in the short run by the grid operators. As the capacity of actors’ connection to the power grid is 

constrained, solutions behind the electricity meter are necessary to either increase local supply or 

reduce momentary demand.  

The problem is that these energy generation and storage components are expensive, and the 

distribution centres often are bounded by strict route schedules which cannot be shifted. Finding the 

most cost-effective solution is not easy as both the supply and demand side of the problem influence 

each other, and various timeframes and variations need to be considered. A distribution centre can be 

seen as small local system within a larger regional system like the power grid or the supply chains. 

Research into the composition of electricity generation or storage components and the scheduling of 

demand has previously been done for small local systems within the larger power grid system. The 

combined optimization of infrastructural composition and operational scheduling has not been 

performed earlier in the literature for distribution centres, while no similar use case has been studied 

in the Netherlands or its general region. This thesis’ aim is to analyse the characteristics of both sides 

of the problem and interactions between them by development of an integrated optimization model. 

To work towards this thesis’ objective, a main research question is formulated: “What is the most cost-

effective electric infrastructural composition and operation to facilitate the electrification of heavy 

truck fleets of large-scale distribution centres in grid congested areas in various scenarios to ensure 

that the route schedules can be driven?” Several sub research questions were formulated to aid in 

answering the main research question. The research approach and methods concern literature 

research, expert interviews, application of an optimization model to various scenarios of a real-life 

case study and rigorous verification and validation to scientifically answer the subquestions and main 

research question. The proposed mathematical model is a MILP model which optimizes the 

composition and operation of the electric infrastructure of a distribution centre, while considering the 

periodic energy balance, for various scenarios in the electrification process. After the model is 

constructed and verified, and the behaviour of the model has been analysed, a case study will be 

performed to acquire managerial insights and to test if the model is applicable to a real-world case.  

This thesis solely considers the local system of a distribution centre, in which photovoltaic panels, wind 

turbines, battery storage and charging stations can be installed to facilitate the charging demand of 

the e-trucks on top of the power demand of the distribution centre. While the optimization of the 

infrastructural composition and the operation can be tackled separately, the way in which the charging 

of the EVs interacts with the infrastructural components make it essential to consider both problems 

simultaneously. Because both sides of the problem act on the same system and are reasonably 

homogeneous in function, they can be combined into a single mathematical problem formulation. The 

simultaneous optimization is facilitated by incorporating the sum of the number of each infrastructural 

component installed times their associated cost in the objective function of a MILP model and the 

resulting positive and negative power flows in the primary equality constraint, which represents the 

energy balance of the system. The primary positive power available is the electricity that can be bought 
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from the grid, which is however limited by the maximum grid connection. The power of the 

photovoltaic panels, wind turbines and discharge of the battery storage are the other positive power 

flows, while the charging of the battery storage, charging demand of the e-trucks and power demand 

of the distribution centre are the negative power flows. Due to this formulation the model minimizes 

the number of infrastructural components installed upfront and thus the total costs, while having to 

make sure that sufficient positive power is generated or available from storage, on top of the power 

from the grid, to facilitate the negative power flows. The power demand of the distribution centre is 

fixed but the model can smartly schedule the charging demand of the e-trucks to minimize the peak 

demand and avoid exceeding the power available from the grid as much as possible, to minimize the 

number of infrastructural components required. With the implementation approach of the problem in 

the mathematical model a high number of mixed-integer decision variables are used, causing the 

model to be high-dimensional and thus computationally difficult to solve. This thesis uses a literary 

substantiated method of making a highly dimensional problem implementation work by reducing the 

time period of the problem, as the number of decision variables scales with the number of time 

periods. This is done by considering a typical day per month for a total of 12 days, reducing the problem 

size but still incorporating seasonal variation. 
 

The proposed mathematical model was tested by means of a case study and various scenarios for a 

supermarket company operating a distribution centre to analyse the models’ behaviour in a practical 

setting. The case study subject is a distribution centre operated by a supermarket company and is 

located in the Randstad. The distribution centre of the specific supermarket company was chosen as 

subject for the case study as it already has experience with e-trucks, it has space available for the 

installation of electric infrastructure components, and supermarket companies have control over a 

consistent supply chain. The distribution centre would need to substitute 60 fossil fuel trucks with e-

trucks in 2025, when the first zero-emission zones are instituted, and 120 e-trucks would be necessary 

in 2030 to facilitate all deliveries to retail locations in zero-emission zones. The data that was used as 

input for the parameters in the model was partly derived from literature and partly from experts, like 

the ones participating in the case study. The 3 main scenarios defined pertain to the number of e-

trucks in the electrification process, with 5 e-trucks in the first, 60 in the second and 120 in the third. 

Each main scenario has 3 subscenarios, in which the first only looks at the optimal infrastructural 

composition combined with greedy, unscheduled charging. The second subscenario looks at both the 

optimal infrastructural composition and operation, while the third also optimizes both simultaneously, 

but with variable electricity prices based on the day-ahead market instead of fixed prices. 
 

Before the model was applied to the real-world case, it was verified using a recalculable numerical test 

and validated using linear regression analysis. The results of the numerical test verifiably show that the 

model optimizes both the installation and the operation of the infrastructural components, to 

minimize the costs while adhering to the constraints. The results from the linear regression analysis 

show that a specific method is necessary to determine the typical days per month, as using the same 

day for every month is not statistically representative. To determine the most typical days per month 

the K-medoids method was chosen, in which for each cluster the data point with the lowest 

dissimilarity to all other points in the cluster is determined. The literature substantiating the K-Medoid 

method, and the resulting data indicate it is a respectable method to choose the most typical days, 

with the goal to simulate a whole year within a more manageable timeframe. 
 

With the implementation of the mathematical model in the case study, the results show that within 

each of the three main scenario’s, from the greedy charging subscenario to the variable electricity 

prices subscenario, the main pattern is that the model is able to decrease the total costs and the 

number of infrastructure components required. The model is able to reduce the cost from subscenario 

1 to subscenario 3, for main scenario 1 by 2.2%, for main scenario 2 by 12.8% and for main scenario 3 
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by 19.4%. The greedy nature of the charging demand in subscenario 1 in combination with the pattern 

of the demand of the distribution centre causes the model to need an expansive infrastructural 

composition to facilitate the required power demand in exceedance of the maximum power of the grid 

connection. In subscenario 3 the number of infrastructural components is significantly reduced from 

the greedy subscenario 1, due to the ability of the model to smartly schedule charging demand to try 

to avoid peak power demand in exceedance of the maximum grid connection and to capture low 

electricity prices instead of high ones. The infrastructure investment steps in the electrification process 

to take, would be to install consecutively or collectively 1, 3 and 7 charging stations and 994, 1623 and 

4340 PV panels in 2022, 2025 and 2030, leading to a PV installation with a total rated power of 1.562 

MW, which proved to be the more cost-effective than wind turbines and battery storage. To study how 

the uncertainties in the model’s input parameters affect the outcome of the model, sensitivity analysis 

using the one at a time method was done, in which each factor is varied in turn while keeping all other 

factors fixed at their original indicated value. The sensitivity analysis showed that the maximum grid 

connection and the electricity price had the biggest effect on the total costs. The results of the 

scenarios, the graphs and the sensitivity analysis show that the model is effectively able to optimize 

the infrastructural composition and operation to minimize the cost in all cases, giving managerial 

insights into the decisions that need to be made in all steps of the fleet electrification process. 
 

During the formulation process of the mathematical model, which involved the problem description, 

conceptual modelling, validation and verification, various assumptions have been made to enable the 

model’s development. For the yield of the renewable electricity sources as well as the demand of the 

distribution centre itself and electricity market prices it is assumed that historical data is representative 

for the future. To reduce the computational complexity of the model, the historic data of 2021 was 

comprised to a typical day per month using the K-medoid method, with a modelling resolution of 

hourly time period, for a total of 288 time periods. Regarding the infrastructural components, for the 

integration into the model a selection was made, and it was assumed that the characteristics of the 

different infrastructural components scale linearly with the number of units installed. All these 

assumptions affect real-life representability, and while case study results themselves cannot be 

directly generalized for other distribution centres, after testing of the mathematical model it can 

reliably be used to generate results for distribution centres in other cases. 
 

This thesis provides a mathematical model which can determine the most cost-effective infrastructural 

composition and operation for not only distribution centres, but also other behind-the-meter systems, 

which have to electrify their truck fleet but are hindered by low charging capacity due to their kWmax. 

Based on the results of the case study and the performance of the mathematical model some general 

and some specific conclusions can be made. The most cost-effective infrastructural composition and 

operation is dependent on the characteristics and the demand of the distribution centre in question 

and the number of e-trucks and the intensity of their route schedules. The comparison of the 

simultaneous optimization of operation and infrastructure with the greedy base subscenario, in which 

the charging demand is fixed and only the infrastructural composition can be optimized, shows the 

value of the mathematical model and the cost-effectiveness of the operational optimization. With 

these general conclusions considered in the main scenarios of the case study, specific advice was given 

on the infrastructural and operational needs in the various steps of the electrification process. 
 

In regard to further research recommendations, a first recommendation is to test the proposed 

mathematical model in other cases, with distribution centres with different characteristics and power 

demand. A very interesting topic for further research would be the possibility for not only scheduling 

the charging demand but also the possibility off rescheduling the transportation demand. Another 

interesting research direction is also limited by computational complexity and concerns the running of 

the model with a smaller resolution or over a bigger horizon, as this would increase the reliability. 
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Nomenclature 

Abs Absorbed 

BET Battery electric trucks 

BS Battery system 

CAP Capacity  

CHP Combined-heat power 

CS Charging station 

Cur Curtailment 

DAM Day-ahead market 

DC Distribution centre 

DOD Depth of discharge 

EV Electric vehicle 

FLC Fuzzy logic controller 

GHG Greenhouse gasses 

ICE Internal combustion engine 

IDE Integrated development environment 

Inj Injected 

LCOE Levelized cost of energy 

MILP Mixed-integer linear programming 

NSGA Non-dominated sorting genetic algorithm 

OAT One at a time 

PG Power grid 

PSO Particle swarm optimization 

PV Photovoltaic 

SOC State of charge 

WT Wind turbine 
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1. Introduction 

Emission-free zones are being instituted in cities in the Netherlands to combat the emissions caused 

by transportation activity, as these are responsible for a significant part of global CO2 emission due to 

fuel combustion (IEA, 2020a; 2020b; Panteia, 2021). The Dutch government has joined the Paris 

climate agreement and is therefore committed to reducing its greenhouse gas emissions by 49% in 

2030 and 95% in 2050 compared to emissions levels in the Netherlands in 1990 (Rijksoverheid, 2021). 

On a municipal level even stricter milestones are set, with 30 cities planning to instate emission-free 

zones in the city centre for commercial vehicles from 2025 and personal vehicles from 2030, with 

emission zones being instituted in 10 more cities in 2030 as well (Panteia, 2021; TLN, 2021). 

Operators of large commercial vehicle fleets are looking at alternatives for fossil fuel trucks, like e-

trucks, to be able to keep servicing locations in cities where the emission free zones are instituted. 

Battery-electric trucks or e-trucks have the potential for lower life cycle greenhouse gas emissions and 

total lifetime costs (Zhou et al., 2017). Furthermore, electric trucks do not produce tail-pipe emissions 

and can have greater tank-to-wheels efficiency than internal combustion engine trucks in city delivery 

operations (Lee et al., 2013). Hydrogen trucks are also an option, as they have a higher range and 

refuelling speed, in which e-trucks lack (Hall & Lutsey, 2019). E-trucks are however improving on these 

points and currently seem the dominant choice for truck fleet operators (Koornneef, 2020). 

E-truck fleets need sufficient charging infrastructure and power capacity at the distribution centres 

they operate from, of which the availability is not guaranteed. The issue is that the national and 

regional power grids in the Netherlands are too congested, due to the growing amount of decentral 

generation of solar panels and the switch to electric heating and transportation (Netbeheer Nederland, 

2021). This means that even though distribution centre companies want to switch the delivery fleet 

that they operate to e-trucks, they might not be able to receive sufficient power from the grid at the 

moment they want to charge their e-trucks. 

The issue of actors not being able to access the power grid capacity they require to electrify their 

delivery vehicle fleet cannot be solved in the short run by the grid operators and is growing more in 

size and number of affected entities as time goes on. This is evident by the recent Dutch Parliament 

letter concerning the total stop on the grid connection of new and existing companies for the coming 

years in two provinces due to congestion on the power grid (Rijksoverheid, 2022). Stops on new or 

existing grid connections have occurred earlier in other provinces as well (AD, 2021; Case data, 2021). 

Grid operator maps show that grid congestion is a problem across the Netherlands, both on the supply 

and demand side (Netbeheer Nederland, 2021). 

As the capacity of actors’ connection to the power grid are constrained, solutions behind the electricity 

meter are necessary to either increase local power supply or reduce momentary power demand. These 

so-called behind-the-meter solutions derive their name from their position in regard to the private 

electricity meter that is used to measure the energy and power usage (Bayram & Ustun, 2017). The 

two solution avenues to excessive power demand are either the installation of local energy generation 

and storage components, or possibly the smart scheduling of the demand, to smooth out the demand 

peaks. Both solution avenues can also be utilized simultaneously, if one cannot solve the problem on 

its own or when its more economical to use both. 

The challenge is that these energy generation and storage components are expensive, and the 

distribution centres often are bounded by strict route schedules which cannot be altered, hindering 

the fleet electrification process (Case data, 2021). It would thus be helpful to be able to determine the 

minimum size of the generation and storage components and at what time the e-trucks need to be 
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charged, as this can actually be scheduled smartly within a truck’s downtime. The degree to which the 

charging of the e-trucks can be spread in time also determines how many charging stations are 

necessary, which is another cost factor. 

Finding the most cost-effective solution is not easy as both the supply and demand side of the problem 

influence each other, and hourly, daily, monthly and yearly timeframes and variations need to be 

considered. It might for example be cheaper to install more charging stations to use the free electricity 

from renewable generation, or it might be cheaper to install more renewable generation components 

to be able to spread the charging of the e-trucks more (Hoarau & Perez, 2018). Investment decisions 

for the electric infrastructural behind-the-meter generation and storage components need to be made 

up front even though the operational performance needs to be considered as well, as the yield of 

renewable electricity generation can vary daily and seasonally. The conjunction of both an 

infrastructural and operational problem, combined with all relevant factors make it far from a trivial 

problem to solve. 
 

The socio-technical system considered in this thesis is a distribution centre with its own power demand 

as well as the additional charging demand, with the boundaries of the system defined by the factors 

within the distribution centre company’s control. A distribution centre can be seen as small local 

system within a larger regional system like the power grid or the supply chains, but for this thesis solely 

the installation of infrastructural components and operational optimization on the terrain of the 

distribution centre is considered. The system can be pictured as a warehouse where on the supply side 

solar panels and wind turbines can be installed to generate power and facilitate the demand side, at 

which the e-trucks can be smartly charged in between their fixed routes. Further description and 

visualization of the system will be done in chapter 4. Distribution centres are a clear example of a 

complex multi-actor socio-technical system, as they involve complex physical-technical systems and 

networks of interdependent actors (Ottens et al., 2006). The complexity comes from the heterogeneity 

and numerousness of the components. This is increased by the addition of the generation and storage 

components to the collection of technical elements of the distribution centre itself (Behdani, 2012).  

The combined optimization of infrastructure composition and operational scheduling as far as known 

has not been performed earlier in the literature for distribution centres, while no similar use case has 

been studied in the Netherlands or its general region. However, various locational factors, like 

meteorological and energy market dynamics, do influence both the supply and demand side. A 

significant knowledge gap is thus evident in regard to finding the most cost-effective electric 

infrastructure composition for large-scale commercial applications, like distribution centres, combined 

with the smart operation of large EVs, like e-trucks, which the distribution centre company directly 

controls. While research into the composition of generation or storage components and the scheduling 

of demand has previously been done for small local systems within the larger regional power grid 

system, no literature exists that considers all factors of interest. While some papers do incorporate a 

fixed electricity price, this thesis will also include variable prices. Akram et al. (2018) and 

O’Shaughnessy et al. (2018) among others researched the required size of generating and storage 

components to service a certain residential area in Saudi Arabia and the United States respectively, 

while Dai et al. (2019) researched the composition of a commercial charging station in China. Chandra 

Mouli et al. (2016) do study the operation of a given infrastructure with solar panels and batteries for 

an office parking lot servicing small electric vehicles in the Netherlands. However, not only differs the 

power demand of a distribution centre itself from the other researched use-cases, but because the 

distribution centre company has control over the operation of the e-trucks it can smartly schedule the 

charging, which might reduce the number of generation and storage components required. The 

different demand than other use-cases and the control over the e-truck fleet makes the case for 

distribution centres unique.  
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This thesis’ aim is to analyse the characteristics of both the infrastructural and operational side of the 

problem and the interactions between them by the development of an integrated optimization model. 

The optimization model will consider the dynamic energy balance between the demand at the 

distribution centre and the supply of the electric behind-the-meter components for all time periods, 

while minimizing the total combined costs of all these static components and the charging stations. 

The operational cost of buying electricity from the power grid or revenue from selling to it will also be 

incorporated. The model is run in a setting with deterministic demand and supply over time. Therefor 

it should be able to find the most cost-effective electric infrastructure composition of the behind-the-

meter components for the distribution centre, as well as the optimal charging schedule of the e-trucks.  

The optimization model will be verified, validated and implemented into a specific case study, after 

which extensive sensitivity analysis will be done. The sensitivity analysis will help provide managerial 

insights for application, to determine which factors influence the results the most and which factors 

are the biggest risk or opportunity. A case study which is build around the distribution centre of a large 

supermarket company is used to test the model in a practical setting, which will aid in the validation 

of the model. Moreover, the case study will be useful to see the interaction of both the infrastructural 

and the operational side of the problem in practice. 

The remains of this thesis will be structured as follows. The next chapter defines the key concepts 

establishing the cause and composition of the research problem, which can then be used to find 

relevant literature. The literature will then be reviewed to increase the understanding of the scientific 

problem at hand, and an overview will be given of the results from literature compared to the research 

problem under consideration. Consequently, a knowledge gap can be identified and the direction and 

scientific relevance of this research can be substantiated. Chapter 3 will detail the research objective, 

formulate the research questions and propose the research approach to answer these questions. 

Chapter 4 will give a more in-depth description of the problem, beginning with the business relevance 

and ending with a formal problem description. The formal problem description will aid in the 

formulation of the conceptual model and mathematical model that will be presented in chapter 5. In 

Chapter 6 the case study will be introduced and the model input data partly following from the case 

study will be detailed. Subsequently, in chapter 7 the proposed mathematical model will be verified 

and validated, with the use of data input from literature and the case study. This will give a first insight 

into the behaviour of the model. In chapter 8 the model will then be implemented to run the scenarios 

contained in the case study and present the results. In chapter 9 the research process will be discussed, 

diving into the research assumptions and limitations. The managerial insights and recommendations 

that follow from the case study results will also be discussed. In chapter 10 the thesis will be concluded, 

the research questions will be answered and recommendations for future research will be provided. 
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2. Literature review and knowledge gap 

The purpose of the literature review is to gain methodological insights and establish a knowledge gap, 

in which this research can provide scientific value, and to examine how other scientific papers have 

tackled similar problems to the one under consideration in this research (Randolph, 2009). The context 

of the literature review is provided by four core concepts, which are also partly incorporated into the 

search term (Knopf, 2006). First the core concepts will be introduced and detailed, after which the 

literature review is performed.  

2.1. Core concepts 
There are four important concepts, which influence and bound the topic. These core concepts can have 

multiple interpretations or definitions, making it important to clearly define these concepts and explain 

their inner workings and effect on the topic (Sheppard, 2020). The core concepts are fleet 

electrification, grid congestion, behind-the-meter systems and infrastructure composition optimization. 

2.1.1 Fleet electrification & scheduling 
With fleet electrification the switch from fossil fuel vehicles to electric vehicles is meant for operators 

of a vehicle fleet, due to the introduction of zero emission zones. In 2025 emission-free zones will be 

established in 30 cities in the Netherlands, while in 2030 a total of 40 cities will have emission free 

zones (Panteia, 2021). Fleet operators servicing those cities will have no choice but to switch to zero 

emission vehicles like electric ones (TLN, 2021). The electrification of the truck fleet could be 

instantaneous or stepwise, according to the stepwise introduction of the emission-free zones, meaning 

for one or multiple scenario’s the electric infrastructure required needs to be planned.  

Besides acquisition and charging costs, fleet electrification will also increase grid congestion on the 

demand side, causing the need for smart scheduling of the charging (Stawski et al., 2021). The more 

electric vehicles are charged at the same time, the higher the peak demand is. To stay below the 

available power capacity, the charging of the vehicles could be smartly scheduled to spread out the 

charging demand. This smart scheduling of loads is also called demand response, as the demand is 

altered in response to the available supply (Feuerriegel & Neumann, 2014). How much the charging of 

the e-trucks can be shifted is dependent on the route schedules and working hours of the drivers. 

2.1.2 Grid congestion and connection 
Grid congestion entails the excessive demand for the transmission of electricity beyond the 

guaranteed capacity of the power grid (O’Connell et al., 2012). Grid congestion can be divided into 

excessive demand and supply. Excessive demand is caused amongst others by the increasing 

electrification of heating and transportation, while excessive supply is caused by the increasing 

decentral generation of renewable energy (Stawski et al., 2021). The degree of grid congestion is 

dependent on a number of factors including local grid rating, number of generating and consuming 

units, and the time (O’Connell et al., 2012). The electricity grid has to be able to deal with these so-

called supply and demand peaks. 

The presence of regional grid congestion has a direct effect on the businesses in that region, as they 

might not be able to satisfy their power demand with electricity from the power grid (AD, 2021; 

Rijksoverheid, 2022). The amount of power that a business or anyone in the Netherlands can supply 

or demand is constraint by the capacity of their grid connection, which is called the kWmax. It is 

measured by multiplication of the highest energy flow in a quarter hour with a factor four to simulate 

the instantaneous power demand (Overheid, 2022). Due to regional grid congestion grid operators are 

however currently denying request for new connections or expansions in many regions (AD, 2021; 

Rijksoverheid, 2022). This complicates a business’ electrification process. 
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2.1.3. Behind-the-meter systems 
A behind-the-meter system refers to a renewable energy system at a specific location owned by a 

single entity, usually operated with distributed generation and storage units to facilitate a user‘s 

energy demand. These so called behind-the-meter solutions, as they are situated behind the meter at 

the grid connection that measures the maximum peak demand, would entail on-site renewable energy 

generation, like solar panels or a wind turbine, and on-site energy storage (Bayram & Ustun, 2017). 

These components can be seen as electric infrastructure and will be referred to as infrastructural 

components. In the literature review it will be examined which components are used in each paper. 

Behind-the-meter systems can be divided into three interacting layers: the technology layer, the 

economic layer and the social layer. The technical layer pertains to the stability and reliability of the 

system, supported by the infrastructural components like renewable energy generation and storage. 

The economic layer pertains to the optimization and scheduling of the system. The social layer refers 

to the people working within the system and the characteristics of the organization. Layer interactions 

for example are the organization that composes the technical layer, the technical layer in turn 

constrains the optimization within the economic layer and the optimization and scheduling steers the 

people within the organization (Bayram & Ustun, 2017). 

2.1.4. Infrastructure composition optimization 
In the context of this research infrastructure composition optimization means finding the optimal 

combination and size of infrastructural components, while minimizing the cost but achieving the 

required minimal performance. Infrastructure has been used to refer to telecom or physical facilities, 

but in this research, infrastructure refers to the on-site electrical grid and components, like solar 

panels, wind turbines, battery systems and charging stations. Simultaneously with the infrastructure 

composition, the operation needs to be optimized as well, as both influence each other. 

In the identification of an optimization problem the electric infrastructure investment decision can 

essentially be seen a knapsack problem, while demand response or smart charge scheduling can 

possibly be interpreted as a job shop problem or a bin packing problem (Ferguson et al., 2018; Hsieh 

& Liu, 2004). Knowledge of the knapsack, job shop and bin packing problem will aid in recognizing 

these problems in literature if they are researched and differentiated between. The presence of a 

knapsack or scheduling optimization problem will be examined and filtered in the literature, to 

evaluate which paper’s models could be useful inspiration for the construction of this thesis’ model. 

The specific characteristics of the optimization problems will be discussed in the corresponding chapter 

5: Mathematical model design 

2.2. Literature review 
A literature review is conducted according to a certain methodology, presenting a summary of all the 

literature found, followed by analysis to subsequently specify a knowledge gap (Timmins & McCabe, 

2005). The methodology pertains to the scope, search term and database used. For the search of 

literature both the SCOPUS and Web of Science database were used. The search term used was 

‘Infrastructure optimization AND electric vehicle charging AND PV AND storage AND grid.’ With the 

exclusion of conference notes this resulted in 26 papers. The search terms ‘infrastructure optimization 

AND electric vehicle charging’ are integral to the potential research direction. The other terms coupled 

by the AND function, while leading to a long search term, are necessary to limit the scope and avoid 

superabundant research of decreasing relevancy (Webster & Watson, 2002). More use-case specific 

search terms like ‘electric truck/transport’ were considered but didn’t yield any results. 

 

https://www-sciencedirect-com.tudelft.idm.oclc.org/topics/engineering/distributed-power-generation


2. Literature review and knowledge gap  6 

C.M. Buitelaar  / TUDelft 

2.2.1. Literature summary 
The subject of a smaller electric system within a larger one is not new to the literature and is often 

referred to as a microgrid. A microgrid can be defined as a group of interconnected loads and energy 

resources within electrical boundaries that can be controlled as a single entity (Ton & Smith, 2012). 

Microgrids are however not necessarily owned by a single entity and do not necessarily consider the 

larger system in which they function, which would be the general power grid. Thus, the term does not 

fully describe the smaller electric system owned by a single entity in a larger electric system, and the 

earlier introduced key concept of behind-the-meter provides a better frame of reference. 

The term behind-the-meter was defined in 1992 by Hendriks and as the term refers to the connection 

to the general power system, it inherently considers the smaller electric system within the larger one 

(Hendriks, 1992). The first time behind-the-meter systems are mentioned in the literature is in 2005, 

in a survey about community wind power development (Bolinger, 2005). in 2009 the actual effect of a 

behind-the-meter wind power installation on electricity demand charges was studied (Hildreth & 

Kildegaard, 2009). It is not until later that the composition and operation of behind-the-meter systems 

is studied to match local energy demand and supply. 

Of the papers found in this literature review the first ones to optimize the electric infrastructure 

composition originate from China and focus on commercial applications without optimizing the 

scheduling of power demand factors. Riu et al. (2012) focus on a battery swapping station for 

commercial EVs in China and try to match the size of a solar PV installation to the capacity. Zhang et 

al. (2013) also consider a commercial charging station in China but look at cable EV charging instead of 

battery swapping and give the model the option to install wind power as well. This increases the 

complexity of the problem as they cannot just charge on-site batteries for when EVs arrive, but have 

to prepare enough capacity, choosing from multiple generating components, to facilitate the 

stochastic demand of arriving EVs. Dai et al. (2019) and Liu and Dai. (2020) try to optimize the electric 

infrastructure of a commercial charging station in China as well. Dai et al. (2019) however, look at the 

multi-actor cooperation and competition to minimize the cost of energy instead of infrastructural 

costs. Liu and Dai (2020) reduce the solution set by evaluating a selection of behind-the-meter system 

alternatives, which reduces the complexity but increases the inaccuracy of the optimization. 

In western countries after 2015 the infrastructure composition problem was approached analytically 

in less commercially oriented use-cases like parking lot charging, which presents different 

characteristics compared to a commercial charging station. With parking lot chargers, the demand is 

more predictable, but the demand is present for longer durations. Other locational factors like 

meteorological dynamics and energy market structure also differ in western countries compared to 

China. Chandra Mouli et al. (2016) designed an integrated PV panel and battery installation for an 

electric vehicle office parking spot in the Netherlands. They conclude that local battery storage does 

not eliminate power grid dependence of an EV charger in combination with PV panels in the 

Netherlands, but it would mitigate day to day solar variation and reduce grid energy exchange by 25%. 

Blasius et al. (2016) and Esfandyari et al. (2015) use a similar approach to study university parking lots 

in Germany and Ireland respectively but are only able to suggest a suitable range of battery capacity. 

Bhatti et al. (2018) study parking lot charging in Pakistan, where the PV generation is actually sufficient 

to facilitate the charging demand. They also identify a counterbalance between profits and grid burden 

depending on the ratio between PV panels and battery capacity installed. 

From 2018 onwards the papers in this literature review consider more diverse electric infrastructure 

components and more heterogenous use-cases, like residential areas. Residential areas have many 

heterogenous demand factors, like appliances, electric heating and mobility and continuously 

fluctuating demand, dependent on social factors. Akram et al. (2018) try to find the optimal 
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infrastructure composition for a residential area in Saudi-Arabia, considering PV panels, wind turbines, 

a battery system, electric vehicles and a back-up diesel generator. The number of components 

increases the complexity of the problem, but also offers more solution options. Modarresi and Olamaei 

(2019) also incorporate a diesel generator for their commercial charging station design in Saudi-Arabia. 

Akram et al. (2018) do evaluate different load shifting scenarios, but both papers don’t optimize the 

operation of their system. Finding the optimal infrastructure composition of a commercial charging 

station or residential area, without optimizing the operation of the system, is also done by Ban et al. 

(2019) and Yan & Ma. (2020) in China, by Baik et al. (2018) in South-Korea and by Chatterji and Bazillian 

(2020), Lui et al. (2020), O’Shaughnesy et al. (2018), Trevizan et al. (2020) in the United States and 

Mohseni and Moghaddas (2018) in Iran. 

The operation of a present behind-the-meter system and the smart scheduling of demand is done by 

Golpîra et al. (2018) for a manufacturing plant, but in this literature review Bracco et al. (2019) are the 

first to simultaneously optimize the electric infrastructure composition and operation of a behind-the-

meter system. They consider PV panels, battery models and consumer electric vehicles for a parking 

lot in Italy. Mirhoseini and Ghaffarzadeh (2020) and Wang et al. (2020) also simultaneously optimize 

the infrastructure composition and operation of a commercial charging station in Iran and China 

respectively, while Melendez et al. (2020) do so for multiple parking lots for a ride sharing service. 

These later papers are able to solve such a high-dimensional problem of simultaneous infrastructure 

composition and operation optimization by reducing the modelling period. This thesis will draw 

inspiration from their research approaches. 

2.2.2. Literature analysis 
The research papers are processed in a concept-centric table, showing the characteristics of each 

paper and their activity in the topics of analysis (Klopper et al., 2007). The characteristics of the papers 

pertain to the authors, year of publication, and the geographical location were the data originated 

from. It is useful to evaluate the geographical locations the research papers examined, as different 

locations lead to different renewable energy generation and ultimately different results (Mazzeo et al., 

2020). The topics of analysis, following partly from the core concepts, are the use-case of each paper, 

the use of a knapsack or scheduling problem formulation, the inclusion of a kWmax or energy balance 

constraint, the infrastructural components considered, the research method used, and the 

incorporation of electricity prices. The results can be seen in table 1. 

The most distinctive categorizations concern the use-case of the research papers and their 

geographical origin, as this affects the power demand profile and available supply respectively. Is a 

commercial charging station or residential area considered, or does the research focus on office or 

university parking lots? Commercial charging stations can have completely random power demand, 

such as stochastically modelled by Mirhoseini and Ghaffarzadeh (2020) while residential areas can 

have a more predictable demand (Yan & Ma, 2020; Chatterji & Bazilian, 2020). Table 1 shows that a 

third of literature is rooted in Asia, roughly a fifth in the US. Four papers have a middle eastern origin, 

three papers concern Northern-Europe and one paper for both Southern-Europe and Australia. An 

integrated system of energy storage, photovoltaic and electric vehicle charging is more often analysed 

for commercial and residential use than for office or university parking lots, based on this literature 

review. Most noticeably, no research was found that looks at the electric infrastructure of distribution 

centres or business parks in general, in the Netherlands or somewhere similar. 
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Authors Date Location Use-case 
Knap 
sack 

Sched-
uling 

Energy 
balance 

kW 
max 

Components Method Electricity price 

Akram et al. 2018 Saudi Arabia Residential area ●  ●  PV/BS/EV/WT/DG MILP Only capital costs  
Baik et al. 2018 South-Korea Commercial station ●  ●  PV/BS/EV MILP Fixed profile 
Ban et al. 2019 China Commercial station ●    PV/BS MILP Only capital costs 
Bhatti et al. 2018 Pakistan Parking lot (office)     PV/BS/EV PSO Hypothetical fixed 
Blasius et al. 2016 Germany Parking lot (university)   ●  PV/BS/EV Statistical analysis Only capital costs 
Bracco et al. 2019 Italy Parking lot (general) ● ● ● ● PV/BS/EV MILP Fixed prices 
Chandra M. et al. 2016 Netherlands Parking lot (office)   ●  PV/BS/EV Statistical analysis Fixed prices 
Chatterji & … 2020 USA Residential area ●  ●  PV/BS/EV MILP Fixed profile 
Dai et al. 2019 China Commercial station   ● ● PV/BS/EV MAPSO Internally modelled 
Esfandyari et al. 2015 Ireland Parking lot (university)     PV/BS/EV Statistical analysis Only capital costs 
Fathabadi. 2018 Nonspecific  Not applicable     PV/BS/EV Simulink & prototype Not applicable 
Ferguson et al. 2018 USA Parking lot (office)  ●   EV Cost-benefit analysis Historical dynamic 
Golpîra et al. 2018 Nonspecific Not applicable  ● ●  BS/WT MILP Varying fixed price 
Islam et al. 2018 Australia Parking lot (university)   ●  PV/BS/EV Suitability analysis Internally modelled 
Liu & Dai. 2020 China Commercial station     PV/BS/EV MOPSO Only cost constraint 
Liu et al. 2020 USA Residential area ●  ● ● PV/BS/EV MILP Fixed profile 
Mazzeo et al. 2020 Worldwide Not applicable   ●  PV/BS/WT Scenario simulation Not applicable 
Mazzeo. 2018 Italy Residential area   ●  PV/BS/EV Feasibility analysis Average hourly cost 

Melendez et al. 2020 USA Not applicable ● ● ●  PV/BS/EV MILP Historical DAM prices 

Mirhoseini &  … 2020 Iran Commercial station ● ● ● ● PV/BS/EV MILP to LP Fixed profile 
Modarresi & … 2019 Saudi Arabia Commercial station ●  ●  PV/BS/EV/DG LP Fixed profile 
Mohseni & … 2018 Iran Residential area     PV/BS/EV MAPSO Fixed prices 
 O'Shaughn et al. 2018 USA Residential area     PV/BS ReOpt Reference costs 
Riu et al. 2012 China Commercial station ●  ●  PV/BS NSGA multi objective  Fixed profile 
Trevizan et al. 2020 USA Commercial station     PV/BS/EV LP Fixed profile 
Wang et al. 2020 China Commercial station ● ● ●  PV/BS/EV LP Internally modelled 
Worighi et al. 2019 Belgium Residential area     PV/BS FLC Fixed prices 
Yan & Ma. 2020 China Commercial station   ●  PV/BS/EV NLCP Fixed profile 
Zhang et al. 2013 China Commercial station     PV/EV/WT DE Fixed profile 
This thesis 2022 Netherlands Distribution centre ● ● ● ● PV/BS/EV/WT MILP Historical DAM prices 

 

Table 1. The table shows the characteristics of all papers reviewed and their activity in the topics of 

analysis. Component abbreviations represent photovoltaic (PV), battery storage (BT), electric vehicles 

(EV), wind turbines (WT) and diesel generators (DG). Appendix A shows a more detailed version. 

The manner in which the infrastructure optimization problem is defined as a knapsack problem with 

an energy balance constraint is recognized in a third of the literature. Of those only Ban et al. (2019) 

don’t use an energy balance equation but use the value of lost load. Some statistical analysis papers, 

like by Blasius et al. (2016), Chandra Mouli et al. (2016), Islam et al. (2018), Mazzeo et al. (2020) and 

Mazzeo (2018), do consider the energy balance, but are not knapsack problems as they don’t use an 

optimization research method. A quarter of the papers include some form of scheduling optimization, 

but only Golpîra et al. (2018) and Melendez et al. (2020) use a job shop problem formulation. Golpîra 

et al. (2018) does not consider electric vehicles however and Melendez et al. (2020) varies the driving 

schedule of autonomous vehicles, while in the case of this thesis the charging needs to be scheduled.  

The operational side of the problem, in which the charging of electric vehicles can be scheduled smartly 

to reduce the peak demand, is incorporated differently in the eight papers that consider it. Ferguson 

et al. (2018) use a strict bin packing problem formulation but use heuristics to perform it as a cost-

benefit analysis, because they state that for a large number of EVs the problem would be high-

dimensional and thus computationally difficult to solve. However, Bracco et al. (2018), Mirhoseini and 

Ghaffarzadeh (2020) and Wang et al. (2020) make a high dimensional bin packing problem work by 

reducing the time period of the problem. Bracco et al. (2018) do this by considering a typical day per 

month, reducing the problem size but still incorporating seasonal variation. Interestingly enough, these 

papers combine an infrastructural knapsack problem formulation with a temporal bin packing 

formulation, where minimizing the number of bins per period in this context pertains to reducing the 

number of charging stations that are required simultaneously.  

Regarding the infrastructural components, PV panels and battery energy storage are almost always 

considered, with the exception of Ferguson et al. (2018) and Golpîra et al. (2019), as this combination 

for electric infrastructure optimization purposes is the main proposition (Worighi et al., 2019). Direct 

electric vehicle charging is excluded from the two residential oriented papers by O’Shaughnesy et al. 
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(2018) and Worighi et al. (2010), the battery swapping station papers from Ban et al. (2019) and Riu et 

al. (2012), and the climate impact paper by Mazzeo et al. (2020), while for this research facilitating 

electric vehicle charging is the main focus. Three papers consider wind turbines besides photovoltaic 

generation (Akram et al., 2018; Mazzeo et al., 2020; Zhang et al., 2013). Only the papers by Akram et 

al. (2018) and Modarresi and Olamaei (2019) consider a back-up diesel generator. So, while the words 

PV and storage were included in the search term, the resulting papers organically introduced the 

consideration of power from wind turbines and a diesel generator. Golpîra et al. (2018) also include a 

combined-heat power (CHP) plant, but for this research solely electric infrastructure is considered 

When it comes to the research method optimization methods are most often used, with almost half 

of the papers using some form of programming. Modarresi and Olamaei (2019), Trevizan et al. (2020) 

and Wang et al. (2020) use linear programming, while Mirhoseini and Ghaffarzadeh (2020), Akram et 

al. (2018), Chatterji and Bazillian (2020), Ban et al. (2019), Melendez et al. (2020) and Liu et al. (2020) 

use mixed-integer linear programming (MILP). Yan and Ma (2020) use non-linear convex programming. 

With (non-) linear programming a (non-) linear objective function is optimized under certain 

constraints to minimize or maximize a specific variable, usually the cost (Alevras et al., 2001). Bhatti et 

al. (2018) use particle swarm optimization (PSO), while Liu and Dai. (2020) use multi-objective PSO and 

Dai et al. (2019) and Mohseni and Moghaddas (2018) use multi-actor PSO. Chandra Mouli et al. (2016), 

Blasius et al. (2016) and Esfandyari et al. (2015) use statistical analysis. Mazzeo (2018) and Islam et al. 

(2018) use a qualitative approach with a feasibility and suitability analysis. Ferguson et al. (2018) 

perform a cost-benefit analysis to determine how many charging stations are required and where, but 

only consider electric vehicles. the remaining papers use specific models, like ReOpt, Fuzzy Logic 

Controller (FLC), or a Non-dominated Sorting Genetic Algorithm (NSGA). 

The electricity price is a significant cost factor in large scale electrification and different incorporation 

approaches with varying levels of practical accuracy are used in the literature (Wang et al., 2020). Some 

don’t consider it at all and only consider the capital cost of infrastructure investment (Akram et al., 

2018; Ban et al., 2019; Blasius et al., 2016; Esfandyari et al., 2015; Liu & Dai, 2020). Others use a strictly 

fixed price, a fixed price profile, or a seasonal or time-of-use (TOU) price profile. Other papers like Islam 

et al. (2018) use a load based internal electricity price model, while Bhatti et al. (2018) and 

O'Shaughnesy et al. (2018) escalate or multiply historical price data with a certain parity factor. 

Melendez et al. (2020) uses historical Day-Ahead Market (DAM) data to incorporate the electricity 

prices, while Ferguson et al. (2018) also use historical dynamic prices. This is an interesting approach 

as the day ahead market price varies across the year and is determined by the bids of all generating 

units. This opens the door for arbitrage opportunities with battery storage systems and might increase 

attractiveness of combining renewable generation with such storage systems (Gomes et al., 2017). 

2.3. Knowledge gap 
What is most noticeable from the literature review is that no use-case similar to electrification of a 

fleet of trucks of a large-scale distribution centre is focused on by the research papers. As mentioned, 

more use-case specific search terms like ‘electric truck/transport’ were tried but didn’t yield any 

results. Distribution centres itself have a very different fixed demand profile than residential or 

commercial use-cases. The route schedules of the e-trucks are also fixed, but the charging of the e-

trucks in the downtime presents a more flexible and controllable opportunity than present in other 

use-cases (Case data, 2021; Koornneef, 2020; RVO, 2020). This knowledge gap presents a unique 

research opportunity that coincides with the problem analysis. Furthermore, only three papers 

considered wind turbines, while only the one paper by Akram et al. (2018) considered a back-up diesel 

generator. While wind as a renewable energy source is an interesting research addition, a diesel 

generator will not be considered in this research, as it causes GHG emissions. 
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While many papers study a smaller electric system within a larger electric system, what makes the case 

of a large-scale fleet operator like a distribution centre unique is that it has complete control over the 

operation of the EVs to optimally schedule the charging. Only Bracco et al. (2019), Mirhoseini and 

Ghaffarzadeh (2020), Wang et al. (2020) and Melendez et al. (2020) simultaneously optimize the 

electric infrastructure composition and the operation of a behind-the-meter system. However, the 

only consider small private EVs as an external stochastic demand, meaning the operation of the system 

can only be optimized up to a certain level. With knowledge of the future route schedules and sole 

control over the charging of the e-trucks, optimization of the operation on a distribution centre has 

more potential to reduce the overall power demand and total costs. Insights on this potential couldn’t 

be found in the papers of this literature review, presenting an interesting knowledge gap. 

A maximum to the grid connection is not often used in the literature, especially not in combination 

with fixed route schedules that have to be driven and subsequently making it essential to recharge the 

EVs sufficiently, while it is precisely due this combination of factors that a behind-the-meter system is 

required. Only Bracco et al. (2019), Dai et al. (2019), Lui et al. (2020) and Mirhoseini and Ghaffarzadeh 

(2020) use a kWmax, without forced transportation demand, but the first three papers are oriented 

on residential parking with Dai et al. (2019) only using a kWmax in scenarios, while Mirhoseini and 

Ghaffarzadeh (2020) solely evaluate a microgrid. In this thesis a large commercial application of e-

trucks with a strict power capacity of the connection to the medium voltage grid is evaluated, which 

couldn’t be found elsewhere in literature of this review. 

In the large-scale electrification of delivery trucks electricity cost plays a significant part in the total 

cost, but some research papers don’t even consider electricity cost and only consider capital 

infrastructure cost (Akram et al., 2018; Ban et al., 2019; Blasius et al., 2016; Esfandyari et al., 2015; Liu 

& Dai, 2020). Most papers incorporate a fixed price, or fixed price profile. Only Trevizan et al. (2020) 

considers seasonal price changes and Melendez et al. (2020) uses historic data. These papers originate 

from California and Florida respectively. Only Ferguson et al. (2018) and Melendez et al. (2020) use 

historical dynamic prices, but the former only considers EVs and charging stations while the latter 

optimizes the route schedules. In this research the electric infrastructure composition of a distribution 

centre needs to be optimized to handle a fixed route schedule, varying the times in which the vehicles 

are charged. On the basis of this literature review it seems that how dynamic prices effect the value of 

infrastructure components in a composition optimization has not been studied earlier in literature. 

Few papers originate and use data from West-Europe and even fewer from the Netherlands 

specifically, while variable input parameters like the electricity price and yield of the renewable 

electricity generation differ from other parts of the world. Blasius et al. (2016) and Worighi et al. (2019) 

study a parking lot in Germany and a residential are in Belgium respectively, but only use local data to 

model the PV yield. Chandra Mouli et al. (2016) use data originating from the Netherlands specifically, 

which shows that PV energy generation comparing summer and winter differs a factor of five, but also 

don’t include local wind power yield or variable electricity prices. The lack of research on electric 

infrastructure composition optimization, consisting of both solar and wind power generation in 

combination with energy storage and EV charging, in the Netherlands and Europe as a whole presents 

a researchable knowledge gap that can result in a realistic evaluation of the use-case in the Netherlands. 

 

 



3. Research approach  11 

C.M. Buitelaar  / TUDelft 

3. Research approach 

The research approach describes the methodology used to scientifically answer the determined 

research questions to subsequently complete the research objective. At the highest level, research 

approaches can be divided into three types: deductive, inductive and abductive (Bryman & Bell, 2015). 

The research at hand can be defined as an inductive one, as several known premises are taken as true, 

where after in the remaining research space a framework will be built to solve the problem (Saunders 

et al., 2012). This entails the zero-emission transportation transition on the distribution centre. With 

the research type defined, first the research objective and main research question will be introduced. 

Thereafter the subquestions will be listed and explained. Finally, the research method and approach 

will be laid out. 

3.1. Research objective & questions 
The objective of this thesis is to solve the identified research gap by proposing a MILP model which 

optimizes the composition and operation of the electric infrastructure of a distribution centre, while 

considering the periodic energy balance, for various scenarios in the electrification process. Besides 

the main objective concerning the optimization model that this thesis proposes, there is also a 

secondary objective, namely applying the optimization model to a real-life situation by means of a case 

study. In this thesis the case study will be carried out for a large-scale distribution centre of a 

supermarket company, located in the Randstad. The secondary research objective of application to a 

case study will help to assess whether the proposed model can eventually be used in real-life by 

distribution centres to determine the best electric infrastructure composition for their situation.  

The main and sub research questions determined to reach the research objective incorporate the core 

concepts and the knowledge gap identified in the literature review. The main research question states 

the research objective and aims to find the solution to the stated problem, while the sub research 

questions should help the process in answering the main question (Sheppard, 2020). The main 

question is as follows: 

MQ: “What is the most cost-effective electric infrastructural composition and operation to facilitate 

the electrification of heavy truck fleets of large-scale distribution centres in grid congested 

areas in various scenarios to ensure that the route schedules can be driven?” 

The following sub-research questions are formulated following the research boundaries set by the core 

concepts and the knowledge gap identified in the literature review: 

SQ1: “What are the different stages and scenarios of the fleet electrification process?” 

SQ2: “Which infrastructural components should be considered and what are their characteristics?” 

SQ3: “What are the costs factors of the components and how can they be implemented in the model?” 

SQ4: “How can the infrastructural and operational side of the problem be integrated into a single, 

simultaneous optimization model?” 

SQ5: “How do variations in the models’ input parameter values affect the outcome of the proposed 

model and which have the biggest impact?” 

SQ6: “To what extend does the model reflect the real-life scenario?” 

The subquestions are formulated in sequential ordered, in which the findings of earlier subquestions 

will help answer later questions. By answering all the subquestions the main question should be able 

to be answered. Different sub research questions require different research methods. Which research 

methods will be used to find the answer to which sub research question will be discussed next, as well 

as the overall research approach that will be used to answer the main research question. 
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3.2. Research approach & methods 
The research approach and methods concern further literature research, expert interviews, application 

of an optimization model to various scenarios of a real-life case study and rigorous verification and 

validation to scientifically answer each research question. Different research questions need different 

methods. The first 4 subquestions will be answered by literature research. Some information has 

already been shared in the literature review, meaning some subquestions can already be answered. 

Another avenue that will be used to answer the subquestions 2 and 3 is through interviews. By 

speaking to experts in the field or key employees of distribution centres useful information can be 

acquired that would be harder to find in the literature. For the subquestions 4 and 5 an optimization 

modelling approach will be chosen, while for subquestion 6 a case study will be performed. Next the 

research methods will be discussed individually. 

3.2.1. Literature research 
Literature research is used for both the literature review and the answering of specific sub research 

questions, namely the first 4 subquestions. The literature review was performed in the previous 

chapter, since it presents the basis on which the research methodology is build. The core concepts 

were established, namely grid congestion, fleet electrification, behind-the-meter and infrastructure 

optimization. With the core concepts defined a literature review was performed and a knowledge gap 

was established. Besides the growth of theoretic knowledge and the determination of a knowledge 

gap, some subquestions can already be answered by the literature research performed thus far. This 

pertains to subquestions 1 and 2. 

The problem and system description in chapter 4 will further use the literature to determine the 

characteristics of all infrastructure components and the interactions between them, to incorporate 

them in a formal problem description in preparation for construction of the mathematical model. In 

the literature review the infrastructural components most commonly considered besides EVs were PV 

panels and battery storage systems, with the addition of wind turbines as another renewable energy 

source. Diesel generators are excluded in the consideration of a strictly zero-emission system.  

3.2.2. Modelling approach 
The optimization technique that will be used is mixed-integer linear programming (MILP). Benefits of 

MILP are that it can guarantee the global optimality of the solution, it provides a more direct measure 

of optimality, and it is flexible and can enhance modelling capabilities and adaptability. A downside is 

that it can have poor performance in scalability (Ban et al., 2019). These downsides can be remedied 

by clever selection of the modelling horizon and resolution. This will be explained in chapter 5 

concerning the mathematical model. 

After the choice is made to use MILP to solve the problem and the mathematical formulation is worked 

out, several other technical decisions need to be made to implement and solve the MILP problem. 

These choices concern the solver to use, the software or programming language to write the problem 

in, and the environment to use. IBM ILOG CPLEX is chosen as the main solver for this research. The 

programming language that the problem will be written in is Python. The IDE of choice is Jupyter 

Notebook. Further analysis in support of these decisions can be found in appendix B. 

3.2.3. Verification and validation 
After the mathematical model is constructed it needs to be verified and validated to scientifically test 

its credibility before it can be applied to the real-world problem. The case study will be introduced 

beforehand to supply the data necessary for validation of the model, but the case study will only be 

performed after the verification and validation chapter. The difference between verification and 

validation is that with verification the model’s representation of the conceptual description is 
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evaluated and that with validation the model’s representation of the real system it tries to simulate is 

evaluated (Carson et al., 2002; Thacker et al., 2004). Both steps will be further explained in chapter 7: 

Model verification and validation. 

Both verification and validation will be done by means of scientifically proven frameworks and 

methods, with use of the overarching framework by Mitre (2022). First this framework will be 

discussed. Then the model will be verified by use of a simple numerical test, of which the results can 

be evaluated through manual calculations. The model will be validated with the framework from 

Carson et al. (2002) and by use of linear regression analysis. As mentioned earlier, the verification and 

validation happen between the introduction of the case study and the results of the case study. 

3.2.4. Case study 
After the model is constructed and verified, and the behaviour of the model has been analysed, a case 

study with various scenarios will be performed to acquire managerial insights and to test if the model 

is applicable to a real-world case. Because input data from the case study is necessary for the 

verification and validation, the model will already be introduced beforehand. When the verification 

and validation process has been concluded successfully, the model can be implemented on the case 

study. Specific data about distribution centres is hard to find, but as the differences between them are 

small, a case study is an excellent tool to evaluate the sector. In this thesis a single case will be studied, 

with the subject being the distribution centre of a large supermarket company, to gain useful insights 

into the case itself and distribution centres in similar situations. While the evaluation of a single case 

might provide less reliable results compared to using multiple cases, the evaluation of a single case is 

less time-consuming and allows for a deeper understanding of the topic (Gustafsson, 2017).  

The zero-emission zones will be introduced stepwise, meaning the number of fossil fuel trucks that are 

necessary to substitute for e-trucks will also increase stepwise, leading to multiple scenarios. Literature 

research shows that zero-emission zones will be established in 30 large cities in the Netherlands in 

2025, while a total of 40 zero-emission zones will be present in 2030 (TLN, 2021). Literature research 

shows that grid congestions is a serious issue, and many distribution centres might not be able to 

increase their grid connection. The steps that happen in the electrification process can be seen in figure 

1, which shows the e-truck numbers needed in the case study. The specific scenarios evaluating these 

e-truck numbers will be further detailed in chapter 6: Case study and data input. 

 

Figure 1. Timeline of the introduction of the zero-emission zones and the gradual adoption of e-trucks. 

The iterative process of constructing the case study will be aided by employees of the supermarket 

company that operates the distribution centre. Interviews and data sheets will be used to the exact 

information necessary to set up the context in which the model will be tested. The distribution centre 

in question is situated in the Randstad, which is a dense urban area with grid congestion, as can be 

seen in appendix D. All relevant data of the case study will be incorporated into the model, while 

market conform data will be used in parts where exact data cannot be acquired. All the data input will 

be detailed in chapter 6: Case study and data input. After the verification and validation, the case study 

will be performed, and the obtained results will be analysed to acquire managerial insights. Analysis of 

the results of the case study should enable the answering of subquestion 5 and also partly subquestion 

6. When all subquestions are answered, the answer to the main questions can be found as well. 
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4. Problem and system description 

In this chapter the background and context of the problem will be elaborated on and the distribution 

centre as the system of interest will be described in more detail. First the general business relevance 

of the problem will be discussed. The business relevance will show the necessity of solving the 

problem. Secondly, the infrastructural composition and operational side of the problem will be 

described formally and in more detail. The formal problem description lays the foundation for the 

mathematical model and will help to fully understand the problem and what steps and assumptions 

were made while the mathematical model was constructed. The assumptions will be specified 

separately as well after the formal problem description. 

4.1 Business relevance 
Due to the creation of zero emission zones in most cities in the Netherlands from 2025 and 2030 

onwards, fleet operators servicing those cities will have no choice but to switch to zero emission 

vehicles like electric ones, as explained in the core concept of fleet electrification (Panteia, 2021; TLN, 

2021). Distribution centres will thus have to substitute all the fossil fuel-based trucks with non-emitting 

trucks on their route schedules servicing areas within emission free zones. As it takes some time to 

acquire e-trucks and the required infrastructure and get everything up and running, fleet operators 

and so too distribution centre companies will need to progressively switch to electric vehicles in the 

years running up to 2030 (Panteia, 2021). This means that in the fleet electrification process there will 

be various stages in which an increasing number of fossil fuel trucks will be substituted with e-trucks. 

In an ideal scenario, disregarding potential profitability of renewable energy sources independently, 

distribution centre companies would be able to simply get all the required electricity from the power 

grid and be able to sufficiently charge the e-trucks in a minimal amount of time so that they can fulfil 

their route schedule. In reality however, both getting sufficient power from the grid and charging the 

e-trucks sufficiently in minimal amount of time is often hardly possible (Case data, 2021; Koornneef, 

2020; RVO, 2020). First, the scheduling of the charging and the charging stations required will be 

discussed. This pertains to the operational part of the problem. Secondly, the addition of behind-the-

meter components to supplement the insufficient power from the grid will be discussed. This pertains 

to the infrastructural part of the problem. 

4.1.1. Operational side of the problem 
Fossil fuel-based trucks and e-trucks are not directly interchangeable and route schedules have to be 

adjusted or sufficient charging stations have to be installed to account for the decreased operating 

range (Koffrie, 2020). This means that e-trucks have to make more frequent and shorter trips and the 

batteries of the e-trucks need to be recharged in between trips (Koornneef, 2020). If the breaks 

between trips were to coincide for all e-trucks, there would need to be a charging station for every 

vehicle and the demand on the grid connection capacity would be maximal. Financially it makes more 

sense to have less charging stations and use them for multiple vehicles consecutively, spreading the 

power demand at the same time.  

The route schedules between the operating hours can be shifted a little bit, but still significant 

investment in charging infrastructure is required (Koffrie, 2020). It is during the night-time, outside of 

normal working hours when most e-trucks are stationary, that the smart charge scheduling potential 

is the greatest. When a large group of e-trucks is stationary for a prolonged amount of time, the 

charging can be spread maximally to minimize the number of charging stations and amount of capacity 

required. It only needs to be ensured that when every vehicle starts their route schedule again, they 

are sufficiently recharged. This is illustrated in figure 2. 
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Figure 2. This figure shows the state of charge of two EVs over the course of 28 hours. The grey areas 

indicate when both vehicles have an equal transportation demand, due to which their SOC decreases 

equally. The dotted lines show the area in which the SOC could be, if alternative charging strategies 

were used. Figure is adapted from Case data (2020) and Koornneef (2020). 

There are various strategies concerning the smart charging of a fleet of electric vehicles, as illustrated 

by figure 2 for a set of electric vehicles. Both have the same route schedules, within the normal working 

hours of 9 to 5. As the SOCs of both vehicles fall below half of their capacity after the first route, they 

both need to be recharged between their routes. Even in the limited time available their charging 

demand can be separated, so the same charging station can be used subsequently, and the charging 

demand minimized. An additional strategy could be to charge an electric vehicle to less than full, as 

shown with the bottom line, if it is not required for the next route. This would reduce the charging 

demand in that specific time period even further.  

In the prolonged period between the last route of an e-truck and the first route of the next day any 

time period could be chosen to charge the electric vehicle to a sufficient level for the first route, as 

shown by the area between the dotted and solid lines, called the charging window. In theory the 

charging of 17 electric vehicles could be spread over the 17 hours, such that only one charging station 

is required. In reality there will be vehicles with differing route schedules, and additional demand and 

supply factors to consider, but this is the instance in which the bin packing problem formulation can 

be applied to minimize the number of bins, which is the number of charging stations, by fitting the 

required items, namely the charging demand of every vehicle. 

4.1.2. Infrastructural side of the problem 
The power required for the combined charging demand of the electric vehicles, on top of the electricity 

demand of the distribution centre itself, can often not be supplied sufficiently solely by power from 

the grid at distribution centres with a limited grid connection (Case data, 2021). If a distribution centre 

is located in a grid congested area it is also often not possible to increase the capacity of the grid 

connection. Other solutions are required behind the meter to supplement the power available from 

the grid connection and facilitate the overrunning charging demand. These infrastructural components 

can consist of renewable energy generation, like solar panels or wind turbines, or of energy storage 

technologies, like a battery.  

Renewable energy generation presents an additional power source next to the power grid, which can 

be used to accommodate the charging demand. Renewable power sources like solar and wind are only 

available variably in specific time periods, due to meteorological factors. Energy storage technologies, 

like batteries, can store energy attained in previous periods and use it in future periods. The factors 

influencing the power yield of these sources and the operation of a battery will be discussed in the 

next subchapter. The effect and value of these behind-the-meter infrastructural components on the 

day-to-day operations is illustrated in figure 3. In the figure it is assumed that the combined charging 

demand is fixed, and the distribution centre demand has a day-night fluctuation. 
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Figure 3. This figure illustrates the matching of power supply to the demand. The power demand of 

the distribution centre itself is shown with darker grey and the combined fixed charging demand of 

the EVs on top in lighter grey. The blue and red line represent the power yield of PV panels and wind 

turbines respectively, and the black and dotted line the power supply potential of the power grid and 

battery system. The filled areas represent the actual supply by the components corresponding to the 

colours to match the demand. Adapted from Budischak et al. (2013) and O’Shaughnessy et al. (2018). 

In figure 3 it is illustrated that the charging demand of all EVs combined, on top of the existing demand 

of the distribution centre itself, can exceed the amount of power the grid connection can supply. On 

two occasions the extra demand can be supplied by wind and solar energy generation respectively, 

represented by the filled area underneath the demand curve, with the colour corresponding to the 

energy source but on two occasions the demand exceeds the maximum grid connection while there is 

also insufficient renewable energy generation. Of course, it would be preferable to shift the demand 

to earlier or later time periods when more capacity is available, as discussed about the operational 

problem in the previous section, but a strict route schedule may not allow it. In these situations, an 

energy storage system like a battery becomes useful, as it can store energy from previous time periods 

and use it in future high demand time periods. The dotted line shows the extra capacity that a 1 MW/1 

MWh battery could offer, while for the white peaks in figure 3 only about 200 kW is required. The 

same goes for the photovoltaic and wind turbine yield, of which not all is necessary to facilitate the 

demand exceeding the maximum grid connection. The extra generated electricity is then used instead 

of electricity from the power grid. 

Figure 3 only illustrates the infrastructural problem for 1 day, while on other days the demand might 

be higher or the yield of the renewable generation lower, underscoring the complexity of the problem. 

The question that then arises is how much of each infrastructural component would be necessary and 

effective to install and to what extent do the costs and benefits weigh up against buying the power 

from the grid. This is where the knapsack problem description comes in, where the electricity demand 

over the modelling horizon represents the knapsack, which can be filled with the power from the 

infrastructural components for a certain associated cost, with the goal to minimize the total system 

costs. The modelling horizon should be sufficiently long to capture the day-night and seasonal 

variations in demand and supply. Peak demand days should be considered to ensure that the 

infrastructural composition that the model presents is sufficiently robust. 
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4.1.3. Simultaneous optimization 
While the two described sides of the problem can be tackled separately, the way in which the charging 

of the EVs interacts with the infrastructural components makes it essential to consider both problems 

simultaneously. With more renewable generation installed it might be possible to spread the charging 

more and require fewer charging stations, or more charging stations might be cost-effective instead of 

a battery system to capture time periods with high yield from renewable generation (Hoarau & Perez, 

2018). Considering the problems separately may lead to a sub-optimal solution (Yan & Ma, 2020). The 

synergies between the smart charging in the operational side of the problem and the infrastructural 

components in the other side of the problem can reduce the demand on the grid and potentially 

improve the profitability, allowing for discovery of a global system optimum (Hoarau & Perez, 2018). 

Because both sides of the problem act on the same system and are reasonably homogeneous in 

function, they can be combined into a single mathematical problem formulation. The charging station 

can be incorporated as an infrastructural component with the others in the objective function, while 

the operational optimization happens in the constraints. This is done for example by Bracco et al. 

(2019) and will be explained in more detail in the mathematical problem formulation chapter. 

4.2. System and components description 
Before a formal problem description is formulated it is important to understand and describe the 

system and its components. As aspects like the power grid (PG) and route schedules are discussed 

separately, this mostly concerns the infrastructural components, consisting of photovoltaic panels 

(PV), wind turbines (WT), battery system (BS) and charging stations (CS). An overview of the system, 

which is based around the distribution centre itself, and the role of the infrastructural components and 

the smart charge scheduling in solving the discussed problem can be seen in figure 4. 

 

Figure 4. This figure gives an overview of the distribution centre as the main system, with roughly on 

the left the supply side and on the right the demand side. The upper solution box contains the 

infrastructural components for renewable electricity generation and storage, while the bottom one 

represents the potential smart scheduling of the charging of the e-trucks. 

Figure 4 gives an overview of the distribution centre as the system and the interaction between the 

components it contains currently and components that can be added as solution to the introduced 

problem of facilitating the increasing charging demand of a growing e-truck fleet. The first solution in 

blue pertains to the installation of additional generation and storage components, while the second 

solution in red pertains to the smart scheduling of the charging, also explained earlier as demand 

response. Next the characteristics of the infrastructural components and the aspects that influence 

their functioning and interaction with the other components will be discussed. 
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4.2.1. Photovoltaic installation 
Photovoltaic electricity generation by use of solar panels is one of the most attractive options for 

decentral electricity generation, with the yield being dependent on various factors. Solar panels have 

increasingly lower cost and are also highly scalable, making them suitable for homeowners as well as 

large commercial parties, like distribution centres. The power output of a solar PV system depends on 

several factors, like the solar irradiation, area and efficiency of the PV array, angle of incidence, and 

atmospheric temperature (Akram et al., 2018). The context of these values and the process of the 

calculations can be found in appendix C. 

The infrastructural components all have multiple costs, like the purchase costs, installation costs and 

maintenance costs (Bracco et al., 2019). But while for the maintenance costs simply the costs made 

over the modelling period can be taken, for the purchase and installation costs this cannot be done 

directly. The one-off costs act over the entire lifetime of the component, while the period that will be 

modelled is much smaller. To adapt these costs to the modelling period, a so-called capital recovery or 

annualization formula will be used, also done by Bracco et al. (2019), Dai et al. (2019) and Liu et al. 

(2020). The calculation process can be found in appendix C. This allows for the calculation of a total 

per unit cost for each component, for which the values will be specified in the data input chapter. 

4.2.2. Wind turbine power 
Another interesting energy source due to its characteristics that can be harnessed locally with wind 

turbines is wind energy, again dependent on various factors. Advantages over solar power are that the 

wind can blow during the day but also during the night and that while solar power yield is higher in the 

summer, wind power yield is generally larger in the winter. It could be said that solar and wind power 

generation are somewhat synergetic (EWEA, 2009). That makes it an interesting technology to include 

in the model, as the variability of renewable energy sources hampers the reliability, which this seasonal 

synergy can reduce. The power that a wind turbine can generate is dependent on the product of factors 

like the efficiency of the wind turbine, or so-called power coefficient, the surface area of the rotor, the 

density of air and the velocity of air (EWEA, 2009). Again, same as for the PV panels, the factors will be 

combined into a single yield per wind turbine for incorporation into the mathematical model, and the 

process of these calculations can be found in appendix C. 

4.2.3. Battery storage system 
Battery storage systems are installations that enable storage of generated electricity from renewables, 

like solar PV panels and wind, that can be released later on when the system needs it (National Grid, 

2022). Battery storage technologies allow the use of renewable generated energy even when the sun 

isn’t shining, or the wind has stopped blowing. By storing renewably generated energy for later use a 

battery is already alleviating the demand on the grid connection, but a battery could also be gradually 

charged via the power grid to facilitate a large charging demand from multiple e-trucks at a later 

moment, that the grid connection wouldn’t have been able to facilitate with its own capacity. 

Battery energy storage systems can even be used to trade on the electricity markets, buying electricity 

when the price is low or even negative and selling when the price is high, which helps the stabilization 

of the regional and national power grids. However, despite decreasing costs, battery energy storage 

systems are still expensive, often not being profitable when not supplying enough benefit. In this case 

they might just be what is necessary to integrate the e-trucks into the distribution centre’s electricity 

grid. Just as the other grid components the battery installation can be build modular with linearly 

increasing size. Other factors influencing the interaction within the system are the capacity of such a 

battery module, the charging capacity and the charging and discharging efficiency. The values of these 

factors will also be introduced in the data input chapter. 

https://www.nationalgrid.com/stories/energy-explained/how-does-solar-power-work
https://www.nationalgrid.com/stories/energy-explained/how-does-wind-turbine-work
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4.2.4. Charging stations 
Charging stations are an essential interface between the local electricity grid and the EVs, as they 

authorize and manage the charging sessions. While the connectors for EV charging have been 

standardized, the charging stations themselves come in various number of sizes and specifications. The 

biggest categorial factor within charging stations is whether they supply AC or DC electricity, with AC 

chargers only having power to slow charge while DC chargers enable fast charging (Parchomiuk et al., 

2019; Virta, 2022). Besides charging speed/power another specification that is important is the 

charging efficiency. The exact values used in the modelling will be detailed in the data input chapter. 

4.3. Formal problem description 
The formal problem description will provide a more detailed, modelling oriented description of the 

problems under consideration. The formal problem description will be used as the starting point for 

the mathematical problem formulation that will be introduced in the next chapter. The power demand 

and supply side always have to be in balance and in the model consist of various parameters and 

decision variables, which for clarity sake are shown in figure 5 and will be explained in the next sections. 

 

Figure 5. Schematic of the parameters and decision variables on the supply and demand side on a DC. 

4.3.1. Demand side 
For this problem a distribution centre company that distributes its goods according to a fixed delivery 

schedule is considered, as schematically seen in figure 5. The delivery schedule is specified per e-truck 

and is converted to a transportation demand 𝐷 for every time period 𝑡. The transportation demand is 

then multiplied with the average consumption 𝐹 of heavy-duty e-trucks to get a decrease in the state 

of charge 𝑒𝐸𝑉 for every vehicle in every time period 𝑡. The state of charge of the e-trucks is bounded 

by the minimum 𝐸𝑚𝑖𝑛
𝐸𝑉  and maximum capacity 𝐸𝑚𝑎𝑥

𝐸𝑉  of the battery of the e-trucks. This means that the 

state of charge of the e-trucks needs a positive inflow to counteract the negative outflow caused by 

the transportation demand, to keep the state of charge between its minimum and maximum bounds.  

Every time period 𝑡 that the transportation demand of an e-truck is 0, ergo when it is not driving, the 

model can decide to charge the specific e-truck. The charging 𝑝𝐶𝑆 of the e-trucks is bounded by the 

maximum charge speed of the e-truck or the charging station 𝑃𝑚𝑎𝑥
𝐶𝑆 , whichever value is the lowest, and 

multiplied with charging efficiency ƞ𝐶𝑆. The model counts how many e-trucks charge simultaneously 

in every time period 𝑡, and the time period wherein the maximum number of e-trucks need to charge 

simultaneously decides the minimum number 𝑥𝐶𝑆 of charging stations required. The charging stations 

have an associated cost 𝐶𝐶𝑆, therefore the model tries to spread the charging of the e-trucks over all 

time periods, to minimize the number of charging stations required and thus the total cost. So 

beforehand the model has an unknown amount of power demand for the e-trucks per time period 𝑡. 
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The electricity demand that is known beforehand however, is the demand 𝑃𝐷𝐶  of the distribution 

centre itself. The values of the electricity demand of a distribution centre and the level of its maximum 

grid connection will be detailed in the data input chapter. The model can also decide to charge the 

battery system or sell excess electricity and inject it back into the power grid for every time period 𝑡, 

falling under the demand denominator as both are negative power flows. The power 𝑝𝐵𝑆,𝑖𝑛 going to 

the battery system is multiplied with the charging efficiency ƞ𝐵𝑆,𝑖𝑛 and added to the SOC 𝑒𝐵𝑆 of the 

battery of the previous period 𝑡 − 1. How much energy the battery system can contain is bounded by 

the max capacity 𝐸𝑚𝑎𝑥
𝐵𝑆  and how much it can be charged in a single time period 𝑡 is bounded by the 

charging capacity 𝑃𝑚𝑎𝑥
𝐵𝑆 . The power injected into the grid 𝑝𝑃𝐺,𝑖𝑛𝑗 is multiplied with a selling price 𝐶𝑃𝐺,𝑖𝑛𝑗 

to valorise the power outflow and is constraint by the maximum capacity of the grid connection 𝑃𝑚𝑎𝑥
𝑃𝐺 . 

With the demand components of the system known, next the supply components can be discussed. 
 

4.3.2. Supply side 
It is imperative that the electrical system is always in balance, meaning the supply of electricity should 

be equal to the demand, shown by the blue and red power flow lines in in figure 5 respectively. This 

will be ensured by use of an energy balance constraint, in which is stated that the sum of all negative 

power flows and all positive power flows should be equal to 0. The main and already existing supply 

component is the connection of the distribution centre to the power grid. Per time period 𝑡 the model 

can decide to absorb electricity 𝑝𝑃𝐺,𝑎𝑏𝑠 from the grid to balance the system for a certain buying price 

𝐶𝑃𝐺,𝑎𝑏𝑠. As discussed earlier however, the maximum amount of electricity that can be absorbed from 

the grid is bounded by the capacity of the grid connection 𝑃𝑚𝑎𝑥
𝑃𝐺 , called the kWmax. To counteract the 

insufficiency of the grid connection to supply the power for the exceeding demand, infrastructural 

components like solar panels, wind turbines and batteries can be installed. 

The model knows beforehand how much power a wind turbine or PV panel will yield for every time 

period 𝑡, based on a deterministic modelling approach of using historical data. The power yield 𝑃𝑃𝑉 

and 𝑃𝑊𝑇 for every time period 𝑡 is multiplied with the number of PV panels 𝑥𝑃𝑉 or wind turbines 𝑥𝑊𝑇 

that is installed. Knowing this the model can evaluate how many of each component it is necessary or 

cost-effective to install. The power that the PV panels and wind turbines yield is not directly valorised, 

but rather added as positive power flows to the energy balance constraint. Other positive power flows 

can then be reduced, or negative power flows can be increased, like the power bought from or sold to 

the grid respectively. If in certain time periods this is not possible, but the installed PV and wind turbine 

capacity is still necessary for other time periods, the excess power 𝑝𝑐𝑢𝑟 can be curtailed. The PV panels 

and wind turbines do have an associated per unit cost 𝐶𝑃𝑉 and 𝐶𝑊𝑇, meaning the model tries to 

balance the installation with cost savings or profits made through other components. How many solar 

panels or wind turbines can be installed is constrained by the area available 𝐴𝑚𝑎𝑥
𝑃𝑉  and 𝐴𝑚𝑎𝑥

𝑊𝑇 . 

The final supply component is the battery system, which can be discharged to supply a positive power 

flow 𝑝𝐵𝑆,𝑜𝑢𝑡 per time period 𝑡. The power discharged is multiplied with the inverse of the discharging 

efficiency ƞ𝐵𝑆,𝑜𝑢𝑡 to calculate the electricity that is subtracted from the battery’s SOC 𝑒𝐵𝑆. The 

discharging power flow is bounded by the discharging capacity 𝑃𝑚𝑎𝑥
𝐵𝑆 . The battery system also has an 

associated per module costs 𝐶𝐵𝑆, so the model tries to minimize the installation. The maximum 

capacity of the battery system is however the product of the capacity of a single module 𝐸𝑚𝑎𝑥
𝐵𝑆  

multiplied with the number of modules 𝑥𝐵𝑆 installed in the battery system. Therefore, if the model 

needs to store more electricity it needs to install more modules. 
 

To summarize the modelling of the costs, all per unit costs 𝐶 of the infrastructural components are 

multiplied with the number of units 𝑥 installed, and the revenue and costs of selling electricity to and 

buying from the power grid is summed for all time periods 𝑡 and added to the cost equation. This will 

be detailed further in the conceptual model in chapter 5: model design. 
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4.4. Problem assumptions 
In the modelling activities that are performed to conduct this research some assumptions are made in 

regard to the methodology and the data used. These assumptions make it feasible to translate the 

complex real-life situation into a mathematical model that can be solved computationally. For a large 

number of decision variables, the problem would be high-dimensional and thus computationally 

difficult to solve (Ferguson et al., 2018). But while there are ways to reduce the complexity, this also 

reduces the real-life applicability. This is recognized in Fowler’s (1997) modelling principle: “Models 

are not right or wrong; they are more or less useful.” If too many compromises are made in the 

modelling activities the model and results will not be representative of and applicable to the real-life 

situation. That is why the aim of this thesis is to propose a model which is solvable, but at the same 

time gives an accurate representation of the system and provide useful insights into the composition 

of the electrical infrastructure and operation at distribution centres. A number of assumptions were 

made for the infrastructural and operational problem to accomplish this. These assumptions will be 

detailed and reasoned next. 

The first few assumptions concern the fact that solely the distribution centre itself and the activities 

within its area are taken as the system with its associated boundaries. This means that the route 

schedules of the e-trucks are fixed and not influenced by changing demand of retail locations. 

Furthermore, it is assumed that the route schedules do not change over the different scenarios that 

will be run. In the different scenarios an increasing number of e-trucks are introduced. The 

implementation of the e-trucks itself is not considered, but rather the number of route schedules will 

be increased to accommodate the number of e-trucks. The assumption is thus made that the number 

of e-trucks is synonymous and represented by the number of route schedules. It is also assumed that 

the e-trucks start the simulations with a full battery. Also outside the control of the distribution centre 

is the assumption that there is local grid congestion, due to which the grid connection is constrained 

and unupgradable. This is a reasonable assumption as proven in the literature review (Case data, 2021; 

Netbeheer Nederland, 2021). 

Historical data will be used for the yield of the renewable electricity sources, for the demand of the 

distribution centre itself and for the day-ahead market electricity prices. As mentioned before, typical 

days will be chosen to represent the months to reduce the size of the mathematical model. The 

assumption that this subset is representative for the whole year will be verified in the chapter 7: 

verification and validation. This method is also used in many papers from the literature review (Bracco 

et al., 2019; Dai et al., 2019; Liu et al., 2020). For all scenario’s, which in real-life would happen in 

different years, the historical data from the same year will be used. While this assumption can be valid 

for the renewable electricity generation and electricity market prices due to the inherent variability 

even within years, the demand data of the distribution centre is also used for every scenario. This can 

be explained by the fact that within the fleet electrification process the fossil fuel trucks are substituted 

with e-trucks. This means that the size of the operation at the distribution centre stays the same and 

the same yearly demand data can be used in the different scenarios. 

It is further assumed that the characteristics of the different infrastructural components scale linearly 

with the number of units installed. For some elements, like the yield of the PV panels and the capacity 

of the battery system this holds scientifically true, while for others like the yield of the wind turbines 

and the battery (dis)charging rate this is a reasonable assumption. It is of main importance to consider 

all assumptions during evaluation of the results, where conclusions can be made on the basis that a 

certain level of a characteristic is simply required, even if it does not scale perfectly linear. With the 

formal problem description and necessary assumptions having been presented, the mathematical 

model will be proposed in the next chapter.  
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5. Mathematical model design 

This chapter will discuss the mathematical model that will be used in this research. First a conceptual 

overview of the model will be given, which helps by visualizing the interactions of the model and the 

context of its operation. Thereafter the modelling horizon and resolution will be discussed. Finally, the 

mathematical model itself will be presented, of which the parameters, decision variables and 

equations will be detailed and discussed. 

5.1. Conceptual model 
A conceptual model is a helpful tool to understand how the input parameters are being used to 

optimize the objective function of the model under study within the given constraints. Additionally, 

the conceptual model forms the basis of the models’ verification steps later in this chapter. The 

conceptual modelling phase succeeds the system description of chapter four which is in line with the 

model design steps from Robinson (2011) that are as depicted in Figure 6. The use of a conceptual 

model can help to understand how the input parameters are utilized in the optimization of the 

objective function under the constraints specified. Furthermore, the conceptual model provides a 

framework, which the mathematical model and its description can be structured on. The position of 

the conceptual model in the whole modelling process can be seen in figure 6, adapted from Robinson 

(2017). The knowledge acquisition, assumptions and system description have already been detailed, 

so now the conceptual model can be worked out. 

Figure 6. The steps and activities of the conceptual model design. Adapted from Robinson (2017). 

5.1.1. Similar optimization problems 
Instead of creating a conceptual model from scratch, insights gained from the literature review will be 

used to study papers which pertain to a similar optimization problem as is considered in this thesis. 

The papers in the literature review were evaluated based on their activity regarding either 

infrastructure composition optimization, system operation optimization, or both. Found mathematical 

optimization models allude to a knapsack problem for the infrastructure investment problem, and to 

a job shop or bin packing problem for the system operation problem. 

The electric infrastructure investment decision can essentially be seen as a knapsack problem (Hsieh 

& Liu, 2004). The knapsack problem can be explained as a portion of space needing to be filled with 

objects, each having a value and size, with the objective to find the most valuable filling. In the context 

of this research the fillable space would refer to the electricity required, and the value would be the 
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costs of the electrical components. A knapsack problem can be unbounded or bounded, meaning the 

components can go up to any size or the components have a maximum size to which they can be 

included in the knapsack problem. In the case of the electric infrastructure problem at hand it would 

be a bounded problem, as not only technical boundaries like the kWmax are considered but also spatial 

boundaries limiting the amount of solar and wind generation that can be installed. 

Demand response or smart charge scheduling can possibly be interpreted as a job shop problem or a 

bin packing problem (Ferguson et al., 2018; Golpîra et al., 2018). In a job shop problem, the inputs are 

a list of jobs that need to be done and a list of machines to fulfil those jobs. The required output is a 

schedule in which the jobs are assigned to certain machines, while the overall cost minimized or profit 

maximized (Croce et al., 1995). In the context of this research the jobs would be the transportation 

schedule while the machines would be the charging stations, possibly supported by local renewable 

generation, with the goal of finding the optimal charging schedule. In a bin packing problem item of 

various sizes must be packed into a finite number of bins with a fixed capacity (Bilaut et al., 2013). In 

the context of this research the bins would be the various time periods with more or less capacity 

available in which charging activity can be scheduled. In a bin packing problem, the goal is to minimize 

the number of bins used (Bilaut et al., 2013). By spreading the charging of the e-trucks instead of all 

charging simultaneously the number of charging stations needed can be minimized, as researched by 

Ferguson et al. (2018). Knowledge of both the job shop and bin packing problem will aid in converting 

the formal problem formulation into the mathematical model. 

5.1.2. General conceptual model 
The conceptual model shown in figure 7 provides a general framework for the model domain 

introduced in figure 6, to aid the translation of the formulated problem into the mathematical model. 

This general conceptual model is applicable to all cases that could arise within the stated problem 

space, concerning the electrification of large vehicle fleets in the logistical sector. 

 

Figure 7. General conceptual model showing the sequential steps involved in the model domain 
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The conceptual model in figure 7 is divided into the input parameters, the mathematical model and 

the subsequent solving and results. The input parameters can be divided into the supply and demand 

parameters, both with external and internal ones. The external input parameters are parameters that 

are outside of the control of the distribution centre. For the supply side this concerns the yield of the 

renewable electricity generation, which is dependent on meteorological activity. On the demand side 

this concerns the transportation demand of the EVs and the electricity demand of the DC itself, which 

technically is under control of DC but is assumed as fixed due to outside demand of the retail locations. 

The internal parameters pertain to the technical specifications and costs of the components that are 

considered in the model, which the DC has control over. A conceptual version of the mathematical 

model, in which the external and internal supply and demand factors are fitted, will be discussed next. 

5.1.3. Mathematical conceptual model 
The mathematical conceptual model shown in figure 8 illustrates the positioning and interaction of the 

input parameters and decision variables, introduced in the formal problem description, when they are 

placed within the objective function and constraints. It concentrates on the mathematical model step 

from the general conceptual model and essentially shows the translation process of the individual 

mathematical terms into the formulas of the mathematical model. While the mathematical terms have 

from the formal problem formulation onwards been divided into demand and supply factors, the 

balancing act between them is harder to grasp. Figure 8 aims to illustrate how the energy balance per 

time period and the influence of the upfront investment in the static infrastructural components on 

the energy balance can be understood. 

Figure 8. Conceptual model serving as overview for the mathematical model that will be proposed. 

This figure visualized the optimization of the static infrastructure components on the left, based on 

the energy balance on the right, which needs to be maintained for every time period. 

What must be understood is that the real-time power flows, apart from the demand of the DC, are 

indirectly caused by the number and type of infrastructural components installed independent of time. 

For example, a certain number of PV panels installed thus leads to a certain power yield per time 

period, dependent on the solar irradiation. Figure 8 shows the static optimization of the infrastructural 

components on the left, where it can be seen that the installation of PV and wind is constrained and 

only as much is installed as necessary or cost-effective for power generation, shown by the grey filled 

part. The installation of the battery modules and charging stations is unconstrained. The total costs are 

then calculated by summing the products of the costs 𝐶 and the number 𝑥 of a component installed, 

with the objective to minimize the total costs. 

On the right of figure 8, the energy balance is visualized, understating that the positive power flows 

should negate the negative power flows, thus the sum of all power flows 𝑝 should be 0. The grey filled 

part in the bars represents the amount of power which is active of the max, indirectly caused or 

constraint by the number of each specific infrastructural component installed. The amount of power 

that can be taken out from or put into the battery system BS will explicitly be constrained in the model, 
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as well as the power that can be absorbed from or injected into the power grid PG. It is visualized in 

the figure that the BS cannot be charged and discharged simultaneously, and neither can the PG. The 

power that can be generated by the PV panels or the wind turbines WT is not explicitly constrained 

but rather by the number of units that is installed by the model, just as the power that can be charged 

to the EVs is constrained by how empty the batteries of all the EVs are. The power that can be curtailed 

or that is needed for the demand of the distribution centre is unconstrained. Curtailment is 

unconstrained but throws away value, so the model should mostly avoid this, hence the bar being 

empty. The demand of the distribution centre is known, so therefore the whole bar is grey in the figure. 

To summarize the conceptual mathematical model, in the objective function the number and type of 

infrastructural components installed can be optimized to supply or store the required power in the 

energy balance constraint. Operationally the model can also optimize the size of all the different power 

flows, within the prescribed constraints, to maintain the balance for every time period. This is 

especially the case for the charging demand of the e-trucks, which the model can smartly schedule. 

 5.2. Modelling horizon and resolution 

While the parts of the infrastructural components of the model’s calculations are fixed, a lot of the 

operational constraint and intermediary calculations are modelled for every month m = 1…m and every 

time period t = 1…T. The resolution of the modelling can be decided by taking the time period as days, 

hours, minutes or even seconds. For this research the time period was set at hours, as this sufficiently 

considers the day and night variation of renewable electricity generation. Modelling for every minute 

or second would also severely increase the total number of variables and constraints, therefore 

hampering performance. A time period of an hour also allows for the normalization of the power and 

energy terms, as the amount of power expressed in kW in an hour is equal to the amount of energy 

expressed in kWh. The characteristics and relations of the different timescales can be seen in figure 9. 

 

Figure 9. Diagram showing and naming the different timelines and their characteristics. 

The separation of the time period and months is useful because it allows the model to be run for a 

typical day for every month, reducing the number of variables and constraint by approximately 30. 

Instead of running the model for every day in the year, the model will run for a typical day in every 

month, for a total of 12 days. This approach is also used by Bracco et al. (2019) and Dominguez-Munoz 

et al. (2011) to reduce the computational intensity of the model. This leads to a total of 12 times 24 is 

288 time periods. This approach disregards variation within months, possibly leading to the exclusion 

of rare weather events like the Dunkelflaute, in which for an extended period of time solar irradiation 

as well as wind is marginal but is necessary for the sake of model performance (Li et al, 2020). Which 

days are typical for the months will be examined further in the verification and validation chapter. 
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5.3. Mathematical model 
Insights from the formal problem description and the model conceptualization form the basis for the 

mathematical model proposed next. First the infrastructure optimization model will be introduced, 

after which the parameters will be detailed. After that the decision variables will be listed. Finally, the 

objective function and constraints will be defined, and the interpretation of the model will be given. 

5.3.1. Introduction optimization model 
The objective function captures the different cost factors for the infrastructure optimization of the 

distribution centre. The first part of the objective function captures the static infrastructural 

components, which the model can install for a certain associated cost. The second part of the objective 

function is summed for every month m in M and every period t in T, while the final part is also summed 

for every charging station s in S.  

The constraints are listed below the objective function and represent conditions that the optimal 

solution must satisfy. The constraints represent both practical distribution centre constraints as well 

as variable and parameter constraints. The individual constraints will be elaborated on more 

thoroughly below the mathematical model.  Next the parameters and variables will be defined for 

every subgroup of the infrastructural components. 

5.3.2. Parameters 

• ƞ𝐵𝑆,𝑖𝑛:  charging efficiency of a battery module [%] 

• ƞ𝐵𝑆,𝑜𝑢𝑡: discharging efficiency of a battery module [%] 

• ƞ𝐶𝑆: charging efficiency of charging station [%] 

• 𝐴𝑃𝑉: ground surface area of a photovoltaic panel [m2] 

• 𝐴𝑊𝑇: ground surface area of wind turbine [m2] 

• 𝐴𝑚𝑎𝑥
𝑃𝑉 : maximum surface available for all photovoltaic panels [m2] 

• 𝐴𝑚𝑎𝑥
𝑊𝑇 : maximum surface available for all wind turbines [m2] 

• 𝐶𝐵𝑆: total annual cost of battery module [€] 

• 𝐶𝐶𝑆: total annual cost of charging station [€] 

• 𝐶𝑃𝑉: total annual cost of a photovoltaic panel [€] 

• 𝐶𝑊𝑇: total annual cost of a wind turbine [€] 

• 𝐶𝑚,𝑡
𝑃𝐺,𝑎𝑏𝑠: price of buying electricity in month m ∈ 𝑀, at time 𝑡 ∈ 𝑇 [€/kWh] 

• 𝐶𝑚,𝑡
𝑃𝐺,𝑖𝑛𝑗

: price of selling electricity in month m ∈ 𝑀, at time  𝑡 ∈ 𝑇 [€/kWh] 

• 𝑃𝑚,𝑡
𝐷𝐶 : power demand from distribution centre in month m ∈ 𝑀, at time  𝑡 ∈ 𝑇 [kW] 

• 𝐷𝑣,𝑚,𝑡: transportation demand of vehicle v ∈ 𝑉, in month m ∈ 𝑀, at time  𝑡 ∈ 𝑇 [km] 

• 𝐸𝑚𝑎𝑥
𝐵𝑆 : maximum energy level of battery [kWh] 

• 𝐸𝑚𝑎𝑥
𝐸𝑉 : maximum energy level of the electric vehicles [kWh] 

• 𝐸𝑚𝑖𝑛
𝐸𝑉 : minimum energy level of the electric vehicles [kWh] 

• 𝐸𝑣,𝑚,𝑡=0
𝐸𝑉 : energy level of vehicle v ∈ 𝑉 in month m ∈ 𝑀, at time  𝑡 = 0 [kWh] 

• 𝑃𝑚,𝑡
𝑃𝑉 : yield for photovoltaic panel in month m ∈ 𝑀, at time 𝑡 ∈ 𝑇 [kW] 

• 𝑃𝑚,𝑡
𝑊𝑇: wind yield for turbine in month m ∈ 𝑀, at time 𝑡 ∈ 𝑇 [kW] 

• 𝑃𝑚𝑎𝑥
𝐵𝑆 : maximum charging and discharging speed of battery [kW] 

• 𝑃𝑚𝑎𝑥
𝐶𝑆 : maximum charging speed of charging station [kW] 

• 𝑃𝑚𝑎𝑥
𝑃𝐺 : max amount of electricity that can be absorbed from or injected into power grid [kW] 

• 𝐹: Mean consumption of the vehicles [kWh/km] 

• 𝐾: Mean number of days in a month [-] 

• 𝑄: Sufficiently large number [-] 
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5.3.3. Decision variables 

• 𝑒𝑚,|𝑡|
𝐵𝑆 : energy level of battery in the last time period 𝑡 = |𝑡| [kWh] 

• 𝑒𝑚,𝑡
𝐵𝑆 : energy level of battery in month m ∈ 𝑀, at time 𝑡 ∈ 𝑇 [kWh] 

• 𝑒𝑣,𝑚,|𝑡|
𝐸𝑉 : energy level of vehicle v ∈ 𝑉 in month m ∈ 𝑀, in the last time period 𝑡 = |𝑡| [kWh] 

• 𝑒𝑣,𝑚,𝑡
𝐸𝑉 : energy level of vehicle v ∈ 𝑉 in month m ∈ 𝑀, at time 𝑡 ∈ 𝑇 − 1 [kWh] 

• 𝑝𝑚,𝑡
𝐵𝑆,𝑖𝑛: power charged into battery in month m ∈ 𝑀, at time 𝑡 ∈ 𝑇 [kW] 

• 𝑝𝑚,𝑡
𝐵𝑆,𝑜𝑢𝑡: power discharged from battery in month m ∈ 𝑀, time 𝑡 ∈ 𝑇 [kW] 

• 𝑝𝑠,𝑣,𝑚,𝑡
𝐶𝑆 : power from charging station 𝑠 ∈ 𝑆 to vehicle 𝑣 ∈ 𝑉, month m ∈ 𝑀, time 𝑡 ∈ 𝑇 [kW] 

• 𝑝𝑚,𝑡
𝑐𝑢𝑟: amount of power that is curtailed in month m ∈ 𝑀, at time 𝑡 ∈ 𝑇 [kW] 

• 𝑝𝑚,𝑡
𝑃𝐺,𝑎𝑏𝑠: amount of power absorbed from the grid in month m ∈ 𝑀, at time 𝑡 ∈ 𝑇 [kW] 

• 𝑝𝑚,𝑡
𝑃𝐺,𝑖𝑛𝑗

: amount of power injected to the grid in month m ∈ 𝑀, at time 𝑡 ∈ 𝑇 [kW] 

• 𝑥𝐵𝑆  : number of battery modules to install [-] 

• 𝑥𝐶𝑆: number of charging stations to install [-] 

• 𝑥𝑃𝑉: number of photovoltaic panels to install [-] 

• 𝑥𝑊𝑇: number of wind turbines to install [-] 

• 𝑦𝑚,𝑡
𝐵𝑆,𝑖𝑛: binary variable equal to 1 if battery system is charging in month 𝑚 ∈ 𝑀, at time 𝑡 ∈

𝑇, and equal to 0 otherwise [-] 

• 𝑦𝑚,𝑡
𝐵𝑆,𝑜𝑢𝑡: binary variable equal to 1 if the battery system is discharging in month m ∈ 𝑀, at time 

𝑡 ∈ 𝑇, and equal to 0 otherwise [-] 

• 𝑦𝑠,𝑣,𝑚,𝑡
𝐶𝑆 : binary variable equal to 1 if power is transferred from charging station 𝑠 ∈ 𝑆 to vehicle 

𝑣 ∈ 𝑉, in month m ∈ M, at time 𝑡 ∈ 𝑇, and equal to 0 otherwise [-] 

• 𝑦𝑚,𝑡
𝑃𝐺,𝑎𝑏𝑠: binary variable equal to 1 if power is absorbed from the grid in month 𝑚 ∈ 𝑀, at 

time 𝑡 ∈ 𝑇, and equal to 0 otherwise [-] 

• 𝑦𝑚,𝑡
𝑃𝐺,𝑖𝑛𝑗

: binary variable equal to 1 if power is injected into the grid in month 𝑚 ∈ 𝑀, at time 

𝑡 ∈ 𝑇, and equal to 0 otherwise [-] 

5.3.4. Objective function and constraints 
As the model shows great potential for commercial implementation, the exact mathematical 

formulation becomes somewhat confidential, as to avoid competitors copying the model. Hopefully 

the model description and the decision variable and parameter list do give a good impression of the 

model. The complete mathematical model was moved to confidential appendix E. 

5.3.5. Model interpretation 
The objective function (1) captures the cost drivers of the infrastructure optimization over the 

modelled year. The first part of the objective function pertains to the optimal number of the static 

infrastructural components multiplied with their associated total unit costs. The second part concerns 

the sum of the dynamic cost drivers like the power absorbed from the grid and injected to the grid 

multiplied with the associated buy and sell price as well as the compensation for the renewable fuel 

units. The SOC of all batteries and vehicles in the last time period |t| are summed and also multiplied 

with the electricity cell price in the last time period, to include the value of the excess SOC and avoid 

unrealistic model behaviour in which it tries to end the simulation with minimal SOCs across the board. 
 

The most important equality constraint (2) pertains to the energy balance of the system, in which the 

power flows of all components are summed. For the system to be in balance the positive power flows, 

like the generated power from the photovoltaic installation and wind turbines, as well as the power 

that is absorbed from the grid or taken out of the battery, should be equal to the negative power flows. 

The negative power flows are the power that is put into the battery, injected unto the grid, power that 
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is curtailed or used by the distribution centre, as well as the sum of all EVs charging that happens in a 

specific moment. The sum of equation should be zero for every time period t in every month m. 
 

Equality constraint (3) and (4) show the calculations of the energy levels inside the battery system and 

electric vehicles for the next period. They start quite similarly, stating that the energy level or SOC for 

the next period is the SOC of the previous period, plus the amount of energy that is charged into the 

battery or EV times the charging efficiency in time period ∆𝑡. However, while the discharging of the 

battery system with the associated efficiency is considered, the discharging of the EVs, or so-called 

vehicle to grid (V2G) is not considered in this research. Energy is used by the EVs though for their 

transportation demand D, given in kilometres, and is multiplied by the average consumption 𝐹 to 

calculate the reduction in the SOC of the EVs. 

While equality constraints are used to ensure that an equation equals a certain value, inequality 

constraints are used to ensure that an equation or decision variable is between a certain range. 

Inequality constraints are often used to define a certain capacity, stating that a decision variable should 

stay between its minimum and maximum values, applicable to the power flows. As can be seen in 

inequality constraint (5) to (12), the minimum of the power flows is 0, meaning the power flows should 

always be equal to or higher than 0 or a designated minimum value. Maximum power flows of the 

photovoltaic panels, wind turbines and battery system components are given per unit and are 

multiplied by the number of units installed to get the total maximum power flow for each installation 

respectively. In constraint (12) it is expressed that power can only flow from the charging station to 

the electric vehicles if the associated binary variable 𝑦𝑠,𝑣,𝑚,𝑡
𝐶𝑆  is 1. The maximum charging speed is 

calculated again by a derivation of the quadratic formula, by which the lowest charging speed of either 

the electric or the charging station is selected. The curtailment power constraint (7) has no maximum. 

Inequality constraints can also be used to ensure that the model adheres to the physical boundaries in 

the system, like how much space is available on the roof for the PV panels, or on the land for the wind 

turbines in constraint (13) and (14), wherein the surface area of one unit, times the total number of 

units should not exceed the maximum surface available. Finally, inequality constraints are used to 

make the binary variables represent the on and off state of the associated decision variable. In 

constraint (15) to (18) 𝑄 represents a significantly large number, forcing the binary variables to turn 1 

if any non-zero power flow were to happen. Constraint (19) and (20) thereafter state that non-zero 

power in- and outflow of the PG and BS cannot happen simultaneously, otherwise the sum of both 

binary variables in the on state would exceed 1.  

The final inequality constraints (21) and (22) concern the charging and installation of sufficient charging 

stations. In constraint (21) Q again represents a sufficiently large number, ensuring that if an EV has a 

non-zero transportation demand the sum of the binary variables for that vehicle with all charging 

stations should be 0. Constraint (21) essentially expresses that if a vehicle is driving it can’t be charged. 

In constraint (12) it was expressed that if the model wants to charge an EV the associated binary 

variable should be 1. If for every time period and month the binary variables of all vehicles are summed, 

then the number of vehicles that would need to charge simultaneously in every period is calculated. 

This is precisely what constraint (22) does. By stating that the number of charging stations to be 

installed, indicated by the fixed decision variable 𝑥𝐶𝑆, should be equal to or larger than the 

simultaneous charging demand in every time period, sufficient charging stations will be installed to 

handle the period with the maximum number of simultaneous charging sessions. 
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6. Case study and data input 

The model proposed in the previous chapter will be tested by means of a case study and various 

scenarios for a supermarket company operating a distribution centre to analyse the models’ behaviour 

in a practical setting. In this chapter the case study will be discussed. First the supermarket company 

under study will be introduced and the scope and specifics of the case study will be explained. The 

scenarios that will be evaluated by the model will also be explained in this chapter, as they are partly 

specific to the case study and depending on the companies’ electrification process. Finally, the data to 

be used in the model will be detailed in this chapter as a large part of the input parameters are 

dependent on the geographical, spatial and technical characteristics of the distribution centre in the 

case study. That is why the case study is discussed first, before the model is verified and validated, as 

case study data is necessary to run the model and case specific data can then be verified and validated. 

6.1. Case study subject and scenarios 
The case study subject is the distribution centre operated by a supermarket company, located in the 

Randstad, which geographically has some interesting characteristics for this research. The first one is 

that due to its position between several city centres, most of its delivery location will be inside zero-

emission zones in the future, meaning electrification of the truck fleet is essential. The second one is 

that due to its location in the dense urban area of the Randstad the local power grid is congested, as 

can be seen in the maps in appendix D, and the maximum contracted grid connection can’t be 

increased. Finally, most of the distribution centres of this supermarket company are similarly situated 

in urban areas near city centres and facing the same issues. These factors make the distribution centre 

in the case study a suitable subject for this research and representative of the general sector, meaning 

the results of this case study can be applied to other distribution centres with similar conditions and issues. 

The distribution centre of the specific supermarket company was chosen as subject for the case study 

as it already has experience with e-trucks, it has space available for the installation of electric 

infrastructure components, and supermarket companies have control over a consistent supply chain. 

Due to the lower range and higher cost of e-trucks, route schedules of fossil fuel trucks can’t be directly 

used for e-trucks. The distribution centre in question already operates five e-trucks, which means 

accurate and representative route schedules can be acquired for the modelling. The distribution centre 

also has bounded space available on its roof for PV panels and on a nearby field for wind turbines, 

which means that the model in this case study has the option to install these infrastructural 

components up to a certain number. Another distribution centre from a different supermarket 

company was possible for a case study, but no space was available there for the installation of 

renewable energy generation components, meaning part of the model could not have been tested. 

Finally, as supermarket companies both operate their own distribution centres and retail locations, 

and the demand for delivery of goods is predictable, the route schedules of the e-trucks are consistent 

across the year. This means that a subset of route schedules used for the modelling would be 

representative for the whole year. 

The distribution centre would need to substitute 60 fossil fuel trucks with e-trucks in 2025, when the 

first zero-emission zones are instituted, and 120 e-trucks would be necessary in 2030 to facilitate all 

deliveries to retail locations in zero-emission zones. Together with the 5 e-trucks they have now, these 

progressive steps in the electrification process will be considered as main scenarios to run in the model. 

The results of these scenarios will help decide on a cost-effective infrastructure planning for the 

distribution centre in the case study for the coming decade. For each main scenario 3 subscenarios are 

considered, of which the first only optimizes the infrastructural composition in a greedy charging 

nature, the second optimizes both, and third as well but then with variable electricity prices. 
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Scenario 1 5 e-trucks Only infrastructural optimization (greedy) Fixed electricity price 
2022 5 e-trucks Infrastructural & operational optimization Fixed electricity price 
 5 e-trucks Infrastructural & operational optimization Variable electricity price 

Scenario 2 60 e-trucks Only infrastructural optimization (greedy) Fixed electricity price 
2025 60 e-trucks Infrastructural & operational optimization Fixed electricity price 
 60 e-trucks Infrastructural & operational optimization Variable electricity price 

Scenario 3 120 e-trucks Only infrastructural optimization (greedy) Fixed electricity price 
2030 120 e-trucks Infrastructural & operational optimization Fixed electricity price 
 120 e-trucks Infrastructural & operational optimization Variable electricity price 

 

Table 2. The scenarios with the year the number of e-trucks considered and other characteristics. 
 

6.2. Model data input 
The data that will be used as input for the parameters in the model can partly be derived from literature 

and partly from experts, like the ones participating in the case study. For some infrastructural 

components data from the case study will be used, even though it could also be sourced from 

literature, to ensure that the case study accurately represents the real-world situation. Numerous 

configurations of the infrastructural components are available, like for example for the PV panels and 

charging stations, and it makes sense to include configurations in the model similar to what is already 

being implemented in real-life in the case study, to better let the model represent the reality. The 

meteorological data was gathered from Meteonorm and Soda-pro. All data input for the parameters 

can be seen in table 3, with the associated sources referenced. Data from the experts for the case 

study is referenced to Case data (2021) and was received via an information request Excel sheet. The 

expert data is supported by data found in the literature or online. 
 

6.2.1. Fixed input parameters 
Table 3 shows the input data for all fixed parameters, meaning they are constant for every time period. 

The symbols as used in the mathematical model and their definitions are presented first. The data that 

was gathered from the case study is confidential is moved to the confidential appendix E. 
 

 Definition Value Unit Source 

ƞ𝑩𝑺,𝒊𝒏 Charging efficiency BS 97.5 % Alfen, 2022b; Valoen & Shoesmith, 2007 

ƞ𝑩𝑺,𝒐𝒖𝒕 Discharging efficiency BS 97.5 % Alfen, 2022b; Valoen & Shoesmith, 2007 

ƞ𝑪𝑺 Charging efficiency CS Appendix E % EnelX, 2022; Case data, 2021 

𝑨𝑷𝑽 Ground surface area PV 2 m2 ENF, 2022; Secondsol; 2022 

𝑨𝑾𝑻 Ground surface area WT Appendix E n/a Case data, 2021 

𝑨𝒎𝒂𝒙
𝑷𝑽  Max area available PV Appendix E m2 Case data, 2021 

𝑨𝒎𝒂𝒙
𝑾𝑻  Max area available WT Appendix E n/a Case data, 2021 

𝑪𝑩𝑺 Total costs BS unit Appendix E € Mongird et al. 2020; NREL, 2021 

𝑪𝑪𝑺 Total costs CS unit Appendix E € Heliox, 2022; Case data, 2021 

𝑪𝑷𝑽 Total costs PV unit Appendix E € Case data, 2021 

𝑪𝑾𝑻 Total costs WT unit 73847 € EWEA, 2009; Taryani, 2021 

𝑬𝒎𝒂𝒙
𝑩𝑺  Max capacity BS unit 100 kWh Raaijen, 2022; Alfen, 2022a 

𝑬𝒎𝒂𝒙
𝑬𝑽  Max capacity EV Appendix E kWh DAF, 2022; Case data, 2021 

𝑬𝒎𝒊𝒏
𝑬𝑽  Min capacity EV Appendix E kWh Case data, 2021; Kostopoulus, 2020 

𝑬𝒗,𝒎,𝒕=𝟎
𝑬𝑽  Starting capacity EV Appendix E kWh Case data, 2021 

𝑷𝒎𝒂𝒙
𝑩𝑺  Max (dis)charge power BS 100 kW Raaijen, 2022; Alfen, 2022a 

𝑷𝒎𝒂𝒙
𝑪𝑺  Max charging power CS Appendix E kW EnelX, 2022; Case data, 2021 

𝑷𝒎𝒂𝒙
𝑷𝑮  Max inject and absorb PG Appendix E kW Case data, 2021 

𝑭 Average consumption EV Appendix E kWh/km Earl et al., 2019; Case data, 2021 
𝑲 Mean days in month 30.475 d Not applicable 

 

Table 3. Table showing the input data for the parameters with the associated sources referenced. 
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All fixed input parameters are independent except the total cost parameters, which follow from 

multiple factors. The total cost per unit parameters is actually based on the purchase costs, installation 

costs and maintenance cost, multiplied with the earlier discussed annualization factor. The calculation 

process of the total costs parameters is further elaborated on in appendix C. There are however also 

multiple parameters that vary over time, like the electricity price, the power demand of the 

distribution centre itself, the transportation demand of the e-trucks and finally the power yield of the 

solar panels and wind turbines. Charts of these variable parameters will be presented next. 

6.2.2. Variable input parameters 
The data for the variable input parameters spans across a whole year and will be shown as such, while 

in the simulations a typical day for each month will be chosen and used. First the power demand of 

the distribution centre will be shown and discussed. Figure 10 clearly shows the day and night variation 

in the energy demand of the distribution centre. This makes sense as less work is being done in the 

night than during the day. The energy demand peaks in the morning when all activities start up, but 

interestingly enough already in the afternoon the energy demand decreases. In the weekends there is 

also less activity, which shows in the weekly variation of the demand as well. A slight seasonal variation 

can be seen too, where in the winter months the energy demand is slightly lower, while in the summer 

months it is slightly higher. This can be contributed to the cooling installations for food preservation, 

which require a lot of energy, more during the warm summer months than the cold winter months. 

The reverse energy demand of heating cannot be seen in the graph. This could be due to the heating 

installation running on gas. 

Figure 10. This figure shows the yearly local power demand data from the distribution centre in the 

case study, as well as its maximum grid connection. As it is confidential info it is moved to appendix E. 

The next variable input parameter is the transportation demand of the e-trucks. Currently 5 e-trucks 

are operated at the distribution centre of the supermarket company represented in the case study. In 

total 30 representative daily route schedules could be distilled from the information that was received. 

The first 3 route schedules can be seen in table 4 to illustrate the transportation demand. All the route 

schedules can be found in appendix E. To simulate the incorporation of 5 e-trucks in the truck fleet the 

first 5 route schedules will be used. To simulate the incorporation of 60 and 120 e-trucks the route 

schedules will be repeated 2 and 4 times respectively. This means that e-truck 3 will have the same 

route schedule as e-truck 33, 63 and 93. In reality it could be more likely that all e-trucks are assigned 

unique routes. For this research however, the variation in different route schedules and the route 

schedules specifically being for e-trucks are the most important. The route schedules in table 4 are 

presented for a day and are repeated for all days in the simulation period. In the translation of the data 

received from the experts to the route schedules in table 4, trips that took for example 4 hours with a 

length of 96 km were converted to 4 time periods with 24 km transportation demand each. 
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 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Schedule 3 0 0 0 0 0 0 0 18 18 18 0 12 12 12 0 17 17 17 0 0 0 0 0 0 

Schedule 2 0 0 0 0 0 0 0 10 10 10 10 0 20 20 20 0 12 12 12 0 0 0 0 0 

Schedule 3 Schedule 1 & 2 give a good impression of a accurate route schedule. The actual route schedules are in confidential appendix E 

Schedule … … … … … … … … … … … … … … … … … … … … … … … … … 

 

Table 4. On the y-axis are the different schedules and on the x-axis the hours of the day. The trans-

portation demand is given in kilometres per time period. Complete table can be found in appendix E. 
 

The next variable input parameters are the yield of the solar and wind installation. The data presented 

is calculated from various different factors and corresponding to the yield of one unit. For the PV panels 

the yield per panel is based on a common installation, namely a south-facing 360 Wp panel, under a 

tilt of 30 degrees, a surface area of 2 m2 and a standard test efficiency of 18% (ENF, 2022; Secondsol; 

2022). For the power yield of the wind unit a wind turbine with a rated power of 500 kW and rotor 

diameter of 42 m will be considered as a base. The average power yield per PV panel and base wind 

turbine over the year can be seen in figure 11 and 12, while for the simulation hourly data will be used. 

Figure 11 and 12. Figure 11 on the left shows the yield per PV panel across a whole year (8760 hours). 

Figure 12 on the right shows the wind power yield per unit across a whole year (Meteonorm, 2021). 
 

Figures 11 and 12 clearly show the seasonal variation of solar and wind power yield per unit. For solar 

the yield peaks in the summer months and falls in the winter months. For wind power optimal wind 

speeds can occur across the whole year, but the occurrence of optimal wind speed is higher in the 

winter months than in the summer, meaning more power can be yielded in the winter than in the 

summer. The final variable input parameter is the historical data from the day-ahead electricity 

market, which can be seen in figure 13. Hourly data is shown even though the clarity is lower to 

showcase the variability and the occurrence of negative prices as well. For scenarios with a fixed 

electricity price the yearly average of 105 €/MWh will be used. With all fixed and variable input 

parameters detailed the actual functioning of the model can be verified and validated. 

 Figure 13. Chart of the day-ahead market electricity prices of 2021 (EPEX SPOT, 2021). 
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7. Model verification and validation 

Before the model or its results are applied to the real-world problem it is important to verify and 

validate the model. Verification is the act of finding and fixing modelling errors and ensuring that the 

implementation of a model accurately represents the developer’s conceptual description of the model 

(Thacker et al., 2004). Validation is the act of reviewing and evaluating how the model works and 

ensuring that the model accurately represents the real system it tries to simulate (Carson et al., 2002). 

Because a novel model is proposed it cannot simply be verified and validated by use of existing models. 

The model can however be compared to the real-life situation and the data input can be validated. 

Both verification and validation will be done by means of scientifically proven frameworks and 

methods, with use of the overarching framework by Mitre (2022), which will be discussed first. Then 

the model will be verified by use of a simple numerical test, of which the results can be ratified through 

manual calculations. The model will be validated with the framework from Carson et al. (2002) and by 

use of linear regression analysis. Finally, the results of the process will be discussed. 

7.1. Verification and validation framework 
The verification and validation process is an integral part of the development and implementation of 

a scientifically proven model, which is illustrated in Mitre’s (2022) framework in figure 14. It presents 

a step-by-step guide on how to execute the process. After the development of the model, it first needs 

to be verified. The main questions in the verification process are if the model correctly represents the 

conceptual and mathematical model and if the outcomes of the model make sense based on the input 

parameters. Then, in combination with a prepared case study, it can be validated. The main questions 

in the validation process are if the model accurately represents the case study and if the outcomes of 

the model make sense based on the real-world scenarios. After the model is validated even more 

validation data can be gathered or the model can be adjusted for closer representation. Afterwards, 

analysis of the results will lead to further refinement of the model itself or possible implementation. 

Figure 14. Diagram showing the verification and validation process, adapted from Mitre (2020). 
 

The first two steps of the framework, specification and development of the model, have already been 

done in chapter 4: problem and system analysis, and chapter 5: mathematical model design. The case 

study and data input have also already been prepared and presented in chapter 6: case study and data 

input. Next the model will be verified by use of a simple numerical test. 

7.2. Model verification through numerical test 
With the use of a simple numerical test, which can also be evaluated by manual calculation, it can be 

verified that the results of the model accurately represent the conceptual and mathematical model. In 

the numerical test the model will be run for 1 day, meaning 24 hours, and with simpler input data for 

the parameters than in the case study. The fixed and variable input data will again be presented 

separately and can be found in table 5. All efficiencies will simply be taken as 100% and a maximum 

number will be used for the PV panels and wind turbines instead of maximum surface area. 
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 Max PV Max WT Cost PV Cost WT Cost BS Cost CS Max charge CS Capacity BS Capacity EV kWmax Consumption EV 

Test value 100 10 100 10000 1000 1000 200 100 300 1000 2 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

E-truck 1 0 40 40 40 0 40 40 40 0 0 0 0 0 40 40 40 0 40 40 40 0 0 0 0 

E-truck 2 0 30 30 30 0 30 30 30 0 0 0 0 0 30 30 30 0 30 30 30 0 0 0 0 

E-truck 3 0 0 0 0 0 40 40 40 0 40 40 40 0 0 0 0 0 40 40 40 0 40 40 40 

E-truck 4 0 0 0 0 0 30 30 30 0 30 30 30 0 0 0 0 0 30 30 30 0 30 30 30 

PV yield 0 0 0 0 0 0 0 1 1 2 2 4 4 4 4 2 2 1 1 0 0 0 0 0 

WT yield 100 100 200 200 100 100 100 50 50 50 50 100 100 50 50 0 0 0 0 0 0 0 0 0 

DC demand 800 800 800 800 900 900 900 900 950 950 950 950 950 950 950 950 900 900 900 900 800 800 800 800 

PG price 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 5. The top 2 rows show the values of all fixed input parameters that are considered in the 

numerical test. Below, the values for all 24 time periods of the variable input parameters are shown. 

The input data for the numerical test in table 5 has been structured in such a way that all interactions 

between the decision variables and the adherence to the constraints can be tested. Just as with the 

data from the case study the transportation demand of the e-trucks in their route schedules is given 

in km and can be converted to kW/kWh with the average EV consumption. Again, the power in kW and 

energy in kWh are equalized with the choice of an hourlong time period. The E-trucks have a capacity 

of 300 kWh and an average consumption of 2 kWh/km. The battery capacity of E-truck 1 and 3 

decreases with 240 kWh per route and the battery capacity of E-truck 2 and 4 with 180 kWh per route. 

In time period 4 and 16 e-truck 1 and 2 only have one time period in between their routes and 

therefore have to charge in that moment, likewise for e-truck 3 and 4 in time period 8 and 20. Between 

8 and 13 the charging window for e-truck 1 and 2 is longer, as it is for e-truck 3 and 4 between 12 and 

17, wherein the charging of the e-trucks can be scheduled smartly, according to renewable energy 

generation and variable electricity power grid prices.  

Figure 15. Resulting power flows per hour of the simple numerical test. Above the zero line all positive 

power flows are shown, and below the negative power flows. Of both the total is equal each hour. 
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The results of the numerical tests verifiably show that the model optimizes both the installation and 

the operation of the infrastructural components, to minimize the costs while adhering to the 

constraints. The operation of the system can be seen in figure 15, which gives a chronological overview 

of the positive and negative power flows. It can be seen that the absorption from the power grid in 

light grey never exceeds the 100 kW kWmax constraint. In regard to the infrastructural components 

97 PV panels, 1 wind turbine, 1 battery module and 2 charging stations were installed by the model. 

When looking at the input data chronologically one would expect that the model needs to install at 

least 2 wind turbines and 100 PV panels to handle the charging demand in time period 5 and 9. 

However, because the model is deterministic, it knows that in time period 21 it needs a battery module 

to facilitate the charging demand which would exceed the kWmax, due to the lack of renewable 

electricity generation. The installation of infrastructure components happens statically and they can 

be used for every time period, meaning utilization of the battery module can reduce the need for PV 

panels and wind turbines in time period 5 and 9. The battery can be charged in an earlier time period, 

as shown in purple, and discharged in a later time period, as shown in orange, when extra power is 

required. This shows the cost minimization of the model as well as adherence to the SOC constraints 

of the e-trucks, as it makes sure they are charged full enough to fulfil their next routes. The numerical 

test also shows the arbitrage potential of battery storage due to the variable electricity prices, as the 

battery is charged in time period 7 and discharged in time period 8, when the prices are higher. 

7.3. Model validation 
Validation of the model, to evaluate how it works and how well it represents the real system it tries to 

simulate, will be done following a simple framework suggest by Carson et al. (2002), checking face 

validity and performing a linear regression analysis. The framework consists of three steps: test the 

model face validity, test the model over a range of input parameters and compare predictions of the 

model to actual past performance of the system; when verifying a new system, compare implemented 

model behaviour to assumptions and specifications. To aid in the first step Kleijnen’s (1995) suggestion 

to ‘divide and conquer’ will be used, basically evaluating the model part by part. For the second and 

third step linear regression analysis will be used to evaluate the results of simulation runs over a range 

of input parameters. To run the simulations data from the case study will be used, which has been 

detailed in the previous chapter, ahead of the validation as shown in figure 14. With the data from the 

prepared case study and the insights from the verification the model can now be validated. 

7.3.1. Model face validity 
For the first point Carson et al. (2002) suggest running the model for a given scenario and examine if 

all the model’s outputs are reasonable. This philosophy has actually been used throughout the 

development of the model, combined with an agile development approach, essentially incorporating 

Kleijnen’s (1995) divide and conquer tactic. With an agile approach, short iterative development cycles 

are used to develop functioning modules of a model. An agile approach was used as it is more flexible 

and adaptable then traditional linear approaches. Agile development also facilitates learning through 

experimentation and exploration, which is ideal for this research (Dyba & Dingsoyr, 2009). 

During the development of the individual modules of the model it was continuously checked whether 

the outputs were reasonable or not. Previously acquired knowledge or data found in references was 

for example used to check if the yield of the solar installation or wind turbines was calculated 

realistically. If the outputs of a module seemed unreasonable, the calculations were thoroughly 

checked to find the error. After rectification of these errors some checks were coded into the module 

to output an error message if the error were to occur again. This was especially useful when the 

different modules were integrated, as this could bring back bugs previously present in the model. Exact 

utilization of the automatic checks in the code can be seen in appendix F. 
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7.3.2. Linear regression analysis 
With the implementation approach of the problem in the mathematical model a high number of 

mixed-integer decision variables are used, causing the model to be high-dimensional and thus 

computationally difficult to solve. Bracco et al. (2018), Mirhoseini and Ghaffarzadeh (2020), Riu et al. 

(2012) and Wang et al. (2020) make a highly dimensional problem implementation work by reducing 

the time period of the problem, as the number of decision variables scales with the number of time 

periods. Bracco et al. (2018) do this by considering a typical day per month, reducing the problem size 

but still incorporating seasonal variation.  

The question then is what constitutes as a typical day? An easy approach would be to choose the same 

day for every month. Even though there is variation from day to day, under the hypothesis that days 

in the same month are reasonably similar and deviating days in one month are evened out by counter-

deviating days in another month this could be an approach. To test this hypothesis a linear regression 

analysis is done, which is a statistical technique to determine if there is a linear correlation between 

certain response and predictor variables. In the case of this thesis the response variables are the 

number of infrastructural components installed and the predictor variables are the days in the month.  

 

 

 

 

 

 
 

Figure 16 and 17. Figure 16 on the left shows the objective values of the model runs and the linear 

regression line, for each run changing which day of the months is used. Figure 17 on the right shows 

the resulting values of the decision variables. The left y-axis is used for the wind turbines, battery 

system and charging stations and the right y-axis is used for the PV panels.  

Even though the linear regression line in figure 16 seems quite horizontal, the t-test will show if the 

results are statistically significant, meaning the samples would represent the dataset. The t-test 

statistic is calculated by dividing the difference between the hypothesised slope, which is 0, and the 

actual slope with the standard error for estimation (Das, 2022). The t-test value is -0.15, meaning that 

with a widely used standard of 0.05 for statistical significance the hypothesis is concluded as false. 

Another factor is that more than the potential costs the interest is in the most cost-effective electric 

infrastructure. Figure 17 shows that the results for the infrastructural components differ greatly 

depending on which day of the months is used in the model, meaning another method is required. 

7.3.3. Valid data selection 
The results from the linear regression analysis show that a specific method is necessary to determine 

the typical days per month, as using the same day for every month is not statistically representative. 

An added complexity is that the typical day of a month can differ for each variable input parameter. 

What could be a typical day for PV yield, might not be a typical day for the demand of the distribution 

centre. A different method is to take the average value of each variable input parameter per month. 

This is the technique of the K-means clustering algorithm with which the centres from data clusters 

can be identified. The problem with the K-means method is that the final determined centres may not 

be associated with a specific datapoint, hampering the interpretability of the chosen data (Das, 2022). 
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Another method that can be used and is similar to the K-means method is the K-medoids methods, in 

which for each cluster the data point with the lowest dissimilarity to all other points in the cluster is 

chosen. This is exactly the method that Dominguez-Muñoz et al. (2011) use for the optimization of 

combined-heat powerplant, which is what Bracco et al. (2019) also cite in their methodology. While 

generally a clustering algorithm is used to sort the datapoint into clusters, In the context of this 

research the months will be taken as clusters for relatability and simplicity’s sake, as Dominguez-

Muñoz et al. (2011) also relate their clustered data to months of the year.  

To calculate the dissimilarity between the days in the monthly clusters, the Euclidian distance between 

the values of all days is calculated per monthly cluster and sorted into a dissimilarity matrix. This was 

done this way for all variable input parameter data separately, except for the data selection of the 

electricity demand of the distribution centre. For the electricity demand of the distribution centre the 

most demanding day per month was chosen, to ensure the robustness of the infrastructure 

composition that the model will propose in handling the most extreme electricity demand days. The 

exact days that were used for each variable input parameter can be seen in table 6. 

 Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

PV yield 4 1 14 18 8 17 7 27 18 6 22 10 
WT yield 16 28 10 7 1 2 31 13 10 12 21 27 
DC demand 9 5 16 22 28 25 31 13 30 29 2 16 
DAM prices 2 26 19 26 12 20 14 25 29 8 30 10 

Table 6. Typical days, with the lowest dissimilarity for photovoltaic yield, wind power yield and day-

ahead market prices and the highest distribution centre electricity demand days per month. 

The literature substantiating the K-Medoid method, and the results indicate it is a respectable method 

to choose the most typical days, with the goal to simulate a whole year within a more manageable 

timeframe. What the typical day per month for the photovoltaic yield calculated with the K-Medoid 

method looks like in relation to the K-Means method and the rest of the days per month can be seen 

in figure 18. The modelling timeframe has 12 times 24 hours for a total of 288 time periods. All the 

days for January are indicated with the varying shaded grey lines between time period 0 and 23, for 

February between 24 and 47 and so onwards. What can be seen is that the K-Medoid days vary more 

hourly than the K-Mean data, which is unnaturally smooth. The total power yield per K-Medoid day is 

also slightly lower than the mean, as the mean also considers the outlier days with high yield, while 

the K-Medoid days are positioned more in between the gross number of days that are most similar. 

With the model verified and validated, the scenarios of the case study can now be run confidently. 

 

 

 

 

 

 

 

 

 

Figure 18. The typical days for PV yield calculated with the K-Medoid method are shown in red, the 

course of the K-Mean data is shown in blue. The rest of the days are shown in varying grey shades. 
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8. Model implementation and results 

In this chapter the mathematical model will be used to evaluate the scenarios in the case study, to test 

the model’s effectiveness and accuracy in simulating the infrastructural composition and operational 

application in each sequential step of the truck fleet electrification process. The three main scenarios 

pertain to the progressive electrification of the truck fleet, with 5 e-trucks in the first scenario, 60 in 

the second and 120 in the third. The scenario’s each have three subscenarios of which the first one 

concerns solely optimization of the infrastructure composition with a fixed electricity price. This 

subscenario acts as a base case and relates to greedy charging, in which the e-trucks are charged 

immediately after returning to the DC and the charging can’t be scheduled smartly. In the second 

subscenario the infrastructure composition and operation are optimized with a fixed electricity price. 

In the third subscenario the infrastructure composition and operation are optimized with variable DAM 

electricity prices. Besides the variation in these parameters the rest of the static input parameters are 

taken from the case study data detailed in chapter 6. For the variable input parameters, like the PV 

yield, WT Yield, DC demand and electricity prices, the hourly data of the whole year was presented in 

chapter 6. Data for the research approach of evaluating a typical day per month, for a total of 12 days 

or 288 hours was selected using the K-Medoid method detailed in chapter 7. The model was run using 

a 0.05 optimality gap, taking between 5 seconds for the first subscenario and 40 minutes for the last 

subscenario to solve, on a computer with an Intel i5-8250U Quadcore processor and 8 GB of RAM 

memory. After application and testing of the model in the main- and subscenarios, a sensitivity analysis 

will be performed to study the effect of each parameter and to gather managerial insights.  
 

8.1. Results from the scenarios 
The output of the model in each subscenario will be evaluated and compared to each other in regard 

to the objective value, the values of the decision variables, the power flows of the system and the 

activity of the charging station. The objective value is the sum of all cost factors included in the 

objective function of the model, which the model tries to minimize. In the model the infrastructural 

and operational costs are annualized, meaning the objective value represents the yearly costs that the 

distribution centre would have. The values of the static decision variables represent the amount of 

each infrastructural component that would be most cost-effective to install, while the values of the 

dynamic decision variables show the operation of the system. These values are visible in the power 

flows of the distribution centre, which will be graphically depicted for evaluation and comparison. The 

most important operational aspect is the smart scheduling of the e-truck charging, which will also be 

evaluated and compared by graphical depiction of the activity of the charging stations. 
 

8.1.1. Overview results 
The overview of the results shows that within each of the three main scenario’s, from the greedy 

charging subscenario to the variable electricity prices scenario, the main pattern is that the model is 

able to decrease the total costs and the number of infrastructure components required. The overview 

of the results can be seen in table 7. In main scenario 1 only 5 e-trucks are considered, and 2 charging 

stations and 2038 PV panels are required if the e-trucks are to be charged immediately after returning, 

as is assumed in the greedy scenario 1.1. If besides the infrastructure composition the operation is 

optimized as well, the model can schedule the charging of the e-trucks smartly and spread the demand 

to reduce the number of charging stations to 1 and the number of PV panels to 994. These PV panels 

are still required as in time period 180 high demand of the DC coincides with a single time period of e-

truck 3 between two longer routes in which it has to charge. The combined demand of the DC and e-

truck 3 exceeds the kWmax and exactly enough PV panels are installed based on the solar irradiation 

at time period 180 to generate the required power. No battery storage and wind turbines are installed 

by the model, making PV panels the more cost-effective option to supply power in time period 180. 
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Table 7. This overview of the results of the scenarios shows the characteristics of the subscenarios, 

their corresponding objective value and the number of each infrastructural component installed. 
 

The model weighs the cost of the electricity and the costs of each infrastructural component, leading 

to differing cost reductions and infrastructure compositions from the greedy subscenarios to the 

variable electricity subscenarios in main scenario 1 and 2, which both show a similar pattern. From 

subscenario 1.1 to subscenario 1.2 the cost reduction is 1%, while from subscenario 1.2 to 1.3 the cost 

reduction is 2.3%. The cost reductions may seem low, but the objective value represents the total 

yearly system costs, so the differences add up. In main scenario 1 the electricity costs represent 99% 

of the total costs. Even though the model can significantly reduce the required infrastructure 

components in subscenario 1.2 the variable electricity prices in subscenario 1.3 allow the model to 

reduce the total costs more, by shifting the charging demand to time periods with low electricity prices. 

The model also installs a battery module instead of PV panels in subscenario 1.3 as it is more cost-

effective by taking advantage of arbitrage possibilities with the variable electricity price. This pattern 

is also visible in the subscenarios of main scenario 2, which considers 60 e-trucks. The model is able to 

significantly reduce the infrastructural components required in subscenario 2.2 due to operational 

optimization, compared to the greedy subscenario 2.1 in which solely infrastructure optimization is 

used.  Besides 9385 PV panels and 14 charging stations even 8 battery modules and a wind turbine are 

necessary to facilitate the fixed charging demand, of which the peak is again at time period 180. Just 

as in subscenario 1.3 the model substitutes the PV panels for battery storage as the most cost-effective 

component in subscenario 2.3, due to the variable electricity prices. The shift from an infrastructure 

heavy composition in the greedy subscenario 2.1 with fixed charging demand, to a smartly scheduled 

system with flexible demand results in a cost reduction for the first year of 10.7%. 
 

In main scenario 3 the increased charging demand of the considered 120 e-trucks leads to an enlarged 

continuation of the pattern established in main scenario 1 and 2, with a deviation in the third 

subscenario with variable electricity prices due to the limited grid connection. In subscenario 3.1 an 

expansive infrastructure composition is required for the fixed charging demand. The generation and 

storage need to be matched to the demand peak exceeding the kWmax, while the number of charging 

stations needs to be matched to the number of e-trucks simultaneously charging. Of both the PV panels 

and the wind turbines the maximum number due to spatial constraints is not reached, meaning that 

PV panels are more cost-effective for certain demand peaks, while wind turbines are for other. In 

general, both are not cost-effective looking at the first year as simulated, as the model reduces the 

costs and the number of infrastructure components required in subscenario 3.2, in which it can 

optimize the system’s operation and smartly schedule the charging demand. In subscenario 3.3 with 

variable electricity prices the model does not substitute the PV panels with battery storage, as the 

cost-effectiveness of arbitrage possibilities is less than the PV power generation due to the increased 

demand of the larger e-truck fleet more often exceeding the kWmax. The model installs 4 more 

charging stations to maximally shift charging demand to periods with high PV power generation or low 

electricity prices and is able to reduce the total costs with 19.4% compared to subscenario 3.1 

 Characteristics E price Objective value CS PV BS WT 

Scenario 1.1 Only infra optimization Fixed 2597975  € 2 2038 0 0 
Scenario 1.2 Infra & operation opt. Fixed 2576080  € 1 994 0 0 
Scenario 1.3 Infra & operation opt. Variable 2539289  € 1 0 1 0 

Scenario 2.1 Only infra optimization Fixed 3111700  € 14 9166 8 1 
Scenario 2.2 Infra & operation opt. Fixed 2886235  € 4 2617 0 0 
Scenario 2.3 Infra & operation opt. Variable 2712926  € 4 0 2 0 

Scenario 3.1 Only infra optimization Fixed 3913597  € 28 14951 33 7 
Scenario 3.2 Infra & operation opt. Fixed 3256250  € 7 5963 0 0 
Scenario 3.3 Infra & operation opt. Variable 3155301  € 11 5963 0 0 
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8.1.2. Comparison of the power flows 
A graphical depiction of all the power flows gives insight into the operation of the distribution centre’s 

system and shows the practical effect of the infrastructural components and the proportions and time-

patterns of all the power flows in the various subscenarios. The power flows are depicted in a stacked 

bar chart in which the positive power flows, like generated or grid-absorbed power, can be found 

above zero, and the negative power flows, like the DC power and e-truck charging demand, can be 

found below zero. The electric system should always be in balance, so the positive and negative 

stacked bars are always of equal length. The simulation period is 12 typical days for 288 hours and the 

daily variance in power demand of the DC can be seen in the 12 waves present in this sub chapter’s 

figures, with the valleys representing lower power demand during the night and the peaks higher 

demand during the day. This is also visible in the power yield of the PV panels, of which the proportion 

follows from the number of panels installed and the solar irradiation per time period that also has 

diurnal variation. Graphical representation of the power flows will be presented for the subscenarios 

of main scenario 3. With the highest charging demand due to the facilitation of 120 e-trucks the impact 

of the infrastructural components and the differences between the subscenarios will be most visible. 

Graphs of the power flows of the other subscenarios can be found in appendix G. 

Figure 19. Power flows of the distribution centre’s system in subscenario 3.1, in which the e-trucks     

are charged immediately after return and only the infrastructural composition is optimized. 

The greedy nature of the charging demand in subscenario 3.1 in combination with the pattern of the 

demand of the distribution centre causes the model to need an expansive infrastructural composition 

to facilitate the required power demand in exceedance of the maximum power of the grid connection. 

The graph of distribution centre’s power flows in subscenario 3.1 shown in figure 19 includes the 

demand of the DC itself, the power absorbed from the grid, the charging demand of 120 e-trucks, the 

power yield of 14951 PV panels and 7 wind turbines, and the activity of 33 battery storage modules. 

What can be seen in the figure is that the charging demand shows a constant pattern, due to the 

inflexible immediate charging of the e-trucks after their return to the DC. What also can be seen 

besides the diurnal demand of the DC is that the daily demand peaks in the summer months, due to 

increased demand of the cooling as explained in chapter 6 of the case study. Due to the greedy, 

inflexible charging demand that coincides with high demand of the DC, the model can’t avoid that the 

power demand exceeds the kWmax 46% of the simulated time. The kWmax is the most important 

constraint and denotes the maximum contracted power that can be bought from the grid per period. 
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Even though in this subscenario the model can’t optimize the scheduling of the charging, it can 

optimize the infrastructural composition of the electric system, which shows the differences between 

the characteristics of the components. Both the number of PV panels and wind turbines do not reach 

the maximum allowed due to spatial constraints, which show that both are cost-effective at different 

times. The numbers of each installed lead to 5382 kW rated power of PV panels and 3500 kW of wind 

turbines installed. When looking at the total power yield across the simulated period however, the PV 

panels generate 77226 kWh of power and the wind turbines 135388 kWh, caused by the favourable 

wind speeds in the Netherlands compared to solar irradiation. The yield can be multiplied with factor 

K, which denotes the mean number of monthly days, to annualize the resulting data from the K-medoid 

comprised simulation horizon. When the total yearly cost per infrastructural generation components 

is divided by the yearly generated power, the so-called levelized cost of energy (LCOE) of PV panels is 

around 0.14 €/kWh and of the wind turbines around 0.125 €/kWh, which strokes with reality 

(Badouard et al., 2022). The fact that despite the higher LCOE more rated power of PV panels is 

installed can be explained due to the fact that PV panels yield more power in the summer months, 

when demand is higher, and wind turbines more in the winter months, as shown in figure 11 and 12 in 

chapter 6. Battery storage is also used to store the wind turbine power generated during the night 

when the demand is lower, to later on supply power when the demand peaks. The combination of 

wind power and battery storage is however not that cost-effective to completely substitute PV power. 

Figure 20. Power flows of the distribution centre’s system in subscenario 3.2, in which both the 

infrastructural composition and the operation is optimize, by smartly scheduling the charging. 

In subscenario 3.2 the number of infrastructural components is significantly reduced from the greedy 

subscenario 3.1, due to the ability of the model to smartly schedule charging demand to try to avoid 

coincident of charging with high demand of the DC and subsequent exceedance of the kWmax. In 

subscenario 3.2 the total demand only exceeds the kWmax 12% of the simulated time, because the 

model has spread the charging out more. The charging demand pattern of subscenario 3.2 in figure 20 

is a lot flatter when compared to that in figure 20 of subscenario 3.1, with the model actually reducing 

the charging demand when the demand of the DC increases in the summer months. Due to the 

operational optimization only 7 charging stations and 5963 PV panels are required to facilitate 120 e-

trucks. The flatness of the power absorbed from the grid shows that the model tries to use all power 

capacity available within the kWmax. Even though there are still periods where capacity is left over the 

model is not able to completely avoid the power demand exceedance of the kWmax. This is due to the 

intensity of the route schedules of some e-trucks with multiple routes per day. 
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When an e-truck has multiple long routes on a day with only a small charging period in between, the 

model has to charge the truck and can’t shift or spread out the charging demand to avoid potential 

coincident with high power demand of the DC. This is especially the case with the route schedule of e-

truck 3, which is repeated for e-truck 33, 66 and 99, because only 30 different route schedules were 

available in the case study to model the 120 e-trucks in main scenario 3. The route schedule of e-truck 

3 shown in chapter 6 shows 2 longer routes with only on hour in between them at 12:00 of every day, 

in which it has to charge a minimum of 106 kWh. At 12:00 of August, which is time period 180, the 

demand of the DC is at its highest with 3554 kW. Exactly in that time the 4 e-trucks with route schedule 

3 have to charge a combined 424 kW, which brings the total demand to 3978 kW, in exceedance of the 

kWmax with kW. This explains that besides the operation optimization still 5963 PV panels are 

installed, to exactly yield kW of power. Even though the LCOE of PV panels is higher than that of wind 

turbines, the power yield of the PV panels is also higher than wind turbines at time period 180 and 

during the months with peak DC power demand, making them the more cost-effective option. 

Figure 21. Power flows of the distribution centre’s system in subscenario 3.3, in which the effect of a 

variable electricity price is considered on the infrastructural composition and operation. 

The differences between the subscenario 3.2 and 3.3, in which the fixed electricity prices are 

substituted with variable DAM electricity prices, seem small, but the interesting part is that by the 

installation of more charging stations less total cost can be realised. In subscenario 3.3 the same 

amount of PV panels is required, but 11 charging stations instead of 7 are installed, which leads to 3.2% 

total cost reduction. Even though the additional charging stations add extra costs, the model uses them 

to optimally make use of periods in which PV power yield is high or the electricity prices are low. This 

is especially the case at t=112 and t=230. What is different in figure 21 of subscenario 3.3 compared to 

figure 20 of subscenario 3.2 is that the charging demand is less flat and more irregular, with the model 

avoiding charging when the electricity prices are high. This is especially the case in the later parts of 

the simulation period, in which the variable electricity price increases due to geopolitical factors. The 

total demand exceeds the kWmax 38% of the time, but only when there is excess power yield available 

from the 5963 PV panels that have to be installed regardless, due to the 4 e-trucks with route schedule 

3. The full capacity of power that can be bought from the grid is used 63% of the time. This is also the 

reason that battery storage is not as cost-effective as in subscenario 1.3 and 2.3, as there is limited 

capacity left over for arbitrage possibilities. The in-depth smart scheduling of charging, to optimize the 

operation based on internal demand factors and external price factors, will be discussed next in the e-

truck SOC and charging activity sub chapter. 
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8.1.3. Comparison of the charging activity 
By graphically comparing the charging activity of a specific e-truck or of all charging stations in general 

for each subscenario the impact of the operational optimziation of the model can be seen in the way 

it smartly schedules the charging demand. Again, the subscenarios of main scenario 3 will be evaluated, 

with the greedy subscenario 3.1 in which the scheduling of the e-truck charging is not optimized acting 

as a base case. For the figures in this chapter not the continuous charging activity in kW will be 

evaluated but rather the binary charging activity of the charging stations, refering to their on or off 

state, will be evaluated, as this better shows the shifting of charging of e-trucks around. Figure 22 

shows the charging activity of the e-trucks in greedy subscenario 3.1, in which the e-trucks are 

immediately cahrged after return to the DC. This results in 28 e-trucks of the 120 having to charge 

simultaneously, and the model needed to install 28 charging stations. Due to the fixed power demand 

the charging acitivity in figure 22 follows a constant pattern, with peaks during the days and valleys 

during the night. 

Figure 22. This graph shows the number of e-trucks that is simultaneously charging per time period 

and consequently how many of the charging stations are active in scenario 3.1 in each time period. 

In subscenario 3.2 the number of charging stations is significantly reduced, the charging stations are 

used more often, and the charging activity changes according to the demand of the DC. The model 

balances the installation of the charging stations and the PV panels, depending on their corresponding 

costs, as the required number of charging stations and their operational power demand has effect on 

the required number of PV panels. In figure 23 it can be seen that the charging activity in the first 4 

typical days up to time period 96 varies more than the charging activity in the next 4 days, which 

represent the months May to August. When compared to the pattern in figure 22 of the greedy 

subscenario 3.1, the model in subscenario 3.2 actually uses the charging windows of the e-trucks, in 

which it shifts and spreads the charging demand to avoid exceedance of the kWmax. 

Figure 23. This graph shows the number of e-trucks that is simultaneously charging per time period 

and consequently how many charging stations are active in subscenario 3.2 in each time period. 
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The seventh charger is used less often in the typical days of these 4 months in the middle, while with 

the limited charging capacity one would expect the model to need al 7 chargers to spread the charging. 

However, the more e-trucks are charging simultaneously, the higher the charging demand can be, for 

which the model would need to install additional generation components. During the first 4 months 

the model can use the seven chargers without risk of exceeding the kWmax. During the 4 months in 

the middle when there is less charging capacity available due to high demand of the DC, the model 

only uses the number of charging stations and charging power as is necessary. This is the case for 

example at time period 180 when the 4 e-trucks with route schedule 3 have to charge in between 

routes, but no charging of additional e-trucks is done. 

Figure 24. In the figure the SOC in kWh of e-truck 3 can be seen together with the charging activity in 

kW. The SOC decreases according to the transportation demand in route schedule 3, which is 

repeated for e-truck 33, 63, 93, and increases following the charging activity. The exact route 

schedule is confidential information, which is why the chart is moved to confidential appendix E. 

The model optimizes the charging activity of the e-trucks by spreading or moving it during time periods 

with high DC demand and minimizing the number of e-trucks that need to charge simultaneously but 

is limited by the incident of high demand and the length of the charging windows of the e-trucks. In 

figure 24 the course of the SOC and the charging activity of e-truck 3 can be seen, which together with 

e-truck 33, 63 and 93 has the busiest route schedule. The route schedule has two longer routes with 

only 1 time period in between them per day, and a long charging window before and after the two 

routes. Even though in the single time period between routes the e-trucks have to charge, In the longer 

charging window the model can vary the charging activity, depending on the power demand of the DC 

or of the other e-trucks. This can be seen when the pattern of the first days, which is similar in the 

greedy charging subscenarios, is compared with variation in the charging activity in the middle months, 

when there is more risk of exceeding the kWmax. 

Figure 25. This graph shows the number of e-trucks that is simultaneously charging per time period, 

with the scale shown on the left y-axis and the DAM electricity prices in light blue on the right y-axis 

0

100

200

300

400

0 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

2
0

0

2
0

8

2
1

6

2
2

4

2
3

2

2
4

0

2
4

8

2
5

6

2
6

4

2
7

2

2
8

0

SO
C

 [
kW

h
] 

\C
h

ar
gi

n
g 

p
o

w
er

 
[k

W
] 

Time [h]

State of Charge (SOC) Charging power

0

50

100

150

200

250

300

350

0

2

4

6

8

10

12

0 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

2
0

0

2
0

8

2
1

6

2
2

4

2
3

2

2
4

0

2
4

8

2
5

6

2
6

4

2
7

2

2
8

0

D
A

M
el

ec
tr

ci
ty

 p
ri

ce
 [

€
/M

W
h

]

n
u

m
b

er
 e

-t
ru

ck
s 

ch
ar

gi
n

g

Time [h]

 



8. Model implementation and results  45 

C.M. Buitelaar  / TUDelft 

In subscenario 3.3 the model installs 11 charging stations, which is 4 more than in subscenario 3.2, to 

take full advantage of the variable DAM electricity prices, due to which the charging activity fluctuates 

significantly more than in subscenario 3.2. In figure 25 it can be seen that the model avoids charging 

at all when the variable electricity prices are higher. The model then uses all 11 charging stations 

available when the prices are lower to charge as much as possible or required. Figure 25 shows why 

the model is able to reduce the total cost from subscenario 3.2 to subscenario 3.3, even though the 

infrastructural costs are higher with more charging stations installed. At the end of the simulation the 

variable DAM electricity prices increases significantly due to geopolitical reasons, at which point the 

model tries to charge as least as possible. The fact that the electricity prices for 2022 are higher than 

for the utilized data from 2021 will be discussed further in the sensitivity analysis, among other input 

parameter values which can vary and to which the sensitivity of the model will be tested. 

8.2. Sensitivity analysis 
To study how the uncertainties in the model’s input parameters affect the outcome of the model, 

sensitivity analysis using the one at a time (OAT) method will be done, in which each factor is varied in 

turn while keeping all other factors fixed at their original indicated value. OAT can be defined as a local 

sensitivity analysis method as it studies the effect of one factor, while the interactions among factors 

are less visible, due to them not being varied simultaneously (Campolongo et al., 2011). However, 

because the model in this thesis is strictly linear, OAT is a valid approach for the sensitivity analysis and 

still gives insight into the balance of the infrastructural components and their effect on the total costs 

(Saltelli et al., 2006). The approach of the sensitivity analysis will be discussed next. 

The input parameters that will be evaluated in the sensitivity analysis are the cost factors of the 

infrastructural components and the electricity price, as well as the parameters in the constraints that 

were active during the previously discussed scenarios. For the cost factors of the infrastructural 

components an average scalable price per unit was considered in the model, while in reality economies 

of scale or technological advancements could reduce the price in the future. Input parameters of the 

infrastructural components’ characteristics, which have an effect on the power yield or storage, will 

not be varied. Ultimately the cost-benefit ratio is what matters, and that is already covered by varying 

the cost factors. For the parameters in the active constraints, it is interesting to both positively and 

negatively vary to relax and tighten the constraints respectively. Input parameters of inactive 

constraints, like the maximum number of PV panels due to spatial limits, will not be considered as they 

would have no effect. All the input parameters with their original value considered in the sensitivity 

analysis can be seen in the first column of table 8, with the varied value and percentage change 

compared to the original value beside them.  

The sensitivity analysis will be performed within main scenario 2 with 60 e-truck, because it sits 

between main scenario 1 and 3. It has more representative charging demand than main scenario 1 but 

has less decision variables than main scenario 3, so it runs significantly faster which is important when 

a lot of simulations have to be run. In table 8 the results of the sensitivity analysis compared to the 

subscenario 2.2 can be seen. The various levels of optimization between the subscenarios can result in 

different levels of effect in the parameters varied, but ultimately the sensitivity metrics per parameter 

are similar between the subscenarios. The total costs and the number of each infrastructural 

component installed in subscenario 2.2 acts as a base for comparison and can be seen below the 

column headers in table 8. For each varied parameter value, the total cost of the simulation is given, 

with which the level of sensitivity can be calculated by dividing the percentage change in output by the 

percentage change in input. Finally, the resulting values of the decision variables are shown in the right 

4 columns, which represent the number of each infrastructural component installed. 
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Base 
Scenario 2.2 

Value  Change Total cost  Change Sensitivity CS PV WT BS 

  None 2886235 €   4 2617 0 0 

kWmax 4000 kW % 2859894 € -0.91% -8.21% 3 0 0 0 

 3400 kW % 2911035 € 0.86% -15.47% 4 4868 0 0 
 3200 kW % 2937719 € 1.78% -16.05% 4 4710 1 3 

CS cost 14540 €/unit % 2910162 € 0.83% 3.02% 4 2617 0 0 

 9152 €/unit % 2867631 € -0.64% 3.26% 4 2617 0 0 

 7891 €/unit % 2864263 € -0.76% 2.47% 4 2617 0 0 

PV cost 19 €/unit % 2877923 € -0.29% 2.11% 4 2617 0 0 
 17.5 €/unit % 2874598 € -0.40% 1.97% 4 2617 0 0 

 16 €/unit % 2849416 € -1.28% 4.68% 3 16187 0 0 

WT cost 66025 €/unit % 2883712 € -0.09% 0.83% 4 0 3 0 
 62113 €/unit % 2871978 € -0.49% 3.11% 4 0 3 0 

 58202 €/unit % 2808273 € -2.70% 12.75% 3 0 14 0 

BS cost 7793 €/unit % 2885457 € -0.03% 0.18% 4 1075 1 1 
 6435 €/unit % 2884031 € -0.08% 0.26% 4 1076 0 1 
 3717 €/unit % 2878768 € -0.26% 0.44% 4 0 0 2 

EV capacity 370 kWh % 2863964 € -0.77% -7.39% 3 1695 0 0 

 300 kWh % 2897095 € 0.38% -3.60% 4 3539 0 0 

 265 kWh % Infeasible € - - - - - - 

CS power 225 kW % 2886235 € 0.00% 0.00% 4 2617 0 0 
 125 kW % 2886235 € 0.00% 0.00% 4 2617 0 0 
 100 kW % Infeasible € - - - - - - 

EV consump 1.2 kWh/km % 2824378 € -2.14% 8.57% 8 0 0 0 

 1.8 kWh/km % 2947965 € 2.14% 17.11% 4 3228 1 0 
 2 kWh/km % Infeasible € - - - - - - 

PG price 0.115 €/kWh 10% 3139815 € 8.79% 92.25% 4 2617 0 0 

0.105 €/kWh 0.125 €/kWh 19% 3295618 € 14.18% 74.47% 5 2762 0 0 
 0.21 €/kWh 100% 4811324 € 66.70% 66.70% 3 16187 14 0 

 

Table 8. Results from the sensitivity analysis that was performed with subscenario 2.2 as base case. 
The sensitivity analysis uses a lot confidential input values from the case study, which is why 
information is missing. A complete version of table 8 can be found in confidential appendix E 

 

From the sign and the proportion of the sensitivity it can be seen what the relation of a specific input 
parameter is with the total costs. When the sign of the sensitivity is negative the input parameter is 
inversely related to the total cost, meaning if the input parameter value is increased the total cost 
decreases and vice versa.  This is the case with the kWmax and the battery capacity of the e-trucks. 
More available capacity leads to less infrastructural components required, however in reality the grid 
connection and kWmax can often not be increased. What can be managerially decided is what battery 
capacity the e-trucks will have. Depending on the costs of the e-truck models, which are not considered 
in this thesis, either more expensive e-trucks could be bought to spend less on infrastructure, or less 
expensive e-trucks with less capacity could be bought for slightly more infrastructural costs. In that 
same sense the power required of the charging stations can be fine-tuned. The sensitivity analysis 
shows that faster charging stations provide no extra benefit, while 125 kW charging stations would be 
sufficient and in reality less expensive. Charging stations of 100 kW are not sufficient to facilitate the 
charging demand, while e-trucks with 265 kWh battery capacity are not able to service all 
transportation demand, shown by the infeasibility of the model to run the simulation with these 
parameter values with main scenario 2 as the basis. 
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All the cost factors, the average EV consumption and the PG electricity price are positively related to 

the total costs, which means that when the parameter input values are decreased or increased the 

total cost decreases or increases respectively as well. It can be seen that the cost of the charging 

stations has a subsequent effect on the total cost, but not on the infrastructural composition. The 

number of charging stations installed depends more on the values of other parameters than on the 

cost of the charging stations themselves. When looking at PV panels and wind turbines, reductions in 

the cost don’t have much effect until a certain price parity point is reached at which the LCOE is lower 

than the electricity bought from the grid. The maximum number of 16187 PV panels and 14 wind 

turbines are installed and the effect on the total cost is larger than before the price parity. If the spatial 

constraints, limiting the number of each component installed, would not be in place, the only limiting 

factor would be the max power that can be injected back unto the grid. The model is not at all sensitive 

to the cost of battery modules, only installing them when necessary, even if the price is significantly 

reduced. This does not necessarily subtract from the general utility of battery storage. It can be 

explained by PV panels and wind turbines being more cost-effective and synergizing with each other. 

The PV panels generate more power during the day and the summer months and wind turbines more 

during the night and winter months. Because the model can smartly schedule the charging demand, 

the generated power can generally always be used immediately, and no residual energy is left to store. 
 

The average EV consumption converts the transportation demand of the e-trucks to a decrease in the 

SOC of their battery per time period, which has to be recharged later. An average consumption of 2 

kWh/km is infeasible because e-trucks would be unable to service their longer routes. The average 

consumption of the e-trucks thus indirectly effects the total charging demand, to which the model has 

to adjust the optimal infrastructural composition, increasing the sensitivity to this factor. The model is 

most sensitive to changes in the electricity price, because the cost for electricity bought from the grid 

represents between 70-98% of the total costs, depending on the amount of PV panels and wind 

installed. The results from the sensitivity analysis regarding the electricity price are of extra interest 

due to the average electricity price doubling in 2022 compared to 2021. Data from 2021 was used in 

this thesis as a whole year was available, but the results from the simulation run with 0.21 €/kWh, 

which is more in line with 2022 average electricity costs, underscore the original results of the model. 
 

8.3. Managerial insights 
The results of the scenarios, the graphs and the sensitivity analysis show that the model is effectively 

able to optimize the infrastructural composition and operation to minimize the cost in all cases, giving 

managerial insights into the decisions that need to be made in all steps of the fleet electrification 

process. The outlook of these managerial insights is in the first place on the case study itself. However, 

while the results of the case study cannot directly be applied to other cases, certain patterns and 

interactions can identified that would also hold in other cases. Regardless, with the mathematical 

model validated by the case study, the model itself can also be applied to other cases to generate 

specific results. The case specific and general managerial insights will be discussed next. 
 

8.3.1. Managerial insights case study 
The case specific managerial insights pertain to the interpretation of the results from the scenarios to 

determine the best infrastructure investment strategy in the fleet electrification process. This does not 

necessarily mean that the results from the cheapest scenario can directly be applied, but rather that 

according to additional qualitative wishes the most cost-effective components can be chosen. In the 

case study first 5 e-trucks have to be facilitated, then 60 in 2025 and 120 in 2030. When solely the data 

from the case study is considered, which concerns the static input parameters, the route schedules 

and the variable input parameter data from 2021, then the advisable steps to take would be to install 

consecutively or collectively 1, 3 and 7 charging stations and 994, 1623 and 4340 PV panels in 2022, 

2025 and 2030. In the mathematical model 360 Wp PV panels are used, leading to an installation with 
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a total rated power of 1.562 MW. In reality other PV panels can be installed as well, as long as the total 

rated power, the efficiency and orientation are equal. The operation of the e-trucks has to be 

optimized as well, to smartly charge the vehicles according to the available supply, as this significantly 

reduces the cost and otherwise the suggested infrastructure composition might not be sufficient. Even 

though in reality future energy demand and supply might be harder to accurately estimate, the model 

supplies the blueprint for how the e-trucks should be smartly charged. Possibly a variable electricity 

contract can be entered in lieu of an original electricity contract with fixed electricity prices, as the 

results show that with optimal scheduling of the charging the total costs can be further reduced. The 

PV panels are preferred over battery storage, even though subscenarios 1.3 and 2.3 with variable 

electricity prices use it, because in subscenario 3.3 ultimately PV panels are more cost-effective.  

When the results from the sensitivity analysis are considered, original insights can be substantiated 

and additional insights and trade-offs can be determined. Currently the electricity price in 2022 is much 

higher, which was considered in the sensitivity analysis at the bottom of table 8. It can be seen that 

the choice for PV panels is still valid but the addition of wind turbines is cost-effective as well. 

Furthermore it was deduced from the sensitivity analysis that charging stations of 175 kW would be 

overkill and charging stations of 125 kW would be sufficient, which would reduce the infrastructure 

cost. The sensitivity analysis also shows that the size of the battery capacity of the e-trucks that are 

purchased has an effect on the required infrastructure and subsequent cost. The yearly costs of the 

system can be reduced by 22271 euros if e-trucks with a 370 kWh battery are acquired and if e-trucks 

with a 300 kWh battery are acquired the yearly costs of the system would increase with 10860 euros. 

If a service life of 10 years is assumed and the costs are divided by the 60 e-trucks considered in main 

scenario 2, then the 370 kWh e-truck should not have more than 3712 euro additional purchase cost 

compared to the base kWh version, for the bigger battery to make financial sense. The 300 kWh e-

trucks would need to be more than 1810 euros less in purchase costs compared to the base kWh 

version. In reality the prices can fluctuate and vary per e-truck version and per manufacturer, but when 

a distribution centre company receives quotations for e-trucks with different battery capacities it can 

perform the calculation illustrated above and decide on the most cost-effective option. 

Additional qualitative preferences, that could not  directly be included into the quantitative model, can 

lead to the installation of more infrastructure components than required by the model. In subscenario 

3.3 the full capacity of the grid connection is used 68% of the time. If the company wants to reduce 

the risk of exceeding the kWmax, it could decide to install battery storage next to the suggested 

infrastructure composition by the model anyway. Besides providing a buffer for any excess power 

demand, the battery can be even be used to trade on the electricity imbalance markets. Another 

operational, qualitative preference is that in reality logistical companies want to avoid physically 

shuffling e-trucks between charging stations. However, the results of the subscenarios show that the 

greedy charging strategy, in which the e-trucks are immediately charged after returning, is not most 

cost-effective. Software does exist to smartly schedule the charging, with multiple e-trucks connected 

to charging stations, but only a selection being charged at a time. This does however mean that more 

charging stations are required than minimally found by the model. A operational balance needs to be 

found between the minimally required number of charging stations and just installing a charging 

station for every e-truck, which is not cost-effective. This balance can be achieved by looking at the 

simulated charging profile of the model, and determining what the maximum number of e-trucks is 

that has to charge during the night, when the distribution centre company really can’t usher e-trucks 

around. For the case study the maximum number of e-trucks that needs to be charged during a night 

is 23 (appendix G.4) meaning that with 23 charging stations the e-trucks would never have to be 

shuffled during the night. So, even though the model can advise on the most cost-effective infrastructural 

composition and operations, post analysis can be used to tailor the advice to additional preferences. 
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8.3.2. General managerial insights 
First and foremost, it is important to note that the model can be applied to more use-cases than just 

distribution centres. The model can be applied to behind-the-meter systems of other use-cases with 

both on-site power demand and charging demand, or even to systems with only one of the two power 

demands. For logistical locations like bus depots or harbours the model can be used to determine the 

most-cost effective infrastructural composition and operations as well, based on the schedules of their 

electrified buses or cranes. Any manageable power demand can be operationally optimized by the 

model, meaning industrial or large-scale residential systems could possibly be evaluated as well. Even 

when no manageable power demand is present, the model can still be used to determine solely the 

most cost-effective infrastructural composition, based on the fixed on-site demand of any case. 

While in this thesis solely a single case is studied, general managerial insights can be determined for 

other cases as  well, for example when the values of the input parameters in other cases are similar. 

Some parameters can be directly controlled by the relevant party in a case, such as the battery capacity 

of their electric vehicles and the charging speed of the charging stations. Other factors, such as the 

costs of the infrastructural components and the electricity price, might be similar in  a different use-

case due them having access to the same regional market prices. Even when in the future prices of the 

infrastructural components will drop due to technological developments, the results of the sensitivity 

analysis already provide insight into the expected effect. What is however very case specific is the on-

site power demand of the system, the schedule of the manageable power demand, and the maximum 

capacity of the grid connection. If a case in another part of the world than West-Europe is considered, 

market prices for the infrastructural components might differ as well. 

When a case is studied for a system in another part of the world, so many input parameter values may 

differ that, aside from running the model for the specific case, only patterns and interactions from the 

results of the case study in this thesis can be useful. On an international level the variability in the 

purchasing power parities, which is a currency conversion metric that tries to equalise the purchasing 

power of different currencies, leads to differing costs for the infrastructural components across the 

world (OECD, 2022).  The electricity costs in West-Europe are also some of the highest in the world, 

meaning that when cases in other parts of the world with a lower electricity cost are considered, 

renewable energy infrastructure components might be less attractive (Statista, 2021). However, 

besides cost factors meteorological factors differ across the world as well. When a case is studied in a 

country with higher solar potential, the results of the model show that PV panels are installed when 

price parity is reached with the electricity price. parameter variations can all be considered in the 

model and make it an internationally applicable tool. 

Besides these internationally focussed insights, some general managerial insights that apply 

everywhere can also be found in the case results. The factor with the biggest impact is the maximum 

capacity of the grid connection in relation to the system’s demand. The less residual capacity is left for 

the additional demand of the electrification process, the more investment in infrastructural 

components is required. The second factor influencing the cost is the level of flexibility in the 

manageable demand, of which the value was highlighted by the third subscenarios. Furthermore, the 

installation of generation components is more cost-effective than battery storage, if sufficient 

generation capacity can be installed and the yield coincides with the power demand. If peak demand 

occurs during the night or during the winter, and the potential for wind energy at the location is low, 

battery storage would be more cost-effective. Essentially the most cost-effective solution is the one in 

which the characteristics of the infrastructural components match the characteristics of the power 

demand. The model proposed in this thesis supplies a tool that not only inherently considers all these 

characteristics but can also advice on the number and type of infrastructural component required. 
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9. Discussion 

In the interpretation of the outcomes of the model, it should be remembered that the results of the 

case study are not necessarily representative for other cases and generalization of the results of the 

case study should be done carefully, considering the assumptions and limitations. This chapter will 

discuss the main assumptions and their corresponding limitations, the limitations of the modelling 

approach and mathematical model and the validity of the model and the data. Finally, the overall 

generalizability of the model, the case study and the generated managerial insights can be discussed. 
 

9.1. Main assumptions and limitations 
During the formulation process of the mathematical model, which involved the problem description, 

conceptual modelling, validation and verification, various assumptions have been made to enable the 

model’s development. In this section these assumptions, their reason and effect on the mathematical 

model will be elaborated upon, followed by a discussion on the research limitations. 
 

9.1.1. Model assumptions and limitations 
The proposed simultaneous infrastructure composition and operation optimization model represents 

the high-level electric system of a distribution centre and is formulated using both information from 

literature and from experts of the supermarket company in the case study. The combination of 

theoretical knowledge from the literature and practical knowledge from the supermarket company 

aims to let the formulated model closely represent the real-life distribution centre in the case study. 

However, some assumptions are required to make it feasible to translate the complex real-life situation 

into a mathematical model that can be solved computationally, within a  reasonable amount of time. 

The modelling assumptions made beforehand affect the solution space, which may impinge on the 

real-life representability. Therefore, it is necessary to reflect on the assumptions made and the effect 

they may have on the model’s outcome. 

Looking back at the development process of the mathematical model the most challenging part was 

the computational intensity of the model and incorporating and aligning all the different timescales. 

Infrastructure investment decisions are made upfront for the next decade, while the operation of the 

distribution centre occurs live, changing every second. For the steps in the electrification process also 

specific years had to be evaluated, so eventually the decision was made to look at time periods of an 

hour over the length of a year. 8760 time periods proved to be to computationally intensive to solve, 

so a method had to be find to comprise the simulation length. Literature research presented a 

substantiated method with the K-medoid approach, which will be discussed further in subchapter 9.2. 
 

 

The main assumption concerning the scope and boundaries of the system is that solely the distribution 

centre itself and the activities within its area are considered, which has an effect on site specific input 

data, like the route schedules, power demand of the DC, the kWmax and spatial constraints. The route 

schedules of the e-trucks are assumed to be fixed and not influenced by changing demand of retail 

locations, while in reality the intensity of the route schedules and the assignment to the e-trucks can 

differ. For formulation of the route schedules real-life data from the case study was used with the 

assumption that the average intensity of the route schedules is representative for the future. The 

validity of the route schedules could be reduced if in the future the operational strategy changes and 

the intensity increases. This is also the case with power demand of the DC, for which data from 2021 

was used, but could increase in the future due to business expansion. While the spatial constraints in 

this case study are not bound to change, it is unknown when in the future the congestion on the grid 

is solved by the grid operators and the grid connection can be increased. This possibility is not 

considered in the scenarios but is discussed in the sensitivity analysis. 
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For the yield of the renewable electricity sources as well as the demand of the distribution centre itself 

and electricity market prices it is assumed that historical data is representative for the future. For all 

scenario’s, which in real-life would happen in different years, the historical data from the same year 

was used. This assumption is valid for the renewable electricity generation and also for demand of the 

DC if the size of the operation stays the same, which in the absence of business expansion is valid 

because in the fleet electrification process e-trucks are substitutive and not additive. While normally 

historical electricity prices could also be representative for the near future, geopolitical factors have 

caused the average DAM electricity price to double in 2022. This circumstance could not be foreseen 

at the start of this thesis, but the possible effects were studied in the sensitivity analysis. 

Regarding the infrastructural components, for the integration into the model a selection was made, 

and it was assumed that the characteristics of the different infrastructural components scale linearly 

with the number of units installed. A selection of infrastructural components reduces the solution 

space, which differs from the reality in which all technologies are a possibility. Things like a combined 

heat powerplant or diesel generator were not included but based on the literature the most 

sustainable and financially interesting technologies were selected. Literary substantiation increases 

the likely representativeness of model’s optimal outcome. Real-life validity of characteristics of the PV 

panels and wind turbines like the LCOE were also checked during the research. Besides the selection 

of the infrastructural components, the costs and characteristics of the components also had to be 

assumed linearly for the MILP model. For some elements, like the yield of the PV panels and the 

capacity of the battery system this holds scientifically true, while for others like the yield of the wind 

turbines and the battery (dis)charging rate this is a reasonable assumption. However, for the 

component costs economies of scale conflict with the linear requirement. Small installations are 

relatively more expensive than bigger installations. This non-linear cost path was tried to capture in 

average cost prices considering the ranges of installation sizes that could occur. Due to the modularity 

of PV panels the size of the installation corresponds linearly to the number installed. With wind 

turbines various sizes with different rated power levels exist. That is why a 500 kW wind turbine was 

assumed as a base, and if 7 were installed this could be interpreted as a single wind turbine of 3.5 MW. 

The mathematical MILP model only considers quantitative factors, so post analysis is required 

regardless, to interpret the results according to qualitative wishes in a specific real-life case. 

9.1.2. Research method limitation 
The main aspects of the research method are that an optimization model is used to simultaneously 

optimize the infrastructural composition and the operation, that sequential electrification steps are 

incorporated in scenarios, containing multiple subscenarios, and that a real-life case study is evaluated. 

The limitations of the optimization model as discussed earlier are that it only considers the 

components within the selection, only a single financial objective is considered and that the modelling 

horizon is comprised of a larger dataset, due to computational intensity. The reasoning and 

substantiation for this method has already been explained, but possible improvements will be 

discussed in subchapter 10.3: recommendations for future research. Besides the modelling approach, 

a single case study was caried out. This can negatively affect the reliability of the outcomes of the 

model, but it reduces the time required and increases the focus on the specific case (Gustafsson, 2017). 

The research limitation of a single case study was also partly alleviated by analysing and testing the 

model in 3 main scenarios, with each having 3 subscenarios. The model has thus been tested and 

verified in 9 scenarios, but also repeatedly run in the sensitivity analysis, which increases the reliability 

of the model outcomes. Ideally, more real-life case studies would have been evaluated to further 

increase the model’s reliability. This could have been done by evaluating case studies from other 

distribution centre companies. One other case of a distribution centre was looked at, and the model 

performed well in it, but no additional PV panels or wind turbines could be installed at that location. 
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9.2. Reflection on validity and generalizability 
The validity of the model, as earlier discussed in chapter 7, concerns the level to which the model 

represents the real-life situation it tries to simulate. It effects the reliability of the model’s outcomes 

and the generalizability of the model for other situations. While the validity of the model and data was 

ensured throughout the development and verification and validation process, this section will further 

elaborate on the reliability and generalizability of the model and its outcomes in the case study. 

9.2.1. Validity 
In the development of the model the validity was ensured by using methods which were sufficiently 

substantiated by scientific research, and implementing them on the objective and constraints that 

followed from the problem description and case study. By using general input parameters the model 

can also be applied to different cases. The validity of the data was again ensured by combining and 

comparing data from literature and from experts of the case study. With this approach both the 

reliability of the model’s results and the generalizability of the model to other cases are accounted for. 

The biggest challenge during the modelling was to find and validate the best method available to 

determine the most typical day per month. To reduce the computational complexity of the model, the 

historic data of 2021 was comprised to a typical day per month, with a modelling resolution of hourly 

time period, for a total of 288 time periods. This  shortens the simulation period, which could 

negatively affect the validity if the subset is not representative for a whole year. While this method 

does consider diurnal and seasonal variation, circumstantial events could still occur which would 

invalidate the model’s results. The earlier mentioned Dunkelflaute, in which prolonged periods of no 

wind and minimal solar irradiation occur, could cause the suggested infrastructural composition by the 

model to perform insufficiently (Li et al, 2020). Eventually the K-medoid method was chosen and used 

to determine the typical days of each month for each variable input parameter. The assumption that 

these subsets were representative for the whole year was verified in chapter 7: verification and 

validation. The scientific validity of this method for energy systems was also substantiated by three 

papers from the literature review (Bracco et al., 2019; Dai et al., 2019; Liu et al., 2020). All-in-all the 

validity of the model was continuously checked and the results show that the model accurately 

represents the real-life situation of the distribution centre in the case study. 

9.2.2. Model generalizability 
The specific results of the case study itself  can’t be directly applied to other distribution centres of 

supermarket companies or different ones, but after testing of the mathematical model it can reliably 

be used with other input parameter values to generate results for distribution centres in other cases. 

The case study results hold specifically for the used input parameter values which were based on real-

life data from the supermarket company in the case study, and checked with literature. Changing the 

input parameter values will affect the model outcome as was demonstrated in the chapter 7: validation 

and verification and in subchapter 8.3: sensitivity analysis. The proposed model can however be used 

for other distribution centre companies to analyse the required infrastructure composition and 

operations during their fleet electrification process as the models’ objective functions and constraints 

have been generally formulated. This general construction of the model makes it suitable to be used 

and tested for other case studies as well. The complexity of setting up and using the proposed model 

for other supermarket companies depends on the case study details that should be accounted for, 

such as the number of e-trucks per electrification step, the future route schedules of the e-trucks, the 

max grid connection or kWmax and the space available for the infrastructure components themselves. 

The model can even be applied to other behind-the-meters systems, as explained in the general 

managerial insights in chapter 8, but if other types of components with different characteristics are to 

be considered in the model, some formulas might have to be adapted to the specific component. 
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10. Conclusion 

The purpose of this thesis’ final chapter is to answer the main research question and conclude the 

research by summarizing the insights gathered. First the formulated sub research questions will be 

answered. Discussing them gives a good chronological summary of the whole thesis. Through 

combination of the answers to the sub research questions, a conclusive answer to the main research 

question can be formulated. Finally, recommendations for future research will be discussed. 
 

10.1. Answers to the sub research questions 
In this sub chapter the answers to the sub research question will be given and discussed. The sub-

research questions were formulated following the research boundaries set by the core concepts and 

the knowledge gap identified in the literature review. The answers for the first 3 sub research questions 

follow partly from the literature and partly from the information received out of the case study. 
 

SQ1: “What are the different stages and scenarios of the fleet electrification process?” 
 

In the case study at the end of this year 5 e-trucks will need to be facilitated. In 2025 a total of 60 e-

trucks will have to be facilitated in preparation for 2030, at which point 120 e-trucks need to be 

operational. These main stages were incorporated into three main scenarios, each evaluating the 

infrastructural and operational needs corresponding to the number of e-trucks that had to be 

facilitated. A model which could simultaneously optimize the infrastructural composition and the 

operation was the goal, but to have something to compare it to the concept of greedy charging was 

introduced. Finally, out of the literature review it appeared that variable electricity prices were an 

interesting aspect which had not previously been researched in the context of this thesis’ topic. These 

three topics together formed the subscenarios contained within each main scenario. 
 

SQ2: “Which infrastructural components should be considered and what are their characteristics?” 
 

A lot of different technologies exist that can provide benefit to businesses. To explore which 

technologies and infrastructural components are often considered, especially in the context of this 

thesis’ topic, all papers in the literature were evaluated on the components they consider. PV panels 

and charging stations were most often featured. Battery storage and wind turbines were also 

considered in multiple papers. Two inclusions of a diesel generator were found and one inclusion of a 

combined-heat power plant. It was decided to focus solely on electric sustainable components, 

dropping the diesel generator and the combined heat powerplant, as it also supplies heat. 
 

The power output of a solar PV system depends on several factors, like the solar irradiation, area and 

efficiency of the PV array, angle of incidence, and atmospheric temperature. The power that a wind 

turbine can generate is dependent on the product of factors like the efficiency of the wind turbine, or 

so-called power coefficient, the surface area of the rotor, the density of air and the velocity of air. The 

performance of battery storage depends on the energy and power capacity per module and the round-

trip efficiency. Finally, the performance of the charging stations depends on the charging speed and 

the charging efficiency. While not all factors are mentioned in the mathematical model and rather a 

comprehensive factor is given, all factors are included into the coded model as detailed in appendix C. 
 

SQ3: “What are the costs factors of the components and how can they be implemented in the model?” 
 

The cost per infrastructural component is build-up of various factors. The costs of all infrastructural 

components are consist of the purchase cost, installation cost and maintenance cost. For the PV panels 

and wind turbines even a cost per kW is used, so that units with varying characteristics can be easily  

implemented into the model. In the end a total per unit cost was calculated which is used in the model. 

The difficulty is that the lifetimes of the infrastructural components do not align with the simulation 

period of the model. To adapt these costs to the modelling period, a so-called capital recovery or 
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annualization formula was used, a method which was substantiated by literature. The calculation 

process can be found in appendix C and involves the lifetime of the components and the discount rate. 
 

SQ4: “How can the infrastructural and operational side of the problem be integrated into a single, 

simultaneous optimization model?” 
 

It was found in the literature that the electric infrastructure investment decision can essentially be 

seen a knapsack problem, while demand response or smart charge scheduling can possibly be 

interpreted as a job shop problem or a bin packing problem. Combination of both these problem types 

into a single simultaneous optimization model is not trivial. Inspiration was taken from papers by 

Bracco et al. (2019), Mirhoseini and Ghaffarzadeh (2020) and Wang et al. (2020) which incorporate the 

static infrastructural optimization in the objective function of a MILP model, and the operational 

optimization in the constraints. This approach was used to construct a conceptual model for the 

specific topic of this thesis. In the eventual mathematical model, the objective function is built up with 

the sum of the total cost of each infrastructural component, multiplied with a decision variable 

indicating how many of that specific component the model installs. The model thus tries to minimize 

the total cost by minimizing the installation of each infrastructural component. 
 

The operational optimization is primarily handled in the primary equality constraint, which pertains to 

the energy balance of this system. In this equation the positive and negative power flows are summed 

and have to be equal to zero, because the electrical system always has to be in balance. The positive 

power flows of the PV panels and wind turbines follow from the power yield per unit multiplied with 

the decision variables indicating the number of units of the component installed. The negative power 

flow of the DC demand follows from historical data and the negative power flow of the charging 

demand is a decision variable but has to respond to the SOC of each e-truck, which decreases according 

to its corresponding route schedule. A lot of other equations are also defined in chapter 6 of the 

mathematical model, but in the end the model tries to find the most cost-effective infrastructure 

composition to be able to sufficiently facilitate the total demand. 
 

SQ5: “How do variations in the models’ input parameter values affect the outcome of the model?” 
 

How the model reacts to changes in the values of the input parameters was studied in the sensitivity 

analysis. All the cost factors, the average EV consumption and the PG electricity price are positively 

related to the total costs, which means that when the parameter input values are decreased or 

increased the total cost decreases or increases respectively as well. The kWmax and the battery 

capacity of the e-trucks were negatively related to the total costs, thus an increase or decrease in these 

values effects the total costs inversely. The kWmax and the electricity prices had the most significant 

effect on the total costs. The other parameters had insignificant effect on the lower cost, but 

interesting effect on the type and number of components installed. With PV and wind turbines a 

certain price point can be reached, after which it becomes more attractive to install this component 

type than the other or more attractive than buying power from the grid. The sensitivity analysis also 

allows for the finetuning of the capacity of e-trucks and charging speed of charging stations required. 
 

SQ6: “To what extend does the model reflect the real-life scenario?” 
 

While several assumptions have been made to aid the modelling of the problem, the reliability and 

generalizability as such have been detailed in the discussion. It is possible that certain input parameters 

could be different in reality, but this could differ on a case per case basis as well. The most important 

is that the base of the mathematical model, which are the objective function and the constraints, are 

valid in any case, as was verified in chapter 6. While the K-medoid method offers a literary 

substantiated method to determine the least dissimilar days, to comprise the simulation period from 

a whole year to 12 days, the subset has overall similarity but can’t contain the same level of detail. So, 

while the model does reflect reality, certain edge-cases like a Dunkelflaute are not accounted for. 
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10.2. Answer to the main research question 
By combining the answers of the sub research questions, an answer to the main research question 

could be formulated. The main research question entails: 
 

MQ: “What is the most cost-effective electric infrastructural composition and operation to 

facilitate the electrification of truck fleets of large-scale distribution centres in grid congested 

areas in various scenarios of a case study to ensure that the route schedules can be driven?” 
 

The most cost-effective infrastructural composition and operation is dependent on the characteristics 

and the demand of the DC in question and the number of e-trucks and the intensity of their route 

schedules. The more charging capacity is available between the kWmax and the demand of the DC, 

the less the need for additional infrastructural components is. The number of e-trucks and the intensity 

of their route schedules influences the total charging demand. When the charging capacity is low due 

to the kWmax, and the total charging demand is high, optimal operation is to shift or spread out the 

charging as much as possible. If this is not possible and kWmax is exceeded due to coincident charging 

demand with high power demand of the DC, then additional infrastructural components are required. 
 

The comparison of the simultaneous optimization of operation and infrastructure with the greedy base 

subscenario, in which the charging demand is fixed and only the infrastructural composition can be 

optimized, shows the value of the mathematical model and the cost-effectiveness of the operational 

optimization. It is thus always advisable to not simply charge the e-trucks upon return but actually 

schedule the charging demand, be it by physically switching the e-trucks connected to the chargers or 

by using software. In the managerial insights additional qualitative preferences were discussed, like 

reduction of the risk of exceeding the kWmax and the avoidance of shuffling the e-trucks around at 

night. For the first preference it can be managerially decided to install battery storage, even though it 

is not required by the model, as it can act as a buffer and can be used to trade on the electricity 

imbalance markets. To avoid the need to shuffle the e-trucks between the charging stations at night, 

it was determined based on the charging demand profile of the model that 28 charging stations would 

be the best balance between cost minimization and operational effectiveness. 
 

When these general conclusions are considered with the main scenarios of the case study, then specific 

advice can be given on the infrastructural and operational needs in the various steps of the 

electrification process. In the first main scenario 5 e-trucks need to be facilitated and 1 charging station 

and 994 PV panels are required. Even though the charging demand of 5 e-trucks is small, the short 

charging window of an e-truck in which it has to charge coincides with high demand of the DC, causing 

an exceedance of the kWmax. The precise number of PV panels is installed by the model to yield exactly 

enough power to alleviate the exceeding demand. In the second main scenario 60 e-trucks have to be 

facilitated and 4 charging stations and 2617 PV panels are required, which means 3 more charging 

stations and 1623 more PV panels have to be installed. In the final step of the electrification process 

120 e-trucks have to be operational and 11 charging stations and 5963 PV panels are required, meaning 

7 additional charging stations and 3346 PV panels have to be installed. In the model PV panels of 360 

Wp were considered, while in reality any PV panel can be used, as long they have the same efficiency 

and orientation and a total of 1.562 MW rated power is installed. Managerially the decision for 

charging stations of 125 kW can be made as they would be cheaper and were proven to be sufficient. 

Furthermore, e-trucks of with a battery capacity of 300 kWh were proven sufficient even though they 

slightly raise the infrastructural cost, if they are 1810 euros less in purchase costs compared to the 

base kWh, they would be the more cost-effective option. When the traditional contract with fixed 

electricity prices is replaced with a variable electricity price contract, the advice is to install the 

maximum amount of PV panels and wind turbines to achieve the lowest total costs. 
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The analysis was done using data from 2021, while in 2022 the average electricity price more than 

doubles. The results from the sensitivity analysis show that the advice given above based on the data 

from 2021 is valid for 2022 as well. The value of the sustainable generation from PV panels and wind 

turbines is even greater in 2022. The installation of battery storage is found to be not cost-effective as 

the yield of the PV panels and wind turbines synergizes and the charging demand can be scheduled to 

always make use of the sustainably generated power. The optimal operation of the system in all steps 

of the electrification process has been shown in chapter 8 and entails the shifting or spreading of 

charging demand according to the power demand of the DC. In the scenarios with variable electricity 

prices the charging demand is even shifted to periods with low prices and avoided in periods with high 

prices. All in all, the model was able to supply the most cost-effective infrastructural composition for 

each electrification step and the optimal operational strategies. 

Looking beyond the distribution centre in the case study, it can be stated that the model can be applied 

to more use-cases than just distribution centres and it can be used for other locations around the 

world, as it considers the parameters that can vary internationally. Any manageable power demand 

can be operationally optimized by the model, meaning industrial or large-scale residential systems 

could possibly be evaluated as well. For any case with just a fixed on-site energy demand just the 

infrastructural composition component of the model can be utilized as well. While in this thesis solely 

a single case is studied, general managerial insights were gained by determining the parameters that 

are controllable and evaluating the parameters that can vary across the world in the sensitivity 

analysis. When a case is studied for a system in another part of the world, the input parameter values 

may differ significantly. However, the patterns and interactions from the results of the case study in 

this thesis can still be informative and regardless, the model can be run with the data from the new 

case to generate specific results. Conclusively, the mathematical model provides a proven tool in which 

all important factors of specific infrastructural are considered, in which case specific data and 

constraints can be implemented, to determine the most cost-effective infrastructural composition and 

operations, suitable for similar behind-the-meter system cases around the world. 

10.3. Recommendations for future research 
This thesis provides a mathematical model which can find the most cost-effective infrastructural 

composition and operations for not only distribution centres, but also similar behind-the-meter 

systems, which have to electrify their truck fleet but are hindered by low charging capacity due to their 

kWmax. The model was tested in a case study of a large supermarket company in the Randstad, had 

sensitivity analysis done on it and was evaluated on its validity and generalizability. The model can be 

used as a tool in other cases for other behind-the-meter systems, to advise them on their most cost-

effective infrastructural composition. The operational optimization can be used beforehand to get 

insight into the optimal charging schedule. Various assumptions were made, and limitations were 

determined, opening doors for future research to improve the model and bring it closer to real-life 

reliability. The recommendations for future research will be discussed below. 

A first recommendation for future research is to test the proposed mathematical model in other cases, 

for distribution centres with different characteristics and power demand. Also, different numbers of 

e-trucks and intensities of route schedules can be tested. By testing the model in different real-life case 

studies, the model outcomes can be further validated. Also, the effects that the characteristics of 

different distribution centres have on the model’s outcome can be compared. Continuing in this trend, 

other behind-the-meter systems could be evaluated with the model as well, to test the level of 

applicability of the model to different systems. The formulas might not be directly applicable when a 

different kind of manageable demand is considered instead of electric vehicles, but they provide the 

structure to which the new manageable demand can be added as a decision variable per time period. 
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Besides the possible addition of a different manageable demand, other infrastructural components 

can be added to the model as well. Firstly, alternatives of the same type of component can be added, 

to let the model itself decide which type of charging station or battery it prefers. The model could even 

decide to install a mix of them. Secondly, different types of infrastructure components could be added 

as well, like e-boilers, heat pumps, CHP plants or fuel cells. While for the calculations of the costs the 

same formulas can be used, for the inclusion of the characteristics new formulas are required. Other 

additional factors that could be included in the model are possible revenue streams from renewable 

fuel units or from trading on the imbalance markets. Both would make the installation of 

infrastructural components more attractive. 

In this thesis solely the distribution centre itself was considered and the route schedules of the e-trucks 

were fixed, due to the persistent demand of retail locations. An interesting topic for further research 

would be the possibility for not only scheduling the charging demand but also the possibility of 

rescheduling the transportation demand. In reality the route schedules are very strict, as working hours 

of truck drivers and demand of retail locations have to be considered. But the value of the model being 

able to just shift a route schedule by 1 hour could be significant. The amount that the model shifts a 

route could then come with an associated cost, to let the model decide if the extra cost of rescheduling 

is worth the operational flexibility. A beginning was made with this addition to the model; however, 

the complexity of the model quickly increases with each possible route schedule alternative. 

Another research direction that is also limited by computational complexity concerns the running of 

the model with a smaller resolution or over a bigger horizon. Using a smaller resolution allows the 

model to more precisely optimize the operation and increase the real-life representativeness, as in 

reality decisions are not only made for every hour. Evaluating a larger horizon would extend the 

simulation length and test the robustness of the infrastructural composition more. Ideally, it would be 

possible to run the simulation over a whole year, taking into consideration every variation and 

prolonged periods of similar conditions. The research approach used in this thesis, which uses a typical 

day per month, can then also be validated by checking if the results are similar in both cases. 

Finally, while the proposed mathematical model in this thesis is deterministic and uses historical data, 

it would be interesting to try and apply the operation side of the model to live system optimization. 

While the model can provide a the optimal operation of the system based on historical data, In reality 

the exact future power supply and demand is not known. The uncertainty can be incorporated by 

introducing stochasticity to the variable input parameters. The uncertainty can be reduced by using 

forecast for only a few hours in the future, and by rerunning the model every minute to get the latest 

optimal schedule. This essentially pertains to the live smart charging of the e-trucks. All-in-all a wide 

field of interesting directions and topics can be further researched, highlighting the applicability and 

the power of the model. 
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Appendix B. Programming choices 

After the choice is made to use MILP to solve the problem and the mathematical formulation is worked 

out, several other decisions need to be made to implement and solve the MILP problem. These choices 

concern the solver to use, the software or programming language to write the problem in, and the 

environment to use. The options, pros and cons and final decisions for each choice will be detailed. 

For linear programming a multitude of solvers have been developed which can be divided in free or 

open-source solvers and commercial solvers. The main free solvers are GLPK, LP_SOLVE, CLP, SCIP and 

SoPlex (Meindl & Templ, 2012). The advantage of free or open-source solvers is that they can be used 

at no cost. Open-source solvers can also be managed and improved upon by the concerned 

community. The disadvantage of free solvers is that they are often less powerful and take longer to 

solve problems (Gearhart et al., 2013; Meindl & Templ, 2012). The main commercial solvers are CPLEX, 

Xpress and Gurobi. The advantages of commercial solvers are that they are powerful and faster than 

free solvers. A study by Gearhart et al. (2013) found that no open-source solver could outperform 

CPLEX for example, which shows the power that these commercial solvers have. The software behind 

commercial solvers is more reliable and the companies behind the software can offer more support 

than is available for free solvers. The disadvantage of commercial solvers is that they are expensive to 

acquire for companies. Luckily academic licenses are available for Gurobi and CPLEX, making them free 

of charge for academic use. Analysis by Meindl and Templ (2012) shows that again the performance of 

the commercial solvers far surpasses the performance of free solvers. The performance of Gurobi and 

CPLEX are similar. CPLEX is designed to tackle large scale mixed integer problems, such as the problem 

at hand, and the academic license is easier to acquire, thus CPLEX is chosen as the main solver for this 

research. With open-source solvers the code is released to the public domain, which means that the 

solvers can be used in any software without any restrictions, making it possible to compile the solvers 

on different platforms and architectures (Meindl & Templ, 2012). With commercial solvers the 

available options are dependent on what the developing company offers. The CPLEX solver is currently 

developed by IBM and offered through its own proprietary software, IBM ILOG CPLEX Optimization 

Studio (IBM, 2022). The software however offers several application interfaces (API) making it possible 

to use the solver in different programming languages and programs (Meindl & Templ, 2012). 

That programming language that the problem will be written in is Python. Python is one of the most 

popular programming languages right now (Orlowska et al., 2021). Previous experience with the 

language, its ease of use and the supportive packages available are the reasons for this decision. 

Python is a high-level, open source, object-oriented programming language, with the use of significant 

indentation and clarity in syntax, making programming in python more forgiving and easier to read 

(Kuhlman, 2011; Mitchell et al., 2011). CPLEX also offers an API for python to connect to the solver 

(IBM, 2022; Meindl & Templ, 2012). Code is often written in an integrative development platform (IDE). 

IDEs are tools that improve the writing, testing and debugging of code, by offering code completion, 

highlighting and debugging (Vasconcellos, 2018). The IDE of choice is one recommended by 

Vasconcellos (2018), namely Jupyter Notebook. Jupyter facilitates a structured way of coding and data 

visualization directly in its notebooks, allowing for continuous and accurate data analysis. Python 

doesn’t facilitate intuitive writing of linear programming problems directly, but because Python is open 

source a lot of packages are developed and released for it, so too for linear programming (Mitchell et 

al., 2011). Packages in Python are a collection of modules that together offer functionality in a 

condensed, sort of black box, format (Kuhlman, 2011). The package that will be used for linear 

programming in python is PuLP. PuLP prescribes a specific, textual and intuitive way of writing the 

linear programming problem, after which it converts to the raw, mathematical formulation, which is 

needed for the solver to be able to interpret it (Mitchell et al., 2011).  

https://en.wikipedia.org/wiki/Object-oriented_programming
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Appendix C. Component characteristics and costs 

C.1. Component characteristics 

Even though the PV and WT power flows and BS and EV power levels were earlier defined as decision 

variables, the model does not consider them as such but more as indirectly influenced by the other 

decision variables. The power flows for PV and WT calculated by 
 

𝑃𝑚,𝑡
𝑃𝑉 = 𝑥𝑃𝑉 ∙ ƞ𝑚,𝑡

𝑃𝑉 ∙ 𝐼𝑚,𝑡 ∙ 𝐴𝑃𝑉 ∙ 𝑅𝑃𝑉, ∀ 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇,     (1) 

𝑃𝑚,𝑡
𝑊𝑇 = 𝑥𝑊𝑇 ∙

1

2
∙ ƞ𝑚,𝑡

𝑊𝑇 ∙ 𝐴𝑊𝑇 ∙ 𝜌𝑎𝑖𝑟 ∙ 𝑣3, ∀ 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇,    (2) 

are mostly dependent on the decision variables 𝑥𝑃𝑉and 𝑥𝑊𝑇, denoting how many units of each 

technology are installed respectively. In equation 1 ƞ𝑚,𝑡
𝑃𝑉  represents the efficiency of the solar panels, 

𝐼𝑚,𝑡 the irradiation of the sun, 𝐴𝑃𝑉  the surface area of the solar panel and 𝑅𝑃𝑉the performance ratio 

of the whole PV installation. In equation 2 ƞ𝑚,𝑡
𝑊𝑇 represents the efficiency of the wind turbine(s), 𝐴𝑊𝑇 

the area swept by the rotor and 𝜌𝑎𝑖𝑟 and 𝑣 the density and velocity of the air. 

C.2. Component costs 

Because the model does not run for the whole lifetime of the infrastructural components, the purchase 

and installation costs should be amortized over the lifetime of the asset, after which the costs for the 

first year can be considered. Of course, costs are made in the following years as well, but the utility of 

the assets is then also experienced. The annualization factor based on amortization formulae can be 

seen in equation 4, in which r is the discount rate and LI the lifetime of asset i. 
 

𝜔𝑖 = 𝑟(1 + 𝑟)𝐿𝑖
((1 + 𝑟)𝐿𝑖

− 1)⁄ .       (4) 

The total costs for the infrastructural components like the solar installation, wind installation, battery 

systems and charging stations are calculated quite comparable. The capital C with a capital I subscript 

are the purchase and installation cost of the asset. Only for the charging stations these costs are a fixed 

amount which is multiplied with the annualization factor. For the other components the purchase and 

installation cost are taken as €/kW(h) and multiplied with the rated power W or capacity, after which 

these costs are also multiplied with the annualization factor. The maintenance costs CM are based per 

year. The total cost per unit of a component is finally multiplied with the amount of units the model 

wants to install, denoted by the decision variables x.  
 

𝐶𝑃𝑉,𝑡𝑜𝑡 = 𝑥𝑃𝑉(𝜔𝑃𝑉 ∙ 𝐶𝑃𝑉,𝐼 ∙ 𝑊𝑃𝑉,𝐼 + 𝐶𝑃𝑉,𝑀);      (5) 

𝐶𝑊𝑇,𝑡𝑜𝑡 = 𝑥𝑊𝑇(𝜔𝑊𝑇 ∙ 𝐶𝑊𝑇,𝐼 ∙ 𝑊𝑊𝑇,𝐼 + 𝐶𝑊𝑇,𝑀);     (6) 

𝐶𝐵𝑆,𝑡𝑜𝑡 = 𝑥𝐵𝑆(𝜔𝐵𝑆 ∙ 𝐶𝐵𝑆,𝐼 ∙ 𝐶𝐴𝑃𝐵𝑆 + 𝐶𝐵𝑆,𝑀);      (7) 

𝐶𝐶𝑆,𝑡𝑜𝑡 = 𝑥𝐶𝑆(𝜔𝐶𝑆 ∙ 𝐶𝐶𝑆,𝐼 + 𝐶𝐶𝑆,𝑀);       (8) 

𝐶𝑃𝐺,𝑡𝑜𝑡 = 𝑥𝑃𝐺 ∙ 𝐶𝑃𝐺,𝐼 + 𝐾 ∙ ∑ ∑ ∆𝑡𝑇
𝑡=1

𝑀
𝑚=1 (𝑃𝑚,𝑡

𝑃𝐺,𝑎𝑏𝑠 ∙ 𝑝𝑚,𝑡
𝑏𝑢𝑦

− 𝑃𝑚,𝑡
𝑃𝐺,𝑖𝑛𝑗

∙ 𝑝𝑚,𝑡
𝑠𝑒𝑙𝑙).  (9) 

The total costs for the power grid calculated in equation 5 consists firstly of the amount stepwise 

increases in the grid connection the model wants to install, times the installation cost per such a step. 

Secondly, all the power that is absorbed from the grid is summed and multiplied with the buy price 

and all the power that is injected into the grid is summed and multiplied with the sell price. These costs 

and profits are multiplied with K, which represents the mean number of days in a month, to stretch 

the profit/costs of the 12 typical days across the whole year. Factor K is important as it makes the final 

cost calculations more realistic, and it also enables the investments to earn themselves back more, 

otherwise the yearly costs of a component will not earn itself back in 12 days. 
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Appendix D. Congestion maps 
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Appendix E. Case data & model formulas (confidential) 
All the data from the case study and the formulas of the mathematical model were consolidated in this 

confidential appendix. As not everybody can just have access to this data unfortunately the contents 

of this appendix will not be shown in the public version of this thesis. If you have any questions in 

regards to the part of the model that is deemed confidential you can try to contact Recoy B.V. 
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Appendix F. Structure model code 
 

On the highest level there is the structure of the code itself. Instead of a single, continuous code file 

Jupyter Notebook works with code blocks or cells, which can be run individually. Code needs to be 

written sequentially, meaning that variables, constants and input values need to be defined before 

they can be used in equations of functions. On the lower level there is the structure of the data 

captured in the code. Data structures like lists, series and dictionaries can be used. 

F.1. Structure of the code 

First the necessary packages are imported and the connection to the solvers API is established. 

Secondly the necessary data files are loaded in the modelling horizon characteristics are set. Before 

the model is written first the external and internal input values are defined, from the loaded data files, 

case study data and literary sources. Then the decision variables can be defined in the PuLP syntax and 

the intermediary calculations can be written. The objective function and constraints are the defined in 

the PuLP syntax as well. Finally, the solver is called to acquire the results, automatic error tests are 

implemented, and the results are visualized. 

F.2. Structure of the data 

There are several types of data collection formats that are used within Python with pros and cons, but 

also specific use-cases. Here is a comparison by Kuhlman (2011) of the different types of collection in 

python and their characteristics: 
 

• String: ordered, characters, immutable, 

• Tuple: ordered, heterogeneous, immutable, 

• List: ordered, heterogeneous, mutable, 

• Dictionary: unordered, key/values pairs, mutable, 

• Set: unordered, heterogeneous, mutable, unique values. 

As we need a mutable data collection format that can store numeric values, the choice is between lists 

and dictionaries. A set data structure is not applicable as the values that will be used are not necessarily 

unique. A list is a series of items that can be indexed, appended and performed calculations on. 

Dictionaries are a collection of key-value pairs. These key-value pairs can also be appended and with 

dictionaries specific key-value pairs can be called and performed calculations on (Kuhlman, 2011; 

Pandey et al., 2020; Schäfer, 2021). Dictionaries work as follows: 

dictionary = {} 

dictionary[key] = value 

print(dictionary[key]) 

In the first line of code a dictionary, indicated by the curly brackets, with the name dictionary is created. 

In the second line a key-value pair is added to the dictionary. Square brackets are used to specify a 

certain key. In the third line the specific dictionary key is called, and the value printed. Dictionaries can 

also be nested, essentially a dictionary within a dictionary: 

dictionary[key_1] = {} 

dictionary[key_1][key_2] = value 

print(dictionary[key_1][key_2]) 

This is especially useful if a data collection has multiple indices. In this research not only is data 

associated with time but also with a specific vehicle. So, a dictionary can be created in which the first 

key is 𝑣 ∈ 𝑉, and for every 𝑣 there is a nested dictionary with the second key being 𝑡 ∈ 𝑇 (Pandey et 
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al., 2020). To write equations that are performed for every key-value pair in a dictionary, for loops can 

be used to iterate over all key-value pairs: 

for key_1, value in dictionary: 

 for key_2, value in dictionary[key_1]: 

  new_dictionary[key_1][key_2] = dictionary[key_1][key_2] * 2 

new_dictionary[key_1][key_2] = dictionary[key_1][key_2] * 
other_dictionary[key_1][key_2] 

The first loop iterates over every key_1, while the second loop iterates over every key_2 for each key_1 

exclusively. New nested dictionaries can be created with the same indices, while the values of a nested 

key can be multiplied by constants or with other dictionaries with the same indices. With this approach 

in calculations, the interactions of the values of the time periods will be with the corresponding ones 

between dictionaries. How this approach is used to implement the mathematical model in Python will 

be explained in the next subchapter. 

F.4. Initializing the model 

To run the model, first the required packages need to be imported and the model horizon 

characteristics need to be set. Besides the PuLP package, Matplotlib is used for data visualization and 

Numpy and Pandas are widely used data analysis packages (McKinney, 2012). 

In[1]: import pandas as pd 

import matplotlib.pyplot as plt 

import pulp as pl 

import numpy as np 

In[2]: pl.listSolvers(onlyAvailable = True) 

solver = pl.apis.CPLEX_CMD(mip = True, msg = True, gapRel = 0.10, gapAbs = 0.05, 
timeLimit = None) 

PuLP is abbreviated to ‘pl’ in the model and used in the second code cell, indicated by the second input 

tag ‘In[2]’, to connect to the CPLEX solver. Here the characteristics of the solver can be specified. The 

model’s horizon characteristics also need to be specified. 

In[3]: days = 12 

hours = range(days * 24) 

SufficientlyLarge = 10000 

vehicles = range(1,101) 

vehicle_schedules = len(vehicles) * 3 

K = 30.437 # mean days in a month 

Modelling horizon characteristics pertain to the scope or boundaries of the simulation, in this case the 

timeframe and the number of vehicles. By specifying this at the top of the model the modelling horizon 

can be easily changed for different running different scenarios. 

F.5. Defining the input values 

The input values can roughly be divided in external and internal values; internal if they are within 

control and external if they are outside of control. The extraneous input values mostly concern 
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meteorological data, but also the electricity market prices and the distribution center kWh meter data. 

All this data was consolidated in an Excel file and loaded in using Pandas. 

In[4]: xl = pd.ExcelFile(r"C:\Users\Christiaan\Documents\thesis\input_data.xlsx") 

input_data = xl.parse('input_data') 

In[10]: GHI = dict(zip(hours, input_data.iloc[0:1 + len(hours), 6])) 

From the loaded Excel file data columns are selected and immediately made into a dictionary with the 

hours as index. The data in the Excel file is over a longer period, so the time period specified decides 

the length of the column that is selected.  

In[12]: PV_dr = 0.08 # discount rate 

PV_life = 25 # useful lifetime 

PV_cr = (PV_dr * (1 + PV_dr) ** PV_life) / (-1 + (1 + PV_dr) ** PV_life) 

PV_purchase = 800 # purchase and installation costs per kW 

The intraneous input values can simply by defined in the model, as partly shown above for the 

photovoltaic installation. The exact input values will be discussed in chapter x. 

F.6. Defining the decision variables 

For the definition of the decision variables the exact syntax that PuLP prescribes should be used. 

Documentation can be found on the PuLP (2022) website. In the model static and dynamic decision 

variables are used, dynamic meaning that a specific decision variable acts in every time period. 

Dictionaries are used to give these dynamic decision variables their time index, for which PuLP has a 

designated function. 

In[25]: PG = pl.LpVariable('PG', lowBound = 0, cat = 'Integer') 

PG_abs = pl.LpVariable.dicts('PG_abs', hours, lowBound = 0, cat = 'Continuous') 

for v in vehicles: 

CS_power[v] = pl.LpVariable.dicts('CS_power' + str(v), hours, lowBound = 0, cat = 
'Continuous') 

The decision variables are specified with a name, boundaries, possible index for dictionary decision 

variables and with a value category, either continuous, integer or binary. For the charging decision 

variables first a loop over the vehicles is used, after which a nested dictionary is created. 

F.7. Intermediary calculations 

Intermediary calculations pertain to calculations that are specified after the decision variables are 

defined, but before the objective function and constraints are defined. The intermediary calculations 

specify the framework of interactions between the variables and input values, over which the solver 

calculates the objective functions, adhering to the constraints. One example of intermediary 

calculations is that of the SOC of the EVs. The SOC of the BS is calculated in a similar way. 

In[35]: EV_soc = {} 

for v in vehicles: 

  EV_soc[v] = {} 

for key in sorted(EV_delta[v]): 

if key != 0: 
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EV_soc[v][key] = EV_delta[v][key] + EV_soc[v][key - 1] 

        else: 

EV_soc[v] = {key: value + EV_capacity for key, value in EV_delta[v].items()} 

First the dictionary for the EV SOC is created, after which the loop iterates over every vehicle. Then a 

nested dictionary and a loop over the sorted keys of EV_delta are created, iterating over the 

chronological time index. EV_delta is dictionary where for every hour the charging power is added, and 

the transportation demand subtracted. The IF statement states that if it is not the first time period, 

the EV SOC is the SOC of the EV of the previous time period plus the EV delta, as detailed in equation 

x. However, if it is the first time period the capacity of the EVs and the EV delta are added, to simulate 

the fact that the EVs start with a full battery. 

F.8. Defining the objective function and the constraints 

After all the variables are defined and the whole framework of interactions is written, finally the core 

of the (mixed-integer) linear programming model can be defined. First the objective, to minimize the 

or maximize is specified. Then the objective function, the sum of all costs, is expressed. 

In[50]: model = pl.LpProblem("total_costs", pl.LpMinimize) 

model += pl.lpSum(PV_cost + WP_cost + BS_cost + CS_cost + PG_cost + EV_cost) 

model += PV * PV_surface <= PV_maxsurface 

for v in vehicles: 

for h in hours: 

model += EV_soc[v][h] <= EV_capacity 

An example of a static constraint as well as a dynamic constraint, which holds for every time period 

and every vehicle, is given. In the full model a lot more constraints are specified and used, but the 

examples give an idea of the full model and the PuLP syntax that is essential to use. 

F.9. Verification of the model 

During the development of the individual modules of the model it was continuously checked if the 

outputs were reasonable. Previously acquired knowledge or data found in references was for example 

used to check if the yield of the solar installation or wind turbines was calculated realistically. If the 

outputs of a module seemed unreasonable, the calculations were thoroughly checked to find the error. 

After rectification of these errors some checks were coded into the module to output an error message 

if the error were to occur again. This was especially useful when the different modules were integrated, 

as this could bring back bugs previously present in the model. 

In[82]: for h in hours: 

if PG_inj[h].varValue * PG_abs[h].varValue != 0: 

print("{}{}".format('Error: Coincident in- & outflow PG at h =', h)) 

This code block automatically checks if there is now simultaneous absorption from and injection to the 

power grid in the same time period. If one of them is zero the if condition is not triggered, but if both 

of them are non-zero the result is non-zero and the error message with the time period of occurrence 

is printed. More of these automatic tests were written and included in the complete model, and the 

outputs of every module individually and together were checked on reasonability.  
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G.1. Results scenario 1.2. 

Figure G1. Power flows of the distribution centre’s system in subscenario 1.2. 

G.2. Results scenario 2.2. 

In the second scenario 60 e-trucks need to be facilitated, increasing the total costs and number of 

infrastructural components required, giving insight into the preparations that need to be done for the 

intermediate step in the electrification process around 2025. The objective value or total cost for the 

simulated year is 2886235, which is 12% higher than in scenario 1.2. In scenario 2.2 the costs consist 

for 96% of electricity costs and thus for 4% of infrastructural component costs. In the second scenario 

4 charging stations are required and 2617 PV panels, meaning 3 more charging stations and 1623 more 

PV panels are necessary compared to scenario 1.2. No wind turbines or battery storage are determined 

profitable in this scenario as well. The maximum constraint on the number of PV panels is still inactive. 

The effects of infrastructural components on the operational power flows can be seen in figure G2.  

Figure G2. Power flows of the distribution centre’s system in scenario 2.2 

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

2
0

0

2
0

8

2
1

6

2
2

4

2
3

2

2
4

0

2
4

8

2
5

6

2
6

4

2
7

2

2
8

0

P
o

w
er

 f
lo

w
s 

[k
W

]

Time [h]

PG injected CS demand PG absorbed BS charge BS discharge Curtailment DC demand PV yield WT yield

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 8

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

2
0

0

2
0

8

2
1

6

2
2

4

2
3

2

2
4

0

2
4

8

2
5

6

2
6

4

2
7

2

2
8

0

P
o

w
er

 f
lo

w
s 

[k
W

]

Time [h]

PG injected CS demand PG absorbed BS charge BS discharge Curtailment DC demand PV yield WT yield



Appendix G. Graphs other scenarios  76 

C.M. Buitelaar  / TUDelft 

The charging demand with 60 e-trucks constitutes for 13% of the total power demand and shows 

significant effect on the infrastructural components required and the extensivity of the smart 

scheduling in the operation. More PV panels are used to supply the additional power required above 

the kWmax to charge the e-trucks. It can be seen in figure G2 that from period 130 to 136 and 176 to 

183 the full capacity up to the kWmax is used to buy electricity for continuous periods of time, with 

multiple other points in the simulation were the kWmax is also incidentally reached. The periods of 

time were the kWmax is continuously reached are indicative of the smart scheduling operations by the 

model, as it tries to spread the charging demand over the time and use all capacity that is available. If 

it didn’t spread the charging demand around, it would be more variable and higher demand peaks 

would occur, requiring the installation of more generation components. In the previous scenario peak 

total demand was caused by high demand of the DC and simultaneously necessary charging demand 

of an e-truck. In this scenario peak demand can also be caused by a group of e-trucks with small 

charging windows of a few time periods, if those charging windows coincide with a few time periods 

of high DC power demand. Even if the model spreads the charging demand out in the charging 

windows, the total charging demand in those few time periods can exceed the total charging capacity 

available between the high DC power demand and the kWmax.  

Figure G3. This graph shows the number of e-trucks that is simultaneously charging per time period 

and consequently how many of the charging stations are active in scenario 2.2 in each time period. 

Instead of zooming in on the charging activity of a single e-truck, by looking at the charging activity of 

all charging stations the extend of the smart scheduling can be seen, making it possible to facilitate 60 

e-trucks with only 4 charging stations. Figure G3 shows that at all times 2 charging stations are active. 

A third charging station is active most of the time and the fourth one for halve of the time. If the 

charging was not scheduled smartly by the model, considers both the charging station cost and the 

available power capacity, and the e-trucks would be charged directly after their return to the DC, then 

the number of charging stations required and power demand peaks would be higher. The model does 

assume that there are always people available to switch the e-truck that are connected to the charging 

stations. In reality the shunting of e-trucks is not always possible, and the DC has other operational 

requirements. This will be discussed more in the discussion. 

G.3. Results scenario 2.3 

Scenario 2.3 is identical to scenario 2.2 in the facilitation of 60 e-trucks and while the only difference 

is that the fixed electricity price is replaced by hourly DAM electricity prices, the effect of the electricity 

price variability is visible in the recommended infrastructure composition. In scenario 2.3 the same 

number of charging stations as in scenario 2.2 are necessary with 4 pieces. However, instead of 

installing 2617 PV panels the model installs 2 battery modules, for a total capacity of 200 kWh, to 
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handle the charging demand in excess of the kWmax at t=180. In scenario 2.2 the installation of PV 

panels to handle this peak demand was more cost-effective, as the power yield could be used in other 

time periods as well. In scenario 2.3 the installation of battery storage allows the model to handle peak 

demand, but also utilize arbitrage possibilities as can be seen in figure G4, charging when the DAM 

electricity prices are low and discharging when the prices are high. Besides the operational 

optimization of the battery the model is also able to shift the charging demand to time periods when 

the electricity prices are low. This results in an objective value and total costs of 2779883, which is 4% 

lower than in scenario 2.2. 

Figure G4. Power flows of the distribution centre’s system in scenario 2.3 

G.4. Number of e-trucks that need to be charged per typical day 

In reality logistical companies do not want to physically shuffle e-trucks between charging stations. 

Software does exist to smartly schedule the charging, so that all e-trucks can be connected to charging 

stations, but only a selection is charged at a time. This does however mean that more charging stations 

are required than minimally found by the model. For the case study in this thesis the maximum number 

of e-trucks that need to be charged in the night, during which the distribution centre doesn’t want to 

usher e-trucks around, can be seen in figure G5. 

Figure G5. Number of e-trucks that have to charge per typical day or only considering the night. 
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