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Abstract
Single-cell RNA sequencing data clustering is
a valuable technique for demonstrating cell-to-
cell heterogeneity and revealing cell dynamics
within and amongst groups. Large up-scaling
of scRNA-seq datasets in recent years pose com-
putational challenges for existing state-of-the-
art clustering techniques. A possible solution to
tackle these challenges is to binarize the scRNA-
seq data and perform clustering using opti-
mized binary methods. Using a binary cluster-
ing pipeline we demonstrate that binary cluster-
ing solutions resemble conventional clustering
solutions for large clusters, but show less resem-
blance for smaller clusters. We also show that
the Leiden community detection algorithm can
achieve higher cluster quality compared to the
Louvain algorithm for the binarized data.

1 Introduction
Single-cell RNA sequencing (scRNA-seq) technology has be-
come an important method for deciphering the heterogene-
ity and complexity of RNA expressions within individual
cells. scRNA-seq also reveals the composition of different
cell types and functions within highly organized tissues, or-
gans and organisms [1]. A major technique for getting valu-
able insight from the scRNA-seq data is the clustering of cells
based on their gene expression levels. Nowadays, a single
scRNA-seq dataset can easily contain over a million cells [2].
This large up-scaling of scRNA-seq datasets allows for more
expressive clustering results, but does require clustering tech-
niques to adapt to this data surge by running in a more time-
and memory efficient manner.

The primary bottleneck in the clustering pipeline for large
scRNA-seq datasets using state-of-the-art techniques is the
calculation of the cell distance matrix. This step of the al-
gorithm compares the gene expression data of every cell with
every other cell and hence runs in quadratic time, scaling with
the number of cells in the input dataset. Improvements to the
time-efficiency of this step of the algorithm therefore result in
a better runtime of the full pipeline and consequently enable
processing larger datasets with the same amount of compu-
tational resources. Current approaches to reduce the runtime
of clustering include methods such as principal component
analysis (PCA), but these tend to result in a drop of clustering
quality [3].

In previous research, Bouland et al. has proposed that
it may be possible to run the clustering algorithm on a bi-
narized representation of single cell RNA-seq data without
greatly altering clustering results [4]. Using such technique
would allow cell data to be stored in a binary format and com-
parisons to use a binary distance metric. This could lead to
greatly improved time and memory efficiency of the cluster-
ing pipeline. This research is, however, mostly theoretical
and requires more experimental evidence to prove it’s value
in real-world applications.

Here, we adapt the state-of-the-art scRNA-seq clustering
pipeline to binarized input data in an attempt to minimize the

changes in the output clusters generated through community
detection and therefore maintain clustering quality. We pose
the question; What community detection algorithm results
in clusters most similar to current state-of-the-art clustering
methods when applied to binarized scRNA-seq data?

If it can be shown that binary input data can be used with-
out greatly altering the output clusters, it logically follows
that the clustering pipeline can be greatly enhanced by using
optimized binary comparison techniques. This research will
not attempt to optimize the processing speed of the pipeline
itself, but by showing that quality is largely maintained using
a binarized representation of single cell RNA-seq data, it may
open the door for future research to attempt to do so.

2 Methodology
To answer the research question posed in this paper we devel-
oped a binary clustering pipeline. The quality of this pipeline
was evaluated by comparing the output clusters against clus-
ters resulting from a conventional state-of-the-art clustering
pipeline.

2.1 Binary clustering pipeline
Conventional state-of-the-art scRNA-seq clustering tech-
niques usually consist of a five-step workflow [5]. This work-
flow is shown in figure 1 and is summarized as:

1. Read scRNA-seq data into an expression matrix

2. Convert expression matrix into component matrix using
principal component analysis (PCA)

3. Find the distance matrix by calculating all cell to cell
pairwise distances

4. Find the k-nearest-neighbour graph (KNN-graph) for
this distance matrix

5. Find well-connected communities in the KNN-graph us-
ing a community detection algorithm and assign a clus-
ter label to all cells per community

Figure 1: Conventional clustering workflow

The binary pipeline built for this research follows the
same workflow as the conventional workflow, where the steps
that are specific to non-binary data are replaced by a binary
method that is most equivalent. Steps (4) and (5) of KNN-
graph generation and community detection operate on the



non-binary distance matrix, hence these components stay the
same. Step (1) of reading non-binary input data into an ex-
pression matrix is replaced by an equivalent step of reading
the binary input data into a binary matrix. There are multi-
ple options when replacing steps (2) and (3). The first option
is to replace step (2) by a binary equivalent of PCA, turn-
ing the binary matrix into a component matrix. This would
leave distance matrix calculation in step (3) untouched. A
second option is to remove step (2) from the workflow and
directly calculate the distance matrix from the binary matrix
by replacing the pairwise distance metrics with their binary
equivalents in step (3).

It is exactly in step (2) and (3) that the time and mem-
ory efficiency of the binary pipeline can be greatly enhanced
by taking the second replacement option. The binary ma-
trix created in step (1) of the binary workflow has greatly im-
proved memory efficiency compared to the expression matrix
and eliminating the need for PCA also removes the memory
usage for the component matrix in step (2). The binary repre-
sentations can also be compared more efficiently using binary
distance metrics in step (3), as they can be optimized to com-
pare multiple bits at a time by using efficient implementations
for calculating the hamming weight [6].

The binary clustering pipeline used in this research imple-
ments the proposed four-step workflow by eliminating step
(2) of the conventional pipeline and adapting step (3) by com-
paring binary data using binary distance metrics. A graphical
summary of the binary clustering workflow used in this re-
search is displayed below in figure 2.

Figure 2: Binary clustering workflow

The binary clustering pipeline described in this section
is entirely built in C++ as the programming language most
well-known for its’ efficiency and optimizability. The binary
matrix, distance matrix as well as the KNN-graph steps are
self-implemented. Community detection makes use of the
IGraph library, because it is the most widely used graphing li-
brary that contains implementations of both the Louvain and
Leiden algorithms and has an interface for C, C++, R and
Python. Multiple binary distance metrics and clustering eval-
uation metrics have also been self-implemented. Finally, the
pipeline has been made compatible with R4 and R5, being the
languages most commonly used by researchers when working
with statistics.

2.2 Experimental setup configuration
Clustering outcome of the binary clustering pipeline is largely
decided by how the KNN-graph is connected and how the
community detection algorithm identifies the different com-
munities in the KNN-graph. Different cluster labels are as-
signed to every community detected in the KNN-graph, re-
sulting in the clustering solutions that are evaluated against
the ground truth.

KNN-graph configuration
The effectiveness of the KNN-graph depends on the value of
K, a parameter describing the number of nearest neighbours
for every node in the graph, and the distance metric that is
used to find these nearest neighbours. The K-value decides
the degree of connectedness of the graph, where either too
low or too high connectedness could lead to poor cluster qual-
ity. It is therefore essential that the value of K and the distance
metric are selected with care when running clustering experi-
ments.

Research has shown that the optimal choice of distance
metric and the value of K are related, but mainly depend on
properties of the scRNA-seq dataset operated on and whether
PCA has been applied or not [7]. It is not guaranteed that
the suggested distance metrics and K-value combinations that
apply to conventional clustering methods also provide simi-
lar results when applied to binary clustering. Binary datasets
have different properties from non-binary datasets and not ev-
ery continuous distance metric has an equivalent binary dis-
tance metric available.

The objective of this research is to find binary clustering
solutions that perform well relative to the state-of-the-art con-
ventional methods and to compare the clustering quality of
the community detection algorithms. It is therefore logical
to pick a single binary distance metric and a K-value that
are likely to provide the best results for binary datasets. Bi-
nary scRNA-seq datasets follow a discrete value distribution
and are usually sparse in nature [4]. The binary clustering
pipeline used to run experiments for this research does not
apply PCA. Therefore, according to the flowchart for recom-
mended metrics and neighbourhood sizes (k) given specific
structural properties of an scRNA-seq dataset, provided in the
research performed by Watson et al., the Cosine distance met-
ric and Phi distance metric are both great candidates when
applied to binarized scRNA-seq datasets [7]. Both the Cosine
and Phi distance metrics have a binary equivalent and both
provide good results for datasets that contain rare cell popu-
lations as well as those without [7] [8]. The Cosine distance
metric appears to perform better with sparse datasets overall
and also seems to perform well for low values of K as well
as high K-values, providing more flexibility than the Phi dis-
tance metric.

The binary Cosine distance metric was therefore selected
as the metric of choice for the experiments performed in this
research. It is also known as the Ochiai dissimilarity metric
and is the inverse of the Ochiai similarity metric [9]. It is
defined as

Do = 1− So (1)
where



So =
X · Y
|X||Y |

(2)

is the Ochiai similarity metric and X and Y are binary vec-
tor representations of the cell data.

The K-value used with the binary cosine distance metric
is flexible (with recommended values of K=3,30,50,100) and
is set to the K-value that was used to create the ground truth
solutions [7]. Setting the K-value to the same K-value used
for the ground truth guarantees that the KNN-graph is equally
well connected while maintaining the memory usage of the
KNN-graph.

Community detection configuration
Community detection is used to find the well-connected com-
munities in the KNN-graph. Most conventional state-of-the-
art clustering pipelines rely on the Louvain community detec-
tion algorithm for finding communities, but recent research
has shown that the newly developed Leiden community de-
tection algorithm may provide better clustering results [10].
It is these two community detection algorithms that our ex-
perimental setup deploys and were used to find the different
communities in the KNN-graph and assign cluster values.

Both the Louvain and the Leiden community detection
algorithms rely on modularity. Modularity is one of the
most effective community detection methods nowadays. This
method attempts to maximise the difference between the ac-
tual number of edges and expected number of edges in a com-
munity [10]. Modularity (Q) is calculated by

Q =
1

2m

∑
c

ac − γ
k2c
2m

(3)

where ac denotes the actual number of edges in community
c, kc denotes the expected number of edges in community c
and m is the total number of edges in the graph. γ is a res-
olution parameter that influences the number of communities
that are detected [10]. Higher values of γ lead to more com-
munities, whereas lower values lead to fewer communities.

The resolution parameter γ is the most important optimiza-
tion variable that was tweaked in the experiments conducted
in this research. Both community detection algorithms were
initialized as undirected graphs and the edges were assigned
weights that further improve the performance of the modular-
ity function. The edge weights were set to the inverse of the
distance values on the edges of the KNN-graph and were cal-
culated using the Ochiai similarity function defined in equa-
tion (2).

The Leiden algorithm furthermore has the option of config-
uring the parameter β, which indicates the degree of random-
ness. It also allows to set the maximum number of iterations
n that the algorithm will perform, which can be used to force
the amount of communities detected for a specific value of γ.
The parameter β was set to 0.01 for all experiments to allow a
small degree of randomness. n was set to the default value for
the experiments in this research as optimization is performed
on γ.

2.3 Clustering outcome evaluation
Binary scRNA-data clustering is still a new concept and a lot
is still unknown about resulting clustering composition. To
study the different clustering compositions, evaluation met-
rics that look at different clustering traits were picked. Evalu-
ating different clustering traits also proved useful when com-
paring the behaviour and clustering quality of the Leiden and
Louvain community detection algorithms.

The most commonly used metrics for evaluating clustering
similarity are the adjusted random index (ARI) and the nor-
malized mutual index (NMI) [11]. Recently, the pairwise set
index (PSI) has also become increasingly popular for evalu-
ating clustering quality in a supervised manner [7]. We have
selected these 3 evaluation metrics to compare the experimen-
tal clustering results against conventional clustering solutions
for the same datasets.

ARI, NMI and PSI work fundamentally different and fall
in different categories of cluster validity indexes. They each
provide insight into different clustering characteristics. ARI
is a pair-counting measure, whereas NMI is a information the-
oretic measure and PSI is a set matching measure [12].

Pair-counting measures
Pair-counting measures count the pairs of points that fall in
the same clusters and those that fall in different clusters [12].
ARI is calculated as

ARI =
RI − E(RI)

1− E(RI)
(4)

where RI denotes the random index and is defined as

RI =
a+ d

N(N − 1)/2
(5)

and E(RI) denotes the expected value of RI . a represents
the number of pairs that are in the same clusters and d rep-
resents the number of pairs that are in different clusters. N
denotes the total number of points in a clustering.

Information theoretic measures
Information theoretic measures use the concept of entropy to
compare two clusterings [12]. NMI is given by

NMI =
MI(P,G)

(H(P ) +H(G))/2
(6)

where P and G denote the two clusterings being compared,
H(P ) and H(G) give the entropy of clusterings P and G re-
spectively and MI(P,G) gives the mutual information score
of the clusterings. The entropy of clustering P with K clus-
ters is defined as

H = −
K∑
i=1

|Pi|
N

log
|Pi|
N

(7)

where N is the total number of points in a clustering and
|Pi| denotes the number of points in cluster Pi. The mutual
information score MI(P,G) of two clusterings P and G is
given by



MI =

K∑
i=1

K′∑
i=1

nij

N
log

Nnij

|Pi||Gj |
(8)

where K and K ′ denote the number of clusters in cluster-
ings P and G, Pi and Gj are two of those clusters, |Pi| and
|Gj | are their respective sizes and nij is the number of shared
points between clusters Pi and Gj .

Set matching measures
Set matching measures are based on matching entire clusters.
Similar clusters are first aligned either by pairing or matching.
Cluster pairs are then evaluated using set similarity metrics
[12]. PSI is calculated as

PSI =


S−E(S)

max(K,K′)−E(S) if S ≥ E(S)

0 if S < E(S)

1 if K = K ′ = 1

(9)

where

S =

min(K,K′)∑
i=1

nij

max(|Pi|, |Gj |)
(10)

and K and K ′ denote the number of clusters in cluster-
ings P and G, Pi and Gj are two of those clusters, |Pi| and
|Gj | are their respective sizes and nij is the number of shared
points between clusters Pi and Gj . E(S) denotes the ex-
pected value of S.

3 Experiments
The experiments in this research were performed on two dif-
ferent scRNA-seq datasets to sketch a picture of how the Lei-
den and Louvain community detection algorithms impact the
clustering results from a binary clustering pipeline relative to
a ground truth solution resulting from a conventional cluster-
ing pipeline.

Each dataset had the normalized scRNA-seq data available
and a ground truth solution was selected based on the dataset.
The normalized data was binarized by setting every non-zero
value to a binary 1 and every zero value to a binary 0.

The binarized data was used to run 1000 experiments on
the experimental setup of our binary clustering pipeline for
each community detection algorithm for increasing parame-
ter γ. This resulted in 1000 clustering solutions for the Lou-
vain algorithm and the Leiden algorithm respectively. These
solutions were then evaluated against the ground truth for the
ARI, NMI and PSI metrics to give a similarity score between
0% and 100% for each metric. This gave an overview of the
behaviour of each community detection algorithm and nar-
rowed down the γ-range for which each metric score peaked.

Exhaustive search was then performed to find the binary
clustering solution with an optimal similarity score for each
metric for each community detection algorithm over the nar-
rowed down γ-ranges. The optimal similarity scores for each
metric were used to quantify which community detection al-
gorithm resulted in clusters most similar to the current state-
of-the-art conventional pipeline. The optimal clustering so-
lutions were further broken down into cluster partitions and

visualized. The clustering solutions with interesting partition-
ing were also visualized in uniform manifold approximation
and projection (UMAP) space using the Python UMAP li-
brary described in the paper by McInnes et al. [13]. These
cluster visualizations were then empirically evaluated to ar-
gue which community detection algorithm seems to perform
most similar to the current state-of-the-art for the correspond-
ing ground truths.

The two datasets that were used in the experiments, includ-
ing their respective ground truth solutions, are detailed below.

Alzheimer’s dataset
The alzheimer’s dataset contains scRNA-seq data from hu-
man brain cells. It is based on the alzheimer’s dataset used
in prior scRNA-seq research conducted by Grubman et al.
where unidentified and hybrid cell types have been removed
[14]. The dataset contains 11.884 cell data points.

The ground truth for this dataset was created using a con-
ventional clustering pipeline by visual inspection of the re-
sulting UMAPs. The resulting clustering solution was found
using the jaccard distance metric and a k-value of 10. It is
visualized in a UMAP in figure 7a.

Xenopus’ tail dataset
The xenopus’ tail dataset contains scRNA-seq data from a tail
of xenopus laevis tadpoles. The dataset was used in research
conducted by Aztekin et al. and is openly accessible [15]. It
contains 13.199 cell data points.

The ground truth for this dataset was found using a conven-
tional clustering pipeline by optimizing on silhouette score
using the cosine distance metric and a k-value of 10. The re-
sulting clustering solution had a silhouette score of 0.809 and
is visualized in a UMAP in figure 7b.

4 Results

Similarity scores for all evaluation metrics peak for low γ
and then suddenly drop and gradually decline as γ grows
To get a general idea of the behaviour of the Louvain and
Leiden community detection algorithms when applied to bi-
narized scRNA-seq data we collected 1000 binary cluster-
ing solutions for each dataset for each algorithm. The solu-
tions were collected for increasing parameter γ and the ARI,
NMI and PSI similarity scores were calculated relative to the
ground truths. The similarity scores for each metric with re-
gards to the ground truth peaked for low values of γ after
which they oscillated around the peak and then decreased as
γ increased (Figure 3). The same behaviour occurred for both
community detection algorithms and both datasets. For the
Alzheimer’s dataset the similarity scores peaked for Louvain
in the γ range of [0, 0.27] and for Leiden in the range of [0,
0.00018] with approximate peak values of 96% (ARI), 93%
(NMI) and 75% (PSI) (Figure 3a). In case of the Xenopus’
tail dataset the peaking effect occurred for Louvain in the γ
range of [0, 0.18] and for Leiden in the range of [0, 0.00014]
with approximate peak values of 95% (ARI), 94% (NMI) and
70% (PSI) (Figure 3b).



(a) Alzheimer’s dataset (b) Xenopus’ tail dataset

Figure 3: Plot of the ARI, NMI and PSI similarity scores for binary clusterings resulting from the Louvain and Leiden community detection
algorithms relative to the ground truths for increasing resolution (γ) for (a) the Alzheimer’s dataset and (b) the Xenopus’ tail dataset. The
x-axis represents the resolution parameter γ, the y-axis represents the similarity score and the colors represent the different cluster evaluation
metrics.

Similarity scores for all evaluation metrics are highest
when the number of clusters in the binary clustering
solution and the ground truth is close
The early peaking behaviour of the community detection al-
gorithms was in line with the behaviour of the modularity
function, defined in equation (3). By definition of the mod-
ularity function, low values of γ result in a low number of
clusters (n), where larger γ values result in more clusters. The
similarity scores were therefore expected to peak quickly, be-
cause the ground truths only contained few clusters and were
then expected to drop gradually as the data points in the bi-
nary clustering solutions were divided over more and more
clusters. The similarity scores relative to the ground truth
(n=6) for the Alzheimer’s dataset were highest when the bi-
nary clustering solutions contained 5 to 6 clusters with ap-
proximate peak values of 96% (ARI), 93% (NMI) and 75%
(PSI) (Figure 4a). For the Xenopus’ tail dataset the similar-
ity scores peaked relative to the ground truth (n=8) when the
binary clustering solutions contained 6 to 10 clusters with
approximate peak values of 95% (ARI), 94% (NMI) and
81% (PSI) (Figure 4b). The centering of the similarity score
peaks around the number of clusters in the ground truth is
well-defined by the PSI evaluation metric as the PSI similar-
ity score quickly decreases when the difference between the
number of clusters in the binary clustering solution and the
ground truth grows.

Leiden community detection scores higher than Louvain
community detection for all evaluation metrics
To determine which community detection algorithm produces
binary clustering solutions most similar to the conventional
state-of-the-art, we have performed an exhaustive search to
find the solutions with the optimal ARI, NMI and PSI scores
for each community detection algorithm and each dataset.
The optimal solutions for the Alzheimer’s dataset resulted
in similarity scores of 96.72% (ARI), 93.24% (NMI) and

76.58% (PSI) for the Louvain algorithm and in similarity
scores of 96.84% (ARI), 93.42% (NMI) and 76.63% (PSI)
for the Leiden algorithm (Figure 5a). For the Xenopus’ tail
dataset the optimal solutions resulted in similarity scores of
95.77% (ARI), 94.63% (NMI) and 71.82% (PSI) for the Lou-
vain algorithm and in similarity scores of 95.80% (ARI),
94.79% (NMI) and 81.30% (PSI) for the Leiden algorithm
(Figure 5b). In all cases the Leiden community detection al-
gorithm scored higher than the Louvain community detection
algorithm. The Leiden community detection algorithm, how-
ever does have a bias, as we set our β parameter to 0.01. It
is possible that the small amount of randomness resulted in
clusters most similar to the ground truths when searching for
the optimal solutions.

Binary clustering shows great resemblance to
conventional clustering for larger clusters, but less
resemblance for smaller clusters
To take an in-depth look at how binary clustering results re-
late to conventional clustering results we have analyzed the
cluster compositions of the ground truth solution and the most
similar binary clustering solutions for the ARI, NMI and PSI
metrics.

The ground truth of the alzheimer’s dataset and the optimal
Leiden solution for the PSI metric contained 6 clusters each.
The other optimal solutions only contained 5 clusters each.
For the Alzheimer’s dataset the largest cluster was nearly
equal in size for all solutions, whereas the smaller clusters
indicated more variation among the cluster sizes (Figure 6a).
The high ARI score (>96%) and NMI score (>93%) proved
that most of the data points were shared among clusters. The
two largest clusters in the ground truth contained 9.603 out
of 11.884 data points (80.1%) and therefore had more impact
on the ARI and NMI metric scores. The clustering solutions
with only 5 clusters have a maximum PSI score of 83.33%
by definition. They were all missing the smallest cluster con-



(a) Alzheimer’s dataset (b) Xenopus’ tail dataset

Figure 4: Plot of the mean, minimum and maximum ARI, NMI and PSI similarity scores by the number of clusters in the binary clustering
solutions resulting from the Louvain and Leiden community detection algorithms relative to the ground truths for (a) the Alzheimer’s dataset
and (b) the Xenopus’ tail dataset. The x-axis represents the number of clusters (n) in the binary clustering solution, the y-axis represents the
similarity score and the colors represent the different cluster evaluation metrics.

(a) Alzheimer’s dataset (b) Xenopus’ tail dataset

Figure 5: Histogram of the optimal ARI, NMI and PSI similarity scores of the binary clustering solutions resulting from the Louvain and
Leiden community detection algorithms relative to the ground truths for (a) the Alzheimer’s dataset and (b) the Xenopus’ tail dataset. The
x-axis represents the community detection algorithm, the y-axis represents the similarity score, the values inside the bars show the exact
optimal similarity score and the colors represent the different cluster evaluation metrics.



(a) Alzheimer’s dataset (b) Xenopus’ tail dataset

Figure 6: Stacked bar chart showing the cluster partitionings for the ground truth and binary clustering solutions with the optimal ARI, NMI
and PSI metric scores for the Louvain and Leiden community detection algorithms for (a) the Alzheimer’s dataset and (b) the Xenopus’
tail dataset. The x-axis represents the number of datapoints in the partitioning, the y-axis represents the clustering solution and the colors
represent the different clusters in the partitioning

firming that the impact of smaller clusters was much larger on
the PSI metric score. The optimal binary clustering solution
containing 6 clusters only had a PSI score of 76.63%. This
indicated that there was little overlap between at least one of
the small clusters. This was indeed the case as one of the
smaller clusters had largely fused with one of the larger clus-
ters in the binary clustering solution (Figure 7b) with respect
to the ground truth (Figure 7a).

The ground truth of the The Xenopus’ tail dataset consisted
of 8 clusters and so did the optimal Leiden solution for the
PSI metric. The optimal similarity scores for the Louvain al-
gorithm resulted in the same solution for all metrics (ARI,
NMI, PSI), containing 9 clusters. The optimal Leiden clus-
tering solutions for the remaining metrics (ARI, NMI) were
also the same solution and contained 7 clusters. There were
6 major clusters in all solutions that together contained more
than 95% of the data points (Figure 6b). The minor clus-
ters together, therefore, only contained less than 5% of all
the data points. This imbalance supported the relatively high
ARI and NMI scores and lower PSI scores that we found.
Despite the optimal solution for the Leiden PSI metric con-
taining an equal number of clusters as the ground truth we
only found a PSI score of 81.3%. This indicated that the ma-
jority of data points in the minor clusters did not overlap be-
tween the binary solution and the ground truth. We verified
that the smallest cluster in the ground truth (Figure 7c) was
not detected in the binary clustering solution (Figure 7d), but
a different minor cluster was detected instead.

5 Discussion
From the results we have observed that the Louvain and Lei-
den community detection algorithms behave in a similar fash-
ion. The similarity scores of the algorithms quickly peak with
regards to the ground truth for low γ-values and then stabilize,
or decline as the value of γ increases.

The optimal similarity scores for the ARI, NMI and PSI
metrics turned out to be higher for the Leiden algorithm than
the Louvain algorithm for all cases. The paper by Traag et al.
suggests that the Leiden algorithm outperforms the Louvain
algorithm in terms of quality for the conventional clustering
pipeline [10]. The results seen in this research could provide
supplementary evidence in favor of this suggestion and show
that the Leiden algorithm also performs better than the Lou-
vain algorithm for binary clustering. The Leiden algorithm
was however used with the parameter β set to 0.01 indicating
a small degree of randomness. It is therefore possible that the
optimal clustering results were only found based on chance.
More experiments need to be conducted to verify these find-
ings.

We have also observed that binary clustering shows a high
level of resemblance for the ARI and NMI metrics with re-
gards to the ground truth. With maximum ARI similarity
scores of 96.72% and 95.77%, most data points for the bi-
nary case fall in the same clusters as in the conventional
case. However, the maximum PSI scores of 76.63% and
81.3% with the visual assistance of the UMAPs suggested
that smaller clusters had little overlap or were missing com-
pletely. This could be detrimental when looking for small
clusters containing rare cell types.

Nevertheless, the binary clustering experiments described
in this research were only performed using two different
datasets and evaluated against a single ground truth solu-
tion for each dataset. Binary clustering may show differ-
ent behaviour for other datasets or perform better or worse
when evaluated against other conventional clustering solu-
tions. The application of unsupervised clustering techniques
such as finding optimal clustering solutions based on silhou-
ette score may also highlight yet unforeseen positive features
of binary clustering with regards to conventional methods.



(a) Alzheimer’s dataset (Ground truth) (b) Alzheimer’s dataset (Optimal PSI)

(c) Xenopus’ tail dataset (Ground truth) (d) Xenopus’ tail dataset (Optimal PSI)

Figure 7: Uniform Manifold Approximation and Projection (UMAP) of (a) the ground truth of the Alzheimer’s dataset and (b) the binary
clustering solution with the highest PSI score for the Alzheimer’s dataset and (c) the ground truth of the Xenopus’ tail dataset and (d) the
binary clustering solution with the highest PSI score for the Xenopus’ tail dataset.



6 Conclusion
In this research we posed the question what community de-
tection algorithm results in clusters most similar to the current
state-of-the-art clustering methods when applied to binarized
scRNA-seq data.

The experiments conducted on a binary clustering pipeline
revealed that the Leiden community detection algorithm per-
formed better than the Louvain community detection algo-
rithm for 3 different clustering similarity metrics when com-
pared to a ground truth solution resulting from a conventional
clustering pipeline for all datasets.

The experimental results also showed that clusters result-
ing from the binary clustering pipeline were very similar in
composition for bigger clusters, but showed less overlap for
smaller clusters, or went completely undetected.

Further research into the impact of binary clustering on the
clustering output is necessary to verify the observations made
in this research. Applying the research method described in
this paper to other datasets may also highlight different fea-
tures of binary scRNA-seq data clustering that are yet un-
known.

7 Responsible Research
Here we discuss the ethical aspects of this research. This re-
search was built on top of the contributions of others and it
is important that the experimental results are reproducible to
prove their validity. The parts of this research that rely on the
contributions of others each show a reference to the original
source. In this way we acknowledge the intellectual property
of others and distinguish it from our own. The experiments
in this research were conducted on a self-implemented binary
clustering pipeline. We have made the source code of this
pipeline publicly available. This allows others to verify the
validity of the code or to use the code to run their own ex-
periments and verify our findings. This paper describes the
experimental steps that were taken, the exact configuration
settings of the pipeline and all the parameter values that were
used to accumulate our results. Following this exact workflow
guarantees that the results are valid and can be reproduced.
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