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Abstract—The design of bespoke adaptive detection schemes
relying on the joint use of multistatic/polarimetric measurements
requires a preliminary statistical inference on the clutter inter-
ference environment. This is fundamental to develop an analytic
model for the received signal samples, which is used to synthesize
the radar detector. In this respect, the aim of this paper is
the design of suitable learning tools to study some important
statistical properties of the sea-clutter environment perceived at
the nodes of a multistatic/polarimetric radar system. The study is
complemented by the use of radar returns measured with the Net-
ted RADar (NetRAD), which collects simultaneously monostatic
and bistatic measurements. Precisely, the homogeneity properties
of the data in the slow-time domain are first assessed resorting
to Generalized Inner Product (GIP) based statistics. Then, the
possible presence of structures in the clutter covariance matrices
(both inter and intra channels) is investigated through ad-hoc
statistical tools. The results show that the data, regardless the
polarimetric/geometric configuration, can be modeled as drawn
from a stationary process within the coherence time. Moreover,
for both the monostatic and the bistatic returns the structure of
the covariance matrix depends upon the polarimetric/geometric
configuration of the sensing system.

Index Terms—Multistatic/polarimetric radar, Spherically In-
variant Random Process (SIRP), sea-clutter, Generalized Inner
Product (GIP), data homogeneity, covariance matrix structure.

I. INTRODUCTION

The design of adaptive detection schemes requires a prelim-
inary statistical inference on the clutter interference environ-
ment. This is essential for developing a well-suited analytic
model for the received signal, which is used to synthesize the
radar detector. Incorrect modeling of the clutter environment
can lead to false and/or missed detections, compromising the
overall accuracy and effectiveness of the radar system [1], [2].

For multistatic/polarimetric systems the design of adaptive
detectors becomes more challenging as it requires the joint
characterization of the radar environment perceived at each
sensor. Indeed, due to the so called clutter diversity the statisti-
cal properties of the interference can differ among the different
nodes of the system [3], [4]. Additionally, the analytical model
used to synthesize the detector has also to account for the
joint use of all the signals collected from the environment. As
to the clutter modeling, in [5] a statistical analysis of multi-
static/polarimetric sea-clutter returns collected via the Netted

RADar (NetRAD) system [6] has been performed. The results
highlighted that, over an appropriate time interval (referred
to as the coherence time), the considered measurements can
be modelled according to a Spherically Invariant Random
Process (SIRP) [7]. This is tantamount to describing the clutter
backscattering over the coherence time as the product of
a nonnegative random variable and a zero-mean circularly
symmetric Gaussian process with unknown covariance matrix
referred to as texture and speckle, respectively. However, the
analyses performed in [5] required the use of uncorrelated
slow-time samples and thus no inference on the possible
stationarity of the speckle component has been made. For this
reason, this paper complements the study conducted in [5]
accounting for possible correlations of the slow-time samples
composing the observation vector. Precisely, the homogeneity
properties of the data in the slow-time domain are first assessed
resorting to Generalized Inner Product (GIP) based statistics.
Then, the possible presence of structures in the clutter covari-
ance matrices (both inter and intra channels) is investigated
through ad-hoc statistical tools. The results show that the
data, regardless the polarimetric/geometric configuration, can
be modeled as drawn from a stationary process, i.e., they
are homogeneous within the coherence time. Moreover, the
structure of the covariance matrix associated with the speckle
depends upon the polarimetric/geometric configuration of the
sensing system.

The remainder of this paper is organized as follows. Section
II is devoted to a short description of both the NetRAD system
and the radar measurements used in this study. In Section III
and IV, for both the monostatic and the bistatic measurements
the statistical tools used to assess the data homogeneity and
to identify possible structures of the covariance matrix are
discussed along with the results obtained using the available
measurements, respectively. Finally, in Section V conclusions
are drawn and possible future research avenues are pointed
out.

II. NETRAD SYSTEM AND DATASET DESCRIPTION

The NetRAD is a S-band ground-based multi-
static/polarimetric system allowing the simultaneous collection
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of both monostatic and bistatic radar returns. It was initially
developed by the University College London (UCL) and
successively modified via a joint collaboration between UCL
and the University of Cape Town (UCT), obtaining separate
active and passive nodes with baselines in the order of
kilometer. This was achieved synchronizing the entire system
using GPS disciplined oscillators (GPSDOs) at each node,
thus avoiding cabled connections (as in the original version
of the NetRAD) and granting more degrees of freedom in
terms of baselines among nodes [6].

Data exploited in this paper were collected on June 9th
2011 in South Africa at Misty Cliffs using three nodes:
one active (with transmit and receive capabilities) and two
passive (see [8] and [5] for more details). The active node
was a pulsed radar operating over a carrier frequency of 2.4
GHz, transmitting linear up-chirp waveforms with a swept
bandwidth of 45 MHz (i.e., a range resolution of 3.3 m), and a
Pulse Repetition Frequency (PRF) equal to 1 kHz. The passive
nodes were co-located 1830 m away from the active node and
used to measure the bistatic sea-clutter returns from both the
horizontal and the vertical polarization. As to the geometric
configuration, different bistatic angles (β) were considered by
pointing the antennas at the active and passive nodes to a
common clutter patch so that the intersection point between
the boresight of the transmitting/receiving antennas and the
position of the nodes occupy the vertices of an isosceles
triangle (with axis of symmetry perpendicular to the baseline).

Table I summarizes the polarization configurations and
bistatic angles (β) associated with the datasets considered in
this study. Therein, the letters H and V denotes horizontal and
vertical polarization, respectively.

Dataset Pol. Node 3 Pol. Node 1 Pol. Node 2 β
number (Tx-Rx) (Rx) (Rx) [deg]

1 HH H V 60
4 HH H V 90
5 HH H V 95
8 VH H V 60

11 VH H V 90
12 VH H V 95

TABLE I: Polarization configurations for the considered mea-
surements.

As to the environmental conditions (wind speed/direction
and wave height/direction) they remained almost constant
during the experiments (sea state 4). For all the mentioned
acquisition scenarios, measurements refer to a time span of
130 s which, with a PRF of 1 kHz, corresponds to Ns =
130000 complex-valued slow-time samples for each range cell.
In the following, before proceeding with data analysis the
available slow-time measurements are suitably pre-processed
so as to remove possible DC offset and imbalance between
the quadrature channels [9].

III. HOMOGENEITY ASSESSMENT

In this section, the homogeneity of the available measure-
ments over the slow-time dimension is assessed via the Gener-
alized Inner Product (GIP) [10]–[13]. This is a quadratic form

commonly used in radar signal processing to assess whether
a set of statistically independent zero-mean complex-valued
Gaussian random vectors is homogeneous, i.e., to establish if
they share the same spectral properties. Precisely, given K
independent and identically distributed N -dimensional data
vectors xk ∼ CN(0,Σ) ∈ CN×1, k = 1, . . . ,K ≥ N , the
homogeneity property can be assessed relying on the following
considerations

1) Σ can be estimated according to the Maximum Likeli-
hood (ML) criterion via the Sample Covariance Matrix
(SCM), defined as

Σ̂ =
1

K

K∑

k=1

xkx
†
k , (1)

2) the GIP statistics, defined by the following quadratic
forms

ξk =
1

K
x†kΣ̂

−1
xk, k = 1, . . . ,K, (2)

follow a complex central Beta-distribution with shape
parameters N and M = K − N , i.e., ξk ∼ CBN,M ,
k = 1, . . . ,K.

Leveraging (2), the following proposition follows:

Proposition 1. Let us consider K statistically independent
data vectors. A necessary condition for the measurements
xk ∈ CN×1, k = 1, . . . ,K, K ≥ N , to be modelled as ho-
mogeneous zero-mean circularly symmetric complex Gaussian
random vectors is that the quadratic forms ξk, k = 1, . . . ,K,
are distributed according to a CBN,K−N model.

Applying this framework to the multistatic/polarimetric data
collected by using the NetRAD system it is possible to study
their homogeneity properties. As a preliminary remark, let us
observe that in [5] it has been shown that within the coherence
time both the monostatic and bistatic NetRAD measurements
comply with the SIRP model, i.e., within the coherence time
they can be deemed as locally Gaussian. Precisely, denoting
by z(t) the continuous time version of the signal collected at
the ith sensor of the NetRAD system, it can be expressed as

z(t) = sg(t), t ∈ Tc, (3)

where s represents the texture component modelled as a
nonnegative random variable over the coherence time, g(t)
denotes the speckle component described as a zero-mean
circularly symmetric Gaussian process, and Tc is the coherence
time. However, the analyses performed in [5] require the use of
uncorrelated slow-time samples and thus no inference has been
made on the possible stationarity of the speckle component
(due to Gaussianity it is just necessary to study the covariance
matrix stationarity as it implies the strict stationarity of the
process).

In the following, the study conducted in [5] is comple-
mented accounting for possible correlations of the slow-time
samples composing the observation vector. To this end, let us
denote by

{zi,k}Kk=1 , i = 1, 2, 3,
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a set of K data vectors containing N consecutive slow-time
samples collected from a given range cell at the ith node. To
ensure uncorrelation and statistical independence of the data
vectors zi,k, k = 1, . . . ,K, i = 1, 2, 3, they are spaced in
the slow-time domain according to the average decorrelation
time of 0.05 s [5] which, at PRF of 1 kHz, corresponds to
a minimum temporal lag between two observation vectors of
∆ = 50 samples. Precisely, denoting by zi ∈ CNs×1 the
available measurements in the slow-time dimension acquired
at the ith sensor, the set of K data vectors can be selected as
follows

zi,k,l = [zi(∆k,l + 1), . . . ,zi(∆k,l +N)]T ∈ CN×1, (4)

k = 1, . . . ,K, l = 1, 2, . . . , L, where
• the index l allows the selection of L different sets of K

data vectors from the available Ns slow-time samples,
that is

L =

⌊
Ns −N + ∆

K∆

⌋
;

• for a given (k, l)-pair ∆k,l = [(l − 1)K + k − 1]∆,
allows the selection of the kth data vector for the lth
data selection;

• (K∆/PRF) < Tc, i.e., for each data selection the K data
vectors are picked up within the coherence time.

Figure 1 shows a pictorial representation of the data selection
procedure with reference to the first set of K data vectors, i.e.,
considering l = 1.

Fig. 1: Pictorial representation of the data selection procedure.

Using this data selection procedure, for a given range cell
the GIP statistics can be computed according to Algorithm 1.
Thus, relying on Proposition 1 the homogeneity of the data can

be studied by comparing the Cumulative Distribution Function
(CDF) of a CBN,M random variable with the Empirical CDF
(ECDF) of the GIP statistics. This analysis can be conducted
via a visual comparison between the theoretical and the actual
CDFs, and/or by testing the simple hypotheses

H
(i,k)
0 : ξi,k has the CDF FX , (5)

with X ∼ CBN,M , k = 1, . . . ,K, and i = 1, 2, 3. In
the following sub-sections, both the studies are performed
considering the datasets 1, 4, 5, 8, 11, 12, and assuming N = 8
and K = 2N .

Algorithm 1 Procedure to compute the GIP statistics for a
given range cell.

Require: zi,k,l, i = 1, 2, 3, k = 1, . . . ,K, l = 1, . . . , L;
Ensure: GIP statistics for a given range cell;

1: set l = 0;
2: repeat
3: set l = l + 1;
4: compute the SCM

Σ̂i,l =
1

K

K∑

k=1

zi,k,lz
†
i,k,l, i = 1, 2, 3 ;

5: compute the quadratic forms

ξi,k,l =
1

K
z†i,k,lΣ̂

−1
i,l zi,k,l, i = 1, 2, 3,

k = 1, . . . ,K;

6: until l ≤ L

A. Analysis via Visual Inspection

The aim of this analysis is to visually compare the theo-
retical and the empirical CDF of the GIP statistics. To this
end, for a given sensor/range cell pair, the ECDF is computed
starting from the samples

ξCVi = [ξCVi,1 , . . . , ξ
CV
i,L ], i = 1, 2, 3 , (6)

where

ξCVi,l = [ξi,1,l, . . . , ξi,K,l], l = 1, . . . , L, i = 1, 2, 3 . (7)

For each dataset, Figure 2 displays the ECDF together with the
theoretical CDF. Precisely, considering the ith sensor, each plot
displays an ECDF for a given range cell. By visual inspection
of the curves it is possible to observe that
• regardless of the considered dataset/range cell the ECDF

associated with the bistatic measurements achieves a good
agreement with the theoretical model;

• the ECDF corresponding to the horizontally co-polarized
bistatic measurements are closer than the monostatic
counterparts to the theretical model (see Figure 2(a), (c),
and (d)).

The last behaviour can be further assessed by the means
of the Cramer Von Mises (CV) distance. This is an integral
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(a) (b)

(c) (d)

(e) (f)

Fig. 2: ECDFs evaluated using the GIP statistic for the three
nodes: (a) dataset 1, (b) dataset 8, (c) dataset 4, (d) dataset
11, (e) dataset 5, (f) dataset 12.

distributional distance between two CDFs and given a set of
H identically distributed observations [X1, . . . , XH ] of the
random variable X , it can be calculated as

dCV =
1

12H
+

H∑

h=1

∣∣∣∣FX(X(h))−
2h− 1

2H

∣∣∣∣
2

, (8)

where FX(·) is the CDF of the design distribution and X(h)

is the hth order statistic from the set of random variables.
Using this metric, Table II reports the mean CV distance
obtained by averaging the values of dCV computed for each
range cell of the clutter patch. The values confirms that for the
horizontally co-polarized case (datasets 1, 4, and 5), the mean
CV distance for the monostatic measurements is higher than
the bistatic counterpart. Interestingly, for this configuration it
is also possible to observe that the CV distance increases as
the distance between the monostatic node and the clutter patch
reduces. Indeed, since for the NetRAD system the position of
the nodes is fixed, the distance between the sensors and the
clutter patch reduces as the bistatic angle increases.

B. Analysis via Hypothesis Testing

The aim of this analysis is to verify whether the GIP statis-
tics follow a CBN,M model by testing the simple hypotheses in

Dataset Node 1 Node 2 Node 3
1 0.14 0.09 1.28
8 0.08 0.09 0.29
4 0.19 0.24 2.81

11 0.11 0.11 0.67
5 0.24 0.11 3.97

12 0.11 0.24 0.87

TABLE II: Average CV distance.

(5). The study is conducted by the means of the Kolmogorov-
Smirnov (KS) test which is based on the maximum difference
between the supposed and the empirical CDFs of the data,
called the KS statistic. In particular, for a given range cell the
KS statistic in (5) is computed using the samples

ξKSi,k = [ξi,k,1, . . . , ξi,k,L], i = 1, 2, 3, k = 1, . . . ,K .
(9)

Applying the KS test to the considered problem, Table III
shows the average percentage of GIP statistics for which the
CBN,M distribution cannot be rejected for a 0.01 significance
level. Precisely, for each sensor and a given range cell the
samples ξKSi,k , i = 1, 2, 3, k = 1, . . . ,K, are used to
perform K different KS test. Then, the results are averaged
with respect to both the number of data vectors and range
cells. Results pinpoints that within the coherence time the
considered measurements can be deemed as homogeneous
(i.e., stationary) and locally Gaussian (as predicted by the
SIRP model). In other words, within the coherence time for
both the monostatic and bistatic sensors the received data can
be modelled as a zero-mean circularly symmetric complex
Gaussian random vectors with a specific covariance matrix,
which can be possibly different from one sensor to another.

Dataset Node 1 Node 2 Node 3
1 99.1 98.9 98.3
8 99.0 99.0 98.8
4 98.8 98.9 97.5

11 98.9 99.0 98.5
5 98.9 99.0 97.8

12 99.0 98.9 98.7

TABLE III: Percentage of GIP statistics for which the Beta
distribution cannot be rejected for a 0.01 significance level.

IV. COVARIANCE MATRIX STRUCTURE CLASSIFICATION

The analysis of Section III revealed that within the coher-
ence time the available multistatic/polarimetric measurements
can be deemed as homogeneous zero-mean circularly sym-
metric complex Gaussian random vectors, i.e., they are locally
Gaussian and stationary. However, no inferences can be made
over a time scale greater than the coherence time or about the
spectral characteristics of the sea-clutter perceived at different
sensors or polarizations. In this respect, some understanding
can be gained by studying the structure of the covariance
matrix of the speckle component over successive coherence
time intervals. Indeed, for a given sensor a necessary condition
for the data observed over different coherence time intervals
to share the same spectral characteristics (up to a scale factor
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representing the texture component) is that the covariance
matrix of the corresponding speckle components shares the
same structure. Moreover, specific structures such as hermitian
unstructured, symmetric unstructured, centrohermitian, and
centrosymmetric, can provide interesting insights about the
spectral behaviour of the clutter perceived at different sensors.
As a matter of fact, centrosymmetry or centrohermitianity are
necessary conditions for the observations to be deemed as
Wide Sense Stationary (WSS). Besides, for a symmetric or a
centrosymmetric structure the Power Spectral Density (PSD)
of the clutter has to exhibit symmetric behaviour with respect
to the zero-Doppler frequency. For instance, by describing
the sea-clutter PSD with the well established Gaussian-shaped
model, the generic (r, c) entry of the covariance matrix of
the speckle component over a coherence time interval can be
expressed as

M(r, c) = αρ(r−c)
2

ej2π(r−c)fd , (r, c) ∈ {1, . . . , N}2 ,
(10)

where N is the number of pulses in the Coherent Pro-
cessing Interval (CPI), α is a real-valued positive parame-
ter, ρ is the one-lag correlation coefficient, and fd repre-
sents the normalised Doppler frequency of the sea-clutter.
Thus, a real-valued covariance matrix (symmetric unstruc-
tured/centrosymmetric) can be associated to observation with
a zero-Doppler frequency. Conversely, complex-valued covari-
ance matrices (hermitian/centrohermitian) are representative of
clutter returns with a non zero-Doppler frequency.

Based on the previous considerations, the aim of this
section is to infer about the structure of the covariance matrix
of the speckle component for both the monostatic and the
bistatic sea-clutter measurements. To this end, relying on the
framework prposed in [14], for a given sensor and exploiting
observations from a specific coherence time interval, covari-
ance symmetries can be studied considering the following
hypotheses test





H1 : M ∈ CN×N is Hermitian unstructured,
H2 : M ∈ RN×N is symmetric unstructured,
H3 : M ∈ CN×N is centrohermitian,
H4 : M ∈ RN×N is centrosymmetric,

(11)

where the number of unknown parameters under each hypoth-
esis is given by




m1 = N2 under H1,

m2 = N(N + 1)/2 under H2,

m3 = N(N + 1)/2 under H3,

m4 =





N

2

(
N

2
+ 1

)
if N is even

(
N + 1

2

)2

if N is odd
under H4.

(12)

To screen among the different hypotheses suitable strate-
gies can be considered which involve the use of the log-
likelihood function of the observations and an estimate of
the covariance matrix under each hypothesis [14]. As to the

former, since the analyses are performed within the coherence
time the observations can be modelled according to a zero-
mean complex Gaussian model. As to the latter, instead,
assuming the availability of K ≥ N independent data vectors
Z = [z1, . . . ,zK ] ∈ CN×K , under the ith hypothesis the ML
estimate of the covariance matrix of the speckle component is
given by




M̂1 =
1

K
ZZ† (Under H1),

M̂2 =
1

K
<
{
ZZ†

}
(Under H2),

M̂3 =
1

2K

[
ZZ† + J(ZZ†)∗J

]
(Under H3),

M̂4 =
1

2K
<
{
ZZ† + J(ZZ†)∗J

}
(Under H4),

(13)

where J ∈ RN×N is a permutation matrix such that J(r, c) =
1 if and only if r+ c = N + 1, (r, c) ∈ {1, . . . , N}2. Finally,
as to the classification rule the Bayesian Information Criterion
(BIC) is used. This is tantamount to considering the decision
rule

Hî = arg min
i∈H

{
−2s(M̂ i, Hi) +mi log(K)

}
. (14)

where H = {1, 2, 3, 4}, whereas s(M̂ i, Hi) and M̂ i are the
log-likelihood function and the ML estimate of M i under the
i-th hypothesis, respectively.

The analysis is conducted using the data selection procedure
specified in (4) for the measurements from datasets 1, 4, 5, 8,
11, 12, assuming N = 8 and K = 2N . Specifically, for a given
sensor, L different classification instances are made along the
slow-time dimension for each range cell of the clutter patch.

Table IV reports the average percentage of data classified
under each hypothesis. Inspection of the results highlights that
• for both the monostatic and the bistatic data the top rated

structures are centrosymmetric and centrohermitian;
• the monostatic (bistatic) returns generally exhibit a cen-

trohermitian (centrosymmetric) covariance matrix;
• for both the monostatic and the bistatic measurements the

percentage of data classified under the hypothesis 3 and
4 depends upon polarimetric/geometric configuration.

As to the last behaviour and with reference to the bistatic
measurements, the obtained values also highlight that when
the transmitter is horizontally polarized (datasets 1, 4, and
5), as the bistatic angle increases the percentage of data
classified as centrohermitian increases while that identified as
centrosymmetric reduces. For the vertically-polarized coun-
terpart, this behaviour is limited to datasets 8 and 11 (i.e.,
up to bistatic angles less than or equal to 90◦). Additionally,
for a specific geometric configuration (i.e., datasets 1-8, 4-
11, and 5-12), the percentage of data classified under the
centrohermitian (centrosymmetric) hypothesis for co-polarized
monostatic measurements is higher (smaller) than the value
obtained for the cross-polarized counterparts.

Finally, additional analyses not reported herein for brevity
show that centrosymmetry and centrohermitianity can be
linked to the sea-wave profile (which depends on the sea-state).
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Dataset Node Hyp. 1 Hyp. 2 Hyp. 3 Hyp. 4

1
1 0.01 0.12 6.58 93.29
2 0.00 0.12 3.91 95.98
3 0.13 0.02 75.82 24.03

8
1 0.00 0.12 3.07 96.81
2 0.04 0.13 16.85 82.98
3 0.11 0.06 57.06 42.78

4
1 0.02 0.09 15.91 83.98
2 0.10 0.14 17.95 81.82
3 0.84 0.01 95.57 3.58

11
1 0.02 0.14 10.86 88.97
2 0.07 0.08 35.53 64.32
3 0.27 0.01 91.25 8.47

5

1 0.04 0.14 21.56 78.25
2 0.08 0.08 25.45 74.40
3 0.81 0.07 96.60 2.52

12
1 0.03 0.10 10.14 89.74
2 0.06 0.04 33.41 66.49
3 0.14 0.00 94.21 5.65

TABLE IV: Percentage of data classified under each hypoth-
esis.

V. CONCLUSIONS

This paper has dealt with the statistical analysis of mul-
tistatic/polarimetric sea-clutter data considering different po-
larimetric/geometric scenarios. Precisely, starting from the
analysis conducted in [5], the study has been firstly focused
on establishing whether the data can be modeled as drawn
from a stationary process, i.e., if they are homogeneous within
the coherence time. To this end, relying on suitable GIP-
based statistics some necessary conditions for the data to be
homogeneous have been tested by the means of the KS test
and CV distance. Then, the possible presence of structures
in the clutter covariance matrix for both the monostatic and
bistatic measurements has been investigated through ad-hoc
statistical tools. Analysis has shown that, regardless the po-
larimetric and geometry configuration within the coherence
time the data can be modeled as drawn from a stationary
process. The analysis has also revealed that the structure of
the covariance matrix associated with the speckle depends
upon the polarimetric/geometric configuration of the system.
Additionally, the monostatic (bistatic) returns generally exhibit
a centrohermitian (centrosymmetric) covariance matrix.

The obtained results provide a further experimental evidence
on the mutistatic/polarimetric clutter diversity as a function
of both environment conditions and polarimetric/geometric
configuration of the system. A possible future research direc-
tion involves the possible presence of relationships between
the statistical parameters characterizing the returns on the
different channels (such as the proportionality between the
clutter covariance matrices on the two bistatic polarimetric
channels). This study is undoubtedly of interest towards the
design of bespoke detection strategies relying on the joint use
of both monostatic and bistatic measurements.
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