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Abstract

Convolutional Neural Networks (CNNs) have emerged primarily from research focusing on
image classification tasks and as a result, most of the well-motivated design choices found in
literature are relevant to computer vision applications. CNNs’ application on Imaging Mass
Spectrometry (IMS) data is quite recent and involves new challenges, such as taking into
account their unique structure (e.g. both spatial and spectral dimensions).

In this thesis, we suggest a 1-D CNN architecture that extracts local features along the spectral
dimension. The aim is to investigate if CNNs improve the classification accuracy compared
to other classic Machine Learning (ML) methods such as linear models. Furthermore, we
explore Neural Networks (NNs) that employ the novel Sharpened Cosine Similarity (SCS)
as a feature extraction method opposed to convolution. We call those networks SCS-NN in
correspondence to the Convolutional-NN (CNN). To evaluate these methods, we implement
our pipeline for various IMS datasets, with different characteristics and classification tasks,
using several performance metrics such as balanced accuracy and F1 score.

Moreover, we provide a detailed description of the methodology pipeline used for the CNN ar-
chitecture design. The suggested methodology is the Tree-structured Parzen Estimator (TPE)
algorithm, a Bayesian optimization technique for automated architecture selection. By imple-
menting TPE, we manage to explore and exploit efficiently a complex and large hyperparam-
eter configuration space and automatically select optimal hyperparameters (such as number
of convolutional layers, kernel size, strides, learning rates etc.). This automated approach
reduces time consumption, errors, and the need for specialized knowledge in biology and bio-
chemistry that would be associated with manual design. In addition to developing a pipeline
for designing, training and evaluating a CNN for IMS data classification, we also apply a
model agnostic interpretation methodology based on SHapley Additive exPlanations (SHAP)
and provide SHAP score maps that visualize the importance of features in the spatial dimen-
sion of the IMS datacube.

To sum up, in this thesis, we present and analyse the automated selection of 1-D CNN
architectures for IMS data classification based on TPE. Furthermore, we investigate a novel
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alternative to convolution, SCS, and evaluate its strengths and weaknesses in IMS data classifi-
cation. The experimental results show that the TPE-generated CNN architectures outperform
all the other applied classifiers. Finally, our interpretation of the CNN models reveals that
accuracy performance alone might not be a sufficient criterion to trust the model’s output.
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Chapter 1

Introduction

In chapter 1, we provide an introduction to the topic and motivation of this thesis. In
section 1-1, an introduction to the need for the use of Machine Learning (ML) techniques in
the context of Imaging Mass Spectrometry (IMS) data classification is presented along with
the existing approaches. Next, in section 1-2, the problem statement addressed within this
thesis, the motivation for the selected approach and the main objectives of the thesis are
discussed. Finally, the contributions this thesis attempts to offer are described in section 1-3.

1-1 Existing Work for IMS Data Classification

The field of IMS has rapidly advanced in recent years, providing high-resolution imaging of
molecules in tissues, cells, and organisms. However, the complex and large-scale nature of
IMS data presents a significant challenge for accurate and efficient analysis [13]. Analysis of
the data by a trained expert would require the human visual inspection of each ion distribu-
tion on the tissue and the manual evaluation of the molecular alterations. Nevertheless, given
the large number of features measured per pixel in IMS data, the manual data analysis would
be very time consuming and highly prone to errors. Moreover, traditional processing - such
as statistical analysis - of high-dimensional IMS data requires a big amount of computational
resources. Sequentially, there is a need for adopting a more automated and efficient method
in IMS data analysis and classification.

Supervised ML algorithms are established as powerful tools for the efficient classification
of IMS data. Both linear and non-linear algorithms have been reported in literature. For
example, in [23], Linear Discriminant Analysis (LDA) is used to classify epithelian ovarian
cancer histotypes and in [29], Random Forest (RF) and Support Vector Machine (SVM) are
used for classifying six cancer types in different organs. Furthermore, Deep Learning (DL) has
also been applied by researchers. One significant difference between the traditional supervised
ML and DL techniques lies in the fact that the first require manual feature extraction prior to
the training of the classification model, while the latter learn the features automatically from
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2 Introduction

the raw input data. On the other hand, DL techniques require a larger amount of training
data and computational resources than classic ML techniques.

One common DL methodology is the Convolutional Neural Network (CNN). For instance, in
[4], the authors design and interpret a CNN architecture by adapting an image classification
model, ResNet, to the characteristics of IMS data, while, in [36], the researchers base their
architecture on [4] and they are introducing the use of dilated CNNs, which aims to deal with
the problem of having a lot of hyperparameters and to reduce the computational complexity.
Furthermore, in [30], the authors are building a 1-D CNN to classify colorectal tumor versus
normal tissue, while they mention that they haven’t exhausted hyper-parameter optimization
for the model.

In conclusion, there has been an extensive use of traditional ML and DL techniques - CNNs -
for the task of IMS data classification. Some of the weaknesses of the relative work for CNN
design seem to be that some of the research is not providing detailed motivation for each
choice of the used architecture. Additionally, in cases such as [4], the CNN design choices
are based on some feature engineering output, which counteracts the independence of DL
approaches from extensive human pre-processing techniques. Moreover, some of the research
is lacking interpretability of the proposed model.

1-2 Research Motivation and Objectives

Linear methods might be simpler and transparent but they have limitations in handling the
complex underlying relationships between the spectral features of IMS data. Hence, the
use of non-linear methods such as CNNs, which have demonstrated remarkable success in
image classification tasks, are also worth to be adopted in IMS data classification. The
subsequent question that arises concerns the rationale behind the adoption of a CNN in IMS
data classification. The most fundamental reasons for using CNNs for IMS data classification
are:

e« CNNs were developed for image data classification. The fact that spectral data share
similar characteristics with image data make CNNs a suitable method.

Table 1-1: CNN suitability for spectral and image data classification

Spectral Data Image Data
large amount of mass spectra large amount of pixels
convolution: correlation convolution: correlation
between neighbouring m/z bins between neighbouring pixels
layered architecture: layered architecture:
1st - spectrum peaks 1st - image edges
2nd - feature paterns (e.g. isotopes) 2nd - image shapes
3rd - more complex patterns (e.g. proteins, lipids) 3rd - entire structures

In Table 1-1, the aspects that make IMS data image-like are reported and the suitability
of the CNN usage is justified. First of all, CNNs can handle large amounts of pixel data
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1-3 Contributions 3

which both images and IMS data have. The pixel locations in an IMS dataset can be
hundreds of thousands. Secondly, the operation of convolution requires the existence of
correlation between neighbouring datapoints, which is also true for neighbouring m/z
bins. Last but not least, CNNs process data in a hierarchical manner. Therefore, lower
layers of the network learn low-level features such as edges in images and spectrum
peaks in mass spectra, and higher layers learn more complex features such as entire
objects in images and for instance, protein patterns in mass spectra.

o CNNs can be trained on multiple GPUs [24] simultaneously, which makes them pow-
erful tools in high dimensional datasets such as IMS data. By using multiple GPUs,
the computational workload can be distributed across the GPUs, allowing for parallel
processing. This can alleviate the memory constraints that might arise as the number
of features increases.

e« CNNs automatically learn features of the raw input data without requiring manual
feature engineering techniques prior to training.

e CNNs hold the highest performance in image classification and therefore, it’s an attrac-
tive method to be applied as well in IMS data.

Nevertheless, the methodology of CNNs can also have several drawbacks. First of all, if
the available dataset size is small it may not be possible to train a CNN model effectively.
Additionally, if regularization techniques are not employed, overfitting can pose a problem.
Furthermore, the CNN model’s trustworthiness relies on its interpretability, as it may be per-
ceived as a black box. Along with the above mentioned issues, due to their complexity and the
large number of computations involved in their operations, CNNs require high computational
power, which is expensive to have. Moreover, hyperparameter optimization of a CNN can be
a cumbersome task.

This thesis aims to deliver a detailed design of a CNN architecture for IMS data classifi-
cation. The objectives of this thesis can be summarized in two main research questions:

1. How can one design an optimal architecture for a CNN model for accurate classification
of IMS data?

2. How can this model’s predictions be interpreted efficiently?

Several subquestions also addressed in this thesis include a more efficient hyperparameter
optimization technique, how robust the hyperparameter tuning techniques can be and the
assessment of the contribution of CNNs in IMS data classification as opposed to linear models.
Finally, this thesis also aims to answer if a novel alternative to the convolution operation,
Sharpened Cosine Similarity (SCS), can be more efficient for IMS data classification.

1-3 Contributions

This thesis aims to make contributions in the following topics:
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4 Introduction

o Implementation of Tree-structured Parzen Estimator (TPE) algorithm as a design method
of the CNN architecture tailored for the task of IMS data classification

e Provide an easily understandable interpretation of the designed CNN models using
visualizations of features’ importance in the spatial dimension

o Implementation for the first time, to our knowledge, of SCS for feature extraction in IMS
data classification and evaluation of its contribution opposed to convolutional layers

o Evaluation of the benefits of using CNNs in a variety of IMS data classification tasks

e Evaluation of the impact of IMS data pre-processing techniques on the classification
performance of CNNs

loanna Chanopoulou Master of Science Thesis



Chapter 2

Exploring the Characteristics of IMS
Data

The field of Imaging Mass Spectrometry (IMS) has recently seen a significant development
due to its ability to provide high-resolution images of the distribution of biomolecules in tissue
samples, which facilitates the connection of the detected ions and the histological structure
of the sample. IMS is an imaging technique based on Mass Spectrometry (MS) that enables
the spatially localized biochemical analysis of a sample. Therefore, in section 2-1, we begin
with defining the methodology and instrumentation employed in MS and expand to the IMS
methodology in section 2-2 and to the data structure in section 2-3.

2-1 Mass Spectrometry

MS is a technique for analyzing the components of inorganic or organic substances or biological
samples. This method is characterized by a series of steps [16]. After the sample is prepared
and put into the sample inlet, gas-phase ions are generated from the analyte - the sample
being analyzed - through a process of ionization. Subsequently, these ions are sorted, under
vacuum, according to their mass-to-charge (m/z) ratio using mass analyzers. Finally, the
produced ions (either positively or negatively charged, depending on the imaging modality)
are detected on the detector and their abundance/intensity is measured.

! l ! Bl

sample ionizati mass
inlet IS 12T analyzer(s)

—

detector computer

Figure 2-1: A general illustartion of the mass spectrometer’s pipeline, based on [16]
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6 Exploring the Characteristics of IMS Data

The instrument with which the above technique is applied is called a mass spectrometer. The
fundamental components of a mass spectrometer are: a sample inlet, where the preprocessed
sample is inserted, an ion source, where ions are produced from the sample surface, mass an-
alyzer(s), where the ions are distinguished based on their mass-to-charge ratio (m/z), an ion
detector, a data processing system (computer), which coordinates the process and receives the
output and a vacuum pump, which takes care of maintaining the vacuum conditions [11, 16].
The mass spectrometer components are outlined in Figure 2-1.

The output of the mass spectrometer is the mass spectrum. The mass spectrum is a 2-D
visualisation of the intensity of ions in a sample as a function of their mass-to-charge ra-
tio (m/z). It can be presented as either a 2-D plot or a table. An example is depicted in
Figure 2-2.

Intensity

15

0.33 L
12 15

=

m/z

Figure 2-2: Example graph of a mass spectrum, the output of a mass spectrometer

In Figure 2-2, the x-axis represents the mass-to-charge ratio (m/z) and the y-axis the number
of detected ions, termed as the ion intensity. Usually, the intensity is normalized according
to total ion count.

The artificial scalar, m/z, used in MS is a combination of two parameters: m, which represents
the relative atomic mass of the ion, and z, which indicates its number of charges. This leads
to the units that m/z can have, although it can also be viewed as dimensionless. In general,
the choice of unit for m/z depends on the context of the analysis. Nevertheless, a commonly
used dimension for the mass, m is either the atomic mass units, u or the dalton, Da [11].
Both are equivalent and it holds:

1Da = 1u = 1.660540 x 10~ %"kg

Moreover, the charge unit is expressed as a multitple of the elementary charge, namely, the
charge of one electron, Ie. Consequently, the proposed unit for m/z is u/e and is called
Thompson [1Th|, although it is not an SI unit [11, 16].

2-2 The IMS Experiment

IMS is the technique which offers simultaneously the visualization of both the intensity and
the spatial distribution of all the detected ions by mass spectrometry, on the actual surface
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2-2 The IMS Experiment 7

of the analyzed sample [28]. The visualizations of the 2-D spatial distribution and abundance
of the detected ions are called ion images. You can see an example of some ion images in
Figure 2-3.

m/z 703.602 m/z 766.598 m/z 784.607

6000 800 -
- 3500

5000 - 3000

| 2000 2500

2000
- 3000

Intensity
y (pixels)
Intensity
y (pixels)
Intensity

600 300 -
2000

- 1000

A i i ' " -0 2 . i ' i 0 -0 . i i ' "
o 200 400 600 800 1000 o 200 400 600 800 1000 0 200 400 600 800 1000
X (pixels) X (pixels) X (pixels)

Figure 2-3: Examples of ion images on a rat kidney sample

In Figure 2-3, we can see the ion images of three different ions (m/z 703.602, m/z 766.598,
m/z 784.607) on a rat kidney tissue surface. It is observed that the ion images are comprised
of thousands of pixels, the total amount is almost 800,000 in this example. On these ion
images we can distinguish the spatial location of the ions as well as their intensity /abundance
at each pixel position, provided by the colourmap, the lighter the colour the higher the ion
intensity. The ion images are one aspect of the IMS experiment datacube.

Using such a tool as IMS offers ion distribution information across a biomedical sample (e.g.
protein expression on a tissue section) and it can be used to indicate alterations in protein -or
other substances like lipids, metabolites, drugs- expression levels and connect them to specific
effects (disease/ drug evolution) [9)].

Furthermore, it is important to explain the processes that take place so that the IMS dat-
acube is obtained. A common IMS experiment is comprised of the sample preparation, then
the sample is positioned in the mass spectrometer and analyzed as already mentioned in the
steps of MS with the addition of the spectral features visualization.

2-2-1 lonization Techniques

After the sample is placed in the mass spectrometer as described in Figure 2-1 the first step
is ionization. The selection of ionization techniques for MS analysis depends on the type of
compound or sample that needs to be analyzed, with certain techniques being better suited for
specific compounds than others. There are gas-phase, liquid-phase and solid-phase ionization
techniques [11]. For the purpose of IMS [28], three main ionization methods are currently
used:

1. Secondary Ion Mass Spectrometry (SIMS)
2. Matrix-Assisted Laser Desorption Ionization (MALDI)

3. Desorption Electrospray Ionization (DESI)

Since the data that are used throughout this thesis are MALDI IMS images, we are going to
spend the following lines to explore just the MALDI IMS experiment.
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8 Exploring the Characteristics of IMS Data

MALDI

High mass capabilities of MALDI makes it a standard method to be applied for imaging
protein distributions within samples of tissue sections [28]. Furthermore, The MALDI method
can be described by the following steps [21].

Step 1 In the initial step, the acquired tissue section is prepared and placed on a MALDI
plate.

Figure 2-4: Tissue section placed onto glass plate for MALDI analysis

Step 2 Next, the matrix is deposited on the sample and left to dry (Figure 2-5). The
matrix is a substance comprised of small organic molecules (e.g. organic acids) in a suitable
solvent and its contribution is firstly, to absorb most of the laser energy minimizing the sample
damage and secondly, to make the energy transfer more efficient. The sample (tissue section)
is mixed or coated with the matrix (in an ordered array) which crystalizes and ‘traps’ the
analytes within the crystals.

: Matrix deposition

Figure 2-5: Local deposition of matrix solution across the tissue section sample

Step 3 In vacuum, removal of portions of this dry crystallized sample takes place by laser
pulses over short time-duration (usually of UV wavelengths) leading to ion generation[11].

The advantages of the MALDI technique are that it is flexible, fast and capable of analyzing
analytes with large molecular mass, such as proteins. In addition, MALDI usually produces
single charged ions [11].

loanna Chanopoulou Master of Science Thesis



2-2 The IMS Experiment 9

ionisation

QaS'Fﬁ'{SE /reactions

+

oo |
N

Figure 2-6: Pulsed ultraviolet laser irradiation of the matrix crystals for the production of ions
that will further be mass analyzed

2-2-2 Mass Analyzers

Mass-over-charge (m/z) analyzers or mass analyzers are used to separate the produced ions,
which are electrically charged particles, based on their m/z value in relation to their response
to electric or magnetic fields [40]. The data used throughout this thesis are derived from Time-

of-flight (TOF) and Fourier Transform Ion Cyclotron Resonance (FTICR) IMS. Hence, we
are going to describe those two methods.

TOF analyzer

The operating principle of TOF analyzers is measuring the time that an ion needs to cross
from the ion source to the detector Figure 2-1. TOF analyzers are mostly used in MALDI
instrumentation setups and they can be found in both linear and orthogonal geometry.

Orthogonal Pusher =
o9 Continuous Unresolved

\ .
lon Beam
lon Sourca -»-H-:.-'.--.-Lo{

Acceleration f /
Grids
lon Optics ,
i | — by
]

+
—_— ++ S & }_
po1 | |

Field Free Drift Region Im @ \-.:S\

lonization and Synchronized N
Acceleration Region Oscilloscope Reflectron

Electron Gun ‘:\\
N

Detector

€

T LS
FFTT
+t

Figure 2-7: Linear TOF analyzer [ Image

taken from J. WATSON and O. SPARK-
MAN, Copyright ©2007, [40]] Figure 2-8: TOF with orthogonal accel-
eration [Image taken from J. WATSON

and O. SPARKMAN, Copyright ©2007,
[40]]
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10 Exploring the Characteristics of IMS Data

Linear Groups of ions get a specific kinetic energy and then they sequentially travel across
the linear mass analyzer’s field free drift region, hitting the detector as presented in Figure 2-
7. A smaller m/z value results in getting to the detector faster than having a larger m/z
ratio. The needed time is a function of the ions masses, thus the mass can be found. The
acceleration is given to the ions by electromagnetic plates and their kinetic energy is equal to
the potential energy as follows:

]. 2
_ =2V
2mu =z

R (2-1)

where u is the ion velocity, m the mass, V the acceleration potential and z, represents the
total charge, which is the product between the charge amount and the elementary charge of
an electron. In Equation 2-1, we can see the inverse relation between the ion velocity and its
mass [40]. Calculating the velocity of the ion straightforward is not practical, thus, the TOF
experiment uses the distance of the ion source from the detector, denoted by [, and then, the
time of flight is calculated as:

l m

TOF = — =1
0 U 22V

(2-2)

Then, an ion’s m/z value is calculated based on its TOF to the detector. The errors in linear
TOF analyzers are compensated using the "reflectron', or alternatively, ion mirror.

Orthogonal TOF analyzers operating with orthogonal acceleration send the produced (from
the ion source) ions into the analyzer area which applies mass analysis in an orthogonal
direction with respect to the ion extraction direction. An illustration of this method can be
seen in Figure 2-8. This methodology has the contributory factor of the independence of the
resolution and accuracy from the ionization step [28].

FTICR analyzer

The operating principle of an FTICR analyzer is based on the effect that a magnetic field
can have on the motion of a charged particle. Specifically, an ion which is travelling with a
low velocity inside an intense magnetic field can be trapped within a circular trajectory, with
radius r. Mathematically, this is motivated as follows [11]. If an ion, with total charge, z,
travelling with velocity, u, is injected into a magnetic field with intensity B, then it is exposed
to two forces, the centripetal and the centrifugal force, which are, respectively, equal to:

Fcentripetal = Bzu

mu? (2-3)
Fcentrifugal = T

Then, the ion movement is based on the equalisation of those two forces, namely:

B
F1:F2:>BZ:@:>UZ£

r m (2_4)
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2-2 The IMS Experiment 11

thus, the ion movement has a frequency of f = 5=, if we take 277 as the circular trajectory.
The ion’s angular velocity is calculated by:

w=2rf= mi/zB (2-5)

Hence, its frequency, f, depends on the ion’s mass-to-charge ratio, which means that in order
to determine the mass we need to determine the frequency. What practically happens is that
ions get injected inside a box with an intense magnetic field, generated by a superconducting
magnet (3 —9.47), [11], and they get trapped into circular motion. Moreover, each ion has a
unique cyclotron frequency. Ions with the same frequency, excited for the same period of time
with the same energy, will have a circular trajectory of the same radius, grouping the ions
into packets, according to their mass. But just the cyclotron movement is not beneficial, thus,
a spatially uniform electric field is applied by the excitation plates. Then, ions react to their
specific cyclotron frequency and start a spiral movement, close enough to the detection plates.
Now, instead of hitting the detector, the circular movement of ion-groups causes a stream of
electrons in the detector circuit, which tries to match the frequency of the moving ions. This
creates an image current that can be measured and transformed into the frequency domain
by Fourier Transform, so that the mass spectrum is obtained. FTICR analyzers have the
highest mass resolution, enabling to distinguish ions that have very small mass differences.
However, to reach big resolutions very high vacuum conditions are needed inside the box.

Detection
plates

Excitation

plates

Figure 2-9: lllustration of an ion cyclotron resonance instrument inspired by [11] and [27].
A "trapping" voltage is applied on the electrostatic trapping plates, such that the ions cyclic
movement is focused on a specific axis. Then the excitation plates apply a spatially uniform
electric field, so that the ions can reach the detector since the trajectory radius increases or to
avoid ion collisions or to get expelled from the instrument. Finally, the detection plates measure
the induced image current by the ions.
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12 Exploring the Characteristics of IMS Data

2-3 The IMS Data Structure

In MALDI IMS, the data is captured as follows. After preparing the tissue section and placing
it into the mass spectrometer sample inlet, it is analysed (through the ionization and mass
analyzer phases) based on a defined spatial (z, y) position array. The measured data are
mass spectra where each one is related to each pixel of the spatial dimension, as illustrated
in Figure 2-10.

4+ MS analysis
—>

Intensity

laser myz

(i, i)

X

Figure 2-10: IMS experiment recording data, namely a mass spectrum, for one pixel at position
(x:,9;). If we repeat for every location in the position array we derive the IMS datacube.

By repeating the MS analysis per pixel position (z;,y;), the data ends up to be a 2-D matrix
where its rows are the number of pixels (or amount of mass spectra) and its columns are
the m/z values. Therefore, IMS data follow a 2-D matrix format of size N x s, where N
the number of observations ( pixel positions) and s, the number of features (m/z ratio with
total amount symbolised by s), which is a suitable form for most of the supervised Machine
Learning (ML) methods, as depicted in Table 2-1 where the * represents each intensity value
corresponding to every m/z value in the mass spectrum. Each column represents a feature.

Table 2-1: 2-D matrix format of IMS data

Pixel position | m/z, | ... | m/z,
1 k k
N L F

Consequently, the IMS data are big size, high dimensional data often comprised of observa-
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2-3 The IMS Data Structure 13

tions N > 100, 000 of pixels, each of which is characterized by a mass spectrum of length s.

Furthermore, acquiring mass spectra includes noise in the measurements, hence, mass spectra
need a detailed cleaning procedure before data analysis, comprised of: baseline correction,
smoothing and denoising, spectral centroiding and spectral normalization. Nevertheless, it is
important to consider two more characteristics [21] that are connected to IMS data, namely
mass resolution, which indicates how well a mass spectrometer differentiates between ions of
various m/z ratios and spatial resolution, which indicates the size of the smallest feature that
is able to be distinguished. Higher mass resolution means greater m/z precision and higher
spatial resolution means smaller pixels and therefore a bigger dataset.

Intensity

Figure 2-11: A 3-D datacube generated from an IMS experiment

In Figure 2-11, the IMS experiment datacube is displayed, which is comprised of two dimen-
sions, the spatial one and the spectral one. On the left, we highlight the spatial dimension,
where each pixel has different spatial coordinates (z,y) and corresponds to a different mass
spectrum. On the right, we can see the spectral side of the IMS data, where each m/z bin
corresponds to a different detected ion and its distribution on the spatial dimension gives
a different ion image. The colorbar scale indicates the intensity of the specific ion at each
spatial location.
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Chapter 3

Theoretical Background of
Convolutional Neural Networks

This chapter will introduce an explanation and definition of the Multilayer Perceptron (MLP),
in section 3-1 and describe how we go from fully connected layers to convolutional layers in
section 3-2 and their common fundamentals.

3-1 Introduction to Deep Learning and the Deep Neural Network
(DNN)

Deep neural networks or alternatively named multilayer perceptrons are Deep Learning (DL)
models that can be considered a subcategory of Artificial Intelligence (AI) and Machine Learn-
ing (ML) approaches. The most frequently used type of ML, either DL or not, is supervised
ML. The aspect that differentiates DL from conventional supervised ML is the fact that the
latter needs a meticulous and highly specialized feature engineering implementation. Hence,
in conventional ML, feature engineering is needed in order to change the raw data into an
appropriate representation (e.g. image-pixel intensities), from one level to another, internally,
or else to extract features from raw data, which are then used to train the model and enable it
to indicate or classify motifs in the input dataset. On the other hand, DL uses representation
learning to fulfill this task. It, mainly, combines feature extraction and classification in a
single step, as visualised in Figure 3-1 on the right. This is very useful for cases where feature
extraction is very difficult to define manually.

Representation learning is based on the extraction of representations automatically. A rep-
resentation is actually the set of features which describe the data [15]. End-to-end learn-
ing (E2E) concerns training by applying learning to the system in total, using the end target-
output to learn features from the initial input based on gradient descent.

Before describing the fundamentals of Convolutional Neural Networks(CNNs), the intention is
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16 Theoretical Background of Convolutional Neural Networks

Machine Le

Deep Learning

Figure 3-1: lllustration of interconnection between Al, conventional ML and DL. The feature
extraction and classification steps are replaced by the single step of representation learning in DL.

to describe the fundamental operations in a DNN;, also called a multilayer perceptron (MLP).
A DNN gives a map representation, f(X;#), with X the input and 6 corresponding to the
weights and the biases, and updates the 0 parameters that lead to the most accurate approx-
imation of the function f [15]. A representative illustration of how a DNN works can be seen
in the following figure.

XOR problem
1a & @
Output unit
ok = Zwikhj +c2 o8
w
06
Hidden units H1 o
@ = zWijdi +c1 o4
w
02
Input units
00 & o
D.ICI D.IZ D.I4 D_IG DIS ]_ICI
Figure 3-2: Basic illustration of a DNN Al
with one hidden layer [Image inspired from . o
I.Goodfellow et al., Copyright ©2016, Flgure 3-3: XOR toy—example visualiza-
[15]] tion. The blue dots stand for "O-label"

(negative class) and the red dots stand
for "1-label" (positive class).

In Figure 3-2, we can see an example of a feedforward DNN with just one hidden layer H1,
X1, X5, the input features, Y, the output feature and hq, ho the hidden neurons that are com-
puted internally. Additionally, for each neuron connection (arrow) there is a corresponding
weight, w. For the hidden layer, the weights are W;; with ¢ € Input and j € Hidden Output,
corresponding to 7 = 1,2 and j = 1,2. For the output layer, the weights are w;; with j €
Hidden Output and k € Output, corresponding to j = 1,2 and k = 1. Additionally, for each
layer a bias c is added to enhance the capacity of the model. Therefore, in this example, there
are 9 parameters, every weight on the neuron connections (6) and each bias on each layer (3).
The right side of the graph is the same as the left one with the only difference that the right
side is written in matrix notation. More specifically, the complete network is determined as,
with ¢ denoting the activation function:
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3-1 Introduction to Deep Learning and the DNN 17

g(X1Wh1 + XoWoay + c1)wir + g(X1Wig + XoWap + c2)war +b=w! g(W' X +¢) +b (3-1)

The left hand side and the right hand side of Equation 3-1, correspond to the feedforward
notation on the left and on the right of Figure 3-2, respectively.

Nevertheless, g, the activation function can
be either a linear or a non-linear function. Input Label
Non-linear transformation of the input fea- X, X5 t
tures is more flexible and can capture more
complex data distributions.

To indicate the need for the non-linear ac-
tivation functions a toy-example is going to
be used, namely, the XOR/“exclusive or” Table 3-1: One-hot encoded dataset of the
problem [15]. The one-hot encoded dataset XOR problem

for the XOR problem is shown in Table 3-1,

which is visualized in Figure 3-3.

el i Nenll Nan)
=l =l )

0
1
1
0

If we had a single-layer, linear perceptron (g a linear activation) with, ¢=0: XTW + b, then
the network wouldn’t be able to learn the data structure for the XOR problem. For example,
if b=1 and W =0 then the output would be 1 for any input. The conclusion is that a single
linear layer network cannot be used and a hidden layer should be added to the model, which
must be non-linear. The most common used non-linear activation functions are the Rectified
Linear Unit (ReLU) and the sigmoid [43].

3-1-1 Non-linear Activation Functions

ReLU The ReLU function is defined as:
YreLU = max(0, X) (3-2)

where X is the input tensor and ygrepu is the output tensor. With this function we can define
a forward pass of ReLU activation layer. In Figure 3-4, we can see the plot of the ReLU
function. Additionally, if the input is less than zero, then the gradient of the ReLLU function
is equal to 0. On the contrary, if the input is exactly equal to 0, then the function is not
differentiable and in this condition, 0 value is also taken. If the input is larger than 0, then the
function’s derivative is equal to 1 as illustrated in Figure 3-6. In conclusion, the derivatives of
the ReLLU function make it so popular in use because they either extinguish the value or they
keep it the same, which alleviates the vanishing gradient problem and helps the optimization
process [43].

Sigmoid The sigmoid function is defined as:

1

= 3-3
Ysigmoid 1+ exp(—X) ( )
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18 Theoretical Background of Convolutional Neural Networks

a plot of this function is visible in Figure 3-5 created with matplotlib in Python. Sigmoid
functions are smooth and differentiable (Figure 3-7) and are mainly used as activation func-
tions on the output layers, mostly for classification problems, since it is a special case of
softmax with number of classes v = 2. The softmax function is mainly used for multiple
output classification probelms and is defined as [15]:

eXi
SOftmaX(XZ‘) = Vie)(J (3-4)
j=1
On the other hand, in hidden layers it is more typical to use ReLU activation functions, which
are simpler and easier to train [43].

RelU activation function Sigmoid activation function

5 1a

4 08

3 06

2 04

1 02

o 00

- 2 0 2 1 — -2 0 2 1
Figure 3-4: RelLU non-linear activation Figure 3-5: Sigmoid non-linear activa-
function tion function
RelU function Derivative Sigmoid function Derivative o'(x)

10 0.25

0.8 020

0.6 015

04 010
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—4 -2 o 2 4 -4 -2 o 2 4

Figure 3-6: RelLU activation function Figure 3-7: Sigmoid activation function
derivative plot derivative plot

Hence, while designing deep neural networks we get the design choice of activation functions.

In general, the training loop of a network is comprised of:

e presenting a training dataset - noisy, not exact examples of the ground truth function-
and getting output predictions (forward pass)

o comparing the predicted output with the ground truth (loss computation)
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3-1 Introduction to Deep Learning and the DNN 19

o updating the hyperparameters accordingly in order to reach the best approximation of
the function to be learned (backward pass and optmization step)

The comparison between output and ground truth is acquired by computing the loss, which
is defined by the objective/cost/loss/error function, which is also a design choice, and then,
the parameters of the network are updated using the back-propagation step.

3-1-2 Back-propagation

In section 6.5 of [15] and 4.7.3 of [43], one can dive into the back-propagation algorithm, which
enables the information from the loss to move from the output layer backwards to the input
layer, so that the gradient with respect to each parameter is calculated. The back-propagation
step is actually an algorithm that efficiently calculates gradients to reduce the computational
cost of this procedure. In other words, back-propagation is a smart way to apply the chain
rule of calculus. Additionally, it is often misinterpreted that the back-propagation algorithm
is merely referring to multi-layer neural networks, whereas it can actually be used to calculate
derivatives for any function. A deeper insight on the back propagation step is given by using
computational graphs.

Computational graphs: Every square represents a variable, which can be a vector, matrix,
tensor, a scalar or other and every circle denotes an operation as in Figure 3-8. An operation
is just a function applied on the variables. Furthermore, an operation gives back just one
output variable. Finally, the topological ordering in the graph starts from the lower-left node
and moves upwards and so on so forth. An example of a computational graph and the involved
calculations is following, inspired by [43] in section 4.7.2. For simplicity, let’s assume that we
have an input xy € R® and a single hidden layer, with dimension A that doesn’t include a bias
term.

Then, if we perform the forward pass, it gives the intermediate variable ¢ = wy, with
w € R" 3 the weight parameter of the layer.

Via the sigmoidal activation function o we obtain the output y, = o(¢).

Next, with ¢ denoting the truth value vector and assuming that we have a mean squared error
loss function, we get the loss term as: L = %(ya —1)2.

1

Adding a regularization term R, with known hyperparameter A, we have: R = §w2. Finally,

the regularized objective/loss/cost/error function is then: J = L + AR

The above described simplistic network is depicted in Figure 3-8 and it shows the inter-
connections between the calculations. Based on this, we are, next, going to perform the
back-propagation step, in order to present an example of how it works.

1. The initial step of the back-propagation algorithm is to calculate the gradient of the
regularized function .J with respect to the loss L and the regularization term R:

0
oL
Q—)\ (3-5)
OR
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’ >

H -0 1 -

Figure 3-8: Computational graph for the above presented simple network - Grey squares denote
variables and blue circles denote operations, based on an example in [43]

2. Next, the gradient of the regularized function J with respect to the output variable y
needs to be computed, based on the chain rule of calculus:

oJ oJ 0L OL
Dy, " 9Loy, og V! o

3. Following, the gradient of the regularized function J with respect to variable ¢ can be
calculated with the chain rule and substituting already computed gradients:

0J _ 0J 9y, _ 0J

— = = — 3-7
06 ~ 0y, 06~ ay,” ) (1)
where 887{7 has already been calculated in Equation 3-6.

4. Finally, the derivative of the regularized function J with respect to the weight can be
computed as follows, where g—i is calculated from Equation 3-7:

0J 9J09¢ 9JOR 9J

- = - = T -
dw 00w T oRow ~ apX TV (3-8)

The above steps conclude the application of the back-propagation algorithm for the calculation
of the derivative with respect to the weight, on this simple network used as a toy-example.

3-1-3 Gradient-based Learning

After the gradients with respect to the trainable parameters are computed, we can minimize
the objective function, namely the loss, by a method named gradient descent, as described in
section 4.3 of [15] and [25]. This method suggests an update of the parameter 6 that leads to
a smaller loss function value based on:

0 =60—eVyJ(0) (3-9)

where € is the learning rate, namely the step size of the optimization.
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3-1-4 Optimization Techniques for Training DL Models

There are various optimization methods employed in deep learning, we will focus on the
method that has been chosen in this thesis.

Stochastic Gradient Descent (SGD) It is probably one of the most applied optimization
algorithms in DL. In section 8.3.1 of [15] and 11.4 of [43] the authors give a good description
of this method. The optimization algorithm for SGD collects a number of samples M, from
the total training set, then the gradient is estimated:

1 M
§=3;Vo2_%(0) (3-10)
=1

then, based on that estimate and the selected learning rate, the parameter is updated as in
Equation 3-9, until a stopping criterion is met. The stochasticity lays in the fact that not
the total amount of the training data is used for the estimation of the gradient, in order to
reduce computational cost but this leads to a noisy output.

SGD with Momentum The objective of the momentum learning rule is to address the poor
conditioning on the Hessian. In addition, it aims to deal with the varying output of SGD [15].
Eventually, momentum is used to accelerate convergence and stabilize the training process. In
this method, a variable v is introduced, which is analogous to physical velocity. It controls the
direction and speed of the parameters in the parameter space during learning. The variable
v is defined as an exponentially reducing value. Moreover, a hyperparameter a € [0, 1) is
introduced, which controls how fast the previous gradients decay. Finally, the parameter 6
value is updated according to v. This is described by the following set of equations:

v =av — €]

/ 3-11
0 =0+ ( )

Root Mean Squared Propagation (RMSProp) This is a method of adaptive learning rates
[15]. The higher the partial derivative of the loss function with respect to parameter 6, the
more rapid the decrease of §’s learning rate. On the contrary, the lower the partial derivative
corresponding to 6, the smaller the decrease in its learning rate. The RMSProp keeps an
exponentially decaying moving average, d of the squared gradient, §2, for each parameter.
Decay rate p is a parameter between 0 and 1 that determines how much the past gradients
contribute to the moving average. It also uses a global learning rate €. Scaling the gradient
by the root mean square benefits the learning. The parameter update rule for this method is
described by the following equations:

d=pd+(1-p)§°
o (3-12)
b+d
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22 Theoretical Background of Convolutional Neural Networks

where § is typically chosen as 1076 and a new hyperparameter is added, namely p, which
controls the length scale of the moving average.

Adam Ada-ptive m-oments is another adaptive learning rate optimization algorithm [15],
[22]. Tt can be viewed as the combination of momentum technique and RMSProp. Thus,
the formulas including bias corrections for the weight update with Adam optimizer are a
combination of Equation 3-11 and Equation 3-12:

b = v
Tl-a”
d=pd+(1-p)g’ -
3-13

i =1

1—p7
6 =6 — "

d, +6

In conclusion, Adaptive Moments (Adam) is considered better than plain SGD since it
incorporates the momentum as well as the RMSProp advantages, [22]. Choosing an optimizer
is going to be one of our design choices in the next sections.

3-2 Convolutional Neural Networks

Previously, the design and implementation of DNNs with fully connected layers, in which
every neuron from each layer is connected to all neurons in the next layer has been presented.
In [25] as well as in chapter 9 of [15], a good insight in CNNs operation principles is given.

3-2-1 Convolution

In order to explain convolutional neural networks we will start with the convolutional opera-
tion. First of all, it can be multi-dimensional; 1D for data such as signals/sequences, spectra
or natural language processing, 2D for data like images and 3D for video data or volumetric
images [15]. In general, the definition of the convolution operation, denoted by *, between
two functions in discrete time, is given as [15]:

s(n) = X(n) *w(n) = Z X(k)w(n — k) (3-14)

k=—00

In CNNs, w is referred to as the kernel, X as the input and the output of the convolution
operation, s, is referred to as the feature map. The input and the kernel are arrays that
are used as tensors in PyTorch. Additionally, we calculate the convolution sum for a finite
number of input and kernel array positions where we store their values, while everywhere else
it is assumed that they have a value of zero.

loanna Chanopoulou Master of Science Thesis



3-2 Convolutional Neural Networks 23

2D-Convolution Operation

In chapter 9 of [15] and in chapter 6.2.1 in [43], the 2D convolution operations are described.
An illustration on a 2D input is shown in Figure 3-9, inspired by [43].

—_—
0 1 2
0 1 5 7
3 4 5 | * =
0 1 11 | 13
6 / 8 Kernel Output '
Input

Figure 3-9: lllustration of 2D convolution operation. The blue-shaded elements are participating
in the computations to give the top left corner element of the output

In Figure 3-9, the output element on the top left corner is derived from the application of the
convolution operation which is:

Output =0x0+1x14+3x0+4x1=5 (3-15)

To obtain the rest of the output values the kernel "window" is slid across the input on both
horizontal and vertical directions. Since the edge elements of the input cannot be covered by
a 2 x 2 kernel the output has a reduced dimension, as we can see in Figure 3-9, the input is
reduced from 3 x 3 to 2 x 2. Furthermore, the 2D convolution operation integrates the spatial
dimensions of the data into the network’s layers, thus, it is used successfully in image-like
data.

1D-Convolution Operation An illustration of this operation in Figure 3-10 is presented
next.

0 1 2 3 4 5 * 1 2 = 2 5 8 11 14
Input:lx6' Kernel: 1x2 Outp.ut:1x5

Figure 3-10: lllustration of 1D convolution operation. The output value is computed as:
Ox14+1x2=2

1D CNNs are beneficial, when 1D data are concerned, compared to their 2D counterparts
because of the next facts:

¢ less computational complexity
o fewer hyperparameters to be tuned

¢ low-cost and suitable for real-time applications
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Receptive Field

The area of the input layer that the hidden layer is able to "see" is called the receptive field.
Based on chapter 7.2.6 of [43], the receptive field can be presented with the assistance of
the illustration in Figure 3-9. In Figure 3-9, the output node on the top-left is affected by
the four elements with the blue shadow in the input, given the 2 x 2 convolution kernel and
this is defined as the receptive field. Additionally, in CNNs, the receptive field of elements in
deeper layers is larger than the shallower layers one [15]. Again, this can be demonstrated
with the help of the example illustrated in Figure 3-9, with the addition of one more kernel
of dimension 2 x 2 as shown in Figure 3-11 (top).

0| 1 | 2
0 ‘ 1 B 7 1 0
3| 4 |5 x = * = 18
0 | 1 11| 13 0
s Output 2
6 7 Kernel 1 Qutput 1 Kernel 2
Input
receptive field 2
E
9 \
g =
S I | N
© \ /
g \__/ K M Output
/ \‘ a \ / \ SN
\ / \ / \ / Hidden layer
Input layer

Figure 3-11: Receptive field illustration for a toy-example of two layers. On the top, the
participating neurons in the calculation of the corresponding outputs are indicated. On the
bottom, receptive field 1, corresponds to the region that affects the output in the top left neuron
of the hidden layer. On the contrary, receptive field 2, corresponds to the region that affects the
final output. The deeper the layer the larger the receptive field, as the final output "sees" all of
the input layer neurons.

In Figure 3-11, we can see the receptive field of two different neurons. As already mentioned,
the first one - the top left blue one in the hidden layer - only "sees" the four blue nodes from
the input layer that were used for its calculation. The second one - the final output in pink
colour - sees the whole input layer, since its calculation is affected by all of the neurons.
Hence, whenever input features lie across a wider region, we should construct a deeper CNN,
so that these features are detected from the hidden layers.

Padding

As already seen in Figure 3-9, the dimension of the input gets reduced after the convolution
operation application (from 3 x 3 to 2 x 2, when a 2 x 2 kernel is applied). This effect is due
to the fact that we lose pixels that are surrounding the 2D input and thus, they cannot be
covered by the convolutional operation. In order to deal with this loss, extra pixels around
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the perimeter of the 2D image data are added, assigned the value of zero [43]. This procedure
is called padding.

Striding

While applying the convolution operation, we begin with the kernel window at the top-left
position (as shown in the blue shadow in Figure 3-9) of the input tensor and then slide the
window around each position horizontally as well as vertically to cover the whole region. In
the toy-example of Figure 3-9 the window was slid one step at a time, although, intermediate
positions are skipped, so that computational cost is reduced and downsampling is accom-
plished. This act is called striding and when designing a CNN we refer to the amount of
skipped steps as stride and it is a parameter that needs to be defined by the designer of the
architecture [43].

0 1 2
. 4 5
2x2 Max Poolin
3| 4| s 9,
max(0,1,3,4) 7 8
6 7 8
Output
Input
0 1 2
2x2 Average Pooling 2 3
3 4 5 »
mean(0,1,3,4) 5 6
6 7 8
Output
Input

Figure 3-12: lllustration of maximum and average pooling

Pooling

Another important component of CNN architectures is pooling.Typical architectures employ
pooling layers right after convolutional layers that basically summarize the result around a
region by summing information in order to achieve a bigger receptive field of each neuron,
up to the input layer, as we go further into the depth of the network [15] and [43]. This is
particularly useful for cases where a general question is addressed, such as a question of image
classification. For example, if the classification question is whether the image contains a dog,
then, the nodes of our output layer should "have access"/be affected by the whole input image.
Summing up, pooling layers aim at alleviating the shifts of location after convolutional layers
and at downsampling detected features, chapter 6.5 [43]. Typically used pooling layers in
literature are maximum and average pooling which are described visually in Figure 3-12.

In Figure 3-12, we can see that the maximum pooling leads to a downsampling of the input
by using the computation of the function, maxz() that extracts the maximum value out of
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each location, whereas the average pooling calculates the average value between the elements
in each location. Input size from 3 x 3 is reduced to 2 x 2 enabling memory saving.

Summing up, a visual comparison to highlight the differences between a DNN model and
a CNN model is presented in Figure 3-13. Convolutional neural networks are comprised
of convolutional layers which learn automatically representations and fully connected layers
which output the classification result. The trainable parameters of a Convolutional Neural
Network (CNN) are the weights and biases of both the Fully Connected (FC) units and the
convolutional kernels.

22223 0

‘ Hidden Convolutional
Input Layer Hidden Layers Output Layer | Input Layer

vectror\ization

Layers

Output
Fully Connected Layers

Figure 3-13: DNN vs CNN. (Left) Deep neural network with FC architecture.(Right) 2-D CNN
architecture.

3-2-2 Regularization Techniques

In [15], the definition of regularization techniques is given as a reduction of the test error
with the possibility to raise the error of the training set. On the other hand, regularization
techniques can also be defined as techniques to alleviate the overfitting phenomenon. Some
of the most popular techniques used nowadays are the following.

L2 Regularization L2 regulatization can also be called weight decay and is one of the most
commonly used regularization techniques. The intuition behind this method is the measure-
ment of a function’s distance to zero. Therefore, the Lo norm of the weights is introduced,
which is equal to, [43] section 2.3.10:

(3-16)

The term ||w||2 is added as a penalty to the loss function L(w, b). Hence, now the optimization
problem becomes the problem of minimizing the sum:

A
L(w,b) + 5wl (317)
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where w, b represent the weights and biases and A is a regularization constant divided by 2
due to the convention of making the output look simpler after calculating the gradient. For
a positive A, the value of w is restricted.

Early Stopping Stop the training of the model as soon as it starts to overfit on the training
dataset, instead of training the network for a standard epoch number.

Dropout Some neurons are actually dropped out during the training process. On every
iteration while forward propagating, what happens is that part of the nodes get zero values
before moving on to the next layer, in this way overfitting is alleviated.

3-2-3 Performance Evaluation

After training a CNN model it is important to evaluate its performance on a testing dataset,
based on some metrics. In literature, several metrics for evaluating performance are encoun-
tered for IMS classifiers, some of them are presented next, where True Positives (TP), True
Negatives (TN), False Positives (FP) and False Negatives (FN).

To start with, the classification performance of the models will be calculated and presented
based on the confusion matrix, which is defined as follows.

Table 3-2: lllustration of confusion matrix for binary classification

Predicted as Negative | Predicted as Positive
Truely Negative TN FP
Truely Positive FN TP

In Table 3-2, we see the confusion matrix for the case of binary classification. By analyzing
the values on the confusion matrix we can determine our model’s ability to properly classify
different classes and we can calculate several performance metrics which are defined based on
TN (True Negatives), FN (False Negatives), TP (True Positives) and FP (False Positives). It
is easily understandable that the TN represent the data that actually belong to the negative
class and are correctly predicted by the model to belong to the negative class. Additionally,
the FN, correspond to data that actually belong to the positive class but are misclassified as
belonging to the negative class. Alternatively, the model fails to recognise those observations
as positive and incorrectly assigns them to the negative class. The same logic applies for the
TP and FP in the oppoisite class.

Accuracy

The metric of overall accuracy, which is defined as:

TP+TN
TP+ FP+TN+FN

Accuracy = (3-18)
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28 Theoretical Background of Convolutional Neural Networks

Balanced Accuracy

In [4], balanced accuracy is used as an evaluation metric to compensate for the imbalanced
classes, which is defined as:

1. TP TN
Balanced Accuracy = f(? + T)

5 (3-19)

where P is the number of actual positives and N the number of actual negatives. This metric
is not biased by the data distribution compared to the accuracy metric presented above.
During cross-validation the median value of the balanced accuracy is calculated in [4].

Precision

The metric of precision is given as:

TP
Precision = W (3—20)

Recall

It is the same as sensitivity or else it can be defined as the true positive rate. It measures the
amount of the positive category (e.g. diseased tissue) that is correctly classified. Furthermore,

it has the following formula:

TP
l=—n—— -21
Reca TP L FN (3-21)

F1 score

The F1 score is a commonly used metric for evaluating the performance of a classification
model, particularly in situations where the classes are imbalanced. It combines precision and
recall into a single value that represents the overall effectiveness of the model.

Precision - Recall
F1 =2. -22
seore Precision + Recall (3-22)

Nonetheless, the denominators of the above given relations need to be different from zero so
that they can be defined.
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Chapter 4

Theoretical Background of Techniques
for Hyperparameter Tuning,
Classification and Interpretation

First of all, in this chapter, we describe the theoretical background of the rest of the ap-
plied methodologies for the purpose of this thesis. In section 4-1, we talk about the applied
automated methodology for the hyperparameter tuning and consequently, the Convolutional
Neural Network (CNN) architecture design, namely Tree-structured Parzen Estimator (TPE).
In section 4-2, we define the theoretical models of the used linear baseline methods and we
describe the alternative feature extraction method used instead of the convolutional layers.
Finally, in section 4-3, we define the used methodology for finding the feature importances
that aid the interpretation of the designed CNN models.

4-1 Hyperparameter Tuning

Searching for the best hyperparameters is an optimization problem. In this section, we explore
an automated Bayesian hyperparameter optimization and CNN architecture design methodol-
ogy. Bayesian optimization [14] isn’t a specific methodology but rather refers to the category
of optimization algorithms that are based on Bayes’ rule. The algorithms belonging to the
Bayesian optimization category don’t require gradient computation of the objective function.
The objective function is allowed to be a mere "black box", meaning that a closed-form ex-
pression of the objective function is not necessary. The relaxation on the need for gradient
computation is valuable in hyperparameter optimization problems due to the fact that the
gradient of the objective function does not always exist, for instance, when the hyperparam-
eters are discrete.

Additionally, Bayesian optimization selects hyperparameter observations indirectly, based on
acquisition functions and the evaluation of those locations. An acquisition function should be
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30  Theoretical Background of Techniques for Hyperparameter Tuning, Classification and Interpretation

chosen carefully, so that exploration and exploitation of the search space is accomplished. Ex-
ploitation refers to collecting observations in regions where the objective function most likely
is optimized, while exploration refers to collecting observations from new regions, where we
are not sure about the objective function.

4-1-1 The Tree-structured Parzen Estimator (TPE) Approach

A method that belongs to the Bayesian optimization category is the Tree-structured Parzen
Estimator (TPE) algorithm. Tree-structured refers to the conditional form that the config-
uration search space can take. For instance, in a CNN, if we use two hidden convolutional
layers then we should determine the hyperparameters for both the first and the second hidden
layer independently. However, if the option is to use just one hidden layer there is no need to
define the hyperparameters for the second layer. This means that some hyperparameters are
conditional and lead to a tree-structured search space. On the other hand, Parzen estimators
or Kernel Density Estimators (KDEs) refer to the method of estimation of the probability
density functions. The TPE strategy models p(n|t¢), namely the probability of a hyperpa-
rameter observation {77(1), n@, .. g\ )} from the configuration space H, given a certain loss
1, which is used for the evaluation of the acquisition function that determines the search
direction. TPE determines p(n|iy) based on densities across the search space H, estimated
using Parzen estimators; alternatively called KDEs [8, 38]:

U(n) if ¥ <o
p(nly) = (4-1)
g(n) if ¢ >y~

In Equation 4-1, [(n) is the probability density function (or just density) resulting from using
the hyperparameter observations {n(¥} that correspond to loss ¥ = f(n®) that is less than
¥*. The ¥* is defined as a threshold, a quantile v of the observed losses v, to distinguish
between "good" and "bad" observations. On the other hand, g(n) is the density function of
the remaining observations that correspond to a loss v that is larger than *.

In TPE, the acquisition function that is used to decide the next best location to sample
is the Expected Improvement (EI) criterion, which is defined as [8] - if we parameterize

p(n, ) = p(nlY)p(y):

B1t) = [ —wwtvinas = [ - o,

We define the percentile split threshold as v = p(¢) < ¢*) = fi’[}; p(¢)dy hence TPE models

p(n) as follows, p(n) = [p(n|Y)p(¥)dy = vl(n) + (1 — v)g(n), which after substitution in
Equation 4-2 leads to the relationship

W (4-2)

() = U(n) [ p()dy )P ()]
A+ (1 =7)g(n) O<(7+l(77)(1 ) O

This relationship indicates that in order to maximize the expected improvement we desire to
have hyperparameters {7} with high probability I(n) and low probability g(n). For every

EI(n)
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iteration, the TPE algorithm outputs the next observation n* that achieves the highest E1I.
This is illustrated in the following figure.

w = f(n) Kernel density estimators

a'r' HHHHHHH ™
i ™. Split at y =y*
"
" [ = ’
.,
‘.\
“m,
Lp:l'p* “'-.__‘
et 2 L
_I_..--tl* !

m Good split group —— Density of good split - Acquisition function
m Bad split group —— Density of bad split 1 Samples

Figure 4-1: Three figures illustrating the fundamental concept of TPE algorithm. (Left) Obser-
vations of the objective function ¢» = f(n) split in two sample groups. The red samples correspond
to the "good" split and the blue samples to the "bad" split. The green dashed line is the split
threshold ¢*. (Top right) The densities calculated using KDEs for the "good" (red) and "bad"
samples (Bottom right) The L) ratio in the acquisition function that determines the highest El.

g(n)
The configuration with the highest El is chosen for the next iteration denoted by a star among

the triangle-shaped samples. [Image taken from Watanabe ©2023 [38]]

In Figure 4-1, we observe the collection of 14 samples, and their corresponding loss . The
3 out of the 14 are recorded in the group of the "good" and the rest 11 are recorded in the
group of "bad" based on a top-quantile threshold ¥* or else «. Furthermore, on the top
right figure, the probability density functions of the "good" split group and the "bad" split
group are approximated using Parzen estimators/KDEs. The basic idea behind KDEs is to
approximate the density by constructing a weighted sum of kernel functions centered around
each hyperparameter value {n(¥} for a number of observations, N [38]:

N
p(nlv) = wopo(n) + Y wiK (0, nilo) (4-3)
=1

Equation 4-3 estimates the densities where w the weights, K is the kernel function, o is the
bandwidth and pg is the prior. Typically, a kernel function K that is used in TPE for numerical
hyperparameters is the Gaussian kernel, which is defined by the standard normal distribution
[8, 38]. Furthermore, in Figure 4-2 and Figure 4-3, we illustrate how the Gaussian KDEs look
for an amount of hyperparameter observations from one up to six samples. Through those
figures, we show the main idea that each hyperparameter observation determines a normal
distribution with mean equal to the observation and a bandwidth, equal to the standard
deviation, which is set based on the greatest distance between neighbouring samples.
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KDE with Gaussian kernel for one sample KDE with Gaussian kernel for two samples KDE with Gaussian kernel for three samples
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Figure 4-2: Kernel density estimators with Gaussian kernel for one, two and three hyperparameter
samples respectively

KDE with Gaussian kernel for four samples KDE with Gaussian kernel for five samples KDE with Gaussian kernel for six samples
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Figure 4-3: Kernel density estimators with Gaussian kernel for four, five and six hyperparameter
samples respectively

To sum up, the first step for the Tree-structured Parzen Estimator (TPE) is to gather initial
data. One common and straightforward approach is to initially perform a few iterations
of Random Search. Next, we split the collected observation pairs (7;,1;) into two groups -
based on the splitting threshold ¥* - the "good", corresponding to the ones that gave low losses
after evaluation and the "bad", corresponding to the rest observations. Then, the likelihood
probability of belonging to one of these groups is modeled using KDEs and Gaussian kernel
functions for numerical hyperparameters. Then, the improvement criterion is maximized
according to the ratio of good over bad density and the next location is taken for exploration.
The algorithm stops when the user defined maximum number of trials has been reached or
if the computational resources are fully utilized. Finally, TPE is a Bayesian optimization
technique that efficiently searches the hyperparameter configuration space H(e.g. number
of convolutional layers, learning rate e.t.c.) to determine a configuration that optimizes our
model. Subsequently, we can use it to select the optimal architecture for our 1D CNN models.

4-2  Approaches to IMS Data Classification apart from CNNs

4-2-1 Linear Models as Reference Methods
Linear Discriminant Analysis (LDA)

Assume we have a random input vector X € R®, where S the total number of features, and
Y € R a random output which is the target value of the annotated input. Let’s assume that
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k denotes the classes, then fi(X) is the class conditional probability density function of X in
class k and 7 is the prior probability of k£ [17]. The posterior probability is yielded by the
Bayes theorem:

T fr ()

PV =hX=0) = " m

(4-4)

Therefore, if we get an estimate of the density we can calculate the quantity p(Y = k| X = x)
and then assign X to the class with the highest posterior probability. Linear Discriminant
Analysis (LDA) method fundamentally models each class density as a multivariate Gaussian:

1

— 2 (a—p) TSk~ Hz—pug) -
CRZEPATE 9

fe(w) =

Additionally, LDA assumes that the covariance matrix is shared among the classes 3y =
3 Vk. If we compare class [ with class k, with respect to their log odds ratio, Equation 4-6,
we get a relation that is linear in x.

p(Y = k|X =) Ju(x) Tk
lo =lo + log —
oY =UX=a)  Ch@  Cwm
T 1 _ 4-6
= log ;]; = 5 (e + )" S (= ) (4-6)

+ 25 (e — )

In the equation above, the normalization factors (27)P/2|3.|'/? and the quadratic factors
in the exponents are cancelled out due to the equality of the covariance matrices. From
Equation 4-6, we conclude that the decision boundaries of the classes is linear in x for the
LDA method and in n-dimensions it is a hyperplane. Practically, the Gaussian distribution
parameters 7y, ur and Xare unknown and estimated via the training dataset.

Logistic Regression

Logistic regression is a widely used supervised Machine Learning (ML) algorithm for binary
classification tasks, such as classifying diseased or not diseased tissue. It is based on the
sigmoid function which is defined as in Equation 3-3 and Figure 3-5, which maps input val-
ues to a value between 0 and 1. The algorithm fundamentally assumes that the relationship
between the input features and the probability of the positive class (e.g. diseased tissue) can
be described by a linear equation and it estimates the coefficients of this linear equation.

Let’s assume that the feature’s vector is X € R®, where s the total number of features
and the target variable is Y, with Y = 1 corresponding to the positive class and ¥ = 0
corresponding to the negative class. Then the logistic model models the probability that the
positive class occurs given a feature value p(Y = 1|X;). The assumption is that there exists
a linear relationship between the features and the logarithm of the odds that Y =1orY =0
occurs. Next, we take the case of the class Y =1 [17]:
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p(Y =1|X;)
1—p(Y =1|X;)

log = ﬁO + Ble + 52X2 + ...+ Ban (4‘7)

with 8 the coefficients are on a logarithmic scale. The log of the odds is named the logit
transformation and from Equation 4-7, the logistic probability function can be determined
as:

1
1+ exp[—(Bo + S1.X1 + .. + BnXn)]
_ exp[(Bo + f1X1 + ... + BnXn)]
1+ exp[(Bo+ L1X1 + ... + BnXn)]

p(Y =1[X;) =
(4-8)

The logistic regression model during training aims to learn the optimal values for the coef-
ficients 5 in the linear equation by using the maximum likelihood. The log-likelihood for N
observations is defined as:

N
L(B) = _logps, (Xi; B) (4-9)
=1

with pg,(X;;8) = p(Y = 1|X;). If Y; corresponds to one of the classes output then 1 —Y;
corresponds to the other and the log likelihood can be rewritten as:

L(B)

> {Yilogp(Xi; B) + (1 — Y;) log(1 — p(Xy; B))}

N
I
—

(4-10)

=

{¥i8" X — log(1 + exp[5" i)}
1

.
I

with S the vector of the coefficients and X; the vector of inputs containing the constant term
1. Hence, in order to maximize the log-likelihood, we equate its derivatives to zero:

OLB) _ S X%~ p(X, ) = 0 (-11)
o8 H

the solution to these equations, that are non-linear in  is found using a numerical method
such as the Newton-Raphston algorithm.

4-2-2 Sharpened Cosine Similarity (SCS)

Recently, Sharpened Cosine Similarity (SCS) has been proposed as an alternative to con-
volution for feature extraction [41]. Replacing convolutional layers with Sharpened Cosine
Similarity layers is an innovative approach that introduces a novel perspective in the field
of deep learning. SCS is a variant of Cosine Similarity (CS) that includes a sharpening fac-
tor, which enhances the influence of common elements in the compared vectors, for example.

loanna Chanopoulou Master of Science Thesis



4-3 CNN Model Interpretation 35

According to [41], the mathematical description of Cosine Similarity (CS) between a weight
kernel w and an input signal X is:

X -w
X = 4-12
8% ) = Xl (4-12)

It has been proven that cosine similarity can be enhanced/sharpened so that it distinguishes
better whether two matrices are similar via applying a power p and maintaining the sign of
the cosine value. The mathematical relationship between the weight kernel and the input
signal that describes Sharpened Cosine Similarity (SCS) is [41]:

X -w p

SCS(X,w) = sign(X - w) | e T

(4-13)

with ¢ a small positive constant used to avoid numerical instability due to division by zero. In
this thesis, we will explore the alternative of using Sharpened Cosine Similarity (SCS) instead
of convolution and compare them in terms of performance.

As far as the implementation of this alternative operation is concerned, due to the lack
of a formally developed library that incorporates it, we used the implementation from [2]
with several adjustments to match our specific data structure.

4-3 CNN Model Interpretation

Deep learning applications can achieve high performances in several tasks. On the other
hand, they also pose an important question to their users which is how to evaluate and
trust the output of the trained model. This question is addressed through interpretability
methods that allow us to understand how complex models work. Gaining insight in the model
prediction process can be even more important than having a model with a high accuracy.
In general, interpretability of models can be divided in two categories, transparency and
post-hoc interpretation. A model can be called transparent when all of its parts and its
learning process can be completely inspected and understood, for example, in linear models.
On the other hand, post-hoc methods enable interpreting models after they have made their
predictions and which are not transparent, such as convolutional neural networks which are
viewed as "black-boxes".
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Figure 4-4: Three different learned boundaries leading to the same classification results [Image
taken from Montavon et al.,Copyright ©2019 [31]]
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In Figure 4-4, we can see how important it is to gain better understanding of how a model
learns. It is obvious that in all three cases we get correct classification results, however, the
correct data distribution is only learnt by the first model (i), whereas models (ii) and (iii)
indeed predict correct classifications but without capturing the correct distribution. This is
typical for high-dimensional data. Thus, we need interpretability methods in order to develop
user trust, gain knowledge on how to make the model better by solving bugs, understand how
the network layers interact with each other to result in the output and ultimately, obtain
better applications.

A recently developed framework for model interpretability is SHapley Additive exPlana-
tions (SHAP) [26]. SHAP method attributes importances to every feature based on the
Shapley value. Lloyd Shapley (1923 - 2016) was an American mathematician and Nobel
Prize-winner in economic sciences. He contributed especially in game theory and introduced
the Shapley value. SHAP is a model agnostic methodology but it also introduces some op-
timizations especially for different types of models such as linear, trees and deep learning
models. Since we are designing CNNs, we are going to use the deep learning SHAP explainer
known as DeepSHAP.

4-3-1 The Shapley Value

The Shapley value [33], introduced by Lloyd Shapley, originates from cooperative game theory.
If we have a game ¢g; with cooperating players C, then the Shapley value ¢(g;) stands for
the measure of each player’s i € U contribution in the game with respect to all permutations
on the set of players U. Due to the possibility of various contributions between player sets
and outcomes, determining how to allocate individual importance can be ambiguous. The
Shapley values provide one method of assigning importance, and more importantly they are
uniquely defined in terms of satisfying fundamental and desirable criteria [26]. According to
[33], the Shapley value ¢;(g1) satisfies the following axioms. We define II(U) the set of player
permutations and if 7 € II(U):

o Axiom I. Vr € II(U) it holds ¢ri(wg1) = ¢i(g1), i € U

o Axiom IL. Y37, ¢i(g1) = v(C)

o Axiom III. For two games g1, g2 it holds ¢(g1 + w) = ¢(g1) + é(g2)
The first axiom or else "symmetry" shows that the Shapley value is a property of the game v,
the second axiom refers to "efficiency” and shows that the Shapley value distributes the total

payoff of the game to every player, lastly, the thrid axiom or else "law of aggregation", shows
that when two independent games v, w are combined then their values must be added.

4-3-2 Additive Explanations
While for a simple, transparent model the best interpretation is the model itself, for a com-
plex model, such as CNNs, it is not possible to use the original model for interpretation.

Therefore, a simpler, surrogate, explanation model should be used, which approximates the
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original one. This approach is not novel since it is also used in other existing methods such
as LIME, DeepLIFT and Layer-Wise Relevance Propagation. SHAP is a unification of those
methods.

Let’s denote the original model as f, the explanation model as e and the input as X. The
explanation model uses simplified inputs X’ that are connected to the original inputs with a
mapping function X = hyx(X’). Local methods satisfy e(z’) = f(hx(z')) where 2’ &~ X'. The
way the explanation model approximates the original model in additive feature attribution
methods is depicted in Figure 4-5.

Original model, f{x) |———Prediction

simplified
inputs z'

M
» Explanation model, e(z’) ——— @o + é{pfzﬂ'
i=

Figure 4-5: The form of the explanation model e of an original model f in additive feature
attribution methods, where 2z’ ~ X’ and X = hx(X’)

Therefore, in additive feature attribution methods we have a surrogate/explanation model
that is locally a linear function of simplified inputs 2’ € {0,1}*, namely binary variables,
with M the total number of simplified input features [26]:

M
e(2) = do+ Y hiz; (4-14)
1=1

All the methods that use Equation 4-14 as explanation models give an attribution ¢; € R to
every feature and by adding all feature attributions results in the original model approxima-
tion. For SHAP this attribution ¢; is the Shapley value.

4-3-3 SHAP

The integration of the Shapley value from cooperative game theory into model interpretation
is accomplished by treating each feature as a player, then the Shapley value is the measure
of contribution of each feature to the final prediction. The introduction of the Shapley value
as a measure of feature contribution is important because it is a unique solution as it follows
from the game theory findings. The properties that make the attribution unique are similar
to the ones presented for the Shapley value in game theory and are namely the property of
local accuracy, missingness and consistency [26].

Local Accuracy The output of the original model f for a particular input X (locally) should
align with the output of the explanation model e for the corresponding simplified input X’:
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M
FX) = e(X) = do + > i X! (4-15)
=1

where ¢9 = f(hx(0)) corresponds to all simplified inputs missing.

Missingness When features are missing from X, then it is required that those features have
zero influence. All of the additive feature atribution methods follow this property.

X, =0=¢;=0 (4-16)

Hence, missingness ensures that absent features have attribution equal to zero.

Consistency If fx(z') = f(hx(2')) and 2'\i denotes z; = 0, then for two models f, f':

Fx (@) = 5 (Z\0) 2 fx(2) = fx(2\0), V2" € 0,1 = (f', X) > ¢i(f, X) (4-17)

Combining the game theory findings it has been proven that there is a unique set of expressions
that satisfy those three properties and this is the Shapley value. The Shapley values are
calculated based on the following theorem [26]:

b = Z |z/“(M _M|!2:" - 1)! [fX(Z/) . fx(z'\z)} (4—18)

2'e{0,1}M

Thus, in order to calculate the importance of an input feature X;, which corresponds to the
Shapley value in SHAP, we get all the permutations of feature subsets that do not contain

2 := 2'\i, its simplified version, and then contain z to all those subsets and calculate the

(2
effect on the output using their difference. The mean of those differences is the Shapley value
of that feature. This can be computationally expensive and this is why SHAP has developed

specific model type versions, so that it optimizes computational performance.

DeepSHAP

SHAP is a model agnostic interpretability method of complex models. DeepSHAP is based
on the fundamentals of DeepLIFT and SHAP to boost the computational efficiency for deep
learning models. Basically, DeepLIFT is adapted so that it approximates the SHAP values for
deep models. DeepLIFT is an additive feature attribution method that assigns an attribute
Cax,ay - with Y the model output - to every feature X;. The simplified inputs are binary
variables where 1 represents that X’ takes its original value and 0 corresponds to a non-
informative reference value.

loanna Chanopoulou Master of Science Thesis



Chapter 5

Methodology

This chapter will describe the use of an 1-D Convolutional Neural Network (CNN) for the
Imaging Mass Spectrometry (IMS) data classification (section 5-1) and the motivation for
using Tree-structured Parzen Estimator (TPE) methodology used to automatically select
the architecture (section 5-2). Finally, the network architecture design implementation is
presented for the final model selection per IMS data classification task.

Choosing the right architecture of a CNN for the task of IMS data classification is crucial for
accomplishing high performance and accuracy. Classification of IMS data can be a challenging
task due to its high dimensionality and complexity and the existence of noise within the data.
CNNs have already been applied for this task demonstrating highly promising results. The
selection of an appropriate architecture design methodology includes choosing between 2-D
and 1-D CNN structures and deciding whether to tailor manually the network architecture
or to use an automated architecture search.

5-1 1-D CNN Model

As previously discussed in section 1-2, the analysis of IMS data can benefit from the use of
CNNs, since they share common characteristics with image data [4], for which CNNs were
originally designed. IMS data can be viewed as a form of 1-D image data with the following
analogy. An image is a 2-D matrix of pixels with intensities and a mass spectrum is an 1-D
array of m/z values with intensities. Thus, a whole image can be seen as analogous to a mass
spectrum. Each image-pixel is analogous to each m/z value of a mass spectrum and each
image-pixel intensity can be viewed as analogous to each m/z peak intensity. These analogies
are illustrated in Figure 5-1. Therefore, we select to apply an 1-D CNN model.

5-2 Selection of Architecture Design Approach

Regarding the design approaches of the CNN architecture there are two options, either design
it manually or automatically. In general, neural networks and CNNs often keep on being de-
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Figure 5-1: Image-like concept of a mass spectrum. A pixel with RGB intensities (e.g. [15,10,75])
is viewed analogous to an m/z value with 1-channel molecular intensity 0.33 and the whole mass
spectrum can be viewed as a 1-D "image" with molecular intensities per m/z bin.

signed without much justification for every hyperparameter selection, which makes the design
quite arbitrary and the hyperparameter selection is often not reported. Furthermore, design-
ing a CNN architecture specifically for IMS data classification manually [4], with IMS data
being high-dimensional, noisy, and characterized by complex spatial and spectral features,
is very challenging. One needs to effectively capture these features. Thus, we focus on an
efficient, systematic and automated methodology for designing the architecture of the 1-D
CNN classifier for IMS. This can be accomplished by taking advantage of the fact that if
one considers architectural design decisions as categorical hyperparameters then they can be
optimized using conventional hyperparameter optimization techniques.

The indicators of an efficiently designed model extend along three directions based on [15]:

1. The ability of the model to represent and capture the underlying data patterns and
structure, namely, the representational capacity

2. The ability of the model to find the lowest possible value of the cost function employed
to train it

3. The generalization ability of the model

The optimal capacity of a well designed network can be illustrated as follows in Figure 5-2. A
high representational capacity doesn’t guarantee a high performance since it may lead to the
issue of overfitting. Additionally, the ability to achieve low cost on the training data also runs
the same risk. Finally, the extent to which regularization techniques are implemented can
greatly influence the performance of the model. If the regularization is too weak, the model
may overfit to the training data, while if it is too severe, the model may underfit. Therefore,
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Figure 5-2: Generalization and training error cases. On the left, where both the training and
generalization-testing error is high we have the underfitting region. On the right, where the
generalization error has a gap from the training one, we enter the overfitting zone. [Image taken
from Goodfellow et al., Copyright ©2016, [15]]

finding the right balance between model complexity and generalization is vital for achieving
optimal performance.

The appropriate balance between model complexity and generalization can be accomplished
via the optimal selection of the model’s architecture/hyperparameters, which can be designed
automatically by using conventional hyperparameter optimization techniques. Hyperparam-
eter optimization can be automated by traditional methods such as Grid Search or Random
search or more complex methods that are more efficient. For instance, in image classification,
automated hyperparameter optimization with the Bayesian TPE algorithm has been proven
more efficient than manual or random search processes [7], [8], trials on a grid are proven
more effective in search spaces of smaller dimensions [6], while, models such as CNNs can
have dozens of hyperparameters whose tuning can have a major impact on the model’s pero-
formance. Furthermore, the TPE algorithm has been distinguished in competitions and has
achieved state of the art performance in Deep Learning (DL), according to [39], which won
the AutoML 2022 competition on “Multiobjective Hyperparameter Optimization for Trans-
formers”. Thus, TPE is made an attractive approach.

An automated methodology for designing the CNN architecture for IMS data classification
is viewed beneficial because of the following reasons. The performance of a CNN model
massively depends on its hyperparameters and a systematic methodology can contribute to
exploring a larger hyperparameter search space. Additionally, it can aleviate the time con-
sumption and effort needed to design manually an effective CNN architecture as well as reduce
error prone human tactics [19]. Furthermore, the design of a CNN depends heavily on the
input data, the classification task and the available computational resources. Consequently,
following an automated process can help in designing a model architecture that is effectively
capturing the important features for the specific classification task. This, makes the design of
the model effective without the need of incorporating specialized domain knowledge to make
design choices and enhances its adaptability to different tasks and input data. However, there
is a need for large amounts of computational resources in order to implement an automated
design approach, especially when the hyperparameter search space is too broad.
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5-2-1 Comparing TPE to Grid Search and Random Search

Automated network architecture search can be accomplished with various methodologies.
In this thesis, we investigate the suitability and eventually, choose among two traditional
methods, Grid Search and Random Search and one more sophisticated method, the Bayesian
TPE algorithm. For the purpose of comparing the efficiency of the hyperparameter tuning
methods, the rat kidney dataset is used for the task of inner medulla classification section 6-2.

Rejecting Grid Search The search space used for our trials is comprised of numerous hy-
perparameters in broad ranges (Table 5-2). The number of hyperparameter combinations
required for Grid Search would be overwhelmingly large, making it impractical to execute
with the available computational resources. The total amount of trials for Grid Search is
calculated by multiplying the amount of options for each hyperparameter. Hence, there are
almost 54 million combinations for Grid Search to explore and it is easily understood that it
is impractical to implement such a method for hyperparameter tuning. Therefore, the Grid
Search approach is considered infeasible for exploring our hyperparameter space in practice
and no results are going to be compared about it.

Exploring optimal architectures with TPE and Random Search After disapproving of the
vanilla Grid Search approach, we compare the efficiency of the rest of our options, TPE and
Random Search, for finding the best performing hyperparameters. The comparison is based on
a fixed number of trials, namely, 100. Then, we reduce them to 50 and then, to 20. In that way,
we compare in how many trials each method is able to find a good performing hyperparameter
set. Each trial requires roughly one and a half minute to complete. Additionally, the runs
refer to three different random seeds, in order to check the method’s robustness.

Table 5-1: Comparison between TPE and Random Search

Trials | Best performance | Mean (across trials)
(F1 score)

20 0.9967 0.77

TPE 50 1.0 0.46

100 0.9997 0.65
20 0.9997 0.1530

Random Search 50 0.9993 0.16
100 0.9989 0.17

The results for each number of trials ran by each methodology are reported in Table 5-1. It
is observed that both methodologies achieve to find configurations that give relatively high
performances. Nevertheless, the highest fl-score among all number of trials is achieved by
TPE that reaches the perfect score of 1.0 in 50 trials, while for Random Search, the highest
is 0.9997 found within 20 trials. On the contrary, TPE doesn’t find a better hyperparameter
set within 20 trials because of the amount of initial trials we have set it to search, namely
10. On the other hand, TPE achieves better results than Random Search in the other two
cases which perform more trials. Furthermore, in Table 5-1, we report the mean values of the
non-pruned trial performances and we see that Random Search has a very low mean value
across its trials. This is further illustrated in the following figures.
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Figure 5-3: Performances along 100 trials of hyperparameter configurations with TPE (top
figure) and Random Search (bottom figure). The red line demonstrates the best performance
achieved over all trials.

In Figure 5-3, we observe the hyperparameter performances achieved by each trial - not
pruned - by TPE and Random Search. The red line indicates the best performance among
all trials. As expected, the TPE search, after the initial random samples are collected (10),
it starts to converge to a really high performance for all the next hyperparameter trial sets,
whereas the Random Search randomly peaks hyperparameter configurations from the search
space and those achieve high performances occasionally. For example, around trials 18 and 50
the peacked sets are successful with high performances while most of the rest random hyper-
parameter sets achieve 0.0 F1 score. Therefore, we conclude that Random Search certainly,
doesn’t find the optimal solution but rather a randomly selected hyperparameter configuration
performing quite well.

Conclusion In order to select one of the two methods, the traditional Random Search versus
the sophisticated TPE - TPE uses two sets of probability density functions, one to model the
distribution of hyperparameters that have performed well in the past, and one to model
the distribution of hyperparameters that have not performed well and focuses on the well
performing ones - we compare their efficiency based on several criteria.
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e The model resulting from TPE exploration of the search space reaches a lower classi-
fication error and higher F1 score than Random Search (Table 5-1), even though it is
not a significant difference.

e Random search generates configurations from the search space at random while TPE
bases its future configurations on past observations according to a probabilistic model.

e TPE configurations converge faster since it focuses the search on promising hyperpa-
rameter regions compared to Random Search, which can take longer to converge and
find near-optimal configurations. Due to that, the mean performance across the trials
by TPE is much higher than Random search (see Table 5-1, Figure 5-3).

e Random search is simple to implement whereas TPE is more sophisticated but can be
more efficient for high-dimensional search spaces.

To sum up, Random search is a simpler method to explore hyperparameter search spaces,
however it may need more time and more trials to converge to a configuration that might or
not be optimal. On the other hand, TPE models the probability of performance improve-
ment and explores configurations based on the past observations. Therefore, we select the
TPE algorithm as the automated architecture search method, since it is demonstrating more
efficient characteristics and it adapts its search based on a probabilistic model which enables
it to converge faster, in less trials and more efficiently.

Since we have selected the architecture search algorithm the design process can begin. In
this section, we are going to dive into the pipeline of the implementation of the chosen auto-
mated architecture design methodology. The methodology starts with defining a search space,
the set of possible network architectures that the algorithm can explore. Then a performance
metric is selected to evaluate the performance of the architecture on a specific task and next,
the TPE algorithm is used to explore iteratively the search space and optimize the network
architecture based on that performance metric. We run the algorithm for several random
seeds to check its robustness and finally, we evaluate the hyperparameter configurations on
a validation set to do model selection. To sum up, in this section we will explore the im-
plementation pipeline of the automated architecture search methodology, namely the TPE
algorithm, for designing 1-D CNN architectures for the classification of the given IMS data.

5-3 Hyperparameter Search Space Design

Here, we will talk about the decisions we made regarding all relative architecture hyperpa-
rameters. To start with, the choices that someone comes across while designing a CNN model
include the following hyperparameters:

Total number of convolutional layers
e Number of filters in the hidden layers

Kernel size

Stride offset
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e Pooling kernel size

e Pooling stride offset

o Batch size

o Learning rate

e Learning rate policy

o Number of Fully Connected (FC) layers
e Number of nodes in the FC layer
e Type of optimizer

o Batch normalization layer

e Type of pooling layers

e Dropout layer

e Layer activation function

e Weight initialization method

These hyperparameters are quite a few in number which would be really time consuming and
challenging to be set manually by a designer in an efficient way. Thus, we create a search space
to explore some of those, while some of the design choices are made based on the state of the
art and empirical approaches in CNN architectures. More specifically, the hyperparameters
which are set based on state of the art approaches and experience are the following: the layer
activation type, the type of the optimizer and the use of batch normalization layers. The
design choices for those can be motivated as follows:

o Layer Activation Function: The Rectified Linear Unit (ReLU) acivation function
is applied after each convolutional and FC layer. In [24], the researchers use ReLUs
to achieve better computational efficiency and generally, it is a widely used activation
function. Additionally, ReLLU activation is useful in alleviating the vanishing gradient
problem occuring in DL, since it has a constant gradient for positive values, which helps
prevent the gradients from becoming too small.

o Optimizer: In [42], Adaptive Moments (Adam) is reported as the state of the art
optimizer for deep learning. Additionally, Adam combines the benefits of RMSprop and
momentum [32], [22], which allows it to outperform them. Hence, we choose Adam as
our optimizer type.

o Batch Normalization Layer: According to [20], batch normalization contributes to
enabling the use of larger learning rates and reduces dependency on weight initialization.
In [18], they use batch normalization exactly after each convolutional layer and before
the activation. So, we do use batch normalization in the exact same manner and test
the scenario of using it vs. not using it. The conclusion is that the addition of the batch
normalization layer improved significantly the model’s performance, namely it showed
up to 40% accuracy increase.
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¢ Weight Initialization: There are several weight initialization approaches implemented
in contemporary CNN architectures. We use the one specifically designed for ReLUs as
in [18].

For this purpose, we create a hyperparameter search space as the one provided in Table 5-2.
When defining the search space general guidelines are taken into account [5], [15]. First of
all, the fact that the range should be wide enough in order to discover better hyperparame-
ters. Secondly, the availability of computational resources - a very wide search space is not
manageable. Lastly, a satisfactory diversity of the values for a better exploration. Addition-
ally, image classifier recommendations [25] about the fundamental components of a CNN are
considered. Therefore, we define the following hyperparameter configuration space.

o Kernel Size: We preserve the range of the kernel size in a small area because smaller
kernel sizes enable the detection of more local features. For example, some image
classifiers [34] based on CNNs use kernel sizes of 3 x 3, which is the smallest possible
size of a kernel for detecting information about up-down and left-right. In a similar
manner, we define 3 as the minimum kernel value so that it can capture left-right
information around at least one peak.

o Stride offsets: Similarly, the stride offsets should be contained in small values so that
valuable information from the input is not missed. However, a larger stride size can
be useful for reducing the computational cost. In [34] a convolutional stride of 1 and
pooling stride of 2 is used and in [18] an offset of 2 both for convolutional and pooling
layers, whereas in [24], the convolutional stride offset is 4 and the pooling is 2. Based
on the existing architectures and on the notion that we should keep small enough stride
offsets we explore their values from 1 to 4.

¢ Pooling Kernel Size: Pooling is used to downsample the feature maps produced by the
convolutional layer, reducing the spatial dimensions while retaining important features.
A large pooling kernel size can reduce the computational cost by greater downsampling.
However, it might lead to the network failing to learn important details. In [34], the
used size is 2 and in [24],a pooling kernel of size 3 is used and so we also explore values
with maximum size for the pooling kernel as 5 and minimum size of 2.

« Type of Pooling Layers: We explore the usage of two basic categories of pooling
namely, average and mean pooling layers.

e Batch Size: Theoretically, this hyperparameter should have an impact on the training
time duration rather than the performance. We set the batch size as a power of 2
[42]. The model can run faster in that way because of the architecture of the Central
Processing Unit (CPU)/Graphics Processing Unit (GPU) memory. In general, a default
value of 32 is considered good and is a common practice [5]. Thus, we explore its value
up to a few hundreds in a power of 2 manner, starting from 32.

¢ Learning Rate: The learning rate is one of the most crucial hyperparameters to tune
for the Adam optimizer, since it controls the step size taken by the optimizer during
each update of the weights. The learning rate should be chosen carefully because if
it reduces severely, convergence is hindered, whereas if it’s reduced leniently, the best
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solution cannot be found. Common search space values lie in the range of [107¢, 1] [5].
An alternative to having a fixed learning rate is its adaptation during training.

e Learning Rate Policy: The learning rate policy concerns its adjustment based on the
training performance. There are several policies which can be followed. We explore the
constantly fixed learning rate, the exponential decay, the cyclic scheduler and the step
decay. In addition, log scales are suggested in [42].

e Number of Layers: The search space for the total number of convolutional layers is
set from 1 to 5 and for the stacked convolutional layers is set from 0 to 5, via trial and
error. The first choice is tuned based also on trial and error by checking the achieved
performance and enlarging the model capacity until the balance between performance
and generalization is disturbed. In this way, the maximum depth of 5 convolutional
layers is explored. This procedure needs to be repeated for each dataset and each
classification task. Furthermore, the amount of FC layers is explored based on existing
architectures that use more than one FC layers, in [34], [24] they use 3, thus we explore
up to this number each time by reducing the amount of nodes of the initial FC layer by
two.

¢« Number of Filters per Hidden Layer: In a single feature map, all its units are
convolved with the same filter/kernel values so that the same feature is detected on
all possible regions of the input data [25]. In another feature map of the same hidden
layer, another set of filter values is utilized so that a different kinds of local feature is
learned. Hence, on every input position, different kinds of local features are learned, as
many as the number of filters used. Thus, we want to explore the amount of represen-
tations/features present in the input data. This is based on the type of the dataset we
are dealing with each time. Since we haven’t applied any feature extraction technique,
we try to set the range of possible values within hundreds and let the algorithm decide
upon the most efficient value. We tune the number of filters of the first hidden layer
and then double them for each next layer.

e Number of Nodes in FC Layer: Selecting too few nodes might result in underfitting,
while [5] suggests that it is better to use a large enough number of nodes in the FC layer
instead of less than the optimal number, since regularization techniques can aleviate the
case of overfitting. However, this increases the number of trainable parameters and the
computational cost. Nonetheless, we explore using hundreds to thousands of nodes.

The dropout layers were tuned manually based on trial and error and we set zero padding so
that the output size remains the same. After having described the most important hyperpa-
rameter range definition, the resulting hyperparameter search space is explored by the TPE
algorithm. In this section, we will not talk about the number of trials used or other tuning pa-
rameters of the algorithm. We set out to explore the search space and report hyperparameter
importances.

In Figure 5-4, we observe the hyperparameter importances, where the highest importance is
significantly attributed to the number of convolutional layers in the first convolutional stack.
On the other hand, the type of pooling method takes up a very small importance thus, we
decide to exclude it from our hyperparameter search space. We use the max pooling which is
mainly applied in image classifiers. Nevertheless, more than just the pooling type are given
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Hyperparameter Importances
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Figure 5-4: Hyperparameter Importances

minor importances however, comparing the hyperparameter importances among different runs
it seems that the pooling type remains as the least influential parameter while the sorting of
the others is partly redistributed. A different run of hyperparameter importance results can
be viewed in section A-1.

Therefore, the finalized version of the search space we design for hyperparameter exploration
is depicted in Table 5-2.

5-4 Automated Architecture Search by TPE

Once the hyperparameter configuration space is designed, we can start the exploration of the
optimal CNN architecture using the TPE algorithm [8]. For the implementation, the tools
we use are Google Colab, Optuna, an open-source framework for efficient automated hyper-
parameter optimization (see Appendix) and PyTorch within Python.

First of all, TPE requires initialization. During the initial trials, Optuna randomly sam-
ples the hyperparameters to explore the search space before switching to TPE. The initial
trials constitute a hyperparameter in Optuna which is called: n_ initial_trials. In order to
set the proper amount of initial trials we make a grid of possible values and choose the most
efficient one. This means that we try to keep the initial trials at a low level so that we can
reach optimal architecture outputs within 100 trials. We test with Grid Search among [10,
20, 30] initial trials and choose the one that achieves the best performance. Furthermore, the
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Table 5-2: Hyperparameters Search Space

# | Hyperparameter Type Range Conditional
1 | no. of Convolutional layers | integer [1, 5] -
2 | no. of FC layers integer 1, 3] -
3 | no. of Filters integer [5, 60] (step=5) -
for 1st hidden layer
4 | no. of Nodes integer [100, 1000] (step=100) -
for FC layer
5 | Learning rate policy categorical | ['Fixed’, 'Step’, 'Exp’,’Cyclic’] | -
6 | Exp. decay rate float [0.0, 1.0] +
7T |y float [0.1, 0.9] +
8 | Step size integer 1, 10] +
9 | Learning rate float [le-5, le-1] (log-scale) -
10 | Batch size integer [32, 64, 128, 256] -
11 | Kernel size integer [3,20] -
12 | Stride offset integer 1, 4] -
13 | Pooling kernel integer (2, 5] -
14 | Pooling stride integer 1, 4] -
15 | L2 regularization float [le-7, le-2] -

process that is followed when searching for the optimal CNN architecture, is the following.
For each IMS dataset, we run the TPE algorithm on the specified search space, for three
different random seeds and compare the resulting optimal hyperparameter configurations, as
described in the next step, in order to evaluate and select the best architecture for each clas-
sification task.

During the iterative process of updating the hyperparameter configurations and their per-
formance, the evaluation metric that is used is the F1 score. The hyperparameters are chosen
so that this metric gets maximized. This metric is chosen because it is a good trade-off be-
tween precision and recall.

Some of our IMS datasets are imbalanced. Accuracy alone can be misleading as it can be
biased by the majority class. Therefore, F1 score is a good metric when we have imbalanced
classes since it is a combination of precision and recall which are important metrics when it
comes to imbalanced datasets.

Additionally, not all of the trials are given equal chances to be trained. Hence, a prun-
ing algorithm is used to judge whether a trial has a low chance of improving the performance
based on already reported values and it should be pruned. The pruning algorithm used is the
Median pruner which uses the median stopping rule and works as follows. It computes the
median of the observed trial scores and prunes if the trial’s best intermediate result is worse
than the computed median of intermediate results of previous trials at the same step ( same
number of iterations or epochs).

In more detail, during each hyperparameter optimization trial a sequence of iterations are
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conducted where the intermediate F1 scores are recorded. When the trial reaches a certain
amount of iterations, the pruning algorithm compares the median of all the previous trials
at the same step with the best intermediate result of the current trial. If it is better than
the current the trial is stopped prematurely (pruned), otherwise it continues. This process
is repeated until the maximum number of iterations or epochs are reached. This method is
suitable for most optimization problems and can reduce the optimization time significantly.
Moreover, it has some hyperparameters to be set, namely:

e n_ startup_trials: number of trials at the beggining of the optimization process without
any pruning. Its default value is set to 5.

o n_warmup_steps: number of intermediate results(steps) before pruning starts. Its
default value is set to 0.

e interval__steps: frequency at which the intermediate results are checked by the pruner.
Its default value is set to 1.

We tune those values as follows. We don’t change the default for the number of initial trials
that pruning is disabled, we increase the number of the warm-up steps to 30, in order to
allow the generation of sufficient intermediate results, and we make the pruner check every
10 interval steps.

5-5 Architecture Selection

Model selection is an important factor when we want to build an efficient machine learning
model. As already mentioned, we will run the search space exploration for three different
random seeds. The next goal is to select the best one out of the resulting configurations.

In order to achieve that, we use k-fold cross validation. The dataset is split into training
and testing sets. We further split the training set into k folds and train the model on k-1
folds and use the remaining fold as a validation set. This process will be repeated until all
of the folds have been used as a validation set. Then, we are using the mean F1 score across
all folds to select the best hyperparameter configuration. This concludes the final selection
of the optimal architecture. The testing data is then used to evaluate the performance of the
final model with the selected hyperparameters.
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Chapter 6

Experimental Results

In this chapter, we present the classification outputs of the designed Convolutional Neural
Network (CNN) models in comparison with linear Machine Learning (ML) models and with a
Sharpened Cosine Similarity (SCS)-NN model applied on three different Imaging Mass Spec-
trometry (IMS) datasets, acquired from a rat brain sample in section 6-1, a rat kidney sample
in section 6-2 and a mouse brain sample of the region of the hippocampus in section 6-3.

6-1 Dataset no.1l: Rat brain

The first case study is based on a dataset obtained from a coronal section of the brain from
a rat [37].

Right hemisphere
(healthy)

Left hemisphere
(dopamine depleted,
diseased) 3

Figure 6-1: Microscopy image of the tissue sample from the brain of a rat

The Matrix-Assisted Laser Desorption Ionization (MALDI) IMS data, with a 2,5 - dihydrox-
yacetphenone matrix applied by a TM Sprayer (HTX Technologies, Carrboro, NC, USA),
has been obtained using a 15 T Fourier Transform Ion Cyclotron Resonance (FTICR) mass
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spectrometer (Bruker Daltonics, Billerica, MA, USA), with a pixel size of 75um and mass
resolution of 50,000 m/Full Width at Half Maximum at m/z 5000. Furtheremore, the data
have been normalized according to TIC (Total Ion Count) and peak picked resulting in their
final form.

This sample has been specially treated to model Parkinson’s disease. More specifically, the
nigrostriatal dopaminergic neurons were artificially destroyed, since their disfunction is re-
sembling Parkinson’s disease, which has symptoms such as slowness of movement or tremors.
Moreover, the left brain hemisphere is dopamine depleted and thus, diseased, whereas the
right brain hemisphere is left intact and thus, healthy, (see Figure 6-1).

1. Left hemisphere (diseased - positive class - 1)

2. Right hemisphere (healthy -negative class - 0)

Therefore, in this case study, we have a binary classification problem with the objective to
differentiate among the diseased (left hemisphere) and the healthy (right hemisphere) class.

6-1-1 The Data

The size of the IMS data is comprised of totally 17,964 pixels while the detected ions lie within
a range from m/z 1300 to 23,000 and the total number of the ion images - alternatively peaks
- used is 6638.
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Figure 6-2: (Left - image) Pixelwise annotation of the rat brain, the left hemisphere is dopamine
depleted and it is the positive class (1), while the right one is regular and it is the negative class
(0) - (Right - image) Instances distribution to the two rat brain classes.

The annotated masks of the rat brain dataset are seen in Figure 6-2 (Left-image). Addition-
ally, we observe that the classes are nicely balanced, we have 9083 instances in the "Left"
class and 8855 instances in the "Right" class, which makes the analysis of the results based
on accuracy as a performance metric trustworthy. Moreover, we use a train and test split of
80% and 20% respectively and 5-fold cross validation for the final model selection.
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Preprocessing

Applying preprocessing to the data can have a large impact on the classification performance.
For this dataset, we apply centering and outlier removal.

In general, statistical normalization of the data is recommended in ML, so that the fea-
tures are ensured to belong to a similar scale, which can improve the performance. Min-max
scaling, which scales the feature values to a fixed range, for a number of observations of a
single feature X, is defined as:

X — min(X)
max(X) — min(X)

Xscaled = (6_1)
In our case, the large discrepancies between feature intensities contain valuable biological
information and normalization can reduce or remove this information by scaling all features
to a similar range. Hence, the scenario of normalizing the data is dropped. However, data
centering has been applied to our dataset. The mean intensity value for each feature column
is calculated, and this value is subtracted from all of the intensity values in that column. This
process results in a new dataset where the mean intensity value for each column is zero, while
preserving the relative differences in intensity values which are valuable.
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Figure 6-3: (Left - image) Examples of spectral data distribution - (Right - image) Results after
centering the data

In Figure 6-3, we observe the distribution of the data for several m/z features. We can see
that their distribution is right skewed. As we have already mentioned, we don’t apply any
normalization, we only center the data around zero. The effect of data centering is visible on
the right image of Figure 6-3.

Additionally, as a preprocessing step of the raw dataset we remove its outliers by imple-
menting an upper boundary using standard deviation. Outliers are data points which are
significantly deviating from the majority of the rest data points and can have a negative
impact on the classification performance if left untreated. In our case, we assume that any
raw intensity value of each column and each row of the dataset that exceeds a threshold of 10
standard deviations is an outlier and it is substituted by the threshold value. Consequently,
the data is now prepared to implement different classifiers.
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6-1-2 Classification with Linear Models

In this section, we present the outcome of the application of two different linear models,
namely Linear Discriminant Analysis (LDA) and Logistic regression. These two linear models
are powerful tools for predicting categorical outcomes given input feature and target sets. In
this context, we explore their suitability and evaluate their performance on the current IMS
data classification task.

Confusion Matrix - LDA Confusion Matrix - Log. Reg.
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Figure 6-4: (Left - image) Confusion matrix for LDA model - (Right - image) Confusion matrix
for Logistic Regression model for the Parkinson's disease cassification

From the confusion matrices in Figure 6-4, we can calculate the accuracy, which measures
the overall correctness of the models, as:

(202141953) B
A (TP +TN) (2021+1953+2324279) 0.8860 for LDA
ccuracy = =
(TP+TN + FP + FN) UL _ 0813 for Len. R
(2036+2141+149+159) ~ - or Log. heg.

(6-2)

Hence, for the LDA model the accuracy is 88.6%, while for the logistic regression around
93%. This suggests that the logistic regression model is able to capture the underlying data
patterns more efficiently in the given classification task, leading to higher prediction accuracy.
Furthermore, we can calculate the the proportion of correctly predicted positive cases out of
all predicted positive cases, which is the Precision metric and the proportion of correctly
predicted positive cases out of all actual positive cases which is the Recall.

022l = 0.8970  for LDA

Precision = L _
TPHEP) | 21— 09349 for Log. Reg.
(6-3)
TP 22l = 0.8786  for LDA
Recall = m _ »

@ia1159) — 0.9308 for Log. Reg.
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In conclusion, logistic regression outperforms LDA overall in accuracy, precision, which sug-
gests that it has a better ability to identify correctly positive (diseased) samples, and recall,
which suggests that it captures a larger proportion of the true positive samples out of all the
true positive samples.

6-1-3 Classification with a CNN

After following the methodology as described in chapter 5, the resulting overall architecture
designed for this classification task is the one depicted in Table 6-1.

Table 6-1: Designed CNN architecture for Parkinson's disease classification (left vs. right rat
brain hemisphere).

Hyperparameters TPE Architecture
Kernel Size 9
Stride 1
Pooling Kernel 3
Pooling Stride 5
Total Conyv. layers 3
Stacked Conv. layers, 1 1
Stacked Conv. layers, 2 1
Stacked Conv. layers, 3 1
Stacked Conv. layers, 4 0
no. of Filters
for 60
1%¢ Hidden layer
no. of Fully Connected (FC) layers 1
no. of Nodes
for 800
FC layer
Learning Rate (LR) Policy "Step’
Exp. decay rate non-applicable
0% 0.4
step size 6
Initial LR 0.00226
Batch Size 32
L2 Regularization 0.021

As depicted in Table 6-1, the network is comprised of three convolutional layers with kernel
size 9 and stride offset equal to 1, and one fully connected layer with 800 neurons, values de-
rived from the Tree-structured Parzen Estimator (TPE) hyperparameter optimization. The
initial number of feature maps/filters is 60. Additionally, we use dropout layers in order to
reduce overfitting, without combining it with L2 normalization, since we observed that the
performance was influenced negatively when both regularization methods were tried. More-
over, we use batch normalization layers at the end of each convolutional layer and average
pooling, with kernel size 3 and stride equal to 5, to downsample the data.
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Based on Figure 6-5, the accuracy of the CNN model after 100 training epochs on this task
reaches 96% for the test split.
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Figure 6-5: Performance curves for training and testing of the CNN model
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Figure 6-6: (Left - image) Relationship between learning rate and training error - (Right - image)
Confusion matrix for CNN model

In Figure 6-6, we see that the learning rate which is being adjusted at specific steps (6, from
Table 6-1), leads to a training loss close to zero when it reaches values less or equal to 1077,
which suggests that below that optimal value for the LR the model converges more efficiently
and helps its ability to find an optimal solution. On the contrary, for learning rate values
that are larger than 1073 the training loss increases sharply.

Additionally, on the right image of Figure 6-6, we see the corresponding confusion matrix,
from which we can calculate the accuracy, the precision and recall as previously following
Equation 6-2, Equation 6-3. Therefore, we calculate that the accuracy on the testing set is
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0.9672 as already presented, while the precision and recall are equal to 0.9782 and 0.9573.

6-1-4 Classification with a SCS-NN

If we replace the convolutional layers with SCS layers (see Figure 6-7), we can achieve a
similar performance with a simpler architecture since we don’t use any batch normalization
Batch Normalization (BN) layers nor Rectified Linear Unit (ReLU) activation layers and the
trainable parameters are reduced in amount. In this thesis, we call the resulting model SCS-
NN in contrast with the CNN. The SCS layer is implemented based on code from [2] and is
not part of an imported Python library.
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Figure 6-7: Replacement of CNN related layers convolutional, BN and RelLU activation layers
by a single SCS layer. The FC neural network is not affected.

In Figure 6-8, we see that the test accuracy approaches the performance of the CNN model
and is calculated from the confusion matrix in Figure 6-9 as 0.9536. The precision and recall
are equal to 0.9567 and 0.9526, respectively. This suggests that the SCS-NN model achieves
better performance than the linear models and a similar performance to the CNN model

with the advantage of having less trainable parameters and less complex architecture (see
Table 6-3).
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Figure 6-9: Confusion matrix corresponding to the SCS-NN model
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6-1-5 CNN Model Interpretation

We apply the DeepSHAP explainer in order to interpret our 1-D CNN model. From Figure 6-
10, we derive that the three features that play the most important role in the CNN model’s
predictions are m/z 1755.966, m/z 1754.964 and m/z 8564.515. We can see the ion images
on the following figures.
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Figure 6-10: SHAP values for each feature sorted from most important to less important feature.
The y-axis represents the feature names, while the x-axis represents the SHAP value for each
feature. The colourbar shows the intensity of the feature on the sample, with red indicating high
while blue indicating low intensity. This plot helps identify the most important features on the
output of the CNN model as well as whether the impact of the feature is positive or negative
based on its presence (high feature value) or absence (low feature value).

In Figure 6-10, we plot the contributions (SHAP values) of the most important features
specifically for the positive class output, namely the left brain hemisphere. We see that for
the three most important ions/features the higher the feature value (ion intensity), the larger
the SHAP value in the positive axis. This means that when those ions have high intensity on
the sample they contribute positively to the output of the model, while when they have low
intensity they contribute negatively. Based on their ion images (see Figure 6-11, Figure 6-12,
Figure 6-13) this is confirmed. Additionally, the corresponding SHAP maps are visualized
in Figure 6-11, Figure 6-12, Figure 6-13 (Right - image), where we observe that indeed the
regions where the feature value is high - on the left hemisphere - the corresponding SHAP
value is positive, whereas the regions where the ion value is low the corresponding SHAP
value is either negative or zero.
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Figure 6-11: (Left - image) lon image of the most important feature - (Right) SHAP score
of the most important feature for CNN
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Figure 6-13: (Left - image) lon image of the no.3 most important feature m/z 8564.516 -
(Right) SHAP score map of the feature for CNN

Nevertheless, in Figure 6-10, by examining the features with the largest SHAP scores, we see
that the fourth most important feature is m/z 4060.672. Interestingly, upon further investi-
gation, it is discovered that this particular feature corresponds to a noisy input, as depicted
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in Figure 6-14 (Left). Despite being a noisy feature, it shows considerable influence over the
model’s decision-making process. This case highlights the vulnerability of the CNN model
and the potential of relying on noise to make a prediction. Identifying such noisy samples,
excluding them from the training dataset and retraining, would be crucial to enhance the
robustness and trustworthiness of our model. This could be a form of model debugging.

Furthermore, there are also features such as m/z 7652.461, which is evaluated as contributing
negatively to the model output when its intensity is high. In order to confirm this case we
present the corresponding ion image for m/z 7652.461 in Figure 6-14 (Right). Based on the
ion image, the ion’s intensity is high on the right hemisphere and this validates the interpre-
tation result, which assigns a negative impact on the output of the model (for the class "Left
hemisphere") whenever this ion has high intensity.
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Figure 6-14: (Left) Fourth most important feature m/z 4060.672 representing a noisy sample
(Right) lon image of m/z 7652.461 corresponding to a negative impact on the model output
when its intensity is high

Master of Science Thesis loanna Chanopoulou



62 Experimental Results

6-1-6 Discussion

First of all, the results of the applied classifiers are summarized in Table 6-2. From the exper-
imental results, it is obvious that the CNN model outperforms the rest of the other models.
Especially compared to the linear model of LDA, the accuracy of the CNN model is 8% higher.
On the other hand, the CNN model doesn’t achieve significantly higher accuracy than logistic
regression, 3% higher, neither than the SCS-NN, which is just 1% higher. Additionally, we
can see that between the two different linear baseline methods, LDA performs worse than
logistic regression. This could be attributed to the fact that LDA assumes that the data in
the class follow a Gaussian distribution, however, from Figure 6-3, we see that the data are
right skewed and this violates this assumption. On the other hand, logistic regression doesn’t
make any assumptions about the distribution of the features.

Table 6-2: Comparison between models for Parkinson's disease classification

Model Accuracy (%) | Precision (%) | Recall (%)
LDA 88.60 89.7 87.8
Log.Regression 93.13 93.5 93.08
CNN 96.72 97.82 95.73
SCS-NN 95.36 95.67 95.26

Furthermore, if we focus on the comparison between the SCS layers and the convolutional
layers, we can summarize the findings in Table 6-3. From this table we can conclude that:

Table 6-3: Comparison between CNN and SCS-NN models for Parkinson’s disease classification

Architecture No. of Activation | Normalization Train
Trainable Par. Layer Layer Duration (s)
CNN 4,552,202 ReL.U BN 12
SCS-NN 4,551,362 None None 16

e The SCS-NN achieves equally good accuracy but not better than the CNN model

e The SCS-NN requires less layers than the CNN architecture, since it doesn’t involve
batch normalization and ReLU activation layers. This leads to less trainable parameters
and simpler architecture than the CNN model.

e Training epoch duration is higher for the SCS-NN model than the CNN, although less
trainable parameters are involved.
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6-2 Dataset no.2: Rat kidney

The second case study is based on a dataset that was obtained from a tissue sample of a
rat kidney, which has been sectioned sagittally. The section is 12um thick and the IMS
data have been obtained using MALDI Quadrupole Time-of-flight (Q-TOF) with a 1,5-
diaminonaphthalene matrix applied via sublimation [35].

Figure 6-15: Microscopy image of the sagittal tissue section of the rat kidney [Image taken from
Leonoor E.M. Tideman et al., Copyright ©2021, [35]]

In Figure 6-15, the hematoxylin and eosin stained microscopy image from the rat kidney tissue
sample is illustrated. This sample is the one on which the IMS experiment is conducted and
as a result the corresponding IMS datacube is obtained from it, using a prototype timsTOF
fleX mass spectrometer (Bruker Daltonik, Bremen, Germany) [35]. In this case study, the
objective of the classification task is to carefully differentiate among three discrete biological
regions present in the rat kidney, namely:

1. Renal inner medulla (Class 1)
2. Renal outer medulla (Class 2)

3. Renal cortex (Class 3)

In a simpler manner, we can think of the rat kidney classification task as a problem with
two classes - positive and negative - rather than three. The positive category includes one of
the three specific renal regions each time, while the negative category includes all the other
labelled pixels that don’t belong to that region.

6-2-1 The Data

The size of the IMS data is comprised of totally 591,534 pixels with pixel size 15um. The
detected m/z values per pixel lie within the range from 300 to 2000 and the total amount of
the ion images is 1428.

Furthermore, for the purpose of this thesis, which applies supervised ML algorithms, anno-
tated data was given. The annotated masks of the rat kidney dataset were defined manually,
for the study conducted in [35], using exploratory analysis. Nevertheless, not all of the avail-
able pixels have been annotated because of difficulty, as illustrated in Figure 6-16 (Left).
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Figure 6-16: (Left) Pixel-wise annotation for the rat kidney (the red circle highlights the damaged
region) - (Right) Instances distribution to the three rat kidney classes

Additionally, in this figure the reddish circle highlights a region that has been damaged due
to sample preparation and thus, it’s not trustworthy.

From Figure 6-16(Right), we derive that the total amount of the given labelled data sums up
to 173,553 annotated pixels. From these, 19,727 belong to the 'Inner Medulla’ class, 66,816
to the ’Outer Medulla’ class and 87,010 to the 'Cortex’ class.

Preprocessing

The data are centered prior to model training similarly to the previous dataset (see Figure 6-

17). Additionally, 5-fold cross validation is used and train-test splits correspond to 80% and
20%, respectively.
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Figure 6-17: Examples of features distribution for kidney dataset (Left) before and (Right) after
centering around the mean value of each feature column

Based on Figure 6-16, we have class imbalance, which can lead to poor performance of the
trained classifiers due to the bias towards the class with the more observations, namely the
majority class. When training a classifier based on an imbalanced dataset we expect to get
a relatively low value for the error of the class with the more instances and an unreasonably
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high error for the class with the less instances. In [3], it is proposed that since in IMS datasets
the amount of spectra is large, the imbalance issue can be tackled by downsampling the larger
class, in order to achieve balance between the classes. This is what we apply in our case. More
specifically, we use a reduction of the majority class, such that the minority class is equal to
the 20% of the majority class.

6-2-2 Inner Medulla vs. Not Inner Medulla

For the classification problem ’Inner Medulla vs. Not Inner Medulla’ the data are dis-
tributed in the negative (0) and positive (1) classes as {’0’: 153,826, 1’ : 19, 727}, meaning
that the positive class is almost 12% of the total training dataset while the negative class
instances constitute around the remaining 88%. We take care of this imbalance by ran-
domly undersampling the majority class. After balancing the inner medulla class, we have
{707 :98,635,71” : 19,727}. We cannot further remove data-points because we lose important
information and the classification is hindered rather than benefit.

Classification with a Linear Model - Logistic Regression

Confusion Matrix - LogReg - Balanced Classification with LogReg

800 - [ Not Inner Medulla
HEE Inner Medulla

700 -

600 -

500 -

400 -

y (pixels)

- 7500 300 -

100 -

a nrer M 0 200 400 600 800 1000
Predicted labels x (pixels)

Figure 6-18: (Left) Confusion matrix of test split and (Right) classification output on "unseen"
regions

From the confusion matrix in Figure 6-18 (Left), we calculate the precision = 0.9989, the
recall = 0.9994, the F1 score=0.9991 and the balanced accuracy= 0.9995. Those results,
indicate a very high performance of the logistic regression model on the test set. The F1
score and the balanced accuracy are chosen as measures of the model’s performance because
they take into account class imbalance in the data. Furthermore, in Figure 6-18 (Right),
we observe the classification output of the trained logistic regression model on "unseen" data
during training. The inner medulla region is classified correctly with good accuracy, however,
we see that quite a few of the pixels that shouldn’t be part of the inner medulla, since they
belong to the noisy region based on Figure 6-16, are mistakenly classified as inner medulla
pixels.
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Classification with a CNN

After following the methodology as described in chapter 5, the resulting architecture designed
for this classification task is the one depicted in Table 6-4 and visualized in Figure A-2. We
trained the model using Adaptive Moments (Adam) optimizer and adjust the initial learning
rate, 0.00039, using the step policy every 4 epochs-step size- by a rate of decrease ~y, 0.1249.
As a regularization metric we use both L2 regularization and dropout layers with probability
40%, which was tuned manually via trial and error.

Table 6-4: Designed CNN architecture for inner medulla classification.

Hyperparameters TPE Architecture
Kernel Size 7
Stride 4
Pooling Kernel 4
Pooling Stride 1
Total Conv. layers 10
Stacked Conv. layers, 1 1
Stacked Conv. layers, 2 4
Stacked Conv. layers, 3 4
Stacked Conv. layers, 4 1
no. of Filters
for 30
1%¢ Hidden layer
no. of FC layers 1
no. of Nodes
for 900
FC layer
LR Policy "Step’
Exp. decay rate non-applicable
~y 0.1249
step size 4
Initial LR 0.00039
Batch Size 32
L2 Regularization 3e-06

In Figure 6-19 (Top), we see the performance curves of training the model for 50 epochs
and testing it on a separate dataset. The model reaches an accuracy of 100% for the test
split. In Figure 6-19 (Bottom), we observe the relationship between the learning rate and the
resulting training loss. For LR values larger than approximately, 1074 we get a sharp rise
in the training loss whereas below that value the training loss stays almost steadily close to
zero. This indicates that an optimal value for the learning rate for this optimization problem
is less or equal to 1074,

Furthermore, from the confusion matrix in Figure 6-20, we can calculate the precision, recall,
F1 score and balanced accuracy based on Equation 3-19 - Equation 3-22 to evaluate the CNN

model’s performance.
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Figure 6-19: (Top) Training and testing performance curves of CNN model for renal inner
medulla classification and (Bottom) training loss relationship with the learning rate decrease
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Figure 6-20: (Left) Confusion Matrix (Right) Classification output on unseen data for the task
of inner medulla classification with a CNN model
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The performance metrics for the CNN model based on the confusion matrix are: precision,
1.0, recall, 1.0, F1 score, 1.0 and bal. accuracy, 1.0. We evaluate how well the trained model
generalizes, by testing it on "unseen" data, meaning data that hasn’t been used for training
or testing. The results are visible in Figure 6-20 (Right). We can see that most of the in-
ner medulla pixels are correctly classified, with few misclassifications in the noisy region (see
Figure 6-16). Nevertheless, the CNN model generalizes better than logistic regression.

Classification with a SCS-NN

If we replace the stacks of 1-D convolutional layers shown in Figure A-2 with SCS layers, we
get an alternative less complex model, which achieves similarly high performance results as
shown in the following figures.
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Figure 6-21: Training and Testing performance curves for SCS-NN model
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Figure 6-22: SCS-NN confusion matrix and classification of all available pixels for the task of
inner medulla
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In Figure 6-22, we see the confusion matrix (left figure) of the SCS-NN model on the test
set and the corresponding classification output for the renal inner medulla on unseen data
(right figure). We observe that the SCS-NN model manages to classify correctly the renal
inner medulla pixels, with a few misclassifications on the noisy region. Furthermore, from
the consufion matrix we calculate the precision as 0.9994, the recall as 0.9994, the F1 score
as 0.9993 and the balanced accuracy as 0.9996.

CNN Model Interpretation

For the interpretation of the CNN model we are using the DeepSHAP algorithm as already
mentioned in the methodology sections. The results of the SHAP score calculations are
depicted in the following figures. In Figure 6-23, the most important features for the model
output "Inner Medulla" are illustrated. Further, we present the SHAP score maps for the
top-3 most important features next to the corresponding ion images.
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Figure 6-23: SHAP values, features in descending order based on their importance and impact
on the model output "Inner Medulla"
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Figure 6-24: (Left) lon image of the most important feature m/z 666.462 (Right) SHAP score
map for the most important feature
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Figure 6-25: (Left) lon image of the second most important feature m/z 734.597 (Right) SHAP
score map for the second most important feature
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Figure 6-26: SHAP score map for the third most important feature
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Discussion

In this study, we present a comparative analysis of three distinct models employed for the same
classification task, namely the renal inner medulla classification. As a reference point, we use
the linear model of logistic regression, which serves as a baseline for assessing the performance
of more complex methodologies. Additionally, we introduce an alternative approach to the
conventional convolutional layers, namely the Sharpened Cosine Similarity (SCS) layers, to
evaluate their effectiveness in relation to the original CNN model. By comparing these mod-
els, we aim to investigate their respective capabilities in accurately categorizing the given data.

The logistic regression model, being a linear classifier, offers a simple method, frequently used
as a baseline for comparison. On the other hand, we expect that the CNN model, making use
of convolutional layers with non-linear activations, will have the potential for capturing more
complex patterns and features within the data and achieveing higher performances. Further-
more, introducing the SCS layers provides an opportunity to explore an alternative method
for IMS data classification, having the conventional CNN model as a basis.

Table 6-5: Comparison between models for renal inner medulla classification

Model Balanced Accuracy | Precision | Recall | F1 score
Log.Regression 0.9995 0.9989 0.9994 0.9991
CNN 1.0 1.0 1.0 1.0
SCS-NN 0.9996 0.9994 0.9994 0.9993

From Table 6-8, we observe that all three models (Logistic Regression, CNN, and SCS-NN)
demonstrate excellent performance in classifying renal inner medulla samples. The CNN
model achieves perfect scores in all metrics, while the Logistic Regression and SCS-NN models
achieve near-perfect accuracy, precision, recall, and Fl-scores. Still, the non-linear methods,
CNN and SCS-NN;, give higher performances than the linear baseline method. Additionally,
we see that also for this task the alternative of SCS-NN manages to perform equally well with
the CNN with less complex architecture. In Table 6-3, we see an overview of both the CNN
and SCS-NN models regarding their complexity and performance.

Table 6-6: Comparison between CNN and SCS-NN models for renal inner medulla classification

Architecture No. of Activation | Normalization Train
Trainable Par. Layer Layer Duration (s)
CNN 3,087,032 ReLU BN 18
SCS-NN 3,022,502 None None 48

Furthermore, it is also valuable to compare each model’s performance on classifying data that
is completely "unseen" during the training and testing process. In this way, we evaluate the
generalization ability of each model. From Figure 6-27, we can conclude that the linear model
achieves a significantly inferior performance in accurately distinguishing inner medulla pixels,
since it is mistakenly including a lot of pixels that belong to the noisy region - as defined in
Figure 6-16(Left) - in the inner medulla class. Additionally, the CNN model compared to the
SCS-NN model generalizes better, since it avoids to classify the noisy region as inner medulla,
whereas the SCS-NN model categorizes several pixels from the noisy region as belonging to
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the inner medulla, but still indicates better performance than the linear baseline model.

Classification with LogReg CNN Classification SCS Classification
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Figure 6-27: Classification output for renal inner medulla on "unseen" regions using (Left) logistic
regression (Center) CNN and (Right) SCS-NN model

Furthermore, from the interpretation results on the CNN model, we can derive the following
conclusions. Upon applying DeepSHAP, we observe the relationship between the three most
important feature values and their corresponding SHAP scores. Specifically, we find that
when the features’ values are low, the SHAP score tends to be positive. This suggests that
a lower ion intensity of those features positively influences the feature’s contribution to the
model’s prediction concerning the inner medulla. To validate this finding, we have also
conducted an analysis of the spatial distribution of these ions across the sample by referring
to their corresponding ion images (Figure 6-24, Figure 6-25, Figure 6-26). Our observations
confirm that these ions exhibit higher intensities primarily in regions of the kidney that do
not belong to the inner medulla. This alignment between the CNN model’s interpretation
results and the actual features distribution offers credibility to the model’s decision-making
process. Consequently, we can infer that the model effectively focuses on relevant features
rather than noise, providing trustworthy and reliable results.
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6-2-3 Quter Medulla vs. Not Outer Medulla

For the classification problem ’'Outer Medulla vs. Not Outer Medulla’ the labelled data
are distributed in the negative (0) and positive (1) classes as {’0’: 106,737, 1’ : 66,816},
meaning that the positive class is almost 38% of the total training dataset while the negative
class instances constitute around the remaining 62%. We take care of this small imbalance
by randomly undersampling the majority class such that the minority class makes up 45% of
the total amount of the labelled data.

Classification with a Linear Model - Logistic Regression

Confusion Matrix - LogReg - Balanced

L 15000 Classification with LogReg
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- 8000
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True labels
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Outer Medulla

Not Outer Medulla Outer Medulla 0 200 400 600 800 1000
Predicted labels x (pixels)

Figure 6-28: Confusion matrix on test split when classifier is trained with imbalanced classes
(Left) and when it's trained with balanced data (Right) Classification output of logistic regression
model for "unseen" data points

The precision and recall are calculated (Equation 3-22) as approximately 0.9988 and 0.9987,
respectively. The F1 score of the resulting confusion matrix is almost 0.9987, and the balanced
accuracy (Equation 3-19) is approximately 0.9988. Both of them are really high and they
suggest that logistic regression achieves to capture the underlying data patterns and classify
correctly the data. However, in Figure 6-28 (Right), we see the classification of data points
that were not included in the training process. From that output we conclude that the
logistic regression classifier is not able to generalize properly for "unseen" data, since we
observe regions that clearly do not belong to the renal outer medulla to be classified as such.

Classification with a CNN

Herein, we would like to give an example of three alternative configurations of the best hyper-
parameters for the classification task involving the discrimination between Outer Medulla vs.
Not Outer Medulla for three different random seeds. The hyperparameters are optimized us-
ing the Tree-structured Parzen Estimator (TPE) algorithm, (Table 6-7), that achieve equally
good performances.

In Table 6-7, we observe that hyperparameters such as the kernel size, the stride offset,
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the pooling kernel and pooling stride step, which define the size and movement of the convo-
lutional kernels and pooling operations differ slightly between the random seeds. Additionally,
the number of convolutional layers varies across the different random seeds. Random Seed #1
and #2 have 10 layers, while Random Seed #3 has 7 layers. This suggests that the optimal
depth of the convolutional architecture can vary. Overall, most of the hyperparameters vary
across the different random seeds which demonstrates that different random seeds result in
different optimal architectures. This variability suggests that the performance and behavior
of the classification model can be influenced by the specific random seed used during the opti-
mization process. Next, we need to distinguish between the alternative optimal configurations.

In order to select the most appropriate hyperparameter configuration we use 5-fold cross
validation. The configuration with the highest mean performance across all validation splits
is the one in the second column (Random Seed #2) and thus, this is the architecture used
to derive the following results. Additionally, the architecture defined from the second column
for the task of renal outer medulla classification is visualized in Figure A-3.

Table 6-7: Configurations of best hyperparameters for three different random seeds by TPE, for
the classification task of Outer Medulla vs. Not Outer Medulla

Hyperparameters TPE Architecture
Random Seed #1 | Random Seed #2 | Random Seed #3
Kernel Size 16 17 17
Stride 3 3 4
Pooling Kernel 2 2 2
Pooling Stride 4 4 3
Total Conv. layers 10 10 7
Stacked Conv. layers, 1 1 1 1
Stacked Conv. layers, 2 1 5 1
Stacked Conv. layers, 3 3 4 4
Stacked Conv. layers, 4 5 0 1
no. of Filters
for 55 55 15
1%* Hidden layer
no. of FC layers 1 1 1
no. of Nodes
for 1000 800 600
FC layer
LR Policy "Exp’ "Step’ "Step’
Exp. decay rate 0.45 unapplicable unapplicable
vy unapplicable 0.3276 0.8899
step size unapplicable 7 10
Initial LR 6.19e-05 0.0001 0.0002
Batch Size 64 32 32
L2 Regularization 3e-06 4e-06 4.05e-06

loanna Chanopoulou

Next, we present the results of training the designed 1-D CNN architecture for 50 epochs.
We analyze the decrease of the training loss (cross entropy) as the iterations increase. Addi-
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Figure 6-29: (Top) Training and testing curves for outer medulla classification with CNN model
and (Bottom) training loss relationship with learning rate decrease
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tionally, we visualize the overall accuracy on the training and testing set Figure 6-29 (Top)
and we observe the realtionship between the learning rate and the training loss, Figure 6-29
(Bottom). Furthermore, we present the confusion matrix, Figure 6-30 (Left) of the model on
the test set, which is a tabular representation that demonstrates the number of correctly and
incorrectly classified samples per class - Outer Medulla, Not Outer Medulla - as well as the
trained CNN model’s output on "unseen" samples during the training process, Figure 6-30
(Right).

From the plot showing the training loss versus the learning rate, we observe that the learning
rate policy that is used is efficient since it manages to reach optimal learning rate values.
From the graph, it is obvious that learning rates lower than 10~° achieve a training loss ap-
proximately equal to zero while above than 10~* the training loss has a sharp increase, which
by now we have seen that it is a typical relationship.

In Figure 6-29 (Top), we see that the selected model reaches an accuracy higher than 99.9%
on the testing set. On the other hand, overall accuracy is not a representative metric since
the classes are imbalanced, thus, next, we are also evaluating the performance based on more
appropriate metrics. Additionally, from the confusion matrix in Figure 6-30 (Left) we calcu-
late the precision, 0.9998, the recall, 0.9994, the F1 score, 0.9996 and the balanced accuracy,
0.9996. This shows that the CNN model does better than the linear model on all aspects.
Furthermore, in Figure 6-30 (Right), it is observed that the CNN model classifies correctly
most of the pixels belonging in the renal outer medulla, however, there are a few samples
that are misclassified on the noisy circular region. Nonetheless, the amount of mistakenly
classified pixels are much fewer than the ones presented in the logistic regression output.

Classification with a SCS-NN

The classification with the SCS layers is accomplished by replacing the convolutional layers of
the selected architecture (Table 6-7) by sharpened cosine similarity layers, as well as removing
the batch normalization and ReLLU activation layers. The results are the following.
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Figure 6-31: Training and Testing performance curves for SCS-NN model
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Figure 6-32: SCS-NN outer medulla confusion matrix and classification output for all available
pixels for the task of outer medulla

From the confusion matrix in Figure 6-32, we can define the following properties: TP = 13237,
TN = 13474, FP =8 and FN = 7. Then, we can calculate the performance metrics precision,
0.9994, recall, 0.9995, F1 score, 0.9994 and balanced accuracy, 0.9995.

CNN Model Interpretation

For the interpretation of the CNN model we are using the DeepSHAP algorithm and the
results of the impact of different features on the model output are depicted in Figure 6-33.
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Figure 6-33: SHAP values and impact of features on the model output in the task of renal outer
medulla classification
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Figure 6-34: (Left) lon image of m/z 703.602 (Right) SHAP score map for m/z 703.602 the
most important feature for the CNN classifier in the renal outer medulla classification output
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Figure 6-35: (Left) lon image of m/z 813.709 (Right) SHAP score map for m/z 813.709 the
second most important feature for the CNN classifier in the renal outer medulla classification
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Figure 6-36: (Left) lon image of m/z 814.718 (Right) SHAP score map for m/z 814.718 the
third most important feature for the CNN classifier in the renal outer medulla classification output
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In Figure 6-33, the relationship between the features, their corresponding SHAP values, and
the model output is depicted. It is shown that the most important features for the renal
outer medulla classification task are m/z 703.602, m/z 813.709 and m/z 814.718. The ion
images, which show the spatial distribution of each of those features on the sample and SHAP
score maps, which indicate the corresponding SHAP value of each feature across the surface
of the sample, are depicted in Figure 6-34, Figure 6-35 and Figure 6-36. The SHAP values
represent the contribution of each feature towards the model’s output prediction. Negative
SHAP values indicate that the corresponding feature has a negative effect on the probability
of predicting ’Outer Medulla’ in the output, whereas positive SHAP values indicate the oppo-
site, while zero SHAP values indicate no impact of the corresponding feature on the model’s
output.

In the ion image of Figure 6-34, the regions where the m/z 703.602 ion has a high inten-
sity are mostly across the renal cortex area as well as some part of the noisy region. On the
other hand, the regions where it has a low intensity are mainly the renal outer and inner
medulla parts. Based on Figure 6-33 and Figure 6-34 (Right), The SHAP values are negative
for the regions with high intensity and positive for the regions with low intensity of this ion.
This means that when this feature has high intensity it lowers the probability of predicting
the outer medulla while when its intensity is low, the probability increases. Similarly, for the
ion images of m/z 813.709 and m/z 814.718 the feature influences positively the probability
of predicting outer medulla when it is absent and negatively when it is present.

Discussion

The results of opposing the three types of classifiers are summarized in Table 6-8. The
evaluation metrics used for comparison include balanced accuracy, precision, recall, and F1
score.

Table 6-8: Comparison between models for renal outer medulla classification

Model Balanced Accuracy | Precision | Recall | F1 score
Log.Regression 0.9988 0.9988 0.9987 0.9987
CNN 0.9996 0.9998 0.9994 0.9996
SCS-NN 0.9995 0.9994 0.9995 0.9994

When comparing the results, we observe once more that all of the models achieved high
performances in all metrics. The CNN model achieved the highest scores in all evaluation
metrics, indicating its superior performance. The sharpened cosine similarity model performs
slightly lower than the CNN but still provided accurate classification results. The linear
method achieved the lowest evaluation scores.

Table 6-9: Comparison between CNN and SCS-NN models for renal outer medulla classification

Architecture | Trainable | Activation | Normalization Train
Parameters Layer Layer Duration (s)
CNN 5,925,242 ReLU BN 27
SCS-NN 5,922,272 None None 73
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The Table 6-9 compares the results and characteristics of two models, CNN and SCS-NN,
for the classification of renal outer medulla. Some conclusions that are drawn from this table
are that the CNN model employs ReLU activation and Batch Normalization for improved
performance and generalization, while the SCS-NN model doesn’t use such layers, which leads
to less trainable parameters. Additionally, although SCS-NN has a simpler architecture, it
requires almost three times longer to run a training epoch than the CNN model which takes
much less time.

Classification with LogReg CNN Classification SCS Classification
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Figure 6-37: Renal outer medulla classification output on "unseen" data with (Left) logistic
regression (Center) CNN (Right) SCS-NN model

In Figure 6-37, we oppose the three applied models outputs on data that hasn’t been used
during the training and testing procedure. The linear model is outperformed significantly by
the CNN and the SCS-NN models, which have similar results.

6-2-4 Cortex vs. Not Cortex

For the classification problem "Cortex vs. Not Cortex’ the labelled data are distributed in the
negative (0) and positive (1) classes as {’07: 86,543, ’17: 87010}, meaning that the classes are
almost perfectly balanced, thus, there is no need for application of any balancing technique.

Classification with a Linear Model - Logistic Regression
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Figure 6-38: Renal cortex classification with logistic regression (Left) The confusion matrix on
a test set (Right) The classifier's output for "unseen" data
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Based on the confusion matrix on Figure 6-38 (Left), we can define TP = 17480, TN =
17209, FP = 8 and FFN = 13 and use the Equation 3-19, Equation 3-20, Equation 3-21
and Equation 3-22 to calculate the corresponding balanced accuracy as 0.9993, the precision
equal to 0.9995, the recall equal to 0.9992 and the F1 score equal to 0.9994. Precision
represents the accuracy of positive predictions. A precision score of 0.9995 indicates a very
high level of accuracy in correctly classifying cortex instances, while recall represents the ratio
of correctly predicted cortex instances to the total actual cortex instances. A recall score of
0.9992 indicates a high level of sensitivity in detecting cortex instances. Finally, the F1-score
combines precision and recall into a single metric and a score of 0.9994 reflects an excellent
model effectiveness in both renal cortex prediction accuracy and capturing actual renal cortex
instances. Additionally, in Figure 6-38 (Right) we observe the model’s output for "unseen"
data during the training and testing process. From the output we can conclude that the
logistic regression classifier performs well on classifying the cortex region, however, it also
classifies the noisy region (see Figure 6-16) as belonging to the renal cortex.

Classification with a CNN

The provided table, Table 6-16, outlines the designed CNN architecture for renal cortex
classification, derived from the TPE hyperparameter optimization algorithm.

Table 6-10: Designed CNN architecture for renal cortex classification.

Hyperparameters TPE Architecture
Kernel Size 16
Stride 2
Pooling Kernel 3
Pooling Stride 3
Total Conv. layers 8
Stacked Conv. layers, 1 1
Stacked Conv. layers, 2 2
Stacked Conv. layers, 3 2
Stacked Conv. layers, 4 3
no. of Filters
for 40
15" Hidden layer
no. of FC layers 1
no. of Nodes
for 600
FC layer
LR Policy "Step’
Exp. decay rate non-applicable
¥ 0.4
step size 6
Initial LR 4.7e-05
Batch Size 32
L2 Regularization 0.00016
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Figure 6-39: (Top) Training and testing performance curves for the task of renal cortex classifi-
cation and (Bottom) the training loss relationship with the learning rate
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Figure 6-40: (Left) Confusion matrix and (Right) classification output of the CNN model on
"unseen" data for the task of renal cortex classification

In Figure 6-39 (Top), we present the performance curves of the designed architecture during
50 training epochs. It is obvious that the model reaches a 100% accuracy for the training
set and approximately 99.95 % accuracy for the testing set. Since our observations were
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evenly distributed into the two classes, we can trust the overall accuracy as a good metric.
Additionally, as depicted in Figure 6-39 (Bottom), an analysis of the training loss per epoch
in relation to the gradually decreasing learning rate per epoch reveals a substantial trend,
which was also notable in all the other classification tasks. It becomes evident that when
the learning rate exceeds a threshold of approximately 10°, there is a sharp increase in the
training loss.

In Figure 6-40 (Left), from the confusion matrix, as we have already described, we can
calculate the balanced accuracy, 0.9995, the precision, 0.9995, the recall 0.9995 and the F1
score 0.9995. Those metrics illustrate an excellent performance on classifying renal cortex.
Furthermore, by examining the predictions of the CNN model on "unseen" data as depicted in
Figure 6-40 (Right), we see that the CNN model manages to classify the renal cortex region
quite effectively also for "unseen" data. This means that it generalizes well and it doesn’t
overfit just for the training data.

Classification with a SCS-NN
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Figure 6-41: Training and testing curves for SCS-NN model for the task of renal cortex classifi-
cation

In Figure 6-41, we present the performance curves for 50 training epochs using SCS layers
instead of convolutional. The testing set balanced accuracy, as calculated based on the confu-
sion matrix, Figure 6-42 (Left), is equal to 0.9993, the precision is equal to 0.9992, the recall is
0.9993 and finally, the F1-score is equal to 0.9993. Additionally, in Figure 6-42 (Right) we see
the model’s performance for "unseen" data, which reveals that the SCS-NN model effectively
classifies the renal cortex region, however, the noisy region is also here included to the cortex
region.
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Figure 6-42: (Left) Confusion matrix and (Right) classification output of the SCS-NN model for
all available pixels

CNN Model Interpretation

From applying, DeepSHAP as interpretation methodology for the CNN model, we derive the
following results, regarding the features’ importance, their corresponding SHAP values and
their influence to the output in the task of renal cortex classification.
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Figure 6-43: SHAP values and impact of features on the CNN model output in the task of renal
cortex classification. The features are presented in descending order of importance.

As depicted in Figure 6-43, the three most important features sorted in descending order
are m/z 703.602, m/z 813.709 and m/z 734.597. According to this figure, whenever these
feature values are low ( illustrated by the blue colour in Figure 6-43) their SHAP values are
negative. This means that the locations of the tissue sample that the intensity of those ions
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is low contribute to a negative probability of classifying the renal cortex class.
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Figure 6-44: (Left) lon image of m/z 703.602 (Right) SHAP score map for the most important
feature, m/z 703.602
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Figure 6-45: (Left) lon image of m/z 813.708 (Right) SHAP score map for the second most
important feature, m/z 813.708
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Figure 6-46: (Left) lon image of m/z 734.597 (Right) SHAP score map for the third most
important feature, m/z 734.597

From the respective ion images of the top three most important features in Figure 6-44 (Left),
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Figure 6-45 (Left) and Figure 6-46 (Left), it is evident that all three ions have low intensities
in the regions of the kidney that do not correspond to the renal cortex. Therefore, the
model correctly relies on inputs whose low intensities result in low probability of renal cortex
classification. This is further illustrated in the SHAP maps Figure 6-44 (Right), Figure 6-45
(Right) and Figure 6-46 (Right), a visualization of the computed SHAP values per input
pixel. From these maps we also validate that the pixels that have high intensities around the
renal cortex region correspond to positive SHAP values, which indicates that they influence
positively the probability of predicting the renal cortex class.

Discussion

Comparing the models, we can observe that all three models have very high performance
across the evaluation metrics, indicating their effectiveness in classifying the renal cortex.
However, there are slight differences in their results.

Table 6-11: Comparison between models for renal cortex classification

Model Balanced Accuracy | Precision | Recall | F1 score
Log.Regression 0.9993 0.9995 0.9992 0.9994
CNN 0.9995 0.9995 0.9995 0.9995
SCS-NN 0.9993 0.9992 0.9993 0.9993

Based on Table 6-11, the CNN model consistently achieves the highest values for all metrics,
including balanced accuracy, precision, recall, and Fl-score. This suggests that the CNN
model has the best overall performance and is capable of accurately classifying instances
from the renal cortex data. Both logistic regression and SCS-NN models also demonstrate
similar performance, however, they show slightly lower scores compared to the CNN model,
indicating a slightly lower ability to classify instances accurately. Overall, based on the
provided results, the CNN model stands out as the most promising option for renal cortex
classification due to its consistently high performance across all evaluation metrics. However,
we should also compare the generalization ability of each model as depicted in Figure 6-47.

Table 6-12: Comparison between CNN and SCS-NN models for renal cortex classification

Architecture | Trainable | Activation | Normalization Train
Parameters Layer Layer Duration (s)
CNN 9,286,882 ReLU BN 20
SCS-NN 9,283,922 None None 62

In Table 6-12, we present a more detailed comparison between the CNN and SCS-NN models.
For the CNN model, almost 3,000 more trainable parameters are involved than the SCS model
in addition to two extra activation and normalization layers. We observe that by replacing the
convolutional layers by the simpler SCS layers the performance results in very high F1-score,
indicating its equal effectiveness to the CNN model in classifying the renal cortex, with the
advantage of not using additional layers and with less trainable parameters. Furthermore,
the CNN model finishes one training epoch in 20 seconds, while the SCS-NN model takes 62
seconds. The CNN model’s shorter training duration could be an advantage, as it allows for
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faster experimentation. However, it’s important to consider that training duration alone does
not provide a complete picture of the model’s performance. Additionally, the longer training
time needed for the SCS-NN model is contradictory to our expectation that it should take
less time since it concerns updating less trainable parameters.

SCS Classification
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Classification with Log. Reg. CNN Classification
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Figure 6-47: Renal cortex classification output on "unseen" data with (Left) logistic regression
(Center) CNN and (Right) SCS-NN model

From Figure 6-47, we observe that all three models achieve similar results in predicting
the renal cortex class for pixels that weren’t included in the training and testing process.
In conclusion, when it comes to the task of renal cortex classification, no model shows a
substantial advantage over the others in terms of generalization and accuracy. However, the
CNN model exhibits slightly better performance across all evaluated aspects.
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6-3 Dataset no.3: Mouse brain hippocampal region

In this case study, the objective of the classification task is to differentiate among two discrete
biological regions present in the mouse brain hippocampal region, namely:

e Ammon’s horn (Class 1)

o Dentate gyrus (Class 2)

We view the classification problem as two different binary classification tasks, so that we
categorize the desired positive class against the rest of the observations which are considered
as the negative class. More specifically, we create two binary classification problems with
"Amon’s horn" vs. "Not Ammon’s horn" and "Dentate gyrus" vs. "Not Dentate gyrus" the
corresopnding positive and negative classes per problem.

Hippocampal
region

Dentate
gyrus

Figure 6-48: (Left) Sagittal section of a mouse brain taken from an interactive anatomical atlas
[1] , where the black circle indicates the hippocampal region (Right) Zoom in the hippocampal
region with the two distinct regions, namely Ammon's horn in light green and Dentate gyrus in
blue color

In Figure 6-48, the hippocampus of a mouse brain is illustrated based on an anatomical atlas.
On the right image of the figure, we see a zoomed in version of the brain, where we can
distinguish the himpocampal region, encircled in red, divided in the Ammon’s horn region
depicted in light green colour and the Dentate gyrus region in blue.

6-3-1 The Data

The total amount of the data for the mouse brain hippocampal region is (71940, 438), with
71940 pixel positions and 438 detected features-m/z peaks. The data belonging to the class
of Ammon’s horn region comprise the 5% of the labelled data used for training, the rest 95%
includes spectra labelled as Not Ammon’s horn. This makes the classes extremely unbalanced,
this is depicted in Figure 6-49.

Furthermore, the pixel-wise mask and the class instances distribution for the Dentate gyrus
region are depicted in Figure 6-50. In this case, the amount of data contained in the positive
class, 'Dentate gyrus’, make up just 1% of the labelled data.
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Figure 6-49: (Left) Mask of pixel-wise annotation for Ammon'’s horn (Right) The labelled data
distribution into the positive - '"Ammon’s horn’ - and negative - 'Not Ammon's horn’ - classes
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Figure 6-50: (Left) Mask of pixel-wise annotation for dentate gyrus (Right) The labelled data
distribution into the positive-'Dentate gyrus'-and negative-'Not Dentate gyrus’-classes

Preprocessing

First of all, as we have already done for all the previous cases we apply data centering by
subtracting the mean value of each feature across all observations Figure 6-51.

Next, we exclude the border pixels, shown in Figure 6-49 (Left) and Figure 6-50 (Left), from
the training and testing sets due to the fact that it is not possible to label them with con-
fidence. Moreover, we need to deal with the severe class imbalance for both classification
problems. In order to compensate for the class imbalances, we randomly downsample the
majority classes ("Not Ammon’s Horn'","Not Dentate Gyrus") by 20,000 observations - we
don’t remove further samples because then we lose important information.

Finally, we split the dataset into 80% training and 20% testing sets. Then we are ready
to train our classifiers and evaluate their performance.
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Figure 6-51: Data distribution before (left image) and after (right image) centering

6-3-2 Ammon’s Horn vs. Not Ammon’s Horn

Classification with a Linear Model - Logistic Regression

Confusion Matrix Classification with Logistic Regression

[ Not Ammon's horn .
HE Ammon's horn

200 -+

- 2500
175 -

- 2000 0~

Not Ammon's horn

125 -

- 1500
100 - -

True labels
y (pixels)

Ammon's horn

- 1000 75

12 569 50 -

- 500 o
25 -

Not Ammon's horn Ammon's horn 0 50 100 150 200 250 300
Predicted labels X (pixels)

Figure 6-52: (Left) Confusion matrix for logistic regression (Right) Ammon'’s horn classification
with logistic regression on unseen data

From the confusion matrix in Figure 6-52 (Left), we can compute the balanced accuracy
0.9912, the precision 0.9946, the recall 0.9959 and the F1 score 0.9947. In Figure 6-52(Right)
we see the classifier’s output also on "unseen" data. We notice that there are several pixels
mistakenly classified as belonging to the "Ammon’s horn" class although their location is
irrelevant to the region of interest.

Classification with a CNN

The provided table, Table 6-13, describes the designed CNN architecture for Ammon’s horn
classification as generated from the TPE algorithm implementation.

Next, we present the corresponding performance curves while training and testing this model
architecture, Figure 6-53. After 50 training epochs, the model reaches approximately 0.9955

loanna Chanopoulou Master of Science Thesis



6-3 Dataset no.3: Mouse brain hippocampal region

91

Hyperparameters TPE Architecture
Kernel Size 4
Stride 1
Pooling Kernel 4
Pooling Stride 1
Total Conv. layers 3
Stacked Conv. layers, 1 1
Stacked Conv. layers, 2 1
Stacked Conv. layers, 3 1
Stacked Conv. layers, 4 0
no. of Filters
for 20
15* Hidden layer
no. of FC layers 1
no. of Nodes
for 700
FC layer
LR Policy "Step’
Exp. decay rate non-applicable
ot 0.4
step size 3
Initial LR 7.5e-05
Batch Size 64
L2 Regularization le-04

Table 6-13: Designed CNN architecture for Ammon’s horn classification.

accuracy in the testing dataset split. From Figure 6-53 (Bottom), we derive once more that
after a specific threshold of the learning rate, the training loss abruptly increases. This thresh-
old for the current optimization problem is a value close to 1074,

Furthermore, from the confusion matrix in Figure 6-54, we can calculate the balanced ac-
curacy equal to 0.9931, the precision equal to 0.9966, the recall equal to 0.9980 and the F1
score equal to 0.9973. Additionally, in Figure 6-54 (Right), we see that the CNN model classi-
fies the Ammon’s horn region correctly without as many noisy pixels as the logistic regression

classifier.
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Figure 6-53: (Top) Training and testing performance curves for Ammon’s horn classification
with CNN and (Bottom) relationship between learning rate and training loss
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Figure 6-54: (Left) Confusion matrix for CNN model (Right) Ammon's horn classification using
the CNN model
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Classification with a SCS-NN
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Figure 6-55: Performance curves for ammon'’s horn classification with SCS-NN model
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Figure 6-56: (Left) Confusion matrix for SCS-NN model (Right) Ammon'’s horn classification
using SCS layers

From analysing the results in Figure 6-56, we can calculate the following performance metrics
for the SCS-NN model in the task of Ammon’s horn classification. The balanced accuracy is
0.9857, the precision is 0.9926, the recall is 0.9976 and the F1 score is 0.9951. Additionally,
in Figure 6-56 (Right), we see that the SCS-NN model also correctly classifies the region of
interest but introduces more mistaken pixels than the CNN.

CNN Model Interpretation

The results of interpreting the trained CNN model are presented in Figure 6-57, where we
distinguish the most influential features to the model’s output based on their SHAP scores
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Figure 6-57: Impact on CNN model’s output (SHAP values) in the Ammon's horn classification
task of the most important features according to their value intensity

as well as their impact, positive or negative, depending on the feature’s value, high or low.
The three most important features for our 1D CNN model are m/z 1877.976, m/z 1878.979
and m/z 1864.998. According to the analysis of their impact based on Figure 6-57, for the
first two features we get that when their intensity is high then their SHAP values are positive
and thus, they have a positive impact on predicting the "Ammon’s horn" class. On the other
hand, for the feature m/z 1864.998 we get that when its value is high then its corresponding
SHAP score is negative and thus, it reduces the probability of predicting the "Ammon’s horn"
class.

The ion images of the top-3 most important features for the CNN model decision making
process are provided in Figure 6-58, Figure 6-59 and Figure 6-60. By inspecting those images
we confirm the above results. For features m/z 1877.976 and m/z 1878.979, the ion intensity
is high mainly in the region of Ammon’s horn, which validates that their high value is posi-
tively correlated to the prediction of the region of interest. On the contrary, for the feature
m/z 1864.998, the ion’s intensity is mainly high in regions except for the Ammon’s horn
anatomical region. This validates the negative correlation of the high values of this features
with the prediction of Ammon’s horn region.

Additionally, we provide the SHAP maps of the features, meaning the corresponding SHAP
values distributed per pixel, in Figure 6-58 (Right), Figure 6-59 (Right) and Figure 6-60
(Right). Again from those SHAP score illustrations we conclude that the features that are
present on the Ammon’s horn region have positive SHAP scores and contribute positively
to the model’s output, while the third most important feature contributes negatively to the
output.
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Figure 6-58: (Left) lon image of m/z 1877.976, the most important feature (Right) SHAP score

distribution across the pixels for the most important feature
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Figure 6-59: (Left) lon image of m/z 1878.979, the second most important feature (Right)
SHAP score distribution across the pixels for the second most important feature
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Figure 6-60: (Left) lon image of m/z 1864.998, the third most important feature (Right) SHAP
score distribution across the pixels for the third most important feature
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Discussion

In this section, we oppose all the applied methodologies to each other and make several
observations.

Table 6-14: Comparison between models for hippocampus Ammon's horn classification

Model Balanced Accuracy | Precision | Recall | F1 score
Log.Regression 0.9912 0.9946 0.9959 0.9947
CNN 0.9931 0.9966 0.9980 0.9973
SCS-NN 0.9902 0.9926 0.9976 0.9951

Based on Table 6-17, the CNN model performs the best among the three models for the task
of Ammon’s horn classification. The CNN model achieves the highest balanced accuracy of
0.9931 and the highest average recall across the classes. The CNN model demonstrates a
strong ability to correctly identify positive instances (high recall) while maintaining a low
false-positive rate (high precision). On the other hand, SCS-NN model has the lowest preci-
sion, since it has the highest false-positive rate, meaning it mistakenly classifies actual "Not
Ammon’s horn" inputs as positive more than any other model. However, it has the second
highest recall, meaning it does better in correctly classifying positive instances than the linear
model.

A further comparison between the CNN and the SCS-NN model is presented in Table 6-
15. From that table we once more conclude that a CNN and SCS-NN model can perform
equally well while its architecture provides a simpler alternative.

Table 6-15: Comparison between CNN and SCS-NN models for renal cortex classification

Architecture | Trainable | Activation | Normalization Train
Parameters Layer Layer Duration (s)
CNN 30,706,322 ReLLU BN 1
SCS-NN 30,426,322 None None 2.5

In Figure 6-61, the classification output of all the used classifiers on all pixel inputs is pre-
sented. The only pixels that haven’t been used during the training and testing process and
are considered "unseen' are the border pixels defined in the mask in Figure 6-49. Thus, we
can conclude that the CNN model generalizes better than all the other models.
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Figure 6-61: Mouse brain hippocampus Ammon'’s horn classification output on all available pixels
with (Left) logistic regression (Center) CNN and (Right) SCS-NN model

6-3-3 Dentate Gyrus vs. Not Dentate Gyrus
Classification with a Linear Model - Logistic Regression
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Figure 6-62: Dentate gyrus classification with logistic regression (Left) the corresponding con-
fusion matrix for the test set (Right) the corresponding classification output for "unseen" and
"seen" data

From the confusion matrix in Figure 6-62, we calculate the balanced accuracy as 0.9071, the
precision as 0.3009, the recall as 0.8407 and the F1 score as 0.4435. The balanced accuracy
is 0.9071 and emphasizes on the overall correct predictions. It takes into account both true
positive rate and true negative rate. The precision is 0.3009, which suggests that out of all
the instances predicted as positive, only 30% are actually true positives. Precision measures
the accuracy of positive predictions and apparently, the low value suggests that there is a sig-
nificant inefficiency in the positives correct prediction. The recall is relatively high, indicating
that the model is effective at identifying positive instances but may miss some. The F1 score
combines precision and recall, and in this case, it is low, indicating room for improvement in
both precision and recall.

Furthermore, in Figure 6-62 (Right), we see the logistic regression model’s output for the
task of Dentate gyrus classification. We observe that there are a lot of noisy pixels that
clearly don’t belong to the Dentate gyrus region mistakenly classified as such. This is ex-
pected since from the confusion matrix we computed relatively low evaluation metrics for
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false positive rate and F1 score. Hence, it is obvious that the linear model performs quite
bad, mainly due to the severely small amount of the positive labelled data, even though we
reduce the majority class observations, for that reason the model is biased towards predicting
the majority class and this bias can result in a higher number of false positive predictions,
leading to a low precision.

Classification with a CNN

Table 6-16 presents the designed CNN architecture specifically tailored for Dentate gyrus
classification. The table shows the various hyperparameters and their corresponding values
used in the architecture. These hyperparameters are optimized using the TPE algorithm.

Table 6-16: Designed CNN architecture for Dentate gyrus classification.

Hyperparameters TPE Architecture
Kernel Size 13
Stride 3
Pooling Kernel 2
Pooling Stride )
Total Conv. layers 3
Stacked Conv. layers, 1 1
Stacked Conv. layers, 2 1
Stacked Conv. layers, 3 1
Stacked Conv. layers, 4 0
no. of Filters
for 45
1%¢ Hidden layer
no. of FC layers 1
no. of Nodes
for 800
FC layer
LR Policy "Step’
Exp. decay rate non-applicable
0 0.3
step size 5
Initial LR 0.00047
Batch Size 32
L2 Regularization 3e-06

The corresponding performance curves, namely the training loss and accuracy curves after
50 epochs are presented in Figure 6-63 as well as the training loss response to the learning
rate decrease. It is evident that for learning rate values above 1072 the training loss increases
abruptly.

Moreover, from the confusion matrix in Figure 6-64 we calculate the metrics accuracy bal-
ance, 0.8668, precision, 0.7172, recall, 0.7376, F1 Score, 0.7273. In Figure 6-64, we see the
classification output of the CNN model in the task of Dentate gyrus.
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Figure 6-63: (Top) Performance curves for CNN model (Bottom) Learning rate relationship with

training loss
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Figure 6-64: Dentate gyrus classification with CNN model (Left) Corresponding confusion matrix
(Right) Classification output
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Classification with a SCS-NN
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Figure 6-65: Training and Testing curves of the SCS-NN for the task of dentate gyrus classifi-
cation
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Figure 6-66: Dentate gyrus classification with SCS-NN model (Left) Corresponding confusion
matrix (Right) Corresponding classification output

From the confusion matrix we calculate the balanced accuracy 0.80, the precision, 0.6508,
the recall, 0.6043 and the F1 score 0.6265. Additionally, in Figure 6-66 (Right) we see
the classification output result. The dentate gyrus region is correctly identified with a few
misclassified pixels distributed across the rest of the area.
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CNN Model Interpretation

In Figure 6-67, we see the features importances and their impact on the CNN model output
for the task of Dentate gyrus prediction.

High
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Figure 6-67: Impact of the most important features based on their SHAP values and their feature
values

The three most important features sorted in descending order are m/z 1906.005, m/z 1864.998
and m/z 1886.976. According to the DeepSHAP results, the most important feature is con-
tributing negatively to the prediction of Dentate gyrus when its value is high, whereas the
second and the third feature contribute positively to the prediction of Dentate gyrus when
their value is high. Their corresponding ion images are presented in Figure 6-68, where we
observe that indeed, the m/z 1906.005 feature has a low intensity around the Dentate gyrus
area thus, it is confirmed that it is negatively correlated to the model’s prediction when its
intensity is high. In Figure 6-69 and Figure 6-70, the ions have high intensities in the region of
Dentate gyrus, which validates their positive correlation to the model’s prediction. Moreover,
within the provided SHAP maps, it can be observed that the Dentate gyrus region exhibits
positive SHAP values. This indicates that the model relies on these particular features to
increase the probability of predicting Dentate gyrus.
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Figure 6-68: (Left) lon image of m/z 1906.005 (Right) SHAP map across all pixels of the most
important feature m/z 1906.005
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Figure 6-69: (Left) lon image of m/z 1864.998 (Right) SHAP map across all pixels of the second
most important feature m/z 1864.998
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Figure 6-70: (Left) lon image of m/z 1885.976 (Right) SHAP map across all pixels of the third
most important feature m/z 1885.976
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Discussion

First of all, we would like to mention that the above dataset involved having severe class
imbalance. Therefore, in the beginning we attempted to use a combination of class balancing
by using both majority class downsampling and minority class oversampling. For the minor-
ity class oversampling a popular resampling technique was used named Synthetic Minority
Over-sampling Technique (SMOTE).

SMOTE is a technique that basically over-samples the minority class, used in machine learn-
ing, particularly in imbalanced classification tasks [10]. SMOTE generates synthetic examples
rather than replicating existing examples. More specifically, for each minority class sample,
the algorithm identifies its k nearest neighbors, then, from the k nearest neighbors, a speci-
fied number of neighbors, depending on the desired amount of over-sampling, are randomly
selected. Once the neighbors are selected, the synthetic generation is accomplished by com-
puting the difference of the feature vector of the current minority class sample and the corre-
sponding nearest neighbor. Next, this difference is multiplied by a randomly produced value
in the range of (0,1), and then, this scaled difference is added to the feature vector of the cur-
rent minority class sample. With this procedure, synthetic/random datapoints are selected
across the line segments connecting the minority class sample and its chosen neighbors and
minority class over-sampling is achieved.

The results occuring from balancing the classes using both SMOTE and downsampling are
the following.

Classification with Logistic Regression Classification with CNN Classification with SCS

. [ Not Dentate Gyrus [ Not Dentate gyrus il *. 3 Not Dentate gyrus
* . .EEE Dentate Gyrus 1 mEm Dentate gyrus BB Dentate gyrus

y (pixels)

0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
x (pixels) x (pixels) X (pixels)

Figure 6-71: Classification results using data that has been resampled both by downsampling
the majority class and by oversampling with SMOTE the minority class (Left) logistic regression
model (Center) CNN model (Right) SCS-NN model

The linear model doesn’t show any improvement after the applied data balancing technique.
Additionally, by opposing the results in Figure 6-71 with the defined labelled mask for the
classification problem in Figure 6-50, we see that the classification output seems to be overfit-
ting the labelled mask especially for the CNN model case, whereas the SCS-NN model seems
to generalize better and manage to classify the dentate gyrus region however, it introduces
noisy pixels. In conclusion, we suggest that the severe class imbalance in this case study is
not sufficiently dealt with SMOTE data augmentation, especially for the CNN model. On the
other hand, the SCS-NN model output demonstrates a better ability in generalization and
less overfitting. Nevertheless, next we compare the results we acquired solely from applying
random majority class undersampling.
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Table 6-17: Comparison between models for hippocampus Dentate gyrus classification

Model Balanced Accuracy | Precision | Recall | F1 score
Log.Regression 0.9071 0.3009 0.8407 0.4435
CNN 0.8668 0.7172 0.7376 0.7273
SCS-NN 0.8001 0.6508 0.6043 0.6265

Moreover, we present the comparison between the applied classifiers in Table 6-17. The CNN
model achieved a slightly lower balanced accuracy (0.8668) compared to logistic regression.
However, its precision (0.7172), which represents the proportion of correctly predicted positive
instances, indicates a much better performance in Dentate gyrus classification compared to
the much lower logistic regression precision (0.3009). CNN’s F1 score, which demonstrates
a measure of balanced performance, is the highest among the other models. The SCS-NN
model achieves similar but lower performance.

Table 6-18: Comparison between CNN and SCS-NN models for Dentate gyrus classification

Architecture | Trainable | Activation | Normalization Train
Parameters Layer Layer Duration (s)
CNN 6,673,182 ReLU BN 3.6
SCS-NN 6,672,902 None None 7.3
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Figure 6-72: Mouse brain hippocampus Dentate gyrus classification output on all available pixels
with (Left) logistic regression (Center) CNN and (Right) SCS-NN model

In Figure 6-72, we see the trained classifiers’ output on both used and unused data during
training and testing. It is evident that the linear model, logistic regression, is very noisy and
doesn’t achieve good results in classifying clearly the Dentate gyrus region. This is expected
since the precision of the model was just 30%. Next, the CNN model almost eliminates the
noisy pixels and detects the Dentate gyrus region, however, still the classification output is
not clear and robust. It seems that the class imbalance hasn’t been treated effectively and it
affects the model’s performance. The SCS-NN models provides a slightly more noisy output
than the CNN but in general, similar to the CNN model, given that it involves less complex
architecture (see Table 6-18).
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Chapter 7

Conclusions and Future Work

In this section, we reflect upon the significant findings and outcomes of this research. We also
discuss the limitations encountered during the implementation process and propose future
directions for further extension of this work.

7-1 Overview of Research

In the context of constructing a Convolutional Neural Network (CNN) model for Imaging
Mass Spectrometry (IMS) data classification, the optimal hyperparameter selection plays an
inherently significant role in determining the model’s accuracy and poses a vital challenge.
This thesis presents the development and application of a comprehensive and effective pipeline
for the design and interpretation of 1-D CNN models customized specifically for classifying
Imaging Mass Spectrometry (IMS) data. The architecture of the CNN models was gener-
ated using an automated approach, namely the Tree-structured Parzen Estimator (TPE)
algorithm. We implemented the TPE algorithm within the Optuna library coupled with Py-
Torch. After generating optimal architectures based on TPE, we used k-fold cross validation
to select the best model. Then we trained and tested the designed model and evaluated the
corresponding results based on performance metrics but also conducted comparative analysis
against baseline linear methods, such as Linear Discriminant Analysis (LDA) and logistic
regression. Furthermore, we explored a novel alternative to traditional convolution for fea-
ture extraction known as Sharpened Cosine Similarity (SCS), which was implemented and
evaluated in all our case studies. Additionally, we adapted the implementation example of
SCS in [2] to 1-D input structures, making the first application of SCS layers on IMS data,
to the best of our knowledge.

Determining the CNN’s reliability is another challenge in developing CNN models. Due to
their complexity, CNNs are considered black-boxes. Consequently, in this thesis we have also
implemented a comprehensive interpretation pipeline for the classification results of the CNN
models in every case study, supported by helpful visualizations of the features’ importance
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in the spatial dimension. With the combination of the interpretability framework and the
corresponding CNN model accuracy findings we attempted to extract a reliable conclusion
regarding the suitability and effectiveness of the designed CNN models. Through this attempt
we aimed to enhance the trustworthiness of the CNNs predictions while achieving satisfactory
performance accuracy.

7-2 Conclusions

From this research, there are several conclusions that can be drawn regarding various topics
we explored within this work. Conclusions can be drawn regarding data preprocessing ef-
fects, architecture design, and the effectiveness of different approaches. Next we present the
conclusions derived from this work:

Data Although data scaling is a recommended preprocessing step in Machine Learning (ML)
algorithms in order to address significant variations in feature ranges and enhance perfor-
mance, when applied to IMS data, where the ion intensities range from zero to thousands, it
led to deteriorated results and thus, we don’t suggest using it. On the other hand, we support
that indeed data centering prior to training enhances the classification accuracy. Addition-
ally, using Synthetic Minority Over-sampling Technique (SMOTE) as a data augmentation
method led to overfitting the data and therefore, reduced the ability of the model to gener-
alize well for "unseen" instances. For this reason, we suggest majority class downsampling
as a basic method to compensate for minor class imbalances but we suggest that more data
augmentation techniques should be explored.

Hyperparameter Optimization From our results, we conclude that using the automated
hyperparameter optimization approach - TPE - is very effective and manages to explore and
exploit well the hyperparameter search space to generate optimal CNN architectures requiring
less time and effort. In this way, we can avoid the need for manually tailoring the model
design based on biochemical and biological domain expertise, which would be cumbersome
and expensive. On the other hand, we might lose some insight of the model decision making
process that is connected to biochemical characteristics of the data. Moreover, multiple
architectures with similar performances are generated by the algorithm for different random
seeds due to its probabilistic nature. We suggest k-fold cross validation for the selection of the
best model. Additionally, we conclude that TPE as a Bayesian method has the limitation that
it can potentially have difficulties in escaping from local optima to reach the global optima.
In order to face this limitation, we restart the algorithm several times so that it starts from
different initial observations.

CNNs for IMS data Based on our experimental results, we conclude that CNNs outperform
all other linear and SCS-NN models used for IMS data classification. Furthermore, the most
significant contribution of a CNN model in accuracy compared to a linear model was an
improvement of 8%. However, in some case studies there was no significant performance
improvement by CNNs. This is mainly due to the limitation that the linear models already
achieved a high accuracy for the given datasets and there was not much room for improvement.
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In general, the linear models assume a linear relationship between the input features and the
target, hence, when having inputs with more noise the linear methods struggle to model the
complex data patterns. The CNN models use convolutions and non-linear activations, which
allow them to model complex relationships between the input features and this leads to their
superior results. CNNs capture non-linear dependencies in the m/z axis of IMS data, which
are critical for accurately distinguishing between different classes. An additional conclusion
is that CNNs learn IMS data features automatically in a hierarchical manner without the
requirement of manual feature engineering prior to training. On the other hand, a negative
aspect of CNNs is that they require GPU access for model training and introduce the need
for model interpretation since they are not transparent.

Model Interpretation Through this study, the interpretation results show that most of our
CNN models based their outputs on relevant inputs. However, there were cases where noisy
inputs also had an impact on the model’s output. This shows that it is important to debug
the models in order for them to focus on reliable inputs. However, in this thesis we haven’t
applied any form of model debugging. Nevertheless, we conclude that interpretation of black
box models is important and can highlight model weaknesses and help to resolve bugs to
improve reliability.

SCS layers vs. Convolutional layers In this thesis, we explored the replacement of con-
volutional layers by Sharpened Cosine Similarity (SCS) layers for feature extraction. The
SCS-NN model achieves less but comparable accuracy to the CNN model with the follow-
ing advantages. It has a simpler architecture - no use of ReLU activation layers nor Batch
Normalization layers. It involves less trainable parameters and requires less memory for train-
ing. On the contrary, one training epoch of such a model takes longer than the CNN, most
likely because the mathematical expression of SCS requires the raise into the p** power, which
causes an increase in the computational time. We could conclude that SCS layers offer a good
alternative over convolutional layers in terms of a less complex architecture or less memory
demand preference, however, they don’t yield any accuracy improvement, as far as our results
demonstrated. Finally, in the case of data augmentation with SMOTE, we observed that the
SCS-NN model demonstrated less data overfitting compared to the CNN model.

7-3 Future Directions

Based on the limitations and the outcomes of our research in this thesis we can define the
following future work directions.

o Investigation of alternative data augmentation techniques. These techniques should aim
to improve the generalizability of the models without introducing excessive noise or
artificial patterns. An example could be the implementation of Generative Adversarial
Networks (GANs), mainly applied for image data augmentation.

o Model debugging for improved input reliability. A method for detecting and removing
the non-reliable, noisy inputs should be developed. For example, the noisy inputs could
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be identified by using the Spearman correlation coefficient and then removed from the
feature space.

o Inwvestigate using 2-D convolutional layers. If we treat the m/z axis of the IMS datacube
as the channels dimension in the CNNs framework and the (x,y) pixel positions as the
height and width dimension of a 2-D convolutional layer, we can use TPE to design
2-D CNN architectures and evaluate their performance in comparison to the 1-D ones.

Moreover, the 2-D CNN model could again be opposed and compared to a corresponding
2-D SCS-NN model.

o Compare alternative Deep Learning (DL) techniques to CNNs for IMS data. Since we
prove that CNNs are undoubtedly an advantageous DL classification method for IMS
data it would be interesting to see how well other DL approaches perform, such as
transformers, which were initially developed for sequential data. Therefore, we propose
a comparative analysis between an automatically designed CNN architecture and an
alternative approach, such as transformers.
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Appendix A

Automated CNIN Architecture Design

Here, we present additional material for the automated architecture selection process.

A-1 Hyperparameter Importances

Hyperparameter Importances

N _avers_cony._ | 071
Fc_ouT_FIRsT [ o.o7
I+ [ o.05
HIDDEN_cHANNELS_o [ 0.02
ks [ 0.03
Lr_poLrcy [l 0.02
weigl“t_decay- 0.02
batch_size. 0.01
n_Lavers_conv_z[j o.01
N_LAYERS_conv_4 [ o.01
pooLING_KERNEL [ 0.01
N_LAYERS_conv_3[f] <0.01
STRIDE_OFFSET[] <0.01
POOLING_STRIDE] <0.01
POOLING_TYPE| <0.01

Hyperparameter
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Importance for Objective Value

Figure A-1: Hyperparameter importances on a different run illustrating minimum importance for
the pooling type.

A-2 Hyperparameter Optimization with Optuna and PyTorch

Here we present a toy example of how to use Optuna in Python to generate the architecture
of a Convolutional Neural Network (CNN) model defined using PyTorch. The training and

testing code snippet is missing because we want to focus on the definition of the search space
with Optuna.
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import optuna

def objective(trial):
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# Number of convolutional layers per stack
N_LAYERS_CONV_1 = trial.suggest_int("N_LAYERS_CONV_1 ", 1, 5, 1)
N_LAYERS_CONV_2 =trial.suggest_int("N_LAYERS_CONV_2 ", 0, 5, 1)

# Number of filters for the convolutional layers
HIDDEN_CHANNELS_0 = trial.suggest_int ("HIDDEN_CHANNELS_0", 5, 60, 5)

# Number of nodes of the output of the first fully connected layer
FC_OUT_FIRST = trial.suggest_int("FC_OUT_FIRST", 100, 1000, 100)

# Number of fully connected layers
N_LAYERS_FC = trial.suggest_int("N_LAYERS_FC", 1, 3, 1)

# Batch size

BATCH_SIZE = trial.suggest_categorical("batch_size", [32, 64, 128,
256])

# Learning rate and policies

LR_POLICY = trial.suggest_categorical(’LR_POLICY’, [’Fixed’,’Step’, ’
Exp’, ’Cyclic’])

lr = trial.suggest_float("lr", le—6, le—1, log=True)

# L2 regularization
weight_decay = trial.suggest_float("weight_decay", le—7, le—2, log=
True)

# Set the model
model = TPENet (
trial, IN_CHANNELS, WIDTH, N_LAYERS_CONV_1, N_LAYERS_CONV_2,
N_LAYERS_FC, HIDDEN_CHANNELS_O, FC_OUT_FIRST, DEVICE,
OUT_FEATURES) .to(DEVICE)

optimizer = torch.optim.Adam(model.parameters(), lr=1lr, weight_decay=
weight_decay )

if LR_POLICY = ’Cyclic’:
scheduler = OneCycleLR(
optimizer,

max_lr=lr,
steps_per_epoch=3846,

epochs=1)
elif LR_POLICY = ’Exp’:
decay_rate = trial.suggest_float(’decay_rate’, 0.0, 1.0)
scheduler = ExponentiallR(optimizer, gamma—=l-decay_rate)
elif LR_POLICY = ’Step’:
gamma = trial.suggest_float("gamma", 0.1, 0.9, log=True)
step_size = trial.suggest_int("step_size", 1, 10)
scheduler = StepLR(optimizer, step_size=step_size, gamma—gamma)
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#Training and testing of the model
for epoch in range(N_EPOCHS):

HH##
# The code for training and testing
HH##
study = optuna.create_study( study_name=’TPE’, direction=’maximize’)

study.optimize(objective, n_trials=NUMBER_OF_TRIALS)
trial = study.best_trial

print(’F1 score: {}’.format(trial.value))
print ("Best hyperparameters: {}".format(trial.params))

During the trial started in Optuna, we need to define seperately the model, namely TPENet,
shown below. The model requires the computation of the layers output size in a dynamical
way. For the dynamical calculation of the output sizes per convolutional layer we use the
formula from [12]. Thus, the output size, O, of a convolutional layer with input, I, V kernel
size (K S), stride (5) and padding (P) is computed as:

I+2P - KS
ozL—i—g——fJ+1 (A-1)

in addition, the output after any pooling layer, since it doesn’t involve any padding is calcu-
lated as [12]:
I-KS

0=|—

|+1 (A-2)

when the requirement is to have the same padding, we can calculate the padding as, such
that O = I:

I(S—1)+KS—8

Equation A—1= P = 5

(A-3)

hence, when we have unit strides the full padding is simplified to P = %

nnn

Convolutional Neural Network (CNN) with hyperparameter values

obtained from the Tree-structured Parzen Estimator (TPE) algorithm.
nmnn

import numpy as np
import torch
import torch.nn as nn

class TPENet(nn.Module):

nnn

CNN optimized using TPE for IMS data
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trial: Optuna trial object used for hyperparameter optimization.

IN_CHANNELS: Number of channels of the input.

WIDTH: Number of peaks in the input spectrum.

N_LAYERS_CONV_1: Number of convolutional layers for the first block.

N_LAYERS_CONV_2: Number of convolutional layers for the second block.

N_LAYERS_FC: Number of fully connected layers.

HIDDEN_CHANNELS_O: Number of filters for the first convolutional
layer.

FC_OUT_FIRST: Output size of the first fully connected layer.

DEVICE: Device used for training the model.

OUT_FEATURES: Number of output features/classes.

Methods

forward(x): forward pass

def __init__(
self ,
trial,
IN_CHANNELS,
WIDTH,
N_LAYERS_CONV_1,
N_LAYERS_CONV_2,
N_LAYERS_FC,
HIDDEN_CHANNELS_O,
FC_OUT_FIRST,
DEVICE,
OUT_FEATURES ,

super (TPENet, self).__init__()

# Definition of hyperparameter search space

KS = trial.suggest_int("KS", 3, 20, 1)

STRIDE_OFFSET = trial.suggest_int("STRIDE_OFFSET", 1, 4, 1)
POOLING_KERNEL = trial.suggest_int ("POOLING_KERNEL", 2, 5, 1)
POOLING_STRIDE = trial.suggest_int ("POOLING_STRIDE", 1, 4, 1)

# Initialize
self .N_LAYERS_CONV_1 = N_LAYERS_CONV_1
self .N_LAYERS_CONV_2 N_LAYERS_CONV_2

self.convsl = nn.ModulelList ([])
self.convs2 = nn.ModulelList ([])

self.fc_layers = nn.Modulelist ([])
filters = []

output_size = []

out_features = []

padding = []

HH##
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# 1st stack of convolutional layers
H##
output_size.append (WIDTH)
padding. append (
int ((output_size[—1] % (STRIDE_OFFSET — 1) + KS
STRIDE_OFFSET) / 2)
)
filters.append(IN_CHANNELS)
for layer in range(N_LAYERS_CONV_1):
self.convsl.append(
nn.Convid (
in_channels=filters|[—1],
out_channels=HIDDEN_CHANNELS_O,
kernel_size=KS,
stride=STRIDE_OFFSET,
padding=padding|[—1],

)

filters.append (HIDDEN_CHANNELS_O)

self.convsl_bn = nn.BatchNormld (HIDDEN_CHANNELS_O)

output_size.append (
int (

np.floor ((output_size[—1] + 2 x padding[—1] — KS) /

STRIDE_OFFSET)
+ 1

)

padding.append(
int ((output_size|[—1
STRIDE_OFFSET) / 2

)

if N_LAYERS_CONV_2 != 0:
# 1st pooling layer output size
output_size.append (

] * (STRIDE_OFFSET — 1) + KS —

int (np.floor (((output_size[—1] — POOLING_KERNEL) /

POOLING_STRIDE) + 1))

)

padding. append(
int ((output_size|[—1
STRIDE_OFFSET) / 2

)

HH#H#

# 2nd stack of convolutional layers output size

HH#H#

for layer in range(N_LAYERS_CONV_2):
self.convs2.append(

Master of Science Thesis
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nn . Convid (
in_channels=filters|[—1],

out_channels=2 x HIDDEN_CHANNELS_O,

kernel _size=KS,
stride=STRIDE_OFFSET,
padding=padding|[—1],

)

filters.append(2 * HIDDEN_CHANNELS_O)

self.convs2_bn = nn.BatchNorm1d(2 x HIDDEN_CHANNELS_O)

output_size.append(

(output_size[—1] + 2 * padding[—1] — KS) /

int (
np.floor
STRIDE_OFFSET
)
+ 1
)

)

padding.append
int (

(output_size[—1] % (STRIDE_OFFSET — 1) + KS —

STRIDE_OFFSET) / 2

# RelU activation layer
self .relu = nn.RelLU()

# Dropout layer

self .do

= nn.Dropout ()

# Pooling layer
self .pool = nn.AvgPoolld(kernel_size=POOLING_KERNEL, stride=
POOLING_STRIDE)

# Getting size of vectorized data
output_vectorized = filters[—1] * output_size[—1]

# Fully

connected layers

out_features.append (FC_OUT_FIRST)

for i in range(N_LAYERS_FC):
self.fc_layers.append(

torch.nn.Linear (output_vectorized, out_features|[—1]).to(

DEVICE)
)
output_vectorized = out_features|[—1]
out_features.append(out_features|[—1])
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def

self .fcX = nn.Linear (output_vectorized, OUT_FEATURES).to(DEVICE)

forward(self, x):

nmnn

Performs the forward pass of the network by successively
connecting the inputs and the outputs based on
the layer architecture.

nnn

for i, conv_layer_i in enumerate(self.convsl):

x = conv_layer_i(x)
x = self.convsl_bn(x)
x = self.relu(x)
if self.N_LAYERS_CONV_2 != 0:

x = self.pool(x)

for i, conv_layer_i in enumerate(self.convs2):
x = conv_layer_i(x)
x = self.convs2_bn(x)
x = self.relu(x)

# Flatten

x = x.view(x.size(0), —1)

for i, fc_layer_i in enumerate(self.fc_layers):
x = fc_layer_i(x)
x = self.relu(x)

x = self.fcX(x)

return x

A-3 Designed CNN Architectures
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Figure A-2: lllustration of CNN architecture for renal inner medulla classification
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Figure A-3: lllustration of CNN architecture for renal outer medulla classification
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Figure A-4: lllustration of CNN architecture for renal cortex classification
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Figure A-6: lllustration of CNN architecture for Dentate gyrus of mouse brain hippocampus
classification
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List of Acronyms

IMS
ML
LDA
RF
SVM
DL
SGD
Al

MS
SIMS
MALDI
DESI
TOF
Q-TOF
FTICR
CNN
E2E
DNN
MLP
BN

LR

SCS
SHAP
SMOTE

Imaging Mass Spectrometry

Machine Learning

Linear Discriminant Analysis

Random Forest

Support Vector Machine

Deep Learning

Stochastic Gradient Descent

Artificial Intelligence

Mass Spectrometry

Secondary Ion Mass Spectrometry
Matrix-Assisted Laser Desorption Ionization
Desorption Electrospray Ionization
Time-of-flight

Quadrupole Time-of-flight

Fourier Transform Ion Cyclotron Resonance
Convolutional Neural Network

End-to-end learning

Deep Neural Network

Multilayer Perceptron

Batch Normalization

Learning Rate

Sharpened Cosine Similarity

SHapley Additive exPlanations

Synthetic Minority Over-sampling Technique
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120 Glossary

FC Fully Connected

SCS Sharpened Cosine Similarity
TPE Tree-structured Parzen Estimator
KDEs Kernel Density Estimators

EI Expected Improvement

ReLU Rectified Linear Unit

DL Deep Learning

Adam Adaptive Moments

RMSProp Root Mean Squared Propagation
CPU Central Processing Unit

GPU Graphics Processing Unit

List of Symbols

Momentum parameter that gives how fast gradients decay
Learning rate

Hyperparameter observation

Regularization parameter

Number of classes

Ion’s angular velocity

Set of permutations of the set of players

Loss for TPE

RMSProp hyperparameter

Bandwidth in the kernel function of KDE

Time step in Adam

Model’s weights and biases- trainable parameters
Magnetic field intensity

Bias

Total number of cooperating players

Gradient accumulation variable for Root Mean Squared Propagation (RMSProp)
Elementary charge of an electron

Ton’s movement fequency

Configuration space

Hidden layer size

Regularized loss function

Number of subsets/folds the original set is divided into

Loss function

— P a0 Dm0 a0 e d a0 Hege < Y3 oa

Separating distance of the ion source from the detector
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Number of samples in the batch

Atomic mass of the ion

Total number of pixel positions/observations in IMS data
Sharpening factor

Small positive constant used to avoid numerical instability

;U»Q’Uzgz

Regularization term

—

Radius of circular trajectory of an ion in a magnetic field
Total number of m/z features

Truth value vector

Set of players in cooperative game theory

Velocity gained by the ion

Accelerating potential

Momentum parameter

Layer weight

©“E S < e g T @

Input in a deep learning model
Horizontal coordinate of the IMS data spatial dimension
Vertical coordinate of the IMS data spatial dimension

Number of ion charges

N N < X

Simplified inputs
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