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Data-Driven Power System Operation: Exploring
the Balance Between Cost and Risk

Jochen L. Cremer , Graduate Student Member, IEEE, Ioannis Konstantelos , Member, IEEE,
Simon H. Tindemans , Member, IEEE, and Goran Strbac, Member, IEEE

Abstract—Supervised machine learning has been successfully
used in the past to infer a system’s security boundary by training
classifiers (also referred to as security rules) on a large number of
simulated operating conditions. Although significant research has
been carried out on using classifiers for the detection of critical
operating points, using classifiers for the subsequent identification
of suitable preventive/corrective control actions remains underde-
veloped. This paper focuses on addressing the challenges that arise
when utilizing security rules for control purposes. Illustrative ex-
amples and case studies are used to show how even very accurate
security rules can lead to prohibitively high risk exposure when
used to identify optimal control actions. Subsequently, the inher-
ent tradeoff between operating cost and security risk is explored in
detail. To optimally navigate this tradeoff, a novel approach is pro-
posed that uses an ensemble learning method (AdaBoost) to infer
a probabilistic description of a system’s security boundary. Bias in
predictions is compensated by the Platt Calibration method. Sub-
sequently, a general-purpose framework for building probabilistic
and disjunctive security rules of a system’s secure operating do-
main is developed that can be embedded within classic operation
formulations. Through case studies on the IEEE 39-bus system, it
is showcased how security rules derived from supervised learning
can be efficiently utilized to optimally operate the system under
multiple uncertainties while respecting a user-defined balance be-
tween cost and risk. This is a fundamental step toward embedding
data-driven models within classic optimisation approaches.

Index Terms—Supervised machine learning, AdaBoost, power
systems operation, security rules, dynamic stability.

I. INTRODUCTION

THE increasing complexity of power systems as well as the
growing uncertainty that surrounds operation, introduced

by renewable sources of energy and changing demand patterns,
has rendered critical the use of advanced operation tools for en-
suring system stability [1], also known as operational reliability
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[2]. Under this new reality, a new breed of security assessment
approaches has emerged, combining data-driven statistical in-
ference and machine learning within a Monte Carlo framework.

A. Existing Approaches

In general, data-driven work-flows follow three main steps: (i)
Generate a population of possible operating points that may arise
in the next hours/days by sampling from statistical models fit-
ted to past historical data. (ii) For each sampled operating point,
perform a simulation for each credible contingency scenario and
determine post-fault security. (iii) Using the system’s pre-fault
state variables as features and the post-fault security status as a
label, construct classifiers (also known as security rules) using
standard machine learning algorithms such as Decision Trees
(DTs). The principal idea is that a Transmission System Opera-
tor (TSO) or Distribution System Operator (DSO) can carry out
the above training procedure in a periodic and offline manner
and construct classifiers that can be used as predictors to infer
the post-fault security status of unseen operating points. Subse-
quently, at each control period, the TSO or DSO can generate a
very large number of possible operating points and rapidly clas-
sify them as safe or unsafe without performing time-consuming
simulations. Such an analysis can identify critical operating
points that could lead to security problems, providing insight to
operators and flagging them up for further analysis.

In general, the aim of such work-flows is to provide a scalable
way of managing uncertainty and system complexity within the
tight constraints of real-time operation in an effort to improve
the TSO’s and DSO’s situational awareness. As such, most re-
search efforts until now have focused on studying the computa-
tional performance of such platforms [3] as well exploring the
statistical model for generating operating points in a multivari-
ate setting (e.g. [4], [5]) and machine learning approaches for
building useful security rules [1].

Currently, the security rules are primarily used to identify
problematic operating points that may arise in the near future.
The next natural step is to use these security rules to determine
what kind of control actions should be performed by the TSO
and DSO to bring the system back to the secure domain. In other
words, instead of limiting the use of security rules to classifi-
cation purposes, it is possible to use security rules as a guide
for steering the system back to a safe operating domain using a
suitable control framework, as illustrated in Fig. 1. Much less
work has been carried out on this latter topic. We begin by pre-
senting the two control approaches that have been investigated
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Fig. 1. Data-driven work-flows for classification (dashed lines) and the pro-
posed control purpose (straight lines).

in the literature and then highlight the open questions we aim to
address.

The first type of approaches used in the past is based on a
heuristic analysis of the obtained security rules, so as to derive
re-dispatch rules for preventive or corrective control. For ex-
ample, authors in [6], [7] construct security rules in the form
of Decision Trees (DTs). Following DT training, an operating
point that is classified as unsafe can be brought back to safety
by changing the variables present in the parent nodes of the DT
node in question (each DT node is associated with a particular
feature and threshold value).

The second type makes use of optimization, where secu-
rity rules are embedded within an Optimal Power Flow (OPF)
problem. The idea is that security rules partition the pre-fault
operating space into regions of post-fault security and regions
of post-fault insecurity. The aim is to ensure that all operating
points that may arise within the next hour (or another adopted
control time frame) can be guided towards one of the safe regions
using some preventive/corrective control action. In the case of
DTs, these constraints can be included in the OPF formulation
in the form of inequality expressions. For example, in [8], [9])
one OPF problem is formulated for each secure terminal node
of the trained DT. All problems are solved and the solution re-
sulting in the smallest operating cost can be adopted as the most
cost-effective way to ensure post-fault security. Authors in [10]
take a different approach, where post-fault security is ensured
by conservatively adjusting the bounds of generators found to be
potentially lead to insecurity. The most cost-effective trajectory
is identified by constraining operation within a decision surface
that respects power balance and all other relevant scheduling
constraints. Instead of adjusting generator bounds, line flow lim-
its are considered as features in [11], where the authors propose a
Mixed Integer Linear Programming (MILP) approach to embed

the entire DT in a single problem. Also an MILP is used in [12]
and an offline-learned single safety margin is used to deal with
potential insecurity. Although such approaches are promising
and a natural step towards fully automated and comprehensive
control frameworks under uncertainty, they face several chal-
lenges.

B. Challenges of Data-Driven Operation

The first challenge refers to the fact that a classifier’s accuracy
when applied to a classification task can be radically different
to the same classifier’s accuracy when applied to a control task.
This is because the population of operating points used to train
a security rule is fundamentally different to the population of
operating points that arise as a result of an optimal control
process.

As explained in detail later, although this may appear to be a
subtle point, it is crucial since there can be cases where a 99.9%
accurate security rule (i.e. extremely good in identifying critical
points) results in 0% accuracy when used to derive optimal
control actions (i.e. the system is erroneously guided to an unsafe
region believed to be safe). The implications of this issue, which
has not been studied in detail in the existing literature, can be
problematic.

The second challenge has to do with the fact that since the
trained classifiers are by definition imperfect, this inadvertently
raises the issue of managing the risk that arises while also be-
ing cost-optimal i.e. tackling the risk-cost balance. The impact
of imperfections in security classifiers has been investigated in
isolation, for example in [13]. To deal with the risk of imperfect
classifiers researches have proposed several methods to learn
risk-averse security rules. For example, [10] and [11] propose
to asymmetrically adjust the weights (asym. weighting) of safe
and unsafe operating points during training. By increasing the
weight of insecure training samples, the boundary is approxi-
mated more conservatively. However, apart from several other
drawbacks, such conservative approaches can have a detrimental
effect on operating cost. Other authors introduce bias after train-
ing. For example, [6] and [7] verify the validity of identified con-
trol actions by executing simulations; this procedure is repeated
until a certificate of security can be obtained for the new oper-
ating point. However, such approaches require a large number
of simulations in the control period, resulting in a prohibitively
large computational load and cost inefficiencies. To avoid cost
inefficiencies, researchers have been balancing risk and cost
in non-data-driven approaches; e.g, [14] employs a particle-
swarm optimization, [15] a multi-objective optimization, and
[16] a chance-constrained and multi-objective (stochastic) op-
timization. However, the challenge to describe and balance the
risk in data-driven approaches caused by the imperfection of the
classifiers remains unaddressed.

The third challenge has to do with the applicability of security
rules to unseen operating conditions. In the past, researchers
have developed heuristics that are able to improve performance
when dealing with unseen operating conditions. However such
methods entail large realtime computational load since they
require knowledge of the specific operating point so as to modify
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the base case control scheme accordingly (e.g., [6], [7], [10]). In
this paper we investigate generalizable ways to improve control
scheme robustness.

C. Present Work

In this paper, two approaches are proposed to address the
aforementioned challenges in different ways. The first ap-
proach addresses the first two aforementioned challenges by
showing how to learn operation safety margins so as to con-
servatively approximate the region of safe operation subject
to a user-specified tolerance. Instead of generalizing a single
safety margin across all security rules, as has been done in the
past [10], [12], condition-specific safety margins are tailored
to each individual condition of the security rules, resulting in
cost savings; consequently the approach improves the risk/cost
balance indirectly by learning those condition-specific safety
margins.

The second approach proposes a novel risk-averse methodol-
ogy to address all three aforementioned challenges. The concept
is to balance the pre-fault operating cost and expected probabil-
ity of operating within an acceptable region via a multi-objective
optimization framework. This entails a fundamental shift from
deterministic to probabilistic treatment of security which is en-
abled by moving from the use of DTs, which have traditionally
been used in the past, to ensemble methods such as AdaBoost
[17]. Starting with uniformly weighted training samples, Ad-
aBoost can iteratively train base DT estimators by adapting the
sample weights in each iteration. The final ensemble (consisting
of all trained base estimators) can be used to provide probabil-
ity estimates regarding the post-fault security of a particular
operation region based on the individual votes of the base esti-
mators. We also show how those estimates must be calibrated
using Platt Calibration [18] to deal with the bias typically intro-
duced by boosting algorithms. The bias is reduced by fitting a
sigmoid function to the probability estimates and the posterior
probabilities. To embed the security rules in the optimization
problem, both approaches involve Generalized Disjunctive Pro-
gramming (GDP) [19]. GDP uses binary and continuous vari-
ables to exploit the inherent logic structure of the security rules
in order to reduce the combinatorics. The formulation of GDP
enables solvers to make use of branch-and-bound search in or-
der to achieve superior computational performance. We show
how the developed methods result in computationally efficient
approaches, rendering them suitable for real-time deployment
in large systems.

To study the proposed approaches, an IEEE 39-bus case study
is used. First, we show that existing approaches, primarily fo-
cused at training classifiers for predicting safe/unsafe labels for
unseen operating points, are inherently ill-suited for the task of
identifying suitable control actions. We proceed by showing that
both proposed approaches are able to drive system operation
much closer to the global optimum than existing approaches,
while also abiding to the user-defined risk tolerance level. More-
over, we show that the proposed risk-averse approach is capable
of identifying cost-effective control actions under a large range
of unseen operation conditions.

Fig. 2. Pre-fault feature space in R2 : the true boundary (for Y , dotted black)
is estimated by a DT using acceptable (green circles) and unacceptable (red
circles) training samples; the estimated boundary (for Ŷ , blue line) devides the
space into acceptable (green) and unacceptable (red) regions. Wrong estimations
(shaded) can be critical (red X).

The rest of the paper is structured as follows. In Section II, we
present in detail the challenges of inferring suitable control ac-
tions on the basis of data-driven proxies of security. Thereafter,
in Section III, the approach to learn condition-specific safety
margins is introduced. Subsequently, the risk-averse approach
is proposed in Section IV and the case study is presented in
Section V. Finally, Section VI is the conclusion.

II. DATA-DRIVEN SECURITY RULES

A. Security Rules for Classification

We first consider supervised classification methods that can
predict the security of an operating point. For such a task, the
usual approach is to use a binary class label (acceptable or un-
acceptable) corresponding to the post-fault state of the system
subject to a user-specified binary criterion (e.g. line overloads,
over-voltages, transient stability etc.). To train and assess the
performance of a classifier, two data sets are usually distin-
guished: the training data (X,Y ) and the test data (Xt, Y t).
The population of pre-fault operating points X and Xt can,
for example, be obtained by sampling an underlying statistical
model fitted to historical data, while the population of labels Y
and Y t is obtained via simulation Y : X �→ Y (see [3], [20] and
[21] for details). A classifier is trained on data (X,Y ) contain-
ingN samples (xi, yi), i = 1, . . . ,N of operating points, where
xi ∈ Rp is a vector of p features (pre-fault state variables, such
as line flows, power of generators and loads) and yi ∈ {0, 1} is
the corresponding class label with yi = 1 and yi = 0 signifying
acceptable and unacceptable post-fault operation, respectively.
In this paper we focus on training binary DTs using the Classifi-
cation And Regression Trees (CART) algorithm [22]. A typical
DT, as illustrated in Fig. 2 for p = 2, divides the entire pre-fault
operating space in regions of unacceptable (red) and accept-
able (green) post-fault behaviour with class label {0, 1}. Each
region corresponds to a terminal node n ∈ ΩT that are asso-
ciated with one of the class labels {0, 1} denoted by Ω0

T and
Ω1

T , respectively. This notation corresponds to Ω0
T = {n1,n4}

and Ω1
T = {n3} in the Fig. 2. This association is determined

based on the fraction of training points (X,Y ) in each terminal
node that have the class label {0, 1}. This fraction also pro-
vides a probability estimate of the prediction P̂0(xt), P̂1(xt).
Consequently, the prediction of an unseen operating point xt is
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obtained by the predominating probability estimate, such as

Ŷ(xt) =

{
0 if P̂0(xt) > P̂1(xt)

1 if P̂0(xt) ≤ P̂1(xt).
(1)

However, due to the limiting nature of the DT (i.e. linear
conditions) and/or insufficient training, the predicted class ŷt

may be wrong ŷt �= yt (since Ŷ is an approximation of Y). For
example, the DT in Fig. 2 is approximating the true boundary
(dotted black line) which is non-linear and thus cannot be per-
fectly inferred. This is evidenced by the fact that terminal node
n3 is not pure, but contains mixed class labels. Furthermore,
wrong predictions may occur when the DT has been trained on
an insufficiently large number of samples, or if the training and
testing populations differ [3], e.g. due to the respective under-
lying model to generate the samples, such as in a topological
change in the power system (e.g., as studied in [13]). Such mis-
classifications are unavoidable when constructing a classifier,
and for this reason quantifying the quality of the classifier is
important.

One typical measure of a classifier’s quality is the test er-
ror rate (e.g., used in [8], [10], [11]), denoted ζ. The test error
rate is calculated based on data (Xt, Y t) containing N t sam-
ples that were unseen in the training procedure Xt ∩ X = ∅
and the population of predicted class labels Ŷ t (obtained from

Ŷ : Xt �→ Ŷ t), such that ζ = |Y t �= Ŷ t |
N t , where | · | denotes car-

dinality. However, in this paper we show that although metrics
such as ζ can be useful in quantifying classification perfor-
mance, they cannot predict a rule’s performance when used for
inferring suitable mitigation control actions.

B. Security Rules for Control

As mentioned in the introduction, the natural step after ob-
taining a set of security rules is to develop an optimization
framework that identifies control actions so that the system is
contained within one of the prescribed safe operating regions
while achieving minimum operating cost. This can be formu-
lated as the following optimization problem:

min
x∗ f(x∗)

s.t. h(x∗) = 0

g(x∗) ≤ 0

q(X , Y ) (x∗) ≤ 0, (2)

where f(x∗) is the operation cost and g(x∗) and h(x∗) denote
the inequality and equality constraints of the power system re-
spectively and x∗ is the vector of operational decision variables
such as generator injections, line flows etc. The embedded se-
curity rules are denoted as q(X , Y ) and bound variables x∗ in the
regions of acceptable operation.

Due to the non-perfect nature of q(X , Y ) , there will be cases
where optimization problem (2) drives operation to regions of
the feature space that turn out to be unacceptable i.e. the op-
eration vector x∗ is classified as safe according to the security
rules (i.e. Ŷ(x∗) = 1), but found to be unsafe when the contin-
gency is simulated (i.e. Y(x∗) = 0). As such, when analysing a

Fig. 3. Different approaches to obtain data-driven security rules for control
(based on Fig. 2). (a) Asym.-weighting. (b) Single-ε. (c) Condition-specific-ε.
(d) Risk-averse. The approach-specific modifications are shown as yellow lines.

population of N∗ optimised operating points X∗ by predicting
Ŷ : X∗ �→ Ŷ ∗ and computing the true labels Y : X∗ �→ Y ∗, the
control error k ∈ [0, 1] can be expressed as the ratio of incor-

rectly classified points k = |Ŷ ∗ �=Y ∗|
N ∗ .

Note that control error k is very different to the classification
error ζ since it refers to a fundamentally different population
of operating points. Whereas the population Xt used to com-
pute ζ is drawn from the same distribution as the training data
X , the population X∗ that determines k results from an op-
timization procedure that favors cost-minimizing regions (see
[8], [9], [11]), where the security rules endogenously restrict the
problem’s feasible region according to q(X , Y ). As a result, if the
optimization is linear, then X∗ accumulates upon the binding
hyperplanes, since, according to the fundamental theorem of
linear programming [23], the optimal solution always lies either
on one of the vertices of the feasible region or on a connecting
line of two optimal vertices. This is especially critical if we
consider the fact that unacceptable operating regions can be less
costly than acceptable regions since the latter may entail some
preventive/corrective measures entailing an increase in cost. For
example, referring back to Fig. 2, if there is a low-cost point that
has been included in the set of acceptable terminal nodes (de-
noted by red X marks) then it is possible to obtain a control
error k 
 ζ and as high as 1. One intuitive approach to address
this problem is the asymmetric weighting approach to conser-
vatively approximate the boundary with the idea of shifting the
binding hyperplanes towards the acceptable region (as done in
[10], [11]). However, this shift is not straightforward to control
and still results in a control error k 
 ζ, as illustrated in Fig
3(a) (denoted by the red X marks).

In response, we investigate two strategies to achieve low k:
1) Under-estimate the acceptable operation regions by intro-

ducing some safety margin ε.
2) Provide an explicit term in the objective function of opti-

mization problem (2) so as to penalize operation in regions
with non-zero ζ.

We present the first condition-specific-ε approach in
Section III and the second risk-averse approach in Section IV.
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III. COMPUTING CONDITION-SPECIFIC SAFETY MARGINS

Modifying security rules with a safety margin in order to in-
crease control robustness has been proposed in the past [10],
[12]. Nevertheless, the existing literature has exclusively fo-
cused on cases using a safety margin in an iterative online search
(e.g., [10]) dealing with a single contingency and largely ignored
the economic implications of introducing such a margin. In this
paper, in an effort to develop a scalable data-driven framework,
we focus on cases involving multiple contingencies and com-
puting margins outside the control time frame. In such a case,
two approaches can be adopted to reduce k. The first approach
is to apply a single safety margin ε to all conditions of all rules,
as shown in Fig. 3(b). As can be seen, this approach can lead to
the unnecessary shrinkage of the estimated acceptable operating
region, thus potentially leading to increased cost. The second
approach is to compute a condition-specific-ε for each individ-
ual condition of each DT rule, as shown in Fig. 3(c). Inaccurate
conditions are identified, and a safety margin ε is iteratively
added so as to shift the estimated boundary towards the actual
acceptable region. This shift is biased by the set of conditions
that are identified as shortcomings of the classifier and get im-
proved. With respect to this bias, the complete elimination of
inaccuracies of conditions cannot be guaranteed, as exemplified
by the red X in Fig. 3(c).

A. Mathematical Formulation

In this section we build upon optimization problem (2). We
adopt the standard DC Optimal Power Flow (OPF) formulation
and modify it so as to include security rules with a safety mar-
gin. GDP [19] is used to transform the DT to a set of inequality
constraints q(X , Y ) (x) that can be embedded in the optimiza-
tion. The logic is that each terminal node of the DT labelled as
acceptable n ∈ Ω1

T corresponds to the disjunction of all parent
branching nodes. To formulate such a disjunction, a convex-hull
reformulation [24] or big-M reformulation [19] can be used. In
this application, we adopt the big-M reformulation which re-
sults in fewer constraints and variables. The reformulation of the
constraints in iteration j (the safety margin ε changes at each
iteration) is

aᵀ
m x ≤ (sm − εj

n,m )bn + aᵀ
m M1(1 − bn ) (3)

∀n ∈ Ω1
T and ∀m ∈ ΩL

A (n), where ΩL
A (n) ∈ ΩB are all ances-

tor branch nodes that provide a left (≤) condition on the path
from the initial node n0 to the terminal node n. Accordingly,
ΩR

A (n) is the set of all ancestor branch nodes providing a right
(>) condition

aᵀ
m x > (sm + εj

n,m )bn + aᵀ
m M2(1 − bn ) (4)

∀n ∈ Ω1
T and ∀m ∈ ΩR

A (n). The original conditions obtained
from the DT learning algorithm are the feature threshold sm

and am = eh(m ) for each branch node ∀m ∈ ΩB , where eh(m )
is the hth standard basis vector in the p-dimensional space.
bn = {0, 1} is a binary variable for each of the disjunct n ∈ Ω1

T ;
if bn = 1, operation in terminal node n is selected. Exactly
one disjunction must be selected according to

∑
n∈Ω1

T
bn = 1.

Note that strict inequalities cannot be modelled in optimizations,

therefore a small β ∈ R>0 can be added to the right-hand-side
of Eq. (4).

The big-M constants have vector form M1 ∈ Rp and M2 ∈
Rp , where p are the features. In order to speed-up the compu-
tations, it is critical to use small big-M values; large enough to
ensure the desired behaviour but not unnecessarily large so as
to increase the problem’s feasible region.

M1 = max
{

am sm + am xL : m ∪
n∈Ω1

T

ΩL
A (n)

}
(5a)

M2 = min
{

am sm + am xU : m ∪
n∈Ω1

T

ΩR
A (n)

}
, (5b)

where max and min are operators to compare element-wise
the vector entries, am = 1 − am is the negation of am and it
is assumed that all linear (feature) variables are bounded xL ≤
x ≤ xU . As illustrated in Fig. 3(c), the safety margins εj

n,m are
iteratively increased for the conditions of the branch nodes m
of each rule from initial node n0 to the terminal node n. The
corresponding safety margins to be increased from iteration j to
j + 1 are identified in an offline search procedure. Initially, all
safety margins are ε0

n,m = 0∀n ∈ Ω1
T , ∀m ∈ ΩL

A (n) ∪ ΩR
A (n).

Then, in each j, the critical conditions ΩC,j are searched by
taking a test set of optimized operating points (X∗), where
the dispatch decisions were computed using the proposed opti-
mization accounting for the corresponding εj

n,m . Subsequently,
for each optimized operating point x∗ ∈ X∗, the true class la-
bel is computed through the true function (e.g., via simulations)
y∗ = Y(x∗) and the critical conditions (n,m) are those on which
the unacceptable operating points (y∗ = 0) accumulate. For each
unacceptable point x∗ ∈ (X∗), the conditions (n,m) are iden-
tified if the following condition R(n,m, x∗) holds:

R =

{ |aᵀ
m x∗ − (sm + εj

n,m )| ≤ δ if m ∈ ΩR
A (n)

|aᵀ
m x∗ − (sm − εj

n,m )| ≤ δ if m ∈ ΩL
A (n),

(6)

where x∗ is located in terminal node n and δ is a tolerance pa-
rameter. If this holds, (n,m) is added to the set of critical con-
ditions ΩC,j = ΩC,j + (n,m). After those conditions (n,m)
are identified ∀x∗ ∈ (X∗), the corresponding safety margins
are increased εj+1

n,m = εj
n,m + Δε ∀(n,m) ∈ ΩC,j by a user-

specified step Δε.

IV. DATA-DRIVEN RISK-AVERSE OPERATION

As discussed previously, the second strategy for achieving a
low control error k is to introduce an explicit term to the objec-
tive function (2) which penalizes risk exposure. In this section
we achieve this by using DT ensembles. We begin by introduc-
ing ensemble learning techniques with a focus on AdaBoost and
Platt calibration. We then introduce the risk–averse formulation
that enables a user-defined trade-off between operational cost
and risk exposure.

A. DT Ensembles

Ensembles are classifiers combining the classification output
of a set of simple classifiers ΩL into one single classification out-
put [25]. For instance, the diverse outputs of 6 simple classifiers
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(DTs), each with two terminal nodes are shown in Fig. 3(d),
where each simple classifier’s decision boundary is a yellow
line. The final output can be obtained as probability estimates
(probability estimates for the acceptable class are in the figure)
by combining the votes of the simple classifiers. This reduces
the risk of wrong classification [25] and has been shown to result
in a better approximation Ŷ(x) of the true function to compute
the label Y(x), where x is the feature vector of the operating
point. This better result requires that the individual classifiers
are diverse and more accurate than random [26]. Two different
concepts exist for computing the predicted label: Majority and
Soft Voting. In Majority Voting, each base estimator l ∈ ΩL pro-
vides a class label Ŷl(x), while in Soft Voting each l provides
a probability estimate P̂0

l (x) and P̂1
l (x) for each class label

{0, 1} [27]. In Soft Voting, the probability estimate that an un-
seen operating point xt , for instance, belongs to the acceptable
class is computed as

P̂1
E (xt) =

1
|ΩL |

∑
l∈ΩL

P̂1
l (xt). (7)

The predicted class label can be obtained by using those prob-
ability estimates in Eq. (1). Overall, many algorithms exist to
learn a DT ensemble. In this paper, and after extensive testing
not shown here, we choose to use the AdaBoost. In AdaBoost, at
each iteration of the training process, the weight of each training
sample is adjusted proportionally to the current misclassifica-
tion error. AdaBoost by default employs Majority Voting. The
extension to Soft Voting, called SAMME.R was introduced in
[28], where it was shown to outperform other approaches in
terms of convergence time and test error. However, since the
re-weighting of boosting algorithms biases the probability esti-
mates, calibration is required.

B. Calibration

Boosting methods, such as AdaBoost, tend to push the pre-
dicted probabilities away from 0 and 1, resulting in a distortion
in the estimated probabilities [29]. Calibration is used to cor-
rect this distortion by mapping the probability estimates to the
posterior probabilities. Two methods are typically used for cal-
ibration, differing in the mapping function. Isotonic Regression
[30] uses a free-form monotonically increasing line, while Platt
Calibration [18] uses a sigmoid function. The sigmoid func-
tion P 1

E is fitted using maximum likelihood estimates of a new
training dataset (Xc, Y c) (e.g., as plotted in Fig. 4). In this pa-
per, Platt calibration is used, since according to the literature it
yields the best probability estimates when combined with the
AdaBoost algorithm [29]. In addition, as we show below, the
sigmoid function can be linearised and embedded within a MILP
problem.

C. Mathematical Formulation

The balance between cost and risk optimization has been
widely researched. Here, we show how two approaches could be
used to account for the risk of unacceptable operation. Whereas
both consider the same specific constraints q(X , Y ) (x), they differ
in the way they account for k(x). In the first approach, the

Fig. 4. Calibration of the risk function: Calibrated probability estimate P 1
E

(dotted blue) and linear approximation P̂ 1
E (red). The uncalibrated probability

estimate is the P̂1
E -axis.

standard OPF formulation is constrained by k(x) ≤ γ, where
γ is a user-specified parameter to limit k(x) ∈ [0, 1]. In this
paper, we study and propose the second approach, where k(x)
is accounted for in the objective function,

(1 − α)f ′(x) + αk(x), (8)

of a multi-objective optimization with linear scalarization. The
control error k(x) and the normalized operating cost f ′(x) ∈
[0, 1] are weighted using the trade-off factor α. By increasing
the parameter α ∈ [0, 1], the user can select more risk-averse
operation. To compute the normalized operating cost f ′(x) ∈
[0, 1], the standard DCOPF linear cost function is averaged over
all generators and scaled to the minimal and maximal generator
costs.

To implement k(x), the constraints from Section III are mod-
ified and new constraints are taken into account. The probability
estimated of the base estimators are

P̂1
l =

∑
n∈ΩT , l

P̂1
n,l bn,l ∀l ∈ ΩL , (9)

where P̂1
n,l is the probability estimate for acceptable operation

in the terminal node n and is obtained by computing the ratio of
acceptable training operating points in each terminal node n. As
in Section III, the binary variable bn,l corresponds to the terminal
node n to be selected for operation (bn,l = 1). To extend the
disjunctive formulation to a DT ensemble, some modifications
are undertaken: all remaining inequality and equality constraints
are extended for each base learner l ∈ ΩL as follows:

aᵀ
m,lx ≤ sm,lbn,l + aᵀ

m,lM1,l(1 − bn,l) (10)

∀n ∈ ΩT ,l and ∀m ∈ ΩL
A,l(n). Note, all terminal nodes ΩT ,l are

considered and all parameters, such as am,l , sm,l , M1,l , as well
as the sets ΩT ,l , ΩL

A,l are extended by the index l. Accordingly,
the right branch nodes ΩR

A,l are considered in

aᵀ
m,lx ≥ sm,lbn,l + β + aᵀ

m,lM2,l(1 − bn,l) (11)

∀n ∈ ΩT ,l and ∀m ∈ ΩR
A,l(n) with the big-M value M2,l . Ex-

actly one disjunction must be selected for each l ∈ ΩL accord-
ing to

∑
n∈ΩT , l

bn,l = 1. The optimal big-M values ∀l ∈ ΩL
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are calculated as follows:

M1,l = max{am,lsm,l + am,lx
L : m ∪

n∈ΩT , l

ΩL
A,l(n)} (12a)

M2,l = min{am,lsm,l + am,lx
U : m ∪

n∈ΩT , l

ΩR
A,l(n)} (12b)

In order to include the non-linear sigmoid function P 1
E within

our MILP problem, piece-wise linearization is employed to ob-
tain the approximation P̂ 1

E . We approximate this function by
using |ΩW | line segments. For P1

E ≥ 0.5, we can avoid intro-

ducing a binary variable, since ∂ 2 P 1
E

∂ (P̂1
E )2 ≤ 0. However, to approx-

imate for P̂1
E < 0.5, we introduce one single binary variable

b′ = {0, 1} to account for an initial line segment w = 0. The
linear approximation P̂ 1

E is illustrated in Fig. 4 and formulated
using the following constraints:

P̂ 1
E =

∑
w∈ΩW

mw δw (13a)

P̂1
E = b′δ0 +

∑
w∈ΩW \{0}

δw (13b)

0 ≤ δ0 ≤ b′δU
0 (13c)

b′δU
w ≤ δw ≤ δU

w , ∀w ∈ ΩW \{0} (13d)

where mw is declining (m1 ≥ m2 ≥ m3 · · · ) for w ≥ 1 and
m0 = 0. Consequently, k(x) = P̂ 0

E = 1 − P̂ 1
E . Note, in the ab-

sence of calibration, k(x) = 1 − P̂1
E and Eq. (13) becomes re-

dundant.

V. CASE STUDY

A number of studies have been undertaken to provide in-
sights in the theory being discussed and to provide evidence
for the efficacy of the proposed approaches. After stating the
case study assumptions, we show the mismatch in quantifying
the rule-quality when used for classification and for computing
control actions. Subsequently, we show the performance of the
proposed approaches with respect to balancing cost and risk of
unacceptable operation and the sensitivity of this balance. We
continue by providing the result of a study on the applicability
to unseen operating conditions and finish with discussing the
scalability of the approaches.

A. Test System and Assumptions

The IEEE 39 bus system was used: all data was taken from
[31] and modified (as in [12], including post-fault redispatching
of generator power levels by ±100 MW) to ensure N-1 SCOPF
feasibility for all samples. The acceptability class label is com-
puted by proving if the energy balance can be maintained after
a fault. If this was the case for all line outages, the pre-fault
operating point x was considered as acceptable Y(x) = 1 and
otherwise unacceptable Y(x) = 0. This allowed to compare the
approaches against a reference, the optimal acceptable operation
(obtained from the N-1 SCOPF dispatch).

In order to create the training data (X,Y ), loads were as-
sumed to be distributed within ±25% of the nominal loads. The

samples were drawn from a multivariate Gaussian distribution
(with a Pearson’s correlation coefficient of 0.75 between all load
pairs) and converted to a marginal Kumaraswamy(1.6, 2.8) dis-
tribution by the inverse transformation method. The generator
powers were randomly dispatched in their respective operation
limits, such that the total load and total generator power are
matching. The final (X,Y ) consisted of 500000 samples with
p = 65 features including load levels, pre-fault generation levels
and line flows and the binary label, the acceptable/unacceptable
operation.

To study the asym. weighting, single-ε and condition-specific-
ε approaches, a DT was learned via CART [22] by using
the package scikit-klearn 0.18.1 [32] in Python 3.5.2; default
settings were used (e.g., minimizing the gini impurity) ex-
cept the weighting of probabilities of the samples. Whereas
in the single-ε and condition-specific-ε approaches, we used
balanced weights, we varied the weights in [0, 1] for the
asym. weighting approach. Under and over–fitting was han-
dled by grid-searching for the hyper–parameters (i) maximal
tree depth {5, 6, · · · 20} and (ii) maximal number of terminal
nodes {20, 40, · · · 100, 200, · · · 500} involving 5-fold cross val-
idation and ‘f1’ score as criterion. The MILP was implemented
in Pyomo 5.1.1 [33] and the solver was Gurobi 7.02 [34]. The
MILP uses a new operating point (defined by the distribution of
loads) and makes decisions for all state variables, such as gen-
erator power dispatches, including corrective actions and line
flows. Further parameters were β = 0.001, δ = 0.01 MW and
Δε = 5 MW. For the condition-specific-ε approach, the opti-
mization was solved in each iteration for 1000 samples (X∗).

To study the risk-averse approach, we used the AdaBoost
algorithm SAMME.R [28] with the default parameters of
scikit-klearn (maximal base estimators |ΩL | = 10, learning rate
= 1). Platt Calibration was applied by using 100000 sam-
ples (Xc, Y c), 5-fold cross validation and was linearized by
using |ΩW | = 62 line segments with δw = 0.01 (for w > 1
if P1

E ≥ 0.5). The trade-off coefficient was varied in α =
{0, 0.02, 0.04, . . . , 1}.

B. Data-Driven Security Rules: Classification Versus Control

We start with showcasing the inappropriateness of the test
error rate ζ for assessing the suitability of identifying con-
trol actions from security rules. As discussed, the control er-
ror k yields a more appropriate metric. To demonstrate the
mismatch between the two metrics, an unmodified DT (as il-
lustrated in Fig. 2) with balanced sample weights was used.
N t = 100000 out-of-sample points were used to compute the
test error, which was ζ ≤ 0.1%. By applying the unmodified
security rules N∗ = 100000 optimized operating points were
obtained and the control error k = 70% was calculated. Even
though the test error ζ ≤ 0.1% suggests that the DT is capa-
ble of achieving high performance predictions, the DT-based
security rules are inappropriate for identifying control actions.
This demonstrates, as discussed in Section II, the test error is
unsuitable to quantifying security rules for control since the
optimization drives operation to unacceptable regions.
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Fig. 5. Cost-risk balance of the discussed approaches: In (a) and (b) is the
‘risk’ represented as control error and in (c) and (d) is the corresponding relative
cost based on exclusively comparing the acceptable samples. The shaded regions
in (c) and (d) correspond to the 10th and 90th percentiles of the relative cost.

C. Balancing Cost and Risk

The discussed approaches (illustrated in Fig. 3) were assessed
under the lens of the inherent trade-off between risk and cost
when using security rules for control. Unless stated otherwise,
we computed the control error k and the average pre-fault op-
erating cost f̄r (relative to the optimal reference) with the use
of 1000 out-of-sample points (X∗). The cost f̄r was computed
by exclusively comparing the acceptable dispatched samples
(y∗ = 1) against the sample-specific optimal references (SCOPF
solution).

By tuning the weights of the samples with respect to the
class labels in the asym. weighting approach, the lowest control
error k = 41% has been found at the weight 0.99999 for the
acceptable class; the relative cost difference was roughly f̄r =
0.06%. Increasing further the weight for the acceptable class
resulted in an empty feasible region. The approach was not
capable to obtain a k close to zero.

The results of the single-ε and condition-specific-ε ap-
proaches are presented in Fig. 5(a) and Fig. 5(c). Without any
adjustments ε = 0MW, a reference solution (f̄r = 0%) was
identified for 30% of the samples (and unacceptable solutions
otherwise). By increasing the safety margin ε, the control error
k was reduced and the relative cost f̄r increased. As discussed,
this behaviour is because the estimated decision boundary is
shifted to the actual acceptable region (as illustrated in Fig. 3).

Fig. 6. Sensitivity of the cost-risk balance for the approaches: single-ε
( ), condition-specific-ε ( ), risk-averse uncalibrated ( ) and risk-averse
calibrated ( ).

Both approaches were capable of obtaining k ≤ 0.1%. Since
the proposed condition-specific-ε approach tailors separately the
safety margin to each condition what results in estimating the
acceptable region less conservative, lower operating costs were
obtained than in the single-ε approach. In fact, for k ≤ 0.1%,
the result was a reduction in f̄r of more than 60% in comparison
of using a single-ε.

The results of the risk-averse approach with and without
calibration are presented in Fig. 5(b) and Fig. 5(d). The study
included varying the trade-off coefficient α. By increasing α,
a more risk-averse focus is entailed and the optimized solution
is shifted towards regions with higher probability estimates of
acceptable operation (to a greener region in Fig. 3(d)). At α = 0
(running a standard DCOPF), the control error k is 100%. By
increasing the coefficient α, a low control error k < 0.2% can
be achieved for α > 0.25 and the relative cost f̄r increased. For
0.25 ≤ α ≤ 0.8, the relative cost f̄r remains constant for both
the uncalibrated and calibrated case. Consequently, for instance
α = 0.6 is an appropriate value to balance cost and risk. The
main difference between uncalibrated and calibrated case is the
cost-sensitivity to high values of α.

D. Sensitivity of Cost-Risk Balance

The balance of cost and risk moved along the curves pre-
sented in Fig. 6. A typical risk-averse operator aims to achieve
low control errors k. When the parameters ε or α were selected to
reduce k, the cost f̄r increased for all approaches. However, this
cost sensitivity varies. The single-ε and uncalibrated risk-averse
approaches particular showed a large increase in cost f̂r when
k → 0. At each iteration in the single-ε approach, fewer con-
ditions require improvement. Consequently, the cost increases
more rapidly than k reduces. In the procedure to train the en-
semble for the risk-averse approach, the uncalibrated probability
estimates were pushed away from 0 and 1, with many regions
having values around 0.5. Although this nonlinear distortion
does not impact the accuracy of classifications, it results in
wrong probability estimates. The nonlinearity of the distortion
is in conflict with the nature of the linear scalarization in the
multi-objective optimization (8). In other words, the nonlinear
distortion of probability estimates results in more difficulties in
tuning α and leads to higher cost-sensitivities when k → 0. Both
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TABLE I
CONTROL ERROR k FOR SEEN AND UNSEEN OPERATING CONDITIONS

proposed approaches, the calibrated risk-averse (cal.) approach
and the condition-specific-ε, showed a reduced increase of f̄r ,
when k → 0. In terms of balancing cost and risk, both proposed
approaches outperform approaches of the current literature and
resulted in roughly f̄r = 0.5% with k ≤ 0.1%.

E. Applicability to Unseen Operating Conditions

As discussed, the approaches deal differently with the trade-
off between cost and risk as illustrated in Fig. 3. Even after
approach-specific improvements, critical regions might remain
unacceptable (marked with X in the figure). Consequently, those
approaches would not be applicable to unseen operating con-
ditions. To validate the performance under unseen operating
conditions of the approaches, the following study was under-
taken: the approach-specific improvements were finalized and
α and ε with the lowest f̄r for k ≤ 0.1% were selected. The
unseen operating conditions were simulated by drawing the
generator costs from an uncorrelated uniform distribution in
the generator-individual operating limits. Consequently, a very
different population of optimized operating points (X∗) was ob-
tained and used to calculate the control error k. 1000 different
operating conditions were simulated and the results are shown
in Table I. As assumed, the risk-averse and single-ε approaches
were applicable with k ≤ 0.1% to unseen operating conditions
since the improvement does not focus on regions biased in the
optimization. As discussed, the asym. weighting was not suitable
for seen operating conditions, consequently the same counts for
unseen operating conditions. The condition-specific-ε approach
improves iteratively boundaries in regions where the optimized
operating points (X∗) accumulate; all other decision bound-
aries are non-improved. Consequently, changing the operating
conditions in the optimization drives the operation onto those
non-improved decision boundaries resulting in high k = 45%.

F. Computational Feasibility

To finally judge the applicability, we discuss the computa-
tional feasibility. In all discussed approaches, 500,000 generated
samples were used to train the classifiers; however, it is possible
that a much smaller number of simulations is required when
combining the proposed work-flow with importance sampling
techniques to maximise information gain.

The offline identification of the safety margin ε (that satisfies
a control error k ≤ 0.1% with lowest cost) required 4000 and
21000 computations of the class labels in the single-ε and in
the condition-specific-ε approach, respectively. In the single-
ε approach, a simple half-interval search was applied and in
the condition-specific-ε approach 21 iterations were needed to
reach a control error k ≤ 0.1%. Since the DT had |Ω1

T | = 82

TABLE II
COMPLEXITY OF THE MILP TO BE SOLVED PER CONTROL TIME FRAME

and |Ω0
T | = 118 terminal nodes, the MILP involved 82 binary

variables; the full size of the optimization problem is given in
Table II. To solve this optimization problem using Gurobi 7.02
[34] needed a pure solver time of less than 0.1 s on a standard
laptop for each operating point that was studied.

In the proposed risk-averse approach, the trade-off coefficient
α = 0.62 that results in a control error k ≤ 0.1% with lowest
cost was identified offline using a half-interval search after 3
steps and involved 3000 computations of the class label. The
ensemble had |ΩL | = 10 DTs and the MILP involved 21 binary
variables in the calibrated case. The pure solver time was less
than 0.1 s for each studied operating point.

The problem increases in complexity for larger and more re-
alistic power systems. A large number of samples is required
to learn accurate classifiers [3]. However, we estimate the in-
crease in the complexity of the optimization problem will be
only moderately higher than the increase in an equivalent OPF
problem. Note, all of the aforementioned approaches require a
single DT/DT ensemble independent of the number of contin-
gencies considered. Consequently, even if many more contin-
gencies have to be taken into account in a larger system, still
only a single DT/DT ensemble is trained and accounted for in
the optimization.

G. Discussion

The key advantage of the proposed approaches over current
approaches is the ability to shift computations from the control
time frame to the offline time frame (as discussed in the intro-
duction and shown in Figure 1). In both proposed approaches,
the condition-specific-ε and the risk-averse approach, the com-
putation in the control time frame was less than 0.1 s, consisting
purely out of the solver time for the single optimization prob-
lem. No additional computations are required as all approaches
are directly applied to the expected operating point. Both ap-
proaches outperformed current data-driven approaches in better
balancing cost and risk. Finally, the calibrated risk-averse ap-
proach performs well for a wide range of values for α and is
robust to unseen operating conditions.

The proposed work-flow generalizes to the operation of
power systems where a risk of instability and operation cost
must be balanced under operational uncertainty, and is appli-
cable to distribution and transmission grids. The operational
uncertainty may include but is not limited to uncertainty in loads
and generator outputs, such as wind turbines or photovoltaic
panels. Appropriate risk metrics will depend on the application,
but they can be flexibly defined through the acceptability
criterion as long as it can be described by a binary criterion (e.g.
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1 for acceptable operation and 0 for an unacceptable operation
of the power system); consequently, the proposed approaches
could be used to account for e.g. line overloads, over-voltages or
transient stability. Those different risk functions are described
by a DT ensemble and could be learned through other super-
vised machine learning algorithms, such as random forests,
extremely randomized trees or other boosting algorithms. Ad-
ditionally, the cost function that is used in the risk-cost balance
could include terms related to the loss of load or undesirable
power peaks. Lastly, the approaches presented in this work can
be applied to a larger class of operational challenges, including
AC (optimal) power flow and unit commitment problems.

The approaches are limited when aiming to obtain a guar-
anteed security certificate. As discusses, the security boundary
is approximated from data and this approximation leads to in-
accuracies which leave a certain residual risk. In other words,
in our case study, the control error can be guaranteed to attain
k ≤ 0.1%, but cannot be guaranteed to equal zero.

VI. CONCLUSION

The challenges of embedding data-driven proxies of security
within power systems operational models have been presented,
showing how such a scheme can suffer from increased control er-
rors in the absence of risk averse measures. In response, we pro-
posed two approaches: introducing contingency-specific safety
margins and moving to a risk-averse formulation by leveraging
ensemble learning methods. Through case studies on the IEEE
39-bus system, the proposed approaches were shown to achieve
superior cost performance while meeting target risk tolerance
levels. The risk-averse approach was shown to be particularly
robust against a wide range of uncertainties while also imposing
very little computational overhead. This work enables, for the
first time, the move from traditional classifiers (as proxy de-
scriptors of data-driven security assessment) to more advanced
ensemble methods by proposing a novel risk formulation, GDP
optimization framework as well as describing the necessary cal-
ibration steps. In the future, feature selection will be improved
to decrease the offline computational effort.
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