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ABSTRACT High-level feature maps of Convolutional Neural Networks are computed by reusing their
corresponding low-level feature maps, which brings into full play feature reuse to improve the computational
efficiency. This form of feature reuse is referred to as feature reuse between convolutional layers. The second
type of feature reuse is referred to as feature reuse within the convolution, where the channels of the output
feature maps of the convolution are computed by reusing the same channels of the input feature maps, which
results in an approximation of the channels of the output feature maps. To compute them accurately, we need
specialized input feature maps for every channel of the output feature maps. In this paper, we first discuss
the approximation problem introduced by full feature reuse within the convolution and then propose a new
feature reuse scheme called Reducing Approximation of channels by Reducing Feature reuse (REAF). The
paper also shows that group convolution is a special case of our REAF scheme and we analyze the advantage
of REAF compared to such group convolution. Moreover, we develop the REAF+ scheme and integrate
it with group convolution-based models. Compared with baselines, experiments on image classification
demonstrate the effectiveness of our REAF and REAF+ schemes. Under the given computational complexity
budget, the Top-1 accuracy of REAF-ResNet50 and REAF+-MobileNetV2 on ImageNet will increase by
0.37% and 0.69% respectively. The code and pre-trained models will be publicly available.

INDEX TERMS Convolutional neural networks, group convolution, feature reuse.

I. INTRODUCTION
Convolutional Neural Networks (CNNs) have achieved a
series of breakthroughs on non-trivial visual tasks [1]–[5].
The features in a dataset can be learned in an end-to-end man-
ner by CNNs with minimal human effort and can be trans-
ferred to diverse visual tasks [6]. Accordingly, researchers are
dedicated to designing better networks for learning represen-
tations [7]–[10] instead of handcrafted features.

To enrich the representational power of CNNs, recent
work investigates various aspects of CNN network architec-
ture [11]–[14]. Constructing deep CNNs by stacking build-
ing blocks of the same shape is an effective strategy [11]
since higher layers learn more abstract and invariant repre-
sentations [15], [16]. Inherited from this, networks with skip
connections [12], [17] enable the training CNNswith extreme
depth. Inspired from the Hebbian principle and multi-scale
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processing, multi-branch CNNs [18] achieve compelling
accuracy if the topology of each branch is carefully designed,
and multiple branches are expected to approximate large and
dense layers of powerful representational capability. Except
for depth, the width of a network is an essential dimension to
increase the model capability [19]. Exposing the new dimen-
sion of cardinality [20] or deploying the new approaches [8],
[21], [22] can enlarge the representational ability of the
model. To address the limitation of spatial locality in convo-
lution, the attention mechanism [21], [23] is used to capture a
larger feature interaction. Using automated strategy, Neural
Architecture Search achieves state-of-the-art accuracy [22]
and platform-aware efficiency [24].

When it comes to the efficiency of designingCNNs, feature
reuse is key to making it feasible [16], [25]–[27]. More pre-
cisely, the features computed by earlier layers will be reused
by the latter layers, which is the feature reuse between con-
volutional layers and is popular in both a plain network [28]
and a multi-branch network [18]. The pursuit of maximizing
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feature reuse between convolutional layers is an important
concept in designing these networks. Deeper CNNs encour-
age more feature reuse, which resulted in designing VGG-
net [28] and ResNet [17]. Deep CNNs with identity mapping
have a problem of diminishing feature reuse in [29], which
motivates the development of wide ResNet [19], ResNet with
stochastic depth [30], and DenseNet [31]. Also, feature reuse
plays a critical role within the convolution in addition to
between the convolutional layers. Specifically, all the chan-
nels of the output activations of the convolution are computed
by reusing all and the same channels of the input activations.

Feature reuse is at the heart of the theoretical advantages
behind deep learning and explains the power of distributed
representations [16]. However, it is a limitation of the repre-
sentational capability of networks since the reused features
are an approximation of accurate features. Reducing or elim-
inating feature reuse from a given model will result in
comparable or higher model accuracy, which supports the
approximation drawback of feature reuse. There is some
research investigating eliminating feature reuse between con-
volutional layers. For example, CondenseNet [25] removes
such connections between layers to avoid superfluous fea-
ture reuse in the network architecture. Besides, the lot-
tery ticket [32], selective allocation of channels [33],
pruning [34], [35], and group convolution [13], [36] can all
be regarded as methods for reducing feature reuse within the
convolution as analyzed in our work, which has not been
pointed out in their original illustration. We initially pointed
out that feature reuse within the convolution leads to the
problem of approximation of the channels. Thus, by reducing
feature reuse we can reduce the approximation within the
convolution, which makes the calculation of the channels
more accurate.

Our main contributions are summarized as follows.
• To our best knowledge, we are the first to point out
and analyze the approximation problem introduced by
the feature reuse within the convolution. To solve the
problem, we propose the Reducing Approximation of
channels by Reducing Feature reuse (REAF) scheme,
which is a moderate version of feature reuse within the
convolution.

• We compare our REAF scheme with group convolution
and show that there are more merged channels in our
REAF scheme than those in group convolution even
though group convolution is a special case of our REAF
scheme.

• We develop our REAF+ scheme with Bn and Relu
layers as the parameterized operations and integrate it
with group convolution-based models.

• We use extensive experiments to demonstrate the effec-
tiveness of our REAF and REAF+ schemes.

II. RELATED WORK
A. MULTI-BRANCH CONVOLUTIONAL NETWORKS
To ease the difficulty of training deep neural networks,
an adaptive gating unit is used in Highway networks [29],

which evolves into identity mapping in ResNet [17].
Replacing the identity mapping with more residual blocks,
shake-shake networks [37], and multi-residual networks [38]
are extended to improve the accuracy and speed. Fractal-
Nets [39] and Multilevel ResNets [40] expand the multi-
ple paths in a fractal and recursive way, respectively. The
Inception series [18] aggregate the multifarious features of
multi-scale with a careful configuration for each branch.

B. CONVOLUTION VARIANTS
To enrich the representational capability, deformable con-
volution [7], [41] and active convolution [42] augment the
spatial sampling locations with additional offsets. Consider-
ing the computational complexity, group convolution [43],
flattened convolution [44], tiled convolution [45], octave con-
volution [46], and dilated convolution [1] are developed as
variants. Depthwise convolution [47] is an example of group
convolution with the number of groups being the same as
the number of channels. Based on these convolution vari-
ants, compact models are built, including IGCV series [48],
MobileNet series [49], ShuffleNet series [50], and Espnet
series [51].

III. METHOD
In this section, we analyze the limitation of the convolution,
i.e., the approximation of the channels caused by the full
feature reusewithin the convolution. To address this problem,
we propose our REAF scheme for convolution, which intro-
duces specialization to compute the channels of the output
feature maps. We optimize the REAF scheme and compare it
with group convolution since group convolution is a special
case of our scheme. Finally, we develop the REAF+ scheme
to improve the performance of the group convolution-based
models.

A. PROBLEM DEFINITION
The output activations O ∈ RCout×H×W of the convolution
are convolved between the input activations I ∈ RCin×H×W

and the weights W ∈ RCout×Cin×h×w, where the batch size
N is omitted. The channel-wise representation of the output
activations O is shown as follows, where Oj refers to the jth

channel of the output activations O and j = 0, . . . ,Cout − 1.

O = {O0,O1, . . . ,OCout−1} (1)

To study feature reuse for every individual channel, we con-
struct a variable A ∈ RCout×Cin×H×W to compute all the
channels of the output activations, where Aj is the input
activation to compute the jth channel of the output activa-
tion Oj. The feature reuse within the convolution is shown
in the left of Fig. 1, where we reuse all the channels of
the input activations I to calculate every individual channel
of the output activations O. Therefore, Oj is convolved by
the input activations Aj and the weights Wj as follows and
i = 0, . . . ,Cin − 1.

Oj =
Cin−1∑
i=0

Aji ×Wji =

Cin−1∑
i=0

Ii ×Wji (2)
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FIGURE 1. Illustration of convolution using different feature reuse schemes. Every circle stands for every
channel of the feature maps. Circles on the top, in the middle, and on the bottom refer to the input feature
maps, the input feature maps to compute every channel of the output feature maps, and the output feature
maps, respectively. Circles in dashed lines indicate the absence of the channels.

The information of the CNN transitions gradually from
spatial coding to channel coding by a hierarchy of repre-
sentations. Regarding the feature reuse between the convo-
lutional layers, the learned hierarchical representation makes
it reasonable to save computational complexity for CNNs
since the high-level features are composed of the low-level
features. However, when it comes to feature reuse within the
convolution, i.e., every channel of the output activations is
computed by reusing the same input activations. The reused
input activations are approximated tensors for all the channels
of the output activations. As every channel of feature maps is
considered as a feature detector [52], the input feature maps
to compute every channel of the output feature maps of the
convolution are expected to be customized and specialized to
make the computation more accurate.

B. REDUCING APPROXIMATION OF CHANNELS BY
REDUCING FEATURE REUSE
The approximation problem of the channels introduced by
the feature reuse within the convolution can be expressed as
Aj = Aj′ and j, j′ = 0, . . . ,Cout − 1. To introduce specialized
input feature maps for every channel of the output feature
maps, a straightforward scheme for the convolution is shown
in the middle of Fig. 1, where there is no feature reuse within
the convolution at all. The input activations are divided into
GI groups, where Cin = GI × Ain and Ain is the number
of channels of every group to compute every channel of the
output activations. We have GI = Cout . The input activations
to compute the jth channel of the output activations are Aj,
where Aj is part of the input activations I as follows. Index
refers to the function that indexes the jth group from I .

Aj = Index(I , j,Ain) (3)

In this way, we do not reuse any channels of the input activa-
tions I to compute every channel of the output activations O.
Oj is convolved by the input activations Aj and the weights
Wj as follows.

Oj =
Ain−1∑
i=0

Aji ×Wji

=

Ain−1∑
i=0

Index(I , j,Ain)×Wji (4)

Considering computational complexity and distributed
representations, it is inadvisable to remove feature reuse
totallywithin the convolution. To keep feature reuse and intro-
duce customized input activations to compute the channels,
we introduce our scheme called REAF, which is a moderate
version of feature reuse for convolution as shown in the right
part of Fig. 1.

All the channels of the input activations I and the output
activationsO are divided intoGI andGO groups respectively,
and there is only one channel in every group as shown in
the right part of Fig. 1. Cout = GO × Bout and Bout is the
number of channels of every group of the output activations.
To keep feature reuse and introduce specialization, we draw
GM groups from the GI groups of the input activations to
compute every group of the output activations. If all the
channels of the input activations I are considered as a set
S of GI elements, every element is a group. The number of
the (GM )-combinations is denoted using elementary combi-
natorics text as C(GI ,GM ). All the (GM )-combinations are
enumerated as E0, . . . ,El, . . . ,EGO−1. Here l = bj/Boutc
and l = 0, . . . ,GO−1. Since it is hard to get prior knowledge
on how many times the groups of the input activations should
be reused, we try to keep the homogeneity of computing
channels. Therefore, we have C(GI ,GM ) = GO. Index refers
to the function that indexes GM groups from I based on El
and concatenate them together.

Aj = Index(I ,El,Ain) (5)

To compute different groups of the output activations,
the reused GM groups of the input activations are different
from each other. Oj is convolved by the input activations Aj
and the weights Wj as follows.

Oj =
Ain×GM−1∑

i=0

Aji ×Wji

=

Ain×GM−1∑
i=0

Index(I ,El,Ain)×Wji (6)

C. OPTIMIZING THE CONFIGURATIONS OF OUR SCHEME
Given a convolution with a computational complexity budget,
the configurations of GI − GM − GO can be optimized
since they have an influence on the feature reuse within the
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TABLE 1. ResNet50 and REAF-ResNet50 with a 4-3-4 template using the reformulation of the REAF scheme. Inside the brackets is the shape of a residual
block, and outside the brackets is the number of stacked blocks on a stage. ‘‘C = 72’’ refers to the base width of the mode. ‘‘4-3-4’’ suggests that the REAF
scheme with the configurations of GI = 4, GM = 3, and GO = 4 is applied to the convolution. The numbers of parameters and FLOPs are comparable
between these two models.

TABLE 2. ResNeXt50 and REAF-ResNet50 with a 4-3-4 template using the reformulation of the REAF scheme. Inside the brackets is the shape of a
residual block, and outside the brackets is the number of stacked blocks on a stage. ‘‘C = 64’’ refers to the base width of the mode. ‘‘4-3-4’’ suggests that
the REAF scheme with the configurations of GI = 4, GM = 3, and GO = 4 is applied to the convolution. ‘‘4’’ refers to the number of groups G = 4 in
ResNeXt50. The numbers of parameters and FLOPs are comparable between these two models.

convolution and the number of the merged channels. When
GI − GM remains unchanged and GO increases, the feature
reuse within the group reduces since every group of the
output activations is computed by reusing different input
activations. On the contrary, the feature reuse between the
groups increases since the number of different channels
between the reused input activations of computing different
groups of the output activations decreases. WhenGO remains
unchanged and GI − GM increases, the feature reuse within

the convolution reduces while the number of the merged
channels decreases. In this paper, we focus on studying the
extreme case of GM = GI − 1 since GM = 1 (i.e., group
convolution) has been explored in [20]. Given a convolutional
neural network, we apply our scheme to its convolutions and
optimize the configurations. Taking ResNet50 as an example,
and the overall REAF-ResNet50 architecture, i.e., apply our
scheme onResNet50, is listed in as shown in Table 1.We keep
the topology and computational complexity of the model
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TABLE 3. Experimental results of REAF-ResNet50 with different configurations.

unchanged for a fair comparison.We adopt the REAF scheme
for the middle convolution of the bottleneck and adjust its
width.

As shown in Table 3, the experimental results of
REAF-ResNet50 on CIFAR-100 classification are presented.
C and C ′ refer to the base number of the input and output
channels of the middle convolution of the bottleneck and
C = C ′ in default. When applying the REAF scheme to
the middle convolution, the accuracy will improve with a
wide range of configurations. When GI − GM = 1, REAF-
ResNet50 with GI = 4 achieves the best Top-1 accuracy
among all the variants and 1.48% better than the baseline.
With the increase and decrease of the number of the groups
from GI = 4, the accuracy will degrade, which suggests that
GI = 4 refers to an optimized configuration of the REAF
scheme for the ResNet50.

D. ADVANTAGE OVER GROUP CONVOLUTION
Group convolution [20] has beenwidely adopted in the design
of CNNs since it exposes a new dimension, i.e., the size
of the set of transformations. Meanwhile, group convolution
benefits from reducing feature reusewithin the convolution as
explained in our work, which has not been pointed out by the
original reference [20]. Group convolution is an example of
our REAF scheme when GM = 1. The number of merged
channels in our proposed scheme is GM − 1 times larger
than that in group convolution. Also note that the number

of merged channels in the REAF scheme with the optimized
configuration is much more than that in group convolution
with the optimized number of groups G. Based on the exper-
iments in [20], a larger number of cardinality indicates a
more effective choice for a given model and the number of
merged channels is 4 in group convolution with the optimized
groups G = 32. For example, in our proposed scheme with
the optimized configuration 4-3-4 and the number of merged
channels is 54.

E. REAF+ SCHEME
We propose the REAF+ scheme, which adopts parame-
terized or parameter-free operations to enable Aj 6= Aj′ .
Applying the REAF+ scheme, the performance of the mod-
els, including the group convolution-based models or REAF
scheme-based models, will improve further. When the Bn
and Relu layers are included, Oj is convolved by the output
activations O′ of the last convolution and the weights Wj as
follows.

Oj = Conv(Aj,Wj) = Conv(I ,Wj)

= Conv(Relu(Bn(O′)),Wj) (7)

Taking the parameterized operations of Bn and Relu layers
as an example, the REAF+ scheme can be expressed as fol-
lows. There are gO pairings of Bn and Relu layers introduced
when the output activations are divided into gO groups.

Oj = Conv(Aj,Wj) = Conv(Relul(Bnl(O′)),Wj) (8)
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TABLE 4. Comparisons of REAF-ResNet and ResNet on CIFAR-100 classification.

TABLE 5. Comparisons of REAF-ResNet and ResNet on ImageNet classification.

TABLE 6. Comparisons between our REAF scheme and group convolution on classification.

IV. EXPERIMENTAL RESULTS
We trained and evaluated our REAF-Net and REAF+-
Net modes, i.e., applying our REAF and REAF+
schemes on baseline models, on CIFAR-100 and ImageNet
ILSVRC2012 classification dataset [53].

A. EXPERIMENTS ON CIFAR-100 CLASSIFICATION
We apply our scheme on ResNet models and conduct
experiments on low-resolution imagery CIFAR-100 datasets.
We adopt crop translation and flipping data augmentation.
We train 200 epochs in total and the learning rate decays at
the steps of 60, 120, and 160 with a factor of 0.2. As the
experimental results presented in Table 4, the Top-1 accu-
racy of our REAF-ResNet outperforms that of ResNet
baseline with various depths using comparable computa-
tional complexity. Especially, our REAF-ResNet101 achieves
a 1.76% top-1 accuracy improvement compared with the
ResNet101 baseline.

B. EXPERIMENTS ON ImageNet CLASSIFICATION
To show the performance of our proposed scheme on
high-resolution images and large datasets, we experiment
with ResNet and REAF-ResNet on ImageNet classification.

We train 100 epochs in total with a batch size of 256. The
learning rate starts at 0.1 and decays every 30 epochs with a
factor of 0.1. The weight decay is 1e−4 and the momentum is
0.9. The image is resized for scale augmentation. A 224×224
crop is randomly sampled from an image or its horizontal
flip, with per-pixel normalization. As summarized in Table 5,
the Top-1 accuracy of our REAF-ResNet increases by 0.27%,
0.37%, and 0.25% for the depth of 18, 50 and 101 layers
respectively compared to the ResNet baseline.

C. COMPARISONS WITH GROUP CONVOLUTION
This subsection reports on experiments on CIFAR-100 and
ImageNet classification datasets to show the advantage of
our proposed scheme over group convolution. We build
ResNeXt and REAF-ResNet according to a given compu-
tational complexity budget, and their architectures can be
found as shown in Table 2. The network architecture of
ResNeXt50 and REAF-ResNet50 in the section of compar-
isons with group convolution are listed. The base width of
ResNeXt and REAF-ResNet is C = 64. In ResNeXt, all
the convolutions in the building bottlenecks of ResNet are
replaced with the group convolutions G = 4. Specifically,
the three convolutions in a bottleneck are replaced with
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TABLE 7. Results of group convolution-based and our REAF+ scheme-based models on classification.

group convolutions. Similarly, all the convolutions in the
building bottlenecks of REAF-ResNet adopt our proposed
scheme with a configuration of 4 − 3 − 4. In this way,
the difference between group convolution and our proposed
scheme, introduced by the number ofmerged channels, can be
observed clearly. On the CIFAR-100 dataset, the Top-1 accu-
racy of the REAF-ResNet50 model is 0.74% better than
that of ResNeXt50, and the gap is 1.11% for 101 layers as
in Table 6. Compared to ResNeXt50, the Top-1 accuracy
of REAF-ResNet50 increases by 0.74% on the ImageNet
dataset.

D. EXPERIMENTS OF REAF+ SCHEME
As shown in Table 7, we apply the REAF+ scheme to a
group convolution-based model and conduct experiments on
the classification to show accuracy improvement. Applying
the REAF+ scheme with gO = 2 to the third convolution
(i.e., the second pointwise convolution) of the bottleneck,
the Top-1 accuracy of MobileNetV2 and ResNeXt50 on
CIFAR-100 will improve by 0.55% and 0.43% respectively.
The Top-1 accuracy of MobileNetV2 on ImageNet will
increase by 0.69%.

E. EFFECTS ON LEARNED REPRESENTATION
In this section, we compare the class selectivity index for the
features in the ResNet baseline and REAF-ResNet to interpret
the effect of our proposed scheme on learned representation.
The class selectivity index is computed for every channel of
the feature maps, as selectivity = (umax − u−max)/(umax +
u−max). umax represents the highest class-conditional mean
activity and u−max represents the mean of class-conditional
mean activity across all other classes over given data dis-
tribution. Selectivity provides the degree to which features
are being shared across classes, which is a central property
of distributed representations and measure the extent of fea-
ture reuse. Using the validation dataset of the ImageNet,
we calculate the selectivity for the features of ‘‘layer1’’,
‘‘layer2’’, ‘‘layer3’’, ‘‘layer4’’, and ‘‘avgpool’’, which are the
output of the stage2, stage3, stage4, stage5, and AvgPool2d,
respectively.

One trend is that the selectivity for the features of deep
layers is more than that of earlier layers, which conforms
to the observations in [23], [54] and can be attributed to
the results of feature reuse between convolutional layers.
Another trend identified in our work is that our REAF scheme

FIGURE 2. ResNet50 + REAF-ResNet50.

FIGURE 3. ResNet101 + REAF-ResNet101.

increases the selectivity for the features, which verifies its
reduction of feature reuse within the convolution. The dis-
tribution of the selectivity for ResNet and REAF-ResNet
appears to be closely matched, so we only analyze the layer,
at which the distribution separates most. Figures 2 and 3
present the selectivity comparison for the features in ResNet
and REAF-ResNet for 50 and 101 layers. The most dis-
tinct distribution of the class selectivity appears at ‘‘layer1’’
in Figures 2 and 3 and the selectivity for the features of the
‘‘layer1’’ in REAF-ResNet are more than that in ResNet.
We compare the selectivity for the features in ResNet50 and
ResNeXt50 (i.e., REAF-ResNet50 with the configuration
of GM = 1) in Figure 4, respectively. Since ResNeXt
is an example of our REAF scheme, its learned represen-
tation is expected to increase the selectivity. The largest
mismatch of the selectivity distribution for the features
between ResNet50 and ResNeXt50 falls to ‘‘layer4’’, where
ResNeXt50 exhibits more selectivity that ResNet50.
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FIGURE 4. ResNet50 + ResNeXt50.

V. CONCLUSION
In this paper, we analyze the approximation problem intro-
duced by the full use of feature reuse within the convolution,
where the channels of the output activations are computed
by reusing the same input activations. To make comput-
ing channels more accurate, we propose the REAF scheme,
which is a moderate feature reuse version for convolution.
Moreover, the configuration of the REAF scheme is opti-
mized for a given CNN. Besides, we clarify the advantage
of keeping more merged channels over group convolution.
Also, we develop the REAF+ scheme and integrate it with
the group convolution-based models. Last but not least,
we present sufficient experiments on the classification to sup-
port our analysis concerning the REAF and REAF+ schemes.
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