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SUMMARY

In an era of increasing reliance on digital technology, securing embedded and intercon-
nected devices, such as smart cards or Internet of Things (IoT) devices, against emerging
threats becomes crucial, highlighting the need for advanced security measures. Crypto-
graphic algorithms, essential for secure communication, data storage, and transaction
integrity, are often employed to develop secure systems. However, the practical imple-
mentation of these algorithms in software and hardware introduces vulnerabilities, ex-
posing sensitive information to risks. Implementation attacks, such as fault injection
(FI) and side-channel analysis (SCA), belong to a category of security threats that exploit
these vulnerabilities occurring during the cryptographic algorithms’ execution.

Security evaluation and certification assess the product’s security features against in-
dustry best practices and regulatory standards. These processes aim to independently
verify the claims made about the product’s security, fostering and maintaining trust among
users. Given the evolving landscape of security threats and increasing security concerns,
the need for more efficient and resource-effective security evaluations has become evi-
dent. Fault injection and side-channel analysis are commonly conducted as part of this
assessment, and recent studies have demonstrated that integrating artificial intelligence
(AI) methods can significantly enhance their performance. Moreover, this integration
can provide more automated and optimized attacks for security evaluation.

This thesis aims to advance AI-based implementation attacks by investigating current
AI frameworks, with the objective of improving the efficiency and effectiveness of these
attacks across various scenarios. We target specific challenges within AI-based fault
injection (AIFI) and deep learning-based SCA (DLSCA), addressing gaps in the current
methodologies and proposing solutions that significantly impact their performance and
efficiency. We focus on hyperparameter tuning of the utilized AI methods, portability of
the attacks, and alternative evaluation metrics within the AI frameworks.

Hyperparameter tuning is critical but can be a time-intensive process. By investigating
specific hyperparameters, we can identify those crucial for the performance, guiding a
more efficient tuning process. This thesis focuses on initialization methods, revealing no
universally optimal initialization method. Instead, we offer a strategic approach to se-
lecting initialization methods that can lead to improved and more reliable performance
in specific scenarios. Next, we provide practical AI-based solutions to enhance the porta-
bility of FI parameter search results across different samples of the same target and SCA
profiling models across different public datasets (targets). This approach makes secu-
rity evaluation more efficient by leveraging data and findings to expedite evaluations on
other targets. Furthermore, this enables future efforts to develop universal methods to
help standardize the AI-based implementation attacks for security evaluation. Lastly,
we revisit and refine evaluation metrics within the AI-based implementation attacks,
proposing new metrics better aligned with the considered objectives. We present new
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metrics for evaluating the performance of AI-based FI parameter search to find distant
vulnerable regions of the target alongside algorithms for this objective. On the other
hand, we improve the training process of DLSCA by introducing a training scheme in-
volving the redefinition of the labels and a metric that can evaluate the generality of the
profiling model, enabling better assessment for early stopping and model tuning.

Through its exploration of AI-based implementation attacks, this thesis offers valuable
insights and practical solutions that significantly enhance the field. By improving the
efficiency and effectiveness of AI-based implementation attacks, this research not only
aids security analysts but also offers a foundation for future standardization efforts of
these attacks for security evaluation.



SAMENVATTING

In een tijdperk waarin we toenemend afhankelijk zijn van digitale technologie, wordt het
beveiligen van embedded devices, zoals smartcards en Internet of Things (IoT)-apparaten,
tegen opkomende bedreigingen cruciaal, wat de behoefte aan geavanceerde beveiligings-
maatregelen benadrukt. Cryptografische algoritmen, essentieel voor beveiligde commu-
nicatie, data-opslag en integriteit van transacties, worden vaak gebruikt om beveiligde
systemen te ontwikkelen. Echter, de praktische implementatie van deze algoritmen in
software en hardware introduceert kwetsbaarheden, waardoor gevoelige informatie aan
risico’s wordt blootgesteld. Aanvallen op implementaties, zoals fault injection (FI) en
side-channel analysis (SCA), behoren tot een categorie van beveiligingsbedreigingen die
zulke kwetsbaarheden tijdens de uitvoering van de cryptografische algoritmen exploite-
ren.

De evaluatie en certificering van beveiliging beoordeelt de beveiligingskenmerken van
een product aan de hand van de beste praktijken in de industrie en aan de geldende
wettelijke normen. Zulke certificeringen hebben tot doel de claims over de beveiliging
van het product onafhankelijk te verifiëren, waardoor het vertrouwen onder gebruikers
wordt bevorderd en behouden. Gezien het veranderende landschap van beveiligings-
bedreigingen en toenemende beveiligingszorgen, is er een duidelijke behoefte aan ef-
ficiëntere en kosteneffectievere beveiligingsevaluaties. Fault injection en side-channel
analysis worden vaak uitgevoerd als onderdeel van zulke beoordelingen. Recent heeft
onderzoek aangetoond dat het integreren van kunstmatige intelligentie (AI) in derge-
lijke evaluaties hun prestaties aanzienlijk kan verbeteren. Bovendien kan deze integratie
zorgen voor meer geautomatiseerde en geoptimaliseerde aanvallen voor beveiligings-
evaluatie.

Dit proefschrift heeft als doel AI-gebaseerde implementatie-aanvallen te verbeteren
door huidige AI frameworks te onderzoeken, met als doel de efficiëntie en effectiviteit
van deze aanvallen in verschillende scenario’s te verbeteren. We richten ons op spe-
cifieke uitdagingen binnen AI-gebaseerde FI (AIFI) en deep learning-gebaseerde SCA
(DLSCA), waarbij we hiaten in de huidige methodologieën aanpakken en oplossingen
voorstellen die hun prestaties en efficiëntie aanzienlijk beïnvloeden. We richten ons op
hyperparameter tuning van de gebruikte AI methoden, de draagbaarheid van de aanval-
len en alternatieve evaluatiemetrieken binnen deze AI frameworks.

Hyperparameter tuning is cruciaal, maar kan een tijdrovend proces zijn. Door speci-
fieke hyperparameters te onderzoeken, kunnen we identificeren welke cruciaal zijn voor
de prestaties, wat leidt tot een efficiënter tuningproces. Dit proefschrift richt zich op
initialisatiemethoden, waarbij geen universeel optimale initialisatiemethode wordt ont-
huld. In plaats daarvan bieden we een strategische benadering voor het selecteren van
initialisatiemethoden die kunnen leiden tot verbeterde en meer betrouwbare prestaties
in specifieke scenario’s. Vervolgens bieden we praktische AI-gebaseerde oplossingen om
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de draagbaarheid van FI-parameterzoekresultaten over verschillende monsters van het-
zelfde doel en SCA-profileringsmodellen over verschillende openbare datasets (doelen)
te verbeteren. Deze benadering maakt beveiligingsevaluatie efficiënter door gegevens
en bevindingen te benutten om evaluaties van andere doelen te versnellen. Bovendien
stelt dit toekomstige inspanningen in staat om universele methoden te ontwikkelen die
helpen bij het standaardiseren van AI-gebaseerde implementatie-aanvallen voor bevei-
ligingsevaluatie. Ten slotte herzien en verfijnen we evaluatiemetrieken binnen de AI-
gebaseerde implementatie-aanvallen en stellen we nieuwe metrieken voor die beter zijn
afgestemd op de beschouwde doelstellingen. We presenteren nieuwe metrieken voor het
evalueren van de prestaties van AI-gebaseerde FI-parameterzoekalgoritmen om goed
verstopte kwetsbaarheden van het doelwit te vinden, samen met algoritmen voor dit
doel. Eveneens verbeteren we het trainingsproces van DLSCA door een trainingsschema
te introduceren dat de herdefiniëring van de labels omvat en een metriek die de gene-
raliteit van het profileringsmodel kan evalueren, waardoor een betere beoordeling voor
vroegtijdig stoppen en voor model tuning mogelijk is.

Door de verkenning van AI-gebaseerde implementatie-aanvallen biedt dit proefschrift
waardevolle inzichten en praktische oplossingen die het veld aanzienlijk verbeteren. Door
de efficiëntie en effectiviteit van AI-gebaseerde implementatie-aanvallen te verbeteren,
helpt dit onderzoek niet alleen beveiligingsanalisten, maar biedt het ook een basis voor
toekomstige inspanningen voor standaardisatie van deze aanvallen voor beveiligings-
evaluatie.



1
INTRODUCTION

Technological advancements, from the first computers to the inception of the
Internet, have formed an era characterized by the ubiquitous integration of
technology into our daily lives, from personal computers to the widespread use of
embedded computing devices. Embedded devices, known for their compact size and
low power consumption, are well-suited for systems constrained by size, weight,
or power limitations. Typically, these devices are assigned specific functions and
can either be integrated into a larger computing system or operate independently.
Such devices range from smart cards, biometric devices, and security keys to
smartphones and numerous Internet of Things (IoT) devices, including wearables
like smartwatches and fitness trackers and smart home appliances like vacuum
cleaners or refrigerators. In 2022, the number of global IoT connections grew by
18% from the previous year, reaching 14.3 billion active IoT devices. Projections
suggest that by 2027, there will be approximately 29.7 billion connected IoT devices
worldwide, equating to around four devices per person [1]. Inadequate security
measures in embedded devices can have far-reaching and catastrophic consequences
across various sectors and for different stakeholders, including users, manufacturers,
and society at large. The use of these devices in sectors like healthcare and
autonomous vehicles can potentially result in severe life-threatening consequences.
In the financial industry, security failures can lead to significant monetary losses
through unauthorized access to banking systems or fraudulent transactions. This not
only affects individual customers but can also undermine the stability of financial
institutions and the broader economy. For manufacturers, the consequences of
poor security measures include loss of consumer trust, legal liabilities, and financial
penalties, which can ultimately lead to a decline in market share and profitability.
Moreover, the interconnected nature of modern technology means that a breach in
one device can potentially provide access to broader network infiltration, increasing
the damage. Therefore, ensuring robust security in embedded devices is not just
a technical necessity but a critical component of maintaining trust, safety, and
functionality in an increasingly interconnected world.

Cryptographic algorithms, ensuring secure communication, data storage, and
transaction integrity, play a crucial role in preserving the confidentiality and integrity
of sensitive information. Consequently, they are often employed in designing
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and producing secure devices. Despite being carefully designed within theoretical
frameworks, these algorithms face significant challenges when implemented using
software and hardware for practical deployment. A sophisticated category of security
threats, known as implementation attacks, targets vulnerabilities that emerge during
the cryptographic algorithms’ execution. These attacks thereby compromise the
robustness of systems designed to protect confidential processes and information.

Therefore, manufacturers commonly comply with standards set by governmental
and private certification bodies designed for the devices’ intended purpose and
functionality. During the manufacturing process, these devices undergo an internal
security evaluation. The depth and techniques employed in this evaluation vary,
depending on the manufacturer’s judgment and discretion. In response to growing
concerns about the security of connected devices and their data, manufacturers
increasingly search for assistance from independent experts. Accredited security
laboratories are crucial in assessing a product’s security features to ensure they
align with industry best practices and comply with existing and emerging laws,
regulations, and baseline requirements. These third-party evaluations facilitate
product certification, enhancing user trust. Two key standards in this field
are the Common Criteria for Information Technology Security Evaluation, an
international standard (ISO/IEC 15408) for computer security certification [2], and
the U.S. government computer security standard, Federal Information Processing
Standard (FIPS) 140-3 [3]. FIPS 140-3 outlines specifications for cryptographic
modules, including requirements for protection against Fault Injection (FI) and
guidance for testing against non-invasive attacks, like Side-channel Analysis (SCA).
Given the global increase in reliance on interconnected secure devices and the
evolving threat landscape, the security evaluation process must be both efficient and
reliable, providing confidence in the observed results. This thesis aims to contribute
to this field by enhancing implementation attacks, focused on fault injection and
side-channel analysis, to support security analysts in performing more efficient and
reliable security evaluations.

Artificial Intelligence (AI) has revolutionized various domains, from healthcare and
finance to autonomous vehicles and beyond, demonstrating an impressive capacity to
analyze large amounts of data, recognize patterns, and make informed decisions [4,
5]. The success of AI in these areas stems from its ability to automate and enhance
tasks beyond the scope of manual human effort, leading to improved efficiency,
accuracy, and insights. AI has been shown to provide the same benefits within
cybersecurity, like Denial-of-service (DoS) and Distributed Denial-of-service (DDoS)
intrusion and malware detection [6]. Considering its remarkable achievements, it is
reasonable to broaden the application of AI to implementation attacks. Moreover,
certain AI methods align well with the execution processes of the two considered
implementation attacks, promising notable enhancements. In particular, evolutionary
algorithms and deep learning methods have been explored for fault injection and
side-channel analysis. Evolutionary Algorithms (EAs) are optimization techniques,
and since fault injection includes a parameter search, which can be easily translated
into an optimization problem, these algorithms were a natural choice. They are
particularly effective for this problem because they can efficiently navigate complex,
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multidimensional search spaces to identify optimal or near-optimal parameters for
successful attacks, adapting to the problem’s landscape without requiring precise
mathematical formulations or gradient information. EAs were primarily used for
fault injection to help find more vulnerabilities on devices compared to commonly
used methods like random search through FI parameter search. However, we note
that research on AI-based fault injection is still relatively new and unexplored. At
the same time, investigating deep learning methods for side-channel analysis is
already more extensive in scope. Integration of Deep Learning (DL) was relatively
straightforward as the supervised learning scheme and profiling side-channel analysis
both consist of a two-step approach. The benefits of this integration were significant
considering the attack performance [7]. This thesis further explores AI methods for
implementation attacks, leveraging various AI methods for more efficient execution
of Artificial Intelligence-based Fault Injection (AIFI) and DLSCA, which implicitly
makes security evaluation more efficient.

This introduction chapter first explains the cryptography concepts necessary to
understand some technical chapters later in the thesis. The cryptography section
is followed by explanations of implementation attacks and their existing challenges.
Then, artificial intelligence is introduced to help understand the AI-based frameworks
for the two implementation attacks, which are the main focus of the thesis. Note that
these explanations are high-level, while detailed descriptions are covered within each
chapter as necessary. This chapter ends with a problem statement, contributions,
and a thesis outline.

1.1. CRYPTOGRAPHY

Cryptography is the practice and study of securing communication and protecting
data against adversaries, aiming to ensure information confidentiality, integrity, and
authenticity. Therefore, it is crucial for providing secure online communication,
data storage, and many other applications. As technology evolves, cryptographic
techniques continue to advance to address new challenges and maintain the security
of digital systems. Modern cryptography encompasses a range of techniques,
including digital signatures, authentication, and secure computation [8].

Fundamental concepts and components of cryptography include encryption and
decryption. Encryption converts readable plaintext into ciphertext (encrypted
data), while decryption reverses this process, turning ciphertext back into plaintext.
Modern cryptography is commonly divided into symmetric-key and asymmetric-key
(public-key) cryptography and hash functions. In symmetric-key cryptography, the
same key is used for encryption and decryption, which makes the management and
distribution of this secret key a critical part of these cryptosystems. On the other
hand, asymmetric-key (public-key) cryptography uses a pair of keys - a public key for
encryption and a private key for decryption. The public key can be freely distributed,
but the private key must be kept secret. The encrypted data with a corresponding
public key can be decrypted only using the correct private key. Asymmetric-key
cryptography does not require secure communication to establish the secret keys,
as there is a public-private key pair, and enables message authenticity checking.
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However, these algorithms are slower than their symmetric counterparts. Hash
functions compute a digest of an input, a fixed-length output referred to as a hash
value, without using keys. The hash value represents a unique representation of
the input data, which finds its application for digital signature schemes, message
authentication codes, password hashes, and similar. In practice, these algorithms are
often used together for cryptographic applications because of their specific strengths
and weaknesses in what is referred to as hybrid systems.

1.1.1. ADVANCED ENCRYPTION STANDARD (AES)
In 1997, the U.S. National Institute of Standards and Technology (NIST) initiated a
search for a new Advanced Encryption Standard (AES) to replace the previous Data
Encryption Standard (DES). NIST specifically required submissions to be symmetric
key block ciphers that encrypt data in fixed-size blocks, supporting 128-bit block
sizes and key sizes of 128, 192, and 256 bits. In 2000, NIST selected the Rijndael
algorithm [9] as the AES, meeting all the specified criteria [10]. The AES algorithm
has since been widely adopted in various applications, from wireless security to
processor security and file encryption. Given that this thesis partially relies on
understanding the AES cryptographic algorithm, we describe the AES cipher’s main
characteristics and operational flow. AES is a symmetric block cipher algorithm,
encrypting and decrypting data in blocks of 128 bits arranged in 16 bytes in a
four-by-four matrix, known as the state of the AES algorithm. The AES encryption
process involves several rounds of transformation, with the number of rounds
depending on the key size: 10 rounds for 128-bit keys, 12 for 192-bit keys, and 14
for 256-bit keys. Each round consists of several steps, with the final round slightly
differing from the others.

AES operational flow. The AES algorithm starts with the initial round before the
main rounds begin. The initial round consists only of the AddRoundKey operation,
where the round key is combined with the plaintext block by a simple bitwise
XOR (exclusive or) operation between the plaintext and the key. For each round,
a new round key consisting of 128 bits is derived from the primary key using
a key schedule. AddRoundKey operation introduces the key into the AES state
at the beginning, ensuring that subsequent operations depend on the key. This
intermediate state is further processed in the following main rounds. Each of the
main rounds consists of the following steps:

• SubBytes (Substitution Layer): This step uses a Substitution box (S-box) to
perform a byte-by-byte substitution of the state. Each byte of the state is
replaced with another byte according to the S-box, which is designed to be
non-linear and resistant to known cryptographic attacks. This step obscures
the relationship between the key and ciphertext, constituting the confusion
operation.

• ShiftRows (Permutation Layer): This step shifts the rows of the state cyclically.
The first row is not shifted, while the second row is shifted one byte to the
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left, the third two bytes to the left, and the fourth three bytes to the left. This
step disperses the bytes of the state, contributing to diffusion, which aims to
hide the statistical properties of the plaintext by spreading the influence of one
plaintext symbol over many ciphertext symbols.

• MixColumns: This step is a linear transformation that mixes each column of
the state matrix. Each four-byte column is multiplied by a fixed four-by-four
matrix with constant entries. Since every input byte influences four output
bytes, the MixColumns operation is the major diffusion element.

• AddRoundKey: The round key is added to the state. As with the initial round,
this is done via a bitwise XOR.

The final round, the 10th round considering the AES-128, follows the same steps,
excluding only the MixColumns operation. The decryption process in AES is similar
but uses the inverse operations of each step, ensuring that the original plaintext is
retrievable only with the correct key. More on the AES algorithm can be found in [9,
11].

1.1.2. CRYPTOANALYSIS

Cryptanalysis is the study and practice focused on analyzing and understanding
hidden aspects of information systems. It aims to breach cryptographic security
systems and gain access to the contents of encrypted messages, even if the
cryptographic key is unknown. Essentially, cryptanalysis involves deciphering
information, discovering the secret keys, finding vulnerabilities, and establishing the
robustness of the cryptosystem. The practice dates back to ancient times but has
become increasingly complex with the evolution of more advanced cryptographic
techniques. Central to the field is Kerckhoffs’ principle, which states that a
cryptographic system should be secure even if everything about the system, except
the key, is public knowledge [12]. Cryptanalysis employs various methods to examine
and challenge the security of cryptographic algorithms [8]. Classical approaches like
analytical and brute-force attacks challenge the theoretical resilience of cryptographic
algorithms. However, the real-world deployment of these systems reveals additional
vulnerabilities. For instance, social engineering targets the human element,
manipulating users to bypass security measures. More subtly, implementation attacks
focus on the flaws not in the cryptographic algorithms themselves but in how they
are implemented and executed in hardware and software. These vulnerabilities can
arise from a range of issues, including poor coding practices, inadequate system
configuration, and physical susceptibilities of the hardware. These techniques are
not only for malicious purposes but are crucial in testing and reinforcing the security
of cryptographic methods. By identifying potential vulnerabilities, cryptanalysis helps
ensure that the cryptographic systems are resilient against various attacks, aligning
with Kerckhoffs’ principle and contributing to the overall security and reliability of
communications and data storage.
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1.2. IMPLEMENTATION ATTACKS

Implementation attacks exploit vulnerabilities in the implementation of cryptographic
algorithms rather than theoretical weaknesses. These attacks are particularly
interesting as they target the gap between the theoretical design and the
implementation. Two primary forms of these attacks are fault injection and
side-channel analysis.

1.2.1. FAULT INJECTION (FI)
Fault injection attacks deliberately induce errors in a system’s hardware or software
to cause it to malfunction in ways that compromise security or reveal sensitive
information. For instance, a successful FI attack might cause a system to output
incorrect data, such as encryption and decryption outputs, bypass security checks,
or expose cryptographic keys. This thesis focuses on physical fault injection, where
external sources are used to expose hardware beyond its intended operating limits
to provoke this erroneous behavior.

Physical fault injections can be categorized into non-invasive, semi-invasive, and
invasive types of fault injection. Non-invasive do not require physical modifications
to the target. Techniques like voltage and clock glitching or temperature variations
can induce faults without direct contact. A semi-invasive setup requires the chip
to be exposed to the injection source but does not involve direct contact with the
internal components. Thus, depackaging might be necessary, and there are two main
methods - chemical decapsulation, using acids to dissolve the layers covering the
silicon die, and mechanical decapsulation, which uses mechanical milling devices to
reach the target surface [13]. Invasive attacks involve direct interference with the
chip’s internal components, often requiring depackaging and physical modification
of the hardware.

Semi- and non-invasive fault injection attacks like Laser Fault Injection (LFI),
Electromagnetic Fault Injection (EMFI), and voltage glitching are commonly executed
in two phases. Initially, the attacker defines injection parameters to cause the
device’s erroneous behavior. Therefore, this is a parameter search to find suitable FI
parameters to obtain specific types of faults, known as fault models. Fault models
can range from bit flips, where the bit value is modified to its opposite, and stuck-at
faults to instruction skips. The impact of faults varies depending on their duration,
and they can be categorized as either transient or persistent. LFI offers high precision
and repeatability in inducing errors, assuming highly capable attackers, making it a
common choice for security testing in the industry [14]. Therefore, this work focuses
on LFI, which falls under the optical FI type introduced by Skorobogatov et al. [15].
In the second step of the attack, the attacker performs fault analyses to exploit the
induced behavior. Some of the popular fault analysis methods used for FI attacks are
Differential Fault Analysis (DFA) [16], Fault Sensitivity Analysis (FSA) [17], Statistical
Fault Attack (SFA) [18], Ineffective Fault Attacks (IFA) [19], and Statistical Ineffective
Fault Attacks (SIFA) [20]. These fault analysis methods can use the FI effects
differently [21, 22]. For example, considering attacks on cryptographic algorithms,
using DFA, the attacker can deduce information about secret keys from the pairs
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of correct (non-faulty) and incorrect (faulty) outputs (ciphertexts). In contrast, with
FSA, only faulty outputs are analyzed.

CHALLENGES AND NEW DEVELOPMENTS FOR FI

In fault injection, attackers constantly advance their techniques, bypassing existing
defenses to target emerging technologies. Researchers must proactively design
innovative detection and mitigation strategies to protect against these developments.
Meanwhile, these attacks are also a part of security evaluations, necessitating
preparation for the worst-case scenarios. Thus, research also focuses on the FI
attacks, aiming to understand and simulate the most realistic and challenging
conditions.

Challenges within the FI attacks include creating realistic fault models that
accurately replicate potential threats, which is crucial for understanding and
preparing for possible attacks. Fault injection experiments are particularly
time-consuming and resource-intensive, underscoring the need for developing more
efficient and scalable methods. As the effectiveness of FI varies with environmental
conditions, ensuring robustness across diverse scenarios is imperative. Furthermore,
as systems become more complex, the manual FI process becomes highly impractical,
highlighting the urgency of automating these processes for enhanced efficiency.
Evaluating the security of a system under FI threat is an essential but complex
task, necessitating clear metrics and methodologies to understand and clearly
communicate the security implications of injected faults.

Determining optimal parameters for fault injection is a non-trivial task, given the
large search space and the unique responses different systems may have to the
injected faults. For example, the authors in [23] reported the exhaustive FI parameter
search would take 29 203 years. Security analysts often decrease parameter ranges,
requiring knowledge about the target’s internal design. This limitation can lead
to inadequate testing or missed vulnerabilities. Within security evaluation, specific
parameters can be explored in a grid-like manner, while others are fixed to particular
values, and this can be done for several fixed combinations. The fixed parameters
can be set based on previous experience and knowledge, where information about
the target layout is commonly unavailable to attackers. That, however, can have an
opposite effect if the target or used equipment and setup are different [24]. As an
alternative, random search was commonly applied as it can be less time-consuming.
However, this search is unreliable, and the results obtained might not accurately
represent the system’s vulnerability level. Therefore, there is a need to enhance the
FI parameter search process to identify potential vulnerabilities more effectively and
efficiently, enabling it to find more potential vulnerabilities within the same amount
of time and resources or less.

To address these challenges, researchers increasingly turn to artificial intelligence,
a promising tool for automating the fault injection process, optimizing parameter
selection, and analyzing results more effectively. The problem of selecting suitable
fault injection parameters can be easily translated into an optimization problem, for
which EAs, such as Genetic Algorithms (GAs), have been shown to perform well.
There are several papers where evolutionary techniques are used to optimize fault
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injection attacks. Genetic algorithms were used for voltage glitching [25, 26], as well
as memetic algorithms [27], which were also used for EMFI [23]. This thesis also
relies on these algorithms, so we explain them in Section 1.3.1 and corresponding
chapters that utilize them.

The process of finding FI parameters that lead to possible vulnerabilities has to be
repeated when the target is changed or the bench and the setup used for performing
the injections. Moreover, even when different samples of the same target are used,
the obtained results might be misleading, and the evaluation has to be repeated.
This raises the issue of the portability1. Portability, in this context, refers to the
ability to apply the findings and FI parameters between different setups, targets, or
samples while still obtaining consistent results. It also includes the adaptability of
algorithms to modifications, ensuring they perform well under various changes. For
example, the authors in [24] presented a method for fast characterization of the
laser fault injection settings on the target. The technique can be used for other
semi-invasive fault injection attacks and is transferable to different samples of the
same target, as shown by the experiments. The authors achieved their results using
a curve generator method that used binary search and machine learning methods,
specifically Artificial Neural Networks (ANNs), to predict the target behavior from the
tested injections. This example showcases the benefits of integrating AI in FI attacks
for more robust and adaptable fault injection methodologies for tackling portability,
staying ahead of attackers, and strengthening the security of increasingly complex
systems.

1.2.2. SIDE-CHANNEL ANALYSIS (SCA)
Side-channel analysis represents a form of passive implementation attack that
exploits unintended side-channel information emitted during the execution of
algorithms on targeted devices. This side-channel information, including power
consumption [28], electromagnetic emissions [29], execution time [30], or even
sound [31], can be exploited to uncover sensitive data such as cryptographic
keys. Side-channel analysis aims to decipher the relationship between the observed
side-channel emissions and the underlying instructions and data being processed
by the device. At the same time, the side-channel attacks focus on the strategic
exploitation of this information to compromise the device’s security. SCA is
categorized into non-profiling and profiling (two-stage) SCA, each with distinct
security assumptions and methodologies.

Non-profiling SCA explores the statistical dependency between leaked side-channel
information and secret cryptographic keys. Examples include techniques such
as Simple Power Analysis (SPA) [30], Differential Power Analysis (DPA) [28], and
Correlation Power Analysis (CPA) [32]. These methods rely on observing the system’s
physical outputs over multiple operations and running the attack over all possible
key hypotheses. The attacker uses statistical techniques (e.g., Pearson correlation,
difference-of-means, or mutual information) to identify the most probable key.

On the other hand, a two-stage or profiling SCA assumes a more powerful

1Related research uses the terms portability and transferability interchangeably.
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adversary with access to an open device identical to the target, which allows the
creation of a detailed profiling model. Therefore, the profiling SCA is more common
in security evaluations, which leads us to choose this type of SCA for exploration
within this thesis. These attacks commonly have two phases. The first phase creates
a model using the clone device under control, and in the second phase, the model
is utilized to obtain the secret from the targeted device. One such attack called
Template Attack (TA) [33] creates a statistical model or ‘template’ that describes
the leakage and noise of the open (clone) device under control. The adversary or
security analysts then use this template to analyze the measurements collected from
the target device, which should be an identical (clone) device, and distinguish the
most likely key used on the targeted device.

As SCA techniques have evolved, so too have the countermeasures designed to
protect against them. Commonly, side-channel countermeasures are categorized into
masking or hiding. Masking introduces random values (masks) into the computation,
obscuring the relationship between the computation and the side-channel emissions.
Hiding countermeasures aim to disrupt the correlation by, for example, implementing
a constant-time execution to prevent timing attacks or injecting noise in collected
side channels through random delays in the execution of operations. These
countermeasures are critical in maintaining the security of cryptographic devices
against side-channel attacks, but designing and implementing them can be
challenging. The effectiveness of these countermeasures depends on their ability to
sufficiently break the correlation between side-channel information and processed
data, ensuring that even if the side-channel information is intercepted, it cannot be
used to compromise the system.

While hiding and masking techniques have been crucial in hindering first-order
attacks, their effectiveness has inadvertently led to the emergence of higher-order
attacks. For instance, in a system protected by masking, a second-order DPA can
uncover the secret key by analyzing the correlation between two different masked
operations [34]. The development of higher-order attacks underscores the continuous
arms race in cryptographic security, as it calls for innovation in countermeasures to
protect against emerging attacks.

CHALLENGES AND NEW DEVELOPMENTS FOR SCA

As mentioned, designing and implementing countermeasures against side-channel
attacks remains an open challenge. Many systems vulnerable to these attacks, such
as IoT devices and embedded systems, operate under strict resource constraints.
Consequently, developing effective countermeasures that do not compromise
performance or energy efficiency is a crucial and complex problem. Furthermore,
during the development phase of cryptographic implementations, there is a lack
of insight into potential side-channel leakage, making identifying and addressing
vulnerabilities early a non-trivial challenge. Additionally, attackers continually adapt
their strategies, complicating the prediction and mitigation of evolving side-channel
attack methodologies. This progression requires the consistent development of
adaptive defense mechanisms that can keep up with new exploitation techniques.
Security evaluations must also improve to incorporate more advanced attack
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methods, providing a more accurate measure of a device’s security.

While template attacks, known for their effectiveness from an information
theoretical perspective, require significant feature extraction and numerous traces to
model device leakage accurately, research is increasingly looking towards advanced
methods such as Machine Learning (ML) to enhance side-channel analysis. Initial
explorations utilized traditional machine learning techniques such as Support Vector
Machines (SVM) [35, 36] and Random Forest [37], followed by the application of
Multi-layer Perceptron (MLP) [38, 39]. More on the traditional methods can be found
in [40]. The introduction of deep learning-based profiling SCA marked a significant
development, employing various architectures like MLP, Stacked Autoencoder,
Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) to
analyze side-channel data [7]. Since this work, many publications have considered
different methods and architectures, establishing a well-defined framework for
DLSCA, which we explain in Section 1.4.2. However, this framework requires further
improvement to enable efficient and robust DL-based side-channel attacks during
security evaluation. The use of DL enables automatic feature extraction, but further
investigation is necessary to understand the trade-off between a separate, dedicated
process for feature extraction and an integrated, automatic feature extraction
within DL techniques. Inherent to DL, the DLSCA framework now includes new
time-intensive operations. For example, hyperparameter tuning can significantly
influence the performance of DLSCA but is time-consuming due to the large search
space. Further, the trained models often demonstrate poor generalization even to
the clone devices used for training [41–43]. Thus, improving model portability and
robustness can contribute to more effective DLSCA, leading to more efficient security
evaluations. Further exploration of the training process and utilized metrics could
help reduce training time and computational resources. The difference between DL
metrics and SCA evaluation metrics can be further studied to improve convergence
speed and attack success. Moreover, ML methods were not only applied to finding
the correct key but have found their application in data processing, like denoising,
for both non-profiling [44] and profiling side-channel analysis [45]. More on different
DL methods and their applications within the SCA are discussed in Chapter 5.

The major advantages of DL methods for SCA include the ability to process
traces without specific feature extraction or preprocessing, as these methods
inherently distinguish relevant features and train models from them. This capability
allows for bypassing traditional requirements like trace alignment, which typically
improves the correlation between data and leakage. Additionally, DL methods
have demonstrated proficiency against masking countermeasures by learning from
second-order leakages, suggesting potential effectiveness against even higher-order
leakages [46, 47]. These developments and the broad application of ML methods at
various steps within SCA signify a shift in how side-channel attacks are understood
and addressed. As the field continues to evolve, these new methodologies promise
to enhance the efficiency and robustness of side-channel analysis, offering potential
modifications to the future of standard security evaluations and defense strategies.
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1.3. ARTIFICIAL INTELLIGENCE (AI)

Artificial intelligence is a study within computer science that explores and develops
intelligent machines or software to mimic the problem-solving and decision-making
capabilities of humans and animals [48]. This broad field encompasses various
methods for diverse domains, ranging from expert systems and fuzzy logic to
evolutionary computation and machine learning. Within the scope of this thesis,
we utilized evolutionary algorithms from evolutionary computation and specific
techniques from the machine learning domain. Note that motivation for the used
methods and their detailed descriptions are part of dedicated chapters, while here,
we provide a more generic overview of the field and shared concepts.

1.3.1. EVOLUTIONARY ALGORITHMS (EAS)

Evolutionary algorithms draw inspiration from the mechanisms of natural evolution,
precisely the concept of survival of the fittest [49]. Analogous to the biological
process, EAs maintains a population of potential solutions to the problem at hand,
treating them as individuals subject to an evaluation process utilizing a fitness
function. This function measures the performance of solutions within the population,
guiding the evolution towards increasingly better generations. Inspired by the
fitness-based survival principle, selection mechanisms determine the individuals
contributing to the next generation. During each iteration, selected individuals
undergo genetic operations, such as crossover and mutation, mimicking the genetic
recombination and variation observed in nature. This process ensures a balanced
exploration of the solution space, exploiting promising areas, but also exploring new
possibilities. The adaptability and robustness of EAs make them particularly effective
in optimizing various problems across disciplines, including engineering [50] and
finance [51]. Moreover, they are successful in fine-tuning complex systems, such as
machine learning models [52]. In the field of robotics, these algorithms are used for
robot path planning [53], and automatic creation of autonomous robots [54] where
trajectory planning and robot control are part of the process.

Genetic algorithms are among the most well-known types of EAs. GA
mimics the biological process of selection, reproduction, and mutation and is
particularly effective for solving optimization problems by evolving solutions of the
population [55]. Memetic Algorithms (MAs) extend the GA by incorporating local
search procedures to refine the individual solutions in the population, combining
global and local search capabilities, often leading to improved solution quality [56].
Evolution Strategy (ES) relies only on mutation and selection for the evolution process
and is often used for continuous optimization problems [57]. Beyond these, there
are several other evolutionary techniques, such as Genetic Programming (GP) [58],
Evolutionary Programming (EP) [59], and Differential Evolution (DE) [60]. The
algorithms mentioned are not fully explained here but are detailed in the chapters
where they are used.
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1.3.2. MACHINE LEARNING (ML)

Machine learning is a subfield of AI that enables computers to learn from data
and improve their performance on a specific task over time without being explicitly
programmed. It is generally divided into three main categories: supervised,
unsupervised, and Reinforcement Learning (RL), each designed for different types
of tasks [61]. Supervised learning involves training algorithms on a labeled dataset,
where the input data is paired with the corresponding desired output. The algorithm
aims to learn the mapping from input to output. This type of learning is commonly
used for tasks such as classification and regression. Classification involves assigning
labels to input data (e.g., spam or not spam), while regression predicts a continuous
output (e.g., house prices). Support vector machines, decision trees, linear regression,
and neural networks are algorithms that support supervised learning. Unsupervised
learning works on unlabeled data, discovering hidden patterns or structures within
the data without explicit guidance on the desired output. Typical applications
include clustering, dimensionality reduction, and density estimation. Clustering
groups similar data points together, dimensionality reduction simplifies the dataset
by reducing the number of features, and density estimation models the data
distribution. Examples of unsupervised learning include k-means clustering and
autoencoders. Lastly, reinforcement learning is focused on training agents to make
sequences of decisions in an environment to maximize cumulative rewards. The
agent learns by receiving feedback through rewards or penalties based on its actions.
This type of learning is suitable for tasks that involve decision-making and sequential
actions, such as game-playing, robotics, and autonomous systems. Methods for
RL include Q-learning, deep Q networks, and policy gradient methods [62]. Many
machine learning algorithms can be classified into one or more of these types
depending on their underlying principles and learning mechanisms.

Furthermore, we distinguish between traditional machine learning and deep
learning, though the boundary between them is not always straightforward. Deep
learning is characterized by its ability to construct models that exhibit a more
complex hierarchy of learned functions or concepts than those found in traditional
machine learning approaches [63]. This capability to perform advanced feature
extraction and transformation allows for more effective high-dimensional data
processing. Traditional machine learning models, such as linear regression, logistic
regression, naive Bayes, and decision trees, are designed to learn from data
in a straightforward manner, often requiring manual feature selection and data
pre-processing. ANNs originate from the domain of traditional machine learning,
beginning with the fundamental concept of the Perceptron. This simple model,
representing a single neuron, enabled the development of more complex structures
such as the Multi-layer Perceptron, which consists of multiple interconnected
neurons organized in layers. There is no consensus about how much depth (layers
and neurons) a model requires to be considered a deep learning model. However,
deep learning extends ANNs to Deep Neural Networks (DNNs), which include
different architectures, such as the mentioned MLPs, but also Convolutional Neural
Networks and Recurrent Neural Networks. These architectures enable the automatic
extraction and learning of complex patterns in data. Additionally, deep learning
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models include autoencoders, used for data compression and denoising, and deep
generative models, which can generate new data samples that resemble the training
data.

Machine learning’s ability to analyze patterns, detect anomalies, and make
intelligent decisions significantly enhances various technological fields. Successful
applications include image and speech recognition, natural language processing,
recommendation systems, fraud detection, autonomous vehicles, and more [63].
The field continues to evolve, contributing to the development of increasingly
sophisticated and intelligent systems [64].

1.4. AI-BASED IMPLEMENTATION ATTACKS
This section examines the integration of artificial intelligence methods in
implementation attacks and explains the frameworks for fault injection and
side-channel analysis utilized in this thesis.

1.4.1. AI-BASED FAULT INJECTION (AIFI)
The AIFI framework primarily focuses on employing AI methods to optimize the
search for effective FI parameters, constituting the first phase of the FI attacks.
Despite being a novel area with relatively fewer publications, a common framework
has been discerned across studies. Notable works in this domain [23, 25–27] have
explored a range of algorithms, identifying genetic and memetic algorithms as
particularly effective. Collectively, these studies contribute to defining the typical
structure of the AI-based FI framework, as we describe it here.

In AIFI, AI algorithms are utilized as search algorithms to identify FI parameters
that induce desired fault responses in target devices from a predefined FI parameter
search space. Attackers and security analysts determine the scope of the FI
parameter search based on the capabilities of their FI equipment and the target’s
characteristics. The algorithms applied for the parameter search determine the
specific parameter combinations to be tested. Once the injection is performed
given selected FI parameters, the device’s responses are categorized into several fault
classes based on observed behavior, constituting a major component of the AIFI
parameter search framework. Common classification from the mentioned related
work [23, 25–27] includes the following fault classes:

• MUTE: The device does not respond within a predetermined time frame,
indicating time-out errors.

• RESET: The device resets after the fault injection.

• NORMAL/PASS/OK: The device operates as expected, showing no signs of
successful fault injection.

• SUCCESS/FAIL: The fault injection alters the device’s behavior, indicating a
potential vulnerability.
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The fault class names of the last category, SUCCESS/FAIL, might appear contradictory.
However, in the context of related work, SUCCESS indicates the successful discovery
of a potential vulnerability, while FAIL refers to the device’s altered behavior. The
standardization of these terms is still evolving, and variations exist. For instance,
MUTE and RESET might be combined into a single class if differentiating them does
not significantly impact the fault analysis. While the terminology is not universal,
these classifications provide a recognized framework for distinguishing between
common device responses in related research [23, 25–27]. This categorization
simplifies the range of outcomes into manageable classes. Further analysis is
crucial to understand the extent of the vulnerabilities from the observed responses.
Moreover, depending on the objective of the FI parameter search, this classification
can vary, allowing for more granular categorization, such as classes for different
faulty behaviors.

Each fault class is assigned a fitness value reflecting its desirability and severity
within this framework. The algorithms aim to maximize these fitness values in
related work, searching for fault classes that indicate the most promising outcomes
for successful attacks. Typically, the unexpected behavior (SUCCESS/FAIL fault class)
is considered the desired outcome and is thus assigned the highest fitness value,
followed by MUTE or RESET, and finally, PASS.

Part of the framework includes performing multiple measurements (injections)
with the same FI parameter combination, as the device’s responses might vary. Thus,
related work injects multiple injections consecutively with the same FI parameters.
This leads to the definition of an additional CHANGING fault class, which represents
the variability in device responses to the same FI parameter combination.

Note that the desired outcome is defined based on the fault model and the fault
analysis applied in the attack scenario. During internal security evaluations, the
focus is on identifying potentially exploitable vulnerabilities under a more general
setup rather than executing complete FI attacks. Evaluators aim to understand the
target’s reactions to the injections, conducting a characterization under a specific
FI type. Knowing the target’s possible outcomes and behaviors under injections
enables them to understand what attacks an adversary might perform. An attacker
typically requires only one FI parameter combination with repeatable faulty behavior
to perform the attack. In contrast, evaluators aim to learn about all or most
possible device fault behaviors that could lead to various attacks and vulnerability
exploitation [65].

Lastly, the performance of the algorithms for finding effective FI parameters
within the framework is generally evaluated based on the number of observed
vulnerabilities, specifically the number of observed FI parameter combinations
associated with a particular fault class, such as SUCCESS, leading to faulty behavior.
Reported metrics include the total number of tested parameter combinations and
the number or percentage of combinations associated with specific classes. The
higher the number of observed faulty behavior (vulnerabilities) for a similar number
of tested parameter combinations, the more effective the search algorithm is
considered. Note that the number of tested FI parameter combinations is positively
correlated with the execution time of the search algorithm.
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1.4.2. DEEP LEARNING-BASED SIDE-CHANNEL ATTACKS (DLSCA)

Deep learning methods have already demonstrated significant advantages in
side-channel analysis, as mentioned in Section 1.2.2. Moreover, in February 2024,
the German Federal Office for Information Security (BSI) published an updated
version of the Application Notes and Interpretation of the Scheme (AIS) 46, defining
guidelines for evaluating machine learning-based side-channel attack resistance [66].
Thus, integrating DL into SCA is a well-established and widely recognized practice.
This section outlines the main characteristics of the framework utilized throughout
this thesis.

In DLSCA, the main objective is to train the parameters θ of deep neural networks
using training data D by minimizing a loss function L . Each instance of training
data D consists of a tuple (xi ,yi ), where xi is a one-dimensional vector representing
the i -th side-channel measurement (or trace) in a dataset D. The range of i is from
0 to the size of the dataset |D|. The term yi refers to the label (or class) associated
to xi .

Labeling the dataset requires defining a leakage model and a selection function.
Common leakage models in SCA include Identity (ID), Hamming Weight (HW),
Hamming Distance (HD), and bit-level models [67]. The identity model refers to
the direct value of an intermediate being processed by a cryptographic algorithm,
while HW and HD models refer to the Hamming weight of an intermediate and
the Hamming weight of the XOR between two intermediates, respectively. Bit-level
models typically focus on the most or least significant bit of an intermediate
variable. The intermediate variable is defined according to a key-dependent selection
function, representing an intermediate value from the cryptographic algorithm. For
instance, in AES encryption, the intermediate for the i -th trace xi could be an S-Box
output byte in the first encryption round, i.e., yi = S-Box(d j ⊕k j ), where d j and k j

are the j -th plaintext and key bytes ( j ∈ [0,15] for a 128-bit key), respectively. In
this thesis, we commonly consider AES algorithm. Thus, we explain the rest of the
framework using the notion of key bytes and intermediate byte values. However, we
note that the framework can be utilized for algorithms that process data in different
chunk sizes, not only bytes.

From the training set D, a subset V is selected to validate the trained model,
where both come from the clone device in profiling SCA. The trained model is
subsequently tested on a separate dataset A , known as the attack set, collected
from the targeted device. Since the goal is to extract the secret key (or a single byte
of it) from A , commonly Guessing Entropy (GE) or Success Rate (SR) are used to
evaluate attack performance [68]. The best neural network model is the one that
requires minimal attack complexity, measured in the minimum number of attack
traces necessary to successfully recover the key [69].

Guessing entropy is computed by initially predicting labels for the validation or
attack set and obtaining class probabilities pi ,yi

for each trace i . As labels yi are
derived from a key-dependent selection function, we obtain the log-likelihood lk of
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a particular key byte k j ∈ [0,255]:

lk =
Na−1∑

i=0
log pi ,yi

, (1.1)

where Na denotes the number of traces in the predicted set. This process is repeated
for all possible key byte hypotheses, with each hypothesis generating different labels
yi for each trace. The key rank of the correct key k∗ is determined by sorting all lk

values in descending order (most likely candidates to first positions), obtaining a key
guessing vector g, and locating the position of lk∗ associated with the correct key
byte k∗ within the g. The GE of the correct key, ge∗, is obtained through an empirical
process where the key rank calculation is repeated multiple times with varied
randomly selected subsets from the attack or validation set. The average position of
the correct key k∗ across these experiments (average g ) is guessing entropy. When
ge∗ = 1, the model is considered to have successfully recovered the key with Na

attack traces. The minimum number of traces to retrieve the key is denoted as
Nge∗=1. Although the primary goal of training a deep neural network in the SCA
context is to minimize the number of attack traces required to successfully recover
the key (ge∗ = 1), models are commonly trained using a categorical cross-entropy
loss function. The authors in [70] demonstrate that minimizing the categorical
cross-entropy loss function is aligned with the training goal, supporting this design
choice.

Another common attack performance metric is the success rate, which assumes
first-order SR, while more generally, oth-order SR relates to the probability that the
correct key is among the o most probable key candidates based on the guessing
vector g. Within one experiment, the probability is 1, meaning that the correct key
k∗ is among the first o candidates or 0 when it is not. Similarly to GE calculation, the
process is repeated multiple times in an empirical process, obtaining the probability
of the correct key k∗ being in the first o positions of the g .

Due to their computational demands, GE and SR are not typically calculated
during the training phase of side-channel analysis models. These metrics require an
empirical evaluation process, which, if integrated into training, significantly increases
its duration time. Moreover, these metrics assess the model’s capability to conduct
an effective side-channel attack, which requires the model to generalize to new and
unseen data accurately. Employing GE or SR during training might not accurately
reflect the model’s performance for the attack on unseen data. Additionally, in cases
where training datasets involve traces collected under varying keys, the computation
of GE and SR is more complex and leads to outcomes that may not precisely
represent the model’s true attack efficacy.

1.5. PROBLEM STATEMENT
Security evaluation and certification cannot guarantee security but can ensure that
claims about the security features of the evaluated product are independently verified.
With increasing security concerns, the relevance of these processes in ensuring the
integrity of secure devices becomes increasingly important. Consequently, there
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is a growing need to make security evaluations more efficient, making them less
time-consuming and more resource-efficient without compromising the depth and
reliability of the analysis. Implementation attacks, which are typically part of security
evaluations, present distinct challenges in practice. Thus, research improving these
attacks contributes to more efficient security evaluation. This thesis contributes to
the field by enhancing specific aspects of implementation attacks, which we detail
in this section, which allow for more efficient security evaluation processes.

Given the development of novel security threats, this research focuses on the
application of AI methods in implementation attacks. As discussed in Section 1.4,
AI methods, particularly in AI-based fault injection and deep learning side-channel
analysis, have shown promise in enhancing security evaluation processes. This thesis
extends this topic of research, investigating these AI frameworks to improve further
the efficiency and effectiveness of implementation attacks in various scenarios.

The main research question addressed by this thesis is

How can AI-based implementation attacks, specifically fault injection and
side-channel analysis, be further enhanced for a more efficient security
evaluation of cryptographic systems?

We aim to support security analysts conducting security evaluations by providing
practical solutions and insights to make the evaluation process more efficient. Since
implementation attacks are a part of these evaluations, we focus on enhancing them.
Specifically, our goal is to make the AIFI parameter search more efficient by finding
more vulnerabilities within the same time (tested parameter).
As in related work, DLSCA is considered more efficient when it requires fewer
training or attack traces to achieve a successful attack. However, we also consider
the practical execution of these methods and aim to offer solutions that improve the
process while maintaining successful security analysis using these implementation
attacks. For example, hyperparameter tuning is necessary for AI methods, but it can
be time-consuming. By eliminating the need for tuning or optimizing it, we improve
the execution of AI-based implementations attack and enhance the overall efficiency
of the entire security evaluations. Therefore, several sub-questions are proposed to
examine the main question, each targeting specific challenges within AIFI and DLSCA
processes. These sub-questions aim to address gaps in the current methodology and
propose solutions that significantly impact the efficiency of implementation attacks.

Sub-question 1: Hyperparameter Tuning. AI methods commonly have parameters
of their own to define, referred to as hyperparameters, that can significantly
influence their performance. Hyperparameter tuning, therefore, is an essential aspect
of AI applications for any problem. This process can be costly and complex, so
there is an incentive to improve the tuning process, mitigate it, or provide specific
methodologies to enable efficient tuning in different scenarios. Understanding
the impact of individual hyperparameters on the performance of AI methods can
provide insights that help define the hyperparameter search space and guide the
tuning process. A sub-question that we aim to answer to aid the hyperparameter
tuning process is: What impact do initialization methods have on the performance
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of AI methods in AIFI parameter search and DLSCA, and how can their selection be
optimized?

Sub-question 2: Portability. A notable issue with implementation attacks during
security evaluation is limited portability across different scenarios. For example,
once fault injection characterization is done on a device, the obtained results are
not often transferable to another sample of the same target, even with the same
setup (bench specific to FI type). The portability is even more pronounced when the
target or bench is different. DLSCA faces similar challenges, where models trained
on one target do not generalize effectively across other targets. The difference
between targets can even come from clone devices (profiling and attack devices) and
again gets more pronounced if different targets and trace acquisition processes are
used. Since security evaluations are done on multiple devices, requiring repeated
experiments, this thesis investigates how AI methods can mitigate these portability
issues in both AIFI parameter search and DLSCA to help make security evaluation
more efficient. The related sub-question is: How can AI methods help mitigate
portability challenges in AIFI parameter search and DLSCA, enhancing the efficiency
and applicability of security evaluations?

Sub-question 3: Evaluation Metrics. The success of the AI methods in AIFI
parameter search is often measured using a single metric, which may not
adequately represent different objectives. Similarly, in the current DLSCA framework,
discrepancies exist between training metrics and actual attack evaluation metrics due
to reasons discussed at the end of Section 1.4.2. While it was shown that minimizing
the commonly utilized categorical cross-entropy loss is aligned with reducing the
GE metric, bridging the gap between these metrics could enhance the efficiency
of the whole DLSCA framework. Thus, this thesis explores alternative metrics that
can improve the evaluation of AI methods in both types of implementation attacks.
The sub-question is: What alternative metrics can facilitate a more efficient AIFI
parameter search and DLSCA model training, offering a comprehensive evaluation of
AI methods for implementation attacks?

These aspects represent only part of the considered frameworks, and other
elements could be improved to address the efficiency of attacks and security
evaluations. For example, target alignment and fitness functions for AIFI, or the
trade-off between dedicated or automatic data preprocessing and feature extraction
could be studied to distinguish the most efficient approach for DLSCA. However,
the three aspects of AI-based implementation attacks addressed in this thesis, we
distinguish as the most critical based on the literature discussed in Chapter 5,
because they are the most time-consuming, or resolving them could significantly
enhance overall efficiency. Additionally, industry partners from this collaboration
raised these issues as the most pressing to resolve to enable efficient execution of
AI-based implementation attacks for security evaluation. In conclusion, this thesis
aims to address these key areas, providing efficient solutions to described aspects of
AI-based implementation attacks. While not claiming to revolutionize the process
entirely, the suggested improvements offer significant steps toward a more effective
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and optimized security evaluation.

1.6. CONTRIBUTIONS
This thesis makes several significant contributions to the field of security evaluation
and the application of AI in implementation attacks, focusing on AI-based fault
injection and deep learning side-channel analysis. The key findings and contributions
can be summarized as follows:

• This thesis introduces the application of memetic algorithms to laser fault
injection, demonstrating the superiority of memetic algorithms over traditional
random search in effectively identifying faults. This extension of memetic
algorithms to laser fault injection represents a novel contribution, expanding
their application beyond previous usage in voltage glitching and EMFI and
further showcasing its benefits in the scope of fault injection.

• The thesis investigates the impact of different initialization methods on the
performance of memetic algorithms for AIFI parameter search, offering insights
into optimizing the hyperparameter selection process for more effective fault
detection using these AI algorithms.

• Leveraging machine learning methods, particularly decision trees, the thesis
addresses the portability issue within fault injection parameter search. This
method utilizes prior knowledge to improve parameter search across different
samples of the same target and adapt to minor changes in the laser bench
setup. It significantly outperforms other methods in finding interesting faults,
contributing to a more robust and efficient security evaluation process.

• This thesis proposes new metrics to evaluate the performance of AIFI parameter
search algorithms. These metrics, focused on efforts to identify distant possible
faults within a target, introduce a novel perspective for assessing algorithm
effectiveness in fault injection scenarios.

• The study introduces two methods designed to promote diversity within
solutions for fault injection parameter search. Although the improvements are
modest compared to the transition from random search to memetic algorithms,
the research identifies potential direction for further investigation and suggests
that more advanced methods may result in more significant improvements.

• The thesis provides a detailed overview of recent deep learning applications in
profiling side-channel analysis, summarizing the main directions and results
obtained by the research community. This offers a valuable resource for
understanding the potential and limitations of deep neural networks in this
domain.

• The thesis presents a thorough analysis of how various weight initializers
impact the performance of deep neural networks in DLSCA. By highlighting
the variability in performance based on the choice of weight initializers, this
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work provides crucial guidance for researchers and practitioners to conduct
more informed hyperparameter tuning and deliver optimized deep learning
models for side-channel analysis.

• The thesis introduces the use of autoencoders for dimensionality reduction
to enhance the portability of DLSCA models between different datasets
representing diverse targets and acquisition processes. This approach reduces
hyperparameter tuning efforts and facilitates the portability of trained models
to new datasets using transfer learning. The findings contribute to developing
more adaptable and efficient security evaluations that deal with variations in
target devices and setups.

• This thesis introduces novel metrics and training schemes designed for the
DLSCA training process that aim to improve the attack performance, particularly
in cases with limited profiling traces. These metrics bridge the gap between
standard deep learning metrics and side-channel analysis evaluation metrics,
significantly contributing to more effective security evaluation processes.

Through these contributions, the thesis significantly advances discussed AI-based
implementation attacks. The research addresses specific problems and offers practical
solutions, assisting security practitioners in performing efficient and portable AIFI
parameter search and DLSCA. Valuable insights and methods from the thesis can be
employed to enhance the efficiency and effectiveness of security evaluations, helping
to ensure the integrity and robustness of cryptographic systems.

1.7. THESIS OUTLINE
This thesis is structured into two main sections, each addressing the same
sub-questions within different contexts. The first section consists of multiple
chapters focused on AI-based fault injection, while the second section explores
deep learning side-channel analysis. The first section, including Chapter 2 through
Chapter 4, methodically explores the sub-questions in the AIFI domain. The
second section shifts the focus to DLSCA, starting with Chapter 5, which provides
an overview of the state-of-the-art in DL-based SCA. Subsequent chapters, from
Chapter 6 to Chapter 8, investigate the same sub-questions within the context of
DLSCA. The structure of the thesis and its connection to the research questions
introduced in Section 1.5 are visually represented in Figure 1.1. The thesis concludes
with Chapter 9, offering a detailed discussion and reflection on the entire work.

1.7.1. AI-BASED FAULT INJECTION CHAPTERS

The chapters focusing on AI-based fault injection provide a detailed analysis of
various aspects of AI application in FI:

Chapter 2. This chapter explores the application of artificial intelligence methods
to laser fault injection, a type of FI with challenges similar to voltage glitching
and EMFI. We introduce an innovative memetic algorithm and, for the first time,
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How can AI-based implementation attacks, specifically fault
injection and side-channel analysis, be further enhanced for a
more efficient security evaluation of cryptographic systems?

AI-based Fault
Injection (AIFI)

Deep Learning
Side-channel

Analysis (DLSCA)

Chapter 2

Chapter 3

Chapter 4

Chapter 6

Chapter 7

Chapter 8

What impact do initialization methods have on the
performance of AI methods in AIFI parameter

search and DLSCA, and how can their selection be
optimized?

How can AI methods help mitigate portability
challenges in AIFI parameter search and DLSCA,

enhancing the efficiency and applicability of security
evaluations?

What alternative metrics can facilitate a more
efficient AIFI parameter search and DLSCA model
training, offering a comprehensive evaluation of AI

methods for implementation attacks?

Figure 1.1.: Thesis structure overview. This diagram outlines the two main sections
on implementation attacks, AIFI and DLSCA, highlighting the chapters
that address the research sub-questions in each area. Chapter 5 is
omitted from this overview because it does not directly address any of
the three research sub-questions. However, it provides valuable context
for the subsequent chapters by discussing the state-of-the-art in DLSCA.

employ an evolutionary algorithm for optimizing laser FI parameters. A comparative
analysis is conducted between our proposed algorithm and the traditional random
search approach. Furthermore, it investigates the significance of initialization
methods, which are crucial for generating the initial population in the memetic
algorithm, presenting a detailed experimental analysis across various scenarios. This
research provides insights into the importance and impact of this hyperparameter to
help enable efficient hyperparameter tuning. This chapter has been published as
M. Krček, D. Fronte, and S. Picek. “On the importance of initial solutions selection in
fault injection”. In: 2021 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC). IEEE. 2021, pp. 1–12.

Chapter 3. In this chapter, we utilize AI methods to enable more efficient portability
between different samples of the same target combined with minor modifications
on the bench. We present our innovative method of integrating decision trees
with a memetic algorithm. This combination allows for the efficient use of prior
knowledge in the AIFI parameter search for the portability cases. Our experimental
findings demonstrate that this integrated approach improves performance and offers
insights into the target characterization under fault injections. This chapter has been
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published as M. Krček, T. Ordas, D. Fronte, and S. Picek. “The more you know:
Improving laser fault injection with prior knowledge”. In: 2022 Workshop on Fault
Detection and Tolerance in Cryptography (FDTC). IEEE. 2022, pp. 18–29.

Chapter 4. Addressing the challenge of uncovering diverse vulnerabilities in
AI-based fault injection, this chapter introduces two novel metrics designed better
to evaluate algorithm performance from the perspective of security analysts. The
aim is to identify multiple, distinct vulnerabilities, moving beyond the traditional
focus on single optimal solutions. To achieve this, we propose two evolutionary
methods that promote diversity in the search process. The chapter analyzes these
methods, revealing their benefits and highlighting the need for further research on
advanced diversity methods. This chapter has been published as M. Krček and
T. Ordas. “Diversity Algorithms for Laser Fault Injection”. In: Applied Cryptography
and Network Security Workshops. Ed. by M. Andreoni. Cham: Springer Nature
Switzerland, 2024, pp. 121–138. ISBN: 978-3-031-61486-6.

1.7.2. DEEP LEARNING SIDE-CHANNEL ANALYSIS CHAPTERS

The chapters on DLSCA provide insights into the application of deep learning in
side-channel analysis:

Chapter 5. This chapter provides an overview of the application of deep learning
in profiling side-channel analysis. It includes a detailed discussion of state-of-the-art
techniques and the advantages and challenges of deep learning in this context. The
chapter examines the evaluation metrics and the hyperparameter tuning, offering
guidance in practical application and a forward-looking perspective on using deep
neural networks in SCA. This chapter has been published as M. Krček, H. Li,
S. Paguada, U. Rioja, L. Wu, G. Perin, and Ł. Chmielewski. “Deep learning on
side-channel analysis”. In: Security and Artificial Intelligence: A Crossdisciplinary
Approach. Springer, 2022, pp. 48–71.

Chapter 6. Focusing on the crucial aspect of hyperparameter tuning in DLSCA,
this chapter investigates the impact of weight initializers on the performance of
deep learning models in profiling side-channel analysis. It analyzes how different
initializers affect the model outcomes on various datasets and explores their
connection with other hyperparameters. Our findings highlight the importance of
careful selection of weight initializers in enhancing model performance, offering
practical insights for security analysts conducting DLSCA. This chapter has been
published as H. Li, M. Krček, and G. Perin. “A Comparison of Weight Initializers in
Deep Learning-Based Side-Channel Analysis”. In: Applied Cryptography and Network
Security Workshops. Ed. by J. Zhou, M. Conti, C. M. Ahmed, M. H. Au, L. Batina,
Z. Li, J. Lin, E. Losiouk, B. Luo, S. Majumdar, W. Meng, M. Ochoa, S. Picek,
G. Portokalidis, C. Wang, and K. Zhang. Cham: Springer International Publishing,
2020, pp. 126–143. ISBN: 978-3-030-61638-0.
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Chapter 7. This chapter addresses the challenge of architecture and profiling model
portability in DLSCA across different public datasets, where the hardware, software,
and trace acquisition differ, using autoencoders for dimensionality reduction.
The chapter presents three distinct portability cases detailing the benefits and
applications of our approach. It demonstrates architecture portability, leading to
more efficient evaluations by mitigating the tuning process. Moreover, we present
the portability of fully trained models on different target datasets through transfer
learning, reducing training time. This chapter has been published as M. Krček
and G. Perin. “Autoencoder-enabled model portability for reducing hyperparameter
tuning efforts in side-channel analysis”. In: Journal of Cryptographic Engineering
(2023), pp. 1–23. DOI: 10.1007/s13389-023-00330-4.

Chapter 8. This chapter introduces a novel training technique utilizing distributed
labels to enhance attack performance in scenarios where profiling traces are limited.
Moreover, it proposes a new metric, the Label Correlation (LC), bridging the gap
between the standard deep learning metrics and SCA-specific metrics, namely
guessing entropy and success rate. The chapter demonstrates the benefits of the
proposed metrics and techniques in practical scenarios, offering analysis of the use
cases, such as early stopping and hyperparameter tuning, where the improvement
of the correlation between training/validation metrics and the attack metrics is
most relevant. This work enhances the DLSCA framework by providing a more
appropriate metric that is less computationally expensive than GE and SR, enabling
its application in the validation step. This chapter has been published as L. Wu,
L. Weissbart, M. Krček, H. Li, G. Perin, L. Batina, and S. Picek. “Label Correlation in
Deep Learning-Based Side-Channel Analysis”. In: IEEE Transactions on Information
Forensics and Security 18 (2023), pp. 3849–3861. DOI: 10.1109/TIFS.2023.3287728.

1.7.3. FINAL INSIGHTS

Chapter 9. This final chapter provides a thorough summary of the entire thesis,
discussing key findings and addressing the research questions. It critically examines
the limitations of this work and proposes directions for future work to overcome
them. Reflecting on the broader implications of the findings, the chapter highlights
the potential impact and future directions for research in the field of AI-based
implementation attacks.

1.7.4. APPENDICES

The appendices provide additional supporting materials:

Appendix A. This appendix includes supplementary data for Chapter 2, presenting
orthogonal arrays used in the experiments.

Appendix B. This appendix provides supporting information for Chapter 7, including
hyperparameter search spaces, results from statistical tests, and descriptions of
models obtained with hyperparameter tuning.

https://doi.org/10.1007/s13389-023-00330-4
https://doi.org/10.1109/TIFS.2023.3287728
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Appendix C. This appendix offers supplementary information for Chapter 8,
describing the hyperparameters of the utilized state-of-the-art models.

1.7.5. ABOUT THE THESIS

Except for the last concluding chapter, the following chapters are integral copies of
publications with only minor changes. Consequently, there might be overlaps and
similarities between sections, such as the introduction, background, related work, or
descriptions of targets and datasets used in the experimental analysis. Note also that
the terminology and notation might not be uniform between different chapters as
each chapter is an independent publication.

We note that the list of co-authored published and under-review papers can be
found at the end of the thesis under List of Publications, while only some are
included within the thesis. Only publications that directly contribute to the narrative
and focus of this thesis were included, ensuring a concise and targeted exploration
of the research objectives while avoiding an overly extensive document.

The research presented in this thesis was conducted in partnership with
STMicroelectronics, focusing on practical applications within the industry. The
collaboration with STMicroelectronics has been crucial, particularly in research
on fault injection, where the company provided direct support through access to
the necessary fault injection equipment (laser bench) and targeted devices. This
collaboration has also aligned the selection of publications and the focus of this
thesis with the industry’s challenges and needs. The emphasis has been on delivering
practically viable findings, offering benefits and advancements to the industry
standards and expectations.
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2
ON THE IMPORTANCE OF INITIAL

SOLUTIONS SELECTION IN FAULT

INJECTION

Fault injection attacks require the adversary to select suitable parameters for the
attack. In this work, we consider laser fault injection and parameters like the location
of the laser shot (x, y), delay, pulse width, and intensity of the laser. The parameter
selection process can be translated into an optimization problem. A very popular
and successful method for various optimization problems is the genetic algorithm. To
further improve the performance of a genetic algorithm, it is possible to combine it
with local search to obtain a memetic algorithm.
We conduct several experiments comparing the performance of the memetic algorithm
and the random search algorithm for finding faults. We investigate the influence of
different initialization techniques on the performance of the memetic algorithm. In
our experiments, the memetic algorithm is significantly better at finding faults than
the random search. While evaluating different initialization techniques, we did not
observe significant differences when averaging results. However, when considering
the stability of the results with a memetic algorithm based on different initialization
techniques, we can distinguish preferable techniques, such as LHSMDU and the
Taguchi method.

This chapter has been published as M. Krček, D. Fronte, and S. Picek. “On the importance of
initial solutions selection in fault injection”. In: 2021 Workshop on Fault Detection and Tolerance in
Cryptography (FDTC). IEEE. 2021, pp. 1–12.
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2.1. INTRODUCTION

Many hardware devices are used daily by millions of users, promising secure
transactions. Security analysts evaluate the security of these hardware devices, and as
adversaries, they have numerous possibilities of attacking them. Passive techniques
exist, such as side-channel attacks, where the attacker monitors side-channel
(unintended) information. Examples of the side-channel information are power
consumption [2], electromagnetic radiation [3], and time [4]. On the other hand,
there are also active attacks, specifically fault injection attacks, where the attacker
aims to extract some secret/sensitive information from the target device by exposing
the device to external interference. Doing this can cause the device to deviate from
the typical behavior and correct execution, which the attacker might exploit, as in
differential fault analysis (DFA) [5], fault sensitivity analysis (FSA) [6], and statistical
fault attack (SFA) [7]. Attacks, such as ineffective fault attacks (IFA) [8], and statistical
ineffective fault attacks (SIFA) [9], can exploit information even if induced faults do
not change the output of the execution on the device. The attacks can be divided
into two steps - inducing the faults and analyzing the target device’s behavior and
responses to achieve the attacker’s goal. The focus of this work is on the first part -
inducing the faults using external interferences that can come from different sources,
such as optical (laser pulses) [10], electrical glitches (voltage) [11], electromagnetic
(EM) radiation [12], and temperature changes [13].

The fault injection attacks can be divided by their invasiveness. Invasive attacks
remove layers of the target to reach the silicon layer. In semi-invasive attacks, only
the packaging is removed, and in non-invasive attacks, the target is attacked as it
is, without any modifications. In this work, we consider the optical fault injection
technique introduced in [10], namely Laser Fault Injection (LFI) attacks that are
semi-invasive attacks. Like other fault injection attacks, for LFI to be successful, the
adversary or security analyst must carefully select and tune the attack. In the case
of the LFI attacks, the adversary needs to choose good parameters for successfully
injecting faults, such as the location of the laser shot (x, y), focus, laser spot
size, wavelength, laser trigger delay, laser pulse width, and laser intensity. These
parameters are limited by the physical properties of the target and the equipment
used for performing the attack. For example, x and y are limited by the target device
and motorized stage (the minimum step it can make for each axis). On the other
hand, the laser parameters are limited by the laser source equipment. In this work,
we aim at injecting faults that lead to exploitable faulty outputs for attacks such
as DFA. However, the same parameters can be considered for inducing so-called
ineffective faults used in, e.g., SIFA.

The search space is often too large to perform an exhaustive search in a
reasonable time, considering all the parameters and their possible values for laser
fault injection. The attacker could decrease the ranges for the parameters, but this
requires significant knowledge about the internal design of the target. Unfortunately,
this is not often the case as the attacks are usually performed in a black-box
setting. Consequently, limiting the ranges of the parameters can lead to testing
many inadequate parameter combinations or failing to test parameter combinations
that would be successful. Additionally, the laser effects on the target behavior can
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significantly vary between two physically close positions, representing a problem to
find optimal parameter sets to perform the laser attacks.

There is a clear need for a “smart” technique for parameter selection leading to a
more effective security evaluation, considering the mentioned issues. The problem
of selecting suitable fault injection parameters can be easily translated into an
optimization problem, for which we can apply various techniques. One example
would be evolutionary algorithms (EAs), such as genetic algorithms (GAs). There are
several papers where evolutionary techniques are used to optimize fault injection
attacks. In [14], the authors investigated a new direction based on genetic algorithms
for voltage (VCC) glitching and found it suitable when not much is known about the
device under attack. A continuation of this work is done in [15] where the authors
compared the Monte Carlo search with the genetic algorithm. Picek et al. also
compared the standard GA to the performance of an enhanced GA called a memetic
algorithm (MA) for voltage glitching [16]. The memetic algorithm iterates the
standard process of GA but adds a local search. The memetic algorithm is also used
by Maldini et al. for Electromagnetic Fault Injection (EMFI) [17]. Another interesting
approach using artificial intelligence techniques, namely machine learning, was
introduced in [18]. The authors presented a method for fast characterization of the
laser fault injection settings on the target. However, the technique can be used for
other semi-invasive fault injection attacks and is transferable to different samples of
the same target.

This work applies a genetic algorithm with Hooke-Jeeves as the local search
to select laser fault injection parameters. The algorithm begins with an initial
population of solutions that is evolved through a number of generations to reach
better solutions for the optimization problem. A well-selected initial population of
solutions is crucial because it can cause the algorithm to converge to some local
optima quickly or cover more search space, which could help reach the global
optimum. After comparing the performance of the memetic algorithm to the Monte
Carlo approach for the laser fault injection attacks, we experiment with several
different initialization methods for creating the initial population of solutions for the
memetic algorithm.

Our main contributions are as follows:

1. We use evolutionary algorithms (genetic algorithms) to find parameters leading
to a successful laser fault injection attack. To the best of our knowledge, this is
the first time that evolutionary algorithms are used for LFI. Differing from the
discussion in [18], we do not observe genetic algorithms causing issues due to
their exploratory character (i.e., damaging the target). Additionally, the laser
effect may greatly vary between two very close positions that are of different
nature. Evolutionary algorithms work well with non-differentiable functions,
making them a natural choice for such settings.

2. We propose a memetic algorithm that combines genetic algorithm and
Hooke-Jeeves local search. In our opinion, this improves over related works [16,
17] with memetic algorithms as Hooke-Jeeves is a well understood and efficient
derivative-free optimization algorithm.
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3. We are the first to explore the influence of the initial population on the
performance of the population-based search algorithms for fault injection
attacks.

2.2. BACKGROUND
This section briefly explains the memetic algorithm and different initialization
techniques for the initial population we use in our experiments.

2.2.1. MEMETIC ALGORITHM (MA)
The memetic algorithm (MA) is a population-based hybrid genetic algorithm
enhanced with an added procedure performing local refinements on individuals from
the population [19]. Such algorithms were applied in many different fields, such
as business analytics and data science [20], designing and training artificial neural
networks [21], and robotic motion planning [22]. The memetic algorithms have
shown to be better than traditional GAs for some optimization problem domains [23,
24]. The reason could be the trade-off between the exploration abilities of the
underlying GA and the exploitation abilities of the local search. The improvement
cost is more fitness evaluations and a fast loss of diversity within the population.

Throughout the years, there have been many versions of memetic algorithms
proposed [25]. However, our work considers a simple combination of the traditional
genetic algorithm and Hooke-Jeeves local search. The pseudocode of the memetic
algorithm can be seen in Algorithm 1. The pseudocode is general, and it shows how
the local search is integrated into the genetic algorithm - after recombination of the
genetic algorithm, we perform local refinements on some of the solutions from the
population. To further explain the pseudocode and memetic algorithm, we describe
the genetic algorithm and our chosen local search approach - the Hooke-Jeeves
algorithm.

Algorithm 1 Memetic Algorithm.

1: procedure MEMETICALGORITHM

2: generate population of size N
3: evaluate the population
4: i ter ati on = 0
5: while stop condition not satisfied do
6: new population = best solutions (elite size)
7: select parent solutions for crossover
8: children = crossover(parents)
9: mutation(children)

10: add children to new population
11: evaluate the new population
12: perform the local search
13: i ter ati on = i ter ati on +1
14: return population
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GENETIC ALGORITHM

The genetic algorithm (GA) is the most widely known type of evolutionary algorithm
inspired by the process of natural selection [26, 27]. Genetic algorithms are often
used for optimization problems [28].

Genetic algorithms work on a population of solutions of size N . In the early
application, solutions were represented by bit strings, but representation can be
adjusted for many different problems nowadays. For example, considering the
LFI problem, the solution can be an array of integer and floating-point values
representing the parameter set of LFI, namely the x, y, del ay, pul se wi d th, and
l aser i ntensi t y parameters. A set of such solutions constructs the population
for the genetic algorithm. After the initial population is created, the solutions are
evaluated to retrieve the fitness. Fitness is a value that gives information about how
‘good’ or ‘bad’ the solution is for the problem (the definition of ‘good’ or ‘bad’ are
problem-specific). In simple cases of finding an optimum of well-defined functions,
the evaluation retrieves the function result based on the input, which is one solution
from the population. There, the function result is the fitness value. Evaluation and
fitness values are adjusted based on the problem, as is the representation of the
solutions. For the LFI problem, we explain our definitions in Section 2.3.

After evaluating all the solutions in the population, we perform selection, which
is usually done based on the fitness of the solutions. The idea is to choose better
solutions as parents for reproduction since these solutions should have ‘good’ genes
(solution values) to propagate into the next generation. The reproduction is done
using the crossover and mutation operators by combining the genes of the selected
parents and introducing minor variations. The crossover is applied to the selected
parent solutions resulting in offspring solutions. There are different versions of the
crossover operator, such as uniform crossover or average crossover. However, all
these variations combine the genes from the parent solutions to produce a new
solution (or several solutions). The new offspring solutions undergo mutation where
each gene in the solution is modified with probability pm . These variations help
in the exploration of the search space and prevent fast convergence to a local
optimum. The resulting intermediary population forms the next generation replacing
the previous one entirely. However, complete individuals of the prior generation are
transferred to the new generation without modifications when using elitism. Usually,
a parameter often called the elite size defines how many solutions are transferred
unmodified for the next generation.

Since we use the memetic algorithm, we select solutions that should undergo
the individual improvement procedure after the described GA part. For the local
improvements, we use the Hooke-Jeeves algorithm described in Section 2.2.1. We
perform the local refinement on each of the selected solutions, and the algorithm
starts a new iteration by evaluating the new solutions before parent selection. The
process is repeated until the stop (termination) condition is met. This condition can
consider different information about the progress of the algorithm. However, often
simply the number of iterations, evaluations, or generations is considered. Further,
one can consider the fitness values of the solutions - if we find a satisfying fitness,
we could terminate the algorithm.
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HOOKE-JEEVES ALGORITHM

Hooke-Jeeves is a direct search algorithm used to search for the optimum of a
nonlinear function without requiring derivatives of the function [29]. The algorithm
combines exploratory moves with pattern moves. The step size can be different for
each coordinate direction and change during the search in the exploratory move.
The exploration starts from the initial point by exploring each coordinate direction
by the specified step size. If the fitness does not improve, the opposite direction
is considered. After all the coordinates are investigated, the exploration move is
completed. If the exploration found a better solution, it is followed by the pattern
move. Otherwise, only the step is decreased to try the exploration move again. The
pattern move calculates the direction of the improvement and moves the starting
point in that direction. The pattern move can be calculated as:

xp
k+1 = xk + (xk −xk−1),

where xp
k+1 is the temporary base point for a new exploratory move, xk is the result

of the exploratory move, and xk−1 is the previous base point. The algorithm ends
when the step size cannot be reduced anymore.

2.2.2. INITIALIZATION TECHNIQUES FOR THE INITIAL POPULATION

The genetic algorithm requires an initial set of solutions called the population to
start the process of evolution. In this work, we investigate different initialization
techniques for the initial population of solutions. The initial population, if
well-distributed, could lead to better performance of the genetic algorithm [30–32].
Usually, the initialization is done using Monte Carlo simulation, taking random
values for each gene of the solution [17, 33, 34]. We additionally explore the Latin
Hypercube Sampling (LHS) and a Taguchi method.

Next, we explain Latin squares and Orthogonal arrays necessary to understand the
LHS and Taguchi method, respectively.

Latin Squares A Latin square is an n ×n array where each of the n different
symbols occurs exactly once in each row and each column [35]. Table 2.1 gives an
example of a Latin square with n equal to three.

Table 2.1.: An example of a Latin square with n = 3.

1 2 3
3 1 2
2 3 1

A Latin hypercube is a generalization of a Latin square concept from two
dimensions to an arbitrary number of dimensions.

Orthogonal Arrays Orthogonal arrays generalize the idea of mutually orthogonal
Latin squares and are used in the statistical design of experiments [36],
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cryptography [37], and software testing [38, 39]. An orthogonal array is an array
whose elements come from a fixed finite set of symbols arranged in such a way that
for every selection of t columns of the table, all ordered t-tuples of the symbols,
formed by taking the elements in each row restricted to these columns, appear the
same number of times [40]. An example of an orthogonal array is shown in Table 2.2.

Definition 1 (Orthogonal array [40]). An N ×k array A with entries from S is said to
be an orthogonal array with s levels, strength t and index λ (for some t in the range
0 ≤ t ≤ k) if every N × t subarray of A contains each t-tuple based on S exactly λ times
as a row.

N , k, s, t , and λ are the parameters of the orthogonal array, denoted as
O A(N ,k, s, t )1. We can omit the λ as the other parameters determine it.

Table 2.2.: An example of an orthogonal array of strength two. The four ordered pairs
(2-tuples) formed by the rows of the first and third columns, namely (1,1),
(2,1), (1,2), and (2,2), are all the possible ordered pairs of the two-element
set, and each appears exactly once. The same would hold with other
combinations of two columns.

1 1 1
2 2 1
1 2 2
2 1 2

Following are short descriptions of Latin Hypercube Sampling and Taguchi method
techniques.

LATIN HYPERCUBE SAMPLING

The traditional technique for generating samples of parameter values is Monte Carlo
simulation (MCS) that randomly samples the cumulative distributions to obtain
the samples. The Latin hypercube sampling (LHS) is a technique emphasizing
uniform sampling of the univariate distributions [41–43]. LHS accomplishes this by
stratifying the cumulative distribution function and randomly sampling within the
strata. Uniform sampling increases realization efficiency while randomizing within
the strata prevents introducing a bias and avoids the extreme value effect associated
with regular stratified sampling. It has been demonstrated for many applications
that LHS is a more efficient sampling method compared to MCS [44].

This work also considers the Latin hypercube sampling with multidimensional
uniformity (LHSMDU) [45]. This method increases the multidimensional uniformity
of a sampling matrix by increasing the statistical distance between realizations. The
most closely related modification of Latin hypercube sampling is the maximinLHS
algorithm proposed by Johnson et al. [46]. The LHSMDU uses MCS to generate
many realization inputs and sequentially eliminate realizations near each other in

1This notation is not universally accepted.
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the multidimensional space. The distributed realizations are then post-processed to
enforce univariate uniformity.

TAGUCHI METHODS

Taguchi methods are statistical methods initially developed to improve the quality
of manufactured goods [47], but now these methods are applied in various
areas, such as engineering [48] and marketing [49]. Taguchi method presents an
experimental strategy utilizing a modified and standardized form of experiment
design. Additionally, it provides tools to analyze the results of the experiments to
determine the design solution producing the best quality. Two primary tools used
in the Taguchi method are the orthogonal arrays to design the experiments and the
signal-to-noise ratio to analyze them.

The design of an experiment involves several steps - first, selecting independent
variables (factors) and the number of levels for each variable. Then, the user
selects the orthogonal array and assigns the variables to each of the columns. After
conducting all the experiments, the user analyzes the data to find the best values
for the variables. In our work, since we use the memetic algorithm and the Taguchi
method to reach better distribution of tested parameter values in the initial phase,
we do not conduct the Taguchi recommended analysis using a signal-to-noise ratio.
Therefore, we only focus on using orthogonal arrays to create the initial set of
solutions for the memetic algorithm.

2.3. IMPLEMENTATION
We previously explained the memetic algorithm in a general setting, but here we
describe our implementation of the algorithm in detail. Explanations follow the flow
of the algorithm.

2.3.1. SOLUTION REPRESENTATION AND INITIALIZATION METHODS

As discussed, the memetic algorithm works on a set of solutions (population),
improving it to reach the optimal solution for the given problem. For the LFI problem,
the solutions are arrays representing the LFI parameters - x, y, del ay, pul se wi d th,
and l aser i ntensi t y . Bounds for these parameters are user-defined by setting
values for the minimum and maximum value of the parameter and the allowed step.

In our experiments, we evaluate several initialization techniques for the initial
solutions of the population. First, we use random initialization. That is a Monte
Carlo sampling, where parameter values are taken randomly for each solution, with
each value having the same probability of being selected. We do not allow duplicate
solutions in the population to enable the random initialization to cover more search
space. Additionally, identical solutions do not provide more information, and the
laser shots would be wasteful.

The second initialization is using the Latin Hypercube Sampling. We use the
existing Python package called pyDOE22. There are multiple options on how to

2https://pypi.org/project/pyDOE2/

https://pypi.org/project/pyDOE2/
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sample the points, and we use the default one, which randomizes the points within
the intervals. The number of samples defines the number of intervals. The LHS
method requires the number of factors and the number of samples to be defined,
which, in our case, are the number of LFI parameters (five) and the population
size, respectively. Another similar method is Latin hypercube sampling with
multidimensional uniformity (LHSMDU) from the Python package lhsmdu3. This
technique should improve the sampling for more dimensions than two, compared to
the previously described LHS.

Lastly, we use the Taguchi method by utilizing the Orthogonal Array (OA) package4,
which contains functionality to generate and analyze these types of designs. For
generating the arrays and designs, the package uses the exhaustive enumeration
algorithm from [50] and the optimization algorithm from [51].

2.3.2. EVALUATION AND FITNESS VALUES

After the initialization of the population, the solutions need to be evaluated. This
is done by executing the laser shots with the given parameters. We include a
sorting algorithm since the physical operations needed to adjust the laser bench
for the laser shot are time-consuming, and the most expensive operations are the
motorized stage movements. The motorized stage is used to change the location of
the laser shot (parameters x and y). We sort the x and y coordinates using a greedy
algorithm with the Manhattan distance between the points as a metric. We start at
the lowest x and lowest y coordinate and look for the nearest (x, y) coordinates
based on the Manhattan distance. Greedy algorithms provide a combination of the
best local choices, which does not guarantee the best global solution, or in our case,
the shortest path through all the points. Nevertheless, greedy algorithms are helpful
because they are fast and often give good approximations of the optimum.

The evaluation consists of conducting the laser shot several times for all the
solutions. Each device response is categorized into one fault class - pass, mute,
changing, or fail. If the device does not respond in a given time, the response is
categorized as mute. If the response of the device is expected, it is categorized as
pass, otherwise as a fail. If we get different classes with multiple measurements, the
response is categorized as the changing class.

We need to have a fitness value for each fault class for the memetic algorithm to
distinguish the solutions based on their quality. The fitness of the changing class

is calculated as fP ·NP+ fM ·NM+ fF ·NF
NP+NM+NF

, where fP , fM , fF represent the fitness values for
fault class pass, mute, and fail, respectively, and NP , NM , and NF the number of
the pass, mute, and fail class occurrences in the number of measurements times.
Therefore, the denominator, the sum of NP , NM , and NF is equal to the number
of measurements per parameter set. The fitness values for other fault classes are
shown in Table 2.3. The values are taken from [17] to present the preference of the
fault classes and their relation. Since we are trying to maximize the fitness of the
solutions, we set the fitness value for the fail class the highest followed by the mute

3https://pypi.org/project/lhsmdu/
4https://pypi.org/project/OApackage/

https://pypi.org/project/lhsmdu/
https://pypi.org/project/OApackage/


2

44 2. ON THE IMPORTANCE OF INITIAL SOLUTIONS SELECTION IN FAULT INJECTION

and pass response. Accordingly, the changing class with mute and fail classes results
in a higher fitness value than a combination of mute and pass classes.

Table 2.3.: Fitness values for pass, mute, and fail fault classes.
Fault class Fitness value

PASS 2
MUTE 5
FAIL 10

2.3.3. GA OPERATORS

After the evaluation, the genetic algorithm part starts creating a new population
using the GA operators. For the selection operator, we use a roulette wheel (fitness
proportionate) selection. The fitness function assigns a fitness to possible solutions,
and it is used to associate a probability of selection with each solution. Let fi be the
fitness of an individual i in the population, then its probability of being selected is

pi = fi

ΣN
j=1 f j

, where N is the number of individuals in the population.

For recombination of the gene material from the selected parents, we use an
average crossover. A child solution is created by taking the average value of the
parents’ values for every gene (parameter). Next is the uniform mutation, where a
new random value can replace each gene (parameter) in the solution with probability
pm . We iterate this process until the whole population of size N is again created.
However, we also use elitism, which means that we keep the best solutions in the
next generation of the population without modifications. The elite size parameter
defines the number of those solutions. Therefore, we generate N − el i te si ze new
solutions for the new population. New solutions are evaluated before conducting the
local search.

2.3.4. LOCAL SEARCH

We use the Hooke-Jeeves algorithm for the local search. Only solutions with a fitness
larger than 85% of the maximum fitness value (fitness of the fail class - 10) are
considered. From these solutions, at most, three solutions are randomly selected
for the local search. Considering the conditions, the number of solutions taken for
local search can vary from zero to three. In our first experiments, we performed a
local search on all the solutions with good-enough fitness. This proved to be too
many solutions going through the local search because as the population improved,
more and more solutions satisfied the requirement. Thus, we limited it to only
three randomly selected solutions that fulfill the condition on the fitness values. The
steps of the parameter values are defined with their bounds. We only allow two
iterations for the exploration phase of the Hooke-Jeeves algorithm, meaning we start
with the step doubles, and if no improvements are found, we will only have one
more exploration phase with the decreased step size. Again, in our initial testing, we
allowed more exploration phases, where we started the local search with the larger
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step size. It showed too much exploitation of local space, neglecting the exploration
of the search space. Regarding the nature of implemented local search as described
in Section 2.2.1, the number of evaluations can vary during the execution of the
local search. Therefore, the number of total tested parameter sets can vary with each
execution of the memetic algorithm.

2.3.5. TERMINATION CONDITION

Both the genetic algorithm part and local search part constitute one iteration of
the memetic algorithm. The termination of the algorithm is done according to the
stopping condition. In our experiments, the stopping condition considers only the
number of iterations - when the maximum number of iterations is reached, the
algorithm is terminated. The user sets the maximum number of iterations as it is
the parameter of the memetic algorithm.

2.4. EXPERIMENTAL SETUP AND RESULTS

2.4.1. EXPERIMENTAL SETUP

We performed all the experiments on the same target, a test chip from
STMicroelectronics. Considering the company policies, we may disclose only a
portion of the confidential information about the target device and the utilized laser
bench. The target chip is made using 40nm technology, and for our experiments,
we ran an implementation in C programming language displayed in Pseudocode 2.1.
The code running on the target device is a test program where data words are copied
(loaded) from the non-volatile memory (NVM) into a register. The trigger_event
function is a monitored event that is used to inject faults at the desired time - on
loading a data word into a register (marked as a comment in Pseudocode 2.1). After
the fault injection, the register is read, and there is a fault if the register value has
changed (fault class fail).

Pseudocode 2.1: Pseudocode of the implementation running on the target device.

. . .
t r igger_event ( )
l o a d _ r e g i s t e r ( ) / / i n j e c t i o n here
read_register ( )
. . .

Regarding the laser bench and the parameters, we adopted an infrared laser
wavelength, and for each of the five parameters, we used a subset of the available
values. We defined the subsets according to the previous knowledge of the target
device. The same subsets for all the parameters were applied in all the experiments.
We note there are 31 737 600 possible combinations considering the parameter values
we use. Each test case is repeated five times for a better statistical representation of
the results. We run an online optimization where the results are based on how much
fail classes are found in a specific number of tested parameters instead of finding
only one best parameter set (recall, there is no single best solution since all fail
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solutions are equally good and there can be multiple distinct regions of parameter
values that can lead to fail classes), so repeating the same setting five times gives us
sufficient information. We note that having a small number of experimental runs is
more common for online optimization, e.g., in the case of evolutionary fuzzing [52].
Also, we perform the laser shot for each parameter set five times (number of
measurements).

First, we compare the memetic algorithm with a simple random search of the
LFI parameters. The random search will test a defined number of parameter sets
allowing unique combinations. We test 9 130 different parameter sets and compare
the results with the memetic algorithm with the random initialization technique.
Running each setup five times, we average the number of total parameter sets tested
and the fault classes’ percentages. As already mentioned, as the local search in the
memetic algorithm is not deterministic in the number of evaluations, the number of
tested parameters varies, which is not the case with the random search.

Concerning the memetic algorithm parameters, we use the population size of
36 and the elite size of 2. We use a population size of 36 because we created
a mixed-level orthogonal array with 36 samples having three levels for the x, y ,
and del ay parameters and two levels for the pul se wi d th and i ntensi t y . The
number of iterations (200) and mutation probability (0.05) are the same throughout
all the experiments. Since we have an expensive evaluation of the solutions, we
want to keep the number of iterations low, but we chose to use 200 iterations
since our population size is small. The mutation probability is low because a high
mutation probability can cause the algorithm to behave like a random search. All
these parameters influence the algorithm’s performance, and we do not claim these
values to be optimal. The tuning of these parameters could be further investigated.
However, while testing the setup for the experiments, these parameters led to good
convergence of the memetic algorithm and were kept for comparison with random
search and different initialization methods.

In the experiments with different initialization methods for the initial population
of the memetic algorithm, we test with a smaller population size of 36 with elite size
2, and then a larger population of size 128 and elite size 10.

2.4.2. RESULTS

In Table 2.4, with the memetic algorithm, we find significantly more fail classes than
with the random search having tested 9 034 parameter sets on average (over five
runs). To be more precise, we find ≈ 30 times more fail classes, and ≈ 3 times more
changing classes in a similar number of tested parameters (9 130 for the random
search, and 9 034 for the memetic algorithm). We conclude that we benefit from
using memetic algorithms instead of a simple random search when the exhaustive
search is not feasible. An exhaustive search in our case with reduced parameter
bounds would take ≈ 59 days if we ran each parameter set once and each evaluation
lasted ≈ 0.16s. However, if we do not reduce the parameter bounds, the exhaustive
search could take years. On the other hand, one run of the memetic algorithm in
our case was around two hours, with 9 034 parameter sets tested five times.

To further improve the performance of the memetic algorithm, we test different
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Table 2.4.: Results on average for random search algorithm and memetic algorithm
with random initialization of the population of size 36.

Algo-rithm Tested pa-
rameters

Fails (%) Chang-ing
(%)

Mute (%) Pass (%)

Random 9 130.0 0.90 2.58 2.54 93.98

Memetic 9 034.6 31.03 7.11 3.64 58.22

initialization methods for generating the initial set of solutions. Thus, instead of
generating only random initial solutions, we use techniques that try to distribute the
samples taken from the allowed values over the search space and cover as many
combinations as possible, considering the levels given to each parameter.

We compare four initialization methods, random initialization, LHS, LHSMDU,
and the Taguchi method. For the Taguchi method, we use the orthogonal array
of 36 samples, with strength two, and factor levels 3,3,3,2,2 for the variables
x, y, del ay, pul se wi d th, and i ntensi t y , respectively. The array can be seen in
Table A.1 in Appendix A.1. We use the same population size (36) and elite size (2) as
the first experiment with the memetic algorithm.

With the memetic algorithm, we are trying to maximize the fitness function.
Therefore, we prefer laser injection to result in a corrupt register value which we
categorize as the fail class. Looking at the averaged results from Table 2.5, the
difference between the initialization techniques is not significant. Furthermore,
because of the variance in the number of tested parameters, we see that the
LHSMDU technique has the largest number of tested parameters and the highest
percentage of fail classes. We conclude that all the initialization techniques, on
average, result in similar results. Therefore, if we have time and can use the average
results, we might not need to consider using some of the proposed techniques to
improve the sampling for the initial population compared to the random sampling.

Table 2.5.: Results on average for all initialization techniques in experiments with
population size 36.

Initiali-
zation

Tested pa-
rameters

Fails (%) Chang-ing
(%)

Mute (%) Pass (%)

Random 9 034.6 31.03 7.11 3.64 58.22

LHS 8 812.8 28.80 7.73 4.59 58.88

LHS-MDU 9 605.0 33.92 7.67 3.02 55.40

Taguchi 9 070.2 31.58 6.87 3.33 58.23

However, we also looked into individual results as we are interested in the variation
of the results. In Figure 2.1, we show percentages of different fault classes for settings
with all the initialization techniques. For each initialization technique, we show the
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percentage for each experiment to see the variation and mark the average percentage
with an X . What can be seen is that even though with the random initialization of
the population we can get excellent results, we can also end with the worst results
considering the percentage of fail classes (which we prefer) in Figure 2.1a. Similarly,
using the LHSMDU technique, we had the lowest variation, but the results did not
reach as good results as random initialization and Taguchi in one of the experiments.
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Figure 2.1.: Percentages of fail, changing, mute, and pass classes with all initialization
techniques for a setting with a population size of 36 and elite size of 2.

Looking at the number of tested parameters in Figure 2.2a, we observe that, in
the case with a smaller population, the ranges among the different test cases are
similar. With the LHSMDU, we had a more consistent number of tested parameters,
with only one outlier. By combining the percentages of all the fault classes and the
number of tested parameters, we see that the stability of the results is not coming
directly from the number of tested parameters. Having tested more parameters does
not necessarily lead to finding more interesting parameter sets. For example, in
the test case with the LHSMDU technique, we often tested more parameters than
random initialization. However, the percentage of fail classes is larger with random
initialization than LHSMDU in some cases. Considering the best results on the
number of found fail classes and the stability of the results (consistency), we can
see that LHSMDU is the best choice, followed by the Taguchi method.



2.4. EXPERIMENTAL SETUP AND RESULTS

2

49

Random LHS LHSMDU Taguchi
Cases

7000
7500
8000
8500
9000
9500

10000
10500
11000

Number of total parameter sets
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Figure 2.2.: The number of tested parameter sets in a setting with a smaller
population (population size of 36 and elite size of two) in Figure 2.2a
and a larger population (population size of 128 and elite size of ten) in
Figure 2.2b.

Next, we increase the population size to 128 and elite size to ten and run the
same experiments. We generate an orthogonal array of 128 samples for the Taguchi
method, with strength two and factor level two for all the variables. The array can
be seen in Table A.2 in Appendix A.1.

Table 2.6 gives the averaged results, where we observe that, similarly, the
experiments show, on average, no initialization technique is significantly better.
Again the largest percentage of fail classes was found by the test case with the largest
number of tested parameters. Here, that was the Taguchi method. The percentage of
the fail classes is lower in these experiments with a larger population because only
a limited number of fail classes can occur with our target and test program. We test
more unique parameter sets since we have a larger population but the same number
of iterations. The more parameters we test, the closer we get to the exhaustive
search, which would only show the true distribution of the fault classes. However,
we did not run the exhaustive search because, as already mentioned, it would take
≈ 59 days to run it with our reduced intervals if we ran each parameter set only
once and each laser shot takes ≈ 0.16s.

Looking at the number of tested parameters with the larger population in
Figure 2.2b, with the Taguchi method, the number became more stable, and the
variation is reduced. This is somewhat reflected in the results shown in Figure 2.3
presenting the variance of the percentages of different fault classes. Again, we see
that the test case that tested the most parameters in one of the runs (Taguchi) did
not lead to the highest percentage of fail classes (random initialization).

We can see that the experiments with Taguchi initialization are more stable with
a larger population. Considering the results with the LHSMDU initialization, the
stability is slightly worse than with a smaller population. The LHSMDU divides
the interval for the parameter in the number of samples we want to have, which,
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Table 2.6.: Results on average for all initialization techniques in experiments with
population size 128.

Initiali-
zation

Tested pa-
rameters

Fails (%) Chang-ing
(%)

Mute (%) Pass (%)

Random 23 226.6 22.07 6.55 4.19 67.18

LHS 22 183.0 20.24 6.55 3.42 69.80

LHS-MDU 22 578.8 21.19 6.77 3.32 68.72

Taguchi 24 440.0 22.85 6.99 2.31 67.86

in this case, equals 128. For some smaller intervals, this means many values get
mapped to the same value, which could be why the performance of this technique
has deteriorated with larger population size. On the other hand, the stability of the
random initialization technique is improved with a larger population as we do not
allow duplicate parameter sets.
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Figure 2.3.: Percentages of fail, changing, mute, and pass classes with all initialization
techniques for a setting with a population size of 128 and elite size of 10.
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Considering the LHS method for initialization, LHSMDU and Taguchi would be
preferred over simple LHS for both smaller and larger populations. The weaker
performance of this technique could be the fact that we experiment with five
parameters. We have a five-dimensional search space making it harder for LHS to
reach a better distribution of samples than random sampling.

We conclude that we can benefit from using sampling techniques that produce
well-distributed samples, such as the LHSMDU or Taguchi method, to create the
initial population. However, there could be more techniques that can provide these
characteristics. Additionally, we observe that performance with random initialization
improves with a larger population, so it is more important to have a better sampling
method when working with a smaller population. Moreover, we can see that the
difference between the percentage of found fail classes in the worst and best case
decreases with the size of the population. In the test cases with a smaller population
(Table 2.5), the difference between the worst (LHS) and best case (LHSMDU) is
5.12%, while with the larger population (Table 2.6), the difference between the worst
(LHS) and best case (Taguchi method) is 2.61%.

2.5. CONCLUSIONS AND FUTURE WORK

This work showed that using the memetic algorithm can greatly improve the results
compared to the random search algorithm. While with 9 130 tested parameters,
the random search found 0.9% of the fail classes, a memetic algorithm with 9 034
tested parameters had 31.03% of fail classes. The memetic algorithm used a random
initialization of the population, and since the initial population can have a significant
impact on the results of the algorithm itself, we tested different techniques for
initialization. We experiment with techniques that aim to achieve a well-distributed
set of samples for exploring more of the search space and possible combinations:
the Latin Hypercube Sampling (LHS) and Taguchi methods. There are two
implementations of the LHS. First, the simple one, where we sample from equally
probable intervals of the variable range, and another implementation (LHSMDU),
which sequentially eliminates realizations near each other in the multidimensional
space. On average, in our results, the initialization technique does not significantly
influence the performance of the memetic algorithm. However, when we consider
all the experiments with the same setup, we see that it is beneficial to use other
techniques rather than simple random sampling. With a smaller population size,
LHSMDU has excellent stability, with the random initialization being the least stable
and less reliable. With a larger population size, Taguchi showed the best results, and
it was stable. We recommend using techniques that promote a better distribution of
randomly selected samples for initializing the population for the memetic algorithms
when working with a smaller population. It could make the algorithm more robust
and avoid fast convergence to a local optimum.

This work shows that memetic algorithms can be very beneficial and efficient in
finding faults for laser fault injection attacks. Therefore, it offers excellent potential
for improving these attacks. However, since this work is limited to one target sample,
we do not consider the evaluation of the memetic algorithm complete. Therefore,
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we plan to test the algorithm on different targets to test the approach in a more
general setting. We also plan to distinguish between exploitable faulty outputs found
by memetic algorithms since this work considers only parameter sets that lead to a
faulty output (a change in the register value, in our case) that might be exploitable.
Therefore, this includes performing attacks such as DFA. Our memetic algorithm can
also be tested with different fault injection methods, such as voltage glitching and
EMFI. Further, this work can be improved by considering more population sizes as
it could benefit some of the initialization techniques. For example, decreasing the
population size from 128 could benefit the LHSMDU method. For Taguchi, we can
experiment with a larger number of factor levels to help improve the algorithm’s
performance using this technique. Another interesting research direction could
consider which parameters would benefit more from a good distribution in the
initial set. Here, we considered all the parameters, but there could be a subset of the
parameters that would benefit more than others.
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[15] S. Picek, L. Batina, D. Jakobović, and R. B. Carpi. “Evolving genetic algorithms
for fault injection attacks”. In: 2014 37th International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO). IEEE. 2014, pp. 1106–1111.

[16] S. Picek, L. Batina, P. Buzing, and D. Jakobovic. “Fault Injection with a new
flavor: Memetic Algorithms make a difference”. In: International Workshop
on Constructive Side-Channel Analysis and Secure Design. Springer. 2015,
pp. 159–173.

[17] A. Maldini, N. Samwel, S. Picek, and L. Batina. “Genetic algorithm-based
electromagnetic fault injection”. In: 2018 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC). IEEE. 2018, pp. 35–42.

[18] L. Wu, G. Ribera, N. Beringuier-Boher, and S. Picek. “A fast characterization
method for semi-invasive fault injection attacks”. In: Cryptographers’ Track at
the RSA Conference. Springer. 2020, pp. 146–170. ISBN: 978-3-030-40185-6.

[19] P. Moscato. “On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts - Towards Memetic Algorithms”. In: Caltech Concurrent
Computation Program (Oct. 2000).

[20] P. Moscato and L. Mathieson. “Memetic algorithms for business analytics and
data science: a brief survey”. In: Business and consumer analytics: new ideas
(2019), pp. 545–608. URL: https://doi.org/10.1007/978-3-030-06222-
4_13.

[21] W. Sheng, P. Shan, J. Mao, Y. Zheng, S. Chen, and Z. Wang. “An Adaptive
Memetic Algorithm With Rank-Based Mutation for Artificial Neural Network
Architecture Optimization”. In: IEEE Access PP (Sept. 2017), pp. 1–1. DOI:
10.1109/ACCESS.2017.2752901.

https://doi.org/10.1007/978-3-030-06222-4_13
https://doi.org/10.1007/978-3-030-06222-4_13
https://doi.org/10.1109/ACCESS.2017.2752901


REFERENCES

2

55

[22] P. Rakshit, D. Banerjee, A. Konar, and R. Janarthanan. “An Adaptive Memetic
Algorithm for Multi-robot Path-Planning”. In: Swarm, Evolutionary, and
Memetic Computing. Ed. by B. K. Panigrahi, S. Das, P. N. Suganthan, and
P. K. Nanda. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 248–258.
ISBN: 978-3-642-35380-2.

[23] W. E. Hart. “Adaptive global optimization with local search”. PhD thesis.
Citeseer, 1994.

[24] K. Michalak. “Evolutionary algorithm with a directional local search for
multiobjective optimization in combinatorial problems”. In: Optimization
Methods and Software 31.2 (2016), pp. 392–404.

[25] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan. “A multi-facet survey on memetic
computation”. In: IEEE Transactions on Evolutionary Computation 15.5 (2011),
pp. 591–607.

[26] A. E. Eiben and J. E. Smith. Introduction to evolutionary computing. Vol. 53.
Springer, 2003.

[27] J. H. Holland. Adaptation in Natural and Artificial Systems. second edition,
1992. Ann Arbor, MI: University of Michigan Press, 1975.

[28] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. New York: Addison-Wesley, 1989.

[29] R. Hooke and T. A. Jeeves. ““ Direct Search” Solution of Numerical and
Statistical Problems”. In: J. ACM 8 (1961), pp. 212–229.

[30] H. Maaranen, K. Miettinen, and A. Penttinen. “On initial populations of a
genetic algorithm for continuous optimization problems”. In: Journal of Global
Optimization 37.3 (2007), p. 405.
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3
THE MORE YOU KNOW: IMPROVING

LASER FAULT INJECTION WITH

PRIOR KNOWLEDGE

We consider finding as many faults as possible on the target device in the laser fault
injection security evaluation. Since the search space is large, we require efficient
search methods. Recently, an evolutionary approach using a memetic algorithm was
proposed and shown to find more interesting parameter combinations than random
search, which is commonly used. Unfortunately, once a variation on the bench
or target is introduced, the process must be repeated to find suitable parameter
combinations anew.

To negate the effect of variation, we propose a novel method combining a memetic
algorithm with a machine learning approach called a decision tree. Our approach
improves the memetic algorithm by using prior knowledge of the target introduced
in the initial phase of the memetic algorithm. In our experiments, the decision tree
rules enhance the performance of the memetic algorithm by finding more interesting
faults in different samples of the same target. Our approach shows more than
two orders of magnitude better performance than random search and ≈ 60% better
performance than previous state-of-the-art results with a memetic algorithm. Another
advantage of our approach is human-readable rules, allowing the first insights into
the explainability of target characterization for laser fault injection.

This chapter has been published as M. Krček, T. Ordas, D. Fronte, and S. Picek. “The more you
know: Improving laser fault injection with prior knowledge”. In: 2022 Workshop on Fault Detection
and Tolerance in Cryptography (FDTC). IEEE. 2022, pp. 18–29.
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3.1. INTRODUCTION

A secure device should be designed so that as little as possible secret information can
leak to an attacker. Even if the algorithms (e.g., cryptographic algorithms) running on
the device are mathematically secure, it does not mean the attacks are impossible.
One well-known and powerful category of the attacks is called the implementation
attacks, which aim at the weaknesses of the implementation and not the algorithms
themselves. Two common implementation attacks are side-channel attacks (SCAs)
and fault injection (FI) attacks. Side-channel attacks are passive, and the attacker
tries to obtain some side-channel information from the execution on the hardware,
such as time [2], power consumption [3], and electromagnetic radiation [4]. From
this information, it is possible to obtain secret information. Fault injection attacks
are active attacks where the attacker tries to force the device to make errors during
its execution. This way, the adversary could reach some malicious goal, like passing
the authentication or obtaining secret information from the target device. Both
implementation attacks are prevalent in security evaluations but can be challenging
to deploy in practice.

This work focuses on laser fault injections (LFI), as introduced by Skorobogatov
et al. [5]. Laser fault injections are very powerful as they provide high precision
for injecting faults by producing single-bit faults [6]. However, multiple parameters
define the laser injections, such as location on the device (x and y coordinates),
distance from the device to the microscope lens, lasers settings like intensity, delay,
and pulse width. The attacker’s goal is to find the parameters that lead to successful
fault injection causing the device to skip instructions, change values in memory, etc.
Afterward, the attackers can use various techniques, e.g., differential fault analysis
(DFA) [7] to reach their malicious goals.

As mentioned, there are many parameters to be defined and many possibilities to
consider. Consequently, the search space is large, and finding exploitable faults is
difficult, making this attack challenging to perform. While an exhaustive search is
commonly not reasonable, the location on the target is often searched in a grid-like
manner using the same laser settings. The laser settings are usually based on
previous experience, which might be lacking if the target or the bench is new. This
process is often time-consuming, so a random search is applied as an alternative.
However, both approaches could miss interesting parameter sets that lead to faults.
Additionally, there is a problem with the transferability of the results in fault injection
attacks [8, 9]. Results obtained with one setup are not necessarily easily reproduced
on another, and changing the target can cause changes in the optimal parameters
for the injection. Thus, the attackers need to repeat the same process of finding the
optimal parameters for every change, increasing the difficulty of a successful FI.

There is a need for better, automated approaches to efficiently search the
parameter space for FI. Evolutionary algorithms were proposed for laser fault
injections [10], as well as other types of injections such as voltage glitching [11–13]
and electromagnetic fault injection [14] since laser fault injections are not the only
type of injections suffering from the previously described issues. Methods applied
are either genetic algorithm (GA) or memetic algorithm (MA), which combines a
genetic algorithm with local search. Besides evolutionary approach, hyperparameter
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optimization techniques [15] and reinforcement learning [16] were also investigated.
Additionally, for laser injections, machine learning (ML) was used in the fast
characterization method proposed in [8]. The authors generate a sensitivity curve
and use neural networks (multilayer perceptron) to predict the target’s behavior from
the obtained data of the sensitivity curve. The authors also discuss the transferability
issue and test their method on different samples of the same target.

In this work, we focus on the security evaluation process. We aim to find as
many fault injection settings where the device does not behave as expected. At
the same time, we do not consider exploiting the obtained faults with any specific
attack. We start from the memetic algorithm for the LFI presented in [10] since
it provides state-of-the-art results to the best of our knowledge. Then, we use the
concept of prior knowledge to enhance the algorithm performance further and,
consequently, find more faults. Our approach combines machine learning and a
memetic algorithm where we use decision trees (DTs) to extract knowledge about
the target’s behavior and use it in the initialization phase of the MA.
Our main contributions are:

• We develop an approach to increase the number of desired outcomes in the
initial population (i.e., parameters that lead to faults), which helps the memetic
algorithm find more faults with less tested parameters. The improvement
happens because the algorithm can distinguish between desired and other
outcomes from the first iteration and learn from already found parameter
sets. At the same time, the process is more efficient than running a memetic
algorithm for more iterations as it can easily get stuck in specific regions of
search space. Our results show that we can improve the efficiency of the
search process by ≈ 60%.

• Our approach allows us to tackle the transferability issue. Changing the
setup or the target requires repeating exploration of the search space to find
faults. However, if the same target type is used, and we only change different
samples of the same target while keeping (almost) the same bench setup,
an intuitive assumption is that the resulting parameters should be (mostly)
transferable. Indeed, minor differences in hardware introduced during the
production or preparation of the target for conducting the laser injection
(mechanical thinning of the backside silicon substrate) could be negligible for
the LFI transferability. We test this assumption using our approach on different
samples of the same target and slightly modified bench setups. We observe
that prior knowledge is transferable and helps characterize the target more
efficiently.

• As the decision tree outputs rules, we provide the initial results on the
explainability of fault injection target characterization.

3.2. BACKGROUND

3.2.1. DECISION TREE (DT)
The decision tree is a supervised machine learning technique for classification and
regression problems. More specifically, it is a tree-based technique in which any
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path starting at the root node separates data based on specific criteria in the
internal nodes (also called decision nodes) until the outcome in the leaf node is
reached. An example of a decision tree is given in Figure 3.1, where the mentioned
nodes are distinguished. We consider a classification problem with two features
and three target classes, and this example demonstrates how the conditions can be
expressed for categorical and continuous numeric variables. Decision trees are easier

Root Node 

e.g. x = A?

Internal Node 
e.g. x = B?

Leaf Node 

e.g. Class1

Yes

Internal Node 
e.g. y <= 5.5?

Leaf Node 

e.g. Class2
Leaf Node 

e.g. Class2 

No

No, y > 5.5 Yes No, x = C

Internal Node 

e.g. y <= 8?

Leaf Node 

e.g. Class1
Leaf Node 

e.g. Class3

Yes No, y > 8

Yes

Decision tree example
x: categorical variable with possible
values {A, B, C} 
y: continuous variable 
target: classification with possible
labels {Class1, Class2, Class3}

Figure 3.1.: Decision tree example. A possible structure of a binary decision tree is
shown with different node types - root node, internal node, and leaf
node. There are examples of conditions for both categorical variable x
and continuous numeric variable y. The example has three classes visible
in the leaf nodes.

to understand than, for example, Artificial Neural Networks (ANNs) because of their
tree-like structure that mimics the human decision-making process and the rules
generated from these trees. The rules are often structured as if-then statements.

Decision tree learning is done by finding the best set of conditions based on
the features’ values in the training data to split the datasets into subsets of
instances corresponding to one (dominant) target outcome (class/label). There are
many algorithms proposed on how trees can be constructed. Several surveys [17–
19] discuss different decision tree algorithms, such as Iterative Dichotomies 3
(ID3) [20], successor of ID3 - C4.5 [21], an extension of C4.5 algorithm -
C5.0 algorithm [22], Classification And Regression Tree (CART) [23], CHi-squared
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Automatic Interaction Detector (CHAID) [24], and Quick, Unbiased and Efficient
Statistical Tree (QUEST) [25]. Of the mentioned algorithms, the most popular and
successful are C4.5, C5.0, and CART. However, C5.0 is not publicly available. Between
C4.5 and CART, based on the performance, there is no superior one, so we use CART
as the implementation is easier to integrate. We first describe the general procedure
and mention the differences between various proposed learning algorithms.

The decision tree learning algorithm starts with a collection of samples described
by a specific number of input features. Each instance has a particular outcome
(target): a numeric value for regression or a class/label for classification. Since
we consider a classification problem where we predict fault classes based on the
laser fault injection parameters, we further explain the decision tree learning process
considering a classification problem. We aim to have pure subsets of samples in the
decision tree, where pure means that all the instances in the subset belong to one
specific target class. The learning algorithm selects the conditions by evaluating the
resulting subsets. The idea is to lower the impurity of the subsets with each split
until the subsets become pure. The internal nodes represent the conditions over the
feature values, and each branch from that node is either one possible value of that
feature or a subset of those values. A few examples of different types of conditions
are visible in Figure 3.1. The branches lead to other internal nodes with different
conditions over the input features or leaf nodes. Leaf nodes represent the target
classes or a probability distribution over the target classes. Passing the internal node
conditions and reaching the leaf node, the data sample gets classified as the specific
class indicated by the leaf node. The goal for classification trees is to arrive at
different classes with the least number of splits and the lowest misclassification error
rates. However, there are trade-offs to be considered to avoid overfitting to training
data that causes the model to generalize poorly.

The difference in the many proposed learning algorithms is how they measure
which split is better and which feature and its corresponding value should be used
to separate the dataset in the best way. Another difference is how many branches
can exist from a condition: only two (binary) or multiple partitions. For multiple
partitions, a good example is a categorical variable. If a categorical variable has only
three possible values, the condition could have three branches, each corresponding
to one of the variable’s values. Splitting the dataset is done when the subset at a node
is pure or splitting no longer improves the prediction performance. Additionally, the
learning algorithm can stop if, for example, the tree reaches a defined maximum
depth or a minimal number of samples for the split.

CART LEARNING ALGORITHM

The CART algorithm supports classification and regression problems. Decision trees
created by the CART algorithm are binary trees, meaning that the node branches in
only two subtrees. For numeric feature A, the internal node criteria are defined
as A ≤ h, A > h, where the threshold h is found by sorting the values of feature A
and then choosing the split between successive values that are best depending on
the criterion utilized. The midpoint between two consecutive values is selected in
CART as the threshold. For categorical values, the conditions are all subsets from
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the possible set of categorical values. Different algorithms use different measures to
select the condition in the internal nodes. CART originally proposed a Gini index
for the splitting measure, also known as Gini impurity. The Gini index measures
how often a randomly chosen sample from the set would be incorrectly classified.
If Gini is 0, it expresses the purity of classification, i.e., all elements belong to a
specified class. If Gini is 1, it indicates the random distribution of elements across
various classes, and 0.5 shows an equal distribution of samples for all classes. On
the other hand, Information Gain is calculated by subtracting the weighted entropy
of each child node from the parent node, where entropy is a measure of impurity
or randomness in the data points. Since the process continues until each subset
contains samples of the same class or the splits no longer offer improvement, the
resulting tree can often be very large and complex. Additionally, the generalization
ability of such a tree beyond the training data might be poor. Thus, the CART
includes pruning of the trees. The idea is to remove subtrees that do not contribute
to the classification accuracy of unseen data. The pruning in CART is done from
the bottom of the tree, examining each subtree. If replacing the subtree with a
leaf or its most frequently used branch leads to a lower prediction error rate, the
tree is pruned accordingly. We use the CART algorithm implemented in the Python
package scikit-learn [26]. The scikit-learn implementation of the CART algorithm
uses the total sample weighted impurity of the terminal nodes instead of estimating
the prediction error rate. The impurity of a node depends on the criterion used.
This way, there is no need for a test dataset for estimating the misclassification rate.

3.2.2. MEMETIC ALGORITHM (MA)
A memetic algorithm consists of a population-based search and a local search for
some individuals [27]. The population-based search, in our case, is a genetic
algorithm (GA), where the population is a set of solutions for the optimization
problem. For each specific optimization problem, there is a particular solution
representation. Once the solution representation is defined, the algorithm generates
the initial population using an initialization procedure. Usually, the initialization
procedure is random sampling. Then, the algorithm uses the GA operators. First, the
individuals from the population get selected by a selection operator. The selection
determines which solutions produce offspring. The fitness function samples the
population to allocate the parent solutions. Fitness is a relative measure of how good
solution A is compared to the rest of the current population or a different solution
B . Usually, solutions with better fitness are selected as parents, reasoning that these
solutions have “better genes”. After selecting the parent solutions, the parents’ genes
are recombined in the crossover operator. Created offspring can then be modified
using the mutation operator. The mutation operator introduces new variations in
the solutions and thus the population. Mutation can be done by randomly changing
some of the genes in the solutions or replacing an offspring with a completely
new solution. A commonly used mechanism is elitism, where one or more best
solutions from the current generation are placed directly into the next population.
This mechanism ensures that the optimal solution will not be lost in the following
generations once it is found. Before starting a new iteration, a portion of solutions
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is selected for the local improvements. A good option for the local search is the
Hooke-Jeeves algorithm, an optimization algorithm that does not require derivatives
of the objective function [28]. This algorithm in the context of FI is explained in [10].

3.3. PROPOSED METHOD

Our proposed method combines the explained decision trees and the current
state-of-the-art memetic algorithm. The MA we use is an existing implementation
described in [10]. The representation of the laser fault injection solution is an array
of numbers indicating laser fault injection parameters - x, y, trigger delay, laser pulse
width, and intensity. The user sets the bounds for these parameters that can be
used in the algorithm. The algorithm starts with the initial population, created by an
initialization method. In [10], the authors explored different initialization methods.
As no specific one achieved significantly better results than the usual random
sampling, we keep it as the initialization method for MA to compare with the newly
proposed approach. The difference in the new approach is in the initialization
method. We propose to use decision tree rules for initializing the population. We
perform a campaign with laser fault injections on a specific target to obtain the
data. We can then analyze the acquired data to determine what parameters caused
fail responses vs. the other responses. We utilize the decision tree algorithm to
learn when we obtain each fault class depending on the parameters. That is a
classification problem, as our labels are categorical values pass, mute, fail, and
changing. These are the names of fault classes that correspond to a specific device
response, and more details can be found in Section 3.4.1. The input features are the
five LFI parameters. The trained model can be used to predict the behavior of the
target on parameter combinations that were not tested. Additionally, we can use it
to analyze what parameters are more relevant for achieving fail responses if there
are such. We, however, use the model to improve performance when conducting
another campaign on a different integrated circuit (IC). Specifically, we test the
approach on transferability between different samples of the same target.

Since the decision trees can be easily translated to if-then rules, we can acquire
rules for the fail fault class. We select a trained model and traverse the decision
tree to extract paths where the leaf nodes are fail classes. Since the paths contain
conditions on the different parameters, we get intervals for the parameters that lead
to fail classes based on the model. We denote the combination of the intervals for
parameters from one path in the tree as a rule. After we obtain the rules for the
fail class, we apply them to initialize the memetic algorithm’s population. We use
only a maximum of 25 rules with the highest number of classified fail examples as
our initial exploration gave good results with this number. The limit can be further
investigated for an even better choice. To create one solution for the population,
we first select one rule if there are many. The probability of selecting a rule is
proportional to the number of fail examples classified by the rule. Since the rule
defines the parameters’ intervals, we select the parameter value uniformly at random
from the defined intervals. Each solution can be created from a different rule, and
the whole population is built in the same manner.
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One could argue that this might reduce the exploration ability of the memetic
algorithm. However, since the MA operators (crossover and mutation) are not
modified to use the prior knowledge, the algorithm can still explore outside initial
solutions and exploit the “head start”.

The rest of the memetic algorithm in the proposed methods remains the same as
in [10], except for the crossover operator. Instead of using the average crossover,
we use a uniform crossover. With uniform crossover, values for the child solution
are taken randomly from the two selected parents, and the probability is equal for
both parents’ parameter values. Compared to the average crossover that calculates
the mean for all parents’ parameters and leads to one specific child every time, the
uniform crossover can create more different children with the same parents. That
leads to more possibilities which can lead to better results sooner.

The evaluation includes performing the laser shots and acquiring the devices’
responses. The responses are categorized into fault classes - pass, mute, and fail.
Each parameter set is tested several times, so if multiple fault classes appear with
the same solution, the class for that parameter combination is changing. The MA
does not work directly with these fault classes. We use a fitness value, which is given
to each fault class. The fitness values for the pass, mute, and fail, taken from [14],
are 2, 5, and 10, respectively. The values display the preference of the fault classes,
where the fail class, being the desired one, has the highest fitness value. As in [10],

the fitness of the changing class is calculated as fP ·NP+ fM ·NM+ fF ·NF
NP+NM+NF

, where fP , fM ,
and fF represent the fitness values for fault classes pass, mute, and fail, respectively.
NP , NM , and NF represent the number of times the pass, mute, and fail class
occurred out of the number of measurements for a specific parameter set. The sum
of NP , NM , and NF is the number of measurements per parameter set.

The number of solutions taken for local search can vary, and, based on the
improvements during it, the number of tested parameters can be different in each
iteration. Additionally, MA keeps the tested solutions in a list to avoid repeating
the measurements. Thus, if the algorithm creates the same solution already tested,
we do not execute the laser injection again but return the previous result. That
explains the variations in the number of tested parameters we display in different
tables throughout the paper.

3.4. EXPERIMENTAL SETUP

3.4.1. TARGETS

We use products from STMicroelectronics. Due to confidentiality reasons, we cannot
disclose the details of the targets and the utilized laser bench. Information about the
laser bench might inform possible malicious attackers on what kind of bench they
could use to attack the products. Utilized integrated circuits (ICs) are constructed
with 40nm technology, and all went through a mechanical thinning process before
the experiments as part of the preparation for conducting laser injections. Along with
differences introduced during the hardware production, thinning of the backside
silicon substrate can also affect differences in device sensitivity to laser injections.
However, as mentioned, the assumption is that these differences are negligible. The
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code running on the target device is a test program where data words are loaded
from the non-volatile memory (NVM) into a register. Its implementation is in the C
programming language displayed in Pseudocode 3.1. The trigger_event function is a
monitored event that is used to inject faults at the desired time - on loading a data
word into a register (marked with a comment in Pseudocode 3.1). After the fault
injection, the register is read, and there is a fault if the register value has changed
(fault class fail). If there is no response from the device, we categorize this as a fault
class mute, and if the laser injection does not modify the data, the fault class is pass.

Pseudocode 3.1: Pseudocode of the program running on the target devices.

. . .
t r igger_event ( )
l o a d _ r e g i s t e r ( ) / / i n j e c t i o n here
read_register ( )
. . .

We optimize the following five parameters - x, y, delay, laser pulse width, and
intensity. These parameters are often used in literature and practice during a
security evaluation. We use a subset of the available values for each of the five
parameters, defined according to the known layout. While we cannot share the
parameter intervals as they are specific to the product and laser bench, we note that
there are 305017650 possible combinations of the parameter values. Thus, search
optimization is highly relevant as the exhaustive search with the utilized subset of
possible values would take around 529 days if we consider that one laser shot takes
≈ 0.15 seconds. Additionally, since we perform the laser shot several times with the
same parameters, this would increase the necessary time to perform the exhaustive
search.

3.4.2. EXPERIMENTAL PROCESS

We use three samples of the same target in our experiments, referring to them as
IC1, IC2, and IC3. IC1 is an integrated circuit for obtaining the decision trees’
training and test data. One training dataset is obtained from the memetic algorithm
with random sampling for initialization and another from a random search. The
random search is defined to test 50000 different examples. We train different
decision tree models on the memetic algorithm (MA) and random search (RS) data.
To test the models, we use prediction performance, and to calculate it, we need test
data. Test data is again obtained from the IC1 using a random search with 5920
examples and a search we refer to as the fast grid search (FGS). The FGS uses the
same bounds for x and y as other algorithms, but the laser settings are fixed. The
values of the laser settings are defined based on the most often values for fail class
from the initial experiments on IC1 using a MA with random initialization. We also
defined the number of parameter sets for the random search based on the same
experiments where we tested on average 5917.4 different parameter combinations.
Later, we apply the memetic algorithm with the DT models, trained on data from
IC1, for campaigns on IC2 and IC3. We investigate if we can use the knowledge
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from IC1 on IC2 and IC3 to improve the memetic algorithms’ performance and test
how well the obtained knowledge transfers between different samples. Additionally,
we make changes to the bench setup while changing the ICs. The laser focus is
less sharp for experiments on IC2 but was again improved for experiments on IC3.
Additionally, for the experiments on IC3, we change the bench setup to lose less
power from the laser source to the target. These changes have the most effect on
the laser intensity parameter.

3.4.3. MEMETIC ALGORITHM HYPERPARAMETERS

For the memetic algorithm, we use a maximum number of iterations of 100
as the stopping criterion since our experiments indicate that this is sufficient
to reach convergence. We perform five measurements with the same parameter
combination, which means we conduct five laser shots per parameter combination.
This way, we can obtain different responses categorized as a changing fault class.
We use a population of size 100, with an elite_size of 10. Thus, the ten best
solutions from the population are transferred to another generation without changes.
Lastly, the mutation probability is 0.05. These hyperparameters stay the same
in our experiments and are decided based on the preliminary investigations and
information from previous work [10].

3.4.4. DECISION TREE HYPERPARAMETERS

The scikit-learn implementation of CART has many DT hyperparameters, but we
only used some to obtain models for comparison as many are not independent. The
hyperparameters we chose to test and the specific values used are in Table 3.1. First,

Table 3.1.: Decision tree hyperparameters with values used in our experiments.
All combinations of listed values are tested. For the numerical
hyperparameters, the interval is inclusive, and the step size is mentioned
next to the interval.

Hyperparameter Values
criterion {‘gini’, ‘entropy’}
splitter {‘best’, ‘random’}
min_samples_split [2, 42], step = 4
ccp_alpha [0, 0.020], step = 0.005
class_weight {None, ‘balanced’}
balance data {True, False}

the criterion hyperparameter is the function to measure the quality of the split. The
first option is ‘gini’ for Gini impurity, and the other is ‘entropy’ for Information
Gain. Next is the splitter, a strategy to choose the split at each node. Options are
either the ‘best’ or the ‘random’ split. Then, min_samples_split that indicates the
minimum number of samples required to split an internal node that by default is
2. ccp_alpha is a hyperparameter used for minimal cost-complexity pruning, but
by default, no pruning is performed, and the value is 0. The intervals for the
min_samples_split and ccp_alpha are defined based on the empirical study [29, 30],



3.5. EXPERIMENTAL RESULTS

3

69

where the authors used a package rpart written in R programming language1 [31]
for implementation of the CART algorithm. From their results, most values selected
by the optimization techniques for the pruning hyperparameter were in the range
0 to 0.02. For the minimum number of instances necessary for a split to be
attempted, most of the values were below 40. We note that the authors also
considered the minimum number of samples in a leaf and the maximum depth
of any node in the tree called min_samples_leaf and max_depth in scikit-learn
implementation, respectively. However, we do not experiment with these two
hyperparameters. The min_samples_leaf was mostly below 10, and the number of
models with a certain max_depth value was increasing with a larger max_depth
value. Thus, we keep the default value of 1 for the minimum number of samples
in a leaf and enable the tree to grow until all leaves are pure or contain less
than min_samples_split (default for max_depth). These two hyperparameters can
regulate overfitting, but the min_samples_split and ccp_alpha for pruning do the
same. Additionally, the scikit-learn has a slightly different pruning method, so we
kept the ccp_alpha hyperparameter. Since there is an imbalance in the training
set because there is usually a majority of pass classes compared to all others, we
included the class_weight hyperparameter. The ‘balanced’ mode adjusts weights
inversely proportional to class frequencies in the input data, and by default, with
None, all classes have the weight one. We also included an option to balance the
training dataset, which is not part of the scikit-learn implementation, but we added
it to Table 3.1. The method for balancing the dataset finds the class with the least
number of samples and then randomly samples the exact number of samples for all
other classes (random undersampling). Other hyperparameters from the scikit-learn
implementation that are not mentioned in the table are kept at default values. We
train 880 decision tree models based on the described hyperparameter combinations.
Each model is trained ten times because of the randomness in the algorithm.

3.5. EXPERIMENTAL RESULTS

3.5.1. COMPARISON OF DIFFERENT ICS WITH A FAST GRID AND

RANDOM SEARCH

We execute a fast grid search where the bounds for x and y are the same as in other
experiments, but we use a large step to test the whole area with a grid search rather
fast. Laser settings are fixed based on the memetic algorithm results conducted on
IC1. From the memetic algorithm, we analyzed the results and found the most often
values for the delay, pulse width, and intensity with fail class and used them for
FGS. We conducted the same search with identical parameter combinations on all
three ICs, and the results are provided in Table 3.2. Similarly, we conduct a random
search on all three ICs with the same bounds for all the parameters. We perform
only one random search on each IC, and the results are shown in Table 3.3. From
both experiments with fast grid and random search, we get most fails on IC3. Recall
that we have changed the bench setup slightly between experiments with each target

1https://cran.r-project.org/web/packages/rpart/index.html

https://cran.r-project.org/web/packages/rpart/index.html
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Table 3.2.: Fast grid search with 12350 tested parameters on different ICs.
Fast Grid Search (1 run) IC1 IC2 IC3

Tested combinations 12 350 12 350 12 350
fail 9 (0.07%) 0 (0%) 33 (0.27%)
changing 87 (0.7%) 14 (0.11%) 154 (1.25%)
mute 43 (0.35%) 0 (0%) 126 (1.02%)
pass 12 211 (98.87%) 12 336 (99.89%) 12 037 (97.47%)

sample, as described before. Considering the changes on the bench, the differences

Table 3.3.: Random search with 5920 tested parameters on different ICs.
Random Search (1 run) IC1 IC2 IC3

Tested combinations 5 920 5 920 5 920
fail 7 (0.12%) 3 (0.05%) 19 (0.32%)
changing 74 (1.25%) 27 (0.46%) 66 (1.11%)
mute 43 (0.73%) 12 (0.2%) 99 (1.67%)
pass 5 796 (97.91%) 5 878 (99.29%) 5 736 (96.89%)

between the fault class distributions seem reasonable. With a worse focus on IC2
compared to IC1, we have fewer discovered fails, while with the improved setup on
IC3, we have ≈ 3.7 times more fails with fast grid search and ≈ 2.7 times more fails
with the random search.

3.5.2. TRAINING AND TESTING DATASETS

In our approach with decision trees, we first need a training dataset. The training
dataset, in our case, is the data from IC1. We create two datasets. First, we have
a dataset acquired with a random search. The difference from the random search
shown in Table 3.3 is that we execute the random search to test 50000 unique
five-parameter combinations instead of 5920. The other training dataset comes
from the experiments using the memetic algorithm with random initialization. The
memetic algorithm is executed ten times to obtain ten independent results (runs).
In total, with the memetic algorithm, we obtain 61107 unique five-parameter
combinations. The described training datasets can be seen in Table 3.4, showing the
fault class distributions for both datasets. In both datasets, the number of instances
for the fail fault class is low, but in total, with MA, we have ≈ 3600 fail examples,
and with random search, only 58. Thus, with the random search, the pass class is
dominant as 98.53% of examples belong to the pass class while, with MA, 82.08%
belong to the pass class. This might cause the classifier to ignore the classes with
few instances, as predicting only the dominant class can still give high prediction
accuracy. However, we include the MA data as another training dataset as there are
more examples of fail class. Note that our results confirm observations from [10]
that the memetic algorithm works better than random search.

We must define a way to evaluate the models trained on the datasets. The idea is
to use the prediction performance of the decision tree models to evaluate how well
these models would perform and improve the memetic algorithm when used in the



3.5. EXPERIMENTAL RESULTS

3

71

Table 3.4.: Training data on IC1: memetic algorithm (MA) with random initialization
and random search (RS). The numbers present an average value over ten
runs for MA and one run for RS.

Training data MA with Random Initialization (10 runs) Random Search (1 run)

Tested combinations 6 150.5 50 000
fail 366.5 (6.12%) 58 (0.12%)
changing 548.6 (8.92%) 451 (0.9%)
mute 182.6 (2.89%) 226 (0.45%)
pass 5 052.8 (82.08%) 49 265 (98.53%)

initialization. We need test data different from the training data (unseen examples)
for predictions. In our case, we are interested in how well the model trained on IC1
predicts the fault classes on other ICs. However, since we want to use the proposed
approach on other ICs without acquiring their campaign data, we also use IC1 for
the test dataset. The test datasets are results from the fast grid search (FGS) and
random search (RS) conducted on IC1, presented in Tables 3.2 and 3.3, respectively.
Therefore, this random search is another campaign with the same algorithm (random
sampling) as the training data (Table 3.4) but with fewer tested combinations. We
can see that the distribution of fault classes in the experiments with the random
search for training and test are similar. Thus, we expect the models trained on
random search data to perform well on the random search test data. On the other
hand, since the data from FGS is very different from both training datasets, it might
be more challenging for these models to predict correctly on the FGS test dataset.

3.5.3. TRAINING THE MODELS AND THEIR PREDICTION PERFORMANCE

After we prepare the training and test datasets, we train 880 different decision tree
models by applying different hyperparameters of the decision tree. In Table 3.1,
we report values for all the hyperparameters we tested. Each combination of the
hyperparameters is tested ten times, and then we calculate the average of the metrics
from the predictions on test datasets to assess the performance. Additionally, we
train the DT models separately on random search (RS) data and memetic algorithm
(MA) data. We do not consider fast grid search for training as it only has data for
one combination of laser settings, and in total, there are only 12350 data points for
learning.

As mentioned, the pass class is the dominant class based on the number of
examples per class. For this reason, we investigate different classification metrics
prevalent in machine learning. Usually, accuracy is used, but with imbalanced data
such as ours, one could use recall, precision, or f1_score. In multi-class classification,
the metrics precision, recall, and f1_score are calculated for each class. However, in
our work, we focus on the fail responses, so we only consider the precision, recall,
and f1_score for the fail class, ignoring the rest. Accuracy is the fraction of the total
samples that were correctly classified. Since we want the model to learn when fails
happens, accuracy might not be a good choice because of a low number of samples
for all classes except pass. Precision is the number of samples correctly predicted as



3

72 3. IMPROVING LASER FAULT INJECTION WITH PRIOR KNOWLEDGE

a class for which the metric is calculated from all samples predicted as that class,
including those belonging to some other class. With high precision, the rules from
the DT model might be specific, e.g., defining one combination of parameters that
leads to a fail class. However, considering our application of the rules, where we
switch between different ICs, we can allow some samples to be classified as fail even
if they are not fails. For example, if the same parameter set with a fail fault class
on one IC does not lead to a fail class on another IC, a parameter set with minor
differences may lead to a fail. The recall is the fraction of class samples for which
the metric is calculated that were correctly predicted as that class. Thus, recall tells
how many true fails in the test data were predicted as fails. We would like to get
this metric quite high for our case, but the model may predict everything as a fail
class to accomplish this, which again would not be useful. Thus, there is f1_score,
calculated as a harmonic mean of precision and recall, to find a balance between the
two metrics.

To get an idea about the models’ predictions, we select the best model for each
metric and compare the original distribution of the test data and the predicted
distributions of the classes. In Table 3.5, we show the original distribution of the
random search data set on IC1 in the first column of the table. Similarly, we show
the class distribution based on the DT models’ predictions. As mentioned, we
take the best models based on each metric. Thus, the rest of the columns show
distributions from predictions of the best model based on the accuracy, precision,
recall, and f1_score, respectively. The metrics are highlighted in the header to specify
the metric used to select the best model.

Table 3.5.: Comparing prediction metrics. The first column is the original test
data from IC1 (random search). The following columns correspond to
predictions from models trained on MA data on the given test data from
IC1. The predictions come from the best models based on the highlighted
metric. The numbers represent the distributions of fault classes.

Random Search
test data IC1
True distribution

Accuracy: 0.9796
Precision: 0
Recall: 0
f1_score: 0

Accuracy: 0.9774
Precision: 0.3333
Recall: 0.1429
f1_score: 0.1999

Accuracy: 0.1873
Precision: 0.0018
Recall: 0.8
f1_score: 0.0036

Accuracy: 0.9535
Precision: 0.1765
Recall: 0.4286
f1_score: 0.25

fail 0.12% 0.05% 0.05% 100% 0.29%
changing 1.25% 0.56% 0.19% 0% 2.4%
mute 0.73% 0.25% 0% 0% 1.72%
pass 97.91% 99.14% 99.76% 0% 95.59%

We can see that with accuracy, the model preferred to predict a pass fault class, so
the percentage of predicted fails is lower than in the original dataset. With precision,
even fewer data points are predicted as any other class except for pass. Then, with
the recall of 0.8, the model predicts all classes as fail, which is not the desired
behavior. Lastly, the best model based on f1_score generalizes the best. While other
models in this table predict too little or too many fail classes, this model finds a
balance. We notice this model predicts more fails than there are, but this can be
the desired effect for our analysis. Indeed, if the area for the fail class is small and
specific, the fails on another IC might not be at those exact points. However, they
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can be very close. Thus, if the model correctly allocates intervals for fails class and
makes them slightly larger, it gives us more chances to find fail responses on another
IC with those intervals. Therefore, we choose to use the f1_score metric for selecting
the model to use its rules for initializing the population of the memetic algorithm.

There are two test datasets - fast grid search (FGS) and random search (RS), so
we test on both and average the metric values. We show these average values
in Table 3.6 for the best models based on f1_score trained on memetic algorithm
(MA) data and random search (RS) data, followed by other models used in our
experiments. This table also shows the decision tree hyperparameters that define
the model. Hyperparameters values in table correspond to splitting criterion, splitter,
min_samples_split, class_weight, ccp_alpha, and flag for balanced data, in that order.
The two best models differ in only the min_samples_split. The min_samples_split is a

Table 3.6.: All models used in the experiments with their prediction metrics and
hyperparameters. Metric values are average from results on random
search (RS) and fast grid search (FGS) on IC1. The best models are
selected based on the highlighted f1_score metric. Model parameters are
criterion, splitter, min_samples_split, class_weight, ccp_alpha, and a flag
for balance data, in that order.

Average tested on RS and FGS data accuracy precision recall f1_score Model parameters

Best model from MA data 0.9529 0.1227 0.3254 0.1776 gini, best, 30, balanced, 0.0, False
Best model from RS data 0.9630 0.1476 0.3254 0.1999 gini, best, 10, balanced, 0.0, False

Model from MA data with lower f1_score
1

0.9831 0.1666 0.0714 0.0999 entropy, best, 10, None, 0.01, False

Model from MA data with lower f1_score
2

0.9833 0.1666 0.0556 0.0833 gini, best, 30, None, 0.0 False

Second-best model trained on RS data 0.9534 0.1238 0.3254 0.1756 gini, best, 14, balanced, 0.0, False

parameter that helps prevent overfitting in decision trees. If we allow this parameter
to be very low (minimum is 2), the model can overfit to training data. However, if
we increase the min_samples_split, the chances of overfitting are lower. Since in the
MA training set, we have more examples of the fail class than with RS data, it is
reasonable that the model trained on RS data requires a smaller min_samples_split.
Smaller min_samples_split forces the model to learn when fail classes occur by
finding those specific cases. On the other hand, if we include pruning or increase
the min_samples_split, the model can predict only the pass class and, in most cases,
it will be correct since the majority of examples in training and test data are indeed
pass classes.

3.5.4. EXPERIMENTS ON DIFFERENT ICS

Once we obtained training and test data on IC1 and trained the decision tree
models, we can change to other samples of the same target: IC2 and IC3. First, we
ran experiments on IC2, starting with the already presented random search and then
the memetic algorithm with random initialization. The target’s behavior and the
setup used for the injection can influence the results. When using the same target
and setup and only changing different samples, the assumption is that the results
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should be similar, with minor variations. The variations can come, for example,
from unplanned production differences in hardware, unintended chip alignment on
the setup, and silicon thickness variations. However, these should be negligible. In
our case, we use different samples of the same target, but we also change the focus
of the laser spot on the chip. The focus while running experiments on IC2 was
worse than for experiments on IC1. The focus directly influences the laser parameter
intensity. The results from the random search were already given in Table 3.3 but are
here presented in Table 3.7 with the memetic algorithm with random initialization
to allow easier comparison. We compare the results on IC2 with those on IC1, and,
as seen in Table 3.3, with RS, we found less than half of what we found on IC1 for
all classes except pass. Accordingly, the number of found pass classes increased.
However, with the MA on IC1 (Table 3.4), only for the changing class, we had around
two times more examples than with MA on IC2 (Table 3.7). For other classes, while
still slightly fewer examples were found on IC2, the results are comparable. Thus,
the guided search in MA contributes to the algorithm being more transferable as it
adapts to the behavior of the target and changes in the setup.

Table 3.7.: Experiments on IC2: memetic algorithm (MA) with random initialization
and random search.

MA with Random Initialization (10 runs) Random Search (1 run)

Total combinations 6 389.6 5 920
fail 304.7 (5.03%) 3 (0.05%)
changing 250 (3.88%) 27 (0.46%)
mute 147.9 (2.28%) 12 (0.2%)
pass 5 687 (88.82%) 5 878 (99.29%)

Finally, we run the newly proposed approach as described in Section 3.3. With the
new method, we should have more parameter sets with a fail response in the initial
population and therefore provide the memetic algorithm with a “head start” which
can be exploited to obtain more fails in a similar number of tested parameters.

We first run the experiment with the best model trained on MA data, and then we
test a model with a lower f1_score. Indeed, the question is whether f1_score is a good
metric to consider when selecting the model for our application - initialization of
the memetic algorithm’s population on a different sample of the same target. Thus,
we ran a model with a lower f1_score than the best one, but not the worst because
that is a model with an f1_score of 0. If the f1_score is 0, the model does not perform
well even for the predictions on IC1, which is used for training, so we expect it
to not perform well in our case. Therefore, we selected the first model trained on
MA data with an f1_score lower than 0.1. The selected model has an f1_score of
0.0999, and we use it to test if the lower f1_score leads to fewer fails found by the
memetic algorithm using the model in the initialization. The numbers from these
experiments can be seen in Table 3.8 in the second and third columns. From the
headers, we distinguish models based on their f1_score. We see that both models
trained on MA data improved the performance of the MA algorithm compared to
MA with random initialization. MA with random initialization had 5.03% of fails,
while MA with models has 16.86% and 12.48% for models with f1_score 0.1776 and
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0.0999, respectively. Notice the performance of the MA is worse with the model with
a lower f1_score. However, it is still better than a MA with random initialization.

Then, we also test with the best model trained on the RS data. The results are
visible in Table 3.8. This model has a higher f1_score (0.1999) than the best model
trained on MA data (0.1776), but it found the least fails from all the other models,
even the model with an f1_score of 0.0999. We use data from a random search for
training and calculating the metrics, which might be why a model with a higher
f1_score trained on RS data does not find more fails when used in MA. It could be
that the model created a precise interval for when the fails in RS data occurred, or
it generated random intervals without learning what parameter values lead to fail
responses. Thus, we ran the algorithm with a second-best model trained on RS
data that has f1_score of 0.1756, which is close to the f1_score of the best model
trained on MA data. The algorithm has found the most fail classes between the four
tested decision tree models. We can see that the number of tested parameter sets
(combinations) also increases, which could cause the difference in the found fails
compared to the results with the model trained on MA data with f1_score of 0.1776.
Thus, we conclude that the performance of the models trained on MA and RS data
with a comparable f1_score is similar in the distribution of fault classes when used
in the MA initialization.

Table 3.8.: Experiments on IC2: fault class distribution for the memetic algorithm
(MA) with the random initialization, followed by MA with a decision tree
(DT) rules used in initialization. The models are distinguished by their
f1_score, and the hyperparameters for each are in Table 3.6. The header
also states which data the model is trained on - memetic algorithm (MA)
or random search (RS) data.

Mean
(10 runs)

MA with
Random Initializa-
tion

MA with DT rules
f1: 0.1776
MA data

MA with DT rules
f1: 0.0999
MA data

MA with DT rules
f1: 0.1999
RS data

MA with DT rules
f1: 0.1756
RS data

Tested combina-
tions

6 389.6 5 059.3 5 284.2 5 581.3 5 507.9

fail 304.7
(5.03%)

848.4
(16.86%)

676.5
(12.48%)

633
(11.38%)

1 072.7
(19.39%)

changing 250.0
(3.88%)

234.6
(4.61%)

216.9
(4.11%)

160.2
(2.89%)

198.7
(3.6%)

mute 147.9
(2.28%)

37.3
(0.74%)

81.7
(1.53%)

16
(0.29%)

33
(0.58%)

pass 5 687.0
(88.82%)

3 939
(77.79%)

4 309.1
(81.51%)

4 772.1
(85.44%)

4 203.5
(76.43%)

We also compare the performance of the models based on the number of fail
responses in the initial population and when the first fail is found. This can
help understand how the model improves the initial population and impacts the
algorithm’s overall performance based on this information. The best model trained
on the MA with f1_score 0.1776 finds the most parameter sets with fail response
in the initial population - on average 18.2/100 compared to 6.3/100, 2.7/100, or
4.4/100, for the other three models. Both models trained on MA data had a higher
number of fail classes in the first population than models trained on RS data. That
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Table 3.9.: The first fails with all the DT models tested on IC2.
Population size =
100

MA with Random
Initialization

MA with DT rules
f1: 0.1776
MA data

MA with DT rules
f1: 0.0999
MA data

MA with DT rules
f1: 0.1999
RS data

MA with DT rules
f1: 0.1756
RS data

First fail (0-
indexed)

53, 3 335, 2 578,
377, 1 381, 1 381,
1 847, 3 071, 1 223,
5 681
(avg 2 092.7)

41, 36, 38, 41, 31,
34, 50, 36, 57, 36
(avg 40.0)

43, 46, 25, 39, 66,
58, 8, 23, 46, 82
(avg 43.6)

33, 203, 47, 84,
52, 59, 55, 53, 56,
46
(avg 68.8)

56, 38, 46, 28, 32,
60, 71, 53, 73, 59
(avg 51.6)

Number of fails in
the first popula-
tion

1, 0, 0, 0, 0, 0, 0,
0, 0, 0
(avg 0.1)

14, 34, 23, 18, 15,
17, 16, 15, 14, 16
(avg 18.2)

5, 6, 7, 8, 7, 3, 8,
8, 10, 1
(avg 6.3)

2, 0, 3, 4, 3, 1, 6,
3, 4, 1
(avg 2.7)

6, 4, 5, 4, 6, 6, 3,
5, 3, 2
(avg 4.4)

might be because we have more parameter set examples for the fail response with
MA data, which helps the model learn. The model trained on RS data with f1_score
of 0.1756 on average had only 4.4/100 fail responses in the initial population. Still,
in combination with MA, it found the most fail responses. Thus, we see that the rest
of the algorithm can influence the overall performance of the memetic algorithm as
it affects the exploration. Initially, we might focus on only one area found by the
model, but crossover and mutation can find fails in other regions on another IC.
Additionally, we noticed more tested parameters when the model in the initial phase
found fewer fail responses. MA with DT rules finds the first fail response earlier
in the algorithm compared to MA with the random initialization, and the initial
population has more fail examples in the initial population. Therefore, the models
improve the initial population. However, considering the overall performance, the
algorithm with the most fails in the initial population did not find the most fails.
Still, MA with all tested models improved the performance of the MA with random
initialization by finding at least two times more fail classes.

We further test the models on another sample of the same target, IC3, where the
bench was slightly modified as described in Section 3.4.2. We already discussed the
results of the fast grid and random search compared to other ICs in Section 3.5.1.
With IC3, we found more fails, even when the same points were tested (fast grid
search). From the experiments on IC2, the memetic algorithm benefits from using
DT models in the initialization. Thus, we do not test the memetic with random
initialization on IC3. We test the best model trained on MA data with f1_score of
0.1776 and the second-best model trained on RS data with f1_score of 0.1756 as it
was better than the model with 0.1999 f1_score. We also test another model trained
on MA data with a lower f1_score of 0.0833. The results from the random search
and the mentioned three models are in Table 3.10. The algorithm finds at least
two times more fail responses on IC3 than IC2 with the models, which is in line
with experiments with random search and fast grid search because of the changes
on the bench. Again the second-best model trained on RS data in combination
with MA found more fails compared to the best model trained on MA data with
f1_score of 0.1776. However, in the case of IC3, it is interesting that the model with
a worse f1_score of 0.0833 that was trained on MA data performed better than the
other two models. The difference in the number of tested parameter combinations
in these experiments does not explain that improvement. Thus, we again compare
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Table 3.10.: Experiments on IC3: fault class distribution for a random search,
followed by the memetic algorithm (MA) with decision tree (DT) rules
used in initialization. The models are distinguished by their f1_score,
and the hyperparameters for each are in Table 3.6. The header also
states which data the model is trained on - memetic algorithm (MA) or
random search (RS) data.

Mean
(10 runs)

Random Search (1
run)

MA with DT rules
f1: 0.1776
MA data

MA with DT rules
f1: 0.0833
MA data

MA with DT rules
f1: 0.1756
RS data

Tested combinations 5 920 5 262.7 5 495.1 5 554.5
fail 19

(0.32%)
1 662.8
(31.53%)

2 688.8
(48.85%)

2 325.7
(41.83%)

changing 66
(1.11%)

221.9
(4.23%)

210.1
(3.81%)

153.4
(2.76%)

mute 99
(1.67%)

126
(2.37%)

74.1
(1.35%)

101.5
(1.82%)

pass 5 736
(96.89%)

3 252
(61.86%)

2 522.1
(45.98%)

2 973.9
(53.58%)

the number of fails found in the initial population and discuss possible reasons.
Compared to results on IC2, we see that both with IC2 and IC3, the model with
the f1_score of 0.1776 found the most fails in the initial population, on average 33.5
examples. In both cases, the second model based on the number of fails found in
the initial population is the model with a worse f1_score trained on MA data. For
IC2, this was the model with f1_score of 0.0999 and 0.0833 for IC3. Then, it is the
second-best model trained on RS data with f1_score of 0.1756 with 12.9 fails in the
initial population. Considering the algorithm’s overall performance, again, the model
with the most fail examples in the initial population did not, in the end, find the
most fails. Nonetheless, experiments on IC2 and IC3 show that the MA with rules
improves the performance of random search by obtaining two orders of magnitude
more fails and ≈ 60% more fails than the MA with random initialization.

We again notice that the number of tested parameters increases as the number of
fail examples in the initial population decreases. Thus, we confirm that there is a
need to balance the number of fail examples in the initial population and that the
rest of the memetic algorithm improves the overall performance. This also raises the
question of whether the prediction metric alone is the best metric for selecting a
model for this specific use case. While all the models improve overall performance
and the number of fails in the initial population compared to random search and
MA with the random initialization, we might need to consider some other aspects
of the models to improve the selection of the model. Since we do not use the
models strictly for prediction purposes, possibly, instead of using a prediction metric
f1_score, we need to analyze the models’ size or some information about the rules.
Combining different aspects of the model and its rules in one metric could give
more reliable expectations of the models’ overall performance for our use case. We
leave this as future work.

We use machine learning (decision trees) to provide a good initial population that
will, in turn, help the memetic algorithm to find many fail responses. It stands
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Table 3.11.: The first fails with all the DT models tested on IC3.
Population size = 100 MA with DT rules

f1: 0.1776
MA data

MA with DT rules
f1: 0.0833
MA data

MA with DT rules
f1: 0.1756
RS data

First fail (0-indexed) 0, 1, 1, 0, 0, 1, 0, 1, 1, 1
(avg 0.6)

4, 5, 2, 20, 7, 2, 6, 9, 2, 2
(avg 5.9)

37, 8, 13, 10, 40, 7, 44, 2,
6, 7
(avg 17.4)

Number of fails in the first
population

40, 36, 30, 37, 50, 32, 35,
32, 30, 13
(avg 33.5)

33, 24, 33, 25, 28, 31, 24,
24, 15, 22
(avg 25.9)

9, 17, 14, 7, 21, 10, 8, 18,
12, 13
(avg 12.9)

to ask if it is possible to compare our approach with the deep learning (multilayer
perceptron) approach followed by Wu et al. [8]. We consider those two approaches
orthogonal as Wu et al. found a representative set of responses to predict future
ones for the same sample of the target device. That way, the authors obtained the
complete characterization from a small number of fault injections. This is only an
estimate but still gives a great insight into the device’s behavior. In our case, we use
the model for the prediction on other samples of the same targets for transferability
issues between targets. Additionally, we use machine learning to provide an initial
population to guide the optimization process. Consequently, we use machine
learning in different phases of the target characterization. Still, we believe it could
be possible to use our approach to provide an initial population, which will then be
used as the training set for a deep learning classifier. Doing this could make the
target characterization even more powerful and efficient. We leave this as possible
future work.

3.5.5. OBTAINED RULES FOR INITIALIZATION

In Table 3.12, we show the number of rules produced for the fail class by each of
the utilized models. Additionally, we display the numbers for possible parameter
combinations by a specific rule from the model’s set of rules - minimum, median,
mean, and maximum, and the total number of possible combinations for all the
rules created by the model. It is essential to understand that there could be
possible overlaps between the rules, which would lower the total number of unique
combinations than those reported in the table. Lastly, we show the number of rules
in which not all parameters were used to specify areas that the model predicts as the
fail class. As mentioned, we use a maximum of 25 rules with the highest number
of examples classified as a fail class by each rule for initialization. Thus, in the
table, for the two models with more rules for fail than 25, we also show information
specifically for the used 25 rules (separated by | symbol).

While the table only shows information about numbers considering the rules for
the fail class, the number of rules for classifying all classes for each of the models
is 1646, 14, 1614, 901, and 782, following the order in Table 3.12. We see that the
model with pruning (f1_score of 0.0999) is the smallest, with only 14 rules, compared
to other models without pruning. Additionally, the models trained on MA data
have more rules concerning all classes than those trained on RS data, except for
the mentioned model with pruning. The same is visible for the number of rules,
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Table 3.12.: Information about the rules, specifically for fail class, found by the
models used in our experiments.

Total possible
combinations =
305017650

MA with DT rules
f1: 0.1776
MA data

MA with DT rules
f1: 0.0999
MA data

MA with DT rules
f1: 0.0833
MA data

MA with DT rules
f1: 0.1999
RS data

MA with DT rules
f1: 0.1756
RS data

Number of rules
for fail

359 | 25 1 205 | 25 24 22

Combinations per
rule:
Minimum

12 | 60 93 960 4 | 42 2 400 2 400

Median 360 | 135 93 960 96 | 110 25 875 43 310
Mean 2 093.82 | 491.24 93 960 690.6 | 169.28 26 772.25 41 237.27
Maximum 38 808 | 7 436 93 960 33 320 | 624 65 250 87 500
Combinations
from all rules

751 682 | 12 281 93 960 141 574 | 4 232 642 534 907 220

Rules not defining
all parameters

105/359 (29%) |
11/25 (44%)

1/1 (100%) 71/205 (34%) |
11/25 (44%)

18/24 (75%) 13/22 (59%)

specifically for the fail class. Thus, the models trained on MA without pruning are
more complex and larger than those trained on RS data. Additionally, the percentage
of rules for the fail class is larger for models trained on MA data than RS data, which
might be because there are more examples for the fail class in the MA training set.

The rule from the model with f1_score of 0.0999 (with pruning) considers a path
in the decision tree where the conditions for the parameter x were

{x > x1, x > x2, x ≤ x3, and x ≤ x4},
wher e {x1 < x2, and x3 > x4}.

We then obtain the bounds x ∈ 〈x2, x4] from this path. For y parameter, the path
only had requirements {y > y1, y ≤ y2}. Thus, the bounds are set to y ∈ 〈y1, y2]. For
pul se wi d th, in the path, there was only a condition stating pw > pw1, so the
rule bounds include the user-defined upper bound for the pul se wi d th and the
mentioned pw1 as the lower bound. The del ay and i ntensi t y are not in the
path, and the user-defined bounds are used in the initialization. With this rule,
there are 93960 unique possible combinations for the initial population compared to
user-defined bounds that provide 305017650 combinations. If the exhaustive search
is done for only the rule bounds, it will last around 4 hours, compared to 529 days
for the exhaustive search with user-defined bounds considering the laser shot lasts
for ≈ 0.15 seconds.

While other models have more rules, each specific rule covers less search space.
For example, a model trained on MA data has rules with as little as 4 possible
combinations to a maximum of 33320 unique combinations. Considering only the
utilized rules, the number of combinations per rule goes from 42 to 624. We also
show the number of possible combinations from all the rules, but this is not a
unique number of possibilities because we do not consider the overlaps between
them. Still, the rules from models trained on RS data have at least 50 times more
combinations than the utilized 25 rules from models trained on MA data. The
number of rules used in the initialization is similar for all models except for the one
with pruning that had only one rule. Combining this information with the number
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of fails in the initial population, models trained on MA data seem to have better
rules for transferability. Models trained on MA data on both IC2 and IC3 found
more fails in the initial population. There are more examples for the fail class in
MA training data than RS data that could lead to the model creating better rules.
Additionally, the number of possibilities per rule from models with MA data is lower
than with RS data. That makes the rule more specific, defining smaller intervals
where the fail class can be expected. However, not too small as having only four
combinations because we could miss a fail class with a slightly different intensity or
location since we change the IC. On the other hand, the lower number of fails in
the initial population from models trained on RS data can come from large intervals
in the rules. For example, the minimum number of combinations in one of the rules
is 2400. We could miss the fails and select parameter sets leading to less interesting
classes with that many possible combinations. We also present the number of rules
where not all parameters included a reduced interval, but the user-defined intervals
were used. Usually, the laser parameters were not reduced, while the location
coordinates were specified in all the rules. Except for the model with pruning
(f1_score of 0.0999), the models trained on MA data had a higher percentage of those
rules specifying bounds for all parameters than models trained on RS data. That
again suggests that the rules from models trained on MA data define smaller areas.

3.6. CONCLUSIONS AND FUTURE WORK

Previous work [10] showed that the memetic algorithm finds more interesting LFI
parameter combinations than a random search that leads to possibly exploitable
device responses. This work further improves the memetic algorithm approach by
using decision tree models for cases where different samples of the same target
are tested, or some minor changes are introduced on the bench. Such decision
tree models store the knowledge in a tree structure from which if-then rules can
be extracted. Thus, we extract rules for the device’s interesting fail responses. The
rules consist of intervals for the LFI parameters, and they can indicate areas where
there were most fail responses. The approach uses the knowledge obtained from a
campaign on one IC in the initialization phase of the memetic algorithm conducted
on another IC. We only consider different samples of the same target and minor
changes on the bench setup. Considering the number of found fail responses, we can
see that the performance has significantly improved in the conducted experiments.
More precisely, we obtain two orders of magnitude more fail responses than random
search and ≈ 60% more fail responses than the previous state-of-the-art (memetic
algorithm with random initialization).

We show this is possible with the simple version of decision tree learning. In
future work, we could consider decision tree ensembles, like the random forest, to
further improve the models. Still, we note that the possible improved performance
of the models would come with higher computational complexity and more difficult
interpretability of the rules due to having many decision trees in the random forest.
This work is limited to experimenting with different samples of the same target.
The trained models correspond to a specific target and utilized bench and cannot



3.6. CONCLUSIONS AND FUTURE WORK

3

81

directly be used for other transferability issues, such as changing the bench entirely
or using a different target. However, we believe the idea behind the approach can
be extended to propose a similar algorithm or different training for those cases.
We noticed that all of the models we tested improved the performance of the
memetic algorithm. While in this work, we use f1_score, a popular prediction metric,
to distinguish the best models to apply for the memetic algorithm, it might be
beneficial to consider other aspects of the model. Since we do not use the model
specifically for predictions, another metric might provide a more reliable way of
selecting a model for the initialization phase of the memetic algorithm.
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4
DIVERSITY ALGORITHMS FOR

LASER FAULT INJECTION

Before third-party evaluation and certification, manufacturers often conduct internal
security evaluations on secure hardware devices, including fault injection (FI).
Within this process, FI aims to identify parameter combinations that reveal device
vulnerabilities. The impracticality of conducting an exhaustive search over FI
parameters has prompted the development of advanced and guided algorithms.
However, these proposed methods often focus on a specific, critical region, which is
beneficial for attack scenarios requiring a single optimal FI parameter combination.

In this work, we introduce two novel metrics that align better with the goal of
identifying multiple optima. These metrics consider the number of unique vulnerable
locations and clusters (regions). Furthermore, we present two methods promoting
diversity in tested parameter combinations - Grid Memetic Algorithm (GridMA) and
Evolution Strategy (ES). Our findings reveal that these diversity methods, though
identifying fewer vulnerabilities overall than the Memetic Algorithm (MA), still
outperform Random Search (RS), identifying at least ≈ 8× more vulnerabilities. Using
our novel metrics, we observe that the number of distinct vulnerable locations
is similar across all three evolutionary algorithms, with ≈ 30% increase over RS.
Importantly, ES and GridMA prove superior in discovering multiple vulnerable regions,
with ES identifying ≈ 55% more clusters than the worst-performing MA.

This chapter has been published as M. Krček and T. Ordas. “Diversity Algorithms for Laser Fault
Injection”. In: Applied Cryptography and Network Security Workshops. Ed. by M. Andreoni. Cham:
Springer Nature Switzerland, 2024, pp. 121–138. ISBN: 978-3-031-61486-6.
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4.1. INTRODUCTION

Small embedded devices frequently employ cryptographic algorithms to provide
security. According to Kerckhoff’s principle, it is expected that security is intact when
the secret key is unknown, even if all the other information about the cryptographic
system is public. Consequently, these algorithms are often mathematically secure,
rendering brute-force attacks impractical. Regardless, implementation attacks, such
as side-channel attacks (SCA) and fault injection (FI) attacks, can potentially lead to
a successful security breach of such cryptographic systems. Side-channel attacks are
passive, with the attacker measuring the time [2], power consumption [3], or other
side-channel data emanating from the target device. Given a correlation between
the processed data and measured side-channel information, the attacker can obtain
secret information. On the other hand, fault injection attacks are active, where the
attacker purposely interacts with the device, inducing errors during the execution of
the underlying algorithm. Specifically, the attack can use external sources, such as
electromagnetic radiation [4], lasers [5], temperature [6], and voltage glitching [7],
to manipulate data in memory, skip instructions, or alter instructions themselves.
These implementation attacks are commonly used in security evaluations and
are consequently extensively investigated [8, 9]. The objective is to establish an
enhanced and automated evaluation process that surpasses the current standard in
terms of efficiency. The new algorithms should excel in uncovering more potential
vulnerabilities while making more efficient use of available resources or possibly
even reducing the required resources.

We focus on laser fault injections (LFI), as introduced by Skorobogatov et al. [5].
The issue with laser injection (and other types of fault injections) comes from the
injection parameters determined by equipment. With the laser, we have to define
the location of the laser shot on the targeted hardware device (x and y coordinates),
the distance from the microscope lens, which is commonly used with lasers, and,
lastly, we also have the laser settings, such as laser intensity, delay, and pulse
width. Additionally, lasers can have pulses that demand several more parameters to
define. Another critical component of successful injections is the trigger on when to
perform the injection. In security evaluation, the worst scenario is often considered,
where it is assumed that we have open access to the targeted device, and the trigger
can be placed at any point in the execution. Obviously, there are many parameters
we should consider. Additionally, the possible values and combinations of those
parameters increase to the extent that exhaustive search is not feasible for security
evaluation or attack.

In the attack, the adversary aims to find the parameters that lead to exploitable
fault injection effects. These desired effects also depend on the method for the
attack, where some of the popular attacks are differential fault analysis (DFA) [10],
statistical fault attack (SFA) [11], and statistical ineffective fault attacks (SIFA) [12].
Each attack can require different characteristics of the FI effects. Still, some
commonly desired and possibly exploitable faults include causing the device to skip
instructions or change values in memory [8]. This work does not address identifying
exploitable faults but focuses on a scenario within the internal security evaluation.
During the security evaluation, a target characterization is performed, striving to
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uncover all vulnerabilities that can later be categorized based on their level of critical
exploitability. While executing an exhaustive search would ensure that all possible
vulnerabilities are observed, this process is not feasible as there are many products
to be evaluated, and the search is impractical even for a single target. The aim
is then adjusted to find as many vulnerabilities as possible within reasonable time
and resources. Therefore, the FI parameter search is a process that should observe
many vulnerabilities and provide high confidence that little to no vulnerabilities are
overlooked. Instead of an exhaustive search, the location on the target is often
searched in a grid-like manner using the same laser settings. Defined laser settings
could come from previous experience, which might be misleading if the target or
the bench is entirely new [13]. If more options for laser settings are tested over the
whole target area, this process becomes time-consuming, so alternatively, a random
search is applied. However, both methods could omit parameter sets that lead to
faults. In grid search, while the location is relatively thoroughly inspected, fixing
the laser settings can contribute to overlooking many vulnerabilities. By including
different laser settings, the search converges to an exhaustive search where the
security analysts aim to reduce the search space based on previous knowledge, but
the execution time for these algorithms could still be measured in weeks. On the
other hand, random search is unreliable as different runs can lead to very different
observations, which causes misrepresentation of the target’s security level. Therefore,
there is an incentive to improve the process of exploring the FI parameter search
space more efficiently in an automated way.

Evolutionary algorithms (EAs) were explored for laser fault injection [14], voltage
glitching [15–17], and electromagnetic fault injection [18, 19] since laser fault
injections are not the only type of injections suffering from the previously
described issues. From the machine learning domain, hyperparameter optimization
techniques [20], reinforcement learning [21] and Generative Adversarial Networks
(GANs) [22] were also investigated. Additionally, the prediction ability of machine
learning methods was explored for portability issues in the FI parameter search [23]
and estimating the full target characterization [13].

The issue with aforementioned search algorithms, like evolutionary algorithms and
tuning techniques, lies in their tendency to converge on a single vulnerable area
as they are designed to obtain a single optimal solution. Previous works show a
significant increase in the observed faults clustered in one sensitive region [17, 18].
While that can be highly effective for attackers, we focus on security evaluation,
where identifying multiple vulnerable regions is deemed a more favorable outcome.
To better assess algorithm success in parameter search concerning the security
evaluation goals, we propose to use the number of unique locations (x-y) and
clusters with faults as additional metrics. We investigate the performance of several
algorithms: random search, memetic algorithm, and two novel algorithms not
explored before in the FI context - Grid Memetic Algorithm (GridMA) and Evolution
Strategy (ES). The new algorithms are introduced as they promote the diversity of
the parameter combinations. This diversity aims to achieve a more diverse search,
uncovering distant vulnerabilities and identifying multiple optima instead of a single
sensitive region. Experiments are performed with laser fault injections but should be
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suitable for other fault injection types.
Our main contributions are:

• We propose two methods that promote diversity among the tested FI parameter
combinations. Promoted diversity ensures fewer vulnerabilities are overlooked,
and multiple optima are uncovered during the search.

• We investigate other aspects of the algorithm performance for the FI parameter
search, such as unique locations and clusters.

• The results show that the evolutionary algorithms find ≈ 30% more unique
vulnerable locations than random search.

• The GridMA and ES algorithms found around 41% and 55% more vulnerable
clusters than the worst-performing MA in this aspect, respectively. Thus, the
diversity algorithms help determine more vulnerable regions.

4.2. PRELIMINARIES

4.2.1. RANDOM SEARCH (RS)
Random Search (RS) is a widely used optimization method when exhaustive search
is impractical. In the context of FI parameter search, it explores a predefined search
space by randomly selecting parameter values and assessing their performance, with
each value having an equal probability of selection. We ensure that only unique
parameter combinations are considered, eliminating duplicates.

4.2.2. MEMETIC ALGORITHM (MA)
The memetic algorithm (MA) enhances the genetic algorithm (GA) by incorporating
local search [24]. We apply the local search at the end of each GA iteration,
constituting the first generation of memetic algorithms. This specific method
has been successfully utilized in previous research [14, 18]. The flow of the
MA is depicted in Figure 4.1. MA is a population-based optimization technique,
operating on a set of individuals, each representing a potential solution to a specific
optimization problem. The algorithm begins by generating an initial population
using an initialization method, where a random sampling approach is often used.
The algorithm then uses a problem-specific fitness function to evaluate each
solution’s performance. After evaluation, the genetic operators, including selection,
crossover, and mutation, that drive the learning process are performed. The selector
operator identifies solutions from the current population for reproduction. Usually,
the best-performing solutions are favored as they are more likely to yield improved
solutions. The selected solutions, called parent solutions, undergo the crossover
operator, which combines their traits to create one or more offspring solutions. The
new solutions (offspring) undergo the mutation operator, which introduces random
variations into the new solutions. The mutation probability is commonly kept low,
preventing the algorithm from acting like random sampling. The process generates
a new population that continues into another algorithm iteration. To ensure
the best-performing solutions are not lost, elitism is employed. Elitism explicitly
preserves one or more of the best solutions from the current population for the next
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generation. Lastly, some solutions are selected for further improvement using the
local search. In this work, we use the memetic algorithm introduced in [14], where
the algorithm incorporates the Hooke-Jeeves as local search [25]. The algorithm runs
until a predefined termination condition is satisfied. These termination conditions
commonly consider the number of iterations or evaluations for ending the execution.

Initialize population

Evaluate

GA operators

Local search

New population

EndTerminate?
Yes

No

Figure 4.1.: Flow of the Memetic Algorithm.

4.2.3. CLUSTERING METHOD

In the analysis, we use a clustering method called Mean Shift [26], an unsupervised
clustering algorithm designed to identify clusters in a continuous distribution of
data points. It is a centroid-based algorithm that updates candidates for centroids
by computing the mean of points within a specific region (referred to as the
bandwidth). Subsequently, these candidates are filtered in a post-processing stage
to eliminate nearly identical centroids, forming the final set of centroids. We opted
for the Mean Shift clustering algorithm because, unlike some other popular methods
such as K-Means [27], it does not require users to predefine the number of clusters.
While several different algorithms share this characteristic, we chose Mean Shift due
to its simplicity as a centroid-based algorithm with only one hyperparameter. We
believe it will provide satisfactory results for our analysis. However, we do not claim
Mean Shift as the superior clustering algorithm. Note that the considered algorithms
were those provided by a Python package called scikit-learn [28] to enable quick
implementation and usage, as clustering is not the main topic of this work.

4.3. RELATED WORK
Carpi et al. [15] investigated various search strategies for voltage glitch parameters,
specifically the glitch shape and timing, for a successful FI attack. They
explored glitch voltage and length with Monte Carlo (random), FastBoxing, Adaptive
Zoom&Bound, and a Genetic Algorithm (GA). The genetic algorithm, without
fine-tuning, required more measurements than the superior Adaptive Zoom&Bound
algorithm. Picek et al. [16] extended the GA for the same voltage glitch parameters
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by employing a specialized crossover operator and selection mechanism, finding
more faults than random search. Later, Picek et al. [17] introduced a memetic
algorithm considering three voltage glitching parameters, namely glitch length,
voltage, and offset. The authors mentioned the impracticality of specific algorithms
used in previous work [15] due to increased dimensionality, excluding them from
comparison. Their objective was to efficiently identify favorable parameters within
minimal time, seeking both successful parameter combinations and regions with
consistent behavioral outcomes. Maldini et al. [18] increased the parameter search
space by optimizing five parameters for Electromagnetic Fault Injection (EMFI)
using a memetic algorithm. Krček et al. [14] demonstrated the effectiveness of a
similar memetic algorithm for laser fault injection (LFI). These studies showcased
the efficacy of the memetic algorithm across various FI types. Werner et al. [20]
employed two hyperparameter optimization techniques from machine learning to
enhance the parameter search for voltage glitching. They proposed a two-stage
optimization strategy to reduce the dimensionality of the parameter space, similar
to Carpi et al. [15]. Rais-Ali et al. [19] compared three different methods for
EMFI, with the GA consistently outperforming the others in identifying areas of
interest. The authors emphasize that, from an attacker’s perspective, the goal is to
identify a single exploitable fault using a specific FI parameter set. However, in
the evaluation context, the objective is to ensure device security without excessive
time investment, requiring a high-dimensional search to avoid overlooking potential
parameter combinations. In [17–19], the authors evaluated performance based on
the number of observed vulnerabilities, considering the notion of distinct regions
and faults. We introduce diversity methods within the evolutionary approach to
improve the algorithms’ ability to discover more distinct regions with vulnerabilities.
Related work on voltage glitching parameter search typically involved optimization
of two or three parameters, while EMFI and LFI examined five. We optimize the
same five parameters for LFI, performing a high-dimensional parameter search.

Wu et al. [13] focused on laser settings’ impact on a specific building block. The
authors noted that the complete characterization took over a week to execute. This
underscores the need for faster and more efficient algorithms in the field. However,
their work differs from ours, as our research investigates fault injection considering
five distinct parameters, intending to uncover vulnerabilities across various building
blocks within an integrated circuit (IC). Krček et al. [23] explored the transferability
of results to different samples of the same target using decision tree models, falling
outside the scope of this work for comparison as this work focuses on improving
the parameter search without prior knowledge. Lastly, Moradi et al. [21] and
Sedaghatbaf et al. [22] applied reinforcement learning and Generative Adversarial
Networks (GANs), respectively, for efficiently exploring the fault injection space in
simulations for adaptive cruise control systems in autonomous vehicles domain.
These techniques could potentially extend to fault injection on hardware devices,
aligning with our work.

Comparing all methods from the mentioned related work is time-consuming and
complex. Hence, we leave this task to future work, recognizing the importance
of unifying and evaluating these advanced methods to determine the state-of-
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the-art approach for parameter search in the scope of security evaluation, target
characterization, and FI attacks. In this study, we compare new algorithms with
random search and memetic algorithm, previously employed for high-dimensional
parameter search on EMFI and LFI.

4.4. DIVERSITY ALGORITHMS
This section explains the newly proposed diversity algorithms that should help
identify multiple vulnerable regions within the FI parameter search.

4.4.1. GRID MEMETIC ALGORITHM (GRIDMA)
We propose a novel approach, named the Grid Memetic Algorithm algorithm, that
involves partitioning the target area for exploration into a grid and running the
previously explained memetic algorithm within each grid region. The primary
objective of the GridMA approach is to ensure attention (time and evaluations) of
the algorithm to all target regions, mitigating the risk of overlooking vulnerabilities
in specific (x-y) locations. For instance, if the target area is divided into a 3×3
grid, resulting in nine distinct regions, GridMA executes the MA independently in
each region during a single run. As the search space size within each grid region
decreased, we reduced the MA hyperparameters, specifically the population and elite
sizes. GridMA represents a minor adaptation to the established MA. Nevertheless, it
is a valuable initial step in evaluating diversity algorithms, precisely when we aim to
obtain multiple vulnerable target regions.

4.4.2. EVOLUTION STRATEGY (ES)
Evolution Strategy, like genetic algorithms, belongs to the class of evolutionary
algorithms inspired by the principles of natural evolution [29]. The initial version
of ES consisted of a single-parent solution from which one offspring was produced
through a mutation-like procedure. The superior solution between the parent and
offspring is preserved, and it resumes the same iterative process until it fulfills
specific termination criteria. These termination conditions align with those described
for MA in Section 4.2.2, consisting of attributes such as the number of iterations,
evaluations, or acquiring a specified fitness level. Over time, ES has evolved, and in
its more general form, it adopts the notation of (µ+,λ)-ES. For instance, the original
version can be denoted as (1+1)-ES, suggesting the presence of only one parent
and one offspring in the process. Thus, µ represents the number of parents, and
λ indicates the number of offspring. Additionally, a µ/ρ notation can be used for
parents, where µ denotes existing parents, and ρ indicates the number of parents
selected for producing offspring. Typically, ρ is less than or equal to µ, meaning
that a subset of the best individuals is chosen for reproduction. In the notation,
we use symbols + or , to indicate whether the solutions selected for the following
generation are derived from both parents and offspring (µ+λ) or the parents (µ) are
discarded, and only the offspring (λ), regardless of their fitness, continue to the next
generation.
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In the context of the described notation, we employ the (µ+λ)-ES. The original,
(1+1)-ES, using one single parent and an offspring, still converges to one optimal
solution. Thus, to achieve diversity and reduce the risk of focusing on a single
optimal solution, we set µ> 1, effectively creating a population of size µ as employed
in MA. The initial set of solutions is distributed across different locations, and in
each iteration, new offspring are generated from each of these parent solutions as
we set λ > 1. Consequently, ES maintains a population of diverse solutions that
evolve through iterations. This iterative process may lead to finding distinct solution
clusters representing local optima. Thus, by employing ES, we expect to decrease
the chances of overlooking vulnerabilities within the target area and observe more
distinct solutions with optimal fitness.

4.5. EXPERIMENTAL SETUP

4.5.1. TARGET

In collaboration with STMicroelectronics, we utilize their products for our
experiments. Due to confidentiality reasons, we cannot disclose the details of the
targets and the utilized laser bench. The target for our experiments is an IC
constructed with 40nm technology. Since we use lasers for fault injection, mechanical
thinning, a standard procedure, was part of the preparation for the experiments.
During security evaluation, test programs can be deployed on the targeted products.
The program running on our target device is a test program where data words are
loaded into a register from the non-volatile memory (NVM). This test program can
commonly be a part of the functionalities occurring within different algorithms on
these devices. The target has no security countermeasures as the purpose here is
not an attack breaking the device’s security and countermeasures. Additionally, this
provides the worst-case scenario. The implementation is done in the C programming
language, and the pseudocode is displayed in Pseudocode 4.1. The pseudocode
shows calls to three functions, where the first function is the trigger_event. The
trigger event is a monitored event used to trigger the laser shot to inject faults at
the desired time. In this case, the injection is aimed during the execution of the
following function. That function loads the data from the NVM into a register. Lastly,
we read the register and compare the value with the expected data. There is a fault
if the register value has changed (fault class fail). On the other hand, if the injection
was unsuccessful and the data is unmodified, equal to the expected value, then we
give this response a fault class pass. Lastly, if there is no response from the device
due to a time-out error or reset, we categorize this as a fault class mute. Note that
the IC was reset to the initial state after each injection to provide a clean condition
for each injection.

Pseudocode 4.1: Pseudocode of the program running on the target device.

. . .
t r igger_event ( )
l o a d _ r e g i s t e r ( ) / / i n j e c t i o n here
read_register ( )
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. . .

The FI parameter search is done on the following five parameters - x, y, delay, laser
pulse width, and intensity. These parameters are commonly used in literature and
practice during a security evaluation [18, 23]. We use a subset of the available values
for each of the five parameters, defined according to the known layout and target
cartography. Step sizes are defined based on the minimum possible step according
to the utilized bench equipment, and the target area size includes different building
blocks of the IC. The intervals are kept the same for all experiments. While we
cannot share the parameter intervals as they are specific to the product and laser
bench, we note that there are 370772710 possible combinations of the parameter
values. The exhaustive search with the defined subset of possible values will take
around 643 days if we consider that one laser shot takes ≈ 0.15 seconds.

While we focus on a single target in this study, the parameter search algorithms we
introduce are versatile and applicable across various targets, bench configurations,
and FI types. On average, the relative performance of these algorithms is expected
to remain similar across mentioned scenarios. The obtained target responses guide
these algorithms. Therefore, regardless of the selected target and setup, they strive
to identify optimal solutions within the current setup and measured responses. The
extent of improvements is limited by the finite number of detectable vulnerabilities
associated with a specific target and bench setup.

4.5.2. ALGORITHM DETAILS

In all our experiments, we specified a maximum limit of 6000 evaluations of unique
FI parameter combinations as a termination condition. Since we perform injection
five times with the same parameter combination, we allow 30000 laser shots. The
number of evaluations is a practical upper bound on the algorithm’s execution time.
Previous work [23] indicates that a similar evaluation count leads to successful
convergence, thus further justifying its selection.

In our approach, as we perform five measurements with the same parameter
combination, we can acquire distinct fault class responses given the same parameters.
Thus, there is a slight variation in our fault classification compared to related
work. In our results, we present classes so that if there is even a single fail
response within the measurements, we consider it a critical outcome and label it
under fail comb. notation, signifying a fail combination. This approach aggregates
all fail occurrences, disregarding the specific combinations that led to them. A
more fine-grained categorization might be beneficial if we consider a specific attack,
as parameter combinations with consistent outcomes might be more suitable for
attacks. However, since we are in a security evaluation scenario, any occurrence of
a fail response is considered critical. Other classes we include are those with mute
response, a combination of mute and pass referred to as mute_pass, and lastly, there
is a pass class where only pass class occurred in five measurements. The fitness
function for all algorithms is calculated as

f i tness = fP ·NP + fM ·NM + fF ·NF

NP +NM +NF
,
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where fP , fM , and fF correspond to the fitness values assigned to the fault classes
pass, mute, and fail, respectively. Similarly, NP , NM , and NF represent the frequency
of these classes occurrences within the number of measurements for a specific
parameter combination. The sum of NP , NM , and NF constitutes the total number of
measurements per parameter combination. This fitness function definition follows
the previous works [14, 23]. In our case, the fitness values for fP , fM , and fF are 1,
2, 10, respectively. These values differ slightly from prior works, as we choose to
create a more pronounced distinction in fitness value between each fault class. This
design decision emphasizes the significance of any fail combination by assigning
it a significantly higher fitness value. Before evaluating the entire population, we
conduct a sorting operation using a greedy approach that considers the Manhattan
distance between different locations of the FI parameter combinations within the
population as described in [14].

MA HYPERPARAMETERS.

We employ a population of size 100, with an elite_size of 10. The initialization method
employs a random sampling strategy while preventing duplicates. For selection, we
implement the roulette wheel method. We use uniform crossover and a uniform
mutation with a mutation probability of 0.05. Lastly, the Hooke-Jeeves algorithm is
applied for local search. Note that the hyperparameters in our experiments remain
the same and have been taken based on information from previous work [14].

GRIDMA HYPERPARAMETERS.

We dedicated additional experiments to exploring the hyperparameters of the
GridMA algorithm, as it is a newly proposed method. We performed a minor
hyperparameter search focused on the grid size, the population size, and the elite
size of the MA. This section outlines the hyperparameters for the final version of
the GridMA, whose results are shown in Section 4.6. The MA instances running in
each grid have the same hyperparameters as described in Section 4.5.2, except for
the mentioned hyperparameters that we were able to decrease due to the reduced
scope of exploration within each grid region. Accordingly, the population size is set
at 30 individuals, with an el i te_si ze of 5. We divide the area in 4×4 grid, effectively
conducting a total of 16 MA algorithms during a single run of GridMA. Since we
maintain the total number of evaluations at 6000 parameter combinations, each grid
region is limited to evaluating only 375 FI parameter combinations.

ES HYPERPARAMETERS.

Evolution Strategy is a new approach, so we explored several hyperparameters.
Specifically, we assessed the algorithm’s performance concerning the number of
parents and offspring and the mutation probability. While we quickly obtained
reported results, further fine-tuning may improve performance. The reported results
are derived from ES employing 40 parent solutions and 5 offspring with the initial
generation of parents established through random sampling. This algorithm uses
the mutation operator as the sole source of introducing solution modifications, so
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a higher mutation probability will be necessary. We observed that the mutation
probability of 0.4, much higher than used with MA, produces the best results
without converging to a purely random search approach. The mutation probability
applies to each specific dimension within the parameter combinations. For example,
with 40% probability, mutation will occur from uniformly distributed values of
the given parameter. Uniform mutation encourages more substantial modification,
allowing more ‘jumps’, particularly beneficial in the context of FI parameter search,
as there are more non-vulnerable areas than vulnerable ones. In Section 4.6.4, we
explore several modifications to the ES algorithm, including the Gaussian mutation
approach, which is more commonly utilized to ensure a higher probability of local
changes.

4.6. EXPERIMENTAL RESULTS

This section presents results from applying the described algorithms to the same IC
and laser bench. We aim to identify more locations with a fail outcome and uncover
multiple vulnerable regions. To achieve this, we avoid restricting our search to a 2D
location exploration, as it could overlook numerous parameter combinations due to
the need for fixed laser settings. To effectively assess and identify algorithms that
perform well for our objective, we compare them not only based on the observed
5D parameter combinations with a fail outcome but also on the number of unique
locations (2D) and clusters. We executed each algorithm five times and reported the
average results to ensure statistically relevant observations.

4.6.1. NUMBER OF UNIQUE PARAMETER COMBINATIONS (5D)
We initially assess the number of unique parameter combinations with fail outcomes,
where we use percentages from total tested combinations as in previous work for
a more straightforward comparison. The results, shown in Table 4.1, reveal a
comparable increase in fail responses between random search (RS) and memetic
algorithm (MA) to the reported results in [14, 18, 23]. The MA identified ≈ 55.6×
more FI parameter combinations leading to fail response than RS. In contrast,
the two new methods, which provide greater diversity in the population of the FI
parameters, obtained a lower percentage of fail responses compared to the MA.
Compared to RS, we still find ≈ 12.4× more fails with GridMA, and ≈ 7.8× more
with the ES. This decrease in the percentage arises from GridMA’s exploration of
areas where vulnerabilities might not exist. The ES, which relies solely on mutation,
introduces more randomness than the MA, leading to a decrease in the number
of identified vulnerabilities. Moreover, each parent evolved independently, resulting
in more dispersed parameters and less exploitation of sensitive locations. These
features should enhance our current objective but are shown to impact this metric
negatively. Considering only the number of unique 5D parameter combinations
tested, MA outperforms the other tested algorithms. However, the evolutionary
approaches with diversity still offer advantages and should be preferred over random
search.
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Table 4.1.: The average percentage of observed fault classes from all tested parameter
combinations (6000) using four different algorithms on the same IC. The
average is calculated over five runs.

RS MA GridMA ES

fail comb. 0.61% 33.84% 7.54% 4.77%
mute 1.23% 3.23% 4.44% 4.53%
mute_pass 0.79% 1.21% 2.24% 2.83%
pass 97.36% 61.72% 85.79% 87.88%

4.6.2. NUMBER OF UNIQUE LOCATIONS (2D)

In this work, we explore other metrics that could be used to evaluate the
performance of different parameter search algorithms employed for fault injection.
As we explain, MA converges commonly to one region sensitive to the utilized FI
type and exploits it, leading to many observed FI parameter combinations with fail
outcome. These parameter combinations come from a cluster of close x-y locations
that can be detected visually (see Figure 1b in [18] and Figure 2 in [17]). In security
evaluation, there should be a certain confidence that not many vulnerabilities are
missed during the assessment of the IC. Also, we aim to find multiple regions
with vulnerabilities, so we explore algorithms that promote diversity as it should
help produce vulnerabilities distant in the utilized 5D space. More importantly, we
want distant solutions when looking at the observed vulnerabilities’ location (x-y).
Thus, in Table 4.2, we report the number of unique parameter combinations with
different fault classes and the number of unique locations per fault class from
those parameter combinations. The table has two columns per algorithm, with
the first showing the numbers from all the tested parameter combinations and the
second showing the number of unique x-y locations. We also calculate what we
refer to as location coverage, dividing the number of unique locations (2D) by the
number of total tested unique 5D parameter combinations. This number shows the
ratio of covered area within the tested parameter combinations. The numbers are
rather small if we look at the absolute possible locations instead of relative to the
tested parameters. To put it into perspective, from all possible combinations (≈ 370
million), we only test 0.00162% with 6000 combinations. Unique tested locations
from all possible locations (2D) per algorithm are 4.27%, 1.67%, 2.02%, and 3.07%
for RS, MA, GridMA, and ES, respectively. We see an increase in the absolute
location coverage between different evolutionary approaches, but RS has the best
result. In the table, we report the relative location coverage as it provides an easier
comparison. The relation between the algorithms is the same when we compare
the absolute and relative location coverage. The results show that RS has the best
coverage with 97.95% as the algorithm has no guidance. The worst location coverage
is with MA (38.24%), supporting the motivation for this work. GridMA and ES
improve coverage with 46.36% for GridMA and 70.29% for ES. Location coverage can
serve as a measure of the algorithm’s confidence in not overlooking vulnerable areas.
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Comparing the unique locations with fail response between MA, GridMA, and ES, we
see that the algorithms find a similar number of unique locations with fail - around
48, which is around 30% more than with RS (36.4). While similar in the number of
unique locations with fail outcome, GridMA found the most unique locations on
average with higher location coverage than MA. This improvement over MA is not
as significant as the difference in performance between the evolutionary approaches
and RS. Still, it shows the potential of diversity algorithms for security evaluation
as they provide better coverage and thus confidence in identified vulnerabilities
while delivering a similar improvement over RS in the number of unique, vulnerable
locations.

Table 4.2.: The average number of unique parameter combinations and x-y locations
per fault class, and in total for all four algorithms. The average is
calculated over five runs.

RS MA GridMA ES

Nb. comb. | Nb. loc. 6000 5877.2 6000 2294.6 6000 2781.4 6000 4217.4
Location coverage 0.9795 0.3824 0.4636 0.7029

fail comb. 37 36.4 2030.2 48.4 452 49.2 285.6 47
mute 74 73 194 60.4 266.2 70.4 271.6 93.2
mute_pass 47.4 47 72.8 45.8 134.6 61.4 169.8 67.6
pass 5841.6 5723.4 3703 2218.8 5147.2 2704.8 5273 4088.6

4.6.3. NUMBER OF LOCATION CLUSTERS

Finding distant, vulnerable locations is considered more valuable as the smaller
regions could further be explored with an exhaustive search on a significantly
reduced search space [19]. Thus, we compare the algorithms based on the number
of observed location clusters with a specific fault class. We calculate the number of
clusters using the Mean Shift clustering algorithm. The bandwidth hyperparameter
for the Mean Shift algorithm defines the window/region from which the mean is
calculated. We executed the clustering with different bandwidth values, precisely
0.1,0.2,0.3,0.4. With a bandwidth of 0.3, the region was large enough to categorize
all the x-y points as one cluster for all fault classes. Table 4.3 shows the number
of clusters averaged over five runs with bandwidth set to 0.1. Using the same
bandwidth ensures the number of clusters is comparable as the same window
size is considered. Note that if the number of clusters is more significant, the
vulnerabilities are observed in more distant and distinct locations on the target,
which is the desired objective. The results show that GridMA finds the most clusters
with fail outcome, implying that the observed locations are more distant than other
algorithms. GridMA and ES obtain a similar number of clusters on average, closely
followed by RS. MA, on the other hand, clearly shows a smaller number of clusters
observed. These results further emphasize the benefits of diversity methods for
security evaluation and finding multiple regions sensitive to the utilized FI type.
We checked the clustering model’s predictions visually for several cases to ensure
that classified clusters are meaningful. While some more distinct locations were still
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Table 4.3.: The number of clusters based on Mean Shift clustering algorithm over
the unique x-y locations per fault class. The bandwidth size is 0.1. The
number of clusters is averaged over five runs.

RS MA GridMA ES

fail comb. 7.8 5.8 8.2 8
mute 11.4 8.6 9.6 10.6
mute_pass 9.6 8.4 10.8 10.2
pass 41.8 37 34.2 33.8

clustered together using this bandwidth, the predicted clusters seemed reasonable.
Moreover, we use the same bandwidth to ensure comparable results, as relative
correlation is essential.

4.6.4. FURTHER EXPLORING THE EVOLUTION STRATEGY ALGORITHM

The results show that evolutionary algorithms perform better than random search
when considering the number of unique FI parameter combinations and unique
locations with fail response. Considering the number of clusters, RS was better than
MA, but the diversity algorithms were better overall. Thus, while the performance
was not significantly improved using the diversity algorithms considering these
metrics, the observed minor improvements show promising results. Therefore, we
deem it necessary to explore these algorithms more within the scope of future work.
In this section, we explore several ES versions to obtain enhanced performance.

We test the ES algorithm with a more common Gaussian mutation, which uses
the Gaussian distribution to set the probabilities of each of the parameter values
getting selected. The mutation probability will then be used as a standard deviation
σ parameter, while the parameter’s current value will be the mean µ. This mutation
makes local changes more likely, while the more distant significant changes have
a low probability of occurring, but not zero. We refer to this version of ES as
ES gauss. Another modification we test is the initialization method, where we use
a grid approach to set the parents of ES in distinct regions over the target area,
considering only the location parameters. This way, the location parameters within
the initial population are well-distributed, and the evolution should have a better
chance of observing more distant and distinct regions with fail response. This
version of ES is named ES grid. We then combine both modifications into a third
version of ES referred to as ES grid gauss. Lastly, we execute a GridES, similar to
GridMA, where we run ES within each grid cell over the target area. The grid
is split in the same manner as for GridMA. We ran the GridES with the ES grid
version as it was the best considering the number of clusters, and it performed
similarly to the best ES versions considering the other two metrics. Note that the
reported results from the new ES versions are mean values from three runs, while
the previous experiments ran five times. From the results in Table 4.4, considering
the number of unique FI parameter combinations with fail response, the initial ES



4.6. EXPERIMENTAL RESULTS

4

101

version performs the best on average, followed by the ES grid version. The versions
with Gaussian mutation perform more closely to the results observed with random
search. However, applying grid initialization for the version with Gaussian mutation
did help increase the number of observed vulnerabilities. Still, using uniform
mutation proved better within these experiments. Similar to ES gauss and ES grid
gauss, GridES obtained a similar number of faults as RS. Considering the number of

Table 4.4.: The average percentage of observed fault classes from all tested parameter
combinations (6000) using five different versions of ES algorithm on the
same IC. The average is calculated over three runs.

ES
gauss

ES
grid

ES
grid gauss

GridES
grid

fail comb. 0.61% 4.19% 0.82% 0.82%
mute 1.83% 6.31% 2.02% 1.68%
mute_pass 1.17% 2.85% 1.08% 0.94%
pass 96.39% 86.66% 96.08% 96.57%

unique locations with fail response, versions ES grid and ES grid gauss were better
than the initial ES version, as seen in Table 4.5. On average, the number of unique
locations is now closer to the best GridMA algorithm, and it remains in the scope of
previously observed improvements over RS using any of the evolutionary approaches.
Considering this metric, ES gauss and GridES perform similarly to RS. Gaussian
mutation increases the location coverage to the same level as RS, as evident from
the results with the ES gauss and ES grid gauss. Finally, we consider the number of

Table 4.5.: The number of unique parameter combinations and x-y locations per
fault class, and in total for all four algorithms. The average is calculated
over three runs.

ES gauss ES grid ES grid gauss GridES grid

Nb. comb. | Nb. loc. 6000 5869 6000 4235.5 6000 5857.3 6000 4322
Location coverage 0.9782 0.7059 0.9762 0.7203

fail comb. 36.3 36 251 48 49 48.7 48.7 35.7
mute 110 107.3 378.5 124.5 121.3 121 101 78
mute_pass 70 69.7 171 86.5 64.7 64.7 56.3 47
pass 5783.7 5666 5199.5 4075 5765 5632 5794 4216.3

clusters with fail response in Table 4.6, and the ES grid version found 9 clusters on
average, while the GridMA, had 8.2 clusters which was the previous best result. We
also note that all the ES versions observed more clusters than the initial version, and
GridES had the same number on average. Thus, we improved the initial ES, with the
crucial modification being the grid initialization. Gaussian mutation provided more
randomness in the location parameters, which led to enhanced location coverage
but less vulnerable parameter combinations and locations. However, interestingly, all
ES versions provided more clusters than RS and MA, demonstrating the potential of
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Table 4.6.: The number of clusters based on the Mean Shift clustering algorithm over
the unique x-y locations per fault class. The bandwidth size is 0.1. The
number of clusters is averaged over three runs.

ES
gauss

ES
grid

ES
grid gauss

GridES
grid

fail comb. 8.3 9 8.3 8
mute 11.3 10 9.6 10.3
mute_pass 9 12 10 9.3
pass 32.3 31.5 27.6 40

diversity methods.

4.7. CONCLUSIONS AND FUTURE WORK
Previous works show the benefits of algorithms such as memetic algorithm in finding
more FI parameter combinations with vulnerabilities compared to commonly used
random search. However, the observed results commonly come from a single
sensitive region, and during security evaluation, we do not want to neglect possibly
exploitable vulnerabilities. Thus, we propose diversity algorithms that promote
diversity in the population of evolutionary algorithms and test the GridMA and
Evolution Strategy and its variations. While we evaluate algorithms considering the
number of unique FI parameter combinations as in related work, we additionally
assess algorithm success based on the number of unique locations (x-y) and clusters
with faults as two additional metrics that better align with the objective of finding
multiple vulnerable regions. MA performs best only when the number of faults
is concerned. However, GridMA and ES with grid initialization and Gaussian
mutation (ES grid gauss) found more unique locations with faults. Nonetheless, all
evolutionary algorithms, including MA, found around 30% more unique locations
with fail responses than RS, performing similarly. Considering the number of
clusters, MA performed the worst, while ES with grid initialization (ES grid) had
the most clusters, followed by the GridMA algorithm and other ES versions. This
work shows that the diversity approach helps find more distant locations with the
desired outcome. However, the improvements are less significant than the difference
between evolutionary algorithms and RS regarding the number of FI parameter
combinations. Thus, while this work showcases the potential enhancement using
the diversity approaches, future work could consider (µ,λ)-ES and more advanced
diversity algorithms to provide more significant improvements.
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5
DEEP LEARNING ON

SIDE-CHANNEL ANALYSIS

This chapter provides an overview of recent applications of deep learning to profiled
side-channel analysis (SCA). The advent of deep neural networks (mainly multiple
layer perceptrons and convolutional neural networks) as a learning algorithm for
profiled SCA opened several new directions and possibilities to explore the occurrence
of side-channel leakages from different categories of systems. This is particularly
important for designers when verifying to what extent an adversary can extract
sensitive information when possessing state-of-the-art attack methods. Deep learning
is a fast-evolving technology that provides several advantages in profiled SCA, and we
summarize the main directions and results obtained by the research community.

This chapter has been published as M. Krček, H. Li, S. Paguada, U. Rioja, L. Wu, G. Perin, and
Ł. Chmielewski. “Deep learning on side-channel analysis”. In: Security and Artificial Intelligence: A
Crossdisciplinary Approach. Springer, 2022, pp. 48–71.

109



5

110 5. DEEP LEARNING ON SIDE-CHANNEL ANALYSIS

5.1. INTRODUCTION

Side-channel attacks (SCA) are a well-known and powerful class of implementation
attacks against different types of systems, such as cryptographic implementations,
processors, communication systems, and, more recently, machine learning models.
What makes these attacks powerful is the fact that they use unintended leakage of
information conveyed from different sources: power consumption, electromagnetic
emanations, time, temperature, acoustic, photonic emission, etc. An adversary uses
specialized equipment to monitor some of those side-channel leakages to extract
secret information. For example, the amount of time needed to process a specific
secret byte in a computer might be different from the amount of time needed to
process other possible values for this byte. The monitoring of a side-channel can
lead an adversary to recover secret information from time measurements.

In this chapter, we focus on the predominantly used form of side-channel attacks
that are based on power consumption and electromagnetic analysis to extract
secret cryptographic keys. Embedded devices make use of cryptographic primitives
to protect the processing and storing of sensitive information. However, the
cryptographic algorithmic implementations (e.g., AES, 3DES, RSA, etc.) in software
and hardware also need protection on their private keys. Side-channel attacks can
extract those keys from unintended information leakage if the device is not properly
protected. Differential power analysis (DPA [2]) and correlation power analysis
(CPA [3]) appeared in 1999 and 2004, respectively, as powerful statistical methods to
recover private keys. These attacks, classified as non-profiled attacks, assume that
an adversary can query multiple encryption (resp. decryption) executions from a
target crypto operation by controlling, at least, the plaintext (resp. ciphertext). All
the executions represent a set of side-channel measurements. Usually, an adversary
splits the target key in chunks (divide-and-conquer strategy), and for each possible
value of a key chunk, he or she creates a list of predicted labels based on the crypto
algorithm (e.g., when attacking an AES implementation, an adversary predicts what
are the values of S-box output in the first round based on possible byte key guesses).
As a final act, the adversary performs a differential or correlation analysis between
side-channel measurements and all possible sets of predicted labels. The key guess
associated with the highest difference-of-means or correlation value is assumed to
be the correct key chunk value.

In 2002, Chari et al. [4] proposed a different category of SCA known as Template
or Profiled Attacks. Profiled SCA is a specific class of side-channel analysis that
is conducted in two phases: profiling and attack phase. To profile a crypto
implementation, the adversary collects a set of side-channel measurements where the
key of the target cryptographic execution is known and may vary from measurement
to measurement. Thus, the adversary creates statistical models (commonly called
templates) that can describe the leakage and noise of the device under control. In
the second phase, a separate set of side-channel measurements is collected from
another and (usually) identical device running an unknown key. The attack (also
known as the matching phase) applies the learned templates to this second device,
which can indicate the most likely key values ordered according to their probabilities.

After the aforementioned publications, several countermeasures to protect crypto
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implementations were proposed and applied by the security industry. Randomization
of sensitive information, boolean masking schemes, and noise addition are among
the most common forms of protection against side-channel attacks. However,
research on SCA is constantly discovering new capabilities of side-channel attacks
when adopting more advanced statistical techniques. The main goal is to investigate
how far an adversary can go when using the most advanced and realistic attack
techniques. In this sense, results are important for developers to know what kind
of protections their crypto designs need depending on their applications and risk.
Recently, publications considering deep neural network approaches demonstrated
the ability to break protected crypto implementations [5–7]. This is the main
reason why deep learning is the predominant form of profiled side-channel attacks
nowadays. Indeed, deep neural networks perform extremely well on a wide variety
of learning tasks. Observe that in the profiled SCA setting, the profiling and
attack phases are similar to the learning and prediction steps of a deep neural
network-based supervised classification task. The deep learning field is continuously
evolving and impacting side-channel attacks in general, even beyond profiled SCA.
In this chapter, we summarize results from recent publications where non-profiled
SCA attacks also leverage powerful deep neural networks.

This chapter’s focus is on deep learning-based SCA. We start by providing
background knowledge on deep neural networks and profiled SCA. Section 5.3
provides an overview of the state-of-the-art in the application of deep neural
networks to profiled SCA. In Section 5.4, we analyze the advantages of using
deep learning in the context of profiled side-channel analysis. The main idea of
Section 5.4 is to highlight why deep neural networks can be seen as powerful
alternatives to classical profiled attacks such as template attacks and traditional
machine learning, which have been considered the most powerful class of SCA
for many years. Section 5.5 brings an important discussion about the correct
interpretation of metrics for deep learning-based profiled side-channel analysis. As
reported in recent publications, the usage of well-known supervised classification
metrics (e.g., accuracy, loss, recall, etc.) can be meaningless in the context of SCA
when evaluating protected targets. In Section 5.5, we describe solutions for such an
important problem.

Another important aspect of training deep neural networks is the hyperparameter
tuning. In Section 5.6, we describe this problem in the context of profiled SCA. As
we will see, there are still no published efficient solutions for this problem for SCA,
and we describe possible alternatives. Section 5.7 describes different applications
of deep learning to SCA. Finally, Section 5.8 concludes the chapter while giving an
overview of what we believe to be the most important perspectives and directions
for future work.

5.2. BACKGROUND

In this section, we explain the notation we use throughout the chapter and deep
learning-based profiled SCA.
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5.2.1. NOTATIONS

Throughout this chapter, we use X = {X ,Y } to denote a dataset composed of feature
array X and label vector Y . The feature array X = {xi , f } defines a set of N
side-channel traces, where i indicates the trace index and f indicates the feature
index (a sample) inside a trace. In the label vector Y = {yi }, each element yi indicates
the label associated with a side-channel trace i . The terms Xtr ai n , Xval , and Xtest

denote the training, validation, and test sets, respectively. The terms profiling traces
and training traces are used interchangeably throughout the chapter.

The term k refers to a single key byte belonging to the full encryption or
decryption key K with dimension |K |. An input plaintext byte used as input to the
encryption or decryption operation i (executed in order to obtain a side-channel
trace) is referred to as pki . The plaintext byte pki belongs to the full input plaintext
PKi . Let also f (pki ,k) denote the function that returns the label associated with
one execution of a cryptographic operation.

Let also pi , j = P [y = j |X = xi ], where pi , j ∈ P , denote the probability that a
side-channel trace xi contains the label j . In this chapter, bold letters and bold
acronyms, e.g., a, denote vectors of dimension 2b , where b is the bit-length of the
target intermediate value in a cryptographic execution.

5.2.2. PROFILED SCA AND DEEP LEARNING

The deep learning-based profiled side-channel attack requires a training set of
size N for the learning or profiling phase. Ideally, the training set should be
composed of side-channel traces where each trace is measured with random input
data (ciphertext or plaintext) pk and random key k. To create a labeled dataset
for SCA, also referred to as the training set Xtr ai n , it is important to first choose a
leakage model that better describes the physical side-channel leakage present in the
underlying measurements. Commonly selected leakage models against symmetric
crypto implementations (e.g., AES, DES) are Hamming weight (HW), Hamming
distance (HD), identity (ID), or bit-level models. In this case, the leakage is modeled
for an intermediate value represented by a single byte or a bit. This intermediate
value in an encryption or decryption operation depends on a key byte k and input
(i.e., plaintext or ciphertext) pk.

The number of possible classes to label a dataset is directly derived from the
selected leakage function f (pki ,k). As an example, the target intermediate value
of an AES implementation is usually a byte in the S-box state in the first or
last encryption/decryption round. In this case, HW or HD models define nine
classes for the datasets. In case the ID model is used, the dataset is defined
for 256 classes. Attacks on a single intermediate bit define only two possible
classes. The bit-level leakage model is also a common situation when attacking
public-key implementations (e.g., RSA, ECC). In this last case, the attacker has
specific knowledge about the target implementation, such as scalar multiplication or
modular exponentiation methods.

For training a deep neural network, the labeled set is split into training, Xtr ai n ,
and validation, Xval , sets. As we will discuss in Section 5.5, classic validation
metrics (e.g., accuracy, loss, recall, precision, etc.) obtained during training may
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not indicate the leakage detection performance of a neural network, especially for
protected targets. Therefore, to have a meaningful validation metric for SCA, the best
possible scenario is to compute guessing entropy or success rate during training.
For that, it is crucial to have a validation set Xval where the key K is fixed for the
full validation set. If K is random for each trace in Xval , then a different efficient
validation metric must be found.

Understanding deep learning metrics in the context of SCA is essential background
knowledge for training efficient models. Conventional deep learning metrics usually
are accuracy and loss (or error). Accuracy indicates the ratio between correctly
predicted data and the total number of predictions. Loss is based on a loss function
selection (the most common form of loss function for profiled SCA is cross-entropy),
and it indicates the overall error for the evaluated set. These metrics are monitored
during the training phase and can indicate different phases that can occur while
the parameters (weights and biases) are being updated by stochastic (or adaptive)
gradient descent methods.

Common metrics in SCA are success rate and guessing entropy [8]. In profiled
SCA, these metrics are not aimed only at predicting correct labels, as is the case
with machine learning metrics, but also to reveal the secret key. In particular, let us
assume that given Q amount of traces in the attacking phase, an attack outputs a
key guessing vector g = [g1, g2, . . . , g |K |] in decreasing order of probability with |K |
being the size of the keyspace. So, g1 is the most likely and g |K | the least likely key
candidate. The first-order success rate is defined as the average empirical probability
that g1 is equal to the secret key k∗. The guessing entropy is the average position
of k∗ in g. When predicting an attack set Xtest with a fixed key k∗, we obtain
a prediction array P = {pi , j }. This array has the number of rows equivalent to Q,
and the number of columns is equivalent to the number of possible classes. For all
key candidates, we compute the probability that k is the correct key k∗ in Xtest as
follows:

P [k = k∗] =
N−1∑
i=0

log (pi , j ) (5.1)

where pi , j is the j -th class probability (or prediction) of the neural network for
side-channel trace i . The class index j is determined according to a leakage model
function j = f (pki ,k).

In profiled attacks, the main goal during the training phase is to reach a
generalization performance so that the trained deep neural network can obtain a
low guessing entropy (resp. a high success rate) after predicting Q attack traces. The
generalization phase usually happens after the model starts fitting the side-channel
leakages (after underfitting) and before this same model starts to degrade its
performance, i.e., when it usually reaches an overfitting phase. Fitting refers to how
well the model approximates the unknown underlying mapping function given the
input and output variables. When overfitting occurs, the neural network can fit the
training set with very high accuracy and small errors, but it cannot fit the validation
or test sets. Ideally, we should always train a neural network until it achieves the
maximum quality in terms of generalization concerning the validation set. If this
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happens, we should be able to assess whether the model is in the generalization
phase or not. This seems to be an easy task, but there are quite some difficulties
in the interpretation of metrics to identify what phase the model belongs to while
the training evolves. An interesting observation would be the detection of the
boundaries between two of the phases above. These boundaries may be detected
with the observation of conventional metrics (loss, accuracy, recall, or precision)
using validation data. In Section 5.5, we discuss potential solutions to identify the
generalization phase during training in the SCA context.

5.3. RECENT RESULTS IN DEEP LEARNING-BASED PROFILED

SIDE-CHANNEL ATTACKS
This section provides an overview of recently published results on deep learning-
based SCA. Various types of deep neural networks have been used, and we summarize
what is state-of-the-art regarding the selection of neural network topologies. The
information contained in this section is a summary of recent results that mainly
target cryptographic primitives based on AES [9], RSA [10], and ECC [11, 12].

5.3.1. FROM MACHINE LEARNING TO DEEP LEARNING IN SCA
Machine learning techniques are quite successful in a lot of different fields,
such as image classification [13] or speech recognition [14]. Due to the shared
similarity between profiling SCA and supervised machine learning, researchers
started experimenting with machine learning techniques in profiled SCA. They
utilized standard machine learning techniques, such as Support Vector Machines
(SVMs) and Random Forests [15], neural networks [16], and, more recently, deep
learning [5, 17–19].

Deep learning is a class of machine learning where the learning algorithm (i.e.,
a deep neural network) extracts higher-level features from the raw input. Usually,
in the case of deep neural networks, it is considered that the neural network has
multiple layers. Therefore, multi-layer perceptrons (MLP) with more than one hidden
layer are deep neural networks. Some other examples of deep learning techniques
include deep belief networks (DBN), recurrent neural networks (RNN), convolutional
neural networks (CNN), and residual neural networks.

The first publication to explore deep learning-based profiling SCA results is from
Maghrebi et al. [17]. In this case, the authors applied MLP with one hidden layer (not
considered a deep neural network), a Stacked Auto-Encoder with three hidden layers,
and also introduced the application of CNNs for SCA. The authors also applied a
specific RNN architecture called a long short-term memory (LSTM) network with
two layers of 26 LSTM units and a Random Forest algorithm. Except for the Random
Forest algorithm and the MLP the authors used, other algorithms are considered
deep learning techniques. The authors also suggested hyperparameters tuning for
SCA with a genetic algorithm, as stated in the appendix of their paper. Since then,
there has been a variety of different architectures with different hyperparameter
settings. We provide an overview of the deep learning techniques applied to SCA
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and discuss state-of-the-art results.

5.3.2. DEEP LEARNING TECHNIQUES IN SCA
After the appearance of the first publication with deep learning results for SCA,
researchers started to investigate the benefits of well-known learning techniques,
such as regularization, visualization, hyperparameters optimization, and model
interpretation, to improve the attack performance.

Regularization techniques are used to avoid overfitting during the training phase.
Examples of regularization techniques are data augmentation, noise addition, weight
decay, dropout layers [20], and early stopping. In [5], the authors presented the first
results with data augmentation techniques for CNNs to bypass desynchronization in
side-channel measurements. The adopted techniques are based on random trace
shifting and trace warping during the training phase. This way, the trained CNNs
can generalize to side-channel measurements where the leaking samples appear in
random time locations due to desynchronizations caused by measurement setup or
countermeasures. Results achieved for protected AES implementations demonstrate
the benefits of these well-known regularization techniques. Kim et al. [7] explored
how additional noise can be used as a regularization for preventing overfitting,
and they also present their CNN architecture. Here, the authors compare the
performance of their CNN architecture to the CNN architecture introduced in [18]
paper. Also, the authors explore more datasets, and their neural network is larger in
the number of layers, indicating the benefits of more convolution layers for leakage
detection.

The selection of hyperparameters for deep neural networks is also explored in
some of the publications. In [18], the authors provide several results for different
CNN and MLP configurations and also introduce the open ASCAD dataset to serve
as a basis for further work on the SCA. The authors also tested Self-Normalizing
Neural Networks (SNN), but the performance compared to the MLP showed no
significant improvement. Considering how to develop an adequate CNN architecture
for SCA, the authors chose to test some state-of-the-art CNN architectures from the
image recognition field, such as VGG-16 [21], ResNet-50 [22], and Inception-v3 [23].
From the initial architecture, the authors performed tuning of the hyperparameters,
using guessing entropy as the metric to define the model. Another relevant
paper to mention is where the authors present a methodology for creating neural
network architectures for SCA application [19]. The paper introduces several CNN
architectures, each fine-tuned for certain characteristics of utilized datasets, showing
how the initial CNN architecture can be light-weighted by searching for appropriate
hyperparameters.

Visualization techniques are also explored for profiled SCA. These techniques
indicate the main features in input data that the trained model considers most
important for its classification decisions. For instance, Masure et al. [24] provide
results with gradient visualization. In [25], the authors compare the performance
of different visualization techniques. These results are discussed in more detail in
Section 5.4.5.

In the line of model interpretability, the work presented in [26] provides the
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first results with the Singular Vector Canonical Correlation Analysis (SVCCA) tool
to interpret what neural networks learn while training on different side-channel
datasets. All the aforementioned deep learning techniques provide different
perspectives for profiled SCA.

In the next section, we explore the main advantages of deep learning in comparison
to classical profiled attacks, such as template attacks or machine learning.

5.4. ADVANTAGES OF DEEP LEARNING FOR PROFILED

SIDE-CHANNEL ANALYSIS
In this section, we analyze the advantages of deep learning for profiled SCA
compared to classic techniques such as template attacks and traditional machine
learning. First, in Subsection 5.4.1, we discuss the fact that deep learning does not
require preprocessing or feature selection. Subsection 5.4.2 describes results that
indicate convolutional neural networks are less sensitive to trace desynchronizations.
Subsequently, Section 5.4.3 discusses results indicating that deep neural networks can
learn high-order leakages. Then, we explain how deep learning can take advantage
of the domain knowledge in Subsection 5.4.4. Finally, Subsection 5.4.5 describes
various attribution methods (or visualization techniques) for leakage detection.

5.4.1. SIDE-CHANNEL ANALYSIS WITHOUT PREPROCESSING

Template attacks (TA) [4] are commonly considered one of the most powerful
side-channel attacks from an information-theoretic point of view. However, for
template attacks to be successful in practice, one needs to choose some special
samples as the interesting points in actual side-channel traces [27]. These points are
usually referred to as points-of-interest (POIs).

Much research has been done on choosing POIs that lead to the most successful
TAs (see [28]). This choosing process is often called POIs selection, and many
different approaches have been introduced over the years. However, it is unknown
whether these approaches to choosing interesting points will lead to the best
classification performance of TAs. For example, it is hard to quantify whether all
useful points for TA have been chosen. In general, we do not know which approach
is the best for all possible devices and implementations, as the proposed techniques
are only validated experimentally, and no universally optimal solution has been
presented. Moreover, significant processing of the samples, including, most notably,
alignment, is necessary before both POIs selection and TAs are run.

Related to the POI selection is the problem of feature extraction from the traces.
The goal of the extraction is to find the most leaking components in the traces and
filter out the noisy components. A significant amount of effort has been put into this
research direction. For example, Principal Component Analysis was used to extract
features and use them from TA [29]. Feature selection is also necessary for machine
learning techniques like SVM, random forests, or decision trees.

The significant problem with the POIs selection and feature extraction techniques
is that they are not an integral part of TA and introduce additional complexity. In
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comparison, the techniques based on deep learning suffer to a much lesser extent
from these problems. In particular, feature extraction is a part of the problem that
deep learning aims to solve. The input layer of a deep neural network directly
receives the side-channel trace interval corresponding to the interval of interest. It is
expected that during training, the backpropagation algorithm (often using stochastic
or adaptive gradient descent) will learn network parameters (e.g., weights and biases)
in a way that only some of the input features will be relevant in the neural network
classification decisions.

As a result, an adversary does not need to identify leaking samples (or features)
beforehand, as this process is automatically done by the backpropagation algorithm.
Of course, the neural network selects input features representing points of interest as
long as they can fit the leakage contained in the side-channel measurements. During
the training process, it is possible that the neural network overfits the training data,
and poor generalization is provided. In this case, the neural network will mostly
make a decision based on different input features for each classified side-channel
trace, meaning that automated POI selection was not successfully made. The most
recommended method to address overfitting problems is regularization.

5.4.2. BYPASSING DESYNCHRONIZATION

Well-synchronized traces can significantly improve the correlation between the
intermediate data and the trace values. Therefore, the alignment of the traces is an
essential step to enhance the efficiency of the side-channel analysis. Static alignment
is the most commonly used approach to align the traces. Usually, an attacker should
select a distinguishable trigger/pattern from the traces so that the following part
can be aligned using the selected part as a reference. There are two limitations to
this approach. First, the selected trigger/pattern should be distinctive so that it will
not be obfuscated with other patterns and lead to misalignment. Second, when
countermeasures such as random delay interrupts are implemented, the selected
trigger should be sufficiently close to POIs to minimize the countermeasure effect.
From a practical point of view, a good reference that meets both limitations is not
always easy to find. Although the other optimized alignment methods, such as
Elastic Alignment [30] and Rapid Alignment Method [31], could be candidates to
reduce the effect of the countermeasures, the rising of the preprocessing cost makes
the traces synchronization a challenging task.

Deep learning provides alternative approaches to bypass desynchronization, which
can be realized by either trace preprocessing or a direct attack on the misaligned
traces. For traces preprocessing, autoencoder (AE) [32], an unsupervised-learning
model well-known for the ability for feature extraction [33, 34], could be applied
for denoising purpose and lead to an improvement of attack efficiency in both
non-profiling [35] and profiling side-channel analysis [36]. Specifically, to train an AE
for denoising purposes, the input and output are represented by noisy-clean trace
pairs. A well-trained denoising AE could keep the most representative information
(i.e., trace leakage) in the latent space while neglecting the less important features,
such as random noise. Once the denoising AE is trained, much cleaner traces can be
recovered by feeding noisy traces to the input of the AE. Back to desynchronization,



5

118 5. DEEP LEARNING ON SIDE-CHANNEL ANALYSIS

it can also be considered as a type of noise that introduces variation in the
time domain. As stated in the paper [36], by training the denoising AE with a
limited amount of traces, the reconstructed traces can lead to a good performance
comparable to the original one.

In terms of deep learning-based side-channel analysis, several works have presented
their effectiveness compared to classical methods [18, 37, 38]. There are two reasons
in general: 1) deep learning-based attacks do not require critical preprocessing
(i.e., realignment), as it is covered in the learning phase; 2) deep learning-based
attacks automatically reduce the dimension of the traces by combining the raw
features non-linearly with the interconnection of neurons and transferring them
to the low-dimensional representations. Thanks to these two characteristics, the
effect of misalignment can be reduced during network training. Among different
deep learning models, convolutional neural networks (CNNs), thanks to their spatial
invariance property, were demonstrated to be the most preferred architecture in
coping with desynchronization and the random delay countermeasure [18]. To
further enhance the capability of CNN in handling the desynchronization, two
possible techniques could be applied: first, exploit the leakage in traces’ frequency
representation by transferring the traces with short-time Fourier transform [39];
second, applying data argumentation, such as artificially adding random delays,
clock jitters [5] or Gaussian noise [40], as it could help increase the diversity of the
training sets and balance the class distribution of the profiling data.

In summary, compared with conventional profiling attack methods, deep learning
architectures are more resilient to variation in the time domain. Together with
their attacking performance compared with classical profiling attack methods, deep
learning becomes a preferable method for profiled side-channel analysis.

5.4.3. DEEP NEURAL NETWORKS CAN LEARN SECOND-ORDER LEAKAGES

Side-channel attacks exploit the dependency between the power consumption of a
cryptographic device and the intermediate values of the implemented cryptographic
algorithm. Side-channel countermeasures try to obfuscate the aforementioned data
dependency. In particular, masking countermeasures achieve it by randomizing the
key-dependent intermediate values of the algorithm. The goal is to make the power
consumption of the device independent of the intermediate values. This is achieved
with the Boolean operations between random values (masks) and intermediate data.
At the end of encryption/decryption execution, the masks are removed from the
result [41–43].

Conversely, with the inclusion of deep learning techniques in the side-
channel analysis field, masked cryptographic implementations have a new threat:
neural networks have shown their capability to break masked cryptographic
implementations. Up to now, publication results only demonstrated the capacity
to break protected software implementations in the profiled setting. Benjamin
Timon in [44] proposed a deep learning solution for non-profiled attacks against
masked AES implementations. Even if the attack does not require profiling on an
identical device, it still requires the training of a deep neural network for each key
candidate, drastically increasing the attack complexity. The results provided in [44]
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demonstrate the efficiency of their method against ASCAD dataset [18] and custom
ChipWhisperer implementations. However, it is difficult to assume that this method
will not be restricted by its high complexity limitations when applied to different
devices. Nevertheless, it was demonstrated with input-based sensitivity that deep
neural networks can fit high-order leakages. Figure 5.1 provides results from [44]
demonstrating that deep neural networks fit high-order leakages when the training
set is labeled based on the correct key candidate.

(a) Results on ChipWhisperer AES implementation.

(b) Results on ASCAD AES implementation.

Figure 5.1.: Results from [44] (Figure 12) illustrating the ability of deep neural
networks to fit high-order side-channel leakages.

Masure et al. [24] used loss function-based input activation gradients to
demonstrate that convolutional neural networks can learn second-order leakages, as
indicated in Figure 5.2. Input activation gradients based on loss function indicate
the samples where the loss function is more sensitive. As Figure 5.2 indicates, the
input activation gradients are higher for the samples representing the processing of
mask values.

Although there are no formal explanations for the fact that deep neural networks
are able to fit second-order leakages, they actually combine multiple samples in
order to make their decisions. As stated in Section 5.4.1, deep neural networks can
learn high-order representations from data, and it is expected that these complex
learning systems would be able to learn high-order side-channel leakages.
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Figure 5.2.: Results from [24]. Input activation gradients indicate that CNNs can fit
second-order leakages.

5.4.4. TAKE ADVANTAGE OF THE DOMAIN KNOWLEDGE

Domain knowledge (DK) [45] assumes that the information domain can be used as
part of the dataset to improve the generality (to different datasets) and robustness
(towards noise interference) of classifiers. The usage of DK neurons was first
introduced to the side-channel domain by Hettwer et al. [46] in 2018. The authors
provided the plaintexts as additional information into the neural network to learn
the leakage regarding the secret key directly. Specifically, by concatenating the
traces’ latent representation (a dense layer of CNN) with the one-hot-encoded
plaintexts at the byte level, better results can be obtained when performing
attacks. Figure 5.3 illustrates this procedure: the features were extracted from
the input by the convolution layers, which are then combined with DK neurons
containing the plaintext information to enhance the classification performance.
Following this, researchers found that combining the DK neurons (bit-encoded
plaintexts) with the denoising autoencoder could reduce the effect of the masking
countermeasure [35]. Indeed, merging domain-specific information with extracted
features of the convolution layers enables the network to converge to different
statistics at the decision level [47]. In other words, leakage traces are generated
conditionally on the provided plaintext and the secret key. Although the correlation
between plaintext and secret key may not exist, the extra information could still be
helpful in extracting more meaningful features. By applying DK that may not be
limited to plaintext (i.e., ciphertexts), we see the potential of DK in performing more
powerful attacks.

5.4.5. VISUALIZATION TECHNIQUES TO IDENTIFY INPUT LEAKAGE

As we have already mentioned, profiling attacks are classification problems, and
in this type of problem, it is always meaningful to have a method to visually
interpret how the learning model is using the features to conduct the classification.
Visualization techniques are very useful for manufacturers when evaluating the



5.4. ADVANTAGES OF DEEP LEARNING FOR PROFILED SIDE-CHANNEL ANALYSIS

5

121

Figure 5.3.: Image from [46]. A convolutional neural network with domain knowledge
in a fully connected layer.

side-channel security of their design. This is a useful fact to take advantage of.
Recall that an important aspect of evaluating a supposedly secure device is pointing
out where the leakage is being generated. This way, it is possible to propose
modifications and recommendations to limit adversarial possibilities. Knowing where
the leakage is generated becomes crucial to improving security and eliminating the
main flaws in crypto implementation.

In general terms, visualization is conducted by analyzing what input features
(given by a neuron in the input deep neural network layer as a one-to-one mapping)
have more influence in classification during training. After the activation of the
neurons, the learning algorithm back-propagates the error to update the weights
in those neurons until they reach the first layer. In [24], the authors proposed
the visualization of input activation gradients as a technique to characterize the
automated selection of points of interest by deep neural networks. The result is a
vector of gradients computed by the backpropagation algorithm as the derivative
of the loss function with respect to the input activation. Gradient visualization
is the technique that computes the value of the derivatives in a neural network
regarding the input trace, which is then used to point out what feature needs to be
modified the least to affect the loss function the most. In [44], the authors proposed
the same solution, defined as sensitivity analysis, and they used it in the context
of non-profiled side-channel analysis where input activation gradients are used as
distinguishers. The input activation gradient method has already been used as a tool
to show that neural networks can actually fit high-order leakages (see Section 5.4.3).

Another technique employed for this purpose is Layer-wise Relevance Propagation
(LRP). LRP propagates the classification score through the network until the first
layer and then conducts the one-to-one mapping [48]. The work in [49] applied
a method gradient visualization to show how MLP could be used for the Leakage
Assessment Methodology (see Section 5.7). In [25], authors used the LRP technique
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to identify which samples of the power trace have a greater influence on the learning
process. They compared three attribution methods (Saliency Maps [50], LRP, and
Occlusion [51]) on three different datasets, showing how LRP is the most suitable
for finding POIs. Finally, one of the most recent approaches is to use heatmaps
(or feature maps) to interpret the impact of filters (also known as convolutional
matrices or kernels in the context of CNNs) in order to adapt the neural network
model according to how the features are selected [19].

5.5. METRICS FOR DEEP LEARNING-BASED PROFILED SCA
Supervised classification tasks require correct metrics to determine the performance
of the algorithm as well as to measure its learning capacity. Accuracy, precision,
recall, AOC-ROC, and log-loss are commonly used metrics in supervised classification
tasks for many application domains. Computer vision and natural language
processing are among applications where the classification accuracy must be very
high to solve the underlying problem. Each element in a test set is classified
separately. Thus, we are only interested in the generalization capacity of the trained
algorithm as long as it provides a high classification accuracy. In particular, deep
neural networks have performed extremely well over a wide variety of supervised
classification tasks.

When a profiled side-channel attack makes use of a deep neural network as
the learning algorithm, we are interested in verifying how effective these highly
complex learning systems are in order to learn side-channel leakages and retrieve the
cryptographic secret by classifying side-channel traces according to a leakage model.
If we strictly consider a side-channel attack on an AES implementation (where the
attacker trains a profiling model to attack each separate key byte), a profiled attack
is theoretically able to recover the correct target key byte with a single side-channel
measurement. This scenario would be possible if the identity leakage model of S-box
output in the first encryption round is defined as the leakage function. However,
real side-channel measurements are noisy, and several (from hundreds to thousands
of) traces are required to conclude attack capability. This is done by summing up
the output class probabilities for each classified side-channel trace, in which the
selected output probability value for each trace corresponds to the class associated
with the guessed key. For each key guess candidate, we compute a probability
that key guess k is correct, P [k = k∗], according to Equation (5.1). Therefore, in a
situation where a deep neural network is trained in a way that it can fit the existing
leakages, classifying multiple traces and combining their predicted class probabilities
is necessary to estimate the success rate or guessing entropy for a certain amount of
traces.

Sometimes, the number of classified side-channel traces in a test or attack
phase needs to be very large to reach a consistent conclusion about the model
generalization. In such a scenario, the output class probability for the true label
(or class) is not always the highest value in the output layer. As a consequence,
the overall test accuracy, precision, or recall will stay close to random guessing. In
the same way, the cross-entropy loss function for the test set also does not inform
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enough about the model generalization. This brings us to an important question:
what metric should a deep learning-based SCA consider? The authors of [52]
demonstrated that conventional machine learning metrics are not very informative
for the side-channel analysis domain, concluding that the best metrics are guessing
entropy and success rate. In [53], the authors proposed a didactic analysis of output
class probabilities obtained by attacking protected AES targets. They once more
provided evidence that guessing entropy and success rate become the main metrics
for deep learning-based profiled SCA. Based on that, the analysis can be improved in
many different directions. Analyzing the guessing entropy during the processing of
training epochs can lead to identifying an efficient early-stopping metric. As a result,
the neural network will be regularized for side-channel analysis. This is similar to
what has been recently proposed in [54].

Therefore, to improve side-channel leakage detection with deep learning, side-
channel metrics at a validation level still offer the best alternatives. The selection of
correct metrics in deep learning profiled SCA is also important in hyperparameter
tuning algorithms. As we discuss in the next section, these optimization algorithms
converge according to a metric direction (minimum or maximum value), and if the
selected metric is not consistent with SCA, the optimization algorithm may have
convergence problems.

5.6. TUNING NEURAL NETWORK HYPERPARAMETERS FOR

SCA
This section discusses the problem of selecting efficient hyperparameters for deep
learning-based profiled SCA. The performance of deep learning-based profiled
side-channel attacks depends greatly on the selection of hyperparameters for neural
network topology. Different from other profiled attack methods, such as template
attacks and machine learning-based attacks, deep neural networks have tenths of
hyperparameters to be defined.

The definition of hyperparameters can be strictly related to the attacked
dataset. Several aspects in the dataset may directly affect the selection of specific
hyperparameters: countermeasures, noise levels, number of measurements, number
of points in a side-channel measurement, or trace and appropriate leakage model.
This already means that one of the main challenges in deep learning-based profiled
SCA is the difficulty (if not impossible task) of finding a universal deep learning
model that works well on a variety of datasets.

Hyperparameter search is a common task in all kinds of deep learning applications.
For profiled side-channel attacks, the situation is not different. Usually, several
combinations of hyperparameters are evaluated against a dataset, and the best
possible combination that solves the problem (i.e., recovers the target key byte(s))
is assumed as an optimal model for the underlying task. Depending on the
dataset features and target implementation details, manually finding efficient
hyperparameters can be very hard or near impossible. Therefore, there are two
main paths to solve this problem: by deeply understanding the role of specific
hyperparameters and their effect on specific datasets or, more recommended,
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by adopting an optimization algorithm to automatically find the best possible
configuration given restricted computation time and resources.

Even if the second path is chosen, the analyst has to set hyperparameter ranges
and possible options to be searched by the optimization algorithm. If the search
range for a specific hyperparameter is completely wrong, it is very likely that the
search or optimization algorithm will never identify an efficient combination of
hyperparameters that solves the underlying problem. This can be a serious problem
when evaluating the target with profiled SCA, as the analyst can draw wrong
conclusions about the security of the device. If deep learning-based attacks cannot
recover sensitive information from side-channel leakages, one of the main reasons
can be the wrong definition of a deep neural network architecture.

If a dataset is too large (with a few million side-channel measurements) and strong
countermeasures are present, we expect that a larger model is chosen. This can
result in MLP or CNN with several hidden layers, similar to competitive architectures
such as VGG-16. However, an appropriate definition of the size of the neural network
(and consequently the number of trainable parameters) is insufficient to ensure
its efficiency. A very large deep neural network can overfit even large datasets.
This means that alternative solutions to restrict the overfitting to the training set
are necessary to improve performance in terms of generalization. Widely adopted
techniques to improve generalization are regularization techniques, and some of
them can directly affect the selection of hyperparameters and their ranges in a search
problem. Some hyperparameters are directly related to the way weights and biases
are updated during network training. In [55], the authors investigate the impact
of different widely used optimizers in profiled SCA. Their results indicate different
performances concerning different amounts of profiling traces and neural network
sizes. Moreover, they demonstrate that some optimizers (Adam and RMSprop) tend
to provide fast convergence but have more chances to overfit the network. For other
cases, Adagrad and Adadelta optimizers are appropriate for large network models
and large datasets and tend to work better when large amounts of training epochs
are considered while offering smaller chances to overfit. Although not investigated
in [55], learning rate, batch size, and the number of epochs are also training
hyperparameters that greatly influence the attack performance. The learning rate
scheduler (by changing the learning rate during training) is an important artifact to
reduce overfitting and stabilize the generalization even if a large number of epochs
is considered.

A viable approach when manually tuning hyperparameters is their modification
according to observed metrics. As discussed in Section 5.5, accuracy and loss
functions are inconsistent metrics to evaluate attack performance (key recovery).
However, these two metrics can still be used to analyze how fast a neural network
overfits the training data. If this happens very early in the training phase while
the guessing entropy or success rate indicates no key recovery, the neural network
model is probably too large for the evaluated dataset. Alternative solutions are to
increase the number of training or profiling traces, reduce the size of the network, or
adopt regularization techniques (e.g., early stopping, data augmentation, noisy/batch
normalization layers, regularization L1/L2, etc.). Other SCA options, such as leakage



5.6. TUNING NEURAL NETWORK HYPERPARAMETERS FOR SCA

5

125

models and the number of attack/validation traces, also directly influence the
learning capacity of the model. For instance, to ease the computation cost, it is
crucial to verify if searching for optimal hyperparameters or changing the amount of
profiling traces is more efficient. The same principle may apply to the number of
attack traces, as a trained model could require a large amount of traces to be able
to select the correct key as the most likely one. Therefore, this trade-off between
the number of profiling traces, the number of attack traces, and hyperparameters
needs to be considered. In order to analyze the effect of each of the aforementioned
aspects, the authors in [56] propose a new framework where they explore the
number of traces and hyperparameter tuning experiments required in the profiling
phase such that an attacker is still successful. One important benefit from [56] is
the identification of what is the main attack component (hyperparameters, number
of attack traces, or number of profiling traces) that affects mostly the performance
of the profiled attack. With such a framework, an analyst can explore the
minimum amount of (profiling and attack) traces if the number of hyperparameter
combinations can be very large due to little limitations in time complexity.

Some hyperparameter selection techniques in the deep learning domain also apply
to the specific SCA field, such as Grid and Random Search Optimization [18, 19,
38, 57, 58]. Regarding Grid Search Optimization, a step-wise search is defined
by setting a range of values for specific hyperparameters. Specifically, to get the
optimal parameter combination, the network training is implemented sequentially
for every value in the grid. Thanks to its simplicity, Grid Search Optimization is
the most widely (although not efficient) used strategy for hyperparameter tuning in
SCA. For instance, in [18], the authors adopted Grid Search to experimentally show
the process of choosing each hyperparameter for MLP and CNN and presented the
impact of each hyperparameter on the performance of SCA. Besides, Grid Search is
proved to be reliable in low dimensional spaces [58].

For Random Search Optimization, similar to its counterpart, a fixed range of values
must be defined for each hyperparameter. Then, a set of hyperparameters is chosen
randomly from their range as a combination, which is applied to the neural network
for evaluation. The authors in [38] used Random Search to find the most optimized
CNN model for the datasets by tuning 13 hyperparameters. Indeed, Random Search
Optimization can be implemented automatically with high efficiency in selecting the
optimal hyperparameters. However, the impact of each hyperparameter is not taken
into consideration [18, 57].

Other optimization methods were also proved efficient in tuning the deep learning
model. In [19], architecture hyperparameters were chosen by using the visualization
techniques to understand how each hyperparameter impacts the efficiency of the
CNN, and each optimizer hyperparameter was selected by Grid Search from a
finite set of values. Moreover, Evolutionary algorithms, such as genetic algorithms
and simulated annealing, could also provide better solutions as they implemented
metric-based optimizations. Note that Bayesian optimization and Gaussian processes
could provide optimal solutions when the training effort is very expensive, which is
the case of profiled side-channel analysis. For that, a proper metric needs to be
defined in order to correctly judge the performance of a deep neural network for
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profiled attacks, as discussed in Section 5.5.

5.7. DIFFERENT APPLICATIONS OF DEEP LEARNING TO

SIDE-CHANNEL ANALYSIS
The feasibility of deep learning for side-channel analysis goes beyond the design and
testing of new threats. In this section, we summarize different applications of deep
neural networks on side-channel attacks that differ from using deep neural networks
as a supervised, trained classifier.

DEEP LEARNING IN LEAKAGE ASSESSMENT

To the best of our knowledge, the work [49] was the first to present a version
of leakage assessment methodology, where the mathematical foundation involves a
function inferred by a learning algorithm. The architecture of the neural network
model used could be categorized as a multi-layer perceptron shallow network.
Considering its relation with the neural network, we include this work as a different
application of deep learning for side-channel. The task of the learning algorithm
is set for classification, where two types of classes are aimed to be distinguished.
To do so, the acquisition procedure in the methodology remains the same, and the
classes are defined regarding the combination of input data, i.e., random class and
fixed class. Nevertheless, an extended version using more than two classes is also
possible. The evaluator can compose different sets using different values of fixed
data and group them by an identifier, creating more than two classes. Although
experiments with more than two classes are not conducted in the original work, we
could think that by doing so, a modification in the architecture might be required to
deal with the overfitting that having more classes could originate.

Leakage detection also involves analyzing where the leak is located graphically.
Having computed the statistical moments using even Welch’s t-test or Pearson’s
χ2-test, a plot pointing out where the spikes exceed a fixed threshold is depicted,
showing what operation of the crypto-algorithm is being compromised. This is a
particularly easy task for the statistical-based approaches. In the case of the learning
algorithm, dealing with detecting the time sample where the leak happens is trickier.
Authors dealt with this by using sensitivity analysis [59]. By using this measure, it is
possible to backtrack the activated neurons until the most relevant time samples for
the classification task appear. Using this measure, it is still not possible to appreciate
a p-value that exceeds the threshold where the leakage happens, as is the case for
non-neural network approaches. The only information it brings is the time samples
where the leakage is located.

A DEEP NEURAL NETWORK AS A SIDE-CHANNEL DISTINGUISHER

Timon in [44] presented the first non-profiled deep learning solution to attack
protected AES implementations. The analysis leads to the conclusion that a trained
deep neural network is used as a key distinguisher in a non-profiled setting. For
that, the authors train an identical deep neural network architecture for each key
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byte candidate. Separate training is then conducted based on training traces labeled
according to the current key guess. In a divide-and-conquer strategy usually applied
to AES, this analysis would require at least 256 training phases to recover a single
key byte. The authors demonstrated that the complexity is not too high for some
specific targets. However, besides the great contribution offered by this paper, the
complexity can easily escalate beyond control if training a single model for a single
key byte candidate requires too much time.

DEEP LEARNING AGAINST PUBLIC-KEY IMPLEMENTATIONS

State-of-the-art public-key implementations, such as RSA or ECC-based protocols,
are nowadays protected with randomization techniques that make single trace
attacks the only feasible side-channel solution. These attacks are commonly referred
to as horizontal attacks. In [60], the authors proposed a supervised single trace
deep learning attack on a real RSA target. Weissbart et al. in [61] applied CNNs
to single trace EdDSA implementations based on Curve25519. These two reported
applications of deep learning to public-key designs are supervised techniques and
require the knowledge of random blinding and secret variables to label the traces. As
an example of a realistic scenario application, the adversary would need access to the
random number generator in a chip to be able to label the single traces for training
purposes. The main difference from the application on symmetric crypto, where
class probabilities from multiple traces are combined in a summation probability for
each key candidate, classifying single traces resort again to conventional supervised
classification metrics to analyze the attack results. In [62], authors proposed a
combination of horizontal attack to deep learning techniques. Their proposed
framework can break protected public-key implementations with CNNs by assuming
that an adversary can provide initial labels (with a large number of errors) to a trace
set after applying an unsupervised horizontal attack. In the end, the attack from [62]
is kept unsupervised as no knowledge about private key bits is assumed for the
whole framework application.

5.8. CONCLUSIONS AND PERSPECTIVES
This chapter provides a general overview of the state of the art in deep learning-based
profiled SCA. The main advantages of deep learning against tradicional methods
were described. Important discussions about the correct usage of metrics in
a deep learning-based attack are addressed, as are the main concepts involving
hyperparamater tuning in SCA domain.

The research on deep learning techniques for side-channel analysis still leaves
several open questions. The main challenge in profiled SCA is the ability of a trained
model to generalize to different devices. In deep learning-based SCA, we suggest
that this problem could be addressed with efficient regularization techniques that
are able to understand the variations that need to be applied to training traces to
improve generalization.

Selecting an efficient metric for deep learning-based profiled SCA still poses
difficulties for security evaluators. As conventional deep learning metrics may be
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meaningless in scenarios with SCA countermeasures, SCA metrics remain a solution.
However, the calculation of guessing entropy or success rate during the training
phase can face complexity drawbacks, as these calculations can involve thousands
of attack traces. Therefore, interesting research could focus on defining efficient loss
functions that are based on SCA paradigms.

Finally, one of the main difficulties found by the SCA community in this domain
is to propose a non-profiled attack solution based on training a single deep neural
network. Auto-encoders are usually suggested as unsupervised methods. However,
their efficiency for non-profiled SCA is still an open research question.
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6
A COMPARISON OF WEIGHT

INITIALIZERS IN DEEP

LEARNING-BASED SIDE-CHANNEL

ANALYSIS

The usage of deep learning in profiled side-channel analysis requires a careful
selection of neural network hyperparameters. In recent publications, different network
architectures have been presented as efficient profiled methods against protected AES
implementations. Indeed, completely different convolutional neural network models
have presented similar performance against public side-channel traces databases.
In this work, we analyze how weight initializers’ choice influences deep neural
networks’ performance in the profiled side-channel analysis. Our results show that
different weight initializers provide radically different behavior. We observe that
even high-performing initializers can reach significantly different performance when
conducting multiple training phases. Finally, we found that this hyperparameter
is more dependent on the choice of dataset than other, commonly examined,
hyperparameters. When evaluating the connections with other hyperparameters, the
biggest connection is observed with activation functions.

This chapter has been published as H. Li, M. Krček, and G. Perin. “A Comparison of Weight
Initializers in Deep Learning-Based Side-Channel Analysis”. In: Applied Cryptography and Network
Security Workshops. Ed. by J. Zhou, M. Conti, C. M. Ahmed, M. H. Au, L. Batina, Z. Li, J. Lin,
E. Losiouk, B. Luo, S. Majumdar, W. Meng, M. Ochoa, S. Picek, G. Portokalidis, C. Wang, and
K. Zhang. Cham: Springer International Publishing, 2020, pp. 126–143. ISBN: 978-3-030-61638-0.
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6.1. INTRODUCTION

There has been rapid progress in profiled side-channel attacks (SCAs) based on
machine learning techniques in recent years. These techniques proved to be very
successful by outperforming some of the classical attacks [2, 3], like template
attacks [4]. Around a decade ago, machine learning algorithms like SVM [5] and
Random Forest [6, 7] represented the standard choice for machine learning-based
SCA.

More recently, deep learning-based SCAs started when Maghrebi et al. demonstrated
the strong performance of several neural network types, most notably, convolutional
neural networks [8]. Despite many successes, there are still many difficulties (and
unanswered questions) when training deep neural networks, especially those related
to how to tune hyperparameters. This tuning phase can highly influence the
model’s performance, so it is important to properly address the issue and have
a good strategy for selecting the hyperparameters. Hyperparameters are all those
configuration variables external to the model, like the number of hidden layers in
a neural network. The parameters are the configuration variables internal to the
model and estimated from data (e.g., the weights in a neural network).

As there are many hyperparameters, and numerous possible combinations that can
be explored, selecting proper hyperparameters can be a very time-consuming process.
Researchers commonly approach this problem by selecting the hyperparameters they
deem relevant and then conducting a grid search. While such an approach works
well (as confirmed by successful attacks on various AES implementations), there are
also potential drawbacks. Most notably, grid search skips many possible values while
limiting the setup to only certain hyperparameters, completely disregards other
hyperparameters’ influence. In [9], the authors proposed a methodology to select
hyperparameters that are related to the size (number of learnable parameters, i.e.,
weights and biases) of layers in CNNs. This includes the number of filters, kernel
sizes, strides, and the number of neurons in fully-connected layers. In [10], the
authors conducted an empirical evaluation for different hyperparameters for CNNs
on the ASCAD database. Kim et al. investigated how adding noise to the input (thus,
serving as regularization) improves the performance of profiled SCAs [11], which is a
technique that can be used with any neural network architecture.

In this work, we focus on the weight initialization strategies for CNNs in SCA, and
we explore its influence on the performance of the attacks. Thus, we investigate
a hyperparameter, i.e., selecting different weight initializers directly responsible for
weights parameter. Our experiments show that most of the weight initializers work
well. More precisely, there is a decent selection of weight initializers one can use
in deep learning-based SCA and expect good results. Next, our experiments show
significant differences concerning key rank results, as within one guessing entropy
experiment, it is common to obtain both perfect attack and attack that does not
work at all. Interestingly, our results indicate that independent training phases result
in significantly different guessing entropy performances. This means that it is not
enough to consider only one training experiment, but one must conduct a proper
statistical analysis for training and testing phases. We evaluate the evolution of
weights and biases concerning the progress of epochs, and we observe most changes
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in Convolutional and Batch Normalization layers. In contrast, the fully-connected
layers (those responsible for classification) remain almost constant throughout the
training phase. Finally, we examine the connection between weight initializers and
other hyperparameters, and we determine that the biggest influence comes from the
combination of activation functions and weight initializers. This indicates that future
experiments should consider both hyperparameters.

6.2. BACKGROUND

6.2.1. SIDE-CHANNEL ANALYSIS

Side-channel analysis is a type of implementation attacks, where instead of attacking
the algorithm itself, adversary attacks the physical device that implements the
algorithm [12]. Profiled side-channel attacks are the most powerful type of
side-channel attacks as they assume that the attacker has access to an identical
copy of a device to build a profile. These attacks have two phases, namely, profiling
and online attack. The profiling phase is a modeling problem, for which machine
learning algorithms perform well. The online phase is the actual attack on a similar
device to recover the secret information and is done using the profiling phase’s
model.

6.2.2. MACHINE LEARNING AND SIDE-CHANNEL ANALYSIS

Machine learning is a subset of artificial intelligence and is based on learning
specific patterns from given data. Since this approach is data-driven, it does not
require explicit instructions and rules. Therefore, such algorithms work well in
modeling problems. Currently, neural networks are a prevalent machine learning
technique in SCA, and in our experiments, we investigate deep learning. Deep
learning represents methods based on artificial neural networks, and some of the
deep learning architectures are multilayer perceptrons (MLPs), recurrent neural
networks (RNNs), and convolution neural networks (CNNs). In our experiments, we
concentrate on CNNs from [9] and [11]. We opt not to consider MLP as there are less
“accepted” MLP architectures in the literature, and the number of hyperparameters
is more limited, which makes it possible to include weight initialization in the
hyperparameter tuning phase.

To understand weight initializers, we first explain neurons, the base building block
of artificial neural networks. Neuron takes input values and calculates the weighted
sum using the weight matrix. For a neural network to learn nonlinear functions and
models, nonlinear activation functions are applied to the weighted sum. Output of
one neuron is described with the equation y = f (b +∑n

i=1 xi wi ), where, the input x
is of size n, w are the weights, b the bias and f is the activation function. Bias is
also a weight for an input x0 with an assigned value of 1. The equation takes a form
y = f (

∑n
i=0 xi wi ) where x0 = 1 and w0 = b. This calculation is done in all neurons of

one layer, so we can describe it with matrices, where features of the input samples
can be arranged as columns or rows. In Keras, the features are arranged as columns,
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and in this setting the equation equals:

Y = X∗W+B, (6.1)

where X is the input, W is the weight, and B is the bias matrix. The weight matrix
of a layer l is a matrix of dimension (size of layer l −1, size of layer l ), while the
bias matrix is (1, size of layer l ), with the size of the layer being the number of
neurons in the layer. Weight initializers are strategies for setting the initial values
of a weight matrix for a neural network layer. Later, in the training phase during
back-propagation, the weights in the weight matrix are adjusted with the selected
optimization algorithm. Commonly used optimization algorithms are Stochastic
Gradient Descent, RMSprop, and Adam [13], which we use in our experiments.
Here, we explore different weight initialization strategies and how they impact the
performance of deep learning-based SCA.

6.2.3. WEIGHT INITIALIZERS

As mentioned, weight initializers represent how the initial values of a neural network
layer’s weight matrix are set. It is believed that neural networks are very sensitive
to the initial weights [14]. When the deep learning algorithm was first successfully
proposed, it was common to initiate weights with Gaussian noise, setting the mean
equal to zero, and the standard deviation to 0.01. This way of initializing weights was
not enough to train deep neural networks because of problems, such as vanishing
gradients, exploding gradients, or dead neuron [14, 15], which significantly hampered
its development. In 2010, Glorot and Bengio [16] analyzed the problem systematically
and proposed a formula to initialize weights depending on the number of input
and output units (neurons). Glorot initializer works well in many cases and is still
popular today. In 2015, He et al. [17] put forward that Glorot initializer does not
work with well ReLU activation function, and extended the formula to meet ReLU
based neural networks through only using the number of input units and increasing
the scaling by

p
2. As more people have devoted themselves to the study of weight

initialization, various methods have appeared. In general, these methods can be
divided into two categories: Zeros and Ones initialization, and Random initialization.

Zeros and Ones Initialization. With all weights initialized to 0 (1), all weights are
the same, and the activation in all neurons is also the same. That way, the loss
function’s derivative is the same for every weight in a weight matrix of a layer.
When all weights have the same value, in all iterations, this makes hidden layers
symmetric. Every neuron of the layer computes the same function, so the model
behaves like a linear model.

Random Initialization. All weight matrix values are set to random numbers,
usually from a normal or uniform distribution. As mentioned, issues with random
initialization are vanishing and exploding gradients. In vanishing gradients, weight
update is minor, which results in slower convergence, while in exploding gradients,
large gradients can result in oscillation around the optimum.
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For deep networks, heuristics can be used to initialize the weights depending on
the nonlinear activation function. Heuristics set the normal distribution variance to
k/n, where k is a constant value that depends on the activation function, and n is
the number of input nodes to the weight tensor or both input and output nodes of
the weight tensor. This is adjusted to a uniform distribution, which can be seen in
the provided list of initializers from Keras library [18]. While these heuristics do
not entirely solve the exploding/vanishing gradients issue, they help mitigate it to a
great extent. Initializers with explained heuristics are LeCun, Glorot/Xavier, and He
initializers.

Different weight initializers available [19] in Keras are listed below with f an_i n
being the number of input units in the weight tensor and f an_out the number of
output units in the weight tensor.

• Zeros: initializes weights to 0.
• Ones: initializes weights to 1.
• Constant: initializes weights to given constant, default is 0.
• RandomNormal: initializes weights with normal distribution, mean = 0,

stddev = 0.05.
• RandomUniform: initializes weights with uniform distribution, mi nval =
−0.05,maxval = 0.05.

• TruncatedNormal: similar to RandomNormal except that values more than two
standard deviations from the mean are discarded and redrawn.

• VarianceScaling: adapts scale to the shape of weights, default values are
scale = 1,mode =′ f an_i n′ and normal distribution.

• Orthogonal: random orthogonal matrix, default value of multiplicative factor
to apply to the matrix is 1.

• Identity: identity matrix, multiplicative factor again 1.
• lecun_uniform: uniform distribution within [-limit, limit] where limit is

sqr t (3/ f an_i n).
• lecun_normal: truncated normal distribution centered on 0 with stddev =

sqr t (1/ f an_i n).
• glorot_normal: truncated normal distribution centered on 0 with stddev =

sqr t (2/( f an_i n + f an_out )).
• glorot_uniform: uniform distribution within [-limit, limit] where limit is

sqr t (6/( f an_i n + f an_out )).
• he_normal: truncated normal distribution centered on 0 with stddev = sqr t (

2/ f an_i n).
• he_uniform: uniform distribution within [-limit, limit] where limit is sqr t (

6/ f an_i n).

6.3. EXPERIMENTAL SETUP

Algorithms used for these experiments are taken from [11] and [9], where CNN
hyperparameters were fine-tuned specifically for each dataset the authors used. We
vary available weight initializers in our experiments to investigate the performance
difference according to each weight initializer. All of the other hyperparameters are
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taken directly from the mentioned works. We consider these two architectures as
they represent top-performing architectures from related works. Additionally, they
differ in size, which will enable us to evaluate the influence of weight initializers on
architectures of different complexity.

We will refer to CNN architecture as the Noise architecture for [11], and the
Methodology architecture for [9]. For each architecture, two leakage models are used:
Identity (ID) model [9, 11] and Hamming weight (HW) model [20], in which there
are 256 classes and nine classes respectively corresponding to the output of neural
networks. In both architectures, hyperparameters are tuned with the ID model (as
the original works consider only ID model), but we use the same hyperparameters
for the HW model.

Kim et al. [11] used glorot_uniform weight initializer, and Zaid et al. [9] used
he_uniform weight initializer. In the last layer, [9] does not set weight initializer
to he_uniform, but instead, the default weight initializer is utilized, which is
glorot_uniform. We are not aware of this implementation’s motivation, so in our
experiments, we vary weight initializers in all layers, including the last layer with a
Softmax activation function. This change causes a difference between our results
with Methodology architecture and ID leakage model compared to results presented
in the work of Zaid et al. [9], as shown later in Section 6.4.

We are not running experiments with Constant, VarianceScaling, Identity, and
Orthogonal initializers from all available Keras weight initializers. Identity and
Orthogonal initializers are not actively used, and Constant and VarianceScaling
correspond to Zeros and lecun_normal, respectively, when using default values. We
simulate ten times with each initializer and average the results for comparison with
other weight initializers.

We use the public source code provided on GitHub by Zaid et al. [9] in Keras with
Tensorflow backend [18]. We consider three publicly available datasets that consist
of side-channel measurements for the AES cipher for our experiments. Following, we
shortly describe these datasets and then discuss the results for each dataset in detail.

DPA contest v4 (DPAv4) dataset1 is obtained from a masked AES software
implementation [21]. Knowing the masked values, this dataset is easily converted
into an unprotected scenario. We attack the first round of S-box operation, and
identify each trace with Y (i )(k∗) = Sbox[P (i )

0 ⊕k∗]⊕M where P (i )
0 is the first byte of

the i -th plaintext and M is the known mask.

AES_RD dataset2 is obtained from an implementation on an 8-bit AVR microcon-
troller with a random delay countermeasure [22]. This countermeasure shifts each
trace following a random variable of 0 to N [0]. The attack is on the first round S-box
operation, as in DPAv4 dataset, where traces are labeled as Y (i )(k∗) = Sbox[P (i )

0 ⊕k∗].

1http://www.dpacontest.org/v4/42_traces.php
2https://github.com/ikizhvatov/randomdelays-traces

http://www.dpacontest.org/v4/42_traces.php
https://github.com/ikizhvatov/randomdelays-traces
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ASCAD dataset3 is obtained from a masked AES-128 implementation on an 8-bit
AVR microcontroller introduced in [23]. The leakage model is the first round S-box
operation, such that Y (i )(k∗) = Sbox[P (i )

3 ⊕k∗]. In contrast to the DPAv4 and AES_RD
datasets, the third byte is exploited (as this is the first masked byte).

6.4. EXPERIMENTAL RESULTS
This section shows the results for different weight initializers. We explore 1) how
weight initializers impact the performance of the utilized CNN architectures, 2)
which one is the best for a specific dataset and architecture, and 3) whether there
is the best weight initializer for all datasets. As explained in Section 6.3, we use 11
weight initializers available in Keras and execute experiments on commonly used
DPAv4, AES_RD, and ASCAD datasets. For each dataset, we run four experiments:
Methodology architecture with ID and HW model, and Noise architecture with ID
and HW model.

Recall, with Zeros and Ones initialization, the model is no better than a linear
model. In our experiments, we still choose to show the results with Zeros and Ones
weight initialization to show that a linear model is not sufficient for considered
problems. There, all results show that guessing entropy is either staying at random
guessing or increasing with Zeros and Ones weight initialization. Consequently, when
discussing the performance of weight initializers, we usually ignore the performance
of Zeros and Ones, as they never converge.

A good initializer is the one where GE decreases, preferably to zero, in the least
number of traces, and is more stable, as observed from results from multiple
independent experiments. As such, those weight initializers where GE behaves
similarly in multiple experiments, we consider more stable than when this is not
true. To get the best weight initializer, we consider two additional metrics: speed
and stability. We sort the averaged GE value of all weight initializers to evaluate
their “speed”, and compare the consistency in multiple experiments to obtain the
“stability”. The key rank range shows the “best” GE from 10 experiments to present
the range from multiple performed attacks. The “best” GE is the one that reaches
the lowest value, and if multiple GE results reach the same minimum, then the one
that reaches that value with fewer traces is considered better, and we plot key rank
range for that experiment. The range is taken from the 100 attacks that are executed
for calculating the GE. Weights’ evolution figures show weights for each layer, and
the layers in the legend are ordered from first input layer to the last output layer of
the neural network. We provide a Table 6.1 as an overview of all experiments and
best initializers in each setup.

6.4.1. RESULTS FOR THE DPAV4 DATASET

As in [9], we use 4 000 traces for the training set, 500 traces for the validation set,
and 500 for attacking the device. Each trace has 4 000 features. The GE rankings

3https://github.com/ANSSI-FR/ASCAD

https://github.com/ANSSI-FR/ASCAD
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Table 6.1.: An overview of all experiments and best initializers in each setup.

Dataset Architecture Best initializer (ID/HW)

DPAv4
Methodology RandomUniform

Noise RandomUniform/RandomNormal

AES_RD
Methodology he_normal/lecun_normal

Noise RandomUniform

ASCAD
Methodology he_normal

Noise lecun_normal

of the four experiments are shown in Figure 6.1. In the two experiments with the
Methodology architecture (Figures 6.1a and 6.1b), most weight initializers perform
similarly when weight initializer is varied, but RandomUniform is slightly faster in
convergence and more stable with both leakage models. With the Noise architecture
and ID leakage model (Figure 6.1c), the best weight initializer is RandomUniform,
and with the HW model (Figure 6.1d), most weight initializers perform quite well,
but we choose RandomNormal as the best one.

(a) Methodology with ID. (b) Methodology with HW.

(c) Noise with ID. (d) Noise with HW.

Figure 6.1.: Averaged GEs for all weight initializers with the DPAv4 dataset.

Figure 6.2 shows the key rank range for the best (Figure 6.2a) and the worst
initializer (Figure 6.2b) with the Noise architecture and ID model for the DPAv4
dataset when ignoring the Zeros and Ones. While the GE is slowly converging
with he_uniform initializer, in Figure 6.2b, we can see significant differences in
the key rank results from multiple performed attacks within one guessing entropy
experiment.
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(a) RandomUniform. (b) he_uniform.

Figure 6.2.: The key rank range of Noise architecture with ID model for decreasing
GE in DPAv4 dataset.

When looking at the weights’ evolution, we observe the change of weights and
biases in every neural network layer in every epoch and find that weights and biases
change in Convolutional layers and Batch Normalization layers, and other layers
such as dense layers do not exhibit much change. In the Methodology architecture,
both weights, and biases change significantly, while in the Noise architecture, only
biases change, and weights stay almost constant. According to the result, we can
peek into the training processes of the two architectures. The iterative processes of
the two architectures are radically different: in the Methodology architecture, both
weights, and biases are trained, while in the Noise architecture, biases are the main
training objects. This indicates that the Noise architecture is more “robust” as there
is not much need for weight improvement to reach strong attack performance. More
precisely, there seems to be more weight optima for the Noise architecture than for
the Methodology architecture.

In the weights’ evolution for the DPAv4 dataset, the random initializers without
heuristics perform best for the Methodology ID setting and very similar to Glorot
initializers. Weight initializers He and LeCun in this setting performed a bit worse,
and their weights’ evolution is also similar, but visually different from the weights’
evolution of the other initializers. Similar weights’ evolution is seen with the HW
model.

For the Noise architecture, in Figures 6.3a and 6.3b, we show weights’ evolution of
the best and worst initializer, respectively. It seems as the he_normal (Figure 6.3b)
could improve with more epochs and reach the performance of, at least, Glorot
initializers. Additionally, we show corresponding experiments of the same initializer
to show their stability in Figures 6.3c and 6.3d. Here, both are stable: RandomUniform
is performing well, and he_normal consistently has a slow convergence. This is again
visible through weights’ evolution because the weights and biases’ variance is not
large. The performance of different weight initializers with both architectures and
models on the DPAv4 dataset is quite similar, and most of the initializers reach GE
of zero.

Lastly, we simulate experiments with the Methodology architecture and both
leakage models to explore the influence of the weight initializer in the last
fully-connected layer, similar to [9]. More precisely, we keep all hyperparameters of
the two experiments except that the setting of the last layer in the neural network
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(a) RandomUniform. (b) he_normal.

(c) Experiments with RandomUniform. (d) Experiments with he_normal.

Figure 6.3.: Weights’ evolution and experiments with Noise ID setting on the DPAv4
dataset.

is the same as paper [9]. The results for the two experiments show that it has no
impact on the outcome, and the performances of all the weight initializers in the ID
and HW model are almost the same.

6.4.2. RESULTS FOR THE AES_RD DATASET

AES_RD dataset is a protected implementation, where adding random delays to the
normal operation of AES makes it more difficult to conduct attack as features are
misaligned. The dataset consists of 50 000 traces of 3 500 features each, where 20 000
traces are used for the training set, 5 000 for the validation, and 25 000 for the
attack set. The GE rankings for the AES_RD dataset are illustrated in Figure 6.4. By
observing all weight initializers’ speed and stability, we get the best weight initializers
in all scenarios: he_normal, lecun_normal, RandomUniform, and RandomUniform,
respectively.

Like the DPAv4 dataset, weights and biases change mostly in Convolutional layers
and Batch Normalization layers, but not in other layers. We can also see that in the
Methodology architecture, both weight and bias change significantly, while in the
Noise architecture, only biases change, and weights remain almost constant.

Figures 6.5a and 6.5b display the best and the worst initializer respectively in
weights’ evolution for the Methodology architecture on the AES_RD dataset. The
difference in the initializers’ performance stems from their stability because all reach
GE equal to zero in several of ten simulations, which can be seen in Figures 6.5c
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(a) Methodology with ID (b) Methodology with HW

(c) Noise with ID (d) Noise with HW

Figure 6.4.: Averaged GEs for all weight initializers with the AES_RD dataset.

and 6.5d. The stability of the weight initializer is also seen in weights’ evolution.
Since we show the mean of the weights and the range for the ten simulations: the
more the weights’ evolution varies, the more GE is also likely to vary.

(a) he_normal. (b) RandomUniform.

(c) Experiments with he_normal. (d) Experiments with RandomUniform.

Figure 6.5.: Weights’ evolution and experiments with Methodology ID setting on the
AES_RD dataset.



6

148 6. A COMPARISON OF WEIGHT INITIALIZERS IN DEEP LEARNING-BASED SCA

Finally, we investigate the weight initializer’s influence in the last dense layer for
the Methodology architecture. All hyperparameters are the same, except for the
weight initializer in the last layer, which is set as default, according to the settings
in paper [9]. The new results show that the change in the last layer also does not
have a big effect on the initializer’s stability, but it impacts the speed. With the
HW model, the convergence for all weight initializers is slower. The best weight
initializers for ID and HW model are he_normal and lecun_normal, respectively.

6.4.3. RESULTS FOR THE ASCAD DATASET

Next, we compare the performance of different weight initializers for the ASCAD
dataset. We use the ASCAD dataset with 60 000 traces of 700 features without
desynchronization. The dataset is divided into 45 000 training traces, 5 000 validation
traces, and 10 000 attack traces. In Figure 6.6, we show the GE rankings. In the
experiment with the Methodology ID setting (Figure 6.6a), increasing the number
of attack traces leads to an increase of the GE for the correct key byte, even with
he_uniform, which was used in paper [9] in all layers except for the last layer. By
comparing the stability, we get that he_normal is the best one. We observe that
the GE value of weight initializers with heuristics converges to zero with the HW
model (Figure 6.6b). he_normal is the fastest one. In the setting with the Noise
architecture (Figures 6.6c and 6.6d), the best weight initializers, lecun_normal, can
be easily chosen by observing the speed.

(a) Methodology with ID. (b) Methodology with HW.

(c) Noise with ID. (d) Noise with HW.

Figure 6.6.: Averaged GEs for all weight initializers with the ASCAD dataset.

Figure 6.7 shows the key rank range for he_normal initializer where GE reached
zero (Figure 6.7a), and RandomUniform where GE increases with an increased
number of traces (Figure 6.7b). Again, we see that even when the GE is increasing,
some key rank results are showing perfect attacks.
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(a) he_normal. (b) RandomUniform.

Figure 6.7.: The key rank range of Methodology architecture with HW model for
decreasing and increasing GE in ASCAD dataset.

Next, we observe the weights and biases change of every layer throughout
the epochs. Like the previous two datasets, weight and bias change mostly in
Convolutional layers and Batch Normalization layers, but not in other layers. Once
again, it can be seen that in the Methodology architecture, both weights and biases
change significantly, while for the Noise architecture, only biases change and weights
are almost constant.

In Figure 6.8, we show the weights’ evolution of the best initializer (Figure 6.8a)
and average performing one (Figure 6.8b). The corresponding experiments are
shown in Figures 6.8c and 6.8d for the Noise architecture and the HW model. In
these experiments, the worst initializer, RandomUniform (see Figure 6.6d), performed
similarly to Zeros and Ones, as in every experiment, GE was increasing.

Finally, to explore the influence of weight initializers in the last layer, we run
experiments with the Methodology architecture, using all the hyperparameters of the
two experiments except the setting of the last layer in the neural network. Like [9],
the weight initializer of the last layer is a default one. The new results show that
weight initializer has a significant influence on the outcomes. In the experiments
with the Methodology ID setting, the average GE values of all weight initializers
(except Zeros and Ones) decrease, but there is a difference in the stability of the
initializers. The best weight initializer is he_normal. With the Noise architecture, the
average GE values of all weight initializers increase. The best weight initializer is
lecun_uniform, since, for two out of ten simulations, GE converged to zero.

6.5. WEIGHT INITIALIZER INFLUENCE ON OTHER

HYPERPARAMETERS
Based on the best weight initializers that we find to provide better performance for
specific neural network architectures and datasets, we now analyze whether a weight
initializer’s performance depends on its combination with other hyperparameters or
if a weight initializer method is connected to the dataset itself. In other words,
we wish to understand if the selection of a weight initializers is optimal for a
restricted group of hyperparameters or if it is more dependent on the nature of the
side-channel traces, meaning that any small variations on hyperparameters would
still lead to a successful attack in the majority of tests.
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(a) lecun_normal (b) he_normal

(c) lecun_normal (d) he_normal

Figure 6.8.: Weights’ evolution and experiments with Noise HW setting on the ASCAD
dataset.

We select the Methodology convolutional neural network architecture used in the
previous sections and make small variations in their hyperparameters to investigate
the influence on the best found weight initializer. To do this analysis, we select
ASCAD dataset. For this dataset and the Methodology CNN architecture, we find that
he_normal weight initializer provide better results. Table 6.2 shows the ranges of
hyperparameters that we vary in different CNN training phases. In total, we train
400 CNNs, and we use the HW leakage model.

Table 6.2.: Hyperparameter variations in the Methodology architecture.

Hyperparameters Original Minimum Maximum Step

Filters 4 4 8 1

Kernel Size 1 1 4 1

Neurons 10 5 15 1

Layers 2 2 3 1

Learning Rate 5e-3 1e-3 1e-2 1e-4

Mini-Batch 100 100 400 100

Activation function (all layers) SELU ReLU, Tanh, ELU, or SELU
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Figure 6.9 shows that Tanh is the only activation function that does not provide
successful key recovery in any of the experiments. For the ReLU, ELU and SELU
activation functions, the different trained CNNs architectures can return low GE.

Concerning the number of filters in the single convolution layer of this architecture,
the usage of four filters tends to maximize the attack’s success, as demonstrated in
Figure 6.10. Increasing the filter size decreases the probability of the attack to be
successful. Similar observations are visible in Figure 6.11 regarding kernel sizes. For
kernel sizes 1 and 2, the probability of a successful attack is similar but almost twice
higher than with kernel sizes 3 and 4.

Finally, we also observe that making small variations in the number of layers
and neurons also does not provide too much effect on the final GE. As shown in
Figures 6.12a and 6.12b, more layers, and more neurons tend to provide a subtle
increase in the concentration of low GE values. These variations are insufficient to
assume that the combination of architecture hyperparameters and weight initializer
strictly depends on a specific number of layers and neurons.

We also do not observe a significant effect on the final GE results for different
mini-batch sizes (from 100 to 400) and different learning rates (from 0.001 to 0.01).
Therefore, this analysis’s main conclusion is that the choice of a weight initializer
for the Methodology CNN architecture (when using the ASCAD dataset with the
Hamming weight model), depends mostly on the activation function rather than
the rest of hyperparameters. However, for this scenario, a more precise conclusion
would be to assume that for a specific dataset (and leakage model), there is an
optimal combination of activation function and weight initializer. Weight initializers
with heuristics are derived based on certain assumptions on the activation functions.
For example, the Glorot initializer assumes that the activations are linear. This
assumption is not valid for ReLU activation functions, so He et al. [17] derived a new
initialization method, and it allowed their deep models to converge as opposed to
the Glorot initialization method. Therefore, we see that weight initializers are closely
related to activation functions, which supports our conclusion.

6.6. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluate the influence of the weight initializer choice on the
performance of CNNs in the profiled side-channel analysis. We consider 11 weight
initializers, three datasets, two leakage models, and two CNN architectures. We
evaluate the weight initializer performance by observing guessing entropy, the
stability of results, and the evolution of weights through the training process.

Our results show that when the dataset is easy to attack, it is not important
what weight initializer to use. Going toward more difficult datasets, we observe
more influence stemming from this selection. Interestingly, we see that specific key
rank experiments can behave extremely well or extremely badly from the guessing
entropy results. What is more, we see significant differences in individual training
processes, which means that weight initializers play a significant role in the training
process, and it is necessary to run multiple training phases (and not only attacks
to obtain guessing entropy). Next, most of the changes in weights happen in the
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Figure 6.9.: Activation functions and guessing entropy.

Figure 6.10.: Filters and guessing entropy.

Figure 6.11.: Kernel sizes and guessing entropy.

(a) Layers and guessing entropy. (b) Neurons and guessing entropy.

Figure 6.12.: Different layers and neurons variations and their relation to final GE
results.
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Convolutional and Batch Normalization layer, while we observe almost no change
in weights in dense layers. Finally, we analyze the interconnection between weight
initializers and other hyperparameters. Our results show a strong connection with
activation functions and only marginal connection to other commonly explored
hyperparameters. This is supported by the fact that the weight initializers with
heuristics are designed based on certain properties of activation functions. However,
more experiments could further support this observation. Mathematical explanations
of weight initialization strategies were out of scope for this work, but this is an
interesting and broad research topic that contributes to a deeper understanding of
the deep learning models.

For future work, we see two particularly interesting directions. The first one is
to explore the influence of weight initializers and activations functions. Indeed,
our results indicate that changes in activation functions influence the results from
different weight initializers significantly. The second direction is to explore the
unsupervised pre-training setup. Results are showing that autoencoders can be used
to assign weights to each layer in an unsupervised manner, which helps to guide the
learning towards basins of attraction of minima that support better generalization
from the training dataset [24].
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7
AUTOENCODER-ENABLED MODEL

PORTABILITY IN SIDE-CHANNEL

ANALYSIS

Hyperparameter tuning represents one of the main challenges in deep learning-based
profiling side-channel analysis. For each different side-channel dataset, the typical
procedure to find a profiling model is applying hyperparameter tuning from scratch.
The main reason is that side-channel measurements from various targets contain
different underlying leakage distributions. Consequently, the same profiling model
hyperparameters are usually not equally efficient for other targets. This paper
considers autoencoders for dimensionality reduction to verify if encoded datasets from
different targets enable the portability of profiling models and architectures. Successful
portability reduces the hyperparameter tuning efforts as profiling model tuning is
eliminated for the new dataset, and tuning autoencoders is simpler. We first search
for the best autoencoder for each dataset and the best profiling model when the
encoded dataset becomes the training set. Our results show no significant difference in
tuning efforts using original and encoded traces, meaning that encoded data reliably
represents the original data. Next, we verify how portable is the best profiling model
among different datasets. Our results show that tuning autoencoders enables and
improves portability while reducing the effort in hyperparameter search for profiling
models. Lastly, we present a transfer learning case where dimensionality reduction
might be necessary if the model is tuned for a dataset with fewer features than the
new dataset. In this case, tuning of the profiling model is eliminated and training
time reduced.

This chapter has been published as M. Krček and G. Perin. “Autoencoder-enabled model portability
for reducing hyperparameter tuning efforts in side-channel analysis”. In: Journal of Cryptographic
Engineering (2023), pp. 1–23. DOI: 10.1007/s13389-023-00330-4.
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7.1. INTRODUCTION
Hardware and software implementations of cryptographic algorithms may leak
unintended and measurable side-channel information such as power consumption,
electromagnetic emissions, and execution time. Although mathematically secure,
these cryptographic implementations may become vulnerable to side-channel
attacks (SCAs). SCA is an implementation attack mainly categorized into direct
and two-stage attacks. Direct attacks, also known as non-profiled SCA, mainly
consist of simple power analysis [2], differential power analysis [3], and correlation
power analysis [4]. These attacks explore the statistical dependency between
leaked side-channel information and secret cryptographic keys. Recovering the
secret depends on running the attack over all possible key hypotheses through a
divide-and-conquer strategy and selecting an efficient statistical distinguisher (e.g.,
Pearson correlation, difference-of-means, or mutual information). On the other
hand, a two-stage or profiling SCA [5] can evaluate the security of a cryptographic
implementation by assuming a stronger adversary. Profiling SCA assumes that a
potential adversary has an open device (identical to the target one) that provides
conditions to learn a profiling model by reprogramming the key and input data to
the cryptographic algorithm. Depending on how much knowledge is assumed that
the adversary possesses (e.g., source code and access to the secret randomness of the
implementation), profiling SCA allows the deployment of worst-case (i.e., white-box)
or black-box security assessment.

Countermeasures such as masking and hiding are often considered to mitigate SCA.
For twenty years, Gaussian template attacks (GTA) [5] have proven to be theoretically
the best option to test the worst-case security of SCA countermeasures [6]. Deep
learning (DL) has been widely investigated as an alternative profiling SCA solution in
the last few years. The results with real-world datasets have demonstrated that deep
neural networks provide several practical advantages in comparison to GTA, such
as skipping points-of-interest or feature selection from raw measurements [7, 8],
relaxing assumptions about underlying leakage distribution, and being less sensitive
to trace desynchronization [9–11]. However, together with large training times,
the main open challenge for DL-based SCA is hyperparameter tuning. In [12],
the authors suggested that hyperparameter tuning should be taken as one of
the adversarial assumptions, together with the number of profiling and attack
measurements. However, verifying the correctness and reliability of a DL-based
profiling model concerning its hyperparameters is still difficult. Even considering
advanced hyperparameter search algorithms [13, 14] cannot guarantee that the
obtained best model delivers reliable security assessment.

Hyperparameter tuning is a trade-off between time effort and neural network
performance, as there is no proven best way to tune the network in a reasonable
time. According to [12], the maximum number of searched DL models should
be considered when inferring the target’s security. A profiling SCA process that
is unbounded in the number of hyperparameter tuning models (or learnability
capacity) would be able to deliver reliable security assessment1. However, as the

1Note that this conclusion only holds, at the moment, for first-order masking schemes with hiding
countermeasures (e.g., desynchronization). For high-order masking schemes with or without shuffling
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number of searched models is always limited in reality, one would like to optimize
the model search process by reducing the hyperparameter tuning efforts by ensuring
that a reliable and efficient DL model is always found and trained within available
computation bounds. In other words, by applying DL-based profiling SCA, the
security evaluator wants to ensure that a successful security assessment (i.e., the
one that fails in recovering the secret) results from an SCA-secure implementation
instead of a wrong profiling attack. One way to reduce hyperparameter search effort
across different targets is to apply preprocessing techniques on raw side-channel
measurements, such as points-of-interest selection or dimensionality reduction.

In this paper, we consider only dimensionality reduction because points-of-interest
selection tends to be inefficient due to the presence of masking countermeasures
in the evaluated datasets. We assume a black-box threat model, i.e., an adversary
without access to secret masks during profiling and attack phases. We consider
autoencoders for dimensionality reduction, which were already considered in several
other applications in SCA [16–18], which we discuss in Section 7.2. Our primary
goal is to verify whether efforts can be moved from tuning a profiling deep neural
network model to tuning an autoencoder by reusing profiling modes across different
datasets. Our main contributions are:

1. We experimentally confirm that the standard reconstruction error metric for
autoencoders works well for SCA settings. Moreover, the data encoded with
autoencoders stays relevant, where we show that tuning efforts on encoded
data are similar to tuning on original traces.

2. We demonstrate that the portability of profiling model hyperparameters is
possible. We apply the same best profiling model across different datasets
encoded into the same dimension with the obtained best autoencoders. Thus,
the same profiling model obtained for one dataset can be utilized for other
datasets, which reduces the hyperparameter search effort.

3. We show through transfer learning that our best profiling model can be applied
to different datasets, eliminating hyperparameter tuning of the profiling model
and reducing training time.

The analysis provided in this paper contributes to making DL-based SCA more
practical for security evaluations of cryptographic implementations when protected
with the first-order Boolean masking schemes.

The paper is organized as follows. Related work is discussed in Section 7.2.
We explain the necessary details on deep learning-based side-channel attacks,
autoencoders, and transfer learning, followed by a description of utilized datasets
in Section 7.3. Section 7.4 details our experimental setup, explaining the steps of
our analysis and several use cases we consider. Experimental results are reported in
Section 7.5. We conclude the paper in Section 7.6, shortly discussing possible future
work.

and desynchronization, it is still an open question whether deep learning models can deliver reliable
worst-case or non-worst-case security assessments (see, for instance, the discussion in [15], Section
6, for the non-worst-case assessments).
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7.2. RELATED WORK
Several research papers address the portability issue between profiling and target
devices of the same type. For instance, Choudary and Kuhn [19] employed different
devices in template attacks (TAs) and utilized Fisher’s Linear Discriminant Analysis
and Principal Component Analysis to enhance TA performance. Another approach
proposed in several papers involves using multiple devices to improve the attack
performance [20, 21]. In Cao et al. [22], the authors suggest enhancing the pre-trained
model on a profiling set with unlabeled traces from the target. They propose a
loss function that consists of the standard classification task and minimizing the
distribution discrepancy between data traces. In another work by Cao et al. [23],
a method inspired by Generative Adversarial Networks (GANs) is presented, where
an encoder replaces the generator to reduce the data discrepancy before the attack.
Transfer learning is also proposed to transfer knowledge from the profiling device to
the target device. Genevey-Metat et al. [24] investigate several scenarios that differ
in the position and type of EM probe, side-channel information, and device samples
belonging to the same family. All the aforementioned works discussed portability
between profiling and target device samples, while our approach utilizes public data
from different devices and acquisitions.

In Thapar et al. [25], the authors use transfer learning to accelerate the attack
by reusing a model trained on a different target. However, they fixed their input
size for model reuse. In contrast, we do not restrict the input size of the initial
model we aim to reuse, as we can achieve effective dimension reduction and latent
representation with autoencoders for our target device.

Autoencoders have been used to reduce noise and alignment issues in
measurements, improving the performance of traditional and deep learning methods
in non-profiling SCA [16]. Similarly, Wu and Picek [17] use autoencoders (denoising
autoencoder) as a preprocessing method to remove the traces’ noise and enable
training with clean data in profiling attacks. Paguada et al. [18] utilize autoencoders to
reduce the dimensionality of SCA traces, leading to lower complexity of the profiling
phase, reduced computational time, and improved classification performance. Thus,
autoencoders have predominantly been employed to enhance attack performance
on the same dataset (target) by mitigating countermeasures and reducing the traces’
complexity. Similarly, our work employs autoencoders to obtain a reduced latent
representation of the given input (SCA trace). However, unlike the related works, our
approach utilizes autoencoders to facilitate attacks on different datasets (targets).

7.3. BACKGROUND

7.3.1. DEEP LEARNING-BASED SIDE-CHANNEL ATTACKS

In deep learning-based side-channel attacks (DL-based SCA), the main goal is to
train deep neural network parameters θ with training data D by minimizing a loss
function L . Each instance of training data D consists of a tuple (xi ,yi ), where xi is
a one-dimensional vector representing the i -th side-channel measurement (or trace)
in a dataset D. The range of i is from 0 to the size of the dataset |D|. The term yi
refers to the label (or class) associated to xi .
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Labeling a dataset requires the definition of a leakage model and a selection
function. In SCA, the main leakage models are identity (ID), Hamming weight (HW),
Hamming distance (HD), and bit-level models. The identity model refers to the
direct value of an intermediate being processed by a cryptographic algorithm, while
HW refers to the Hamming weight of such intermediate. The HD model returns the
Hamming weight from the xor between two intermediate variables. Bit-level models
usually consider the most or least significant bit from an intermediate variable. The
intermediate variable is defined according to a key-dependent selection function that
usually returns an intermediate byte from the cryptographic algorithm. For the case
of AES encryption, this intermediate for the i -th trace xi could be an S-Box output
byte in the first encryption round, i.e., yi = S-Box(d j ⊕k j ), where d j and k j are the
j -th plaintext and key bytes ( j ∈ [0,15] for a key size of 128 bits), respectively.

From the training set D, we select a subset V to validate the trained model. This
model is later tested on a separate dataset A collected from the attacked device
that we refer to as the attack set. Since the goal is to obtain the secret key from
A (or a single byte of the key), we use guessing entropy (GE) [26] to assess the
attack performance. The best possible neural network model is the one that requires
minimal attack complexity, which is measured in terms of the minimum number of
attack traces that are necessary to successfully recover the key [27].

To compute GE, we first predict the validation or attack set and obtain class
probabilities pi ,yi

for each trace i . As labels yi are derived from a key-dependent
selection function, we obtain the log-likelihood lk of a certain key byte k j ∈ [0,255]:

lk =
Na−1∑

i=0
log pi ,yi

, (7.1)

where Na is the number of traces in the predicted set. This process is then repeated
for all possible key byte hypotheses. Each hypothesis will define different labels yi
for each trace. The key rank of the correct key k∗ is obtained by sorting all lk values
and by returning the position of lk∗ associated with the correct key byte k∗. The
GE of the correct key, ge∗, is given by an empirical process in which we repeat the
key rank process multiple times (each time with a different and randomly selected
subset from the attack or validation set). We obtain an average log-likelihood or key
guessing vector g and get the average position of the correct key k∗ inside g. When
ge∗ = 1, we say that the model successfully recovers the key with Na attack traces.
The minimum number of traces to retrieve the key is referred to as Nge∗=1.

Although the primary goal of training a deep neural network in the SCA context
is to minimize Nge∗=1, the models in this paper are still trained with a categorical
cross-entropy loss function. In [28], the authors showed that minimizing this loss
function is aligned with minimizing Nge∗=1.

7.3.2. AUTOENCODERS (AES)
Autoencoder (AE) is a specific self-supervised neural network used for data
compression, dimensionality reduction, generating new data, denoising, etc. The
authors in [29] first used autoencoders for dimensionality reduction. Different
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autoencoders, such as denoising or variational autoencoders, are described in [30,
31]. We use autoencoders for dimensionality reduction to learn, in an unsupervised
manner, an informative smaller representation of the data. We consider deep
autoencoders since they are often better than shallow or linear counterparts. While
variational autoencoders are very popular, they are more helpful in generating new
data, which is different from our goal here.

Autoencoders usually have an encoder and decoder part. The encoder takes the
original input and learns a function that encodes the data into a representation
given by a latent space. In dimensionality reduction, the input dimension is reduced
in latent space. That middle layer is known as the “bottleneck layer”, as it holds the
data’s compressed representation. Later, we use the decoder function to reconstruct
the original input from the encoded data. Both encoder and decoder are neural
networks, commonly symmetrical, having the same type and number of layers with
the same layer sizes.

The objective function of the autoencoder is minimizing the difference between
input and output by preserving the relevant information. The compressed data
is evaluated by the decoder’s ability to reconstruct the original input from the
compressed data, so the common metric is Mean Squared Error (MSE). The output
for autoencoders is the input itself, so MSE is calculated with

MSE = 1

m

m∑
i=1

(xi − x̂i )2 , (7.2)

where xi is the original observation and x̂i its reconstruction, while m is the
number of inputs (samples). In SCA, xi is the side-channel trace with n features,
for which the distance from x̂i is again MSE. Therefore, we do not use labels as
in profiling models and do not need to use any leakage model. In this work, we
search for the best autoencoders, following the information from [31] for defining
the hyperparameter tuning space.

7.3.3. TRANSFER LEARNING

Transfer learning (TL) in machine learning focuses on transferring knowledge across
domains and aims to leverage knowledge from a related domain to improve learning
in a new task (target domain). The success of transfer learning depends on many
factors, such as the relevance between the source and target domains and the
learner’s (model’s) capacity to find transferable and valuable knowledge across the
two domains. Transfer learning can be categorized based on the feature space
between the two domains and the availability of the labels. More information on
categorizations of TL is found in surveys, e.g., [32–34].

Our case belongs to inductive transfer learning, where we have labels for both
the source and target domains (different intermediate values belonging to a specific
dataset). We aim to achieve high performance in the target task. There are many
approaches to transfer learning, and they depend on what we aim to transfer. In
our case, we use parameter-based TL to transfer knowledge at the model/parameter
level. We use models trained on one dataset and use them for different datasets. Our
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main objective is to obtain accurate predictions in the target domain for the new
task. Specifically, we train the model to learn the correct key k∗ of another dataset.
We do it with parameter sharing so that we have a neural network for the source
task, and we share (freeze) most of the layers and fine-tune the last few layers to
obtain a network that works for the targeted task. We keep the first layers since the
first layers in deep neural networks appear not to be specific to particular datasets
or tasks [35].

7.3.4. DATASETS

We describe three datasets that are used in our experiments. For all datasets, we use
5 000 traces for validation and another 5 000 traces as the attack set in both profiling
attacks and autoencoders. We use 3 000 traces randomly chosen from that 5 000 in
each key rank calculation to calculate GE.

DPACONTEST V4.2

DPAcontest v4.2 dataset (here referred as DPAv4.2)2 is the second implementation
available in the DPAcontest v4 [36]. It is an improved version implemented in
software on an 8-bit Atmel ATMega-163 smart card and corrects several leaks
identified in its previous generation. This dataset represents the power consumption
of the first AES encryption round, and the AES implementation is protected with
Rotate Shift countermeasure. The dataset contains a total of 80 000 traces, and each
of them contains 1 704 402 sample points. In our experiments, we trim the dataset
to the interval representing the processing of the 13-th S-box byte, resulting in 2 000
samples per trace. The first interval ranges from sample 305 000 to 315 000 from
original measurements. We apply the resampling process with a resampling window
of 10 and step of 5, resulting in 2 000 samples per measurement. We use 70 000
traces for training (which contains 14 different keys).

ASCAD

ASCAD dataset3 with a fixed key (ASCADf), along with ASCAD dataset with a random
key (ASCADr), consists of measurements from masked AES on the 8-bit ATMega8515
MCU target without any specific hiding countermeasures activated on the target [37].
For ASCADf dataset, the key is fixed for all measurements. We have 50 000 training
traces with 700 features per trace. ASCADr dataset corresponds to the second
campaign with the same target and setup as in ASCADf. However, in this setting, the
key is variable for 66% of the measurements. We use 200 000 training traces with
1 400 features per trace.

2https://www.dpacontest.org/v4/42_doc.php
3https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1

https://www.dpacontest.org/v4/42_doc.php
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
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7.4. EXPERIMENTAL SETUP
In this section, we provide details about our experimental setup. The process
starts with a hyperparameter search to find the best autoencoders for different
datasets. Before that, we verify that the MSE metric is appropriate as it keeps the
side-channel leakage in the reconstructed traces. Then we verify if searching for
profiling neural network models remains similar when we train the models with the
encoded datasets. We compare the attack performance of profiling models trained
with encoded and original datasets. That is necessary to validate that encoded data
stays relevant without worsening tuning efforts. Next, we reused profiling models’
hyperparameters across multiple datasets as it was shown that tuning encoded
data is equal to tuning original datasets. We consider portability from encoded
data to other encoded data and from original to encoded data. The first case
enables universal models where all datasets are represented in a similar latent space.
The second case addresses the portability of architecture between different feature
spaces. Finally, we explore transfer learning advantages utilizing autoencoders and
profiling models. To summarize, we apply the following steps:

1. Search for the best latent space size for all datasets based on two datasets.

2. Search for the best autoencoders with the lowest Mean Squared Error (MSE)
by setting the best found latent space size.

3. Compare the performance of profiling models when trained with original and
encoded traces of the datasets.

4. Investigate the portability of best profiling model hyperparameters trained with
an encoded dataset to other encoded datasets. All datasets are encoded into the
same latent dimension by using best-found autoencoders.

5. Investigate the portability of the best profiling model hyperparameters trained
with an original dataset to other encoded datasets. The concept is used when
a new dataset has more features than the original dataset. The new dataset
is encoded into the same dimension as the original dataset using best-found
autoencoders.

6. Investigate transfer learning of best profiling model trained with an original
dataset to other encoded datasets encoded into the same dimension using the
best autoencoders.

The overall structure of our experimental setup and the corresponding steps are
shown in Figure 7.1. Additionally, the source code is publicly available4.

7.4.1. AUTOENCODER ARCHITECTURES

We consider the following CNN and MLP autoencoder structures:

• ae_cnn: autoencoders with convolution layers.

4The code is available at https://github.com/marinakrcek/AutoEncodersDLSCA.

https://github.com/marinakrcek/AutoEncodersDLSCA
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Figure 7.1.: Experimental setup. The term n refers to the number of features in
datasets. We denote h as the set of architecture hyperparameters and θ

as trainable parameters (weights and biases) in portability cases.

• ae_mlp: autoencoders given by symmetric encoder and decoder blocks, in
which all layers have the same number of neurons. Latent size can be smaller,
equal, or larger than the number of neurons in previous layers.

• ae_mlp_dcr: autoencoder with decreasing number of neurons in subsequent
layers (with possible repetition). We do not ensure that the layer before the
latent space is strictly larger (or equal) to the latent dimension.

• ae_mlp_str_dcr: autoencoder with decreasing number of neurons in
subsequent layers in the encoder. Here, _str_dcr stands for strictly decreasing.
The latent size is smaller than the number of neurons in the previous layer.
However, the cases where we still use the same number of neurons in layers
before the latent layer are possible.

We have several options for MLP autoencoders, while the usual, most common
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choice is ae_mlp_str_dcr. A decreasing number of neurons in the encoder
and symmetrical decoder are commonly chosen because, intuitively, decreasing
the number of neurons forces generalization and seems useful for dimensionality
reduction. The real benefit of this structure is possibly lower computation costs
compared to alternatives. However, as in classification, other options can be
explored. Thus, we test the possibilities mentioned above where the number of
neurons is not consistently decreasing, and the latent size is not strictly following
the decreasing pattern.

In described autoencoder types, the encoder and decoder with MLP structure are
always symmetrical, which means that the number of layers is the same in both
encoder and decoder blocks. Also, the layer sizes are symmetrically decreasing in
the encoder while increasing in the decoder. While common, this is again not
strictly defined and can be explored. Intuition again says it makes the most sense
for the decoder to follow a reverse structure from its encoder counterpart, but other
possibilities can be similarly capable of good performance. For this setting, we keep
the traditional symmetrical design.

CNN autoencoder uses similar convolutional blocks to those reported in [31].
Specifically, we use a convolutional layer followed by a pooling layer in the encoder.
While they specified Max pooling, we allow both Max and Average pooling in
hyperparameter selection. For the decoder, we use upsampling followed by a standard
convolutional layer. Since there are more options, the convolutional autoencoder
(ConvAE) structure is more complex to define than the MLP autoencoder. We observe
in the literature versions of ConvAE increasing and decreasing the number of filters
while kernel size and pooling size remain the same. In some cases, kernel sizes were
changing. Thus, there is no specific best way to structure the ConvAE. In our case,
we increase the number of filters in the encoder because the kernel size and pooling
reduce the number of features, sometimes to only one. Thus, having more filters in
those deeper layers ensures that after flattening, we have more than one neuron
before the last fully-connected layer. We increase the number of filters per layer
following the expression nb_ f i l ter s ·2i , where i is the or der o f the l ayer + 1. In
the decoder, with the combination of upsampling and standard convolutional layer,
upsampling increases the number of features, while kernel size again decreases it.
Thus, we keep the same expression for increasing the number of filters. Both the
encoder and decoder end with a flattened layer followed by a fully-connected layer
with the number of neurons equal to the latent size in the encoder and input size in
the decoder.

In this work, we tested different structures of MLP autoencoders. At the same time,
more analysis should be done for the CNN autoencoder, as the described structure
is one of many possibilities. We leave this exploration on CNN structures for future
work.

7.4.2. AUTOENCODER METRIC ANALYSIS

Autoencoders for dimensionality reduction imply finding a reduced representation
of input data through a latent space. To assess the quality of the reduction and
obtained latent representation, the most common error metric is Mean Squared
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Error (MSE):

MSE = 1

mn

m∑
i=1

n∑
j=1

(
xi j − x̂i j

)2 , (7.3)

where xi j is the j -th feature value of i -th original side-channel observation
and x̂i j its reconstruction. m is the number of traces (inputs), and n is the
number of features in the side-channel trace. Minimizing the MSE leads to a
good reconstruction of the original input. To verify whether minimizing MSE is
meaningful for SCA traces, we quantify if the leakage is still preserved in the
reconstructed traces by calculating the Signal-to-Noise Ratio (SNR). SNR is computed
as a leakage assessment of side-channel measurements according to a pre-selected
intermediate variable. Since evaluated datasets in this paper were collected from
first-order masking AES implementations, first-order intermediate values (such as
S-Box(d j ⊕k j )) show no significant leakages. Thus, we compute SNR to verify
the occurrence of leakages for the masked S-Box output intermediate values5, i.e.,
v = S-Box(d j ⊕k j )⊕mi , where mi is the mask of the i -th trace. For that, we compute
the mean and variance side-channel traces for a group of traces represented by a
specific intermediate variable v ∈ [0,255]:

µv = 1

Nv

nv−1∑
i=0

xv
i (7.4)

σ2
v = 1

Nv −1

Nv−1∑
i=0

(
xv

i −µv
)2 , (7.5)

where Nv is the number of side-channel traces represented or labeled with
intermediate variable v . Next, we obtain the mean vector from all 256 variance
vectors σ2

v :

µσ = 1

256

255∑
v=0

σ2
v (7.6)

and the variance of mean vectors µv :

σµ = 1

255

255∑
v=0

(
µv −µσ

)2 . (7.7)

Finally, SNR is given by:

SN R = σµ

µσ
. (7.8)

The SN R from Eq. (7.8) results in a vector with the same length as side-channel
traces. We compute this vector for original and reconstructed traces. Then, we take
the maximum SNR peak obtained with original traces and subtract it from the value
on that exact location in the SNR obtained from reconstructed traces. In the result
figures, we refer to this as SNR diff.

5Although our profiling attacks in later sections are all executed in a black-box manner, here we
assume the knowledge of the masks only to assess if MSE metric is consistent.
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7.5. EXPERIMENTAL RESULTS

7.5.1. AUTOENCODERS SEARCH

In this section, we deploy a random search to find the best latent space size for
autoencoders based on experiments with two datasets. After defining the best latent
space size, we deploy a random search to find the best autoencoder architecture
for MLP and CNN-based structures. We also obtain the best autoencoder types.
Datasets are then encoded with these best autoencoders. Finally, we deploy another
random search to find the best profiling model trained with the encoded datasets.
We include the third dataset later for portability experiments while also evaluating
how well the decisions made on two other datasets for latent size and autoencoder
type apply to new datasets.

ASSESSING MSE METRIC WITH SNR

We conduct a random search on autoencoders using MSE as the loss function for
achieving good reconstruction from the latent space. In these experiments, we
consider SNR to verify that minimizing MSE is a meaningful objective when tuning
autoencoder hyperparameters. Here, we are not searching for the best latent space
size, so we fix the latent dimension to 100 features in all cases to evaluate the MSE
metric.

Hyperparameter search space for all autoencoder types are listed in Tables B.1
and B.2 in Appendix B.1. We randomly search for 20 models with each of the
four autoencoder types and calculate the SNR difference, as described before,
between SNR vectors obtained from original and reconstructed traces. The
analysis is conducted for the Hamming weight and identity leakage models with
v = S-Box(d j ⊕k j )⊕mi as the intermediate variable to compute SNR.

Results are shown in Figure 7.2 for the DPAv4.2 and ASCADr datasets. The x-axis
in Figures 7.2a and 7.2b shows the maximum peak SNR value difference between
the original and reconstructed traces. The corresponding MSE value for each
autoencoder is on the y-axis. These figures show that MSE increases as the SNR
peak difference increases regardless of the autoencoder type and leakage models
in SNR calculations. The vertical lines occur when the reconstructed traces result
in insignificant SNR peak values, indicating that side-channel leakages concerning
v = S-Box(d j ⊕k j )⊕mi are not preserved in the reconstructed traces. Negative SNR
difference values on the x-axis indicate that the reconstructed trace has a higher
SNR value than the original trace on the same sample point, which means that
the corresponding autoencoder is preserving and even amplifying the occurrence
of side-channel leakages concerning v . However, MSE is not created to lead the
autoencoder (AE) to amplify any such SNR peak, as it gets minimized by correct
reconstruction of the trace without amplifications.

Next, we consider Pearson correlation coefficient ρ to test whether there is a
positive (linear) correlation between MSE and SNR differences. Indeed, from the
results in Table 7.1, we see a high correlation until the vertical lines (maximum
difference in the SNR values). Specifically, for both datasets, the correlation is
stronger for MSE below 0.5. For the DPAv4.2 dataset, the maximum correlation is
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(a) DPAv4.2 dataset. (b) ASCADr dataset.

Figure 7.2.: Relation between MSE and SNR difference.

for MSE values below 0.25, and in the case of ASCADr, below 0.5. Therefore, we
conclude that minimizing MSE is a meaningful objective error function to optimize
autoencoder models for the given datasets.

Table 7.1.: Pearson correlation coefficient ρ and p-value for testing non-correlation.
LM stands for leakage model.

Dataset MSE LM ρ p-value

DPAv4.2

> 0 HW 0.12 2.32e-03

ID 0.12 2.67e-03

< 0.5 HW 0.76 8.85e-68

ID 0.76 1.62e-65

< 0.375 HW 0.83 1.03e-80

ID 0.83 4.35e-78

< 0.25 HW 0.93 2.04e-78

ID 0.93 1.32e-80

ASCADr

> 0 HW 0.03 4.84e-01

ID 0.03 5.01e-01

< 0.5 HW 0.87 3.92e-112

ID 0.86 6.58e-106

< 0.375 HW 0.68 1.05e-34

ID 0.70 3.10e-37

< 0.25 HW -0.10 5.16e-01

ID 0.01 9.37e-01

SEARCHING FOR THE BEST LATENT SPACE SIZE

In this section, we use random search to compare different latent space sizes. The
latent sizes we consider are 20, 40, 50, 100, 200, 250, 400, and 500 for all autoencoder
types except that for the ae_mlp_str_dcr, we do not use the latent size 500 as
we also limit the search to 400 neurons per layer (see Table B.1). By choosing
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these latent sizes, we ensure that the bottleneck layer in the autoencoder is always
smaller than the input layer (which contains the same number of units as the input
side-channel trace dimension). The datasets evaluated in this section contain 2 000
features (DPAv4.2) and 1 400 features (ASCADr), which is significantly larger than
the chosen latent space sizes given by the bottleneck layer. Hyperparameter search
space (Tables B.1 and B.2) is the same as in the metric analysis provided in the
previous section. The hyperparameters for the autoencoders are chosen at random,
and we train 20 autoencoder models per latent size, dataset, and autoencoder type
combination. The total number of autoencoder combinations in this search is 62.

The main idea here is to verify if a specific latent space size tends to provide the
lowest MSE among the searched ones regardless of the dataset and autoencoder (AE)
type. Considering our two datasets and four autoencoder types, we have eight cases,
each testing eight or seven latent sizes. Autoencoder type ae_mlp_str_dcr does not
use latent size 500, which leads to trying seven latent sizes instead of eight. We
apply the following procedure to obtain the best latent size:

1. For each of these 62 combinations, we extract the autoencoder (out of 20) with
the lowest MSE for that dataset, autoencoder type, and latent size.

2. For each autoencoder type and dataset combination, we rank the latent sizes
based on the best (lowest) MSE. The latent size for the model with the lowest
MSE gets the rank 1 being the best one.

3. For each of the latent space sizes, we average these eight ranks coming from
the dataset-autoencoder (AE) type combination.

Table 7.2 shows the average ranks of the latent sizes. The left side of the table
is for AE types except for ae_mlp_str_dcr as that one must have a decreasing
structure, and with the latent size of 500, we cannot achieve that as we limited our
number of neurons to a maximum of 400. On the right side of Table 7.2, we order
all latent sizes according to the average rank, except for 500, and include the results
from ae_mlp_str_dcr.

Following, we use the Friedman test [38] across all autoencoder types and the two
datasets (ASCADr and DPAv4.2). This test determines whether there is a statistically
significant difference between the means of three or more groups in which the same
subjects appear in each group. In our case, groups are based on latent sizes, and
subjects are dataset-AE type combinations. The comparison is based on the lowest
MSE obtained. Friedman test calculates test statistic Q using the ranks from the
samples in the groups. Q value has to be greater than the critical value of Q for a
selected significance level α to reject the null hypothesis. Commonly, significance
level α of 0.05 works well [39]. We determine the critical value from the Chi-Square
distribution table with k −1 degrees of freedom where k is the number of groups
and selected significance level α. The p-value is the probability of obtaining test
results at least as extreme as a result observed under the assumption that the null
hypothesis is correct. The null hypothesis for the Friedman test is that the mean
of the groups is the same. A very small p-value means such an extreme observed
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outcome would be very unlikely under the null hypothesis. The null hypothesis can
be rejected if the p-value is below α.

We report the Friedman test results at the bottom row in Table 7.2. Since the
p-value is below 0.05, we conclude that the difference between the mean values of
the groups (latent sizes) is statistically significant. Additionally, the test statistic Q on
the left part is greater than the critical value of 14.07 for the degree of freedom 7.
On the right side, the test statistic is greater than the critical value 12.59 for α= 0.05
and degree of freedom 6. We perform the Nemenyi post-hoc test to determine which
groups have different means. The results are shown in Appendix B.2 in Tables B.5
and B.6 corresponding to the cases without and with ae_mlp_str_dcr model. The
values in the tables are p-values where if the value is below 0.05, the two groups
(column-row combination) have statistically significantly different means. The lowest
MSE values for models with latent sizes 400 and 200 differ significantly from models
with lower latent sizes (20, 40, and 50). For latent sizes 100 and 250, the difference
is significant compared only to latent size 20 in the case with the ae_mlp_str_dcr
model. Thus, we select latent sizes 200 and 400 to find the best autoencoders using
a random search.

Table 7.2.: Average ranks for each latent space size.

Latent space size
w/o ae_mlp
_str_dcr Latent space size

with ae_mlp
_str_dcr

400 1.5 400 1.375

200 1.83 200 2

500 3.67 250 3.375

100 4 100 3.5

250 4.3 50 5.25

50 6.33 40 5.75

40 6.67 20 6.75

20 7.67

Q: 35.17, p-value: 1.04e-5 Q: 40.66, p-value: 3.38e-7

SELECTING THE BEST AUTOENCODERS

After we found the best latent size for the ASCADr and DPAv4.2 datasets, we
randomly search for additional 80 autoencoder models to obtain a total of 100
models for latent space sizes of 200 and 400. The hyperparameter search space for
each autoencoder type stays the same as in the search for the best latent size. From
these 100 autoencoder models, we select the best autoencoder for each dataset.
Table 7.3 shows the MSE of the best autoencoder for each of the given latent sizes
(200 or 400) and autoencoder types per dataset. We see that for ASCADr, latent size
400 always results in a lower MSE. For DPAv4.2, ae_mlp and ae_mlp_dcr had better
results with 200 features in latent space. However, we can conclude that the best
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autoencoder types are ae_cnn and ae_mlp_str_dcr, with the lowest MSE in both
datasets obtained using latent size 400.

Table 7.3.: Best autoencoders. The rows are sorted based on the MSE, so the latent
size order in rows is not fixed.

Dataset AE type Latent size MSE

DPAv4.2

ae_mlp 200 0.053842735

400 0.068908036

ae_mlp_dcr 200 0.053061113

400 0.071744457

ae_mlp_str_dcr 400 0.033211511

200 0.042860519

ae_cnn 400 0.026164241

200 0.057221718

ASCADr

ae_mlp 400 0.177198691

200 0.198677342

ae_mlp_dcr 400 0.133906147

200 0.194515368

ae_mlp_str_dcr 400 0.121792312

200 0.196267218

ae_cnn 400 0.118710345

200 0.209023259

Since we initially only allow up to 400 neurons per layer, with a latent space
size of 400, the autoencoder ae_mlp_str_dcr type could not create a bottleneck
architecture with decreasing number of neurons in consecutive layers of the encoder.
Thus, we repeated the random search for another 100 models for this autoencoder
type by allowing layers with 500 and 600 neurons. Table 7.4 shows the minimum,
mean, median, and maximum MSE found in 100 models for the two datasets. Note
that this table shows MSE results when the autoencoder contains layers with 400
neurons and MSE results when layers can include 400, 500, and 600 neurons.

Table 7.4.: Autoencoder ae_mlp_str_dcr with latent space size of 400. Values
are calculated on MSE from a random search of 100 different models,
and the number of neurons represents the allowed values from the
hyperparameter search space.

Dataset Nb. neurons min mean median max

DPAv4.2
400 0.03321 0.5295 0.3889 3.68

400, 500, 600 0.03373 0.8548 0.4529 27.67

ASCADr
400 0.12179 0.6028 0.4701 2.01

400, 500, 600 0.12107 0.7988 0.4832 7.71

For DPAv4.2 dataset, an autoencoder with up to 400 neurons per layer results
in a lower MSE than when we allow 400, 500, and 600 neurons per layer. The
hyperparameters of the best models for both cases are in Table 7.5. Note that this
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architecture has one hidden layer with 400 neurons between the input layer and
the layer with the specified latent size, and the decoder is symmetrical. When
allowing 500 and 600 neurons in the random search, the best-found autoencoder
has an architecture with two hidden layers with 400 neurons in the encoder and
decoder. They also differ in batch size, activation function, learning rate, and weight
initialization, but the optimizer is the same. The best model in the second case is
not using a larger number of neurons in the first layers.

The autoencoder for the ASCADr dataset has a lower minimal MSE when the
number of neurons includes 500 and 600 neurons in the random search. However,
the ability to use a larger number of neurons in layers closer to the input layer
was not utilized. In both cases for ASCADr dataset, the best model has the same
architecture: one hidden layer with 400 neurons for the encoder and decoder and
a bottleneck layer with 400 neurons. They differ in activation function and weight
initialization, while batch size, learning rate, and optimizer are the same. As the best
autoencoders have the same architecture (layers and neurons) for both datasets, the
slight difference in the performance comes from the other hyperparameters.

In general, the results in Table 7.4 indicate that a random search only including
the option of 400 neurons per layer delivers better MSE values than when we allow
more neurons per layer. Mean, median, and maximum MSE are always lower when
only 400 neurons are permitted. These results are confirmed for both datasets.

Table 7.5.: MLP autoencoders for DPAv4.2 and ASCADr with latent space size of 400
with different allowed numbers of neurons in layers.

Nb.
neurons

Hyperparameters MSE

DPAv4.2

400 ae_mlp_dpav42_best: architecture: [400], batch_size: 200, activation: tanh,
learning_rate: 0.0001, weight_init: he_normal, optimizer: Adam

0.03321

400, 500,
600

architecture: [400, 400], batch_size: 100, activation: elu, learning_rate: 0.001,
weight_init: glorot_normal, optimizer: Adam

0.03373

ASCADr

400 ae_mlp_ascadr_best: architecture: [400], batch_size: 100, activation: elu,
learning_rate: 0.0001, weight_init: random_uniform, optimizer: RMSprop

0.12179

400, 500,
600

architecture: [400], batch_size: 100, activation: selu, learning_rate: 0.0001,
weight_init: random_normal, optimizer: RMSprop

0.12107

Based on these results, the best autoencoder we use in further experiments is the
MLP autoencoder for the DPAv4.2 dataset with an MSE of 0.03321. For the ASCADr
dataset, we use the MLP autoencoder with an MSE of 0.12179. The autoencoder
with the CNN structure achieves even better MSE - with 0.026 for DPAv4.2, and
0.1187 for ASCADr. The hyperparameters for the best ae_cnn autoencoders are in
Table 7.6. We use these four autoencoders in the further experiments, which are
denoted ae_mlp_dpav42_best, ae_mlp_ascadr_best,
ae_cnn_dpav42_best, and ae_cnn_ascadr_best.
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Table 7.6.: Best ae_cnn autoencoders for DPAv4.2 and ASCADr with latent space size
of 400.

Dataset Hyperparameters MSE

DPAv4.2 ae_cnn_dpav42_best: batch_size: 200, filters: 16, kernel_size: 10, strides: 5,
pool_size: 2, pool_strides: 2, pooling_type: Avg, conv_layers: 1, activation: tanh,
learning_rate: 0.0001, weight_init: random_normal, optimizer: Adam

0.02616

ASCADr ae_cnn_ascadr_best: batch_size: 200, filters: 16, kernel_size: 20, strides: 5,
pool_size: 2, pool_strides: 2, pooling_type: Avg, conv_layers: 1, activation: tanh,
learning_rate: 0.001, weight_init: random_uniform, optimizer: Adam

0.11871

7.5.2. ARE ENCODED DATASETS AS GOOD AS ORIGINAL DATASETS?
After defining the best ae_mlp_str_dcr and ae_cnn autoencoder structures for
DPAv4.2 and ASCADr datasets, we investigate if the encoded datasets can keep
relevant leakage information when they are considered as training and attack
datasets.

We run a random search to find different MLP and CNN profiling models, and
we compare the search performance using original and encoded traces obtained
from the best autoencoders listed in Tables 7.5 and 7.6. The hyperparameter search
space for the profiling models is shown in Table B.3. Training, validation, and
attack sets are labeled with S-box(d2 ⊕k2) (third S-box output byte in first AES
encryption round6) for ASCADr and S-box(d12 ⊕k12) (13-th S-box output byte in the
first AES encryption round) for DPAv4.2. We consider the Hamming weight (HW)
and identity (ID) leakage models. We search for 100 models for each combination
of the leakage model and profiling model type (MLP-ID, MLP-HW, CNN-ID, and
CNN-HW). We measure how many out of the random 100 models reach ge∗ = 1 for
a given number of validation traces. With that information, we compare if we can
more easily obtain a good model using original or encoded traces within the same
hyperparameter search space. If we can get a similar amount of models out of 100
that reach ge∗ = 1 with original and encoded traces, it means that encoded traces
preserve enough information and can be used for training profiling models in SCA.
Results for both datasets are shown in Figure 7.3.

From the results, we see that out of 100 models, for the ASCADr dataset, only
in the case with MLP and the ID leakage model we obtained the same number
of models with ge∗ = 1. Looking at the number of traces Nge∗=1, using original
traces on average 1 462.8 traces are necessary, while for the dataset encoded with
ae_mlp_ascadr_best, we need on average Nge∗=1 = 1205.9 traces. For other attack
setups, using original traces led to more models with ge∗ = 1. However, using
encoded data was not much worse.

On the other hand, for DPAv4.2, in three out of four attack settings, we obtained
more models with ge∗ = 1 when using traces encoded with ae_mlp_dpav42_best or
ae_cnn_dpav42_best. Those cases are the MLP profiling model with both leakage
models and the CNN profiling model with the ID leakage model. The result with
the CNN profiling model and HW leakage model is again close in performance for

6Note that we start counting from byte index 0.
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(a) ID leakage model. (b) HW leakage model.

Figure 7.3.: Results on tuning effort using original and encoded traces. We compare
the number of models reaching ge∗ = 1 out of 100 trained models with
different hyperparameters selected using random search.

encoded data with ae_cnn_dpav42_best and original traces.
We use the Friedman test on the eight scenarios presented in Figure 7.3. We want

to see if there is a statistical difference between training on encoded and original
traces. We obtain a test statistic of 2.7742 and a p-value of 0.2498. Thus, there is no
significantly better setup based on the number of models reaching ge∗ = 1 out of 100
runs. The initial hypothesis for Friedman is that there is no statistically significant
difference in the mean of these numbers. Since the p-value, in this case, is not
below 0.05, all the setups lead to similar performance. To conclude, using original
traces is not statistically significantly better than using encoded data, meaning that
encoded data preserves relevant features that can be used in a profiling attack.

7.5.3. THE PORTABILITY OF PROFILING MODELS

In this section, we verify the efficiency of the best profiling model (obtained in the
previous section) when found through hyperparameter tuning with one dataset but
concerning different datasets. We include a third dataset to show portability from
one to two other datasets. This way, we can answer the following question: can we
move effort from profiling model tuning into autoencoder tuning to reuse the same
profiling model across multiple encoded side-channel datasets?

PORTABILITY OF ENCODED-DATA TRAINED PROFILING MODEL TO DIFFERENT

ENCODED DATASETS

We start by verifying the portability of a best-found profiling model trained with
an encoded dataset concerning other encoded datasets. That is possible because
we encode all datasets into the same encoding dimension, i.e., all encoded datasets
contain an equal number of features. We take the best MLP and CNN profiling
models trained with encoded DPAv4.2 dataset for both leakage models. Their
attack performance is shown in Tables 7.7 and 7.8, while their hyperparameters
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are presented in Tables B.7 and B.8 in Appendix B.3, respectively. We test the
performance of those architectures on the encoded ASCADr and ASCADf datasets.

Table 7.7.: Best MLP and CNN profiling models obtained for the encoded DPAv4.2
dataset when encoded with the best-found ae_mlp_dpav42_best.

Model LM ge∗ Nge∗=1

MLP
ID 1 3

HW 1 29

CNN
ID 1 65

HW 1 819

Table 7.8.: Best MLP and CNN profiling models obtained for the encoded DPAv4.2
dataset when encoded with the best-found ae_cnn_dpav42_best.

Model LM ge∗ Nge∗=1

MLP
ID 1 2

HW 1 16

CNN
ID 1 3

HW 1 18

For ASCADr, we already have the best autoencoders with the latent size of 400 (see
Tables 7.5 and 7.6 for hyperparameters and MSE). We additionally train autoencoders
ae_mlp_str_dcr and ae_cnn for the ASCADf dataset to encode it to 400 features per
trace as well. The hyperparameters range to find the best ae_cnn autoencoder with
the random search are the same as considered for the DPAv4.2 and ASCADr datasets
(see Table B.2). To find the best ae_mlp_str_dcr autoencoder for the ASCADf
dataset, we again consider the random search settings shown in Table B.1. However,
we allow the number of neurons per layer for a latent size of 400 to be [400, 500,
600, 700]. The hyperparameters for best autoencoders ae_mlp_ascadf_best and
ae_cnn_ascadf_best for ASCADf with latent size 400 are reported in Table 7.9.

Table 7.10 shows the attack performance of the best CNN and MLP profiling
architectures on DPAv4.2 from Tables 7.7 and 7.8 when trained with the encoded
ASCADr and ASCADf datasets. The results in this table indicate the number of
times (out of 100) that the profiling model reaches ge∗ = 1 for each scenario
(leakage model, profiling model type, and autoencoder type). Before the training,
we performed standardization on the encoded datasets. Standardization is a typical
preprocessing method before training in the SCA and other domains. However, later
we also test without standardization to observe the effects.
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Table 7.9.: Best autoencoders for ASCADf with latent space size of 400.

AE type Hyperparameters MSE

ASCADf

ae_mlp
_str_dcr

ae_mlp_ascadf_best: architecture: [400, 700], batch_size: 200, activation: tanh,
learning_rate: 0.0001, weight_init: random_normal, optimizer: Adam

0.01245

ae_cnn ae_cnn_ascadf_best batch_size: 200, filters: 16, kernel_size: 20, strides: 10,
pool_size: 4, pool_strides: 2, pooling_type: Avg, conv_layers: 1, activation: tanh,
learning_rate: 0.0001, weight_init: he_uniform, optimizer: Adam

0.01380

The results with encoded ASCADr indicate superior performance compared to
results obtained with the encoded ASCADf. Performance with the encoded ASCADr
for MLP with the identity leakage model when this architecture was found with
ae_cnn_dpav42_best-encoded DPAv4.2 dataset is slightly worse with finding 19
and 51 models out of 100 reaching ge∗ = 1. As mentioned, the results with
encoded ASCADf are not good, specifically for cases with ASCADf encoded with
ae_mlp_ascadf_best. The poor performance might come from the fact that the
features in encoded data do not share comparable features despite the equal latent
size. We observe that the architecture of that autoencoder is different from the
architectures for the other two datasets. To improve these results for encoded
ASCADf, and since for ASCADf we allowed more than 400 neurons per layer
(which was not the case for other datasets), we again train 100 ae_mlp_str_dcr
autoencoders for ASCADf but with only 400 neurons per layer and latent size 400.
This way, the autoencoder architecture will be more similar to autoencoders of other
datasets. The resulting features also become more comparable, which could improve
the performance. The hyperparameters of the best autoencoder for this case are in
Table 7.11.

The results using the ae_mlp_ascadf_best-encoded ASCADf from the described
search are in Table 7.12. Here, we see an improvement, which indicates our
hypothesis on the similarity of latent representations with DPAv4.2 and ASCADr
could be true. Accordingly, this is a crucial remark to consider if universal models
are to be considered. As the feature space is more similar, the portability becomes
easier. Despite the MSE being slightly worse than before, the attack performance is
better since the representations are more comparable.

After improving ae_mlp_ascadf_best, we also test best MLP and CNN profiling
architectures from Tables 7.7 and 7.8 without data standardization. The results are
in Table 7.13 and show that for ASCADr, we have similar successful behavior in
comparison to results from Table 7.10 when data standardization was done. For
encoded ASCADf, we compare results with Table 7.12 for ae_mlp_ascadf_best as
that autoencoder was used for encoding as it was shown to be better. Additionally,
we compare it with Table 7.10 for ae_cnn_ascadf_best. Results with and without
standardization for ASCADf are also similar.

Our analysis demonstrates that reusing profiling models trained on an encoded
dataset is possible. That reduces hyperparameter tuning efforts when considering
new encoded datasets, where the effort is moved to tuning the autoencoder.



7

180 7. AUTOENCODER-ENABLED MODEL PORTABILITY IN SIDE-CHANNEL ANALYSIS

Table 7.10.: Portability results with best MLP and CNN models obtained with
the encoded DPAv4.2 datasets (from ae_mlp_dpav42_best and
ae_cnn_dpav42_best). Datasets ASCADr and ASCADf are encoded
with their respective best autoencoders. In these results, before training,
we use standardization. The training is done 100 times, and the reported
number is the number of times we reach ge∗ = 1.

Model LM

encoded DPAv4.2 with
ae_mlp_dpav42_best

encoded DPAv4.2 with
ae_cnn_dpav42_best

ae_cnn
_*_best

ae_mlp
_*_best

ae_cnn
_*_best

ae_mlp
_*_best

encoded ASCADr

MLP
ID 100 100 19 51

HW 97 97 89 73

CNN
ID 79 65 99 100

HW 98 100 100 99

encoded ASCADf

MLP
ID 35 24 17 0

HW 0 0 10 5

CNN
ID 97 5 30 0

HW 16 0 66 1

Table 7.11.: Best ae_mlp_str_dcr autoencoder for ASCADf with latent space size of
400, allowing only 400 neurons per layer.

Hyperparameters MSE

ae_mlp_ascadf_best: architecture: [400], batch_size: 100, activation: selu, learning_rate:
0.0001, weight_init: he_normal, optimizer: RMSprop

0.01345

Table 7.12.: Results with using encoded ASCADf from ae_mlp_ascadf_best with
only 400 neurons per layer. We use standardization of the encoded
dataset when training the profiling model 100 times. The number
represents the number of times we reach ge∗ = 1.

Model LM
Best model for DPAv4.2 encoded with

ae_mlp_dpav42_best ae_cnn_dpav42_best

MLP
ID 69 37

HW 0 2

CNN
ID 100 100

HW 51 17
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Table 7.13.: Portability results with best MLP and CNN models obtained
with encoded DPAv4.2 datasets (from ae_mlp_dpav42_best and
ae_cnn_dpav42_best). Datasets ASCADr and ASCADf are encoded with
their respective best autoencoders. We use encoded data directly, without
standardization. The training is done 100 times, and the reported
number is the number of times we reach ge∗ = 1.

Model LM

encoded DPAv4.2 with
ae_mlp_dpav42_best

encoded DPAv4.2 with
ae_cnn_dpav42_best

ae_cnn
_*_best

ae_mlp
_*_best

ae_cnn
_*_best

ae_mlp
_*_best

encoded ASCADr

MLP
ID 75 100 0 73

HW 98 93 100 87

CNN
ID 87 83 100 100

HW 97 100 100 99

encoded ASCADf

MLP
ID 0 83 100 11

HW 12 3 0 2

CNN
ID 98 100 43 100

HW 29 85 1 86

Additionally, universal profiling architecture is then something we can consider on
autoencoder-encoded data. Moreover, tuning autoencoders is easier as optimization
of MSE is more straightforward.

PORTABILITY OF ORIGINAL-DATA TRAINED PROFILING MODEL TO DIFFERENT

ORIGINAL AND ENCODED DATASETS

In this section, we test the portability of a best-found profiling model architecture
(from random search) when it is trained on an original (i.e., not encoded) dataset.
For that, we consider ASCADf, which contains 700 features. We made this choice
because ASCADf has fewer features than ASCADr and DPAv4.2, which contain 1 400
and 2 000 features, respectively, in their original versions. In this case, to reuse that
architecture, we need to decrease the number of features of other datasets to the
size of the data used in training. However, since the input layer is a dedicated
first layer in neural networks, to reuse the architecture, we can also replace that
first layer. In that case, we can keep the original number of features of the new
datasets. Our goal is to verify if the best-found profiling architecture with ASCADf
also provides good attack performance when trained with the encoded and original
ASCADr and DPAv4.2 datasets. Therefore, we have three cases per dataset - using
original and encoded data with two different AE types.

Since this time we have to encode ASCADr and DPAv4.2 into 700 features, we
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again run a hyperparameter search to find the best autoencoders, which are reported
in Table 7.14 with their corresponding MSE values. The hyperparameter search
spaces are shown in Tables B.2 and B.4. Table 7.15 shows the results with the best

Table 7.14.: Autoencoders for DPAv4.2 and ASCADr with latent space size of 700.

AE type Hyperparameters MSE

DPAv4.2

ae_mlp
_str_dcr

ae_mlp_dpav42_best_700: architecture: [1400], batch_size: 100, activation: tanh,
learning_rate: 0.0001, weight_init: he_normal, optimizer: Adam

0.017

ae_cnn ae_cnn_dpav42_best_700: batch_size: 200, filters: 16, kernel_size: 10, strides: 5,
pool_size: 4, pool_strides: 2, pooling_type: Avg, conv_layers: 1, activation: elu,
learning_rate: 0.001, weight_init: random_uniform, optimizer: Adam

0.013

ASCADr

ae_mlp
_str_dcr

ae_mlp_ascadr_best_700: architecture: [900], batch_size: 200, activation: selu,
learning_rate: 1e-05, weight_init: random_uniform, optimizer: RMSprop

0.052

ae_cnn ae_cnn_ascadr_best_700: batch_size: 400, filters: 8, kernel_size: 20, strides: 5,
pool_size: 2, pool_strides: 4, pooling_type: Avg, conv_layers: 1, activation: elu,
learning_rate: 0.001, weight_init: he_uniform, optimizer: RMSprop

0.141

MLP and CNN profiling architectures found for the original ASCADf dataset. We ran
a random search for 100 models using hyperparameter search space from Table B.3.
Hyperparameters for the models with results presented in Table 7.15 can be found
in Table B.9.

Table 7.15.: Best profiling models for ASCADf.

Model LM ge∗ Nge∗=1

MLP
ID 1 151

HW 1 1476

CNN
ID 1 265

HW 1 1734

Since we reuse only the architecture and not the trained parameters (weights and
biases), we modify the input layer to use the original ASCADr and DPAv4.2 datasets
that have more features than the original ASCADf. This way, we take the best
architectures from Table 7.15 and train them with the original ASCADr and DPAv4.2
datasets as well as with their encoded versions by using the best-found autoencoders
listed in Table 7.14. For each dataset, profiling model architecture, and leakage
model, we run 100 trainings and compare the number of times the model reaches
ge∗ = 1. The analysis is also done with and without data standardization.

The results in Table 7.16 show that best-found architecture provides good
performance even if we use directly original traces from the DPAv4.2 and ASCADr
datasets. However, with DPAv4.2, the best-found CNN architectures are less
successful. For the encoded DPAv4.2 dataset, results are better than original traces
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as it leads to either similar performance or often better. With the dataset encoded
with ae_cnn_dpav42_best_700, we got better results without standardization,
and for the encoded dataset from ae_mlp_dpav42_best_700, it was better using
standardization.

Using original traces was already very successful for the ASCADr dataset, so using
encoded data is less valuable, but still shows good performance when the dataset
is encoded with ae_cnn_ascadr_best_700, especially with standardization. On
the other hand, using ae_mlp_ascadr_best_700 encoded data usually resulted
in worse outcomes. Considering the standardization of encoded data, we see
that it was slightly beneficial to use standardization for data encoded with
both ae_mlp_ascadr_best_700 and ae_cnn_ascadr_best_700 encoded cases.
Statistically, however, we cannot claim that it is always necessary to use
standardization. On the other hand, based on our results, models trained with
encoded data perform similarly or better in most experiments than those trained with
original data. In Table 7.16, the cases where the performance is worse are marked
in red color. Thus, we conclude that using encoded data to reuse the profiling
attack architecture trained with other datasets’ original traces can be done despite
different feature spaces. Moreover, encoded data is beneficial when the performance
with the original data is unsuccessful. Hyperparameter tuning for new datasets
can be significantly reduced in that way. Again, tuning is more straightforward for
autoencoders by minimizing MSE and does not require the typical attack phase in
classification with GE calculations.

Table 7.16.: Results with DPAv4.2 and ASCADr using attack architecture trained on
the ASCADf dataset. The numbers represent the number of times we
reach a GE of 1 when the training is done 100 times.

Model LM orig.

w/o stand. with stand.

ae_cnn
_*_best

_700

ae_mlp
_*_best

_700

ae_cnn
_*_best

_700

ae_mlp
_*_best

_700

DPAv4.2

MLP
ID 48 100 100 100 100

HW 100 100 100 100 100

CNN
ID 0 48 1 0 100

HW 4 96 77 100 95

ASCADr

MLP
ID 25 9 0 75 66

HW 100 100 99 100 100

CNN
ID 95 100 0 100 0

HW 99 100 4 98 0
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7.5.4. TRANSFER LEARNING WITH PROFILING MODELS TO DIFFERENT

ENCODED DATASETS

We also test the benefit of autoencoders in the context of transfer learning. Again,
we have the same best profiling models for the ASCADf dataset (Table 7.15), and we
retrain the last layer to obtain the secret key byte for the new dataset. In this case,
the input must be the same size since we also use the trained parameters (weights
and biases). Therefore, we encoded the ASCADr and DPAv4.2 datasets for transfer
learning to the profiling model input size. Additionally, we again test with and
without standardization of the encoded data. Since the training is faster as we train
only one layer, we have a setting where we train one by one epoch, calculating the
GE after each epoch and stopping when we reach a ge∗ = 1. The maximum number
of epochs is 100. Another setting is running training for a given number of epochs,
which is 100, as in all our experiments.

Table 7.17.: Results for transfer learning with datasets encoded with
ae_cnn_*_best_700. The table shares the number of epochs that
the model was trained for as well as the minimum GE with a
corresponding number of traces (NT).

Model LM
w/o stand. with stand.

epochs GE NT epochs GE NT

encoded DPAv4.2

MLP ID
74 1 2878 1 23.9 2998

100 80.8 2809 100 38.1 2998

CNN ID
53 1 2769 82 34 2832

100 1 309 100 57.95 2938

MLP HW
9 1 2738 43 53.65 2743

100 1 71 100 77.6 2724

CNN HW
14 1 2861 37 1 2557

100 1 812 100 1 852

encoded ASCADr

MLP ID
5 1 1226 24 1 2581

100 1 459 100 25.95 80

CNN ID
10 1 1702 11 1 2286

100 1 356 100 1 382

MLP HW
4 1 2641 4 1 2508

100 1 1621 100 1 1643

CNN HW
12 1 2738 9 1 2157

100 1 1636 100 1 1486

In the results shown in Table 7.17, when datasets were encoded using the
ae_cnn_*_best_700 autoencoder, we see that in all cases, we reached ge∗ = 1. Often
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the necessary number of epochs is small. However, when using standardization
of encoded data, we see that with DPAv4.2, we reach ge∗ = 1 in fewer cases.
Standardization for encoded ASCADr did not have much influence.

Table 7.18 shows the attack results when datasets are encoded with
ae_mlp_*_best_700. Here, we see that the performance is a bit worse.
However, we can still reach ge∗ = 1 in some cases without standardization. For
DPAv4.2, profiling models using the identity leakage model did not reach ge∗ = 1.
Using CNN, we see that it got close to one with ge∗ = 1.65 and ge∗ = 1.15, so we
believe this can be corrected using, e.g., more epochs. Thus, we increased the
number of epochs to 150 and got a ge∗ = 1 within Nge∗=1 = 854 traces. Similarly,
we select other specific cases that did not reach ge∗ = 1, and we experiment with
the number of epochs and training two instead of one last layer in the model to
verify if with those modifications we can obtain better performance. Since using
the standardization primarily led to worse results, we only experimented without
standardization, changing the number of epochs and the number of layers we train.

Table 7.18.: Results for transfer learning with datasets encoded with
ae_mlp_*_best_700. The table shares the number of epochs the
model was trained for as well as the minimum GE with a corresponding
number of traces (NT).

Model LM
w/o stand. with stand.

epochs GE NT epochs GE NT

encoded DPAv4.2

MLP ID
41 67.8 2791 53 28.35 2700

100 115.75 2827 100 77.9 17

CNN ID
100 1.65 2935 59 44.2 2931

100 1.15 2635 100 86.4 2915

MLP HW
12 1 2603 1 72.1 249

100 3.8 2501 100 136.7 0

CNN HW
15 1 1990 19 1 2711

100 1 747 100 1 1741

encoded ASCADr

MLP ID
57 18.5 14 56 21.85 1074

100 1.95 2799 100 28.95 2973

CNN ID
96 1.8 2992 101 6.65 2873

100 2.55 2969 100 21.15 2826

MLP HW
11 1 1931 12 46.1 2090

100 7.95 2989 100 48.75 2993

CNN HW
25 1 2430 84 1.2 2925

100 1.55 2976 100 6.3 2894
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Specifically, for the MLP and HW combination with DPAv4.2, we reach ge∗ = 1 in
12 epochs when checking the GE after every epoch. Training for 100 epochs at once,
GE gets worse (3.8). Thus, we tested with only 50 epochs and reached Nge∗=1 = 1993.
A combination of MLP and the ID leakage model is the worst, with minimal GE
being 67.8 in 41 epochs and 115.75 after 100 epochs. Therefore, we tested multiple
modifications. We tested with training two last layers in the model, again with a
different number of epochs - 100, 150, and 200. The lowest GE are in cases with 150
epochs training one layer where we reach ge∗ = 98.8, and training two last layers
with 200 and 150 epochs reaching ge∗ = 104.7 and ge∗ = 99.55, respectively. Similarly,
we do this for the ASCADr dataset. In the case of MLP and the ID leakage model,
again, we tested all cases as with DPAv4.2, and the improvement happens only
with training the two last layers with 200 epochs getting ge∗ = 1.25. In combination
with CNN and ID, the minimal GE we get is 2.55 after 100 epochs, and when we
train epoch by epoch, the minimum GE is 1.8 in epoch number 96. The results
indicate that the model has the capacity to learn the new dataset. We tried adding
more epochs, 150 and 200, but we did not reach better results (GE was 2.5 and 4.5,
respectively). Also, with only 50 epochs, we get worse results with minimal GE of
35.45. We reached ge∗ = 1.3 by training the two last layers with 150 epochs. While
not investigated, it seems that perhaps using early stopping could help in this case.
Early stopping could prevent GE from increasing after a certain number of epochs.
The last combination we tested is the MLP and HW, where we reach a GE of 1 when
training epoch by epoch. Using 50 epochs gets us to ge∗ = 1.05, and using 150
epochs results in ge∗ = 1.2. However, we already showed that we could get ge∗ = 1
training epoch by epoch. Thus, the model can learn, and early stopping could help
get ge∗ = 1.

In most cases, we could get GE close to 1. In many cases, we also see capacity in
the model to learn the new dataset where early stopping could be beneficial as GE
seems to deteriorate after some epochs. On the other hand, training modifications
did not help reach ge∗ = 1 for the MLP and the ID leakage model for the DPAv4.2
dataset. Possibly, the autoencoder requires improvements, but we also see that
the results for this case specifically were better with standardization. Including
standardization with training modifications might help. Additionally, from the setup
with training epoch by epoch, the minimum GE is around 50 epochs and gets larger
as we train for the entire 100 epochs. Thus, early stopping might also be beneficial
in this case, along with other training alternatives.

Here, we see that results using data encoded with ae_cnn_*_best_700 are better
than those encoded with ae_mlp_*_best_700 with and without standardization. In
both cases, standardization made performance worse, so with transfer learning, we
could opt not to use standardization, at least when the reused model is trained on
the original dataset and now used for encoded data. However, more exploration
of this can be done as the sample might be small. Additionally, if we use transfer
learning from a model trained on encoded data and then used for new encoded
data, this conclusion about standardization may not be valid. Still, our experiments
show significant benefits of transfer learning where tuning the profiling model for a
new dataset was eliminated and training time reduced. That holds while the data
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is also in different feature spaces as the model is trained on original data, then
transferred for encoded data of other datasets.

7.6. CONCLUSIONS AND FUTURE WORK
In this work, we proposed autoencoders to decrease the hyperparameter tuning
effort of profiling models for new datasets. Hyperparameter tuning for profiling
models in SCA is a necessary but time-consuming task, and additionally, those
efforts are needed for each specific dataset. Thus, we propose reusing profiling
models to reduce the efforts for each new dataset by using autoencoders. The
commonly used metric for autoencoders is MSE, which we showed to be positively
correlated with the SNR difference between the original and reconstructed trace.
Tuning autoencoders is more effortless as the MSE metric is relevant to the goal of
reconstruction. On the contrary, with the classification of intermediate values, we
need to perform GE calculations to validate the performance of the profiling model.
Since those calculations are computationally expensive, they are not done during
training, contrary to MSE computation. Therefore, AEs are easier to tune and train
than profiling models of SCA.

Concerning the observed results, we show that the hyperparameter tuning was not
significantly better with original traces, which means that encoded data does keep
relevant information for the attacks. We consider three portability cases enabled
with autoencoders.

• Reusing profiling architecture trained on one encoded dataset for other
encoded datasets: This approach comes close to finding a universal profiling
model, where all the datasets get encoded to the same feature size using
autoencoders and then attacked with the same attack architecture. The results
show good performance over encoded datasets. One important note is that the
autoencoders with similar architecture (number of layers and neurons) lead to
better attack performances. In that way, the features in encoded data are more
alike, which boosts the performance of the same profiling architecture across
different datasets.

• Reusing profiling architecture trained on one dataset’s original traces for
attacking other datasets with more features: Here, we use autoencoders to
decrease the number of features of the new datasets to the feature size of the
dataset used to train the model. Training with encoded data was better or
similar in performance to training with original traces. Thus, if original traces
do not lead to good performance, we can consider using autoencoders to
encode data to fewer features to achieve better performance with lower tuning
efforts than finding a new profiling model.

• Reusing profiling model trained on one dataset’s original traces for attacking
other datasets with more features: We utilize autoencoders to allow using
transfer learning between different datasets. Dimensionality reduction is
necessary as we keep the trainable parameters of the model. The results
show great performance with data encoded with the ae_cnn architecture type
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without standardization. In other cases, we also reach ge∗ = 1 with a bit longer
training or training more layers. The benefit of transfer learning enabled by
autoencoders is that we eliminate the hyperparameter tuning of the profiling
model and significantly reduce training time for the new dataset.

In future work, CNN autoencoder types need to be more thoroughly investigated
as they are more powerful considering feature extraction than MLPs. On the other
hand, we should study what is represented in the latent space of autoencoders
for SCA traces. We can compare autoencoders as feature processing tools with
classical approaches, such as principal component analysis (PCA). Instead of running
a DL-based SCA attack on encoded data, performing classical SCA on AE-encoded
data would be interesting.
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8
LABEL CORRELATION IN DEEP

LEARNING-BASED SIDE-CHANNEL

ANALYSIS

The efficiency of the profiling side-channel analysis can be significantly improved with
machine learning techniques. Although powerful, a fundamental machine learning
limitation of being data-hungry received little attention in the side-channel community.
In practice, the maximum number of leakage traces that evaluators/attackers can
obtain is constrained by the scheme requirements or the limited accessibility of the
target. Even worse, various countermeasures in modern devices increase the conditions
on the profiling size to break the target.

This work demonstrates a practical approach to dealing with the lack of profiling
traces. Instead of learning from a one-hot encoded label, transferring the labels
to their distribution can significantly speed up the convergence of guessing entropy.
By studying the relationship between all possible key candidates, we propose a new
metric, denoted Label Correlation (LC), to evaluate the generalization ability of the
profiling model. We validate LC with two common use cases: early stopping and
network architecture search, and the results indicate its superior performance.

This chapter has been published as L. Wu, L. Weissbart, M. Krček, H. Li, G. Perin, L. Batina, and
S. Picek. “Label Correlation in Deep Learning-Based Side-Channel Analysis”. In: IEEE Transactions
on Information Forensics and Security 18 (2023), pp. 3849–3861. DOI: 10.1109/TIFS.2023.3287728.
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8.1. INTRODUCTION
Side-channel analysis (SCA) is recognized as one of the most powerful attack methods
on the implementations of cryptographic algorithms. Commonly, such attacks
are divided into direct attacks like Simple Power Analysis (SPA) and Differential
Power Analysis (DPA) [2], and two-stage (profiling) attacks like template attack [3],
stochastic models [4], and machine learning-based attacks [5–7]. The profiling
attacks impose additional requirements as they assume an ’open’ device (or a copy
of it). Still, the actual key recovery might need only a few measurements or, in some
cases, a single trace [8, 9].

In recent years, machine learning-based attacks positioned themselves as a strong
alternative for more ’classical’ SCA [8, 10, 11], which has become a standard
evaluation approach for security evaluation and certification. The success of such
methods relies on a sufficient number of training traces so that a machine learning
classifier can accurately map the relationship between the traces and corresponding
labels (intermediate data). In the worst-case attack scenario, an attacker can obtain
unlimited training traces from the clone device for profiling attacks. However, an
easy-to-ignore fact, especially in SCA research, is that it is not easy to acquire a large
number of attack traces, even for a white-box evaluation in a security lab. We rarely
see research focus on reducing the number of profiling traces number. Indeed, such
a restriction mainly comes from three factors: time constraints, countermeasures,
and the device’s life cycle. We argue the importance of developing techniques that
effectively decrease the required number of profiling traces while keeping a similar
attack performance.

• Time constraints: An evaluation’s time budget dramatically limits the number
of traces one can obtain. For instance, according to [12], measuring one
million profiling traces for a software RSA implementation with a 1 024-bit key
could take more than a week. Additionally, in post-analysis tasks such as trace
realignment, noise filtering, and leakage assessment, an evaluator may not
have enough budget to measure sufficient traces to break the target. Therefore,
reducing the required number of profiling traces would save time and enhance
the evaluator’s attack capability.

• Security Countermeasures: Unlike most deep learning applications, the SCA
training data are most likely ’protected’ - the SCA countermeasures represent
a standard/default setting for the modern smart card/SoC’s implementations.
These protection mechanisms further increase the difficulties in learning
the trace-label relationship, thus increasing the demand for the number of
measurements. From a security developers’ point of view, an increasing
number of side-channel measurements to break the target implementation
means higher security assurance of their product. If we can effectively reduce
the required number of profiling traces, such vulnerabilities will be considered
again.

• Application-level Protections: For a black/grey box evaluation, the available
traces can drop to hundreds or thousands due to the upper limit of program
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counters such as Application Transaction Counter (ATC) or PIN Try Counter
(PTC) [13], which is commonly insufficient when implementing an efficient
profiling model. Building a profiling model with limited profiling traces would
significantly increase the capability of exploiting the potential vulnerabilities
protected by life-cycle-related counters.

There are limited evaluation metrics optimized for SCA. Evaluation metrics are
essential in the training process: by actively monitoring the metric value, one
can easily interpret the learning process, e.g., underfitting or overfitting. However,
accuracy, a commonly used metric for deep learning, is less indicative for SCA
in multi-trace attack scenarios [8]. The reasons can be explained from two
aspects. First, side-channel leakages are more difficult to classify due to the
noise/countermeasures in the traces. Second, accuracy does not represent the
success of an attack well, as we commonly need to consider continuous attacks
that are better evaluated with metrics capturing this continuity. Guessing entropy
and success rate are the commonly used metrics for SCA. Unfortunately, using
such evaluation metrics would significantly increase the training time due to their
computation complexity. Moreover, guessing entropy onl y evaluates the rank of the
correct key. Although effective, we argue that it can be less indicative as the internal
relationships with other (wrong) key candidates are not considered. More discussion
is available in Section 8.5.2.

We put the above concerns forward as the motivations for this work. First, to
reduce the required number of training traces, we transfer the one-hot encoded
labels to their Gaussian distribution centering on the corresponding labels motivated
by [14]. The proposed learning scheme is illustrated in Figure 8.1. A one-hot
encoded label that belongs to class 4 has been transferred to the distributed label
with the value of the fourth index with the highest probability. Based on our
experiment, regardless of the used leakage model and deep learning architecture, if
using our learning scheme, the profiling traces can be reduced more than five times
compared with the number of profiling traces used in the literature.

DL model

Profiling traces Profiling labels

0
0
0
1
…
0

0.01
0.05
0.2
0.5
…

0.001

Distributed labels

Figure 8.1.: Learning with distributed labels.

One essential assumption of the distributed label is that the label closer to the
correct label is more likely to be selected. Under the same assumption, we propose
key distribution to measure the geometric distance between the most likely key
(not necessarily the correct key) and all the other keys. From this method and
guessing entropy estimation, we propose a novel profiling model fitting metric -
Label Correlation (LC) that calculates the correlation between key distribution and
the key guessing vector of all key guesses. As demonstrated with experiments
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on publicly available datasets, the proposed metric can indicate the generalization
ability of a profiling model and thus serve as a reliable evaluation metric of early
stopping and network architecture search. LC is more indicative than conventional
metrics, such as validation (cross-entropy) loss, as it directly links with the attack
performance. On the other hand, compared with GE, LC requires less computation
effort as it does not rely on the averaging of multiple realizations of key ranks [15].
Thus, it can be a good metric to monitor the model training.

To summarize, the main contributions of this paper are:

1. We introduce a new efficient training scheme for profiling SCA when the
number of profiling traces is limited. The attack performance is improved
by learning from the distributed labels compared to conventional one-hot
encoded labels.

2. We propose a novel method to calculate the distance between the target key
and other keys called key distribution (KD).

3. Based on the guessing entropy, we introduce a new metric called Label
Correlation (LC) that can effectively estimate how well the profiling model
fits the data. To that end, we show that the proposed metric is reliable in
reflecting the generality of the profiling model. We demonstrate two use cases
for potential implementors: early stopping and network architecture search in
various testing conditions. The results show that the LC metric performs better
than other commonly used metrics.

We provide comprehensive experimental results on publicly available datasets
to validate our claims. We also consider two commonly used deep learning
architectures in SCA: multilayer perceptron and convolutional neural networks.
The source code is available in the GitHub: https://github.com/AISyLab/
Label-distribution-and-correlation.

The paper is organized as follows. Section 8.2 provides information about profiling
SCA, commonly used evaluation metrics, and datasets used in this paper. The
related works are discussed in Section 8.3, followed by the proposal of the label
distribution learning and novel SCA evaluation metric LC in Sections 8.4 and 8.5.
Section 8.6 validates the proposed methods experimentally with different datasets,
attack models, and leakage models. Finally, Section 8.7 concludes this paper and
proposes possible future research directions. In Appendix C.1, we provide details
about the neural network architectures we used.

8.2. BACKGROUND

8.2.1. NOTATION

We use calligraphic letters like X to denote sets and the corresponding upper-case
letters X to denote random variables and random vectors X over X . The
corresponding lower-case letters x and x denote realizations of X and X, respectively.
We use a sans serif font for functions (e.g., f).

k represents a key byte candidate that takes its value from the keyspace K . k∗ is
the correct key byte, and kr e f is the key byte assumed by an attacker to be correct

https://github.com/AISyLab/Label-distribution-and-correlation
https://github.com/AISyLab/Label-distribution-and-correlation
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(as the attacker does not know the correct key).1

A dataset T is defined as a collection of traces ti , where each trace ti is associated
with a key-related label (or the key itself) yi . A complete set of labels with c classes
is denoted by Y = {y1, y2, · · · , yc }. The number of profiling traces equals N , the
number of validation traces equals V , and the number of attack traces equals Q.
Finally, θ denotes the vector of parameters to be learned in a profiling model.

8.2.2. PROFILING SIDE-CHANNEL ANALYSIS

As depicted in Figure 8.2, profiling side-channel attacks consist of two phases:
1. Learning or profiling phase. The profiling phase consists of building a

profiling model fθM to map the inputs (side-channel measurements) to the
outputs (classes as obtained by evaluating the leakage model on the sensitive
operation) on a set of N profiling traces. fθM represents the profiling model
trained for a given leakage model M and the set of learning parameters θ.
This phase aims to fit the parameters of a function that maps the side-channel
traces to the labels in the best way (minimizing the error function). It is
common to use the validation set of size V to know when to stop the learning
process.

2. Test or attack phase. The attack phase consists of obtaining label predictions
for the traces from a different dataset of size Q to test the model. The trained
model processes each attack trace and produces the attack’s output as a vector
of probabilities pi , j ∈K , where each index is the probability that a trace ti is
associated with the leakage value j . We can estimate the attack performance
from this matrix of probabilities (as we have multiple vectors - one for each
attack trace).

1. Profiling

2: Attack

Profiling model

Profiling 
traces

Profiling 
labels

Attack 
traces

Predicted attack labels

Rank key

Figure 8.2.: Profiling side-channel analysis.

We consider two common profiling approaches:
• Template Attack. Template attack (TA) uses Bayes’ theorem to obtain

predictions, dealing with multivariate probability distributions as the leakage
over consecutive time samples is not independent [3]. In the state-of-the-art,
template attack relies mostly on a normal (Gaussian) distribution.

• Deep Learning-based SCA (DL-SCA). We consider supervised machine learning
and the classification task as the side-channel attack’s goal. Supervised learning

1Note that the subkey candidates can have any number of bits that are being guessed and while here
we assume the AES cipher scenario, the concept is algorithm-independent.
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deals with the task of learning a mapping f from a set of input variables from
X to the set of output variables Y (fθM : X →Y ). For SCA, the profiling phase
aims to learn the parameters θ, minimizing the empirical risk represented by a
loss function on a dataset. In the attack phase, the goal is to predict the classes
(more precisely, the probabilities that a certain class would be predicted) based
on the previously unseen set of traces and the trained model fθM .

8.2.3. EVALUATING THE ATTACK PERFORMANCE

An attack’s output is the logarithmic sum of all Q probability vectors of single model
predictions, where each index is associated with one key hypothesis. Sorting this
vector by decreasing probabilities leads to a key guessing vector with increasing
confidence predicted by a profiling model. The key rank denotes the position of the
correct key. Then, one can use metrics such as guessing entropy to estimate the
attacker’s performance [16].

Definition 2. Key guessing vector. The key guessing vector g is the vector of
probabilities for all key candidates from the output of the profiling model’s predictions:

g = sort
(

Q∑
i

log Pr(ti ; fθM )

)
, (8.1)

where Pr(ti ; fθM ) is the prediction vector from the profiling model fθM on a trace ti .
sort is the function sorting array elements in order of decreasing values of their
probabilities. Since the labels are key-related, the cumulative probabilities of labels
can be easily mapped to their corresponding keys. From g, the index of g represents
the likelihood of the corresponding key candidate being the correct key candidate. g0

and g |K |−1 are the first (best) and last (worst) element of g, respectively.

Definition 3. Key rank. In a known-key setting, the key rank is the number of (most
likely) keys an attacker needs to brute force until recovering the correct key. Among
various key enumeration techniques [17], one of the more popular methods is to try
every key given its probability after generating a key guessing vector. In this scenario,
the key rank is the position of the correct key in the guessing vector.

Definition 4. Guessing entropy. The guessing entropy 2 represents the averaged rank
of the correct key k∗ in the key guessing vector g:

GE = E
(
rankk∗ (g)

)
, (8.2)

where rankk (g) ∈ {0, . . . , |K |−1}. E is the average of multiple realizations of key rank,
which is commonly performed by attacking with a profiling model multiple times
with randomly selected attack traces.

2As we attack only a single key byte, the proper term is partial guessing entropy. Nevertheless, we use
the two terms interchangeably.
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8.2.4. DATASETS

ASCAD DATASET

The ASCAD dataset is generated by taking measurements from an ATMega8515
running a masked AES-128 implementation and is proposed as a benchmark dataset
for SCA [18]. Side-channel traces represent the AES encryption, where the commonly
attacked trace interval represents the processing of the third byte in the S-box
operation (S-box is fixed and publicly known for AES) taking place in the first round
(the third byte is the first masked one). The operation is masked, and we assume no
knowledge about masks in the profiling phase. There are two versions of this dataset:

1. ASCAD_f: The first version consists of 50 000 profiling traces and 10 000 attack
traces, where each trace consists of 700 features (pre-selected window around
the leaking spot). The profiling and attacking sets use the same fixed key, and
we denote this dataset as ASCAD_f.

2. ASCAD_r: The second version of the ASCAD dataset contains 200 000 traces for
profiling with random keys and random plaintexts and 100 000 for the attack
phase, with a fixed key and random plaintexts. A window of 1 400 points
of interest is extracted around the leaking spot. We denote this dataset as
ASCAD_r.

For both datasets, different numbers of profiling and attack traces are
used in our experiments (see Section 8.6 for details), and 5 000 traces
are used for validation and attack. The datasets are provided at https:
//github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1.

CHES CTF DATASET

This dataset refers to the CHES Capture-the-flag (CTF) AES-128 measurements
released in 2018 for the Conference on Cryptographic Hardware and Embedded
Systems (CHES). The traces consist of masked AES-128 encryption running on a
32-bit STM microcontroller. In our experiments, we consider 45 000 traces for the
training set, which contains a fixed key. The validation and attack sets consist
of 5 000 traces. Each trace consists of 2 200 features. This dataset is available
at https://chesctf.riscure.com/2018/news.

8.2.5. LEAKAGE MODELS

The leakage model simulates the hypothetical power consumption to process one
byte (as we attack the AES cipher that is byte-oriented). Our work considers two
commonly used leakage models: the Hamming Weight (HW) and Identity (ID). For
the HW leakage model, the attacker assumes the leakage is proportional to the
sensitive variable’s Hamming weight. This leakage model results in nine classes for a
single intermediate byte for the AES cipher. In terms of the ID leakage model, an
attacker considers the leakage in the form of an intermediate value of the cipher.
This leakage model results in 256 classes for a single intermediate byte for the AES
cipher.

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://chesctf.riscure.com/2018/news
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8.3. RELATED WORKS

In Chari et al.’s seminal work, the authors proposed the template attack (TA)
and showed that it could break implementations secure against other forms
of side-channel attacks [3]. This attack is the most powerful one from the
information-theoretic point of view, but to reach its full potential, it requires an
unbounded number of traces and noise following the Gaussian distribution [5].
Template attack is interesting as it is a generative technique, which means it will
commonly overfit less as it allows the user to provide more information in the form
of class conditionals.

While machine learning techniques have been widely used for several decades, the
SCA community showed interest in such techniques only around a decade ago. In
the beginning, the most attention was given to techniques like random forest [19],
support vector machines [7, 20, 21], and multilayer perceptron [22] (commonly in
the context of shallow learning as it had only a single hidden layer).

The rapid development of deep learning-based SCAs started in 2016 when
Maghrebi et al. demonstrated the strong performance of several neural network
types, most notably, convolutional neural networks [6].

In [18], an empirical evaluation for different hyperparameters is conducted for
CNNs on the ASCAD database. In [11], the authors proposed a methodology to
select hyperparameters related to the size (number of learnable parameters) of
layers in CNNs. The methodology includes observations for the number of filters,
kernel sizes, strides, and neurons in fully connected layers. Wouters et al. showed
how to reach similar attack performance with data regularization and even smaller
neural network architectures [23]. Perin et al. investigated deep learning model
generalization and demonstrated how ensembles of random models could perform
better than a single carefully tuned neural network model [24]. Wu et al. and
Rijsdijk et al. explored different automatic hyperparameter tuning strategies, namely
Bayesian optimization [25] and reinforcement learning [26] paradigms to find neural
networks that perform well. While their approach requires a significant tuning effort
(computational time), the authors improved state-of-the-art results. These works
showed that deep learning models’ good performance relies on an efficient selection
of hyperparameters for specific datasets. If those hyperparameters are not selected
properly, the attack will fail (or at least not work as well as possible).

It is intuitive that the number of measurements and input features also limits
the performance of a profiling attack. Deep neural networks provide top-level
performances in many domains when training data is sufficiently large. However,
they could also perform excellently when the training data is reduced. In an effort to
improve attack performance, already Choudary et al. investigated how adding noise
to the input improves the performance of template attacks on different devices [27].
The same idea is applied to deep learning-based attacks, introduced by Kim et al. [8].
In the context of profiling side-channel attacks, Cagli et al. investigated how to
create measurements that improve the attack performance synthetically [10]. Unlike
the previous work where the authors developed a specialized data augmentation
technique, Picek et al. showed that generic data augmentation techniques help in
profiling SCA also [28]. Another work investigated whether limiting the number
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of traces can be beneficial both from the experimental setup and performance
sides [29].

From the input features perspective, Bursztein introduced the usage of raw traces
for profiling in an invited talk at CHES 2018 [30]. Lu et al. also worked in this
direction, showing that better attack performance is achieved but with significantly
more complex neural networks (e.g., having around 50 layers) [31]. Perin et al.
showed how simple re-sampling of raw traces could result in extremely powerful
attacks (requiring only a single attack trace) while using simple neural networks with
only a few hidden layers [9]. Finally, similarity learning was applied to pre-process
the leakage traces and extract high-level features, leading to state-of-the-art attack
performance with significantly reduced computation effort [32].

As already discussed, commonly, in machine learning, one estimates the behavior
of a profiling model based on statistics of individual observations like accuracy, loss,
or recall. Unfortunately, such metrics can be misleading in SCA, as one considers
cumulative predictions. Picek et al. showed that standard machine learning metrics
could suggest radically different performance than the SCA metrics [28]. Masure et
al. connected the perceived information and negative log-likelihood, showing there
can be common ground when using machine learning metrics in SCA [33]. Perin et
al. discussed how mutual information could be a good metric to indicate when to
stop the machine learning training process [34]. Finally, Rădulescu et al. compared
efficient metrics (Massey’s guessing entropy and empirical guessing entropy) in
full-key recovery, which may help decide when to stop profiling [35].

8.4. LABEL DISTRIBUTION
By asking ’how much does each label describe the instance?’, Geng et al. first proposed
Label Distribution Learning (LDL) by assigning a description degree (probability) of
each possible label, leading to enhanced performance compared with hard (one-hot
encoded) labels [14]. This method has been used in tasks such as age estimation [36]
or personality recognition [37]. However, the application of LDL is restricted
since one should have a reasonable estimation of the relation between labels, and
such an estimation could be challenging in many tasks, e.g., image classification.
Fortunately, SCA uses the leakage model to construct labels, which inherently leads
to a clear relationship between labels. Indeed, two leakage traces with closer label
(intermediate value) distance could be more similar. As a result, a combination of
LDL and SCA could enhance attack performance.

Definition 5. Description degree. The description degree d yi
x represents the degree of

a label yi to describe an input x. From the machine learning perspective, d yi
x can be

considered as the probability of the label yi being selected. If a complete set of labels
Y can fully describe the given input, then:∑

i
d yi

x = 1, yi ∈Y . (8.3)

The conventional DL-based SCA represents a multi-class classification task that
describes a measurement with a unique cluster/label. Using binary variables, the
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label is one-hot encoded to train a deep learning model (see Figure 8.3b). In an ideal
case, the label yi perfectly represents the leaking features within a measurement
(i.e., the correlation between labels and leaking features equals one). However, the
presence of noise/countermeasure increases the description degree of other labels to
the corresponding leakage traces. For illustration, Figure 8.3a shows the Probability
Density Function (PDF), and point-of-interests distributions (POI1 and POI2) from
1 000 measurements3. The color of each point is attributed based on its cluster label.
Using the HW leakage model, nine PDFs representing nine HW clusters are built
during the profiling phase. Each PDF is represented by two ellipses representing
0.5 (low) and 0.9 (high) of the maximum probabilities. Note that PDF is the basis
of template attack, used to present the leakages’ distributions and making label
predictions [27, 39].
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(a) PDFs and POIs distribution for the
correct key.
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(b) Comparison between one-hot and
distributed labels.

Figure 8.3.: PDFs and a demonstration of distributed labels.

From Figure 8.3a, each PDF can be separated. However, the overlap between
each PDF cannot be ignored. Although the traces in the middle between two PDFs
have deterministic (single) labels representing the targeted intermediate data, they
are also geometrically close(r) to their neighboring clusters leakage-wise. Here, we
denote the squared Euclidean distance between two label values as label distance.
Indeed, one can observe a natural measure of description degree that associates
the labels with the traces. An accurate description of these traces should involve
the ’incorrect’ labels. Since their similarity to each cluster is inversely correlated
with their label distance, as demonstrated in Figure 8.3b, the one-hot label and the
highest distributed label should be on the same abscissa; the distribution degree of
other labels is assigned with reduced probability based on label distance. We denote
this label representation as distributed labels. The description degree of each label
is sorted based on their actual values. Distributed labels more precisely describe

3ChipWhisperer dataset [38] is used as it represents measurements obtained from a physical device,
where two point-of-interests are selected based on the signal-to-noise ratio to represent the traces.
Note that this dataset is not noiseless, but obtaining less noisy measurements without resorting to
simulations is challenging.
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the leakage features, thus helping relax the conditions on the required number of
training traces to achieve a robust performance than training with one-hot encoded
labels.

It is worth noting the links between template attacks and distributed labels. The
multivariate normal distribution, parameterized by the mean vector µ and covariance
matrix Σ, can be represented using the following equation

f (x;µ,Σ) = 1

(2π)
k
2 · |Σ| 1

2

·exp− 1
2 (x−µ)T ·Σ−1·(x−µ), (8.4)

where x represents the random vector from the multivariate normal distribution
with k dimensions. Indeed, both methods calculate the mean and variation of the
variable to precisely describe the leakage features. The main difference is that the
template attack directly characterizes the leakage features with µ and Σ, while our
method focuses on enhancing leakage features’ label representation.

Notice, our learning method fundamentally differs from linear regression attack
(LRA) [40]. Although LRA would also lead to smooth labels by estimating weight
parameters to each binary decomposition of the target value, these labels are
constructed during the regression process. On the other hand, our method considers
SCA as a classification task. The goal of using distributed labels is to reach more
efficient classification.

One should notice the relation between label smoothing [41] and label distribution.
As a regularization technique, label smoothing improves accuracy by computing
cross-entropy not with the ’hard’ (i.e., one-hot encoded) labels from the dataset
but with a weighted mixture of all possible labels with the noise (i.e., uniform)
distribution. Label distribution further preserves relations between different labels to
describe leakage features. From the model training perspective, the model is less
penalized by the loss value caused by the inconsistency between predictions and real
labels (e.g., one-hot labels), thus speeding up the learning process. The performance
benchmark between these two techniques can be found in Section 8.6.1. A natural
choice to form distributed labels is a normal distribution. Indeed, the construction
of distributed labels should align with the actual distribution of leakages. This paper
assumes the leakage follows a Gaussian distribution commonly observed in practice.
Moreover, Gaussian distribution inherently fits the distribution of the environmental
noise, a main factor that increases the description degree of labels.

Definition 6. Label distribution learning. Given a training set with trace-label pairs
(x, y) sampled from T, where x ∈X and y ∈Y , the goal is to learn a function fθM , so
that the predicted output ŷ , representing the probability of all possible labels given an
input x, has a similar distribution to the distributed label D(y):

D(y) = 1

σ
p

2π
exp

(
−1

2

(
y − y ′

σ

)2
)

, y ′ ∈Y , (8.5)

where D(y) denotes the distributed label for the input label y; the variance is denoted
by σ.4

4We assume the leakage follows a Gaussian distribution. If this assumption does not hold for the
given leakage traces, the calculation of the distributed label should be adjusted accordingly.
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An essential assumption of label distribution learning is that the label y should be
pre-determined by an attacker. Then, the attacker can calculate the distributed label
D(y) with Eq. (8.5). Indeed, the only adjustable parameter σ depends on the data
property (specifically, the dataset’s noise). In Section 8.6, we systematically analyze
the influence of σ with different datasets (including their noisy versions) and leakage
models and then give suggestions on the value selection.

Next, to optimize the learning parameter θ, instead of using conventional loss
functions such as categorical cross-entropy or mean squared error, following [14],
Kullback-Leibler (KL) divergence is used as the loss function to measure the similarity
between the predicted and ground truth distribution:

L =∑
i

D(yi ) ln(
D(yi )

ŷi
), yi ∈Y , (8.6)

where ŷi and yi denote the predicted probability for label i and the true label,
respectively.

Stochastic gradient descent is used to minimize the loss function L. Once a
network is trained, given a random input x with an unknown label from the attack
dataset, the model f outputs a predicted label distribution ŷ . The predicted label is
the one in ŷ with the highest probability.

i∗ = argmax
i

ŷi . (8.7)

8.5. LABEL CORRELATION METRIC

8.5.1. KEY DISTRIBUTION

Following Eq. (8.5), the probability of a label y being selected as the correct label
depends on its label distance to the true label y∗. Since these labels are key-related,
we can also calculate the differences between key candidates, denoted as key
distribution (KD), based on the label distance.

K D(kr e f ,k) =
∥∥∥f(d ,kr e f )− f(d ,k)

∥∥∥2
,k ∈K . (8.8)

where f is the leakage model function (described in Section 8.2.5) that returns the
leakage value (labels) according to a key candidate k and data value d . Similar
to Eq. (8.5), KD is based on the squared Euclidean distance between the leakage
distribution of all key hypotheses k ∈K and the reference key candidate kr e f . We
form a KD vector sorted by the KD value for each k (so kr e f always ranks the first).5

Note that when it is clear from the context, we use the notations K D(kr e f ,k) and
KD interchangeably.

KD gives a unique distribution of all key candidates k based on their difference
to the reference key kr e f . Therefore, kr e f determines the KD value for each key

5We also investigated the Manhattan distance and found the results to be in line but with smaller
discriminate power. Besides, since KD is a list of labels associated with the given key that does not
follow any known distribution, f-divergence functions (i.e., KL-divergence, Hellinger distance) are not
considered.
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candidate. Typically, kr e f has a distribution difference equal to zero with itself, and
the lower the distribution difference, the more similar the key candidate is to the
reference key. The reference key can be set to the k∗ (correct key). When k∗ is
unknown (black-box), kr e f should be the most likely key.

From an attack perspective, for a model built in a successful profiling attack (the
correct key k∗ is the best guess), suppose KD is large between a specific key k ∈K

and k∗. Then, k will likely be ranked low (i.e., with guessing entropy close to
2b −1) as it has a negligible probability of being selected. Consequently, KD can be
considered an ideal key rank6 metric indicating the best possible scenario where the
correct key is maximally separated from all the other keys.

The KD definition can be extended to any leakage model, i.e., the Hamming
distance or the Least Significant Bit. Figure 8.4 illustrates the summed KD (for all
key candidates) with the HW and ID leakage models for the key candidates kr e f = 34
(correct third subkey for the ASCAD_r) and kr e f = 224 (correct third subkey for the
ASCAD_f). Although all KD values except for kr e f = k∗ act as ’noisy’ values, the
similarity difference between kr e f and other keys can be observed. One should note
that a precise estimation of KD relies on the chosen leakage model. An incorrect
leakage model would not only degrade the attack performance, but KD’s effectiveness
will also drop. Since the publicly available datasets leak mostly in the HW leakage
model, we calculate KD with the HW leakage model throughout the paper.
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(a) HW leakage model.
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(b) ID leakage model.

Figure 8.4.: Illustration for the Key Distribution for the HW/ID leakage models and
correct keys 34 and 224.

8.5.2. LABEL CORRELATION - LC
Key distribution defines the distance between kr e f and other key candidates.
Following this, we define a profiling model fitting metric by correlating KD with the
predicted probability for all k ∈K , denoted as Label Correlation (LC), as a function

6Here, ’ideal’ means the perfect fit between an attack model and the leakage. Under this circumstance,
the resulting key rank is equivalent to KD as discussed in Section 8.5.2.
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of KD and the key guessing vector g (defined in Definition 4):

LC = corr(K D,g). (8.9)

Eq. (8.9) defines how well a profiling model fits the data concerning a key
candidate kr e f for a chosen leakage model. The notation corr represents the
Spearman correlation [42] that evaluates the monotonic relationship with two inputs.
We also considered the Pearson correlation, but the results are less optimal due to
the significant differences in key distribution between the correct key and other keys
(Figure 8.4).

Following Eq. (8.9), if the profiling model outputs the correct key as the most likely
key, one could expect a stronger correlation between KD and g. Conversely, if the
profiling model fails to fit the data, the outputted random (but still) most likely key
would lead to a low correlation between KD and g. As a demonstration, Figure 8.5
depicts the ’almost’ perfectly fitted profiling model for the HW and ID leakage
models. We use simulated measurements with strong HW and ID leakages and a
controlled Gaussian noise level, normal-distributed with a variance of 0.01 around a
mean of zero. The simulated traces have two features that hold the leakage, which is
proportional to HW (Sbox (d ⊕k)) and Sbox (d ⊕k), to simulate the ideal HW and ID
leakages, respectively. The profiling set has plaintexts d and keys k chosen from a
uniformly random distribution. The attack set’s plaintexts are selected uniformly at
random, while the attack key is the same for the whole dataset. We use the template
attack and consider the increasing number of profiling traces N . In both figures, LC
increases w.r.t. the number of profiling traces, reaching 0.999 and 0.998 for the HW
and ID leakage models. The results confirm that the correlation between KD and
g tends to increase with better (fitter) models (since we use template attack, better
models are those that are trained with more traces).

Definition 7. Perfectly fitted profiling model. A perfectly fitted profiling model
reaches LC = 1 in the attack phase for any set of Q attack traces.7

It is worth mentioning that KD can also be used to calculate the confusion
covariance metric (E(K D)) [43], a metric designed initially to measure the DPA
resistance of S-boxes. A low expectation of KD indicates less distinctive intermediate
data, which could lead to reduced data leakage. On top of that, the LC metric
suggests that the variance of KD should also be low to secure the target. Indeed, a
low KD variance indicates high similarity between different keys, which will lead to a
less deterministic order of g. Since the LC value is more likely to be low in this case,
one can expect more effort in obtaining the security assets via SCA. Another way
of perturbing g is by introducing additional noise or countermeasures, a common
implementation in modern products.

7We assume there are many possible ways to select Q traces from the available traces.
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(a) HW leakage model.
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(b) ID leakage model.

Figure 8.5.: ’Perfectly’ fitted profiling model with template attack, considering the
HW and ID leakage models and simulated traces with an increasing
number of profiling traces N . KD ranks (Y-axis) stands for a sorted KD.

8.6. EXPERIMENTAL RESULTS

8.6.1. PROFILING WITH DISTRIBUTED LABELS

In Section 8.4, we argue that the distributed label enlarges the description degrees of
labels to the leakage traces and can lead to more efficient learning even with fewer
profiling examples. We validate this assumption with machine learning models by
training the state-of-the-art CNNs [26] and MLPs [25] with a different number of
profiling traces. The models’ hyperparameters are listed in Appendix C.1. We use
a diverse selection of DL architectures to ensure the generalization of the results.
Note that we select MLP and CNNs due to their wide applications in SCA. Still, we
expect other supervised learning methods to benefit from distributed labels thanks
to their higher description degree of the leakage features. Besides, we tune the σ

value of the distributed label to find the optimal value for different training settings.
The distributed labels are pre-computed before the training starts. To obtain the
most representative performance, the attack results of each training setting (σ and
profiling traces number) are the median value from 20 independent training (and
attacks) with random weight initialization following recommendations from [15].

Figures 8.6, 8.7, and 8.8 show the results for the ASCAD_f, ASCAD_r, and CHES_CTF
datasets, respectively. The conventional training method (one-hot encoded label) is
represented with σ= 0.0 (blue bar). We used the categorical cross-entropy (CCE) loss
when training with the conventional method. CCE is a standard loss function for
classification tasks widely used in DL-SCA. When learning from the label distribution,
the KL divergence loss measures the distribution difference between the true and
predicted label distributions.

For the ASCAD_f dataset, as shown in Figure 8.6, by distributing HW-based labels,
GE equal to zero can be reached with less than 3 000 profiling traces for both MLP
and CNN within the given number of attack traces, which is more than ten times
less than the number of the profiling traces commonly used in literature (50 000). At
the same time, more than 10 000 profiling traces are insufficient when considering
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the conventional training method (σ= 0.0). Using the ID leakage model, although
one-hot encoded labels lead to better performance in some cases (discussed in later
paragraphs), one can confirm the advantages of using the distributed label in low
profiling settings.

When looking at the influence of the label distribution variation σ (Figure 8.6),
although different numbers of profiling traces, leakage models, and attack models
are considered, the optimal settings show consistency: for the HW leakage model, σ
ranges from 1 to 2 can lead to the best attack performance. This value increases to
20-80 for the ID leakage model. We have also tested the traces with Gaussian noise
levels 2 and 4. While the optimal value of σ defined in the paper still holds for most
settings, we expect the best σ to be larger since the leakage traces become more
difficult to classify correctly.

(a) MLP with the HW leakage model. (b) MLP with the ID leakage model.

(c) CNN with the HW leakage model. (d) CNN with the ID leakage model.

Figure 8.6.: Label distribution learning on the ASCAD_f dataset.

Although ASCAD_r is considered more difficult to break than ASCAD_f [25], as
shown in Figure 8.7, the distributed label boosts the attack performance significantly.
For the HW leakage model, around 6 000 profiling traces are sufficient for MLP and
CNN models to reach GE of zero, which is around ten times less than the related
works (≥50 000 profiling traces). For the ID leakage model, aligned with the attack on
the ASCAD_f dataset, although none of the training settings can retrieve the secret
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information with 5 000 attack traces, label distribution learning halves the GE value
compared with its one-hot encoded counterpart, indicating a faster GE convergence
with our learning scheme.

Finally, similar results can be obtained when attacking the CHES_CTF dataset.
Since this dataset leaks limited ID leakage according to literature [25, 26], we attack
with the HW leakage model only. With the MLP and CNN models, 5 000 profiling
traces are needed to break the target, nine times less than the traces used in the
literature (45 000 traces). It is important to note that the optimal σ setting shows
similarity for all three tested datasets. From the experimental results on three
datasets, good prior knowledge about the leakage model is necessary to construct a
meaningful label distribution. Still, when attacking leakages from other devices, one
could start with low σ and monitor the attack performance until it reaches optimal
behavior.

(a) MLP with the HW leakage model. (b) MLP with the ID leakage model.

(c) CNN with the HW leakage model. (d) CNN with the ID leakage model.

Figure 8.7.: Label distribution learning on the ASCAD_r dataset.

Indeed, there are various techniques available when the profiling traces are limited.
To better illustrate the pros and cons of label distribution learning compared to these
methods, we benchmark the attack performance of previously used state-of-the-art
(SotA) MLPs and CNNs with multiple profiling settings. We consider several
commonly-used techniques to counter the limitation of the training data.
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(a) MLP with the HW leakage model. (b) CNN with the HW leakage model.

Figure 8.8.: Label distribution learning on the CHES_CTF dataset.

• 10 000 profiling traces with and without techniques such as label distribution,
label smoothing, L2 regularization, and dropout.

• 50 000 profiling traces, obtained directly or generated with Gaussian noise-based
data augmentation.

• 100 000 profiling traces generated from 10 000 traces with Gaussian noise-based
data augmentation.

The dropout rate and regularization factor are tuned to 5e-2 and 1e-4. For data
augmentation, four augmentation levels (0.25, 0.5, 0.75, 1.0) are selected following [8],
and the one with the best performance is presented in the benchmark. The label
smoothing factor is set to be optimal based on the various search options.8 Each
profiling setting is tested with two label formats: one-hot encoded and distributed
labels. For label distributed learning, σ is set to 1/2 and 40/80 for HW and ID
leakage models. Recall that the number of attack traces is set to 10 000. The
attack performance is evaluated by calculating the required number of attack traces
to reach GE of zero, denoted as TGE0. The results are the median TGE0 from 20
independently trained models. If an attack setting fails to reach GE zero with a given
number of attack traces, the results are marked with "-".

The benchmark results are shown in Tables 8.1 and 8.2. The best results for each
profiling setting are marked in bold. With limited (10 000) profiling traces, distributed
labels bring a significant performance boost with various attack settings. The
considered regularization techniques are helpful in some attack settings, improving
significantly when combined with distributed labels. Similarly, data augmentation
helps obtain better performance in some cases; the combination with distributed
labels makes it even better. In practice, due to the limitation of controlled devices
and time budget, attackers would likely use smaller networks, more regularization,
and more data augmentation to run their attacks in lower-data settings. However, as
shown in the table, label distribution is the best technique considering the additional
efforts to tune hyperparameters and their performance.

Note that one-hot encoded labels often lead to comparable or superior results

8The possible label smoothing factors are 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5, and 10.
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Traces Label ASCAD_f ASCAD_r CHES_CTF

10 000 One-hot -/- -/- -
Smoothed 3 484/- -/- -
Distributed 1 618/4 964 3 623/4 892 2 337

10 000 One-hot -/- -/- 3 728
(L2) Distributed -/- -/- 1 930

10 000 One-hot -/- -/- 4 156
(Dropout) Distributed 2 264/- -/- 2 493

50 000 One-hot 1 219/182 970/2 625 567
Distributed 1 421/3 530 919/- 905

50 000 One-hot 1 588/- -/- -
(Augmented) Distributed 1 095/4 728 2 784/- 2 735

100 000 One-hot 1 254/- -/- -
(Augmented) Distributed 1 447/4 895 2 998/- 2 793

Table 8.1.: Benchmark the attack performance (TGE0) with SotA MLP. Attack results
for the HW and ID leakage models are separated by ’/’.

Traces Label ASCAD_f ASCAD_r CHES_CTF

10 000 One-hot 2940/- -/- -
Smoothed 2 994/- -/- -
Distributed 1 252/4 050 1 939/3 753 2 182

10 000 One-hot 2 217/3 779 -/- -
(L2) Distributed 1 096/- 2 034/4 892 1 458

10 000 One-hot 1 913/- -/- -
(Dropout) Distributed 1 338/4 219 -/- 1 868

50 000 One-hot 544/87 650/487 455
Distributed 779/- 553/3 684 450

50 000 One-hot 2 829/4 061 -/- -
(Augmented) Distributed 1 201/- 2 190/- 1 724

100 000 One-hot 2 278/1 621 -/- -
(Augmented) Distributed 1 218/- 2 298/- 2 105

Table 8.2.: Benchmark the attack performance (TGE0) with SotA CNN. Attack results
for the HW and ID leakage models are separated by ’/’.

when training with 50 000 profiling traces. Indeed, one-hot encoded labels are
more precise in discriminating the correct labels than distributed labels. On the
other hand, increasing the number of profiling traces amplifies the side-effect
of distributed labels, leading to high estimation variance and reduced predictive
performance. Finally, although data augmentation could also generate more profiling
traces, the difficulty of setting a proper augmentation level makes the generated
traces less helpful in the profiling phase.
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8.6.2. USE CASES OF LABEL CORRELATION

In this section, we investigate the effectiveness of the LC metric for different use
cases. Specifically, we consider network architecture search (NAS) and overfitting
prevention as they significantly influence the attack performance with DL-based
SCA. Indeed, adjusting the profiling model size will directly influence its learning
capacity. On the other hand, a correctly set training epoch number could improve
the model’s fitness to the dataset. Since these two aspects rely on well-performing
evaluation metrics [24, 26], we show the performance of LC in various settings and
benchmark it with other standard metrics.

EARLY STOPPING

As an evaluation metric, LC can be used as early stopping regularization or as an
indicator of when to save the best model. For illustration, we evaluate state-of-the-art
models by training with different training epochs ranging from 1 to 150 in steps of
10, representing the number of iterations to train a profiling model. Aligned with
previous sections, the attack performance is assessed by TGE0. Besides, four metrics,
accuracy, loss, mutual information (MI) [34], and LC, are calculated per epoch with
5 000 validation traces.9 One may argue that TGE0 can be used as an evaluation
metric. However, TGE0 can only be calculated when GE equals zero. For a model that
cannot break the target with a given number of attack traces, TGE0 is not indicative.
Similarly, the key rank metric is only meaningful when GE is larger than zero: when
the key rank stays zero, one cannot know if the model is still learning or starting
overfitting. Since all selected models reached the key rank of zero quickly and never
changed, we omit the key rank metric as it is less indicative in the training process.

The results for three datasets and two leakage models are shown in Figures 8.9, 8.10,
and 8.11. Since the metrics and TGE0 have different scales, multiple Y-axes are used
to scale the results data. The optimal training epoch proposed in the literature
is marked by green vertical lines (10 for MLPs and 50 for CNNs). Aligned with
the previous section, all the presented results are the median from 20 independent
pieces of training.

Regarding ASCAD_f, LC perfectly reflects the generalization variation of the
profiling model with different training epochs when using TGE0 as a reference. From
both figures, LC indicates the overfitting effect accurately, or even before the attack
performance degrades. Indeed, LC evaluates the order of the key candidates, and the
order closer to KD is more likely to be perturbed when overfitting starts. When the
overfitting effect accumulates to a certain level, the “disorder” of the key candidate
propagates to the correct key, finally captured by GE-related metrics. Due to LC’s
sensitivity, one can decide on optimal epochs with more patience (i.e., the number
of epochs to wait before an early stop if there is no progress on the validation set)
without suffering from overfitting.

Regarding other metrics, the MI metric is somewhat misleading as it keeps
increasing (e.g., Figures 8.9a, 8.9d, and 8.10d) or does not change much (Figures 8.10b
and 8.11b) even when TGE0 suggests performance degradation. The loss value is

9If GE is greater than zero, TGE0=5 000.
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only useful in limited cases (e.g., Figure 8.9a), which confirms the conclusion from
Picek et al. [28] that it is commonly not considered a good evaluation metric for
SCA, and accuracy remains mostly stable with different training epochs, indicating
mediocre performance. Lastly, the literature’s optimal training epochs are not optimal
for Figures 8.9a and 8.9d. On the other hand, LC consistently indicates the epoch
that achieves the best attack performance.

(a) MLP with the HW leakage model. (b) MLP with the ID leakage model.

(c) CNN with the HW leakage model. (d) CNN with the ID leakage model.

Figure 8.9.: Metrics performance on the ASCAD_f dataset.

Attacks on ASCAD_r and CHES_CTF show consistent results with ASCAD_f. LC
performs the best among all evaluated metrics, alarming the overfitting effect
precisely. As an evaluation metric, LC combines the advantages of key rank and
TGE0 with limited computation overhead, thus becoming a reliable metric for the
applications such as early stopping.

NETWORK ARCHITECTURE SEARCH

Network architecture search (NAS) is essential in DL-SCA. A smartly designed neural
network can break the target and reduce the training complexity as well [11, 26]. To
better illustrate the advantage of the LC metric, we use CNN listed in Table 8.3 with
a tunable α parameter to control the size of the deep learning model. Specifically,
α determines the number of filters in convolutional layers and neurons in the fully
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(a) MLP with the HW leakage model. (b) MLP with the ID leakage model.

(c) CNN with the HW leakage model. (d) CNN with the ID leakage model.

Figure 8.10.: Metrics performance on the ASCAD_r dataset.

(a) MLP with the HW leakage model. (b) MLP with the ID leakage model.

Figure 8.11.: Metrics performance on the CHES_CTF dataset.

connected layers. We use α (range from 1 to 64) to estimate the complexity of a
profiling model. Note, for the CNN_best from [18], α equals 64. The training epoch
is set to be optimal (75) based on [18], represented by the green vertical line in the
plot. This section presents the results for the ASCAD_f and ASCAD_r datasets only.
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Since CHES_CTF produce similar results, we omit them from this section.

Table 8.3.: CNN architecture used for the attack.

Layer Types
Filter
Size

# of
Filters

Pooling
Stride

# of
Neurons

Conv block 11 a*1 2 -
Conv block 11 a*2 2 -
Conv block 11 a*4 2 -
Conv block 11 a*8 2 -
Flatten - - - -
Fully connected (2×) - - - a*64

The results are shown in Figure 8.12. Aligned with the previous section, accuracy,
loss, MI, and LC are used as evaluation metrics. As a reference, TGE0 represents
the attack performance. Among the three considered metrics, LC best represents
the attack performance. For instance, in Figure 8.12a, TGE0 reaches minimum when
α equals around 50. Further increase of the profiling model size degrades the
attack performance, meaning the fitness reduction for a dataset. The LC metric
perfectly represents this tendency, as it reaches the maximum when α is around the
same model size, then decreases gradually. Regarding other metrics, the validation
accuracy has limited changes regardless of the variation of α. Validation loss, in
contrast, is more indicative than its counterpart. However, it is challenging to judge
when to stop the training. For instance, the loss value in Figure 8.12c suggests
that the profiling should end after training with around 35 epochs, but the best
performance is reached 15 epochs later. MI keeps on increasing with the HW leakage
model. However, it does not correctly reflect the attack performance. Finally, the
training epoch suggested in the literature is still sub-optimal when looking at the
results (i.e., Figure 8.12b). Using LC as an evaluation metric can help monitor the
attack performance in various settings.

In addition, we have also tested the influence of the noise on the considered
metrics by adding Gaussian noise to the traces with incremental variations ranging
from 0 to 10 in a step of 0.5. The results show that the LC metric can correctly and
precisely reflect the negative influence introduced by the noise. Since the results
align with the conclusions from the previous sections, the results are omitted.

In conclusion, the LC metric reliably reflects the generality of the profiling model
in various training conditions. Compared to other metrics, the evaluation of the
keys’ order helps in increasing the sensitivity of the LC metric in measuring the
model’s performance. Indeed, in almost all of the experimental results, LC is the
first metric that indicates the overfitting effect. Additionally, due to its computation
simplicity, we believe LC is an ideal candidate as an evaluation metric.
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(a) ASCAD_f with the HW leakage model. (b) ASCAD_f with the ID leakage model.

(c) ASCAD_r with the HW leakage model. (d) ASCAD_r with the ID leakage model.

Figure 8.12.: Metrics performance with different model sizes.

8.7. CONCLUSIONS AND FUTURE WORK

In the profiling side-channel analysis, one commonly uses intermediate data to form
a one-hot encoded label for the profiling. Additionally, it is common to use guessing
entropy to estimate the attack performance. This paper introduces distributed
labels as a new learning approach that can effectively reduce the required number
of profiling traces. Then, based on the relationship between each key candidate,
we define the Key distribution (KD) metric and use it to form a novel LC metric.
Our results show that the LC metric can be a reliable candidate for evaluating the
generality of a model, which has been validated with two use cases: early stopping
and network architecture search. Our findings are confirmed for several experiments
considering various usage cases, attack methods, leakage models, and datasets.

In future work, we plan to extend the application of label distribution for
high-order masked implementations. In terms of the LC metric, since the key
distribution relies on the hypothetical distance between key candidates, the distance
depends on the algorithm and hardware implementation. Following this, we plan to
investigate if the method can be easily adapted to a new implementation or a new
algorithm. Moreover, prior knowledge about the leakage model plays a significant
role in the proposed label distribution, so we plan to explore LC in the context
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of leakage assessment for the black-box devices without this knowledge. Finally,
applying our results to the non-profiling SCA would be an exciting research direction.
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9
DISCUSSION

The need for secure systems, including cryptographic systems, is more critical than
ever, given the increasing reliance on digital technology for everything from personal
communication to national security. To ensure the security of these systems,
manufacturers conduct security evaluations internally. Even more importantly, these
products undergo security evaluations from accredited security laboratories as an
independent evaluation of their security features, ensuring compliance with industry
best practices, laws, regulations, and baseline requirements. These third-party
evaluations enable product certification, fostering user trust.

This thesis’s primary objective is to enhance this security evaluation process
by providing insights into strategies that can lead to more effective and efficient
evaluations. The focus is on implementation attacks, specifically fault injection
and side-channel analysis, as these are commonly conducted during security
evaluations of cryptographic systems [1]. Recent studies have demonstrated that
integrating artificial intelligence methods into these processes significantly enhances
the performance of the two implementation attacks. This thesis aims to advance
AI-based implementation attacks further by exploring hyperparameter tuning of the
AI methods, portability issues of these implementation attacks, and developing
alternative metrics in AI applications. We aim to provide practical insights, solutions,
and knowledge to support security analysts in performing more efficient security
evaluations.

This chapter presents the key findings that address the research questions outlined
in Section 1.5. We discuss the limitations of this work and conclude with a discussion
on broader implications and future research directions.

9.1. CRITICAL OVERVIEW OF KEY FINDINGS
The research objective is to improve AI-based fault injection parameter search
and deep learning side-channel analysis for security evaluations. To achieve
this objective, we introduced three sub-questions, each addressed in dedicated
chapters. Each sub-question targets one aspect of the practical execution of the
AI-based implementation attacks: hyperparameter tuning of utilized AI methods,
portability issues within implementation attacks, and evaluation metrics for AI-based
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implementation attack frameworks. Through a targeted, divide-and-conquer
approach, we aim to improve the efficiency of these implementation attacks.

9.1.1. HYPERPARAMETER TUNING

Proper hyperparameter values are crucial for maximizing the performance of
AI methods. Hyperparameter tuning is an essential, but often complex and
resource-intensive, part of deploying AI methods for any problem. For AIFI, the
tuning of evolutionary methods has mostly relied on manual tuning based on
guidelines from the evolutionary algorithms community, preliminary experiments, or
employed grid search techniques [2, 3]. However, these methods can be inefficient,
failing to explore the full potential of the hyperparameter search space, and may not
be directly applicable across different domains. In DLSCA, the reliance on predefined
architectures with limited hyperparameter variations initially led to suboptimal
results due to variations in the targets and acquisition methods. While some studies
have introduced methodologies for dataset-specific neural network tuning [4], they
demonstrate poor generalizability across different datasets. Automated tuning offers
a solution but presents its specific challenges. For AIFI, the physical execution
required for tuning can be extremely time-consuming. On the other hand, although
feasible for DLSCA, it demands significant resources and time, offering potentially
better outcomes [5, 6]. Nonetheless, defining an effective hyperparameter search
space is essential to avoid exhaustive exploration of non-beneficial hyperparameter
combinations. To address these challenges, we deem it necessary to investigate
specific hyperparameters to understand their influence on the performance of AI
methods for the two implementation attacks. Therefore, our research focuses
on the initialization methods hyperparameter for both implementation attacks.
A sub-question is stated as What impact do initialization methods have on the
performance of AI methods in AIFI parameter search and DLSCA, and how can their
selection be optimized?

AI technique utilized for AIFI parameter search is a memetic algorithm that
begins its optimization process with an initial population of solutions generated by
initialization methods. The quality of these initial solutions and how well-distributed
they are within the search space can significantly affect the speed of convergence and
the likelihood of identifying optimal solutions. Chapter 2 analyzed four initialization
methods, namely random sampling, the Taguchi method, and two versions of Latin
Hypercube Sampling, aiming for a more evenly distributed initial population. Our
experiments indicate that no single initialization method consistently outperforms
the others across all scenarios. However, in specific contexts, like working with a
smaller population or under time constraints, a well-distributed initial solution set
offers advantages over random sampling. Notably, the performance gap between the
least and most effective initialization methods decreased from around 5% to 2% as
the population size increased from 36 to 128 solutions. Moreover, Latin Hypercube
Sampling for multidimensional space demonstrated excellent stability with a smaller
population size, while random sampling had the least reliable results across multiple
runs. In conclusion, initializations offering well-distributed samples can improve
performance when the algorithm is limited to a smaller population size, as the
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distribution matters more due to the smaller number of samples. Without the
population size limitation, random sampling given multiple runs will provide similar
results as the other tested initialization methods.

This study was conducted using a single laser bench and a single target since
execution is resource-intensive. Despite these limitations, the results support the
broader application of evolutionary algorithms, where random sampling proves
effective for larger population sizes without strict iteration or evaluation (time)
constraints. This work is the first to investigate the benefits of a specific evolutionary
algorithm for laser FI parameter search. Our results indicate that the memetic
algorithm can find ≈ 30× more vulnerabilities than random search, making it
more efficient and confirming its generality further across different FI types. This
extension is based on previous successful applications for voltage glitching and
EMFI, indicating the potential generalizability of our findings about the initialization
methods to other FI types, though experimental validation remains for future
work. While this work demonstrates that random sampling works well for larger
population sizes, the study does not provide precise thresholds for the population
size. Further, only four specific initialization methods are considered, two of which
follow the same principle but differ in adjustments for higher dimensions. Future
investigations might explore more advanced methods to achieve well-distributed
samples, especially considering the five-dimensional data space of our LFI parameter
search.

Within the DLSCA framework, the choice of initialization method for neural
network weights and biases is crucial for the efficiency of the training process.
Proper initial values can significantly reduce the loss function’s convergence time,
which leads to decreased training time. In Chapter 6, we explored 11 initializers
(initialization methods), evaluating their performance across three datasets, two
leakage models, and two convolutional neural network architectures. Our findings
suggest that initializers setting weights and biases to a constant fixed value can
be excluded from the hyperparameter tuning process, as experiments confirm they
cannot lead to successful attacks. Similar to our findings for AIFI, there is no
universal weight initializer that consistently outperforms others across all scenarios.
However, we observe that more complex datasets require a more careful initializer
selection, while for simpler datasets, we may achieve satisfactory results with a
broader range of weight initializers. Additionally, we investigate the influence of
other hyperparameters on the performance (GE) in combination with the weight
initializers. Our findings highlight the significance of carefully pairing the activation
function with the weight initializer, as this combination can significantly enhance
or decrease the performance. Given the observed variance in outcomes due to the
stochastic nature of the training process, repeated training processes with identical
initializers are required to ensure reliability in the obtained results.

The effectiveness of initializers is dataset-dependent, and while we utilize several
public datasets, these might include only a partial scope of possible characteristics
of side-channel measurements. Despite this limitation, our analysis did not observe
a universally best weight initializer even within the utilized datasets, emphasizing
the need for including this hyperparameter in the tuning process. This investigation
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focused exclusively on CNNs, excluding multi-layer perceptron networks. This
decision was based on the commonly superior capabilities of CNNs over MLPs,
for which CNNs are also more broadly adopted, and the already time-consuming
experimentation. Thus, this focus may limit our conclusions to CNNs. Further, the
selection of CNN architectures, taken from related work that tuned them for specific
datasets, might introduce a bias towards certain weight initializers. A more extensive
range of diverse CNN architectures could potentially offer further insights. Regarding
weight initializers, this study employs a wide range of options available within the
TensorFlow framework, offering a good variety and confidence in the results.

This research offers valuable insights into the hyperparameter tuning of AI
algorithms for AIFI parameter search and DLSCA, advancing beyond the traditional
trial-and-error approach toward a more strategic optimization approach. It offers
recommendations for improving the tuning process, emphasizing the role of
initialization methods in both general and specific scenarios. In the context of
DLSCA, these insights help define a more efficient search space for automated
tuning that can significantly reduce computational resources and time requirements.
Automated tuning for AIFI is currently not considered as it is highly time-consuming.
However, the insights from this thesis can help reduce the search space for
more efficient tuning using grid search or other methods. Moreover, this work
highlights the importance of multiple training sessions for profiling models. This
compensates for the variability in each training session, ensuring a more appropriate
evaluation of the models’ performance and capabilities. Other researchers and
practitioners in this field, like security evaluators, can utilize these insights to refine
their methodologies and approaches, leading to more robust and effective security
evaluations. Furthermore, this work provides a foundation for future investigations
into the impact of other hyperparameters on the efficacy of AI-based implementation
attacks that can further enhance the current methods.

9.1.2. PORTABILITY

Portability issues within FI target characterization and SCA refer to challenges and
concerns related to the reproducibility and adaptability of these attacks across
different hardware platforms, software configurations, or environments. Specifically,
in profiling SCA, we assume two clone (identical) devices, one used for developing
the profiling model and the other, the target device, for performing the attack.
We expect that the model generated from one device will effectively attack
the other, assuming similar behavior. Moreover, various and numerous devices
undergo security evaluation, so enhancing portability across devices and setups
can significantly improve security evaluations, making them more time-efficient and
broadly applicable. Therefore, portability can be divided into various complexity
levels. The straightforward cases involve identical device samples, like clone devices
in profiling SCA, where the hardware and the system running on the device are
the same, with minor unintended production differences, as no two devices are
perfectly identical. In this scenario, the FI bench or the SCA acquisition process
is also considered identical using the same equipment. The most challenging
scenario involves different targets (hardware and software) and measurement setups.
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The described simplest portability scenario assumes identical attack outcomes and
responses to fault injection across device samples, but practical experiences with
both FI [7] and SCA [8–10] indicate likely discrepancies. Therefore, the second
sub-question of this thesis addresses portability issues present within implementation
attacks. Specifically, this thesis investigates how AI methods can mitigate portability
issues in both AIFI parameter search and DLSCA to help make security evaluation
more efficient. By deploying AI, this study aims to enhance the transferability and
adaptability of security evaluations across different portability cases. The related
sub-question is stated as: How can AI methods help mitigate portability challenges
in AIFI parameter search and DLSCA, enhancing the efficiency and applicability of
security evaluations?

In Chapter 3, we explore the portability case for AIFI parameter search concerning
different samples of the same target with minor LFI bench setup modification on the
focus impacting the laser intensity parameter. We conducted experiments using Fast
Grid Search (FGS), Random Search (RS), and memetic algorithms with both random
initialization and Decision Trees (DTs) to integrate the prior knowledge, the latter
being a novel approach aimed at enhancing portability. Our experiments suggest that
MAs, by adapting to the observed real-time behavior of the target under the FI bench
setup, naturally mitigate portability challenges, demonstrating an advantage over the
RS and FGS methods, similar to the adaptability of the technique proposed in [7].
However, incorporating prior knowledge further improves MA’s performance, as the
rules from the trained DT models provide a better initial population, leading to more
successful identification of vulnerabilities. Specifically, the novel approach can find
two orders of magnitude more vulnerabilities than RS and ≈ 60% more than MA with
random initialization, significantly improving portability scenarios. Additionally, we
analyzed the if-then rules from the trained DT models. Our investigation indicates
that models trained with data obtained from executing MA generated more precise
rules, consequently identifying more vulnerabilities within the initial population
compared to models trained with RS data. These findings offer practical advice for
effectively implementing the proposed method in security evaluations.

This study considers one of the simpler forms of the portability issue, suggesting
that the proposed solution might require adjustments to handle other, more complex
portability cases effectively. The study was conducted using one set of samples
of the same target with confidentiality restrictions, limiting the scope of our
conclusions. Nevertheless, given the method’s independence from specific target
knowledge, we expect it should apply to different targets, bench setups, and FI types
with minor adjustments. We observed that DT models consistently outperformed
memetic algorithms with random initialization, highlighting the potential for further
exploration into more effective metrics for DT model selection. While standard
deep learning metrics were investigated in this research, designing a specific
metric might enhance the selection process for this use case. In this work, we
chose decision trees to obtain prior knowledge due to their simplicity and high
explainability, although more advanced machine learning methods could potentially
offer improved performance. However, such complexity introduces a compromise
between predictive power and the transparency of the decision-making process,
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calling for careful consideration between performance and explainability. Due to the
confidentiality of the target, the depth of discussion regarding the generation and
implications of the DT rules within this publication was constrained, underscoring
possible future research focused on public targets.

As already mentioned, the portability issue of profiling models across different
samples of the same target is also present within the SCA domain. However, relying
on public datasets makes it harder to evaluate, and there are publications already
discussing this issue. Portability issues become clearer with the diversity in hardware
and software configurations, resulting in significant differences in the behavior of
the target. Considering the publicly available datasets for SCA, which predominantly
feature AES implementations on various hardware and include different acquisition
techniques, presents an opportunity to explore a more complex portability case.
In Chapter 7, we employ Autoencoders (AEs) for dimensionality reduction of the
input traces to improve the portability of DL profiling models for successful attacks.
This method potentially reduces the need for extensive hyperparameter retuning of
profiling models by reusing the hyperparameters across different datasets. However,
the tuning effort is not entirely eliminated, as the AE for the new datasets remains
to be adjusted. We indicate that tuning autoencoders is relatively straightforward
by demonstrating the positive correlation between the Mean Squared Error (MSE)
metric, commonly used with AEs, and the Signal-to-Noise Ratio (SNR) difference
between the original and reconstructed traces. While the MSE metric effectively
guides the reconstruction task, the training metrics of DL models do not entirely
correspond to the attack evaluation metrics in SCA, namely guessing entropy and
success rate. Consequently, tuning AEs is more straightforward, leading to a more
reliable and efficient tuning. Additionally, we demonstrate that hyperparameter
tuning does not significantly differ when using the original traces compared
to encoded traces, indicating that encoded data keeps relevant information for
successful attacks. As we aim to advance security evaluations by enabling the reuse
of tuned and even pre-trained models, omitting certain steps from the SCA workflow
to reduce execution time, we explored three scenarios. Firstly, by encoding all
datasets and employing a single profiling model architecture, successful attacks were
achieved in 90% of cases, potentially facilitating the development of a universal
profiling model across various datasets. Secondly, we assessed the portability of
a profiling model with its hyperparameters between datasets with original and
encoded traces. The results suggest that using original traces of the new dataset is
feasible with the same architecture, but encoded traces can offer improved success
rates in many instances. Third, we examined how a trained model could adapt to
different datasets. Utilizing transfer learning in our approach, we achieve successful
attacks (GE equal to 1) with only a few epochs, significantly reducing training time.

This chapter used three datasets, where two datasets were collected from the
same target and acquisition, while the third dataset used a different bench and
hardware of the target, but all ran an AES implementation. Despite the identical
target and setup for the first two datasets, the portability challenges were present
due to the measurements considering fixed and random AES keys between these
datasets. Moreover, we employed a cross-validation approach by switching roles
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of the utilized datasets between usage to acquire the profiling model and test its
portability. However, it would be beneficial to further experiment with the approach
to validate the generality, especially if other symmetric cryptographic algorithms
could also be considered. Our study evaluated both CNN and MLP structures for
autoencoders, finding MLP tuning more straightforward and explored more than
CNN. Since CNNs were shown to be more powerful, further exploration is necessary
to examine their potential in this context. The research did not extensively explore
the characteristics of the latent space generated by autoencoders from side-channel
traces. Investigating this could facilitate the creation of a universal latent space
useful for general profiling models. Moreover, we did not compare the AE-encoded
data against traditional feature processing techniques within the SCA domain. Such
comparisons, alongside testing AE-encoded traces with classical SCA methods, like
template attacks, represent promising directions for future research that could lead
to further insight into feature and data processing.

This work improves the security evaluation by addressing portability challenges
in implementation attacks, presenting solutions that utilize powerful AI techniques
and practical guidance for their deployment. The proposed solutions significantly
enhance the evaluation process for AIFI parameter search, allowing security
evaluators to efficiently evaluate the security of product series by facilitating tests
across different target samples. The thesis investigates more complex scenarios
in the context of DLSCA to enhance security evaluations for different targets
throughout their production and certification stages. By providing security evaluators
with practical methods and suggestions for incorporating these advanced solutions,
this work advances the current evaluation process and offers a foundation for
further exploration in this field. For example, using the decision trees in
AIFI parameter search demonstrates their predictive capabilities that can help
benchmark parameter search algorithms by providing complete estimated target
characterizations. These estimated target characterizations eliminate the need for
FI equipment and provide researchers with realistic data, potentially leading to
highly successful search algorithms beneficial to the industry. Additionally, the
estimated characterizations can help optimize the AI methods for AIFI parameter
search by enabling an automated hyperparameter tuning process, reducing time
and resource requirements. Another area of interest, beneficial for secure system
designers, would involve exploring the interpretability of DTs and the explainability
of DT rules to gain insights into system vulnerabilities and defense mechanisms.
Moreover, enabling portability in DLSCA offers the potential to create a universal
profiling model that would work effectively across diverse datasets and systems once
encoded into the same latent space. Such a model aims to standardize and optimize
the security evaluation process for DLSCA, enabling greater collaboration between
industry and academia. This study also offers key observations for developing a
suitable autoencoder, essential for refining our methodology and possibly crucial in
designing a universal profiling model.
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9.1.3. EVALUATION METRICS

Proper evaluation metrics are necessary to develop valuable frameworks and
benchmarks in any domain. The integration of AI methods for fault injection is
relatively new, presenting many opportunities for improvement and reevaluation of
the current framework. We identified several limitations in the existing evaluation
metric for comparing algorithm performance in AIFI parameter search, such as
promoting undesirable algorithm behaviors in specific cases. Within the already
established DL-based SCA framework, it is known that there are discrepancies
between the training metrics of the DL methods and the evaluation metrics of
SCA [11]. Research has demonstrated that minimizing the commonly used categorical
cross-entropy loss correlates with minimizing the standard attack metric, guessing
entropy [12]. Nevertheless, bridging the gap between training and evaluation metrics
could significantly enhance the training process, making the attack more effective.
Developing a less resource-intensive metric than GE or SR could lead to improved
attack performance. This thesis explores alternative metrics to evaluate AI methods
applied to both implementation attacks more effectively. The sub-question is stated
as What alternative metrics can facilitate a more efficient AIFI parameter search
and DLSCA model training, offering a comprehensive evaluation of AI methods for
implementation attacks?

In Chapter 4, we discuss the objectives of FI parameter search in more detail,
proposing new metrics that better align with security evaluation goals. Instead of
focusing only on the number of FI parameter combinations that find vulnerabilities,
considering all five parameters, we evaluate performance based on discovering
unique vulnerability locations and clusters. This approach prioritizes finding more
distant vulnerabilities, ensuring a comprehensive security evaluation by reducing
the risk of overlooking potential vulnerabilities. We introduce two novel diversity
algorithms and several variations that enhance performance considering the new
metrics. These algorithms, being population-based, promote diversity of the solutions
in the population. Firstly, we present the Grid Memetic Algorithm (GridMA),
which divides the target area into a grid-like structure, with each cell representing
an area subjected to search with a single MA. This simple extension forces the
algorithm to allocate attention to all regions of the target area in terms of time
and evaluations. Another algorithm we propose is multi-parent ES, which uses only
a mutation-like operator to evolve the parent solutions. By using the multi-parent
version, we enable the discovery of multiple optima, aligning with our objective.
We compare these algorithms using several metrics with RS and MA. Our results
demonstrate that MA still performs best when considering the number of found
vulnerabilities, a metric used in previous related work. While GridMA and ES
performed relatively poorer in this regard, they still outperformed RS, finding at least
≈ 8× more vulnerabilities. However, when evaluating based on the number of unique
locations, the evolutionary algorithms utilized in this study found around 30% more
vulnerable locations than RS, showcasing similar advantages but emphasizing the
MA’s convergence issue. Lastly, diversity algorithms demonstrate greater ability in
discovering distinct vulnerable clusters, where MA performs least effectively.

The proposed metrics are better aligned for the security evaluation perspective,
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which enables us to develop and discover better-suited algorithms for the FI
parameter search considering that use case. While these metrics present an
improvement, they are relatively simple, requiring further refinement and theoretical
foundation. Moreover, one of the new metrics relies on a specific clustering
method, for which the exploration of alternative methods was limited. Thus,
further investigation could be beneficial. Due to the confidentiality of the utilized
target, we do not visually present the clusters, which could have offered a more
transparent illustration of vulnerable clusters’ distribution. However, these metrics
still provide a more objective evaluation method than visual inspections, highlighting
the importance of formulating a mathematically robust metric aligned with this
objective. Considering the proposed metrics, the enhancements by the new
algorithms were minor, indicating their potential but emphasizing the need for more
investigation. Exploring more advanced or customized methods may lead to more
significant improvements.

Chapter 8 focuses on enhancing the DLSCA framework by refining the training
process and introducing a metric to assess the generality of the trained model more
effectively. Given the inherent connection between labels (intermediate values) in
SCA due to the usage of leakage models, we adopt Label Distribution Learning (LDL)
to enhance attack performance. This approach uses distributed labels, reducing the
number of profiling traces needed for training the profiling model while maintaining
robust attack performance. Our results indicate that employing distributed labels
required around 10× fewer profiling traces than commonly used 45000−50000
traces. However, although standard one-hot encoded traces could achieve a low
GE with 7000− 10000 profiling traces in some cases, using distributed labels
decreased that number around 2−3 times for a successful attack. We compare our
approach to other techniques used in cases with limited profiling traces, such as
L2 regularization, dropout, or data augmentation. We demonstrate that distributed
labels outperform one-hot encoded labels even when these regularization techniques
are utilized. Additionally, our results show that as the number of profiling traces is
increased, using one-hot encoded labels demonstrates greater prediction precision
than distributed labels due to high estimation variance. We also propose a novel
metric, label correlation, which has been empirically validated as a reliable candidate
for evaluating the generality of a model. Since the LC metric is less computationally
expensive than GE or SR, it can be used during training on validation datasets. We
validate the metric for preventing overfitting with early-stopping and a tuning process
focused on neural network architecture, demonstrating its effectiveness in optimizing
model development and evaluation within the DLSCA framework. Compared to
several other metrics, such as accuracy, loss, and mutual information, LC proved to
be the most accurate in indicating the overfitting effect. During architecture search,
LC effectively represents attack performance across different profiling model sizes,
reliably indicating the model’s generality.

We successfully reduced the number of profiling traces required for DLSCA without
compromising the attack’s success by employing Gaussian-distributed labels instead
of the traditional one-hot encoding. This method relies on the assumption that
the labels closer to the correct label are more likely to be selected, measuring the
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distance in squared Euclidean distance. This learning scheme also assumes that
the leakage follows a Gaussian distribution, which, if not aligned with the actual
leakage in the traces, the calculation of the distributed labels should be adjusted
accordingly. The label correlation metric depends on the hypothetical distance
between key candidates, which varies depending on the specific algorithm and
hardware implementation. Further investigation is needed to determine the metric’s
adaptability to new implementations or algorithms. In exploring the LC metric for
optimizing neural network architectures, we restricted our experiments to CNNs from
a limited hyperparameter search space. There is potential for more investigation,
where future work could evaluate LC metric’s applicability across a broader range of
neural networks. The proposed LC metric is limited to use in the validation step of
the training process, as it is still more resource-intensive than utilized loss functions.
While this research already provides an improved training process, replacing the
loss function with an attack-related metric could significantly impact the DLSCA
performance. However, this is a challenging issue as time complexity is crucial.

These chapters aim to improve core aspects of AI-based frameworks for
implementation attacks. The research dedicated to AIFI highlights the importance
of defining clear objectives for the FI parameter search. This precision facilitates
clear communication of solutions and their purpose within the academic community
and helps identify state-of-the-art solutions for various objectives. That further aids
industry practitioners in employing the most relevant solutions for their use cases.
Furthermore, this work opens new research directions, such as optimizing the fitness
function for evolutionary algorithms. The fitness function, currently limited to
categorical labels and predefined values, represents a crucial area for enhancement
since it is the evolutionary approach’s primary guidance element. This future work
to enhance the fitness function for evolutionary methods mirrors the efforts done in
DLSCA, where the emphasis is on improving training schemes and metrics instead of
focusing on the attack performance metric itself. Given that most devices have a life
cycle that dictates the termination of their functionality based on execution count
or time, reducing the number of required profiling traces in security evaluations
is necessary. Security analysts also have time and resource limitations, where the
proposed training scheme with distributed labels could be helpful, allowing for a
more efficient and effective evaluation process. Moreover, introducing the label
correlation metric for monitoring model training progress on validation datasets
represents a significant improvement, offering a method more closely aligned with
actual attack performance metrics than traditional DL metrics like accuracy. The
application of this metric requires further experimentation and validation across
diverse scenarios for its broad adoption in the DLSCA framework.

9.2. LIMITATIONS

In the AIFI section, a single confidential laser bench setup and target were
commonly used, limiting the details and information that could be shared in the
publication. Although the proposed methods are employed without modifications
or assumptions based on the used target and equipment, suggesting potential
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applicability across various targets, benches, and FI types such as voltage glitching
and EMFI, empirical validation across these diverse settings has not been done.
Thus, conducting additional experiments in these contexts would provide more
confidence in the solutions presented in this thesis. The confidentiality of the
target also excluded the possibility of presenting visual representations of the target
characterization. This limitation hinders a complete understanding of the target’s
characterization and behavior, as well as the effectiveness of the different algorithms
in AIFI parameter search. Throughout this thesis, the focus has been on introducing
relatively simple solutions. While these solutions promote greater accessibility and
ease of implementation, exploring more advanced evolutionary algorithms designed
to identify optimal and multiple solutions could offer significant advantages in the
AIFI domain. Moreover, while decision trees were employed for their simplicity and
explainability, particularly in generating if-then rules, the potential of more complex
machine learning models to offer enhanced rules or predictions should be part of
further investigations. Such exploration would also examine the trade-off between
model explainability, resource consumption, and performance outcomes.

One of the major limitations in the study of DLSCA is the reliance on
publicly available datasets, which, despite being considered standard benchmarks,
are well-studied and may not fully challenge or demonstrate the capabilities of
more advanced methodologies. Although our advanced methods have shown
enhancements on these datasets, the effectiveness of even simpler methods on these
datasets leads to concerns about their complexity. Extending research to include
attacks on more secure systems and creating new, more realistic public datasets
could significantly enhance future research outcomes. Additionally, most of the
public datasets consider the AES cryptographic algorithm. Therefore, the generality of
the proposed methods to cryptographic algorithms beyond AES, such as lightweight
and post-quantum algorithms, remains to be investigated. The experimental scope
was often time-constrained, requiring a balance between the comprehensiveness of
the experiments, use case selection, and the available resources and time. Despite
these constraints, the methods should generalize within the assumptions outlined in
each dedicated chapter. However, these limitations suggest that further empirical
work and theoretical investigation could offer more confidence in the findings, their
applicability, and generalizability.

9.3. BROADER IMPLICATIONS AND FUTURE DIRECTIONS

Before this study, AI methods have already been applied to both implementation
attacks in the focus of this thesis, with SCA having a well-defined DL-based SCA
framework, which we have further explored. In contrast, the use of AI in FI is a more
recent development, with AIFI framework starting to take shape from the literature
as detailed in Section 1.4. Although AI algorithms have shown significant benefits
for both FI parameter search and SCA, many questions remain, particularly for AIFI,
where its application has not been extensively investigated yet, and for DLSCA,
where specific challenges are discussed in more detail in Chapter 5. Therefore,
this thesis addresses the main research question: How can AI-based implementation
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attacks, specifically fault injection and side-channel analysis, be further enhanced for
a more efficient security evaluation of cryptographic systems?

Our exploration of the main question includes addressing three critical aspects of
AI-based implementation attacks. First, we consider the challenge of hyperparameter
tuning for applied AI methods, recognizing it to be a highly time-consuming
process crucial for the success of the AI methods. While AIFI parameter search
and DLSCA use different AI methods, both share this issue. Investigating one
specific hyperparameter, initialization methods, we enhance understanding of its
influence and provide guidance and insights for security analysts aiming to improve
the efficiency of their hyperparameter tuning process. Next, we address the need
for portability in security evaluations, given the diverse range of devices requiring
security evaluation. We propose leveraging prior data and findings to expedite
evaluations on other devices utilizing different AI methods. We study the portability
of FI parameter search results across different samples of the same target and SCA
profiling models across different datasets (targets). Our proposed method enabled
efficient portability in considered cases, helping understand similarities between
targets and enabling future development of universal methods to help standardize
the evaluation process. Lastly, we revisit and refine evaluation metrics within
the AI-based frameworks of the considered implementation attacks. Redefining
objectives and aligning evaluation metrics more closely with the considered goals
of implementation attacks, we significantly improve the effectiveness of AI-based
implementation attacks and, consequently, the overall process of security evaluations.

This thesis enhances AI-based implementation attacks by addressing three key
aspects, promoting their broader adoption, and fostering standardization in security
evaluation and the security of consumer products. For practitioners in the field
of hardware security, the findings offer advanced tools and strategies for more
efficient and adaptable security evaluations of cryptographic systems. As these
attacks become more refined, they can be adopted and set the new standard for
security evaluation and certification, significantly contributing to the overall security
of various systems. While focusing on offensive security, this research showcases
potential threats by attackers and provides insights into the products’ flaws and
vulnerabilities. Thus, focusing on research from the offensive perspective is crucial
as it can force the development of more robust and secure designs and protection
mechanisms as emerging threats need to be addressed. In that manner, this thesis
contributes to the iterative process of identifying vulnerabilities and strengthening
defenses, which leads to progressively stronger security systems.

Overall, the research presented in this thesis provides a significant contribution
to the field of AI-based implementation attacks, security evaluation, and hardware
security. The methodologies and findings from this thesis will impact future
developments in these fields, emphasizing the increasing importance of AI in
addressing complex security challenges. While this thesis’s contributions are
significant, the focus is on specific aspects of AI-based implementation attacks,
namely, hyperparameter tuning, portability, and evaluation metrics. Though crucial
and impactful within the scope of AI-based implementation attacks, these aspects
represent only part of the considered frameworks. Therefore, having already
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discussed incremental improvements to this work, we now outline potential broader
directions for research and identify some unresolved questions in the domain. This
can guide further exploration and innovation in addressing the complex field of
hardware security and, more generally, cybersecurity.

AI in Target Alignment. The alignment of the target is a critical factor affecting
the portability of FI results, particularly given the size and complexity of modern
hardware architectures. Suboptimal alignment of bench equipment relative to
the target device can significantly impact the attack’s efficacy. To address this
challenge, future research may investigate the integration of AI methods to automate
and improve device alignment for fault injections. For example, employing deep
learning techniques, proven successful in object detection tasks, researchers could
explore automatic target alignment for LFI or EMFI benches using inputs from
cameras commonly integrated into these setups. These advanced algorithms could
identify and align corresponding to the target hardware components, which can
help enhance the precision of the FI. This approach can optimize the setup
process and reduce misalignment errors, improving the reliability and effectiveness
of security evaluations with FI. This seems achievable due to successes of DL in
image processing. However, the trade-off between the improvement and the cost
incurred must be assessed to conclude if the AI-based alignment should be part of
the security evaluation.

AI Methods for FI Analysis. While this thesis focuses on the AI application in the
parameter search phase of FI attacks, future research could explore the utilization of
AI techniques to analyze the findings from the FI parameter search. This includes
developing AI models to automatically detect exploitable behavior caused by FI and
demonstrating security flaws and their impact. Currently, fault models are often
manually discovered for each cryptographic algorithm or system being attacked.
A recent report demonstrates the use of reinforcement learning to automatically
find fault models [13], which aligns with this research direction. Furthermore,
future studies could focus on developing frameworks for automatically generating
attack scenarios based on identified vulnerabilities, enabling security analysts to
fully assess the impact of identified flaws on system security. This could involve
creating automated testing environments capable of simulating diverse FI scenarios
and evaluating their impact on system integrity and security.

Universal Profiling Model for DLSCA. Developing a universal profiling model for
DLSCA could help standardize security evaluation and foster enhanced collaboration
between industry and academic research. While recent studies, such as that by
Bursztein et al. [14], proposed first efforts in this direction, there are still significant
opportunities for enhancement and exploration. One approach could also focus
on exploring trace representation and feature extraction to help investigate and
define the limits of these potential universal models. Our work on portability using
autoencoders offers a way to explore a common trace representation in the latent
space that could lead to establishing a universal attack model.
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Enhancing DL-based Non-profiling SCA. This thesis is focused on improving
DL-based profiling SCA. However, non-profiling SCA do not require clone devices,
which decreases the requirements for conducting these attacks, making them a
more realistic threat from a practical point of view. Research on this topic already
exists [15–17], but has to be further explored to reach the level of extensive research
done on profiling SCA. The work presented in this thesis could potentially be used
as a foundation for exploring and testing methodologies applicable to non-profiling
SCA as well. Further development in this area could lead to a more detailed
understanding and application of SCA techniques across various scenarios.

Integration with Emerging Technologies. Investigate how AI-based implementation
attacks can be adapted and applied to emerging technologies and cryptographic
systems, such as post-quantum algorithms and IoT devices. This includes exploring
the unique vulnerabilities of these technologies and developing AI frameworks
to evaluate and enhance their security. The frameworks utilized in this thesis
are explored on symmetric cryptographic systems but provide a foundation for
developing similar frameworks for these emerging systems. By studying these
domains, novel insights and methodologies can be discovered, leading to a more
robust security framework for new technologies and cryptographic algorithms.

Defensive Use of AI in Cryptographic Systems. While the thesis focuses on the
offensive application of AI, we can explore how AI can be employed defensively.
Future research could aim to develop AI-based anomaly detection systems that
identify and mitigate FI and SCA attacks, enhancing the robustness of cryptographic
devices. On the other hand, we can use the generative abilities of AI to develop
lightweight defense methods given hardware and software constraints. For example,
in [18], the authors use reinforcement learning to develop hiding countermeasure
against SCA. Such innovative systems can improve the security of cryptographic
devices against malicious threats.

Automated Attacks. Explore the development of AI systems to automate the entire
attack chain, from finding vulnerabilities to exploiting them with FI. On the
other hand, from collecting raw traces to successful attacks in SCA. This would
represent a significant advancement in the field, offering an automated AI-based
approach to security evaluation. To achieve this ambitious goal, multiple steps
must be addressed. Firstly, a robust framework for finding vulnerabilities must be
established, integrating advanced AI algorithms with high success for identifying
weaknesses in systems. Findings from this work help with this objective. Bridging the
gap between finding vulnerabilities and exploitation requires integrating intelligent
decision-making capabilities as discussed already for future research in applying AI
methods for FI analysis. For DLSCA, steps could include the acquisition process,
preprocessing, and analyzing the raw traces effectively. After these steps, the process
discussed in the thesis is performed, making our findings relevant for automating
the next steps. Furthermore, comprehensive testing and validation frameworks
must be defined to ensure the reliability and robustness of the automated attack
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chain, including both simulated and real-world data. Achieving this objective
requires interdisciplinary collaboration and innovation across several domains but
can significantly advance security evaluation and implementation attacks in general.

AI-based Design Synthesis. Develop AI models that automatically generate
cryptographic designs or security protocols based on specified requirements
and constraints. Evolutionary algorithms, reinforcement learning, or Generative
Adversarial Networks (GANs) can be utilized to improve design robustness against
known attacks while optimizing and automating the design process. Cryptographic
primitives are already being optimized using AI [19]. We can explore expanding
these concepts to more complex tasks within secure design synthesis. By developing
an automated design and attack cycle, AI methods can iteratively adapt secure
designs and defense mechanisms to evolving threats, ensuring robustness against
emerging threats. Moreover, AI can help simulate the iterative process of evolving
and improving secure designs while simultaneously exploring novel attack methods,
similar to the process of GANs. This approach enables anticipation and mitigation
of potential future threats, facilitating the overall robustness of secure systems.
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A
APPENDIX: ON THE IMPORTANCE

OF INITIAL SOLUTIONS SELECTION

IN FAULT INJECTION

A.1. ORTHOGONAL ARRAYS USED IN THE EXPERIMENTS FOR

THE TAGUCHI METHOD
In Table A.1, we present the orthogonal array used in the experiments with a population
size of 36. Table A.2 gives the orthogonal array used in the experiments with a population
size of 128.
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Table A.1.: The orthogonal array used in the experiments with a population size of 36.
This is an array of strength two with the number of samples being 36, and the
number of levels, for each factor, equals 3, 3, 3, 2, 2, respectively to the order
of columns (LFI parameters).

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 1 0 1
0 1 1 0 1
0 1 1 1 0
0 1 1 1 0
0 2 2 1 0
0 2 2 1 1
0 2 2 1 1
0 2 2 1 1
1 0 1 1 0
1 0 1 1 1
1 0 1 1 1
1 0 1 1 1
1 1 2 0 0
1 1 2 0 0
1 1 2 0 0
1 1 2 0 1
1 2 0 0 1
1 2 0 0 1
1 2 0 1 0
1 2 0 1 0
2 0 2 0 1
2 0 2 0 1
2 0 2 1 0
2 0 2 1 0
2 1 0 1 0
2 1 0 1 1
2 1 0 1 1
2 1 0 1 1
2 2 1 0 0
2 2 1 0 0
2 2 1 0 0
2 2 1 0 1
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Table A.2.: The orthogonal array used in the experiments with a population size of 128.
This is an array of strength two with the number of samples being 128, and the
number of levels for every factor is two. In this representation, the first col-
umn represents the number of times the same combination repeats. There
are eight different combinations of the factor levels, and each repeats 16
times.

16x 0 0 0 0 0
16x 0 0 0 1 1
16x 0 1 1 0 0
16x 0 1 1 1 1
16x 1 0 1 0 1
16x 1 0 1 1 0
16x 1 1 0 0 1
16x 1 1 0 1 0





B
APPENDIX:

AUTOENCODER-ENABLED MODEL

PORTABILITY IN SIDE-CHANNEL

ANALYSIS

B.1. HYPERPARAMETER SEARCH SPACES
We execute a random search over hyperparameter search spaces for autoencoders and
profiling models. This section reports hyperparameter search spaces for all of our exper-
iments. Hyperparameter search space for MLP autoencoders in the initial experiments
with metric analysis and best latent size search are in Table B.1. The differences are in
the number of neurons per layer for the different types of autoencoders we use. Ta-

Table B.1.: Hyperparameter search space for autoencoder ae_mlp, ae_mlp_dcr and
ae_mlp_str_dcr in the initial experiments for metric analysis and latent di-
mension search.

Hyperparameter
Values

ae_mlp ae_mlp_(str_)dcr

Layers [1, 2, 3, 4, 5, 6]

Neurons [20, 50, 100, 250] [20, 40, 50, 100, 150, 200, 300,
400]

Batch size [100, 200, 400]

Activation [tanh, elu, selu, sigmoid]

Learning rate [0.005, 0.001, 0.0001, 0.00001]

Weight init [random_uniform, he_uniform, glorot_uniform,
random_normal, he_normal, glorot_normal]

Optimizer [Adam, RMSprop, SGD, Adagrad]
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ble B.2 shows search space for CNN autoencoders. The batch size, activation, learning
rate, weight initialization, and optimizer are the same for all AE types.

Table B.2.: Hyperparameter search space for autoencoder ae_cnn.

Hyperparameter Values

Conv. layers [1, 2, 3, 4]

Filters [4, 8, 16]

Kernel size [10, 20]

Strides [5, 10]

Pool size [2, 4]

Pool strides [2, 4]

Pooling type [Avg, Max]

Batch size [100, 200, 400]

Activation [tanh, elu, selu, sigmoid]

Learning rate [0.005, 0.001, 0.0001, 0.00001]

Weight init [random_uniform, he_uniform, glorot_uniform, ran-
dom_normal, he_normal, glorot_normal]

Optimizer [Adam, RMSprop, SGD, Adagrad]

For profiling models, the hyperparameter search space for MLP and CNN is in Ta-
ble B.3.

Lastly, we use autoencoders with latent size 700, so we report in Table B.4 the number
of layers and neurons per layer we allow. Other hyperparameters stay the same as in
Table B.1 and Table B.2.

B.2. STATISTICAL TESTS
Using a Friedman test, we identify that there is indeed a significant difference in the
means of the groups. However, we need to find out which ones differ specifically. Thus, a
post-hoc test is necessary. One such test is the Nemenyi test, and using Python packages,
we obtain the results for different latent sizes in Tables B.5 and B.6. Latent dimensions
are in rows and columns. The Nemeyi post-hoc test returns the p-values for each pair-
wise comparison of means. Using a significance level α= 0.05, the pairwise latent sizes
with a significant difference are bolded. Table B.5 shows the pairwise comparison for
eight latent sizes because we exclude the results for ae_mlp_str_dcr type as with spec-
ified hyperparameter search it did not work for latent size 500. Table B.6 shows results
including that AE type but excluding the latent size 500.

B.3. HYPERPARAMETERS VALUES OF MODELS FROM

EXPERIMENTS
This section provides information on hyperparameter values for the models we use in
our experiments. In Table B.7, we show hyperparameters of the best MLP and CNN
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Table B.3.: Hyperparameter search space for profiling models. For CNN models, the con-
volutional layer is followed by BatchNormalization and then the pooling layer.
The number of filters increases by being multiplied by the corresponding or-
der of the layer.

Hyperparameter MLP CNN

FC layers [1, 2, 3, 4, 5, 6] [1, 2]

Neurons [20, 40, 50, 100, 150, 200, 300,
400]

[20, 50, 100, 200]

Conv. layers - [1, 2, 3, 4, 5]

Filters - [4, 8, 12, 16]

Kernel size - [10, 20, 30, 40]

Strides - [5, 10, 15, 20]

Pool size - [2]

Pool strides - [2]

Pooling type - [Avg]

Batch size [100, 200, 400]

Activation [elu, selu, relu]

Learning rate [0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005,
0.000025, 0.00001]

Weight init [random_uniform, he_uniform, glorot_uniform,
random_normal, he_normal, glorot_normal]

Optimizer [Adam, RMSprop, SGD, Adagrad]

Table B.4.: Hyperparameter search space for autoencoder ae_mlp_str_dcr with latent
space size of 700. We exclude the batch size, activation, learning rate, weight
initialization, and optimizer hyperparameters as they are already shown in
Tables B.1 and B.2.

DPAv4.2 ASCADr

Layers [1, 2, 3, 4, 5, 6]

Neurons [700, 800, 900, 1000, 1200, 1400,
1600, 1800]

[700, 800, 900, 1000, 1100, 1200,
1300]

profiling models for the encoded DPAv4.2 dataset when encoded with the best-found
ae_mlp_dpav42_best. These models correspond to results in Table 7.7. Corresponding
to Table 7.8, we provide hyperparameter values for the best MLP and CNN models for the
encoded DPAv4.2 dataset when encoded with the best-found ae_cnn_dpav42_best in
Table B.8. Hyperparameter values of the best MLP and CNN models for ASCADf dataset
are visible in Table B.9. The attack performance of those models is shown in Table 7.15.
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Table B.5.: p-values of Nemenyi post-hoc test for without the ae_mlp_str_dcr model.

Latent
sizes

20 40 50 100 200 250 400 500

20 1.0 0.9 0.9 0.158 0.001 0.263 0.001 0.088

40 0.9 1.0 0.9 0.552 0.015 0.693 0.006 0.403

50 0.9 0.9 1.0 0.693 0.032 0.834 0.015 0.552

100 0.158 0.552 0.693 1.0 0.763 0.9 0.623 0.9

200 0.001 0.015 0.032 0.763 1.0 0.623 0.9 0.9

250 0.263 0.693 0.834 0.9 0.623 1.0 0.481 0.9

400 0.001 0.006 0.015 0.623 0.9 0.481 1.0 0.763

500 0.088 0.403 0.552 0.9 0.9 0.9 0.763 1.0

Table B.6.: p-values of Nemenyi post-hoc test for with the ae_mlp_str_dcr model.

Latent
sizes

20 40 50 100 200 250 400

20 1.0 0.0 0.783 0.042 0.001 0.030 0.001

40 0.9 1.0 0.9 0.364 0.009 0.296 0.001

50 0.783 0.9 1.0 0.647 0.042 0.579 0.006

100 0.042 0.364 0.647 1.0 0.783 0.9 0.438

200 0.001 0.009 0.042 0.783 1.0 0.851 0.9

250 0.030 0.296 0.579 0.9 0.851 1.0 0.511

400 0.001 0.001 0.006 0.438 0.9 0.511 1.0

Table B.7.: Best MLP and CNN profiling models obtained for the encoded DPAv4.2
dataset when encoded with the best-found ae_mlp_dpav42_best.

Hyperparameters
MLP CNN

ID HW ID HW

FC layers 2 3 1 2

Neurons 100 40 50 20

Filters - - 16 12

Kernel size - - 20 40

Strides - - 5 15

Conv. layers - - 4 5

Batch size 200 200 100 100

Activation selu selu selu elu

Learning rate 0.005 0.0025 0.005 0.001

Weight init. random uni-
form

glorot uni-
form

random nor-
mal

glorot uni-
form

Optimizer Adam RMSprop Adam RMSprop
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Table B.8.: Best MLP and CNN profiling models obtained for the encoded DPAv4.2
dataset when encoded with the best-found ae_cnn_dpav42_best.

Hyperparameters
MLP CNN

ID HW ID HW

FC layers 6 6 1 2

Neurons 200 50 200 200

Filters - - 12 12

Kernel size - - 30 40

Strides - - 5 15

Conv. layers - - 4 5

Batch size 200 200 400 400

Activation selu elu selu elu

Learning rate 0.0005 0.0025 0.0025 0.0005

Weight init. random uni-
form

glorot nor-
mal

glorot nor-
mal

random nor-
mal

Optimizer RMSprop RMSprop RMSprop RMSprop

Table B.9.: Best profiling models for ASCADf dataset.

Hyperparameters
MLP CNN

ID HW ID HW

FC layers 4 4 2 1

Neurons 40 20 50 200

Filters - - 4 4

Kernel size - - 10 40

Strides - - 5 5

Conv. layers - - 1 4

Batch size 400 100 200 400

Activation relu elu relu selu

Learning rate 0.001 0.001 0.0001 0.005

Weight init. random uni-
form

random nor-
mal

random uni-
form

glorot uni-
form

Optimizer Adam RMSprop RMSprop RMSprop





C
APPENDIX: LABEL CORRELATION

IN DEEP LEARNING-BASED

SIDE-CHANNEL ANALYSIS

C.1. THE STATE-OF-THE-ART MODELS
The used state-of-the-art models are listed in Tables C.1 and C.2. All of the non-listed
hyperparameter settings are aligned with the original papers [1, 2]. The convolution
layer is denoted by C; averaging pooling layer is denoted by P. FLAT and FC denote the
flatten layer and fully connected layer, respectively. Finally, SM denotes the output layer
with the so f tmax activation function.

Table C.1.: CNN architecture used for the attack [1].
Dataset Leakage Model Architectures Learning Rate Batch Size

ASCAD_f HW C(2,25,1), P(4,4), FLAT, FC(15, 10, 4), SM(9) 5e-3 50

ID C(128,25,1), P(25,25), FLAT, FC(20, 15), SM(256) 5e-3 50

ASCAD_r HW C(4,50,1), P(25,25), FLAT, FC(30, 30, 30), SM(9) 5e-3 128

ID C(128,3,1), P(75,75), FLAT, FC(30, 2), SM(256) 5e-3 128

CHES_CTF HW C(2,2,1), P(7,7), FLAT, FC(10), SM(9) 5e-3 128

Table C.2.: MLP architecture used for the attack [2].
Dataset Leakage Model Architectures Learning Rate Batch Size

ASCAD_f HW FC(496, 496, 136, 288, 552, 408, 232, 856), SM(9) 5e-4 32

ID FC(160, 160, 624, 776, 328, 968), SM(256) 1e-4 32

ASCAD_r HW FC(200, 200, 304, 832, 176, 872, 608, 512), SM(9) 5e-4 32

ID FC(256, 256, 296, 840, 280, 568, 672), SM(256) 5e-4 32

CHES_CTF HW FC(192, 192, 616, 248, 440), SM(9) 1e-3 32
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11. M. Krček and T. Ordas. “Diversity Algorithms for Laser Fault Injection”. In: Applied Cryp-

tography and Network Security Workshops. Ed. by M. Andreoni. Cham: Springer Nature
Switzerland, 2024, pp. 121–138. ISBN: 978-3-031-61486-6
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