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Sensor Calibration using a Directional Trained Deep Neural Network

By W. Kolff

Abstract— Force/torque sensors are essential tools that enable
robots to effectively interact with their environments. Existing
calibration methods often fail to capture inter-axis nonlineari-
ties and coupling effects, particularly when available calibration
data are sparse and discrete. To address this challenge, the
presented approach employs a Deep Neural Network (DNN)
that learns both the scaling and the direction of the input-output
relationship. The method works by extracting the absolute
magnitude and unit vector from the raw N-dimensional sensor
output values, which can vary among sensors. The DNN
takes this N-dimensional input and produces a 7-dimensional
output—comprising a corrected 6D unit vector representing
the desired force-torque direction and a scaling factor. The
final measurement is then constructed by combining the output
unit vector, the learned scaling factor, and the original input
magnitude. This approach simplifies the calibration problem to
a linear mapping along one axis, enabling the model to general-
ize well under limited training conditions while leveraging the
DNN’s strength in capturing nonlinear inter-axis relationships.

The proposed DNN was trained and evaluated on both
artificially generated and real-world datasets, and its perfor-
mance was compared to two baseline models: a commonly
used linear transformation model and a comparative DNN
approach from the literature. On generated data, the proposed
DNN achieved an RMSE of 36.9 ± 3.44, outperforming the
comparative DNN (48.3± 4.47) and the linear transformation
model (62.3±0.76). Similar improvements were observed on the
real-world dataset. Although these results are promising, they
are based on artificially generated data and a single real-world
dataset from one specific sensor. Further validation and more
extensive testing are necessary. Nonetheless, the gains indicated
here suggest meaningful potential for improved calibration
strategies in force-controlled robotic applications, even under
limited training conditions.

I. INTRODUCTION

With the advancement of more autonomous robotic sys-
tems across an increasing number of fields, such as surgery,
the need to accurately sense and adapt to dynamic, unpre-
dictable environments is also rising. For example, handling
sensitive human tissue requires precise and reliable mea-
surements of forces and torques (F/T) [1], [2], [3]. The
precision of these measurements ensures safe and gentle
manipulation of soft, variable materials. To achieve precise
measurements, the sensors need to be accurately calibrated.
Effective calibration translates raw electrical signals into
meaningful data.

Current calibration methods face significant challenges.
Traditional linear transformation matrices (LTMs) [4], [5],
[6], [7], [8] often assume that sensor outputs are linear and
decoupled. In practice, sensors can be non-linear and exhibit
coupling effects, making these assumptions unreliable [9],
[10], [11]. Recent data-driven approaches, including neural
networks and hybrid models, address some of these issues

but typically require large amounts of training data [12].
Acquiring these data can be expensive, time-consuming,
and impractical [13], [14]. As a result, researchers and
practitioners often choose between less accurate but data-
efficient methods or more accurate methods that require
extensive datasets and complex calibration procedures.

This work aims to develop a calibration method that
balances limited data availability with the need for high
accuracy. The main question is how to efficiently decouple
and correct sensor outputs with minimal training data, while
still handling nonlinearities and coupling effects.

A well-designed calibration method should be able to
perform reliably even when only minimal training data is
available. In an ideal situation it combines the data efficiency
of a linear transformation model with the adaptability of a
non-parametric approach. It handles minimal training data
while capturing inter-axis nonlinearities and coupling effects.
By combining these strengths, such a method would also
generalize well beyond the training set, ensuring accurate
force–torque measurements in diverse real-world scenarios.

Contributions

• DNN-Based Calibration Model: We introduce
a data-efficient DNN approach that emphasizes
direction and scaling, improving performance
with limited datasets.

• Nonlinear and Multiaxial Correction: The model
effectively corrects sensor outputs under multi-
axial, interaxis nonlinear conditions, addressing
key limitations of LTMs.

• Comparative analysis: We compare our ap-
proach with traditional LTM and existing DNN
solutions, demonstrating improvements in accu-
racy and robustness.

We begin with a review of related work, describing
existing calibration approaches and their limitations (see
Chapter II). Next, we detail our methodology, including the
model structure and training procedures (see Chapter III).
Then, the experimental results are presented (see Chapter V).
Finally, we summarize our findings and highlight areas for
further research (see Chapter VI and Chapter VII).

II. BACKGROUND & RELATED WORK

As described in the introduction, force-torque sensors are
crucial components in advanced robotic systems and are used
in a wide range of applications. However, their accuracy
is compromised by various errors inherent in the sensing
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elements and structural design. Understanding these errors
is important for effective calibration.

A. Sensor Errors and Their Impact on Calibration

Several types of errors affect force-torque sensors:
a) Nonlinearity: Inter-axis nonlinearity frequently

arises from structural factors, such as small-angle approx-
imations and simplified models used to describe the elastic
components of force-torque sensors. These simplifications
become inadequate when deformations are significant, par-
ticularly under large loads, leading to coupling between
different axes [8]. In contrast, intra-axis nonlinearity typi-
cally stems from material factors, since the materials used
in sensor construction often exhibit nonlinear stress-strain
relationships [15]. Variations in material properties—due to
manufacturing inconsistencies or environmental conditions
can further worsen these effects. Both structural and material
nonlinearities undermine the effectiveness of linear calibra-
tion methods

b) Creep: or drift refers to the gradual change in
sensor output under a constant load over time [16]. This
phenomenon is particularly pronounced in certain materials
and can lead to drift in measurements. Creep introduces
time-dependent errors that are not accounted for in static
calibration models, necessitating frequent recalibration or the
development of models that can compensate for temporal
changes.

c) Noise: encompasses random fluctuations in the sen-
sor signal caused by electrical interference, thermal vari-
ations, and other external factors [14]. Noise reduces the
precision of measurements and can obscure the true signal,
making it difficult to achieve high calibration accuracy
without adequate filtering or modeling techniques.

d) Coupling: or crosstalk between sensor axes, occurs
when applying force or torque along one axis does not
affect only the corresponding sensing elements, but also
unintentionally influences measurements on other axes [17].
This can happen for a variety of reasons. On a mechanical
level, slight structural deformations may transfer force from
one axis to another. Electrically, interference within the
sensing circuits may cause readings to bleed into neighboring
channels. Additionally, subtle differences among supposedly
identical sensing elements, such as strain gauges, can lead
to asymmetric responses. For instance, a positive force
along the x-axis might predominantly stress one set of strain
gauges, while a negative force along the same axis might
stress a different set. If these gauges vary slightly in their
properties due to manufacturing imperfections, the sensor’s
outputs may differ even for forces of the same magnitude
but opposite direction, ultimately violating the assumption
of axis independence in many calibration models [8].

B. Traditional Calibration Methods

Linear calibration methods using Linear Transformation
Matrices (LTMs) are widely adopted due to their simplicity
and computational efficiency [9], [18], [19]. LTMs map raw

sensor outputs to force and torque values through an affine
transformation:

W = CS+ b (1)

where:
• W = [Fx, Fy, Fz, τx, τy, τz]

T is the wrench vector,
representing the three force components (Fx, Fy, Fz)
and three torque components (τx, τy, τz) in a Cartesian
coordinate system.

• S is the sensor output vector, typically consisting of raw
measurements (e.g., voltage or digital counts) from the
sensor’s sensing elements.

• C is the calibration matrix, a 6× n matrix (where n is
the number of sensing elements) that linearly transforms
the sensor outputs S into the wrench vector W. Each
element of C represents the sensitivity of a specific
force or torque component to the corresponding sensor
output.

• b is the offset vector, a 6 × 1 vector that accounts for
biases or zero offsets in the sensor outputs. It ensures
that the wrench vector W is zero when no external
forces or torques are applied.

The calibration process involves determining C and b by
applying known forces and torques (reference wrenches) to
the sensor and recording the corresponding sensor outputs.
The calibration parameters are optimized by minimizing the
squared error between the reference wrenches (Wd) and the
measured wrenches (Wm):

Minimize Error2 =

N∑
i=1

∥Wd,i −Wm,i∥22 (2)

Here, N is the number of calibration samples, and the
minimization ensures that the calibration matrix C and offset
vector b provide the best fit for all observed data points.
This process is achieved through the least squares method
(LSM), which solves the optimization problem by finding
the parameters that minimize the residual error between the
predicted and reference wrenches.

However, LTMs inherently assume that sensor outputs are
both linear and decoupled, meaning that forces and torques
along one axis do not influence the sensor outputs along
other axes. In real-world applications, these assumptions are
often violated due to coupling effects, where outputs along
one axis are influenced by forces and torques applied along
different axes [20], [21], [22]. These coupling effects can
introduce significant errors, as discussed in Section II-A.

Researchers have proposed decoupled sensor designs using
advanced structural arrangements and finite element analysis
(FEA) [4], [6], [23], but such designs often remain suscepti-
ble to inter-axis interference when multiple forces are applied
simultaneously.

C. Hybrid Calibration Methods

To enhance calibration accuracy, hybrid methods combine
linear models with machine learning techniques to capture
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residual nonlinearities. Ma et al. [15] proposed a hybrid
approach that first applies an LTM to address the primary
linear relationship, followed by a Support Vector Machine
(SVM) to model the nonlinear residuals. The SVM captures
discrepancies between the LTM’s predictions and the actual
measurements.

Simiarly Al-mai et al. [16] proposed a static nonlinear
model (SSGPR). He utilized a linear calibration matrix to
capture primary linear relationships and a static model to
predict and correct nonlinear residuals between measured
values and calibration matrix predictions.

Hybrid methods like those employing SVM or static
nonlinear models demonstrate improvements in capturing
nonlinear behaviors. However, they are effective primarily
when the foundational error can be largely corrected by a
linear transformation. They may struggle with more complex
coupling errors.

D. Neural Network and Deep Learning Approaches

Advancements in machine learning have led to the explo-
ration of neural networks (NNs) and deep neural networks
(DNNs) for sensor calibration. Lu et al. [24] proposed a
basic NN calibration framework but emphasized the need
for diversified and uniformly sampled training data to pre-
vent overfitting. Similarly, Wang et al. [14] explored NNs
with limited depth, which restricted their capacity to model
complex nonlinear interactions.

Cao et al. [21] introduced a two-step neural network
(NN)-based calibration approach where the first NN corrects
the primary errors, and the second NN compensates for
interference forces. However, the second step uses linear
activation functions, limiting its expressiveness. This limi-
tation suggests that the entire approach could potentially be
simplified into a single shallow NN.

Ming et al. [20] employed a Radial Basis Function
(RBF) NN to mitigate coupling effects, offering reduced
computational complexity compared to standard NNs. While
promising, this method remained prone to overfitting and
relied heavily on empirically tuned parameters.

Oh et al. [25] employed a Deep Neural Network (DNN)
to address nonlinearities and coupling effects by training on
data collected from a robotic arm applying multi-axis forces
and torques, resulting in notable error reductions compared to
more traditional methods. However, it remains unclear how
well this model would generalize to a broader operational
range, as its training data was limited to a single load
configuration.

Osburg et al. [26] highlighted that robots are typically
used within a limited operational range due to specialized
applications. They showed that training a DNN within this
specific range could achieve superior calibrations compaired
to LTMs, but at the cost of broader applicability. Their results
underscored that DNNs excel in specific, dense data domains
but struggle to generalize to data outside of this limited train
data range.

Despite their strengths, DNNs trained on direct input-
output mappings struggle with extrapolation when the train-

ing data covers only a limited portion of the operational
range. Large datasets are required to ensure effective learn-
ing.

E. Summarizing the Existing Calibration Methods

Existing calibration methods, both traditional and ad-
vanced, exhibit limitations. Linear models like LTMs fail to
capture complex nonlinear behaviors and coupling effects,
especially asymmetric and nonlinear scaling between differ-
ent directions [21], [20]. Hybrid models improve upon linear
methods but depend on extensive training data and may not
effectively decouple intra-axis erros. DNNs trained directly
on input-output mappings offer increased modeling capacity
but require substantial training data [12], The issue is that
most current calibration data collection techniques do not
provide a continues data set covering the entire operational
range. The current cheaper techniques create datasets that
only cover specific regions of the operational range. This
is because data is often collected by hanging weights [27],
[22] or directly connecting weights [28], [24], [25], [9] to
the surface of the sensors, which introduce sensor signals in
fixed increments. This resulting in limited coverage of the
full operational range. There are machines that can create
continuous representative datasets but these can be complex
and expensive [13].

There is a clear need for a calibration model that can
effectively decouple the coupling effects between axes in
force-torque sensors, without relying on exhaustive datasets.
Such a model should generalize across the operational range
to perform accurately with limited or discrete training data
applicable to continuous real-world scenarios. Additionally,
it should enhance practicality by reducing the need for
extensive data collection and simplifying the calibration
process.

III. METHOD

Building on insights from previous calibration methods,
we propose a new approach aimed at learning both direction
and scaling factors between input and output vectors. We
separate a vector’s length (magnitude) from its orientation
(direction) and work with normalized inputs and outputs.
This approach may help the model generalize to various force
and torque levels, even when training data is limited. We use
a deep neural network (DNN) to capture potential nonlinear
interactions among axes, while still assuming that each axis
has a linear relation when looking at its magnitude alone.

The goal of this section is to understand what the model
aims to learn and how it is designed. We first explain
the model training process, including pre-processing steps,
learning objective, loss function, and provide the training
details. We then outline the prediction process, followed by
zooming in on the models architecture. Next, we present the
models used for comparison. These are two baseline models
the comparative DNN Model and the Linear Transformation
Model (LTM). Practical aspects, such as data collection and
performance evaluation, will be given in the Experimental
Setup chapter IV.
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Fig. 1: The training process of the proposed DNN. This process consists of a data collection phase using both real and
artificial data, multiple preprocessing steps, and the optimization of the proposed DNN.

A. Model Training process
Figure 1 illustrates the full pipeline of the training process,

which learns two separate components from raw sensor data:
a direction vector ỹ, and a scaling factor s. Now follows the
explanation of the training flow.

a) Pre-Processing: Data are generated by applying
known forces and torques to the sensor setup or by simulation
(see Chapter IV). The sensor provides raw measurements
(e.g., strain-gauge voltage values). For instance, consider a
six-dimensional voltage reading x ∈ R6 with components
(c1, c2, c3, c4, c5, c6). These readings are then transformed
into x̃ (unit vectors) and vin, the absolute magnitude of the
input signal:

vin = ∥x∥ =
√

c21 + c22 + c23 + c24 + c25 + c26, (3)

x̃ =
x

vin
. (4)

In parallel, theoretical force-torque (F/T) values or reference
measurements undergo torque scaling to place torques on a
comparable level with forces. Let y ∈ R6 represent the force-
torque measurement with components (f1, f2, f3, τ1, τ2, τ3).
To place forces and torques on comparable scales, compute

α =
Fmax

τmax
, (5)

and multiply each torque component by α. Thus,

y =
(
f1, f2, f3, ατ1, ατ2, ατ3

)
. (6)

Next, we obtain the target unit vectors and their correspond-
ing absolute magnitudes, vout. Specifically,

vout = ∥y∥ =
√

f2
1 + f2

2 + f2
3 + (ατ1)2 + (ατ2)2 + (ατ3)2,

(7)

Target Unit Vector =
y

vout
. (8)

By dividing vin by vout, we compute the target scaling factor.
The combination of normalized inputs, scaled unit targets,
and this target scaling factor forms the basis for training.

b) Direction and Scaling: The proposed deep neural
network (DNN) learns to predict two key outputs from the
normalized sensor input x̃:

1) ỹ, the direction of the force-torque vector,
2) s, a scalar that captures the ratio of output magnitude

to input magnitude.
By explicitly separating direction from magnitude, the model
focuses on both “where” the force-torque vector points and
“how large” it is.

c) Loss Function: The DNN is trained by minimizing
the mean squared error (MSE) between the predicted values
and their ground truth counterparts. Concretely, the loss
function L combines errors in both the normalized direction
vector ỹ and the scaling factor s:

L =
1

N

N∑
i=1

(∥∥∥ỹi − ˆ̃yi

∥∥∥2
2
+ (si − ŝi)

2

)
, (9)

where:
• N is the total number of training samples,
• ỹi and si are the ground truth direction and scaling

factor for the i-th sample,
• ˆ̃yi and ŝi are the corresponding model predictions.

d) Training Details: The training was conducted in
three phases. The initial training was performed for 1700
epochs using the Adam optimizer with a learning rate of
0.001 and a batch size of 32. Earlier runs showed consistent
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Fig. 2: The prediction process of the proposed DNN.

convergence without over fitting around 1700 epochs. Adam
was chosen for its adaptive learning rate capabilities, suitable
for optimizing deep networks. This was followed by the first
fine-tuning phase, performed for an additional 100 epochs
using the Reduce on Plateau method. The learning rate was
reduced by a factor of 10 every 30 epochs without improve-
ment, down to a minimum of 0.00001. During the entire
learning process, the lowest validation loss was recorded.
In the third and last phase, the training continued until the
validation loss was within 5% of the lowest recorded loss
to achieve a low validation loss. Then the training process
stopped. A low validation loss was considered indicative of
good performance.

B. Prediction process

After training, the model uses the learned parameters
to make predictions on new data. The prediction flow is
depicted in Figure 2. The final prediction is constructed by
combining the predicted direction vector ỹ with the scalar s
and the raw input magnitude vin. It produces an estimate
of the torque-scaled real force-torque in both orientation
and size. These prediction can be used to evaluate the
performance of the Model. The evaluation metrics used are
discussed in Subsection IV-C. The measured force and torque
from the torque-scaled values are reconstructed by deviding
each torque component by α from Equation 5.

C. Model Architecture

Now that we have discussed the overview of the pre-
processing, training, and prediction flows, let’s zoom in on
the model itself. The architecture of the proposed DNN
is designed to capture the nonlinear relationships between
the normalized input vectors and the corrected outputs. As

illustrated in Figure 3, the model consists of an input layer,
multiple hidden layers, and an output layer.

Fig. 3: Architecture of the proposed Deep Neural Network
for force-torque sensor calibration. The model inputs the nor-
malized sensor readings and outputs the corrected normalized
vector and scaling factor.

The input layer processes the normalized sensor mea-
surements, denoted as x̃ ∈ RN , where each component
represents a sensor output. Normalizing the inputs ensures
consistent scaling, which helps the model learn effectively.

The network includes multiple hidden layers with rectified
linear unit (ReLU) activation functions, enabling the model
to learn complex nonlinear patterns. The depth and width
of the network are chosen based on empirical evaluations to
balance model capacity and computational efficiency.

The second-to-last layer uses a hyperbolic tangent (tanh)
activation function to normalize the output, ensuring that all
values remain within the range [−1, 1], which is suitable for
representing directional components.

The output layer has a linear activation function that pro-
duces: the corrected normalized vector ỹ ∈ R6, representing
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the direction of the corrected force-torque measurement, and
the scaling factor s ∈ R.

D. Models for Comparison

To demonstrate the effectiveness of our proposed method,
we trained two more models for comparison:

a) Comparative DNN Model: As a baseline for com-
parison, we implemented a traditional Deep Neural Net-
work (DNN) based on the method described in the paper
“Force/torque sensor calibration method by using deep-
learning” [28]. This DNN learns the direct mapping from
six-axis capacitance to force/torque output and serves as
a benchmark to evaluate the performance of our proposed
method. The same baseline model is also utilized in the sub-
sequent study, “Multi-Axial Force/Torque Sensor Calibration
Method Based on Deep-Learning” [25].

b) Linear Transformation Model (LTM): A linear trans-
formation model using a calibration matrix was also trained.
This model represents standard calibration techniques that
assume linearity and decoupling of sensor outputs and serves
as a baseline for conventional methods.This method has
been widely adopted in the literature and is explained in
various works, including “Identification of Force-Torque
Senso” [29], “Identification of Force-Torque Sensor Pa-
rameters” [18], and “Calibration Method for Multi-Axis
Force/Torque Sensors” [19]. These references, among others,
show the widespread use and importance of linear transfor-
mation models in sensor calibration.

E. Training Procedure of comparative models

Each model had it’s own training process.
a) Comparative DNN Model: The model was trained

using the Mean Squared Error (MSE) loss function:

L =
1

N

N∑
i=1

(∣∣∣Fx,i − F̂x,i

∣∣∣2 + ∣∣∣Fy,i − F̂y,i

∣∣∣2 + ∣∣∣Fz,i − F̂z,i

∣∣∣2
+

Fmax

Tmax

( ∣∣∣Tx,i − T̂x,i

∣∣∣2 + ∣∣∣Ty,i − T̂y,i

∣∣∣2 + ∣∣∣Tz,i − T̂z,i

∣∣∣2 ))
(10)

where N is the number of training samples, Fx,i, Fy,i, Fz,i

are the true force components, and F̂x,i, F̂y,i, F̂z,i are the
predicted force components for the i-th sample. Similarly,
Tx,i, Ty,i, Tz,i represent the true torque components, and
T̂x,i, T̂y,i, T̂z,i are the predicted torque components. The ratio
Fmax
Tmax

ensures that the torque errors, which are smaller in
magnitude, are appropriately scaled relative to the force
errors.

The training process for the comparative DNN model
was largely the same as the proposed model, as detailed in
Subsection III-A. The primary difference was that the com-
parative model converged more slowly, requiring training to
continue for 3000 epochs instead of 1700. All other training
parameters and fine-tuning phases remained unchanged.

b) Linear Transformation Model (LTM): The LTM was
computed using the Least Squares method. This is explained
in more detail in Subsection II-B

In the next section, we detail the experimental setup and
data used to train and validate our proposed method.

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup used
to create the dataset used to train and evaluate our proposed
calibration method. This includes the creation of multiple
artificially simulated datasets and the introduction of sensor
errors, the creation of a real-world dataset, comparative
baseline models and the evaluation metrics used to evaluate
the results.

A. Artificial Datasets

We generated 30 artificial datasets to validate the model’s
robustness and sensitivity. Rather than creating a single
dataset with a train/test split, we constructed separate training
and testing sets, reflecting how calibration is often done in
practice with limited discrete loads. The training set is based
on force/torque vectors arranged on four concentric spheres,
consistent with common, lower-cost calibration procedures.
The test set uses continuously sampled force and torque
values across the sensor’s operational range, mirroring real-
world conditions. Continuing, we generated artificial raw
sensor outputs in two steps: first by introducing errors
into the force and torque values, then by mapping these
values back to sensor readings using the NRS 6200 internal
calibration matrix. This approach yields “raw” sensor data
that closely simulates realistic outputs.

a) Train set: The training data contained 5000 points,
divided evenly across four concentric spheres, with radius
steps of 400 N (force) and 8 Nm (torque). These values fall
within the Nordbo Robotics sensor’s operational ranges of
2000 N and 40 Nm, which are typical for such sensors [30],
[31].

b) Test set: The test set consisted of an other 1250 data
points. To realize a 20% split relative to the training set.
As explained, these points were randomly sampled from the
sensor’s operational range to capture continuous variations.
This approach enables the evaluation of each model’s ability
to generalize beyond the discrete loads in the training set.

c) Error Simulation: Now that we have the data points
errors were introduced: sensor noise, creep (drift), crosstalk
(coupling error), and nonlinearity. These errors were applied
equally to both the training and test datasets to ensure
consistency. The exact error values were sampled randomly
with a standard deviation of 10% of the nominal error
values, and the axes affected were randomly selected between
different datasets. The error values and methods were based
on values reported in the literature. An overview of the types
of errors can be found in section II-A. Below we explain how
the errors were simulated.

Creep (drift): To simulate creep, scaling factors were
applied to selected force and torque components. The chal-
lenge of modeling creep arises from its time-dependent
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or temperature-dependent nature, with limited average or
common values reported in the literature. For instance, creep
errors in poorly calibrated systems can exceed 0.3% of the
measured load [32], whereas well-optimized strain gauge
systems have been shown to exhibit creep errors as low as
0.01%–0.02% of the full-scale output [33]. Based on these
insights, we adopted a creep error of 0.3%, as a worst case
scenario. For a given component (e.g., force Fi), the creep
effect was modeled as:

F ′
i = Fi × cFi

, cFi
= 1 + δFi

, (11)

where δFi
is the creep factor for Fi, sampled from a

distribution N (mean of 0.3%, standard deviation of 0.03%).
Sensor Noise (SN): Gaussian noise was added to each force

and torque measurement independently [34]. The standard
deviation of the noise was set to 1% of the signal magni-
tude [35], with the exact value for each sample drawn from
a normal distribution with a mean of 1% and a standard
deviation of 0.1% (10% of 1%). Mathematically, the noisy
wrench vector wnoisy was computed as:

wnoisy = w +w · η, (12)

where w is the original wrench vector (forces and torques),
and η is a noise vector with each component ηi ∼ N (0, σ2

i ).
Crosstalk (Coupling Error, CE): Studies have demon-

strated that crosstalk factors in torque sensors can be re-
duced to around 5% or lower through optimized sensor
designs [36], [37]. To simulate crosstalk in this study, de-
pendencies were introduced between force and torque com-
ponents, with the affected axes and combinations randomly
selected for each dataset. The crosstalk factors were sampled
from normal distributions centered around 5% with a stan-
dard deviation of 0.5%. The crosstalk from one component
to another was modeled as:

C ′
j = Cj + kij × Ci, (13)

where Ci and Cj are force or torque components (e.g., Fx,
Fy), and kij is the crosstalk factor sampled as described.

Nonlinearity Error (NE): For six-axis force-torque sensors,
reported nonlinearity errors typically range between 0.17%
and 1.17% of the full-scale measurement [29], [38], [39],
with values depending on design precision and calibration
techniques. To simulate nonlinearity, we adopted a worst-
case scenario approach, assuming a maximum nonlinearity
error of 1.2% of the sensor’s full-scale range. This repre-
sents a conservative estimate based on the upper bounds
of reported values [39]. For this simulation, we used a
power-law relationship to model the nonlinearity effect. For
any component Ci (force or torque), the nonlinearity was
expressed as:

C ′
i = Ci

(
1 + γ |Ci|n−1

)
, (14)

where γ is the nonlinearity coefficient and n is the nonlin-
earity exponent. Based on our assumptions:

Fig. 4: Overview of the experimental setup with labeled
components: (1) external load, (2) mounting device, (3)
connection plate, (4) force-torque sensor, (5) KUKA IIWA
14 R820 robotic arm, (6) flat table, and (7) base plate.

• γ is sampled from a normal distribution N (µ, σ2),
where µ = 1.0× 10−3 (corresponding to 1% F.S.) and
σ = 1.0× 10−4.

• n = 2.5, representing a moderate nonlinearity exponent
typically observed in sensor materials [40].

Using these parameters, and within the sensor’s defined
measurement range, the resulting nonlinearity error aligns
with the specified maximum error. This approach ensures
that the simulated errors appropriately reflect the worst-case
nonlinearity

By incorporating these errors into the datasets, we aimed
to achieve a realistic but worst-case scenario error profile for
a force-torque sensor based on what the literature suggests.

d) Translating the data into sensor output voltages:
In the final step, the internal NRS 6200 calibration matrix,
normally used to convert raw sensor readings to force/torque
outputs, was inverted and applied in reverse. This transforma-
tion mapped the erroneous force/torque vectors into sensor
output voltages. The same inverted matrix was used for all
datasets. preserving each dataset’s unique error profile and
generating realistic raw sensor data used for the calibration
model.
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B. Real-world Dataset

Besides the creation of the artificial data, we also created
a ”real-world” dataset. This dataset consists of 1,085 data
points (7 × 155), captured by applying seven distinct load
configurations from the sensor’s reference frame and varying
the orientation of the robotic arm in a spherical pattern
with the sensor and load attached to its end-effector. This
methodology aligns with practical calibration techniques
used in industry [31], [30], where discrete known loads and
orientations are standard.

a) Experimental Setup: We employed an NRS-
6200D80 force-torque sensor (Nordbo Robotics) mounted on
a KUKA IIWA 14 R820 robotic arm. As shown in Figure 4,
the setup included:

1) External load,
2) Mounting device,
3) Connection plate (30 mm thick aluminum),
4) Force-torque sensor,
5) KUKA IIWA 14 R820 robotic arm,
6) Flat table,
7) Base plate.

b) Load Configurations: To enrich the dataset with a
broad range of torque values, seven different load orienta-
tions were applied. The center position was set at [186mm,
0mm, 79mm] from the sensor’s origin, followed by six
additional translations of the external load from this point.
Specifically, the load was translated along the three principal
axes (±x, ±y, ±z) relative to that point. The exact trans-
lations are given in Table I. Although this particular begin
location was initially selected for internal testing, placing the
load off-center is essential to diverse torque vectors.

Why Seven Orientations?

• Single Orientation: With just the center po-
sition load configuration the torque values are
confined to a single plane in the 3D torque
space.

• Multiple Orientations (±x, ±y, ±z) ensure
that all three torque dimensions are excited, pro-
ducing a richer, more representative calibration
dataset.

This variation of the load expands the coverage of torque
space and improves the robustness of any calibration or
learning-based methods applied thereafter.

c) Robotic Arm Orientations and Spherical Sampling:
After fixing a given load configuration, we varied the orienta-
tion of the KUKA robotic arm to sample forces and torques
from multiple directions. The force vectors correspond to
points on a discretized sphere, generated via a geodesic
sphere approximation [41]. Each point on the unit sphere was
mapped to pitch and yaw angles, which were then converted

into joint configurations for the KUKA arm.

Orientations

• 155 Orientations per Sphere: Each discrete
sphere pattern consisted of 155 orientation
points, providing a dense yet manageable cov-
erage of force directions.

• Seven Load Configurations: Repeating the
spherical sampling for each of the seven con-
figurations yielded 7 × 155 = 1,085 total data
points.

d) Reference Force and Torque Calculations: The the-
oretical force and torque values due to gravity are computed
while considering the sensor’s orientation in the gravitational
frame. Let Rsensor denote the rotation matrix that transforms
vectors from the sensor’s frame to the gravitational frame.
The force vector in the sensor frame is given by:

F = RT
sensor(mg), (15)

where:
• m is the mass of the load,
• g is the gravitational acceleration vector in the gravita-

tional frame,
• RT

sensor is the transpose (or inverse) of the rotation
matrix, which transforms g into the sensor’s frame.

The torque vector in the sensor frame is computed as:

τ = r× F, (16)

where r is the displacement vector from the sensor’s origin
to the load’s center of mass, expressed in the sensor frame.

These theoretical values account for the sensor’s orien-
tation and serve as a reference for comparing the sensor’s
readings.

e) Load vs. No-Load Runs: To account for the mass
of the load-holding device (See Figure 4) and isolate the
effect of the external load, each spherical run is performed
twice. First, in the no-load runs, the KUKA’s internal gravity
compensation is reset, and data are recorded without the
external load. Second, for the load runs, the external load is
attached, gravity compensation is recalculated, and the same
spherical pattern of poses is executed again.

Even with careful setup, minor differences (often tenths
of a degree) arise between the no-load and load joint
angles. To address this, forward kinematics is used to obtain
the end-effector poses Pno-load and Pload for pairing joint
configurations. A rotation matrix R∆ is then derived:

R∆ = P⊤
no-load Pload (17)

which aligns the load configuration’s frame to the no-load
frame. This transformation is applied to the measured sensor
output under load, ensuring that all data share a consistent
reference frame.
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Positive Negative Positive Negative

Principle Axis: x
x: 161mm
y: 93mm
z: 0mm

x: -161mm
y: 93mm
z: 0mm

Principle Axis: y
x: 0mm
y: 29mm
z: 0mm

x: 0mm
y: -42mm
z: 0mm

Principle Axis: z
x: 0mm
y: 0mm
z: 15mm

x: 0mm
y: 0mm
z: -48mm

TABLE I: The six load configurations with the translations values in mm from the center point at [186mm ,0mm , 79mm]

f) Robot Accuracy.: The documentation of the KUKA
robotic arm only specifies the torque accuracy and the
positional accuracy of the end effector. The accuracy in terms
of joint angles is not provided. Contacting kuka did not
achive more clearity, The next part is an assumption made
that must not be taken as truth rather as an indication of its
rotational accuracy based on the specs of the kuka arm given
here [?] The KUKA IIWA 14 R820 achieves a positional
accuracy of 0.1 mm at the end-effector. In the worst case, if
this entire offset were due to the final joint alone (with a link
length of about 126 mm), it would correspond to a rotation
error of approximately 0.00079 radian. The robotic arm com-
prises seven individual links, so an accumulated maximum
rotational inaccuracy is roughly 0.0055 radian. This could
cause an error due to inaccuracy of the measurements of
roughly 0.5%. This error is relatively small, but it must be
accounted for in the final accuracy assessment. It will only
have a minor influence when comparing the performance
among different models, as each one is subject to the same
error.

C. Evaluation Metrics and Cross-Dataset Evaluation

We use the Root Mean Square Error (RMSE) between the
predicted and true values as the primary metric to quantify
the performance differences between models. The RMSE is
calculated as:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (18)

where yi is the true value, ŷi is the predicted value, and N
is the number of samples.

Additionally, we consider the Relative Error of both force
and torque separately, to assess the error relative to the
magnitude of the true value. This relative error can make
the performance more understandable compared to a single
RMSE value, which is common in evaluating force torque
sensors [11]. The relative errors are calculated as:

Relative Error =
∥yi − ŷi∥

∥yi∥
(19)

Statistical tests, including the Wilcoxon signed-rank test,
were used to assess the significance of the differences
between models.

For the models specifically, a Cross-Dataset Evaluation
was performed to examine the consistency of the models
across multiple datasets. This was done by computing the
standard deviation of the models’ performance metrics and
plotting the results of the RMSE in a normal distribution
plot.

V. RESULTS

In this section, we first present the performance of the
proposed calibration method, the comparative DNN, and
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Fig. 5: RMSE Distribution for the Proposed DNN, Comparative DNN, and Linear Transformation Model across Artificial
Datasets.

the traditional linear transformation model on artificially
generated datasets and then evaluate their performance on
real-world sensor data.

A. Artificial Dataset Results

The results for the artificial datasets are divided into
two parts. First, the RMSE values of the predicted wrench
vectors are presented. Each target wrench vector consists of
force components and scaled torque components (as shown
in Figure 2). These dimensionless values enable a direct
comparison of the performance of the three models.

In the second part, the predicted (torque-scaled) wrenches
are converted into separate force and torque components.
These are then used to calculate the relative errors for force
and torque, as discussed in Subsection IV-C.

a) RMSE values of the predicted wrenches: Table II
summarizes the average RMSE values across the artificially
created datasets for each model.

TABLE II: Average RMSE Results for Artificial Datasets
(Mean ± Std)

Model RMSE (Mean ± Std)
Proposed DNN Model 36.9± 3.44

Comparative DNN Model 48.3± 4.47
Linear Transformation Model 62.3± 0.76

The proposed DNN model achieves the lowest average
RMSE (approximately 36.9). The comparative DNN model
has a higher RMSE of about 48.3, and the linear transfor-
mation model trails with an RMSE of approximately 62.3.

Figure 5 illustrates the RMSE distribution for each model
across the artificial datasets. The proposed DNN (blue)
produces a standard deviation of 3.44, showing slightly better
consistency compared to the comparative DNN model (red),
which has the highest variability with a standard deviation
of 4.47. Both DNN models are remarkably less consistent

across datasets compared to the linear transformation model
(green), which exhibits the narrowest distribution with a
standard deviation of 0.76, reflecting more consistency. This,
however, comes at the expense of a higher mean RMSE.

Statistical Significance: A Wilcoxon signed-rank test
shows that the differences in RMSE values between the
models are statistically significant (p-value < 0.001). This
result indicates that the improvements of the proposed DNN
model are consistent. However, it is important to note that
while this test confirms a statistical difference, it does not
provide information on the magnitude of the difference. Tra-
ditional parametric effect sizes, like the Cohen’s d, could not
be calculated, as the differences are not normally distributed.

b) Relative Error of Force and Torque Separately:
Below are the results of the relative force and torque errors.

Model Relative Force Error
(Mean ± Std)

Relative Torque Error
(Mean ± Std)

Proposed DNN 0.040± 0.0037 0.038± 0.0044
Comparative DNN 0.044± 0.0042 0.042± 0.0043

LTM 0.070± 0.0007 0.062± 0.0005

TABLE III: Comparison of Relative Force and Torque Errors
(Mean ± Std) across models.

The proposed DNN has the lowest mean relative errors for
both force and torque, with values of 0.040 ± 0.0037 and
0.038 ± 0.0044, respectively. The comparative DNN has
slightly higher mean relative errors of 0.044 ± 0.0042 for
force and 0.042 ± 0.0043 for torque. The LTM has the
highest mean relative errors at 0.070± 0.0007 for force and
0.062± 0.0005 for torque.

The standard deviations indicate that the LTM exhibits the
most consistent performance, with the narrowest distribution
of errors for both force and torque. The proposed DNN
and comparative DNN models show larger variability across
datasets, as indicated by their higher standard deviations.

10



0.0 0.5 1.0 1.5 2.0
RMSE

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

RMSE Values for Individual Data Points in Real-World Dataset
Models

Proposed DNN
Comparitive DNN
Comparitive LTM

Fig. 6: RMSE Distribution Within the Real-World Dataset for the Proposed DNN, Comparative DNN, and Linear
Transformation Model

Among the DNN models, the proposed DNN demonstrates
slightly better consistency for both force and torque errors
compared to the comparative DNN.

B. Real-World Dataset Evaluation

After establishing the proposed model’s performance on
artificial datasets, we next evaluated its effectiveness on real-
world sensor data.

a) The RMSE of the Predicted Wrenches: Table IV
summarizes the RMSE values and standard deviations for
each model on the real-world test data.

TABLE IV: RMSE Results for Real-World Data (Mean ±
Std)

Model RMSE (Mean ± Std)
Proposed DNN Model 0.49± 0.24

Comparative DNN Model 0.69± 0.29
Linear Transformation Model 0.78± 0.42

The proposed DNN model achieves the lowest RMSE on
the real-world dataset, with a value of 0.49 ± 0.24. This
is lower than the comparative DNN model, which has an
RMSE of 0.69±0.29, and significantly better than the linear
transformation model, which has the highest RMSE of 0.78±
0.42.

The standard deviations reflect the variability of the RMSE
values within the single real-world dataset. It is important
to note that this variability is distinct from the variability
discussed in the artificial dataset section. In the artificial
datasets, the variability referred to the consistency of the
mean RMSE across multiple datasets (30 datasets). Here,
the variability measures how well the models fit the shape
of the real-world error within a single dataset. While the
two measures are related to performance consistency, they
describe different aspects of the models’ behavior.

The results indicate that the proposed DNN model not only
achieves a lower mean RMSE but also demonstrates more
reliable performance within the real-world dataset compared
to the other models. The comparative DNN model shows
higher mean RMSE and variability, while the LTM exhibits
both the highest RMSE and the largest variability within the
dataset.

b) Relative Force and Torque Errors: Table V presents
the mean relative errors and their standard deviations for each
model.

Model Relative Force Error
(Mean ± Std)

Relative Torque Error
(Mean ± Std)

Proposed DNN 0.029± 0.026 0.022± 0.020
Comparative DNN 0.021± 0.020 0.045± 0.050

LTM 0.041± 0.036 0.0090± 0.0077

TABLE V: Relative Force and Torque Errors for Real-World
Data (Mean ± Std)

The table shows that for the relative force error, the Compar-
ative DNN model achieves the lowest mean value at 0.021
with a standard deviation of 0.020, compared to (0.029 ±
0.026) for the Proposed DNN model and (0.041 ± 0.036)
for the LTM. For the relative torque error, the LTM records
the lowest mean at 0.0090 with a standard deviation of
0.0077, while the Proposed DNN model has a mean of
(0.0219±0.020) and the Comparative DNN model shows the
highest mean at 0.045 with a standard deviation of 0.050.

c) Summary of Findings: Across both artificial and
real-world datasets, the proposed DNN calibration method
consistently outperforms the comparative DNN model and
the traditional Linear Transformation Model. In the artificial
datasets, the proposed DNN achieved an average RMSE of
36.9, compared to 48.3 for the comparative DNN model
and 62.3 for the Linear Transformation Model. Although
the DNN models showed higher variability than the Linear
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Transformation Model, the proposed DNN exhibited slightly
better consistency with a standard deviation of 3.44 versus
4.47 for the comparative DNN model.

In the real-world sensor data, the proposed DNN again
recorded the lowest RMSE, with a mean value of 0.49 and
a standard deviation of 0.24, outperforming the comparative
DNN and the Linear Transformation Model, which had mean
RMSE values of 0.69 and 0.78, respectively. Additionally,
the proposed DNN produces the lowest relative force error
values, while for torque, the Linear Transformation Model
achieves the lowest error, with the proposed DNN remaining
competitive.

VI. DISCUSSION

The goal of this work is to develop a calibration model that
effectively decouples the coupling effects between axes in
force-torque sensors without relying on exhaustive datasets.
The model should generalize across the operational range
to perform accurately with limited or discrete training data
in continuous real-world scenarios. It should also enhance
practicality by reducing the need for extensive data collection
and simplifying the calibration process.

The experimental results demonstrate the effectiveness of
our proposed calibration method for force-torque sensors. By
analyzing performance across both real-world and artificial
datasets, we observe that the proposed deep neural network
(DNN) achieves better measurement accuracy compared to
the comparative DNN model and the traditional Linear
Transformation Model (LTM). The model consistently keeps
the relative force and torque errors under 5%, indicating
generally stable accuracy across a range of conditions.

Based on the results of the experiments, the proposed
model meets the primary objective of improved accuracy and
effective decoupling of inter-axis coupling effects.

These results aligns with the research that is done on DNN
in force-torque sensor calibration. The strength of DNNs are
shown in several other studies on sensor calibration [26],
[12].

a) Critical Points and Limitations: 1. Overall Results
of the Calibration The proposed DNN calibration method,
despite outperforming the two baseline models, still yields
an average error of 3–4%. This error level is high compared
to other sensors with accuracy classes of 1% up to 0.1% [42],
[43], [44] (i.e., average errors of approximately 1% and
0.1% respectively). Part of this error originates from the
experimental setup. For example, the KUKA arm introduces
an approximate error of up to 0.5% (see Section IV-B.0.a);
note that this value is an approximation based on certain
assumptions.

The sensor design may also contribute to the error. Inaccu-
rate strain gauge placement can compromise signal capture,
leading to increased crosstalk between axes or reduced
sensitivity to applied forces and torques [14]. Additionally,
uneven strain distribution across the sensor body further
amplifies errors and degrades measurement accuracy [45].
The sensor used in this study is equipped with 12 resistive
strain gauges, resulting in a combined raw sensor output from

6 bridges; however, the exact internal design is not publicly
accessible.

The calibration method itself also contributes to the overall
error. In particular, normalizing input vectors allows the
model to generalize from limited data, but it comes at a
cost. It also removes magnitude information, preventing the
model from capturing intra-axis nonlinearity. These non-
linearities affect the calibration results. According to the
sensor’s specifications, the maximum intra-axis nonlinear
error along the entire operational range is <4% [46]. These
nonlinear behaviors may vary across the sensor’s range but
are particularly pronounced at its maximum limits, making
it challenging to precisely quantify their overall impact on
the sensor’s total error.

2. Limited Dataset and Sensor Variety: Although these
results are promising, they are based primarily on artificially
generated data and a single real-world dataset from one
specific sensor. This limited dataset may not fully capture the
variability present in different sensor designs or operational
environments, potentially restricting the generalizability of
the findings.

3. Model Variability: The standard deviation values shown
in Table II indicate that, although the proposed DNN
achieves the best average accuracy, both DNN models show
high variability. In contrast, the LTM, though less accurate,
is more consistent across datasets. This consistency is likely
due to its simpler optimization process, where least squares
methods can find a global optimum, whereas DNNs rely on
gradient descent, which can become stuck in local minima
and is more sensitive to slight variations in training data.

4. Computational Cost: The study did not evaluate the
computational cost of predictions made by the DNN or the
reconstruction of the final force-torque vector. The LTM,
requiring significantly fewer calculations per measurement,
can operate effectively on much smaller processors compared
to the deep neural network. In some cases, the computa-
tional demands of the DNN may be too high to achieve
the necessary measurement frequency. However, in certain
applications the improved accuracy can be more beneficial,
for example in post-procedure assessment tasks.

5. Model Development Process: While the proposed DNN
demonstrates strong generalization capabilities and improved
accuracy compared to baseline models, the development
process relied heavily on empirical methods and trial-and-
error approaches for hyperparameter selection, architecture
design, and training strategies. No systematic optimization
was performed to ensure that the chosen architecture or
hyperparameters are globally optimal.

b) Future Perspectives: Future work should include a
more structured approach to model optimization, such as hy-
perparameter tuning with grid search or Bayesian optimiza-
tion, as well as experiments with alternative architectures
or regularization techniques. These efforts could potentially
reduce the variability observed in DNN performance and
ensure that the model achieves its full potential. Evaluating
the computational cost of DNN predictions and the recon-
struction of the final force-torque vector is also necessary to
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ensure suitability for real-time applications.
Other future work could focus on refining the experimental

setup, particularly by enhancing the calibration of the KUKA
robotic arm to further reduce measurement error. Several
studies have proposed techniques to improve the accuracy
of the KUKA robotic arm by as much as fourfold [47], [48].
Incorporating these advanced calibration techniques could
mitigate error contributions from the experimental setup,
thereby enhancing overall sensor performance.

Finally, applying the model to a broader range of sensor
designs and multiple sensors will help validate its perfor-
mance more robustly, as each design and individual sensor
exhibits unique characteristics. Expanding the validation to
include diverse sensor types and operational conditions will
provide a more comprehensive assessment of the model’s
generalizability and help identify any sensor-specific chal-
lenges.

VII. CONCLUSION

This work presented a novel calibration model based on a
deep neural network (DNN) that effectively decouples inter-
axis effects in force-torque sensors using limited, discrete
training data. Our experiments, conducted on both real-
world and artificial datasets, demonstrate that the proposed
DNN achieves superior measurement accuracy compared to
both a comparative DNN model and the traditional Linear
Transformation Model (LTM), consistently keeping relative
errors under 5%. This marks a significant improvement in
sensor calibration, especially in terms of decoupling inter-
axis effects without the need for exhaustive datasets.

However, our results also shows several limitations. The
average error of 3–4% remains high when compared to
sensors with accuracy classes between 1% and 0.1%, partly
due to factors such as experimental setup imperfections,
inherent sensor design issues, and calibration method con-
straints. Additionally, the higher computational cost of the
DNN, compared to simpler linear models, suggests that
its deployment may be more suited to applications where
post-procedure assessment is acceptable rather than real-time
measurement.

Future work will focus on systematic model optimization,
refining the calibration process, and exploring advanced
techniques to mitigate experimental errors, especially those
stemming from the KUKA robotic arm. Broadening the
evaluation to include a wider range of sensor designs will
also help in validating and generalizing the effectiveness of
our approach.
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