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SUMMARY

With a significant impact on the development of the global economy and society, air
transport is predicted to rapidly grow in the coming years. Unfortunately, while deliv-
ering positive global economic and social benefits, air transport has also generated an
adverse influence on the environment, especially on the quality of life of communities
around airports. Air transport is the main cause of noise nuisance in the vicinity of air-
ports, which has been linked to various human health effects, such as cardiovascular
diseases, sleep disturbance, hearing loss, and communication interference.

Over the years, significant efforts have been put into finding suitable options to sup-
port the continued growth of air transport, such as the design of optimal routes and the
optimal allocation of flights to specific routes and runways. However, research on these
topics is typically conducted separately, and hence studies that consider the link be-
tween these topics are still lacking. In an attempt to fulfill the mentioned research gap,
an optimization framework has been developed in this thesis. The developed frame-
work aims to exploit the advantages of considering the route design and fight allocation
optimization problems in a linked manner to minimize aircraft noise impact and fuel
consumption simultaneously. The outcome of the research is a framework that is able to
determine suitable routes for given standard departure instrument (SID) routes, and the
optimal number of flights of each aircraft type that should be assigned to these routes,
while taking operational constraints related to aircraft sequencing and separation re-
quirements into account.

In order to reach this goal successfully, the work in this research has been broken
down into smaller steps. Due to the simultaneous consideration of two objectives, i.e.,
noise impact and fuel consumption, research to identify appropriate optimization ap-
proaches is carried out first in Chapter 2. Although different approaches have been
proposed to deal with multi-objective optimization problems in previous studies, the
research indicated that the multi-objective evolutionary algorithm based on decompo-
sition (MOEA/D) is an effective method. Thanks to decomposing a multi-objective op-
timization problem into a set of single-objective optimization problems and searching
their optimal solutions simultaneously, the MOEA/D method is able to deal with com-
plicated multi-objective optimization problems and is able to provide optimal solutions
with a fast convergence rate. In this chapter, besides studies to understand the search-
ing principle of MOEA/D, some improvements on MOEA/D have also been carried out,
which can help to improve the quality of Pareto solutions and the computational cost.

Secondly, research into the route design problem and the application of the MOEA/D
algorithm to this type of problems are presented in Chapter 3. By employing the advan-
tages of the MOEA/D algorithm and the characteristic of the route design problem, a
new setting rule in the optimization procedure is also introduced. Several case stud-
ies at Amsterdam Airport Schiphol have been used to evaluate the performance of the
proposed approach. The obtained results reveal that the proposed approach can gener-
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viii SUMMARY

ate better options for routes with a lower computational cost compared with alternative
methods.

In addition to the route design problem, research into the allocation of flight move-
ments is presented in Chapter 4. In this chapter, a new air traffic assignment model is
proposed. Unlike models developed in previous studies, where optimization problems
are typically formulated as single-objective nonlinear programming optimization prob-
lems, the model developed in this study considers each flight operation as a single design
variable and optimizes two potentially conflicting objectives (i.e., noise impact and fuel
consumption) concurrently. The model is applied to a case study at Belgrade Airport in
Serbia. The obtained solutions indicate that the proposed model can provide optimal
allocation of flights that can effectively balance between the two objectives at a modest
computational cost.

After developing a good understanding of both the route design and flight allocation
problems, the development of an optimization framework that considers both problems
in a linked manner is presented in Chapter 5. The developed framework features two
consecutive steps. In the first step, multi-objective trajectory optimization is used to
compute and store a set of trajectories for each given route. These obtained sets then
serve as input for the optimization problem in the second step. In this second step, the
selection of routes from the set of optimal routes and the optimal allocation of flights
to these routes are conducted simultaneously. To validate the proposed framework,
an analysis involving an integrated (one-step) approach, in which both trajectory op-
timization and flight allocation are formulated as a single optimization problem, is also
conducted. A comparison of both approaches applied to a small-scale problem is then
performed. The obtained results show that the proposed two-step framework is effec-
tive and reliable. The comparison also indicates that the proposed two-step approach
is more flexible to adapt to the changes in the number of flights when a reallocation of
flights is demanded or new routes and runways are considered.

Finally, operational constraints related to aircraft sequencing and separation require-
ments are studied and integrated into the model developed in the previous chapter.
Then, a completed multilevel optimization framework is proposed and presented in
Chapter 6. To handle the operational constraints, a runway assignment model, a conflict
detection algorithm, and a rerouting technique have been developed and integrated into
the framework. The proposed framework is applied to a realistic case study at Amster-
dam Airport Schiphol in the Netherlands, in which 599 departure flights and 13 different
SID routes are considered. The optimization results show that the proposed model is
reliable and effective. From the obtained Pareto front, a selected representative solution
can offer a reduction in the number of people annoyed of up to 21%, and a reduction in
fuel consumption of 8% relative to the reference case solution.

From the research carried out, it is emphatically concluded that the consideration of
both types of problems (i.e., route design and flight allocation) in a linked manner may
bring benefits to the management of aircraft and airport operations. Due to the consid-
eration of the operational constraints, the developed framework is not only able to offer
proper solutions with less noise impact and fuel burn, but can also bring them relatively
close to real operations. Although many research issues have been addressed along the
course of the thesis, there are still certain limitations. Firstly, the developed framework
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does not take weather conditions into account, and it relies on a single specific noise
criterion (i.e., noise annoyance). These concerns should be considered in future work.
Moreover, since the research mainly focuses on departure operations, the extension of
the framework to arrival operations and the combination of arrival and departure oper-
ations could be interesting research topics for future work.





SAMENVATTING

Met een aanzienlijke impact op de ontwikkeling van de wereldeconomie en -maatschappij
wordt voorspeld dat het luchtverkeer de komende jaren snel zal groeien. Helaas heeft
het luchtverkeer, hoewel het positieve wereldwijde economische en sociale voordelen
oplevert, ook een negatieve invloed op het milieu, met name op de kwaliteit van het
leven van gemeenschappen rond luchthavens. Luchtverkeer is de belangrijkste oorzaak
van geluidsoverlast in de nabijheid van luchthavens, en wordt in verband staat gebracht
met verschillende effecten op de gezondheid van de mens, zoals hart- en vaatziekten,
slaapstoornissen, gehoorverlies en communicatie-interferentie.

In de loop der jaren zijn aanzienlijke inspanningen geleverd om geschikte opties te
vinden om de voortdurende groei van het luchtverkeer te ondersteunen, zoals het on-
twerp van optimale routes en de optimale toewijzing van vluchten aan specifieke routes
en start- en landingsbanen. Onderzoek naar deze onderwerpen wordt echter meestal
afzonderlijk uitgevoerd, en er ontbreekt nog steeds onderzoek naar het verband tussen
deze onderwerpen. In een poging om de genoemde onderzoekskloof te dichten, is in
dit proefschrift een optimalisatieframework ontwikkeld. Het ontwikkelde framework wil
de voordelen benutten van het overwegen van het routeontwerp en tegelijkertijd prob-
lemen op het gebied van allocatieoptimalisatie bestrijden om de impact van vliegtu-
iggeluid en brandstofverbruik allebei te minimaliseren. De uitkomst van het onderzoek
is een framework dat in staat is om geschikte routes te bepalen voor bepaalde standard
departure instrument (SID) routes, en het optimale aantal vluchten van elk vliegtuig-
type dat aan deze routes moet worden toegewezen, terwijl operationele beperkingen
met betrekking tot volgorde en minimale scheidingsafstanden van vliegtuigen worden
meegenomen.

Om dit doel met succes te bereiken, is het werk in dit onderzoek opgedeeld in kleinere
stappen. Vanwege de gelijktijdige afweging van twee doelstellingen, namelijk geluidsbe-
lasting en brandstofverbruik, wordt allereerst onderzoek om geschikte optimalisatiebe-
naderingen te identificeren in hoofdstuk 2 beschreven. Hoewel in eerdere studies ver-
schillende benaderingen zijn voorgesteld om multi-objective optimalisatieproblemen
aan te pakken, wees onderzoek uit dat het multi-objective evolutionaire algoritme op
basis van ontleding (MOEA/D) een effectieve methode is. Dankzij het ontbinden van een
multi-objective optimalisatieprobleem in een set van single-objective optimalisatieprob-
lemen en het gelijktijdig zoeken naar hun optimale oplossingen, is de MOEA/D-methode
in staat om ingewikkelde multi-objective optimalisatieproblemen aan te pakken en is
het in staat optimale oplossingen te bieden met een snelle convergentie. In dit hoofd-
stuk zijn naast onderzoeken om het zoekprincipe van MOEA/D te begrijpen, ook enkele
verbeteringen aan MOEA/D voorgesteld, die kunnen helpen de kwaliteit van Pareto-
oplossingen en de rekenkosten te verbeteren.

Ten tweede wordt onderzoek naar het routeontwerpprobleem en de toepassing van
het MOEA/D-algoritme op dit soort problemen gepresenteerd in hoofdstuk 3. Door ge-
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bruik te maken van de voordelen van het MOEA/D-algoritme en de karakteristieken van
het routeontwerpprobleem, wordt er een nieuwe instellingsregel in de optimalisatiepro-
cedure geïntroduceerd. Verschillende case studies op Amsterdam Airport Schiphol zijn
gebruikt om de prestaties van de voorgestelde aanpak te evalueren. De verkregen resul-
taten laten zien dat de voorgestelde aanpak betere opties kan genereren voor routes, met
lagere rekenkosten in vergelijking met alternatieve methoden.

Naast het routeontwerpprobleem van hoofdstuk 3, wordt onderzoek naar de toewi-
jzing van vliegbewegingen gepresenteerd in hoofdstuk 4. In dit hoofdstuk wordt een
nieuw toewijzingsmodel voor luchtverkeer voorgesteld. In tegenstelling tot modellen
die in eerdere studies zijn ontwikkeld, waar optimalisatieproblemen meestal worden
geformuleerd als niet-lineaire programmeringsoptimalisatieproblemen met één doel-
stelling, beschouwt het model dat in deze studie is ontwikkeld elke vluchtuitvoering als
één ontwerpvariabele en optimaliseert het twee potentieel conflicterende doelstellingen
(geluidseffect en brandstofconsumptie) tegelijkertijd. Het model wordt toegepast op een
case study op Belgrado Airport in Servië. De verkregen oplossingen geven aan dat het
voorgestelde model een optimale toewijzing van vluchten kan bieden die effectief tegen
een bescheiden rekenkosten tussen de twee doelstellingen kan balanceren.

Na het ontwikkelen van een goed begrip van zowel het routeontwerp als de vlucht-
toewijzingsproblemen, wordt de ontwikkeling van een optimalisatieframework dat beide
problemen op een gekoppelde manier beschouwt, gepresenteerd in hoofdstuk 5. Het
ontwikkelde framework bestaat uit twee opeenvolgende stappen. In de eerste stap wordt
multi-objective trajectoptimalisatie gebruikt om een reeks trajecten voor elke gegeven
route te berekenen en op te slaan. Deze verkregen sets dienen dan als input voor het
optimalisatieprobleem in de tweede stap. In deze tweede stap wordt de selectie van
routes uit de set van optimale routes en de optimale toewijzing van vluchten aan deze
routes tegelijkertijd uitgevoerd. Om het voorgestelde framework te valideren, wordt een
analyse uitgevoerd met een geïntegreerde (eenstaps) aanpak, waarbij zowel trajectopti-
malisatie als vluchttoewijzing worden geformuleerd als één optimalisatieprobleem. Een
vergelijking van beide benaderingen toegepast op een kleinschalig probleem wordt ver-
volgens uitgevoerd. De verkregen resultaten tonen aan dat het voorgestelde tweestaps-
framework effectief en betrouwbaar is. De vergelijking geeft ook aan dat de voorgestelde
tweestapsbenadering flexibeler is om zich aan te passen aan veranderingen in het aantal
vluchten wanneer een nieuwe toewijzing van vluchten wordt geëist, of nieuwe routes en
start- en landingsbanen worden overwogen.

Ten slotte worden operationele beperkingen met betrekking tot volgorde van en schei-
dingseisen voor vliegtuigen bestudeerd en geïntegreerd in het model dat in het vorige
hoofdstuk is ontwikkeld. Vervolgens wordt een compleet multilevel optimalisatieframe-
work voorgesteld en gepresenteerd in hoofdstuk 6. Om de operationele beperkingen
aan te pakken, zijn een baantoewijzingsmodel, een conflictdetectie-algoritme en een
herrouteringstechniek ontwikkeld en geïntegreerd in het framework. Het voorgestelde
framework wordt toegepast op een realistische case study op Amsterdam Airport Schiphol
in Nederland, waarbij 599 vertrekvluchten en 13 verschillende SID-routes worden over-
wogen. De optimalisatieresultaten tonen aan dat het voorgestelde model betrouwbaar
en effectief is. Vanuit het verkregen Pareto-front kan een geselecteerde representatieve
oplossing een vermindering van het aantal geïrriteerde personen tot 21% en een vermin-
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dering van het brandstofverbruik van 8% ten opzichte van de referentiecase-oplossing
worden bewerkstelligd.

Uit het uitgevoerde onderzoek wordt nadrukkelijk geconcludeerd dat de gekoppelde
aanpak van beide problemen (routeontwerp en vluchttoewijzing) voordelen kan oplev-
eren voor het management van vliegtuigen en luchthavenactiviteiten. Door operationele
beperkingen in overweging te nemen, is het ontwikkelde framework niet alleen in staat
om goede oplossingen te bieden met minder geluidsimpact en brandstofverbranding,
maar kan het ook relatief dichtbij echte operaties komen. Hoewel veel onderzoeksprob-
lemen in de loop van het proefschrift zijn aangepakt, zijn er nog beperkingen. Ten eerste
houdt het ontwikkelde framework geen rekening met weersomstandigheden en vertrouwt
het op één specifiek geluidscriterium (namelijk geluidsoverlast). Met deze problemen
moet in toekomstig onderzoek rekening worden gehouden. Aangezien het onderzoek
vooral gericht is op vertrekoperaties, kan de uitbreiding van het framework tot aankom-
stoperaties en de combinatie van aankomst- en vertrekoperaties interessant zijn voor
toekomstig onderzoek.
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1
INTRODUCTION

1.1. RESEARCH CONTEXT

A VIATION has been playing an irreplaceable role in the development of global econ-
omy and society. Air transport carried nearly 4.4 billion passengers, created over 65

million jobs worldwide, and contributed roughly $704.4 billion to the world’s gross do-
mestic product (GDP) in 20181. As a consequence of its benefits, the aviation industry is
predicted to rapidly grow in the coming decades2.

However, while delivering positive global economic and social benefits, the aviation
industry has also generated an adverse influence on the environment. Air transport pro-
duces around 2% of global human-made carbon dioxide emissions (CO2) and is respon-
sible for 12% of CO2 emissions from all transport sources1. Air transport is also the main
cause of noise nuisance which significantly impacts the quality of life of communities
in the vicinity of airports3. Aircraft noise annoyance has been linked to various human
health effects such as cardiovascular diseases, sleep disturbance, hearing loss, and com-
munication interference [1, 2]. The continued growth of air transport has led to the air-
craft noise exposure of millions of Europeans3. Consequently, aircraft noise has been
well recognized as one of the most significant factors leading to restrictions on the ex-
pansion of flight and airport operations [2].

In an attempt to support the sustainable development of the aviation industry, a se-
ries of research initiatives have been launched in recent years. For example, Clean Sky4,
one of the largest European research programs, has been established since 2008 with
the aim of reducing CO2, gas emissions and noise levels produced by aircraft; and the
Asia and South Pacific Initiative to Reduce Emissions (ASPIRE)5 was formed in 2008 and
aimed to develop operational procedures that reduce the environmental footprint of all
phases of flight, from terminal to terminal. Apart from these research initiatives, various

1https://www.atag.org/facts-figures.html
2https://aviationbenefits.org/media/166344/abbb18_full-report_web.pdf
3https://www.easa.europa.eu/eaer/topics/adapting-changing-climate/noise
4http://www.cleansky.eu/no-back
5http://www.aspire-green.com/
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strategies have also been proposed and are currently being implemented, such as setting
new rules and regulations (e.g., limiting aircraft operations at airports during the night),
developing new engine/aircraft models and renewable fuels, and varying operational
procedures at airports (e.g., applying noise abatement departure and arrival procedures)
[3]. While new technologies and sustainable fuels may provide a significant reduction in
environmental impact, they require much effort and time to develop and implement. In
contrast, despite having smaller mitigation potential, operational changes can be car-
ried out in the short-term period [3]. From a practical implementation and economic
point of view, it can be observed that the variation of aircraft/airport operational proce-
dures emerges as a reasonable option that can result in short term improvements and
could prove less costly in comparison with the other options. As promising options in
this category, the design of optimal routes and the assignment of aircraft (flights) to spe-
cific runways and routes with the aim of minimizing aircraft noise impact and fuel con-
sumption have been well recognized and have shown encouraging results over the years
[4, 5].

Although a significant effort has been put into finding suitable options to support the
continued growth of air transport, there is still a lack of studies that consider different
aspects of flight and airport operations in a combined manner. Particularly, research
on the design of optimal routes has identified a significant potential reduction in noise
impact and fuel burn, as reported in [5–18]. However, these studies typically considered
only one standard route at a time, and its interaction with other routes was ignored.
Therefore, from an operational perspective, the obtained results might be rather difficult
to implement when other factors, such as airspace capacity or aircraft separation, are
not taken into account. Similarly, research on the allocation of flight to current runways
and routes has also significantly contributed to the reduction of aircraft noise impact
and fuel consumption, as reported in [19–24]. These studies, however, only considered
existing routes instead of optimized routes. Thus, the potential noise and fuel reduction
benefits were not fully explored. Moreover, these studies relied on the assumption that
the acquired solutions satisfy operational requirements, such as aircraft sequencing and
separation requirements. As a result, the true influence of optimal allocation solutions
to these issues has not yet been adequately investigated.

From the above considerations, it is realized that solutions that properly address the
aforementioned research gaps of both types of problems (i.e., route design and flight al-
location) are very important. Such solutions are not only able to deal with aircraft noise
concerns and fuel burn, but also are capable of handling operations–related issues. Un-
fortunately, research to develop frameworks that concurrently consider these types of
problems and are able to provide such kinds of solutions is still missing. In order to aid
the continued growth of air transport sustainably, the need for developing such a frame-
work becomes more and more crucial. To address this urgent need, an optimization
framework that can efficiently support the operations of aircraft and airports in terms
of noise impact and fuel consumption is developed in this study. The developed frame-
work will be able to effectively address the existing research gap, which is to formulate
and solve the optimization problems of route design and flight allocation in a linked
manner, while taking operational constraints related to aircraft sequencing and separa-
tion into account.
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1.2. PREVIOUS STUDIES AND RESEARCH GAPS
This section provides a brief overview of previous research on three problems of route
design, flight allocation, and the integration between them. These problems are illus-
trated in Fig. 1.1, in which questions 1 and 2 constitute the main research questions
relating to the first two problems, respectively, whereas the consideration of all 3 ques-
tions in a linked manner is the main research question relating to the third problem. The
review is, therefore, organized into three different categories corresponding to the three
distinct problems. For each category, limitations and research gaps are identified.

Figure 1.1: Illustration of research problems considered in the thesis

1.2.1. PROBLEM 1: AIRCRAFT ROUTE DESIGN

Over the years, significant attention has been given to the problem of designing envi-
ronmentally friendly aircraft routes, and various approaches have been proposed. Visser
and Wijnen [15, 16] developed an optimization tool called NOISHHH – which is a com-
bination of a noise model, an emissions inventory model, a geographic information sys-
tem, and a dynamic trajectory optimization algorithm – to generate environmentally
optimal departure and arrival trajectories. This tool was later also adapted to optimize
noise abatement routes based on area navigation [6, 9, 25]. Prats et al. [10, 11] employed
a lexicographic optimization technique to deal with aircraft departure trajectories for
minimizing noise annoyance. Khardi and Abdallah [26] studied a comparison of direct
and indirect methods in solving an ordinary differential equation system (ODEs) to opti-
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mize aircraft flight paths for noise reduction. Matthes et al. [27] presented a concept for
multi-criteria environmental assessment of aircraft trajectories, where the mathematical
framework for environmental assessment and optimization of aircraft trajectories were
developed.

Despite being quite efficient in searching optimal trajectories, the techniques men-
tioned in the above studies belong to the group of gradient-based methods, which con-
tain certain limitations in solving optimization problems. In particular, due to using
gradient information for searching an optimal solution, these methods are often only
suitable for optimization problems whose objective and constraint functions are differ-
entiable, and whose decision variables are continuous. Moreover, their solutions are of-
ten trapped in local optima if the considered problems are nonlinear and contain more
than one local optimal solution.

As an alternative to gradient-based algorithms, different gradient-free optimization
techniques have also been applied in recent years. Torres et al. [13] proposed a non-
gradient optimizer, namely multi-objective mesh adaptive direct search (multi-MADS),
to synthesize optimal departure trajectories for NOx emissions and noise at a single mea-
surement point. Hartjes and Visser [8] applied an elitist non-dominated sorting genetic
algorithm (NSGA-II) combined with a novel trajectory parameterization technique for
the optimal design of departure trajectories to minimize environmental impact. This
method was then also applied by Zhang et al. [18] and Kim et al. [28] to optimize
departure routes at Manchester airport and Gimpo international airport, respectively.
McEnteggart et al. [29] proposed a combination of inverse dynamics in a virtual domain
method and a multi-objective differential evolution to design optimal departure routes
for a case study at London Luton Airport.

In terms of the utilization of optimization techniques, from the results reported in
[8, 13, 18, 28, 29], it is indicated that the use of non-gradient multi-objective optimization
methods is a potential approach for designing optimal routes. These methods do not
only readily overcome the limitations of gradient-based methods in dealing with discon-
tinuous problems and integer or/and discrete design variables, but also can identify a
set of non-dominated optimal solutions and hence bring more choices for policymakers
and authorities. Unfortunately, the computational cost for solving an optimization prob-
lem using these methods is still quite high, which has limited their application to larger
problems. Due to the searching mechanism with multiple design points at the same
time, these methods require many evaluations of the objective and constraint functions,
which are time-consuming. This restriction again has motivated researchers to develop
computationally efficient approaches that can effectively balance expected results and
computation cost, and hence has been one of the focuses of the thesis.

1.2.2. PROBLEM 2: FLIGHT ALLOCATION

Besides the attempts to design environmentally friendly routes, the allocation of aircraft
to specific routes and runways has also attracted significant attention, and several ap-
proaches have been proposed over the years. Frair [19] developed an integer optimiza-
tion model to find the optimal allocation of flight among available approach and de-
parture routes with the aim of minimizing community annoyance. Kuiper et al. [22]
developed a linear programming model to maximize the number of aircraft movements
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operating at an airport within an allotted annual noise budget by optimally assigning
annual flights to available routes and runways. Kim et al. [30] presented a mixed integer
programming model to minimize airport surface emissions by concurrently allocating
aircraft among runways and scheduling departure and arrival flights on these runways.
Zachary et al. [20] formulated and solved an optimization problem to minimize noise
and pollutant emissions by simultaneously considering operational procedures, arrival
and departure routes, and fleet combination. In this research, a multi-objective nonlin-
ear optimization problems was formulated, and linearization and weighting approaches
were employed to solve the formulated problem. Using a similar approach, Zachary et
al. [21] also evaluated the potential reduction in operational cost that could be gained
by optimal solutions. Ganic et al. [23] developed an integer optimization model to al-
locate flights among available departure and arrival routes with the aim of reducing the
population noise exposure while taking into account daily migrating populations.

Although significant achievements in terms of noise and fuel reduction have been re-
ported, there are still certain gaps in this type of study. Specifically, the above-mentioned
studies typically considered only one objective at a time (i.e., either fuel consumption or
noise impact), while there is a potential conflict between these two objectives. Also, op-
timization problems were formulated as nonlinear programming models, which contain
a large number of decision variables. Though such a model can be extended to multi-
objective problems by applying weighting approaches [20, 21], it is normally difficult to
obtain solutions in which conflicting objectives are well balanced. Furthermore, these
studies relied on the assumption that the obtained optimal solutions satisfy all oper-
ational requirements, such as aircraft sequencing and separation. However, it can be
expected that, in reality, not all these requirements are met. Therefore, the actual influ-
ence of optimal allocation solutions on operational requirements is not yet adequately
studied. In addition, since these models only considered standard routes instead of op-
timized routes, the benefits of noise and fuel reduction were not effectively explored.

1.2.3. PROBLEM 3: ROUTE DESIGN AND FLIGHT ALLOCATION IN A LINKED

MANNER

As already seen in Fig. 1.1, there is a strong connection between the route design and
flight allocation problems, and therefore, these problems should be considered in a linked
manner. Unfortunately, due to the high complexity and huge computational cost of con-
sidering an integrated problem, research on this type of problem is limited. So far, only
Heblij [31] considered this problem in his thesis. However, this study still contained
significant limitations. As also acknowledged in [31], the optimized departure profiles
derived from aircraft route design problems are based on a single-event noise criterion,
which is most likely not a perfect proxy for the allocation phase where multi noise events
are considered [31]. It should be noted that the optimal routes derived from single-event
and multi-event noise criteria are likely different.

Moreover, the allocation model in [31] only considered runway capacity, whereas ac-
tual aircraft separation on the runways and along noise-optimized routes is not consid-
ered. Additionally, even though a multi-objective optimization approach is used in the
framework in [31], it is based on a weighting approach, and, consequently, only a single
solution was obtained at a time. Since the determination of a suitable weighting vector
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for the objectives is difficult, it is challenging to obtain a well-balanced solution between
conflicting objectives. Therefore, there is a clear opportunity for the development of an
effective optimization framework that addresses the problems of route design and flight
allocation in conjunction.

1.3. MAIN AIM AND RESEARCH OBJECTIVES
In an effort to address the crucial gap identified above, the aim of this thesis is to develop
an optimization framework that is able to effectively address the optimization problems
of route design and flight allocation in a linked manner, while taking into account opera-
tional constraints related to aircraft sequencing and separation requirements to minimize
noise impact and fuel consumption.

Essentially, the aim of the thesis is to find a shared answer to all three questions given
in Fig. 1.1 in a linked manner. In particular, the final goal of the thesis is to determine,
for each given standard instrument departure (SID) route, which route is optimal, and
how many movements of each aircraft type should be assigned to this route while tak-
ing into account operational constraints related to aircraft sequencing and separation re-
quirements

Solving the individual problems discussed above individually has proven not to be
a trivial task. Consequently, considering both problems simultaneously is even more
challenging, which is one of the main reasons for the apparent lack of previous research
on the topic. Therefore, without having a good understanding of each problem itself, it
will be challenging to be able to develop a generic framework.

To systematically address the above concerns, this research has been broken down
into smaller steps. In each step, a particular research problem is considered, and a spe-
cific objective is addressed. In each of these steps existing research gaps in these sub-
problems are also addressed. The individual objectives are:

1. To select or develop (a) suitable and efficient optimization method(s) capable of ad-
dressing the specific problems of route design and flight allocation for multiple ob-
jectives.

2. To improve the performance of solving aircraft route design problems based on the
application of the developed method.

3. To develop a flight allocation problem formulation that allows to address noise im-
pact and fuel consumption concurrently.

4. To establish a suitable approach that is capable of solving the problems of route
design and flight allocation in a linked manner.

5. To develop an optimization framework that can effectively address the former points
simultaneously.

1.4. RESEARCH APPROACH AND THESIS OUTLINE
Following the five objectives defined above, the thesis has been structured into five main
content sections (i.e., Chapters 2 to 6), relating to objectives 1 to 5, respectively. The
overview of the thesis is illustrated in Fig. 1.2.
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Figure 1.2: Overview of the thesis

Because aircraft noise impact and fuel consumption are the two main objectives con-
sidered through the developed framework, research to identify a suitable approach for
effectively dealing with multi–objective optimization problems is therefore the first aim
of the thesis. Due to its advantages, such as having a good convergence rate and pro-
viding high-quality solutions, the multi-objective evolutionary algorithm based on de-
composition (MOEA/D) is selected as one of the main algorithms to address most multi-
objective optimization problems formulated in the thesis.

Since the MOEA/D method has not yet been applied to the field of aircraft and air-
port operations, a study on this method is carried out in Chapter 2. The study is first
to understand its searching principle and to integrate recent developments in the field
of evolutionary optimization into the algorithm to increase its performance. Thereafter,
the potential of the developed method to solve aircraft route design problems is investi-
gated.

Based on the obtained initial results of designing optimal routes, the features of the
MOEA/D algorithm, and the characteristics of the route design problem are further stud-
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ied in Chapter 3. The main aim of this chapter is to increase the performance of the op-
timization process by formulating the optimization problems such that it best exploits
the characteristics of the MOEA/D algorithm. Furthermore, the simultaneous integra-
tion of route design and aircraft allocation for a given route is executed in this chapter.
This case study aims to provide a view on the complexity of the integrated problem and
hence provides guidance for further steps.

Next, research on flight allocation problems (which are also referred to as air traffic
assignment problems in this thesis) is presented in Chapter 4. This chapter aims to give a
good understanding of the air traffic assignment problems, which plays a vital role in the
integration of this type of problem into the developed framework. The study also helps
to develop a suitable air traffic assignment model that is able to effectively consider two
potentially conflicting objectives, i.e., noise impact and fuel consumption, at the same
time.

After both sub-problems (i.e., route design and flight allocation) have been studied,
research on the link between them is considered in Chapter 5. In this chapter, a two-
step optimization framework that links the problems of route design and flight allocation
together is proposed. Thereafter, operational constraints related to aircraft sequencing
and separation requirements are studied and integrated into the developed model. Con-
sequently, a completed model that is able to consider the design of optimal routes and
the allocation of aircraft in a linked manner while taking aircraft sequencing and sepa-
ration constraints into account is proposed in Chapter 6.

Finally, Chapter 7 summarizes the research findings of the thesis and provides rec-
ommendations for future work in this field.



2
DEVELOPMENT OF OPTIMIZATION

METHODS

The aim of the study in this chapter is to select or develop (a) suitable and efficient opti-
mization method(s) capable of addressing the specific problems of route design and flight
allocation for multiple objectives. The resulting method is called the multi-objective evo-
lutionary algorithm based on decomposition (MOEA/D). In addition to studies to under-
stand the searching principle of the MOEA/D method, research to improve its performance
related to the computational cost and the quality of Pareto front solutions has also been
carried out in this chapter. Furthermore, to make the algorithm more efficient, recent de-
velopments in the field of evolutionary optimization are integrated. The performance of
the developed method is first validated through benchmark test functions and structural
optimization problems, and then applied to the aircraft route design problem.

The content of this chapter is based on the following research articles:

[1]. V. Ho-Huu, S. Hartjes, H. G. Visser, and R. Curran, An improved MOEA/D algorithm for bi-objective opti-
mization problems with complex Pareto fronts and its application to structural optimization, Expert Systems
with Applications, vol. 92, pp. 430-446, 2018. -> Paper 2.1.

[2]. V. Ho-Huu, S. Hartjes, L. H. Geijselaers, H. G. Visser, and R. Curran, Optimization of noise abatement
aircraft terminal routes using a multi-objective evolutionary algorithm based on decomposition, Transportation
Research Procedia, vol. 29, pp. 157–168, 2018. -> Paper 2.2.
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2.1. PROBLEM STATEMENT
With the concurrent consideration of two objectives, i.e., noise impact and fuel con-
sumption, the research presented in this thesis mainly deals with multi-objective opti-
mization problems. As pointed out in previous studies [8, 13, 19, 20, 25], the problems
in this field are highly nonlinear optimization problems and contain different types of
design variables, such as continuous, integer, or mixed continuous/integer variables.
Therefore, it is crucial to first determine a reasonable algorithm that is able to solve such
kinds of problems effectively.

In this chapter, the MOEA/D, initially proposed by Zhang and Li [32], is chosen as the
main algorithm to deal with most multi-objective optimization problems formulated in
the framework. The reason for this selection is that MOEA/D has been realized as one of
the most powerful methods in the field of multi-objective optimization [33]. Compared
with other methods, MOEA/D has been demonstrated to be more effective both in terms
of convergence rate and computational cost [34], which are promising features for solv-
ing large-scale real-world problems. However, the application of MOEA/D to real-world
problems is still limited, especially in the field of aerospace engineering.

Before applying the MOEA/D algorithm to solve problems in the field of aircraft and
airport operations, certain efforts have been put into understanding and adapting the
searching principle, specifically aimed at the intended application. For this reason, a
study on the MOEA/D method has been carried out in Ho-Huu et al. [35]. In this study,
some improvements to increase its performance regarding the computational cost and
the quality of solutions have been proposed. In addition, recent developments in the
field of evolutionary optimization are integrated into the developed algorithm to make it
more efficient. The performance and reliability of the developed algorithm are evaluated
on well-known benchmark test functions and structural optimization problems.

Later, the developed method is applied to the problem of designing departure and
arrival routes at Rotterdam The Hague Airport in The Netherlands, which is presented
in detail in Ho-Huu et al. [36]. The study aims to explore whether or not the method is
suitable for solving such kinds of problems.

2.2. CONTRIBUTIONS
The main contributions of this chapter are as follows:

1. In Ho-Huu et al. [35], an improved version of the MOEA/D algorithm is proposed,
which is capable of handling multi-objective optimization problems with compli-
cated Pareto fronts. Thanks to the integration of new developments, the perfor-
mance of the algorithm has been significantly improved both in terms of com-
putational cost and the quality of solutions. Compared with other approaches,
the proposed method offers a saving of more than 20% in the computational cost
while providing slightly better results.

2. In Ho-Huu et al. [36], the MOEA/D method has been successfully applied to the
design of optimal routes with less noise impact and fuel consumption. In compar-
ison with the reference scenario, MOEA/D provides better route options relative
to both the noise and fuel objectives. From the obtained Pareto front, a selected
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representative solution can offer a reduction of up to 55% in the number of awak-
enings and savings of 10% in fuel. Compared with another approach, namely the
Non-dominated Sorting Genetic Algorithm II (NSGA-II), MOEA/D provides com-
parable or slightly better solutions with a significantly lower computational cost.
For both case studies of designing departure and arrival routes, MOEA/D can save
up to 20% in CPU time.
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The multi-objective evolutionary algorithm based on decomposition (MOEA/D) has been recognized as a 

promising method for solving multi-objective optimization problems (MOPs), receiving a lot of attention 

from researchers in recent years. However, its performance in handling MOPs with complicated Pareto 

fronts (PFs) is still limited, especially for real-world applications whose PFs are often complex featur- 

ing, e.g., a long tail or a sharp peak. To deal with this problem, an improved MOEA/D (named iMOEA/D) 

that mainly focuses on bi-objective optimization problems (BOPs) is therefore proposed in this paper. To 

demonstrate the capabilities of iMOEA/D, it is applied to design optimization problems of truss struc- 

tures. In iMOEA/D, the set of the weight vectors defined in MOEA/D is numbered and divided into two 

subsets: one set with odd-weight vectors and the other with even-weight vectors. Then, a two-phase 

search strategy based on the MOEA/D framework is proposed to optimize their corresponding popula- 

tions. Furthermore, in order to enhance the total performance of iMOEA/D, some recent developments 

for MOEA/D, including an adaptive replacement strategy and a stopping criterion, are also incorporated. 

The reliability, efficiency and applicability of iMOEA/D are investigated through seven existing benchmark 

test functions with complex PFs and three optimal design problems of truss structures. The obtained re- 

sults reveal that iMOEA/D generally outperforms MOEA/D and NSGA-II in both benchmark test functions 

and real-world applications. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In many real-world engineering applications, for example, 

structural optimization ( Cai & Aref, 2015; Vo-Duy, Duong-Gia, Ho- 

Huu, Vu-Do, & Nguyen-Thoi, 2017 ), aircraft trajectory optimization 

( Hartjes & Visser, 2016; Hartjes, Visser, & Hebly, 2010; Visser & 

Hartjes, 2014 ), optimal design problems often have multiple con- 

flicting objectives and are known as multi-objective optimization 

problems (MPOs) ( Deb, 2001 ). By solving these problems, a set 

of trade-off solutions between objectives can be found. From this 

set, decision makers can select the most suitable solutions, which 

may help them save much time and/or money. Solving real-world 

MOPs, however, is usually a challenging task for the decision mak- 

ers because of their complexities such as high nonlinearity, non- 

convexity and discontinuity ( Grandhi, 1993 ). Therefore, the devel- 

opment of efficient optimization methods for coping with these 
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jes), h.g.visser@tudelft.nl (H.G. Visser), r.curran@tudelft.nl (R. Curran). 

problems becomes more important and attracts much attention 

from researchers ( Trivedi, Srinivasan, Sanyal, & Ghosh, 2016 ). 

Among different approaches, multi-objective evolutionary al- 

gorithms (MOEAs) have been recognized as well-suited methods 

for solving such MOPs since they are capable of approximating 

multiple non-dominated solutions in a single run ( Deb, 2001; Li, 

Kwong, Zhang, & Deb, 2015 ). One of the recent effective methods 

is the multi-objective evolutionary algorithm based on decomposi- 

tion (MOEA/D) ( Zhang & Li, 2007 ). In MOEA/D, an MOP is decom- 

posed into a set of scalar optimization sub-problems, and these 

sub-problems are solved simultaneously in a collaborative manner. 

Owing to the diversity maintenance of sub-problems and the in- 

formation sharing between individuals dwelling in a neighborhood, 

MOEA/D may acquire well-distributed solutions over a Pareto front 

(PF). In a comparative study with the non-dominated sorting ge- 

netic algorithm (NSGA-II) ( Li & Zhang, 2009 ), the obtained results 

showed that MOEA/D outperforms NSGA-II in terms of both the 

quality of solutions and convergence rate. In addition, the effi- 

ciency of MOEA/D is also proven through real-world applications 

such as wireless sensor networks ( Konstantinidis & Yang, 2012 ), 

route planning ( Waldock & Corne, 2011 ), and economic emission 
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dispatch ( Zhu, Wang, & Qu, 2014 ). Nevertheless, recent research in 

( Jiang & Yang, 2016; Qi et al., 2013; Wang, Zhang, Li, Ishibuchi, & 

Jiao, 2017; Yang, Jiang, & Jiang, 2016 ) indicated that MOEA/D of- 

ten only effectively handles MOPs with simple PFs, while it is not 

good at solving MOPs with complex PFs exhibiting features such as 

a long tail or a sharp peak. 

To enhance the capability of MOEA/D in solving MOPs with 

complicated PFs, some different approaches have been proposed in 

recent literature. Qi et al. (2013 ) proposed an improved MOEA/D 

with an adaptive weight adjustment. In this version, a new weight 

vector initialization method is introduced for generating the set of 

initial weight vectors, and an adaptive weight vector adjustment 

strategy is developed to detect the overcrowded solutions on a 

PF and create new candidates to replace them. Yang et al. (2016 ) 

investigated the impact of penalty factors in the penalty bound- 

ary intersection (PBI) on the spread of a PF, and then proposed 

a new variant of MOEA/D with two different penalty schemes. 

Jiang and Yang (2016 ) developed an improved MOEA/D with a 

new search strategy, namely MOEA/D-TPN, where the optimiza- 

tion procedure is divided into two phases. The solving process of 

an MOP is started with the first phase, and after this phase ter- 

minates, the crowded information of obtained solutions is eval- 

uated to decide whether or not the second phase is continued. 

Wang et al. (2017 ) examined, for the first time, the influence of the 

ideal point and the nadir point in the Tchebycheff function on the 

distribution of optimal solutions over a PF and then developed a 

new improved MOEA/D, in which both these points are integrated 

into the Tchebycheff function to decompose an MOP into a num- 

ber of scalar optimization sub-problems. Through the evaluations 

on benchmark test functions in Jiang and Yang (2016 ), Qi et al. 

(2013 ), Wang et al. (2017 ) and Yang et al. (2016 ), it was shown 

that most of these developed methods outperform MOEA/D and 

some other available methods. They, however, often require more 

computational procedures or have more control parameters than 

MOEA/D, which may lead to certain limitations for engineering de- 

signers in applying them to real-world applications. For example, 

the method in Qi et al. (2013 ) has an extra algorithm for detecting 

and replacing overcrowded sub-problems during the optimization 

process, while the method in Jiang and Yang (2016 ) requires a pre- 

defined reasonable number of evaluations for the distribution of 

computational resources for both Phases. 

From the review of the above methods and motivated by the 

desire to solve complex real-world problems, e.g. structural opti- 

mization problems, an improved MOEA/D (iMOEA/D) which mainly 

focuses on bi-objective optimization problems (BOPs) is proposed 

in this paper. The iMOEA/D algorithm is developed based on the 

studies in Jiang and Yang (2016 ) and Wang et al. (2017 ), where the 

advantages of using the ideal point and the nadir point, and the 

benefits of solving an MOP based on two phases are exploited. In 

iMOEA/D, the solving process of a bi-objective optimization prob- 

lem (BOP) is separated into two parts, and for each part the gen- 

eral framework of MOEA/D is applied. Firstly, the set of weight vec- 

tors of MOEA/D is numbered and divided into two subsets: one 

set with odd-weight vectors and the other with even-weight vec- 

tors. Then, a simple two-phase search strategy is developed to op- 

timize the corresponding populations of each set. In the proposed 

search strategy, the optimization process of the two phases is al- 

most the same except for the use of the Tchebycheff function type 

( Miettinen, 1999 ) in which either the ideal point or the nadir point 

is utilized. The search of iMOEA/D is started at the first phase with 

the set of odd-weight vectors. In this phase, the Tchebycheff func- 

tion with the ideal point is utilized. After that, the second phase is 

continued with the set of even-weight vectors, and the Tchebycheff

function with the nadir point z nad is used. 

Furthermore, to enhance the overall performance of the algo- 

rithm, some recent developments related to MOEA/D consisting 

of an adaptive replacement strategy ( Wang, Zhang, Zhou, Gong, & 

Jiao, 2016 ) and a stopping criterion ( Abdul Kadhar & Baskar, 2016 ) 

are also integrated into iMOEA/D. To estimate the performance 

of the proposed algorithm, seven existing benchmark test func- 

tions with complicated PFs are tested first, and then three struc- 

tural optimization problems of truss structures are solved. The ef- 

ficiency and reliability of iMOEA/D are also compared with those 

of MOEA/D, MOEA/D-TPN and NSGA-II. 

The rest of the paper is structured as follows. Section 2 provides 

some basic backgrounds of an MOP and the Tchebycheff decom- 

position method. Section 3 presents a general framework of the 

MOEA/D algorithm, in which some recent developments are also 

included. The iMOEA/D algorithm is described in Section 4 . Exper- 

imental studies are presented in Section 5 , and some conclusions 

are drawn in Section 6 . 

2. Backgrounds 

2.1. Basic definitions 

A multi-objective optimization problem (MOP) can be stated as 

follows: 

min F (x ) = ( f 1 (x ) , ..., f m 

(x )) T 

s . t . x ∈ �
(1) 

where x = ( x 1 ,..., x n ) 
T ∈ R 

n is the vector of design variables, � is 

the feasible search domain, f j ( x ) is the j th objective function, and 

m is the number of objective functions. 

In multi-objective optimization, some basic definitions in the 

context of minimization problems are given as follows: 

• Let x 1 , x 2 ∈ � be two solutions of an MOP, x 1 is said to domi- 

nate x 2 (denoted x 1 ≺x 2 ), if and only if f j ( x 1 ) ≤ f j ( x 2 ), ∀ j ∈ {1, ..., 

m } , and f j ( x 1 ) < f j ( x 2 ) for at least one index j ∈ {1, ..., m }. 
• Let x ∗ ∈ � be called Pareto optimal if there is no other solution 

in � which dominates x ∗. 
• The set of Pareto optimal solutions in � are called the Pareto 

set (PS), which is determined by P S = { x ∗|¬∃ x ∈ �, x ≺ x ∗} . The 

corresponding objective vectors of the solutions in PS is called 

the Pareto front (PF) and defined as PF = { F ( x )| x ∈ PS }. 
• A point z ∗ = (z ∗

1 
, ..., z ∗m 

) T is called the ideal point if z ∗
j 
< 

min { f j (x ) | x ∈ �, j = 1 , ..., m } . 
• A point z nad = (z nad 

1 
, ..., z nad 

m 

) T is called the nadir point if z nad 
j 

> 

max { f j (x ) | x ∈ �, j = 1 , ..., m } . 

2.2. Tchebycheff decomposition approach 

Over the past decades, many approaches have been pro- 

posed for decomposing an MOP into a set of scalar optimiza- 

tion sub-problems and can be found in Das and Dennis (1998 ) 

and Messac, Ismail-Yahaya, and Mattson (2003 ). Among these ap- 

proaches, the weighted Tchebycheff approach is the most widely 

utilized because of its capability of handling multi-objective op- 

timization problems with non-convex Pareto fronts ( Zhang & 

Li, 2007 ). A scalar optimization subproblem based on the weighted 

Tchebycheff approach with the ideal point is determined by 

min g te (x | w , z ∗) = max 
1 ≤ j≤m 

{
w j 

∣∣ f j (x ) − z ∗
j 

∣∣}
s . t . x ∈ �

(2) 

where w = ( w 1 , ..., w m 

) T , ( w j ≥ 0 , 
∑ m 

j=1 w j = 1 , j = 1 , ..., m ) is the 

weight vector of the scalar optimization subproblem, and z ∗ is the 

ideal point. 

The Tchebycheff approach in Eq. (2) is often only suitable for 

MOPs with normalized objective functions. Thus, when the ranges 
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of the objectives are on very different scales, the Tchebycheff func- 

tion is defined as follows ( Zhang & Li, 2007 ): 

min g te (x | w , z ∗) = max 
1 ≤ j≤m 

{ 

w j 

∣∣∣ f j (x ) −z ∗
j 

z nad 
j 

−z ∗
j 

∣∣∣} 

s . t . x ∈ �
(3) 

According to Jiang and Yang (2016 ), the scalar optimization sub- 

problem may also be formulated by using the nadir point as fol- 

lows: 

max g te 
(
x | w , z nad 

)
= min 

1 ≤ j≤m 

{
w j 

∣∣z nad 
j − f j ( x ) 

∣∣}
s . t . x ∈ �

(4) 

Similarly, to deal with MOPs whose objectives are on very dif- 

ferent scales, the sub-problem in Eq. (4) is defined in the following 

form: 

max g te 
(
x | w , z nad 

)
= min 

1 ≤ j≤m 

{
w j 

∣∣∣∣z nad 
j 

− f j ( x ) 

z nad 
j 

− z ∗

∣∣∣∣
}

s . t . x ∈ �

(5) 

3. MOEA/D algorithm 

The multi-objective evolutionary algorithm based on decompo- 

sition (MOEA/D), firstly developed by Zhang and Li (2007 ), has 

been recognized as one of the most popular multi-objective evo- 

lutionary algorithms to date ( Trivedi et al., 2016 ). In MOEA/D, 

MOPs are decomposed into a number of scalar optimization sub- 

problems by applying decomposition approaches, and these sub- 

problems are optimized concurrently by mean of using evolu- 

tionary algorithms. By employing different decomposition methods 

and different evolutionary algorithms, various versions of MOEA/D 

have been developed in recent years such as MOEA/D-DE ( Li & 

Zhang, 2009 ), MOEA/D-DRA ( Zhang, Liu, & Li, 2009 ), MOEA/D-XBS 

( Zhang & Li, 2007 ), and MOEA/D-GR ( Wang et al., 2016 ). Although 

different variants of MOEA/D are available in the literature, there 

is no single MOEA/D version that combines the many distinct ad- 

vantages of the various versions. With the aim of developing an 

efficient version of MOEA/D for real-life problems, a MOEA/D ver- 

sion is therefore developed in this study which is a combination of 

MOEA/D-DE ( Li & Zhang, 2009 ), an adaptive replacement strategy 

( Wang et al., 2016 ), and a stopping condition criterion ( Abdul Kad- 

har & Baskar, 2016 ). The general framework of MOEA/D is pre- 

sented in Algorithm 1 . 

In Step 2.2, each element ȳ k of solution ȳ = ( ̄y 1 , ..., ̄y n ) 
T is gen- 

erated by using “DE/rand/1” operator ( Storn & Price, 1997 ) as fol- 

lows: 

ȳ k = 

{
x r 1 

k 
+ F (x r 2 

k 
− x r 3 

k 
) with probability CR, 

x r 1 
k 

, with probability (1 − CR ) 
(6) 

where F and CR are two control parameters. The polynomial muta- 

tion operator used to create the new solution y is defined as fol- 

lows: 

y k = 

{
ȳ k + σk × ( x u b k − x l b k ) with probability p m 

, 

ȳ k with probability (1 − p m 

) 
(7) 

where 

σk = 

{
(2 × rand) 

1 
η+1 − 1 if rand < 0 . 5 , 

1 − (2 − 2 × rand) 
1 

η+1 otherwise 
(8) 

where rand is the uniformly distributed random number from [0, 

1]. The distribution index η and the mutation rate p m 

are two con- 

trol parameters, and x lb and x ub are the lower and upper bounds 

of the k th design variable, respectively. 

In Step 3, the stopping criterion named maximum Tchebycheff

objective error ( MTOE ) ( Abdul Kadhar & Baskar, 2016 ) is utilized. 

The method uses the information of the Tchebycheff objectives of 

all sub-problems to set a stopping condition for the algorithm. 

Firstly, the maximum value of Tchebycheff objective error ( TOE ) is 

computed based on the absolute difference between the current 

and previous generation’s Tchebycheff objectives. Then, the maxi- 

mum value in the set of TOE ( MTOE ) at the current generation is 

determined. 

MT O E gen = max 
1 ≤i ≤N 

{ T O E i } (9) 

Finally, a χ2 test is applied for statistical evaluation of the vari- 

ations in the MTOE values during previous g generations ( Sharma 

& Rangaiah, 2013; Wagner & Trautmann, 2010 ). If the variation of 

MTOE is smaller than a pre-defined tolerance value ( ε), then the 

search process of the algorithm is terminated. 

Chi (M T OE) = 

variance[ M T O E 1 , M T O E 2 , ..., MT O E γ ](g − 1) 

ε 2 
(10) 

p(MT OE) = χ2 test [ Chi (MT OE) , (g − 1)] (11) 

where MTOE 1 ,..., MTOE γ are the MTOE values of the previous g gen- 

erations, ε is the expected tolerance value for the standard devia- 

tion of MTOE, Chi ( MTOE ) is the test statistic, and p ( MTOE ) is the 

probability of which the χ2 test supports the hypothesis that the 

variance of MTOE is lower than the pre-defined tolerance ε. If the 

probability p is equal to or larger than 99%, the algorithm termi- 

nates its search process. The probability p is defined by referring 

to the lookup table of χ2 distribution for ( g − 1) degrees of free- 

dom, where g is the number of generations. For instance, if the 

number of generation g is set to be 10, to get a probability p of 

99%, then Chi ( MTOE ) must be smaller than or equal to 2.088. 

4. iMOEA/D algorithm 

As pointed out by Wang et al. (2017 ), the use of the ideal point 

z ∗ and the nadir point z nad in the Tchebycheff function has a signif- 

icant influence on the distribution of optimal solutions over a PF. 

Particularly, in the case of using z ∗ as the reference point, the op- 

timal solutions of sub-problems for a convex PF and a concave PF 

are shown in Fig. 1 a and b, respectively. From the figures, it is clear 

that the optimal solution density in the central part of the convex 

PF is much larger than those of the concave PF, while it is oppo- 

site on the boundaries of the PFs. In contrast with the use of z ∗, 

the distribution of optimal solutions on these PFs is in a contrary 

direction if z nad is used as the reference point, which is depicted 

as in Fig. 1 c and d, respectively. 

From the obtained results of the investigation in Wang et al. 

(2017 ), it is evident that the idea of combining both the ideal point 

z ∗ and the nadir point z nad in the Tchebycheff function can be an 

efficient way to handle MOPs with complicated PFs. To take this 

advantage, Jiang and Yang (2016 ) have also developed a search 

strategy with two phases for MOEA/D, in which the Tchebycheff

function with z ∗ is used in the first phase, and the Tchebycheff

function with z nad is employed in the second phase. The search of 

the algorithm is started with the first phase; and after this phase, 

the crowded information of obtained solutions is estimated. If the 

crowded information shows that there is a significant difference 

between the solutions at the boundary/extreme and the interme- 

diate of the PF, the second phase will be continued which aims 

to supplement more solutions on the boundary/extreme regions of 

the PF; otherwise, the second phase is not applied, and the search 

of the algorithm is completed. Through benchmark test functions 

with complex PFs, the method has been demonstrated to be able 

to deal effectively with MOPs with complicated PFs. The method, 

however, also has two limitations which may be described as fol- 

lows: 1) the algorithm uses a pre-defined number of evaluations 

to switch from Phase 1 to Phase 2. It is very difficult to set this in 
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Algorithm 1 Pseudo-code of MOEA/D algorithm. 

Input : 
• A multi-objective optimization problem as Eq. (1) ; 
• A stopping criterion; 
• N : number of sub-problems; 
• w 

i = (w 

i 
1 , ..., w 

i 
m ) 

T , i = 1 , ..., N: a set of N weight vectors; 
• T m : size of mating neighborhood; 
• T r max : maximum size of replacement neighborhood; 
• δ: the probability that mating parents are selected from the neighborhood; 
• MaxIter : maximum iteration; 
• FEs = 0: the number of function evaluations; 

Step 1. Initialization 

1.1. Find the T m closest weight vectors to each weight vector based on the Euclidean distances of any two weight vectors. For each sub-problem 

i = 1,…, N set B i = { i 1 , ..., i T m } where w 

i 1 , ..., w 

i T m are the closest weight vectors to w 

i ; 

1.2. Create an initial population P = { x 1 ,..., x N } by uniformly randomly sampling from �. Evaluate the fitness value FV i of each solution x i , i.e. 

FV i = ( f 1 ( x 
i ),..., f m ( x 

i )) and set FV = { FV 1 ( x 1 ),..., FV N ( x N )}; 

1.3. Initialize ideal point z ∗ = (z ∗1 , ..., z 
∗
m ) 

T by setting z ∗
j 
= min { f j (x ) | x ∈ �, j = 1 , ..., m } and nadir point z nad = (z nad 

1 , ..., z nad 
m ) T by setting 

z nad 
j 

= max { f j (x ) | x ∈ �, j = 1 , ..., m } ; 
1.4. Set FEs = FEs + N, and generation: gen = 1; 

Step 2. Update 

while (the stopping conditions are not satisfied) 

for i = 1,…, N ; do 

2.1. Selection of mating/update range 

Set B m = { B i if rand < δ

{ 1 , ..., N} otherwise 
, 

where rand is a uniformly distributed random number in [0,1]; 

2.2. Reproduction: randomly select three parent individuals r 1 , r 2 , r 3 ( r 1 	 = r 2 	 = r 3 	 = i ) from B m and generate a solution ȳ by applying 

“DE/rand/1” operator, and then perform a mutation operator on ȳ to create a new solution y ; 

2.3. Repair: if any element of y is out of �, its value will be randomly regenerated inside �; 

2.4. Evaluate the fitness value of new solution y ; 

2.5. Update of z ∗ , z nad : for each j = 1,…, m if z ∗
j 
≤ f j ( x 

i ) then set z ∗
j 
= f j ( x 

i ) , and if z nad 
j 

≥ f j ( x 
i ) then set z nad 

j 
= f j ( x 

i ) ; 

2.6. Update of solution: use an adaptive replacement strategy in Wang et al. (2016) : 

2.6.1. Find the most suitable sub-problem k for the new solution y by k = arg min 1 ≤t≤N { g te 
t (y ) } ; 

2.6.2. Define the maximum numbers of solutions which may be replaced by the new solution y in the neighborhood set of the 

sub-problem k by 

T r = 
 T r max 

1+ exp ( −20 ×( gen 
MaxIter −γ ) ) 

� , where 
 . � is the ceiling function, γ is the control parameter in [0, 1); 

2.6.3. Set B r = B k { l } , l = 1, ..., T r to be the set of solutions in the neighborhood set of the sub-problem k which can be replaced by the 

new solution y ; 

2.6.4. For each solution x l in B r , replace x l by y if g te ( y ) ≤ g te ( x l ); 

end for 

Set FEs = FEs + N, and gen = gen + 1; 

Step 3. Stopping condition 

Use a stopping criterion in Abdul Kadhar and Baskar (2016) . 

if (the stopping criterion is satisfied or MaxIter is reached) 

Stop the algorithm; 

end if 

end while 

Output : 
• Pareto set PS = { x 1 ,..., x N }; 
• Pareto front PF = { FV 1 ( x 1 ),..., FV N ( x N )}. 

advance without any knowledge about a problem, while it has a 

significant influence on the performance of the algorithm ( Jiang & 

Yang, 2016 ); and 2) the computational cost of solving an MOP will 

increase significantly compared with available versions of MOEA/D 

if Phase 2 of the algorithm is executed. 

Motivated by solving complex real-world problems and in an 

effort to overcome the limitations of the algorithm in Jiang and 

Yang (2016 ), this paper attempts to develop a newly improved 

MOEA/D (iMOEA/D) and applies it to solving bi-objective optimiza- 

tion problems (BOPs) of truss structures. In iMOEA/D, firstly, in or- 

der to surmount the first limitation in Jiang and Yang (2016 ), the 

stopping criterion recently proposed in Abdul Kadhar and Baskar 

(2016 ) is applied. This method will help automatically stop the al- 

gorithm if there is no considerable improvement on the optimal 

solutions instead of using the number of evaluations. The details 

of this approach have been presented in Section 3 . Secondly, to 

improve the distribution of optimum solutions over a complex PF 

while the computational cost of the algorithm does not increase, 

a new two-phase search strategy is proposed. The idea behind 

this approach is depicted in Fig. 2 , and it includes the follow- 

ing steps. First, the set of the weight vectors of MOEA/D is num- 

bered and split into two subsets: one set with odd-weight vectors 

and the other with even-weight vectors. Then, the optimization 

process is started with the set of odd-weight vectors in the first 

phase. In this phase, the general framework of MOEA/D as shown 

in Algorithm 1 is applied, in which the Tchebycheff function with 

the ideal point z ∗ as Eq. (2) is utilized. After this phase has been 

completed, the nadir point z nad is determined from the obtained 

set of solutions, and the Tchebycheff function as Eq. (4) is em- 

ployed for the second phase with the set of even-weight vectors. 

As shown in Fig. 2 , it can be observed that by dividing the set 

of weight vectors into two subsets and applying different types 

of the Tchebycheff function, the distribution of optimal points 

over a complicated PF obtained by the algorithm becomes better. 

Fig. 2 also shows that this approach can work efficiently for a sim- 

ple PF. Moreover, the computational cost of the algorithm will not 

increase because the total population size is equal to the popula- 

tion size of MOEA/D. The framework of iMOEA/D is summarized in 

Algorithm 2 . 

In Algorithm 2 , it should be noted that the set of odd-weight 

vectors in the first phase should include the weight vectors of 

(1,0) T and (0,1) T . This setting aims to ensure that a nadir point z nad , 
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(a) (b)

(c) (d)

Fig. 1. The distribution of optimal solutions on Pareto fronts by using z ∗ point and z nad point. 

Algorithm 2 Pseudo-code of iMOEA/D algorithm. 

Input : 
• A multi-objective optimization problem Eq. (1) ; 
• A stopping criterion; 
• N : number of sub-problems; 
• w 

odd = (w 

i 
1 , ..., w 

i 
m ) 

T , i = 1 , 3 , ..., N: a set of odd-weight vectors; 
• w 

even = (w 

i 
1 , ..., w 

i 
m ) 

T , i = 2 , 4 , ..., N − 1 : a set of even-weight vectors; 
• T m : size of mating neighborhood; 
• T r max : maximum size of replacement neighborhood; 
• δ: the probability that mating parents are selected from the neighborhood; 
• MaxIter : maximum iteration; 

Phase 1: 

1.1. Apply Step 1 to Step 3 in Algorithm 1 for the set of odd-weight vectors w 

odd = (w 

i 
1 , ..., w 

i 
m ) 

T , i = 1 , 3 , ..., N; 

1.2. Obtain PS 1 = { x 1 ,..., x i ..., x N }, PF 1 = { FV 1 ( x 1 ),..., FV i ( x i ),..., FV N ( x N )}, i = 1, 3, .., N ; 

Phase 2: 

2.1. Define z nad = (z nad 
1 , ..., z nad 

m ) T with z nad 
j 

= max { f j (x ) | x ∈ �, j = 1 , ..., m } , f j (x ) ∈ P F 1 ; 
2.2. Set the initial population P = PS 1 and FV = FV 1 ; 

2.3. Apply Step 1 to Step 3 in Algorithm 1 for the set of even-weight vectors w 

even = (w 

i 
1 , ..., w 

i 
m ) 

T , i = 2 , 4 , ..., N − 1 , where Steps 1.2, 1.3, 2.5 

are ignored; Step 2.6.4 is changed by “for each current solution x i in B r , replace x i by y if g te ( y ) ≥ g te ( x i )”; 

2.4. Obtain PS 2 = { x 2 ,..., x i ..., x N − 1 }, PF 2 = { FV 2 ( x 2 ),..., FV i ( x i ),..., FV N − 1 ( x N − 1 )}, i = 2, 4, .., N − 1; 

Output : 
• Pareto set PS = { PS 1 ; PS 2 }; 
• Pareto front PF = { PF 1 ; PF 2 }. 

which is obtained after finishing Phase 1, can fully cover the range 

of a Pareto front. 

With the new two-phase search strategy and the integration of 

some recent developments, iMOEA/D possesses some advantages 

as follows: 

1) It is able to handle BOPs with complicated Pareto fronts; 

2) It does not require extra computational procedures; and the al- 

gorithm structure is almost the same with MOEA/D except for 

using it for both phases, which is not too difficult for engineer- 

ing designers to implement. 

3) The computational cost for solving BOPs can be reduced signif- 

icantly, which is quite crucial for solving real engineering appli- 

cations. 

These benefits are verified and evaluated in Section 5 through 

seven benchmark test functions and three practical applications of 

the optimal design of truss structures. 
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Fig. 2. The distribution of optimal solutions on a complex Pareto front acquired by 

iMOEA/D. 

5. Experimental study 

This section is divided into two parts. The first part is to exam- 

ine the performance of the proposed method through benchmark 

test functions with complicated Pareto fronts. The second part is 

to evaluate the applicability of iMOEA/D for solving structural op- 

timization problems. The performance of iMOEA/D is compared 

with MOEA/D in Algorithm 1 , MOEA/D-TPN ( Jiang & Yang, 2016 ), 

and NSGA-II (K Deb, Pratab, Agarwal, & Meyarivan, 2002 ). To make 

a fair comparison regarding the computational cost of NSGA-II, a 

stopping criterion which is proposed for NSGA-II in Roudenko and 

Schoenauer (2004 ) is also utilized. All algorithms are implemented 

in Matlab 2016b on a Core i7, 8 GB ram laptop. 

5.1. Benchmark test functions 

In order to evaluate the performance of iMOEA/D, a set of seven 

test instances as shown in Table 1 is used. In Table 1 , F1-F3, F4-F6, 

and F7 are taken from Wang et al. (2017 ), Yang et al. (2016 ), and 

Jiang and Yang (2016 ), respectively. As mentioned in Jiang and Yang 

(2016 ), Wang et al. (2017 ) and Yang et al. (2016 ), the Pareto fronts 

of these problems are very complicated which are very difficult for 

MOEA/D to obtain a proper distribution of optimal solutions over 

the Pareto fronts. 

5.1.1. Performance metrics 

The performance of the algorithms is assessed by two widely- 

used performance metrics including the Hypervolume indicator 

(HV) ( Zitzler & Thiele, 1999 ) and the inverted generational dis- 

tance metric (IGD) ( Zitzler, Thiele, Laumanns, Fonseca, & Da Fon- 

seca, 2003 ). These indicators are defined as follows: 

◦ HV ( Zitzler & Thiele, 1999 ): Let z ∗ = (z ∗
1 
, ..., z ∗m 

) be a reference 

point in the objective space which satisfies z ∗
j 
≥ max ( f j ) . Let P 

be an approximate set to the PF gained by an algorithm. The HV 

of P is the volume of the region dominated by P and bounded 

by z ∗ and is computed by 

HV (P , z ∗) = v olume ( ∪ [ f 1 (x ) , z ∗1 ] × ... [ f m 

(x ) , z ∗m 

] ) (12) 

where volume (.) is the Lebesgue measure. In this study, z ∗ is 

set to (2.0, 2.0) for all test instances ( Jiang & Yang, 2016 ). It is 

noted that the method with a larger HV metric is better. 

◦ IGD ( Zitzler et al., 2003 ): Let P 

∗ be a set of uniformly dis- 

tributed points over the PF in the objective space. Suppose P 

be an approximate set to the PF gained by an algorithm. The 

inverted generational distance from P 

∗ to P is defined by 

IGD ( P 

∗, P ) = 

∑ 

p ∈ P d(v , P 

∗) 

| P | (13) 

where d ( v, P 

∗) is the Euclidean distance between the member 

v of P and the nearest member of P 

∗. In this paper, 500 rep- 

resentative points created from the true PF are used for all the 

benchmark test problems. It is noted that the method with a 

lower IGD metric is better. 

5.1.2. Parameter settings 

For all test instances, the parameter settings are the same. 

The parameters of NSGA-II are set according to Song (2011 ). For 

MOEA/D, MOEA/D-TPN, and iMOEA/D, their parameters are set as 

follows: 

• Population size N: N = 100. 
• Reproduction operators: CR and F = [0.4, 0.6], δ = 0.9, and 

p m 

= 1/ n (n is the number of decision variables); 
• Neighborhood size : In MOEA/D, T m 

and T rmax = 0.2 N . In iMOEA/D 

and MOEA/D-TPN T m 

and T rmax = 0.1 N . 
• Stopping condition : In MOEA/D, MOEA/D-TPN and iMOEA/D, 

ε = 10 −6 , g = 10, and MaxIter = 10 0 0. The algorithms terminated 

when their stopping conditions are satisfied or the maximum 

number of iterations ( MaxIter ) is reached. 
• Number of runs : Each algorithm is independently run 30 times 

on each test instance. 

It should be noted that the above parameters are set either 

based on the literature or on the experience obtained by running 

simulations with different settings. More specifically, N, ε and g 

are derived from Yang et al. (2016 ) and Abdul Kadhar and Baskar 

(2016 ) respectively, while the others are based on empirical results. 

5.1.3. Evaluation of the new improvements 

In order to demonstrate the ability of iMOEA/D to solve BOPs 

with the two-phase search strategy and to establish its advantages 

compared to the method (denoted as MOEA/D-TPN) in Jiang and 

Yang (2016 ), the benchmark tests F5 and F6 are used for investiga- 

tion. 

The performance of iMOEA/D in solving BOPs with complex PFs 

is evaluated by F5 and illustrated in Fig. 3 . As shown in Fig. 3 , the 

optimal solutions are densely populated in the central part of the 

PF and sparsely near the boundary of the PF in Phase 1 ( Fig. 3 a), 

and vice versa in Phase 2 ( Fig. 3 b). By combining the obtained re- 

sults in both phases, the distribution of the solutions on the final 

PF has significantly improved as shown in Fig. 3 c. 

As mentioned in Section 4 , iMOEA/D is developed based on 

MOEA/D-TP ( Jiang & Yang, 2016 ), where the two improvements are 

integrated: 1) the incorporation of two recently developed features 

(i.e. an adaptive replacement strategy and a stopping criterion), 

and 2) the division of the initial weight vectors into two subsets. 

For the first improvement, it is easy to recognize that the compu- 

tational cost of MOEA/D-TPN will be significantly larger than that 

of iMOEA/D if this improvement is not integrated into MOEA/D- 

TPN. This is because MOEA/D-TPN uses a conventional replacement 

scheme which has been demonstrated to be more costly than the 

adaptive replacement strategy ( Wang et al., 2016 ), and a maxi- 

mum number of iterations which do not allow to stop the algo- 

rithm until this number is reached. Therefore, the remaining com- 

parison between iMOEA/D and MOEA/D-TPN will focus on the sec- 

ond improvement. For this comparison, the first improvement is 

also incorporated into MOEA/D-TPN. In this version, however, the 

niche scheme introduced in Jiang and Yang (2016 ) is not included 

because it is not employed in iMOEA/D. It should also be noted 

that the HV-metric values can be better if the obtained results 
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Table 1 

Benchmark test functions. 

Instance Objective function Domain n PF characteristic 

F1 

f 1 = 1 − cos (0 . 5 πx 1 ) + 

2 
| I 1 | 

∑ 

i ∈ I 1 | g i | 0 . 7 
f 2 = 10 − 10 sin (0 . 5 πx 1 ) + 

2 
| I 2 | 

∑ 

i ∈ I 2 | g i | 0 . 7 
g i = x i − 0 . 9 sin ( iπ

n 
) , i ∈ 2 , ..., n 

where I 1 = { i | i is odd and 2 ≤ i ≤ n } , and I 2 = { i | i is even and 2 ≤ i ≤ n } 
Pareto Front : f 2 = (1 −

√ 

f 1 ) 
5 

[0, 1] × [ − 1, 1] n − 1 30 Convex 

F2 

f 1 = x 1 + 

2 
| I 1 | 

∑ 

i ∈ I 1 | g i + 

sin (πg i ) 
π | 

f 2 = { 1 − 19 x 1 + 

2 
| I 2 | 

∑ 

i ∈ I 2 | g i + 

sin (πg i ) 
π | if x 1 ≤ 0 . 005 

1 
19 

− x 1 
19 

+ 

2 
| I 2 | 

∑ 

i ∈ I 2 | g i + 

sin (πg i ) 
π | otherwise 

g i = x i − 0 . 9 sin ( iπ
n 

) , i ∈ 2 , ..., n 
where I 1 = { i | i is odd and 2 ≤ i ≤ n } , and I 2 = { i | i is even and 2 ≤ i ≤ n } 
Pareto Front : f 2 = 

√ 

(1 − f 5 
1 
) 

[0, 1] × [ − 1, 1] n − 1 30 Piecewise, convex 

F3 

f 1 = x 1 + 

2 
| I 1 | 

∑ 

i ∈ I 1 ( 1 − e −| g i | ) 

f 2 = { 1 − 8 x 4 1 + 

2 
| I 2 | 

∑ 

i ∈ I 2 ( 1 − e −| g i | ) if x 1 ≤ 0 . 5 

8 (1 − x 1 ) 
4 + 

2 
| I 2 | 

∑ 

i ∈ I 2 ( 1 − e −| g i | ) otherwise 

g i = x i − 0 . 9 sin ( iπ
n 

) , i ∈ 2 , ..., n 
where I 1 = { i | i is odd and 2 ≤ i ≤ n } , and I 2 = { i | i is even and 2 ≤ i ≤ n } 
Pareto Front : f 2 = 0 . 5(1 − f 1 + 

√ 

1 − f 1 ) cos 2 (4 π(1 − f 1 )) 

[0, 1] × [ − 1, 1] n − 1 30 Separable, convex, concave 

F4 

f 1 = (1 + g) x 1 
f 2 = (1 + g) (1 − √ 

x 1 ) 
3 

g = 2 sin (0 . 5 πx 1 )(n − 1 + 

∑ n 
i =2 (y 2 

i 
− cos (2 πy i )) ) 

where y i =2: n = x i − sin (0 . 5 πx 1 ) 

Pareto Front : f 2 = (1 −
√ 

f 1 ) 
3 

[0, 1] n 30 Convex 

F5 

f 1 = (1 + g) ( x 1 + 0 . 05 sin (6 πx 1 )) 
2 

f 2 = (1 + g) (1 − x 1 + 0 . 05 sin (6 πx 1 )) 
2 

g = 2 sin (0 . 5 πx 1 )(n − 1 + 

∑ n 
i =2 (y 2 

i 
− cos (2 πy i )) ) 

where y i =2: n = x i − sin (0 . 5 πx 1 ) 

Pareto Front : f 0 . 5 1 + f 0 . 5 2 = 1 + 0 . 1 sin (3 π( f 0 . 5 1 − f 0 . 5 2 + 1)) 

[0, 1] n 30 Nonconvex 

F6 

f 1 = (1 + g) ( x 1 + 0 . 05 sin (6 πx 1 )) 
0 . 2 

f 2 = (1 + g) (1 − x 1 + 0 . 05 sin (6 πx 1 )) 
10 

g = 2 sin (0 . 5 πx 1 )(n − 1 + 

∑ n 
i =2 (y 2 

i 
− cos (2 πy i )) ) 

where y i =2: n = x i − sin (0 . 5 πx 1 ) 

Pareto Front : f 5 1 + f 0 . 1 2 = 1 + 0 . 1 sin (3 π( f 5 1 − f 0 . 1 2 + 1)) 

[0, 1] n 30 Nonconvex 

F7 

f 1 = (1 + g)(1 − x 1 ) 

f 2 = 0 . 5(1 + g)( x 1 + 

√ 

x 1 cos 2 (4 πx 1 )) 

g = 2 sin (0 . 5 πx 1 )(n − 1 + 

∑ n 
i =2 (y 2 

i 
− cos (2 πy i )) ) 

where y i =2: n = x i − sin (0 . 5 πx 1 ) 

Pareto Front : f 2 = 0 . 5(1 − f 1 + 

√ 

1 − f 1 cos 2 (4 π(1 − f 1 ))) 

[0, 1] n 30 Nonconvex, disconnected 

(a) (b) (c)

Fig. 3. Illustration of the Pareto front obtained by iMOEA/D for F5 relative to Phases 1, 2 and their combination. 

have more Pareto solutions, which depend on the initial popula- 

tion size ( N ). Thus, if the same N is applied for both the methods, 

the HV-metric values of MOEA/D-TPN may be better than those of 

iMOEA/D. This is because MOEA/D-TPN will use the same N in both 

phases if the crowded information of obtained solutions in Phase 

1 is satisfied, and Phase II is executed, while iMOEA/D always uses 

half of N for both phases. For this evaluation, therefore, two differ- 

ent sizes of N ( N = 50, 100) are investigated for MOEA/D-TPN, and 

only one size of N ( N = 100) is used for iMOEA/D. 

The statistical results of F5 and F6 gained by iMOEA/D and 

MOEA/D-TPN are provided in Table 2 . A comparison of results ob- 

tained by iMOEA/D and MOEA/D-TPN with N = 50 indicates that 

iMOEA/D outperforms MOEA/D-TPN. Specifically, all the compar- 

ative quantities obtained by iMOEA/D are better than those of 

MOEA/D-TPN, except for the computational cost in F6. However, 

the reason for the reduction of the computation cost in F6 is be- 

cause the crowded information of obtained results in Phase 1 is 

unsatisfied, and Phase 2 of MOEA/D-TPN is not executed. This ex- 

plains why its HV-metric values of F6 is much worse than those of 

iMOEA/D. This is also reflected in Fig. 4 a. Moreover, the diversity 

of weight vectors with N = 50 is often less than that with N = 100, 
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Table 2 

Comparison of statistical results of iMOEA/D and MOEA/D-TPN for F5 and F6. 

Metric Method F5 F6 

HV MOEA/D-TPN ( N = 50) Mean 3.8259 3.3190 

Worst 3.8259 3.3188 

Best 3.8260 3.3191 

Std. 0.0 0 0 0 0.0 0 01 

MOEA/D-TPN ( N = 100) Mean 3.8271 3.3221 

Worst 3.8271 3.3219 

Best 3.8272 3.3223 

Std. 0.0 0 0 0 0.0 0 01 

iMOEA/D Mean 3.8261 3.3233 

Worst 3.8260 3.3232 

Best 3.8261 3.3233 

Std. 0.0 0 0 0 0.0 0 0 0 

IGD MOEA/D-TPN ( N = 50) Mean 0.0010 0.0212 

Worst 0.0011 0.0221 

Best 0.0 0 09 0.0207 

Std. 0.0 0 01 0.0 0 04 

MOEA/D-TPN ( N = 100) Mean 0.0 0 09 0.0216 

Worst 0.0010 0.0220 

Best 0.0 0 09 0.0201 

Std. 0.0 0 0 0 0.0 0 04 

iMOEA/D Mean 0.0 0 09 0.0118 

Worst 0.0010 0.0125 

Best 0.0 0 08 0.0111 

Std. 0.0 0 0 0 0.0 0 04 

Computational cost MOEA/D-TPN ( N = 50) FEs 22,337 13,667 

Time (min) 0.3382 0.1697 

MOEA/D-TPN ( N = 100) FEs 39,524 21,512 

Time (min) 0.6755 0.2671 

iMOEA/D FEs 19,067 19,537 

Time (min) 0.2641 0.2426 

(a) (b) (c)

Fig. 4. Illustration of the Pareto fronts obtained by MOEA/D-TPN ( N = 50,100) and iMOEA/D for F6. 

which can lead to the reduction of the quality of solutions ob- 

tained by MOEA/D-TPN. 

In contrast to MOEA/D-TPN with N = 50, for the test F5, the 

HV-metric values obtained by MOEA/D-TPN with N = 100 are much 

better than those of iMOEA/D, which is as an obvious result of the 

increased number of Pareto solutions. Nevertheless, the computa- 

tional cost is mostly doubled because of the double growth of the 

population when both phases are executed. Like the case of N = 50, 

for the test F6, MOEA/D-TPN with N = 100 also terminates at Phase 

1. Thus, its HV-metric values are still worse than those of iMOEA/D. 

In addition, the computational cost in this case is still higher com- 

pared to those of iMOEA/D. Also, for the test F6, although the di- 

versity of weight vectors is the same, the quality of IGD-metric val- 

ues of MOEA/D-TPN is still bigger than those of iMOEA/D. This may 

be due to the efficiency of using the nadir point z nad in the second 

phase of iMOEA/D. 

From the above evaluation results, it can be concluded that 

the incorporation of the two recent features (i.e. an adaptive re- 

placement strategy and a stopping criterion), and the idea of using 

two different subsets of weight vectors are helpful and meaningful 

compared to MOEA/D-TPN. To further evaluate the performance of 

iMOEA/D, MOEA/D-TPN is also used to solve the remaining test in- 

stances together with NSGA-II and MOEA/D, and for a consistent 

comparison, the initial populations ( N ) of all the methods are set 

to be the same. 

5.1.4. Experimental results 

In this part, iMOEA/D is tested on all the remaining functions, 

and the obtained statistical results are presented in Table 3 in com- 

parison with those gained by NSGA-II, MOEA/D and MOEA/D-TPN. 

By taking a close look at the HV-metric values in Table 3 , it can 

be seen that MOEA/D-TPN is the best method, except for the F6 

metrics. However, it should be noted that for F1-F5 and F7, both 

phases of MOEA/D-TPN are carried out with the same N . Thus, the 

obtained optimal solutions are mostly doubled, and as a result, the 

HV-metric values are obviously much better. The HV-metric val- 

ues for F6 are almost the same with those of MOEA/D and worse 

than those of iMOEA/D and NSGA-II, which are because only the 

first phase of MOEA/D-TPN is executed. The comparison between 

iMOEA/D, MOEA/D and NSGA-II indicates that iMOEA/D outper- 
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Table 3 

Statistical results for the benchmark tests. 

Metric Method F1 F2 F3 F4 F5 F6 F7 

HV NSGA-II Mean 1.6317 3.9422 3.4820 3.8957 3.8250 3.3226 3.6787 

Worst 1.5441 3.9334 3.4739 3.8950 3.8245 3.3223 3.6783 

Best 1.6833 3.9446 3.4855 3.8962 3.8254 3.3230 3.6789 

Std. 0.0388 0.0027 0.0035 0.0 0 03 0.0 0 03 0.0 0 02 0.0 0 01 

MOEA/D Mean 1.6123 3.9462 3.4925 3.8949 3.8247 3.3221 3.6787 

Worst 1.6076 3.9458 3.4906 3.8948 3.8246 3.3221 3.6786 

Best 1.6199 3.9464 3.4933 3.8949 3.8249 3.3222 3.6787 

Std. 0.0029 0.0 0 02 0.0 0 07 0.0 0 0 0 0.0 0 01 0.0 0 0 0 0.0 0 0 0 

MOEA/D-TPN Mean 1.8055 3.9486 3.4958 3.8985 3.8271 3.3221 3.6798 

Worst 1.7919 3.9484 3.4937 3.8985 3.8271 3.3219 3.6798 

Best 1.8111 3.9488 3.4966 3.8986 3.8272 3.3223 3.6799 

Std. 0.0041 0.0 0 01 0.0 0 08 0.0 0 0 0 0.0 0 0 0 0.0 0 01 0.0 0 0 0 

iMOEA/D Mean 1.7793 3.9480 3.4926 3.8969 3.8261 3.3233 3.6784 

Worst 1.7720 3.9475 3.4901 3.8968 3.8260 3.3232 3.6783 

Best 1.7877 3.9481 3.4934 3.8970 3.8261 3.3233 3.6784 

Std. 0.0039 0.0 0 01 0.0 0 09 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 0.0 0 0 0 

IGD NSGA-II Mean 0.0308 0.0069 0.0105 0.0042 0.0012 0.0126 0.0 0 07 

Worst 0.0446 0.0114 0.0157 0.0053 0.0014 0.0177 0.0 0 09 

Best 0.0201 0.0041 0.0075 0.0027 0.0 0 09 0.0034 0.0 0 05 

Std. 0.0064 0.0023 0.0023 0.0 0 05 0.0 0 01 0.0037 0.0 0 01 

MOEA/D Mean 0.0047 0.0011 0.0018 0.0011 0.0 0 08 0.0217 0.0 0 05 

Worst 0.0056 0.0016 0.0022 0.0012 0.0 0 09 0.0222 0.0 0 06 

Best 0.0041 0.0010 0.0015 0.0011 0.0 0 07 0.0213 0.0 0 04 

Std. 0.0 0 04 0.0 0 02 0.0 0 02 0.0 0 0 0 0.0 0 0 0 0.0 0 02 0.0 0 0 0 

MOEA/D-TPN Mean 0.0065 0.0014 0.0016 0.0035 0.0 0 09 0.0216 0.0 0 06 

Worst 0.0077 0.0027 0.0020 0.0035 0.0010 0.0220 0.0 0 06 

Best 0.0056 0.0010 0.0014 0.0034 0.0 0 09 0.0201 0.0 0 05 

Std. 0.0 0 05 0.0 0 04 0.0 0 01 0.0 0 0 0 0.0 0 0 0 0.0 0 04 0.0 0 0 0 

iMOEA/D Mean 0.0065 0.0010 0.0020 0.0035 0.0 0 09 0.0118 0.0 0 05 

Worst 0.0073 0.0012 0.0033 0.0037 0.0010 0.0125 0.0 0 06 

Best 0.0057 0.0010 0.0017 0.0034 0.0 0 08 0.0111 0.0 0 04 

Std. 0.0 0 04 0.0 0 01 0.0 0 03 0.0 0 01 0.0 0 0 0 0.0 0 04 0.0 0 0 0 

Computat-ional cost NSGA-II FEs 71,417 88,443 83,253 44,483 75,247 57,287 57,033 

Time (min) 0.8427 1.2515 0.8603 0.4196 0.7851 0.8631 0.5931 

MOEA/D FEs 101,0 0 0 101,0 0 0 101,0 0 0 32,151 24,997 27,421 25,434 

Time (min) 1.2167 1.2667 1.0667 0.3342 0.2887 0.3394 0.2728 

MOEA/D-TPN FEs 170,191 88,845 162,596 42,621 39,524 21,512 54,068 

Time (min) 2.2804 1.1034 1.7003 0.6545 0.6755 0.2671 0.5831 

iMOEA/D FEs 82,597 63,950 82,700 20,557 19,067 19,537 24,572 

Time (min) 1.1067 0.7942 0.8648 0.3157 0.2641 0.2426 0.2650 

forms NSGA-II and MOEA/D on F1-F6, while NSGA-II and MOEA/D 

are better on F7. From the comparison of IGD-metric values, it can 

be seen that iMOEA/D performs slightly better than MOEA/D-TPN 

and both somewhat worse than MOEA/D, but all three methods 

are significantly better than NSGA-II. Regarding the computational 

cost (in terms of time in minute (min) and the number of function 

evaluations (FEs)), however, it can be observed that iMOEA/D is the 

best method with the smallest amount of FEs for all the tests. The 

total FEs of iMOEA/D for F1-F7 is 312,980 which is almost 46% less 

than those of MOEA/D-TPN (579,357), nearly 25% less than those 

of MOEA/D (413,003), approximately 35% less than those of NSGA- 

II (477,163). By looking at the standard deviation (Std.), it is ob- 

served that for all the investigated benchmark tests the standard 

deviations of iMOEA/D, MOEA/D-TPN and MOEA/D are quite small, 

while those of NSGA-II are often larger. 

Based on the obtained statistical results, it can be concluded 

that iMOEA/D is more effective than NSGA-II and MOEA/D in terms 

of the distribution of optimal solutions over the PFs and the com- 

putational cost. Compared with MOEA/D-TPN, iMOEA/D performs 

worse with respect to HV-metric values, but significantly better 

in terms of the computational cost and slightly better concerning 

IGD-metric values. From the results, it can also be recognized that 

iMOEA/D is a proper method that can balance effectively between 

the quality of solutions and the computational cost. 

Corresponding to the results given in Table 3 , the PFs acquired 

by the methods are plotted in Fig. 5 . From the figures, it can be 

seen that NSGA-II, MOEA/D-TPN and iMOEA/D have the ability to 

give a better distribution of solutions on complicated PFs com- 

pared to MOEA/D. However, when taking a closer look at the fig- 

ures, it can be observed that the quality of the solutions on the 

PFs obtained by MOEA/D, MOEA/D-TPN and iMOEA/D is much bet- 

ter than those obtained by NSGA-II. Here, it is also recognized that 

MOEA/D-TPN has more optimal solutions on the PFs at F1-F5 and 

F7, while those of F6 are almost the same with those of MOEA/D. 

These illustrations again reflect the HV- and IGD-metric values pro- 

vided in Table 3 . 

5.2. Structural optimization problems 

In this section, iMOEA/D is applied to deal with three optimal 

design problems of truss structures. Since the computational cost 

of MOEA/D-TPN has been demonstrated to be huge in the previ- 

ous section, which is a large restriction for real-word engineer- 

ing applications, only MOEA/D and NSGA-II are applied to solve 

these problems for comparison purposes. The problems include 

a 15-bar planar truss ( Tang, Tong, & Gu, 2005 ), a 72-bar space 

truss ( Wu & Chow, 1995 ), and a 160-bar space truss ( Groenwold & 

Stander, 1997 ) as shown in Figs. 6 –8 , respectively. These are struc- 

tural optimization problems which are widely used to measure the 

applicability of single-objective optimization methods in the liter- 

ature. 

In this study, the above problems are reformulated as bi- 

objective design optimization problems. For all of the problem- 

cases considered, the aim of the objective functions is to minimize 
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Fig. 5. Pareto fronts obtained by NSGA-II, MOEA/D, MOEA/D-TPN and iMOEA/D for F1-F7. 
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Fig. 5. Continued 
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Fig. 5. Continued 
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Fig. 5. Continued 

Fig. 6. The 15-bar planar truss. 

the overall weight of the structures and the maximum displace- 

ment at the truss nodes. The design variables and the constraints 

for each problem are described as follows: 

• The 15-bar planar truss: The design problem has 8 continu- 

ous design variables of node coordinates and 15 discrete de- 

sign variables of cross-sectional areas. All members are sub- 

jected to the stress limitation of ± 25 (ksi). The details of the 

input data for this problem can be found in Ho-Huu, Nguyen- 

Thoi, Nguyen-Thoi, and Le-Anh (2015 ) and Rahami, Kaveh, and 

Gholipour (2008 ). 
• The 72-bar space truss: The structure has 72 members that 

are divided into 16 groups corresponding to 16 design vari- 

ables. The design variables are discrete values and selected from 

an available set. This structure was designed for two separate 

loading conditions and subjected to design constraints which 

consist of the stress limitations of ± 25,0 0 0 psi and a restric- 

Fig. 7. The 72-bar space truss. 

tion for all nodal displacements of ± 0.25 in. The input data for 

the problem is available in Ho-Huu, Nguyen-Thoi, Vo-Duy, and 

Nguyen-Trang (2016 ) and Kaveh and Mahdavi (2014 ). 
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Fig. 8. The 160-bar space truss. 

• The 160-bar space truss: The 160 bars of the truss are con- 

nected to 38 independent discrete design variables. The struc- 

ture is designed for eight independent load cases, and the de- 

sign constraints are considered for compression members. The 

details for these input data are given in Groenwold and Stander 

(1997 ) and Ho-Huu et al. (2016 ). 

In order to handle constraints and discrete design variables for 

the problems in this section, a constraint-handling technique re- 

cently proposed in Jan and Khanum (2013 ), and a rounding tech- 

nique in Kaveh and Mahdavi (2014 ) are utilized, respectively. All 

three problems are run 20 independent times with a population 

size of 80. Due to the exact solutions for these problems not being 

available, a set of all non-dominated solutions obtained by three 

methods after 20 independent runs is used as an approximate PF 

for evaluating the IGD metric. To validate the reliability of the used 

methods, some obtained solutions on PFs are also compared to 

those acquired by single-objective optimization methods in the lit- 

erature. 

Table 4 provides the statistical results obtained by the meth- 

ods. At first glance, it can be seen that the acquired results show 

the same trend for all the problems. Specifically, in a comparison 

of the HV-metric values, it is observed that iMOEA/D is the best 

method in all statistical indices including the worst, best and stan- 

dard deviation (Std.) values, and NSGA-II is the second one. This 

implies that iMOEA/D shows a considerable improvement on the 

distribution of solutions over a PF compared with MOEA/D and 

NSGA-II. Nevertheless, this order is slightly changed in terms of the 

IGD-metric values, where the order rank is MOEA/D, iMOEA/D and 

Fig. 9. Pareto fronts with the largest HV among 20 runs for the 15-bar planar truss. 

Fig. 10. Pareto fronts with the largest HV among 20 runs for the 72-bar space truss. 

NSGA-II for all the statistical indexes. This means that the qual- 

ity of solutions gained by MOEA/D is often better than those of 

iMOEA/D and NSGA-II. However, this difference between MOEA/D 

and iMOEA/D is small, while it is quite large when comparing with 

those of NSGA-II. 

In terms of computational cost, again iMOEA/D is the best 

method with the lowest values of time and FEs, while MOEA/D is 

better than NSGA-II. The FEs of iMOEA/D is around half to three- 

quarters of those of NSGA-II, and around three-quarters of those of 

MOEA/D. 

From the above results, it can be concluded that with the new 

features on MOEA/D, iMOEA/D has a significant improvement on 

the performance of the algorithm, particularly in the distribution 

of solutions over PFs and the computational cost. 

The PFs obtained by the methods for all considered problems 

are illustrated in Figs. 9 –11 , respectively. As shown in the figures, 

the design problems have complicated PFs with a long tail at both 

ends, and the distributions of solutions acquired by the methods 

are quite different. The PFs of NSGA-II are often wider than those 

of MOEA/D and iMOEA/D. Their solution quality, however, is not 

as good as those of MOEA/D and iMOEA/D. A comparison between 
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Table 4 

Statistical results for the structural optimization problems. 

Metric Method 15-bar truss 72-bar truss 160-bar truss 

HV NSGA-II Mean 1.3909 0.6413 5.2517 

Worst 1.3880 0.6405 5.2352 

Best 1.3929 0.6419 5.2623 

Std. 0.0012 0.0 0 04 0.0066 

MOEA/D Mean 1.3901 0.6399 5.2434 

Worst 1.3875 0.6380 5.2109 

Best 1.3920 0.6411 5.2664 

Std. 0.0015 0.0 0 09 0.0186 

iMOEA/D Mean 1.3981 0.6442 5.3039 

Worst 1.3970 0.6439 5.2914 

Best 1.3989 0.6445 5.3115 

Std. 0.0 0 06 0.0 0 02 0.0054 

IGD NSGA-II Mean 4.5106 14.4666 12.2144 

Worst 14.6534 20.6656 17.8192 

Best 1.8665 9.2638 8.3395 

Std. 3.1474 2.1842 3.0719 

MOEA/D Mean 0.3284 2.5892 1.2162 

Worst 0.6924 4.4179 2.0974 

Best 0.2259 1.3245 0.3566 

Std. 0.1097 0.9183 0.5282 

iMOEA/D Mean 1.2766 6.1325 5.1365 

Worst 2.1820 12.3974 10.1472 

Best 0.3817 2.5065 1.5691 

Std. 0.4866 2.4370 2.2344 

Computational cost NSGA-II FEs 80,0 0 0 80,0 0 0 80,0 0 0 

Time (min) 1.6533 4.5233 65.5117 

MOEA/D FEs 68,351 57,371 72,300 

Time (min) 1.1636 3.5033 38.1137 

iMOEA/D FEs 40,035 40,803 64,397 

Time (min) 0.8434 2.2558 32.3817 

Fig. 11. Pareto fronts with the largest HV among 20 runs for the 160-bar space 

truss. 

MOEA/D and iMOEA/D shows that iMOEA/D always offers a better 

enhancement on the spread of solutions over the PFs. 

The comparison of the obtained solutions with those of single- 

objective optimization approaches in the literature is presented in 

Table 5 , where the results of iMOEA/D, MOEA/D, and NSGA-II are 

extracted from the end of the second objective, i.e. maximum dis- 

placement as shown in Figs. 9 –11 , respectively. From the table, the 

results indicate that the obtained solutions are reasonable and reli- 

able. Although there is a difference between solutions, this can be 

due to the different purposes of the employed optimization meth- 

ods. In fact, the single-objective optimization methods only focus 

on one objective, while the multi-objective optimization methods 

concentrate on the trade-off between two objectives. This is also 

shown by particular values of the objectives in the table. For ex- 

ample, in the 15-bar truss problem, the method in Ho-Huu et al. 

(2015 ) gives a weight of 74.6818 (lb) with a corresponding max- 

imum displacement of 4.2044 (in), whilst iMOEA/D gives a larger 

weight of 87.0909 (lb), but with a smaller maximum displacement 

of 3.6568 (in). 

6. Conclusion 

In this work, a newly improved version of MOEA/D named 

iMOEA/D is developed for solving BOPs with complicated PFs. In 

iMOEA/D, the set of the weight vectors of MOEA/D is numbered 

and partitioned into two subsets: one set with odd-weight vectors 

and the other with even ones. Then, a two-phase search strategy 

based on the MOEA/D framework is developed to optimize their 

corresponding populations. In the first phase, the population of 

the set of odd-weight vectors is optimized by using the Tcheby- 

cheff function with the ideal point z ∗. After that, from the set of 

obtained solutions, the nadir point z nad is determined, and the 

Tchebycheff function with this point is applied for the set of even- 

weight vectors in the second phase. Moreover, the performance of 

the iMOEA/D is also further improved by the integration of two re- 

cent developments consisting of an adaptive replacement strategy 

and a stopping criterion. 

The reliability, efficiency and the applicability of iMOEA/D are 

evaluated through the seven existing benchmark test functions 

with complicated PFs and three optimal design problems of truss 

structures. The obtained results from the benchmark test func- 

tions indicate that iMOEA/D is more competitive than MOEA/D, 

MOEA/D-TPN and NSGA-II. Although MOEA/D-TPN and NSGA-II 

provide PFs with better spread compared with iMOEA/D and 

MOEA/D, the computational cost of MOEA/D-TPN is significantly 

larger than that of iMOEA/D and MOEA/D, while the quality of op- 

2

26 PAPER 2.1



V. Ho-Huu et al. / Expert Systems With Applications 92 (2018) 430–446 445 

Table 5 

Comparison with single objective optimization designs. 

Problem Method Weight Maximum displacement 

15-bar truss Tang et al. (2005 ) 79.820 (lb) 4.2314 (in) 

Rahami et al. (2008 ) 76.685 (lb) 4.1161 (in) 

Ho-Huu et al. (2015 ) 74.681 (lb) 4.2044 (in) 

NSGA-II 82.159 (lb) 3.8358 (in) 

MOEA/D 84.163 (lb) 3.7259 (in) 

iMOEA/D 87.090 (lb) 3.6568 (in) 

72-bar truss Wu and Chow (1995 ) 427.203 (lb) 0.5996 (in) 

Kaveh et al. (2009 ) 393.380 (lb) 0.2501 (in) 

Ho-Huu et al. (2016 ) 389.334 (lb) 0.2496 (in) 

NSGA-II 401.830 (lb) 0.2452 (in) 

MOEA/D 409.254 (lb) 0.2437 (in) 

iMOEA/D 402.486 (lb) 0.2404 (in) 

160-bar truss Groenwold et al. (1997 ) 1359.781 (kg) 5.6092 (cm) 

Capriles, Fonseca, Barbosa, and Lemonge (2007) 1348.905 (kg) 5.6525 (cm) 

Ho-Huu et al. (2016) 1336.634 (kg) 5.6814 (cm) 

NSGA-II 1412.365 (kg) 5.2638 (cm) 

MOEA/D 1336.794 (kg) 5.6814 (cm) 

iMOEA/D 1396.266 (kg) 5.3089 (cm) 

timal solutions of NSGA-II is not as good as that of iMOEA/D and 

MOEA/D. The obtained results from the practical applications show 

that iMOEA/D outperforms MOEA/D and NSGA-II, and is a good 

candidate for solving these kinds of problems. 

Although iMOEA/D has shown a considerable improvement in 

the performance of the algorithm, it is currently still limited to 

bi-objective optimization problems. For future work, therefore, the 

idea of the division of weight vectors into two subsets (i.e. even 

and odd set) should be investigated and extended for optimization 

problems with more than two objectives. However, to implement 

this, it should be noted that the distribution of the divided sets 

should be equal over the weight space, which calls for consider- 

able research efforts in the future. Moreover, although iMOEA/D 

obtains significant achievements in terms of computational cost 

compared to the compared methods, its total number of function 

evaluations is still high. This will be a major restriction when it is 

extended and applied to different large problems in civil engineer- 

ing like frames, composite beams and plates, and for various ap- 

plications in aerospace engineering, such as the optimal design of 

departure/arrival routes of aircraft and runway allocations, where 

the computational cost for each function evaluation is often quite 

large. Thus, in the future, approximate models like artificial neu- 

ral network (ANN), adaptive neuro fuzzy inference system (ANFIS) 

( Ramasamy & Rajasekaran, 1996; Rodger, 2014a, 2014b ) can also 

be developed and applied for approximating objective functions to 

assist iMOEA/D in solving large scale optimization problems in re- 

ality. 

Furthermore, although the multi-objective optimization prob- 

lems of truss structures have been solved, suitable criteria for se- 

lecting a good candidate from PFs are still an open question. There- 

fore, studies which aim to help engineering designers to pick a 

reasonable solution from PFs will also be a potential research di- 

rection for researchers in the future. 
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The Matlab source codes of MOEA/D, iMOEA/D and the truss 
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1. Introduction 

With the substantial contribution of aviation to the development of business, communication and tourism 
globally, the air transport industry is expected to grow rapidly in the coming years. However, one of the 
considerable concerns which policymakers are facing with the extension of aircraft and airport operations is the 
protest of near-airport communities. This is because of the significant increase in negative impacts on the 
environment such as noise and pollutant emissions (Hartjes et al., 2014), which directly affect the daily life of 
communities surrounding airports. Therefore, to grow the air transport sustainably, it is crucial to figure out feasible 
solutions for decreasing its adverse influences. One of the potential options is the optimal design of new terminal 
routes (i.e. departure and arrival routes), which has been widely studied during the past few years (Visser and 
Wijnen, 2001).  

Research on optimization of environmentally friendly terminal routes has obtained significant achievements, and 
different approaches have been proposed in recent years. Hartjes et al. (2010) developed a trajectory optimisation 
tool NOISHHH including a noise model, an emissions inventory model, a geographic information system and a 
dynamic trajectory optimisation algorithm to generate environmentally optimal departure trajectories based on area 
navigation. Later, this tool was also used for the optimal design of area navigation noise abatement approach 
trajectories (Braakenburg et al., 2011; Hogenhuis et al., 2011). Prats et al. (2010a, 2010b) applied a lexicographic 
optimization technique to deal with aircraft departure trajectories for minimizing noise annoyance. Torres et al. 
(2011) proposed a non-gradient optimizer called multi-objective mesh adaptive direct search (multi-MADS) to 
optimize departure trajectories for NOx emissions and noise at a single measurement point. Recently, Hartjes and 
Visser (2016) employed an elitist non-dominated sorting genetic algorithm (NSGA-II) combined with a novel 
trajectory parameterization technique for the optimal design of departure trajectories with environmental criteria.  

Based on the obtained results from Hartjes and Visser (2016); and Torres et al. (2011), it is evident that the use of 
non-gradient multi-objective optimization methods is one of the efficient approaches for the optimal design of 
terminal routes. These methods do not only help find out a set of non-dominate optimal solutions, but also help 
avoid the limitations of gradient methods in coping with discontinuous problems and integer or/and discrete design 
variables. Up to now, besides multi-MADS and NSGA-II, there are various multi-objective optimization algorithms 
available in literature, which may also be potential candidates for solving these kinds of problems. However, as yet, 
they have not been properly investigated. Among them, MOEA/D recently emerged as a powerful method, and has 
received much attention from researchers. Compared to NSGA-II, MOEA/D is better in terms of both the quality of 
solutions and the convergence rate (Li and Zhang, 2009), which are promising features for solving large-scale real-
world problems. Nevertheless, the application of MOEA/D for real engineering problems is still limited, especially 
in the domain of aerospace engineering. This paper, therefore, aims to apply MOEA/D to the optimization of noise 
abatement aircraft terminal routes. In order to make the applied algorithm more efficient, advantageous features 
recently developed for MOEA/D are also integrated into the proposed version. They include an adaptive 
replacement strategy (Wang et al., 2016), a stopping condition criterion (Abdul Kadhar and Baskar, 2016), and a 
constraint-handling technique (Jan and Khanum, 2013). Moreover, to reduce redundant evaluations of infeasible 
solutions derived from operational constraints during different flight phases, the new trajectory parameterization 
technique in Hartjes and Visser (2016) is also employed. The robustness and reliability of the proposed approach are 
validated through two numerical examples comprising of a departure route and an arrival route at Rotterdam The 
Hague Airport. 

 
Nomenclature 

𝐷𝐷  drag force  
𝑓𝑓𝑓𝑓  fuel flow 
𝑔𝑔0  gravitational acceleration 
ℎ  altitude 
𝑠𝑠  along-track distance 
𝑇𝑇  thrust 
𝑉𝑉EAS equivalent airspeed 
𝑉𝑉TAS true airspeed 
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𝑊𝑊  aircraft weight 
  flight path angle 
𝜌𝜌  ambient air density 
𝜌𝜌0  air density at sea level 

2. Aircraft model 

In this study, an intermediate point‐mass model is used. This model relies on several assumptions (Hartjes and 
Visser, 2016): 1) there is no wind present, 2) the Earth is flat and non-rotating, 3) the flight is coordinated. 
Furthermore, the flight path angle is considered sufficiently small ( < 150). With these assumptions, the equations 
of motion can be written as: 

𝑉̇𝑉TAS = 𝑔𝑔0 ∙ ((𝑇𝑇 − 𝐷𝐷) 𝑊𝑊⁄ − sin) 
𝑠̇𝑠 = 𝑉𝑉TAS ∙ cos 
ℎ̇ = 𝑉𝑉TAS ∙ sin 
𝑊̇𝑊 = −𝑓𝑓𝑓𝑓 ∙ 𝑔𝑔0 

(1) 

where 𝑉̇𝑉TAS, 𝑠̇𝑠, ℎ̇ and 𝑊̇𝑊 are the derivatives of true airspeed, distance flown, altitude and aircraft weight, respectively; 
and T, D, and 𝑓𝑓𝑓𝑓 are, respectively, thrust, drag, and fuel flow. 

At a condition of low altitude and speed, equivalent airspeed VEAS can serve as a proxy for an indicated airspeed, 
and can be derived from the true airspeed by the following relationship:  

𝑉𝑉EAS = 𝑉𝑉TAS ∙ √𝜌𝜌 𝜌𝜌0⁄  (2) 

where 𝜌𝜌 is the ambient air density, and 𝜌𝜌0 is the air density at sea level. 
By applying Eq. (2), the first equation in Eq. (1) can be rewritten as follows: 

𝑉̇𝑉EAS = [𝑔𝑔0 ∙ ((𝑇𝑇 − 𝐷𝐷) 𝑊𝑊⁄ − sin) + 1 (2𝜌𝜌)⁄ ∙ d𝜌𝜌 dℎ ∙⁄ 𝑉𝑉TAS
2 ∙ sin𝛾𝛾] ∙ √𝜌𝜌 𝜌𝜌0⁄  (3) 

where d𝜌𝜌 dℎ⁄   is the derivative of the ambient air density with respect to altitude.  
The aircraft performance model has two control variables, viz. the flight path angle  and thrust 𝑇𝑇, and four state 

variables 𝐱𝐱 = [𝑉𝑉EAS ℎ 𝑠𝑠 𝑊𝑊]. 

3. Trajectory parameterization  

With the effort of reducing the number of model evaluations of infeasible solutions during the optimization 
process, Hartjes and Visser (2016) proposed a novel trajectory parameterization which can diminish significantly the 
number of operational constraints in the problem formulation. The technique divides a trajectory into two separate 
parts, a ground track and a vertical path.  

For the ground track generation, a modern navigation technology known as required navigation performance 
(RNP) is employed. In the RNP, track-to-a-fix (TF) and radius-to-a-fix (RF) leg types are often used for 
constructing a flight path between waypoints. This is because of their abilities in avoiding noise-sensitive areas and 
minimizing flight track dispersion. By using these two segment types, the ground track can be generated by using 
only straight legs, and constant radius turns as shown in Fig. 1. In this figure, the optimal design variables include 
L1, L2, L3, R1, R2, R3, 1, and 2, while L4 and 3 are defined based on geometric relationships. 
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Fig. 1. Ground track parameterization. 

For the vertical path, the vertical profile is synthesized based on flight procedures derived from ICAO (2006). For 
instance, aircraft are not allowed to descend and/or decelerate during departure and ascend and/or accelerate during 
arrival. In order to parameterize this part, the trajectory is split into a number of segments. In each segment, two 
control inputs (i.e. flight path angle setting 𝛾𝛾𝑛𝑛,𝑖𝑖 and throttle setting ) are kept constant, and they are either directly 
assigned based on operational requirements or designated as optimal design variables. For each segment, the flight 
path angle 𝛾𝛾𝑖𝑖 and thrust 𝑇𝑇𝑖𝑖  are set by adjusting their normalized control optimization parameters 𝛾𝛾𝑛𝑛,𝑖𝑖(0 ≤ 𝛾𝛾𝑛𝑛,𝑖𝑖 ≤ 1), 
and 𝑛𝑛,𝑖𝑖(0 ≤ 𝑛𝑛,𝑖𝑖 ≤ 1), respectively, as follows:  

𝛾𝛾𝑖𝑖 = (𝛾𝛾max,𝑖𝑖 − 𝛾𝛾min,𝑖𝑖)𝛾𝛾𝑛𝑛,𝑖𝑖 + 𝛾𝛾min,𝑖𝑖 (4) 

𝑇𝑇𝑖𝑖 = (𝑇𝑇max,𝑖𝑖 − 𝑇𝑇min,𝑖𝑖)𝑛𝑛,𝑖𝑖 + 𝑇𝑇min,𝑖𝑖 (5) 

where the subscript 𝑛𝑛  presents a normalized control optimization parameter. The subscripts max, 𝑖𝑖  and min, 𝑖𝑖 
indicate the maximum and minimum allowable values of the flight path angle and thrust for ith segment, which are 
specified based on the features of flight procedures.  

In the departure procedure, 𝑇𝑇max  is set to be either maximum take-off thrust (TO) or maximum climb thrust 
(TCL), depending on the flight stage. In addition, since descending is not permitted in this phase (ℎ̇ ≥ 0), the 
minimum flight path angle is set to zero (𝛾𝛾min = 0). Furthermore, 𝛾𝛾max can be defined from the first equation in Eq. 
(3) based on an assumption that an aircraft is flying with a maximum thrust at a constant speed (𝑉̇𝑉EAS =  0). From 
this equation, 𝑇𝑇min  can also be determined when a minimum thrust is required to maintain the aircraft at constant 
speed (𝑉̇𝑉EAS = 0). These formulas are derived as follows: 

𝛾𝛾max = sin−1[(−2 ∙ 𝜌𝜌 ∙ 𝑔𝑔0 ∙ (𝑇𝑇max − 𝐷𝐷)) (𝑊𝑊(d𝜌𝜌 dℎ ∙⁄ 𝑉𝑉TAS
2 − 2 ∙ 𝜌𝜌 ∙ 𝑔𝑔0))⁄ ] (6) 

         𝑇𝑇min = 𝐷𝐷 −  (𝑊𝑊 (2 ∙ 𝜌𝜌 ∙ 𝑔𝑔0)⁄ ∙ d𝜌𝜌 dℎ ∙⁄ 𝑉𝑉TAS
2 ∙ sin𝛾𝛾) + 𝑊𝑊 ∙ sin 𝛾𝛾  (7) 

In the arrival procedure, the minimum thrust 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, called an idle thrust is derived for each specific aircraft model, 
whilst the maximum flight path angle is set to zero (𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 = 0) because ascending is not allowed in this phase 
( ℎ̇ ≤ 0 ). In addition, by assuming that the aircraft can only maintain its speed during descending when the 
maximum thrust is applied, 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  can be determined by the same formula in Eq. (7) with a replacement of 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  by 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 . The minimum flight path angle 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚  is evaluated with respect to the minimum thrust 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  by the same 
formula in Eq. (6) with a replacement of 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  and 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 by 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  and 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚. 

4. Problem statement  

The aim of the study is to optimally design terminal routes which can help to reduce the negative impact of 
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aircraft noise in near-airport communities. However, purely focussing on noise impact may lead to a considerable 
increase in fuel consumption which is against the interests of stakeholders like airline companies. To take into 
account this issue, two conflicting objectives (one related to noise and the other related to fuel consumption) are 
therefore considered in this study.  

While the fuel consumption can easily be measured by the change of the aircraft weight from Eq. (1), noise 
impact is more difficult to quantify. To assess the influence of aircraft noise on near-airport communities, the 
percentage of people who are likely to be awakened due to aircraft noise exposure is employed in this paper. This 
criterion was proposed by the Federal Interagency Committee on Aviation Noise (FICAN) in 1997 and defined as 
follows (FICAN, 1997): 

%𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.0087 ∙ (𝑆𝑆𝑆𝑆𝑆𝑆indoor − 30)1.79 (8) 

where %𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the maximum percentage of awakened people owing to noise of an aircraft. 𝑆𝑆𝑆𝑆𝑆𝑆indoor is the 
indoor sound exposure level (dBA) and is evaluated by using a replica of the integrated noise model (INM) (Hartjes 
and Visser, 2016). Because SEL calculated from INM represents an outdoor value, an amount of 20.5 dB is 
subtracted to obtain 𝑆𝑆𝑆𝑆𝑆𝑆indoor, accounting for the sound absorption of an average house (Visser and Wijnen, 2001).  

With the above definitions of two objectives, the optimization problem is formulated as follows: 

  min𝐱𝐱,𝛄𝛄𝑛𝑛,𝑛𝑛         {number of awakening, fuel burn} 
s. t.                      ℎ = ℎfinal, 𝑉𝑉EAS = 𝑉𝑉EAS_final 

(9) 

where 𝒙𝒙 is the vector of ground track variables. 𝜸𝜸𝑛𝑛 and 𝑛𝑛 are the vectors of the flight path angle setting and throttle 
setting variables on segments. The parameters ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  are, respectively, the final altitude and 
equivalent airspeed of the flight procedures.  

5. MOEA/D algorithm 

Many real-world problems present themselves as complex optimization problems with more than two conflicting 
objectives and this has given rise to the birth of various multi-objective optimization methods. Among the various 
different algorithms, the MOEA/D method, firstly developed by Zhang and Li (2007), has been emerged as a 
promising, potential method for solving complicated multi-objective optimization problems (MOPs) (Trivedi et al., 
2016). In MOEA/D, the MOPs are transformed into a set of single optimization sub-problems by applying 
decomposition approaches, and then evolutionary optimization methods are applied to optimize these sub-problems 
simultaneously. In recent years, MOEA/D has been applied in different fields such as power system transmission 
and distribution networks (Biswas et al., 2017), and wireless sensor networks (Konstantinidis and Yang, 2012); and 
various versions have been developed such as MOEA/D-DE (Li and Zhang, 2009), MOEA/D-DRA (Zhang et al., 
2009), and MOEA/D-GR (Wang et al., 2016). Although there are many variants of MOEA/D available in literature, 
a powerful single version of MOEA/D that combines different advantages of current versions is not yet in place. 
With the aim of developing an efficient algorithm for the presented problem, therefore, an MOEA/D version which 
is the combination of MOEA/D-DE (Li and Zhang, 2009) with an adaptive replacement strategy (Wang et al., 
2016), a stopping condition criterion (Abdul Kadhar and Baskar, 2016) and a constraint-handling technique (Jan and 
Khanum, 2013) is developed in this study. The general framework of the algorithm is presented in Algorithm 1. For 
more detail, readers are encouraged to refer to Refs. (Abdul Kadhar and Baskar, 2016; Ho-Huu et al., 2018; Jan and 
Khanum, 2013; Li and Zhang, 2009; Wang et al., 2016). 

Algorithm 1. Pseudo-code of MOEA/D algorithm 
Input:  

• A multi-objective optimization problem as Eq. (9);  
• A stopping criterion; 
• 𝑁𝑁: number of sub-problems; 
• 𝐰𝐰𝑖𝑖 = (𝑤𝑤1

𝑖𝑖, . . , 𝑤𝑤𝑚𝑚
𝑖𝑖 ), 𝑖𝑖 = 1, … , 𝑁𝑁: a set of 𝑁𝑁 weight vectors; 

• 𝑇𝑇𝑚𝑚: size of mating neighbourhood; 
• 𝑇𝑇𝑟𝑟max: maximum size of replacement neighbourhood; 
• : the probability that mating parents are selected from the neighbourhood; 
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• MaxIter: maximum iteration; 
• FEs = 0: the number of function evaluations; 

Step 1. Initialization 
1.1. Find the 𝑇𝑇𝑚𝑚 closest weight vectors to each weight vector based on the Euclidean distances of any two weight vectors. For each sub-

problem 𝑖𝑖 = 1, … , 𝑁𝑁 set 𝐁𝐁𝑖𝑖 = (𝑖𝑖1, . . , 𝑖𝑖𝑇𝑇m) where 𝐰𝐰𝑖𝑖1, … , 𝐰𝐰𝑖𝑖𝑇𝑇m  are the closest weight vectors to 𝐰𝐰𝑖𝑖; 
1.2. Create an initial population 𝐏𝐏 = {𝐱𝐱𝑖𝑖, … , 𝐱𝐱𝑁𝑁} by uniformly randomly sampling from design space . Evaluate the fitness value 𝐹𝐹𝐹𝐹𝑖𝑖 of 

each solution 𝐱𝐱𝑖𝑖, i.e. 𝐹𝐹𝐹𝐹𝑖𝑖 = (𝑓𝑓1(𝐱𝐱𝒊𝒊), … , 𝑓𝑓m(𝐱𝐱𝒊𝒊)) and set 𝐅𝐅𝐅𝐅 = {𝐹𝐹𝐹𝐹1(𝐱𝐱1), … , 𝐹𝐹𝐹𝐹𝑁𝑁(𝐱𝐱𝑵𝑵)};  
1.3. Initialize ideal point 𝐳𝐳∗ = (𝑧𝑧1

∗, … , 𝑧𝑧𝑚𝑚
∗ )T by setting 𝑧𝑧𝑗𝑗

∗ = min{𝑓𝑓𝑗𝑗(𝐱𝐱)|𝐱𝐱 ∈ , 𝑗𝑗 = 1, . . , 𝑚𝑚}Tand nadir point 𝐳𝐳nad = (𝑧𝑧1
nad, … , 𝑧𝑧𝑚𝑚

nad)T by 
setting 𝑧𝑧𝑗𝑗

∗ = max{𝑓𝑓𝑗𝑗(𝐱𝐱)|𝐱𝐱 ∈ , 𝑗𝑗 = 1, . . , 𝑚𝑚}T; 
1.4. Set FEs = FEs + 𝑁𝑁, and generation: gen = 1; 

Step 2. Update 
while (the stopping condition is not satisfied) 
 for 𝑖𝑖 = 1, … , 𝑁𝑁; do 

         2.1. Selection of mating/update range 

                      Set  𝐁𝐁𝑚𝑚 = {𝐁𝐁𝑖𝑖         𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 <  𝛿𝛿
{1, … , 𝑁𝑁}  otherwise 

where rand is a uniformly distributed random number in [0,1]; 
2.2. Reproduction: randomly select three parent individuals 𝑟𝑟1, 𝑟𝑟2 and 𝑟𝑟3 (𝑟𝑟1 ≠ 𝑟𝑟2 ≠ 𝑟𝑟3 ≠ 𝑖𝑖) from 𝐁𝐁𝑚𝑚 and generate a solution 𝐲̅𝐲 by 

applying “DE/rand/1” operator, and then perform a mutation operator on 𝐲̅𝐲 to create a new solution 𝐲𝐲;  
2.3. Repair: if any element of 𝐲𝐲 is out of , its value will be randomly regenerated inside ; 
2.4. Evaluate the fitness value of new solution 𝐲𝐲; 
2.5. Update of 𝐳𝐳∗ and 𝐳𝐳nad: for each j = 1,…, m if 𝑧𝑧𝑗𝑗

∗ ≤ 𝑓𝑓𝑗𝑗(𝐱𝐱𝒊𝒊) then set 𝑧𝑧𝑗𝑗
∗ = 𝑓𝑓𝑗𝑗(𝐱𝐱𝒊𝒊), and if 𝑧𝑧𝑗𝑗

nad ≥ 𝑓𝑓𝑗𝑗(𝐱𝐱𝒊𝒊) then set 𝑧𝑧𝑗𝑗
nad = 𝑓𝑓𝑗𝑗(𝐱𝐱𝒊𝒊);  

2.6. Update of solutions: use an adaptive replacement strategy in Wang et al. (2016): 
end for 
Set FEs = FEs + 𝑁𝑁, and gen = gen + 1; 

Step 3. Stopping condition 
      Use a stopping criterion in Abdul Kadhar and Baskar (2016). 

if (stopping criterion is satisfied or MaxIter is reached)  
Stop the algorithm; 

end if 
end while 
Output: Pareto set 𝐏𝐏𝐏𝐏 = {𝐱𝐱1, … , 𝐱𝐱𝑁𝑁}; Pareto front 𝐏𝐏𝐏𝐏 = {𝐹𝐹𝐹𝐹1(𝐱𝐱1), … , 𝐹𝐹𝐹𝐹1(𝐱𝐱𝑁𝑁)}. 
 

6. Numerical example 

To evaluate the applicability and effectiveness of MOEA/D for dealing with optimization of noise abatement 
terminal routes, two scenarios including departure and arrival at Rotterdam The Hague Airport are considered in this 
section. The airport is located in the north of Rotterdam city, The Netherlands, and is surrounded by densely 
populated regions such as The Hague, Rotterdam, and Utrecht. It has one runway which can be operated in both 
directions, labelled as 06 and 24. The investigated cases include a standard instrument departure (SID) named 
WOODY1B starting from runway 24 and finishing at waypoint EH162, and a standard terminal arrival route 
(STAR) named STD starting at a ground based beacon STD and finishing at way point EH252 as shown in Fig. 2. 
The population density data with a grid size of 500m500m is utilised and illustrated in Fig. 2 as well. An aircraft 
model of a Boeing 737 with twin engines is used. To compare the performance of MOEA/D, the well-known 
NSGA-II (Deb et al., 2002) is also applied to solve these problems. A population size of 50 is used for both 
methods, and the algorithms will stop when either their convergence criteria are satisfied, or the maximum number 
of iterations (MaxIter) is reached, where MaxIter is set to 1000. All algorithms are implemented in Matlab 2016b on 
a Core i7, 8GB ram laptop. 
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Fig. 2. Departure and arrival scenarios.  

6.1. Departure route 

The simulation of this problem is started at an altitude of 35 ft and a take-off safety speed V2 + 10 kts with the 
landing gear retracted and departure flaps selected, and is terminated at an altitude of 6,000 ft and an equivalent 
airspeed (EAS) of 250 kts. The ground track is constructed by four straight legs and three turns as shown in Fig. 1, 
while the vertical path is subdivided into 10 segments. The vertical profile parameters including both the optimal 
and reference cases are derived from Hartjes and Visser (2016).  

The Pareto-optimal solutions obtained by the methods are shown in Fig. 3, and their corresponding ground tracks 
are illustrated in Fig. 4. From a perspective of solution methods, it can be seen from Fig. 3 that MOEA/D gives more 
dominating solutions of awakening, whilst NSGA-II has more solutions regarding fuel burn. In general, however, it 
can be observed that MOEA/D is better than NSGA-II. Moreover, to get these results, MOEA/D only requires 
39,371 model evaluations in 6.45 hours, whilst NSGA-II required 50,000 evaluations in 8.17 hours. From an 
engineering point of view, it can be observed that the obtained ground tracks in Fig. 4 appear to be reasonable and 
appropriate. There are four different groups of ground tracks obtained by MOEA/D and three groups obtained by 
NSGA-II, and all of them try to avoid densely populated regions. This helps to explain why there are some gaps on 
the Pareto fronts. Compared to the reference case, all solutions feature a shorter ground track and better 
environmental performance.   

 
Fig. 3. Comparison of Pareto-optimal solutions obtained by NSGA-II and MOEA/D and the result of the reference case.  
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Fig. 4. Optimal ground tracks obtained by NSGA-II and MOEA/D. 

For a comparison of performances, the expected number of awakenings and fuel burn of four representative cases 
extracted from the Pareto fronts (numbered as shown in Fig. 3) and those of the reference case are presented in 
Table 1. Their corresponding vertical profiles are also given in Fig. 5. It is seen from the table that all optimal cases 
give a better solution for time, fuel and awakenings. It is also observed that the cases with shorter routes (i.e. 2 and 
3) have less fuel burn but more awakenings, which are the results of directly flying over areas with dense 
population. When looking at the vertical profiles in Fig. 5, it is indicated that all four optimal cases prefer a low 
altitude, which is because the spread of aircraft noise at a low altitude is smaller than that at a higher altitude due to 
increased lateral attenuation; and hence it may lead to a significant reduction of awakenings. For the airspeed 
shapes, there are some distinct levels which may be due to either the constraints of a bank angle or reducing thrust 
when flying over populated areas.  

Table 1. Comparison of objectives of cases 1-4 and the reference case. 
Case number Time (s) Fuel (kg) Awakening  
Reference 420.90 436.02 6519 

1 MOEA/D 383.40 404.28 2523 
NSGA-II 385.29 403.80 2912 

2 MOEA/D 360.46 389.39 2875 
NSGA-II 343.33 377.31 2918 

3 MOEA/D 344.38 378.47 2930 
NSGA-II 311.07 357.19 3532 

4 MOEA/D 308.60 356.39 3558 

 
Fig. 5. Vertical profiles of cases 1-4 and the reference case. 
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Although the obtained solutions are better than the reference case, from a practical perspective, they may not be 
accepted in reality because of flying at a low altitude for a long time. Thus, to make optimal solutions more 
applicable, an additional constraint on the flight path angle is applied, where the normalized control parameter 𝛾𝛾𝑛𝑛,𝑖𝑖 is 
set to be larger than 0.2 from an altitude of 35 ft to 1,500 ft i.e. if h  1,500 ft, (0.2 ≤ 𝛾𝛾𝑛𝑛,𝑖𝑖 ≤ 1), otherwise (0 ≤
𝛾𝛾𝑛𝑛,𝑖𝑖 ≤ 1). With this new constraint, the optimal results obtained by MOEA/D are given in Fig. 6a in relation to the 
previous situation, their ground tracks are provided in Fig. 6b, and the vertical profiles of two representative cases (1 
and 4) are indicated in Fig. 7. It can be observed that all new solutions have larger values for the objectives, 
especially in the number of awakenings which can be due to increasing the dispersion of aircraft noise at a higher 
altitude. This may also be the cause of slight changes in the ground tracks. The shapes of the airspeed and altitude 
histories have not changed much, except for an increase in altitude.  
 

 
Fig. 6. a) Optimal objectives with and without the new constraint of i,n; b) Optimal ground tracks. 

 
Fig. 7. Comparison of vertical profiles of cases 1 and 4 with and without the new constraint of 𝛾𝛾𝑛𝑛,𝑖𝑖 . 

6.2. Arrival route 

For this problem, the simulation is started at an altitude of 6,000 ft and an equivalent airspeed of 250 kts, and is 
finished at an altitude of 2,000 ft and an equivalent airspeed of 170 kts. Similar to the departure problem, the ground 
track is also constructed by four straight legs and three turns, and the vertical path is also subdivided into 10 
segments. The problem has 28 design variables consisting of 8 ground track variables and 20 parameters defining 
the vertical profile. To make a fair comparison for the reference case, a composite objective of awakenings and fuel 
burn with an equal weight vector of [0.5 0.5] is used for optimizing the vertical profiles.   

The Pareto-optimal solutions obtained by both methods are illustrated in Fig. 8, and the ground tracks are 
provided in Fig. 9. To acquire these results, NSGA-II spends 50,000 model evaluations in 9.92 hours, while 
MOEA/D converges after 37,331 model evaluations in 7.95 hours. The resulting ground tracks are reasonable. In a 
comparison with the reference case, it can be seen that most of the optimal cases dominate the reference case.   
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Fig. 8. Comparison of Pareto-optimal solutions obtained by NSGA-II and MOEA/D and the result of the reference case.  

 
Fig. 9. Optimal ground tracks obtained by NSGA-II and MOEA/D. 

For a comparison of specific values, the number of awakenings and fuel burn of the representative cases 
extracted from the Pareto-solution solutions (as numbered in Fig. 8) are presented Table 2. Their vertical profiles are 
provided in Fig. 10. It seems that even the ground track of the reference case is shorter than cases 2 of MOEA/D and 
NSGA-II; its flight time is still higher though. This can be due to the trade-off of two objectives of fuel burn and 
awakenings with an equal priority.  

Table 2. Comparison of objectives of the representative cases and the reference case. 
Case no. Time (s) Fuel (kg) Awakening  
Reference 570.09 220.49 6432 

1 MOEA/D 489.64 187.19 4175 
NSGA-II 480.47 188.39 4176 

2 MOEA/D 530.02 222.48 3785 
NSGA-II 527.43 216.74 3749 

3 MOEA/D 594.03 257.98 3754 
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Fig. 10. Vertical profiles of cases 1 and 2 and the reference case. 

Summarily, based on the obtained results, it can be concluded that MOEA/D is an effective method for handling 
the optimal design of noise abatement terminal routes. Compared to NSGA-II, MOEA/D generally outperforms 
NSGA-II in terms of both the quality of solutions and computation time. 

7. Conclusion 

In this paper, a new application of a well-known method named MOEA/D for solving the optimization problems 
of noise abatement terminal routes is presented. In MOEA/D, besides its typical advantages, its performance is also 
improved significantly by the integration of new features recently developed, which consist of an adaptive 
replacement strategy, a stopping condition criterion and a constraint-handling technique. The applicability and 
effectiveness of MOEA/D are demonstrated through two example scenarios related to Rotterdam The Hague 
Airport, including a standard instrument departure route, i.e. WOODY1B and a standard terminal arrival route, i.e. 
STD. The results obtained by MOEA/D are also compared to those of NSGA-II. The comparative results reveal that 
MOEA/D is generally better than NSGA-II in both the quality of solutions and the convergence rate, and hence it is 
an adequate algorithm for solving these kinds of problems. 

In future work, MOEA/D will be extended for different routes at other airports, and its performance will also be 
investigated in different problems like route and runway allocations. Furthermore, the performance of the algorithm 
will also be enhanced further to deal with large and complex problems, especially in the distribution of solutions and 
the convergence rate. 
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3
AIRCRAFT ROUTE DESIGN

In the previous chapter, the selection and development of a multi-objective optimization
method, namely MOEA/D, have been performed, and its capability of solving the aircraft
route design problem has been validated. In this chapter, the application of the developed
algorithm to the route design problem is studied in more detail. In order to increase the
performance of the optimization process, a new setting rule in the optimization procedure
is implemented. This implementation aims to exploit the characteristics of the algorithm
and the optimization problem to eliminate unnecessary computational steps, which can
help to reduce the computational cost significantly. The proposed approach is first tested
on a case study at Amsterdam Airport Schiphol in The Netherlands. Then, it is applied to
simultaneously optimize the route design and allocation problem for a case study at the
same airport. The study also aims to establish whether or not the simultaneous solving
of route design and flight allocation will be applicable for the concurrent consideration of
multiple routes. Furthermore, a new criterion that can help to make a fair distribution of
noise over communities is studied in this study.

The content of this chapter is based on the following research articles:

[1]. V. Ho-Huu, S. Hartjes, H. G. Visser, and R. Curran, An efficient application of the MOEA/D algorithm for
designing noise abatement departure trajectories, Aerospace, vol. 4, pp. 54, 2017. -> Paper 3.1.

[2]. V. Ho-Huu, S. Hartjes, H. G. Visser, and R. Curran, Integrated design and allocation of optimal aircraft
departure routes, Transportation Research Part D: Transport and Environment, vol. 63, pp. 689-705, 2018. ->
Paper 3.2.
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3.1. PROBLEM STATEMENT
In the previous chapter, the study on the development of an efficient optimization tech-
nique, namely MOEA/D, has been carried out. Although the developed method has
shown promising potential to deal with the route design problem, its computational cost
of solving such problems is still high. The aim of this chapter is, therefore, to study the
potential capability of the developed algorithm in more detail and to develop new tech-
niques to increase the performance of the optimization process, specifically aimed at
the trajectory optimization process.

In this chapter, a new setting rule in the optimization procedure has been intro-
duced. This setting aims to exploit the characteristics of the applied algorithm and
the optimization problem to eliminate unnecessary computational steps. To determine
whether a new candidate solution is better than other solutions in the previous iteration
or not, its performance on objective and constraint functions is calculated during the op-
timization process. Unfortunately, this process is carried out in many calculation steps
and is therefore time-consuming. However, based on the characteristics of the applied
algorithm and the route design problem, the comparison between these solutions can,
for many cases, be ignored. Consequently, the computational cost can be significantly
reduced. The details of this study and its performance on the route design problem are
presented in Ho-Huu et al. [37].

In order to further assess the capability of the proposed approach, the method is
then applied to a more complicated problem. In this problem, both the design of op-
timal routes and the allocation of flights to these routes are considered simultaneously.
In addition, a new noise criterion that aims to make a fair distribution of aircraft noise
events over communities is introduced. The aim of the study is to provide options for
routes that do not only effectively balance between the number of peopled annoyed and
fuel consumption, but also offer a fair distribution of aircraft noise events among the
population. This study is presented in detail in Ho-Huu et al. [38].

3.2. CONTRIBUTIONS
The main contributions of this chapter are as follows:

1. In Ho-Huu et al. [37], the computational cost of solving the optimal route design
problems has been significantly decreased thanks to the new implementation on
the optimization procedure. For example, as given in the first case study in [37],
the computational cost to solve the problem with a considered area of 66 km x 59
km is only 2.2 hours, while that of the problem with a smaller considered area of
35 km x 40 km in the previous chapter [36] is 6.45 hours.

2. In Ho-Huu et al. [38], the developed model has been successfully applied to a
complex problem, in which both the route design and flight allocation problems
are addressed simultaneously. A new criterion that aims to fairly distribute noise
events over communities is also considered in this study. By considering three
objectives concurrently, the obtained results do not only create good options of
routes with less noise impact and fuel consumption, but also offer a fair distribu-
tion of noise among communities.
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3. Based on the results obtained in [38], it is also indicated that although the pro-
posed approach is capable of handling the integrated problem, it is only suit-
able for designing one given SID route at a time. In case of considering multiple
routes concurrently, the complexity of the problem will dramatically increase, and
hence the computational cost will increase as well. As a result, it will be difficult
to extend this approach for the developed framework, when both the problems
of route design and flight allocation for multiple routes are considered simultane-
ously. Therefore, a new approach has been developed, which will be presented in
Chapter 5.
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Abstract: In an effort to allow to increase the number of aircraft and airport operations while
mitigating their negative impacts (e.g., noise and pollutant emission) on near-airport communities,
the optimal design of new departure routes with less noise and fuel consumption becomes
more important. In this paper, a multi-objective evolutionary algorithm based on decomposition
(MOEA/D), which recently emerged as a potential method for solving multi-objective optimization
problems (MOPs), is developed for this kind of problem. First, to minimize aircraft noise for departure
routes while taking into account the interests of various stakeholders, bi-objective optimization
problems involving noise and fuel consumption are formulated where both the ground track and
vertical profile of a departure route are optimized simultaneously. Second, in order to make the
design space of vertical profiles feasible during the optimization process, a trajectory parameterization
technique recently proposed is employed. Furthermore, some modifications to MOEA/D that are
aimed at significantly reducing the computational cost are also introduced. Two different examples of
departure routes at Schiphol Airport in the Netherlands are shown to demonstrate the applicability
and reliability of the proposed method. The simulation results reveal that the proposed method is an
effective and efficient approach for solving this kind of problem.

Keywords: departure routes; trajectory optimization; noise abatement; fuel consumption; MOEA/D

1. Introduction

Due to the high demand of air transport, the aviation industry is expected to develop rapidly in
the coming years [1]. To adapt to this requirement, the increase of aircraft and airport operations is
necessary and important. However, the increase in these operations often results in negative impacts
on the quality of life of near-airport communities, such as noise and pollutant emissions [2]. As a result,
the protest of communities surrounding airports becomes a major restriction that policymakers have
to deal with when accomodating additional operations. In order to develop air transport sustainably,
it is important to investigate potential solutions for decreasing its adverse influences. In recent years,
a series of projects aiming to develop the aviation sector sustainably have been launched by European
and national authorities, including CleanSky [3], the Atlantic Interoperability Initiative to Reduce
Emission (AIRE) [4], and the Asia and South Pacific Initiative to Reduce Emission (ASPIRE) [5]. Various
strategies have been proposed, such as making new policies and standards, developing advanced
aircraft technologies and sustainable alternative fuels, and changing aircraft/airport operational
procedures [6]. Among them, the change of aircraft/airport operational procedures may be a potential
option in the short-term as it can be adapted more quickly and often at less cost as compared to the

Aerospace 2017, 4, 54; doi:10.3390/aerospace4040054 www.mdpi.com/journal/aerospace
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other options [6]. The optimal design of new routes for departures and arrivasls is one of the possible
solutions that has been broadly studied in the past few years [7,8].

In order to design optimal environmentally friendly terminal routes, different approaches have
been proposed in recent years. Visser and Wijnen [9,10] developed an optimization tool called
NOISHHH that combines a noise model, an emissions inventory model, a geographic information
system, and a dynamic trajectory optimization algorithm to generate environmentally optimal
departure and arrival trajectories. Later, this tool was also adapted to optimize noise abatement
terminal routes based on area navigation [11–13]. Prats et al. [14,15] employed a lexicographic
optimization technique to deal with aircraft departure trajectories for minimizing noise annoyance.
Khardi and Abdallah [16] studied a comparison of direct and indirect methods in solving a system of
ordinary differential equations (ODEs) to optimize aircraft flight paths to reduce noise. Recently,
Matthes et al. [17] presented a concept for multi-criteria environmental assessment of aircraft
trajectories where the mathematical framework for environmental assessment and optimization of
aircraft trajectories was developed. Despite being quite efficient in searching optimal trajectories,
these techniques belong to the group of gradient-based methods that have certain limitations in
solving optimization problems. For example, due to the use of gradient information to search
for an optimal solution, these methods are often only suitable for optimization problems whose
objective and constraint functions are differentiable and whose decision variables are continuous.
Moreover, their solutions are often trapped in local optima if the considered problems are nonlinear
and contain more than one local optimal solution. Nevertheless, current optimization problems become
more and more complex due to the integration of operational constraints in realistic scenarios. It is
therefore quite difficult to construct differentiable optimization problems. Also, these techniques are
single-optimization methods, which means that only a single optimal solution is obtained after each
time the optimization problem is solved.

By considering the above research gaps, different gradient-free optimization techniques have also
been applied. Torres et al. [18] proposed a non-gradient optimizer called multi-objective mesh adaptive
direct search (multi-MADS) to synthesize optimal departure trajectories for NOx-emissions and noise
at a single measurement point. Recently, Hartjes and Visser [19] employed an elitist non-dominated
sorting genetic algorithm (NSGA-II) combined with a novel trajectory parameterization technique for
the optimal design of departure trajectories with environmental criteria. This approach was then also
applied by Zhang et al. [20] to optimize departure routes at Manchester Airport. From the obtained
results in [18–20], it is clear that the use of non-gradient multi-objective optimization methods is
a potential approach for designing new routes. These methods readily overcome the limitations
of gradient-based methods in dealing with discontinuous problems and integer or discrete design
variables and can find out a set of non-dominated optimal solutions, which helps to present more
options to policymakers and authorities. However, one of the major limitations of the methods in
this group is their computational cost. Because they feature random searches with multiple design
points at the same time, these methods require many evaluations of the objective and constraint
functions which are quite time-consuming. These restrictions again have motivated researchers to
develop computationally efficient approaches that can balance the expected results and computation
cost effectively.

Until now, besides multi-MADS and NSGA-II, there are various multi-objective optimization
algorithms available in the literature that may be considered potential candidates for solving
these kinds of problems. However, they have not yet been properly investigated. Among them,
the multi-objective evolutionary algorithm based on decomposition (MOEA/D) [21] has recently
emerged as a powerful method and has received much attention from researchers. According to
recent studies [21,22], MOEA/D has been demonstrated to be more efficient than NSGA-II and some
other methods regarding both the quality of solutions and the convergence rate, which are promising
features for solving large-scale real-world problems. Nonetheless, the application of MOEA/D to
real engineering problems is still somewhat limited, especially in the field of aerospace engineering.
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In this paper, MOEA/D is considered for the optimal design of aircraft noise abatement departure
routes. As mentioned before, however, MOEA/D is a gradient-free optimization method, and hence
its computation cost is still signficant. In order to make the applied algorithm more efficient, a new
implementation in the definition of the optimization problem for MOEA/D is introduced that can help
to reduce the computational cost significantly. Furthermore, the efficiency of the MOEA/D version in
this paper is also considerably enhanced by the integration of some recently developed advantageous
features. These include an adaptive replacement strategy [23], a stopping condition criterion [24],
and a constraint-handling technique [25]. Also, to reduce redundant evaluations of infeasible solutions
derived from operational constraints during different flight phases, the new trajectory parameterization
technique recently proposed in [19] is also applied. The robustness and reliability of the proposed
method are validated through two numerical examples at Schiphol Airport in The Netherlands.

2. Aircraft Model and Trajectory Parameterization Technique

2.1. Aircraft Model

To model an aircraft during departure operations, an intermediate point-mass model [19] is
used in this paper. The model is based on several assumptions: (1) there is no wind present; (2) the
Earth is flat and non-rotating; and (3) the flight is coordinated. In addition, the flight path angle is
considered sufficiently small (γ < 15◦). The underlying assumption for the intermediate model is
the equilibrium of forces normal to the flight path. The implication of this simplifying assumption is
that the aerodynamic drag is slightly underestimated since it is evaluated as if the aircraft performs a
quasi-linear flight. With these assumptions, the equations of motion can be stated as follows:

.
VTAS = g0

[
(T − D)

W
− sinγ

]
, (1)

.
s = VTAS cosγ, (2)
.
h = VTAS sinγ, (3)

.
W = − .

mfg0, (4)

where
.

VTAS,
.
s,

.
h, and

.
W are the time derivatives of the true airspeed, ground distance flown, altitude,

and aircraft weight, respectively; g0 is the gravitational acceleration, and T, D, and
.

mf are the thrust,
drag, and fuel mass flow, respectively.

At low altitudes and airspeeds, the equivalent airspeed, VEAS, can serve as a proxy for the indicated
airspeed, and from the relationship with true airspeed, the following expression can be derived:

VEAS = VTAS
√

ρ/ρ0, (5)

where ρ is the ambient air density, and ρ0 is the air density at sea level.
By combining Equations (1)–(4) with Equation (5), the equations of motion can be rewritten

as follows:
.

VEAS =

{
g0

[ 
(T 

W
− D) − sin γ

] 
+ 

2
1
ρ ∂

∂ρ

h 
VTAS

2 sin γ

}√
ρ/ρ0, (6)

 s
. 
= VEAS

√
ρ /ρ cos γ, (7)

 h
. 
= VEAS

√
ρ /ρ sin γ, (8)

 . . 
 W = −mfg0, (9)

where, ∂ρ
∂h is the derivative of the ambient air density with respect to altitude.

0

0
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With the use of Equations (6)–(9), the aircraft performance model has two control variables, viz.
the flight path angle γ and thrust T, and four state variables x = [VEAS, h, s, W].

2.2. The Trajectory Parameterization Technique

As pointed out in Section 1, although the use of gradient-free optimization methods has many
advantages, their computational cost is still quite large, notably spent on evaluating the objective
function or constraints (or model evaluations). Therefore, one of the most efficient approaches to
reduce the computational cost for these methods is to decrease the number of model evaluations as
much as possible, especially by avoiding the evaluation of infeasible solutions during the optimization
process. In trajectory optimization problems, operational constraints in different flight phases can cause
the violation of new solutions found by an optimization algorithm, and hence there will be a large
amount of computation time for evaluating these solutions while they are not potential candidates for
an optimal solution. Recognizing this problem, Hartjes and Visser [19] introduced a novel trajectory
parameterization that can handle operational constraints in the problem formulation, thus reducing
the computational cost significantly. This technique aims to decompose a trajectory into a separate
vertical path and ground track. The main advantage of this decomposition is that events in the vertical
and horizontal plane can be decoupled, and that the overall number of optimization parameters can be
reduced significantly without compromising the accuracy or degrees of freedom of the final solutions.

For ground track generation, a modern navigation technology known as required navigation
performance (RNP) is applied. In RNP, track-to-a-fix (TF) and radius-to-a-fix (RF) leg types are
often used to construct flight paths between waypoints. This is because of their ability to avoid
noise-sensitive areas and minimizing flight track dispersion. By using these two segment types, the
ground track can be generated using only straight legs and constant radius turns. An example of this
is given in Figure 1, where the optimal design variables comprise of L1, L2, R1, R2, and ∆χ1. When the
initial and final position is known, the remaining parameters L3 and ∆χ2 can be determined analytically
through a geometric relationship.
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Figure 1. Ground track parameterization.

For the vertical path generation, the vertical profile is synthesized based on flight procedures
derived from ICAO [26]. For instance, aircraft are not allowed to descend and/or decelerate during
departure and ascend and/or accelerate during arrival. In order to parameterize this part, the trajectory
is split into a number of segments. In each segment, two control inputs (i.e., flight path angle setting
γn,i and throttle setting Γn,i) are kept constant and are either directly assigned based on operational
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requirements or designated as optimal design variables. For each segment, the flight path angle γi and
thrust Ti are set by adjusting their normalized control optimization parameters γn,i(0 ≤ γn,i ≤ 1), and
Γn,i(0 ≤ Γn,i ≤ 1), respectively, as follows:

γi = (γmax,i − γmin,i)γn,i + γmin,i, (10)

Ti = (Tmax,i − Tmin,i)Γn,i + Tmin,i, (11)

where the subscript n presents a normalized control optimization parameter. The subscripts max, i and
min, i indicate the maximum and minimum allowable values of the flight path angle and thrust for the
ith segment, which are specified based on the features of flight procedures.

In the departure procedure, Tmax is set to be either maximum take-off thrust (TO) or maximum
climb thrust (TCL) depending on the flight stage. In addition, because descending is not permitted
in this phase (

.
h ≥ 0), the minimum flight path angle is set to zero (γmin). In addition, with the

assumption that Tmax is selected and that the airspeed is maintained constant, γmax can be determined
from Equation (6). Finally, Tmin can be determined as well from Equation (6), but now assuming level
flight at constant speed is maintained. This yields the following equations:

γmax = sin−1

[
−2ρg0 · (Tmax − D)

W( ∂ρ
∂h V2

TAS − 2ρg0)

]
, (12)

Tmin = D− W
2ρg0

∂ρ

∂h
V2

TAS sinγmin + Wsinγmin. (13)

In the arrival procedure, the process is reversed. The minimum thrust Tmin is set equal to the
idle thrust derived from the aircraft engine model, while the maximum flight path angle is set to
be zero (γmax = 0), as ascending is not allowed in the approach. In addition, by assuming that the
aircraft is not allowed to accelerate during descending, Tmax can be determined by the same formula in
Equation (13), replacing Tmin by Tmax. The minimum flight path angle γmin is evaluated with respect
to the minimum thrust Tmin by the same formula in Equation (12), replacing Tmax and γmax by Tmin

and γmin.

3. Formulation of the Optimization Problem

The main objective of the study is to design optimal departure routes which can help reduce
considerably the adverse impact of aircraft noise on people living in the vicinity of airports. However,
purely focusing on noise impact may result in a significant increase in fuel consumption, which is
against the interests of stakeholders like airline companies. To balance this conflict, therefore, fuel
consumption is also taken into account as the second objective.

While fuel consumption can readily be evaluated by the change of the aircraft weight from
Equations (6)–(9), noise impact is harder to quantify. In order to measure the influence of aircraft noise
on communities surrounding airports, the percentage of people who are likely to be awakened due to
aircraft noise exposure is utilized in this paper. This criterion was proposed by the American National
Standards Institute (ANSI) in 2008 and is defined as follows [27]:

%Awakening =
1

1 + e−(−6.8884+0.04444SELindoor)
, (14)

where %Awakening is the percentage of awakened people owing to the noise of an aircraft. SELindoor
is the indoor sound exposure level in decibel (dB) and is evaluated by using a replica of the integrated
noise model (INM) that has been the Federal Aviation Authorities’ (FAA) standard regulatory noise
model since the late 1970s [19]. Because SEL obtained from INM represents an outdoor value, an
amount of 15 dB is subtracted to obtain SELindoor, accounting for the sound absorption of an average
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house with an open window [28]. It should be noted that only SEL values that are larger than or equal
to 50 dB are taken into account, while those that are less than 50 dB are ignored, and their probabilities
are set to zero [29].

By considering two objectives (noise and fuel) at the same time, a bi-objective optimization
problem is formulated as follows:

minx,γn ,Γn {number of awakenings, fuel burn}
µ ≤ µmax

s.t. hf = hfinal
VEAS, f = VEAS, final

(15)

where x is the vector of ground track variables. γn and Γn are the vectors of the flight path angle setting
and throttle setting variables for each segment. The variable µ is the bank angle, which is defined by

µ = ± tan−1
(

V2
TAS

g0R

)
. The parameter µmax is the allowable value of µ, which is dependent on altitude

as specified by ICAO [26]. The parameters hfinal and VEAS, final are, respectively, the prescribed final
altitude and equivalent airspeed of the flight procedures.

4. MOEA/D Algorithm and New Implementations

4.1. MOEA/D Algorithm

The multi-objective evolutionary algorithm based on decomposition (MOEA/D), first proposed
by Zhang and Li [21], has been recognized as one of the most popular multi-objective evolutionary
algorithms to date [30]. In MOEA/D, a multi-objective optimization problem (MOP) is transformed
into a set of single optimization sub-problems by applying decomposition approaches, and then
evolutionary algorithms are utilized to optimize these sub-problems simultaneously. With the use of
different decomposition methods and different evolutionary algorithms, various versions of MOEA/D
have been developed in recent years, e.g., MOEA/D-DE [22], MOEA/D-DRA [31], MOEA/D-XBS [21],
and MOEA/D-GR [23]. Although different variants of MOEA/D are available in literature, a powerful
single version of MOEA/D that integrates different advantages of the current versions is not yet in
place. With the aim of developing an efficient version of MOEA/D for real-life problems, a powerful
MOEA/D version is therefore developed in this study that is a combination of MOEA/D-DE [22],
an adaptive replacement strategy [23], a stopping condition criterion [24], and a constraint-handling
technique [25]. The general framework of MOEA/D is presented in Algorithm 1. For more details,
readers are encouraged to refer to [22–25,32].

4.2. New Implementations

Although MOEA/D has been demonstrated to be more efficient than NSGA-II and other methods,
and in this study, its performance has also been strongly supported by the integration of the powerful
features recently developed, like other population-based optimization methods, MOEA/D is still
time-consuming, requiring a significant amount of model evaluations. Since the considered problem
is a constrained optimization problem, there could be many trial solutions evaluated by MOEA/D
during the optimization process that violate the constraints (or are infeasible). The evaluations of these
solutions may lead to a significant increase in the computational cost of the algorithm, while they may
not provide helpful information for searching an optimal solution.
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Algorithm 1. MOEA/D algorithm

Input:

• A multi-objective optimization problem as Equation (15);
• A stopping criterion;
• N: number of sub-problems;
• wi = (wi

1, . . . , wi
m), i = 1, . . . , N: a set of N weight vectors;

• Tm: size of mating neighbourhood;
• Trmax: maximum size of replacement neighbourhood;
• δ: the probability that mating parents are selected from the neighborhoods;
• MaxIter: maximum iteration;
• FEs = 0: the number of function evaluations;

Step 1. Initialization

1.1. Find the Tm closest weight vectors to each weight vector based on the Euclidean distances of any two
weight vectors. For each sub-problem i = 1, . . . , N set Bi = (i1, . . . , iTm ) where wi1 , . . . , wiTm are the
closest weight vectors to wi;

1.2. Create an initial population P =
{

xi, . . . , xN
}

by uniformly randomly sampling from design space Ω.

Evaluate the fitness value FVi of each solution xi, i.e., FVi =
(

f1(xi), . . . , fm(xi)
)

and set

FV =
{

FV1(x1), . . . , FVN(xN)
}

;

1.3. Initialize ideal point z∗ = (z∗1 , . . . , z∗m)
T by setting z∗j = min

{
f j(x)

∣∣∣x ∈ Ω, j = 1, . . . , m}T and nadir

point znad = (znad
1 , . . . , znad

m )
T

by setting z∗j = max
{

f j(x)
∣∣∣x ∈ Ω, j = 1, . . . , m}T ;

1.4. Set FEs = FEs + N, and generation: gen = 1;

Step 2. Update
while (the stopping condition is not satisfied)

for i = 1, . . . , N; do

2.1. Selection of mating/update range

Set Bm

{
Bi if rand < δ

{1, . . . , N} otherwise
where rand is a uniformly distributed random number in [0, 1];

2.2. Reproduction: randomly select three parent individuals r1, r2 and r3(r1 6= r2 6= r3 6= i) from Bm and
generate a solution y by applying “DE/rand/1” operator, and then perform a mutation operator on y
to create a new solution y;

2.3. Repair: if any element of y is out of Ω, its value will be randomly regenerated inside Ω;
2.4. Evaluate the fitness value of new solution y;
2.5. Update of z* and znad: for each j = 1, . . . , m if z∗j ≤ f j(xi) then set z∗j = f j(xi), and if znad

j ≥ f j(xi)

then set znad
j = f j(xi);

2.6. Update of solutions: use an adaptive replacement strategy in [23]:

end for
Set FEs = FEs + N, and gen = gen + 1;

Step 3. Stopping condition
Use a stopping criterion in [24].
if (stopping criterion is satisfied or MaxIter is reached)

Stop the algorithm;
end if

end while
Output: Pareto set PS =

{
x1, . . . , xN}; Pareto front PF =

{
FV1(x1), . . . , FV1(xN)

}
.
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In an effort to avoid the above problem, a new implementation on the setting of the optimization
problem and MOEA/D is introduced. More specifically, for the considered problem, the computational
cost is mainly spent on two main tasks: one for solving the ODEs to obtain the fuel objective and the
necessary inputs for calculating noise and to evaluate the constraints of the optimization problem
(for example, the final conditions of velocity and altitude, and the bank angle constraints), and the other
for computing the noise objective. While the computational cost of the first task is not so significant,
the computational expense of the second task is quite considerable. In MOEA/D, after a new solution
is found, its objectives and constraints are measured and compared with those of previous solutions.
The solutions with the better objectives and/or the better level of constraint violation will be selected
for the next generation. It is readily clear that if there is a comparison between a feasible solution and
an infeasible solution, the feasible one will be selected, and in the case of comparing two infeasible
solutions, the solution with the lowest level of constraint violation will be chosen. By recognizing this
feature, a new decision has been made for the algorithm to decide whether or not the noise calculation
of a new solution is executed. Particularly, after the fuel objective and constraints of a new solution
are assessed, a quick check and comparison of the level of constraint violation between them are
executed first. If the new solution violates the constraints or has a higher level of constraint violation
compared to, respectively, a feasible solution or an infeasible solution at the previous generation, its
noise calculation will not be executed. In that case, the update procedures 2.5 and 2.6 of MOEA/D in
Algorithm 1 are ignored as well.

With the above new implementation, the computational cost of noise calculation only is spent
on either feasible solutions or on the infeasible solution with the lowest level of constraint violation,
and hence the computational cost of the whole optimization process will be significantly reduced.

5. Numerical Example

In order to demonstrate the capabilities and efficiencies of MOEA/D for conducting the optimal
design of noise abatement departure routes, two standard instrument departures (SID) currently in
use at Schiphol Airport are considered in this section. The first SID is called SPIJKERBOOR2K, which
starts at runway 24 and finishes at the ANDIK intersection, and the other one is ARNEM2N, which
starts at runway 09 and terminates at the IVLUT intersection, as shown in Figure 2. These routes
pass closely by the communities of Hoofddorp, Haarlem, and Amstelveen, where most of the noise
nuisance occurs. For both departures, the optimized trajectory starts at 35 ft, a take-off safety speed
of V2 + 10 kts, with the landing gear retracted and departure flaps selected and is terminated at an
altitude of 6000 ft and an equivalent airspeed (EAS) of 250 kts. The ground tracks are constructed
by three straight legs and two turns, as shown in Figure 2, which results in five design variables,
while the vertical path is subdivided into 10 segments and parameterized as the study in [19], which
results in an additional 18 design variables. For the reference case, the ground track is fixed to conform
to the current SID, while the vertical path is optimized for fuel burn after finishing the NADP-1.
The details of the parameterization can be found in Hartjes and Visser [19]. Two noise-exposed regions
of 66 km × 59 km and 36.5 km × 20 km with a population grid cell size of 500 m × 500 m [33] are used
for the SPIJKERBOOR2K and ARNEM2N SIDs, respectively. A Boeing 737–800 with two engines is
used as the aircraft model, based on the Base of Aircraft Data (BADA), with an initial mass of 68 tons
(85% of the maximum take-off weight) as a representative take-off mass.

To compare the performance of MOEA/D, the well-known NSGA-II [34] is also applied to solve
these problems. A population size of 50 is used for both methods, and the algorithms will stop when
either their convergence criteria are satisfied or the maximum number of iterations (MaxIter) is reached,
where MaxIter is set at 1000. All algorithms are implemented in Matlab 2016b on a Core i5, 8 GB
RAM desktop.
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Figure 2. Departure scenarios.

5.1. Departure Route SPIJKERBOOR2K

The Pareto-optimal solutions obtained by the methods are shown in Figure 3, and their corresponding
ground tracks are illustrated in Figure 4. The cases highlighted in Figure 3 by a yellow star and red
circle are also highlighted in Figure 4 and further discussed in the text. From a comparison of solution
methods in Figure 3, it can be seen that the quality of solutions obtained by MOEA/D is generally
better than those achieved by NSGA-II. Specifically, MOEA/D provides many solutions that dominate
those of NSGA-II with a significantly lower computational effort. In order to achieve these results,
MOEA/D requires 23,357 model evaluations, in which only 8399 involve a noise calculation. Hence,
the total computation time is only 2.2 h, while NSGA-II requires 50,500 evaluations resulting in 9.59 h
computation time for a full evaluation.
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From an engineering point of view, it can be seen that the obtained ground tracks in Figure 4
are quite reasonable and appropriate. There are three different groups of ground tracks generated
by MOEA/D and four groups by NSGA-II, all of them trying to avoid noise-sensitive communities.
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These results also help to explain why there are some gaps in the Pareto fronts. In comparison to
the reference case, it can be observed that most of the optimal solutions offer a better environmental
performance. In particular, as shown in the left of Figure 3, there are some cases that perform better for
both objectives, whereas the remaining solutions on the right are much better regarding awakenings,
although there is a slight increase in fuel burn.
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For a performance comparison, the number of people expected to be awakened and the fuel burn
of the three representative cases are extracted from the Pareto fronts (numbered as shown in Figures 3
and 4) and listed in Table 1 along with the results of the reference case. The vertical profiles of the
MOEA/D computed cases are given in Figure 5. Compared to the reference case, it can be seen that
all solutions are non-dominated, either better at awakenings and worse at fuel burn or vice versa,
except for case 1. Despite having almost the same ground track length with an optimal combination
of the ground track and vertical profile, case 1 offers much better performance in terms of all three
criteria. From Table 1, it can also be seen that the difference between the objective values of the three
representative cases is significant, especially in terms of the number of awakenings. A relatively
small detour allows a significant part of the communities surrounding the airport to be avoided, and,
considering the exponential relationship between noise and awakenings, consequently leads to a
significant reduction in the noise criterion. By taking a closer look at Figure 5, it can be seen that in
the first phase of flight, for all optimal cases, the aircraft prefers to fly at a low altitude with a high
speed to pass over populated regions. This is because the spread of aircraft noise at a low altitude
is smaller than that at a higher altitude due to increased lateral attenuation, and hence it leads to a
significant reduction of awakenings. Also, maintaining a low altitude allows the aircraft to accelerate
to a high airspeed sooner, which leads to lower exposure times and hence to lower SEL-values, while
the source noise levels do not increase significantly. From Figure 5, it also becomes clear that the time
during which the aircraft stays at a low altitude is dependent on the population density distribution
underneath the flight path. This is also clearly depicted in Figure 6, where the noise level contours of
cases 2 and 3 are illustrated.
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Table 1. Comparison of objectives of cases 1–3 and the reference case.

Case Number Time (s) Fuel (kg) Awakening

1
MOEA/D 569.69 578.66 5072
NSGA-II 612.68 607.91 5199

2
MOEA/D 666.38 641.81 4121
NSGA-II 668.63 643.76 4213

3
MOEA/D 736.27 693.90 3280
NSGA-II 747.17 696.35 3232

Reference solution 595.11 603.69 6602Aerospace 2017, 4, 54  11 of 15 
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5.2. Departure Route ARNEM2N

The Pareto-optimal solutions obtained by MOEA/D and NSGA-II for this example are illustrated
in Figure 7, while the ground tracks are provided in Figure 8. Again, some representative cases are
highlighted in the figures. To acquire these results, NSGA-II requires 45,000 model evaluations in
4.36 h, while MOEA/D converges after 24,122 model evaluations in 1.99 h, with only 17,010 requiring
a noise calculation. Compared to the previous example, the obtained ground tracks, in this case,
are more divergent. This is because there is no area with a high concentration of population within the
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investigated region except for a small area close to runway 09. However, this region has been avoided
by most of the optimal solutions. It can also be seen from Figure 7 that all optimal solutions dominate
the reference case.
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For a comparison of specific values, the number of awakenings and fuel burn of the representative
cases extracted from the Pareto-optimal solutions (as highlighted in Figure 7) are given in Table 2.
The vertical profiles of the MOEA/D cases are also provided in Figure 9. From the table, it can be
seen that all optimal cases have better results regarding fuel burn and awakenings compared to the
reference case, while case 1 significantly outperforms the reference case on all considered criteria
(i.e., fuel burn, awakenings, and time). As the airspeed and altitude histories are concerned, their
behavior is almost the same as in the previous example. The aircraft often fly at a low attitude with a
relatively high speed when passing over densely populated areas in the first phases, while the time
during which an aircraft flies at a low attitude depends on the population distribution underneath a
flight path.

Summarizing, based on the obtained results, it can be concluded that MOEA/D is an effective
method for solving the optimal design problem of noise abatement departure routes. Compared to
NSGA-II, MOEA/D generally outperforms NSGA-II in terms of both the quality of solutions and
computation time.

AIRCRAFT ROUTE DESIGN

3

55



Aerospace 2017, 4, 54 13 of 15

Table 2. Comparison of objectives of cases 1–2 and the reference case.

Case Number Time (s) Fuel (kg) Awakening

1
MOEA/D 257.51 349.71 5271
NSGA-II 256.29 349.46 5232

2
MOEA/D 278.81 368.14 3613
NSGA-II 281.19 370.28 3634

Reference solution 271.14 374.01 6058Aerospace 2017, 4, 54  13 of 15 
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6. Conclusions 

In this study, a novel and efficient application of MOEA/D for the optimal design of noise 
abatement departure routes is presented. Besides the typical advantages, the performance of 
MOEA/D is also considerably enhanced by the integration of recently developed features, which 
include an adaptive replacement strategy, a stopping condition criterion, and a constraint-handling 
technique. Also, the performance of the entire optimization process is significantly improved by the 
implementation on the setting of the optimization problem and the MOEA/D algorithm. Owing to 
this implementation, the computational cost of solving the optimization problems is sharply reduced. 

The applicability and effectiveness of MOEA/D and the new implementations are demonstrated 
through two example scenarios of departure routes at Schiphol Airport in the Netherlands: 
SPIJKERBOOR2K and ARNEM2N. For comparison purposes, NSGA-II is also applied to solve these 
problems. The comparative results show that MOEA/D is generally better than NSGA-II when 
considering the quality of solutions and much better regarding the convergence rate and overall 
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With these promising results, in future work, MOEA/D will be extended to consider different 
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4
FLIGHT ALLOCATION

In the previous two chapters, the first main component of this research was presented, viz.
the optimization of departure routes for noise impact and fuel consumption. The main
aim of the study presented in this chapter is to develop a flight allocation problem for-
mulation that allows to address noise impact and fuel consumption concurrently. Unlike
models developed in previous research, the model developed here considers each flight op-
eration as a design variable and optimizes both two potentially conflicting objectives, i.e.,
noise impact and fuel consumption, simultaneously. The model is applied to a case study
at Belgrade Airport in Serbia. The obtained results are compared with those acquired in
other previous research. The performance of the proposed approach is also tested on the
same case study but at a larger scale and with a daily commuting population.

The content of this chapter is based on the following research articles:

[1]. Emir Ganić, V. Ho-Huu, Sander Hartjes, Obrad Babić, Air traffic assignment to reduce population noise
exposure and fuel consumption using multi-criteria optimization, The 26th international conference on Noise
and Vibration, 6-7 December 2018, Nis, Serbia. -> Paper 4.1.

[2]. V. Ho-Huu, E. Ganić, S. Hartjes, O. Babić, and R. Curran, Air traffic assignment based on daily population
mobility to reduce aircraft noise effects and fuel consumption, Transportation Research Part D: Transportation
and Environment , vol. 72, pp. 127–147, 2019. -> Paper 4.2.
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4.1. PROBLEM STATEMENT
In the field of aircraft and airport operations, proper allocation of flights to departure
and arrival routes always plays a vital role. For example, sending aircraft to routes that
are remote from populated regions can significantly reduce noise impact, or assigning
flights to short routes can help to considerably reduce fuel burn. Hence, besides the
design of optimal routes, research to develop suitable flight allocation models is also
important.

Over the past decades, various models have been proposed for the flight assignment
problem. Unfortunately, many of these were devoted to the reduction of either flight de-
lay or fuel consumption. Meanwhile, studies focusing on reducing noise impact are lim-
ited. Also, the problems considered in these models were typically formulated as single-
objective nonlinear programming models [23], and hence the problem size is normally
large. Although such a model can be extended to multi-objective problems, it is difficult
to obtain solutions that effectively balance potentially conflicting objectives [20].

In this chapter, a new air traffic assignment model is proposed. The model perfor-
mance is first evaluated on a case study at Belgrade Airport in Serbia, which is presented
in detail in Ganic et al. [39]. Later, the model is extended to solve a more complex prob-
lem at a larger scale with a daily commuting population. The details of this study are
presented in Ho-Huu et al. [40].

4.2. CONTRIBUTIONS
The main contributions of this chapter are as follows:

1. In Ganic et al. [39], a new air traffic assignment model that is able to provide
proper trade-off solutions between two potentially conflicting objectives is devel-
oped. Compared with the previous model in [23], the developed model does not
only give reliable solutions, but also offers a range of solutions which can be a good
reference base for users to refer to before making decisions. In addition, owing to
considering each operation as a design variable, the size of the optimization prob-
lem is significantly reduced. As a result, the process of solving the optimization
problem is improved considerably.

2. In Ho-Huu et al. [40], the capability of the method is demonstrated in a more com-
plicated case study, in which a daily commuting population is considered. This
research was also the first study on the influence of the daily commuting popu-
lation on the evaluation of the aircraft noise impact. The research indicated that
aircraft noise not only affects people living close to the airport, but also people liv-
ing farther away the airport as a result of moving to places close to the airport for
work, while the opposite site is also observed. Owing to the changes in popula-
tion distribution at each location during the day, the study also reveals that there
are differences in the optimal assignments obtained when using the static (cen-
sus) data and mobility data. Although the obtained solutions are very promising,
they are only conceptual results. Therefore, studies on the implementation of such
results should also be considered in future work.
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Abstract - Air traffic assignment to departure and arrival 

routes has a major impact on the population noise exposure 

in the vicinity of the airport. In some cases, by choosing the 

suitable air traffic assignment it is possible to avoid 

overflying populated areas and reduce number of people 

affected by noise. However, such an approach almost always 

leads to an increase in route length, and therefore an 

increase in fuel consumption and CO2 emissions. Although 

aircraft noise and fuel consumption reduction are conflicting 

goals, they both represent pivotal aspects of air transport 

sustainable development. In this paper, the methods of multi-

criteria optimisation are applied, which are generally used 

when it is necessary to make an optimal decision that 

requires a compromise (trade-off) solution between two or 

more conflicting goals. The aim of this research is to develop 

a mathematical model and to propose an algorithm for air 

traffic assignment to departure and arrival routes that will, 

through the Pareto optimality concept, find the 

approximation of a set of nondominated solutions that 

minimize population noise exposure and fuel consumption. 

The approach was demonstrated on Belgrade airport to show 

the benefits of the proposed model on a real data example. 

Since all Pareto optimal solutions are considered equally 

good, from all obtained air traffic assignments the three 

representative solutions were compared to the actual air 

traffic assignment (Base case). The obtained results indicate 

that the proposed approach can provide solutions which offer 

a good trade-off between the concerned metrics. 

1. INTRODUCTION 

Major commercial airports generate benefits to their 

neighbouring communities, providing more investment and 

employment, increasing mobility, as well as providing a 

strong stimulus to the globalization of the industry, business 

and long distance tourism. However, external costs are 

associated with these benefits and any increase in aircraft 

movement causes adverse environmental impacts. It is widely 

accepted that the most significant environmental impacts 

related to the operation of airports arise from the noise 

generated by aircraft and fuel consumption leading to global 

CO2 emissions increase. 

Considerable efforts have been invested in order to alleviate 

the noise nuisance and reduce fuel consumption. On the 

European level, the Environmental Noise Directive 

2002/49/EC (END) relating to the assessment and 

management of environmental noise has been introduced [1]. 

In the framework of implementing the requirements set in 

this Directive, many airports have developed strategic noise 

maps and noise action plans [2]–[4]. Numerous initiatives to 

reduce fuel consumption and emissions have been launched 

in recent years including Atlantic Interoperability Initiative to 

Reduce Emissions (AIRE), Asia and South Pacific Initiative 

to Reduce Emissions (ASPIRE), ACI Airport Carbon 

Accreditation, The European Advanced Biofuels Flightpath. 

In addition to these initiatives that require enormous budgets 

and are more focused on the strategical level, on a practical 

level it was observed that the variation of aircraft/airport 

operational procedures could bring short-term improvements 

and could be less costly in comparison with the other options 

[5]. 

The literature shows that efforts to design optimal departure 

and arrival routes with less noise and fuel burn have been 

well studied over the past decades, and various strategies 

have been proposed. Besides the attempts to design 

environmentally friendly departure/arrival routes, the 

allocation of aircraft and operational procedures to specific 

routes could also help to considerably diminish the 

environmental impacts. For instance, Frair [6] proposed a 

nonlinear integer programming model to minimize 

community annoyance at an airport by allocating aircraft to 

the existing arrival and departure trajectories. Zachary et al. 

[7] investigated the optimization problem which aims at 

finding an optimal combination of approach and departure 

routes, operational procedures and fleet composition to 

optimize noise and pollutant emissions. Kim et al. [8] built an 

optimization model to minimize the total emissions on the 

airport surface and in the terminal area by allotting aircraft to 

runways and scheduling the arrival and departure operations 

on these runways concurrently. 

Several air traffic assignment strategies have been proposed 

in order to allocate noise more wisely. Netjasov suggested the 

model that was based on the categorization of aircraft 

according to engine type and wake turbulence category and 

the assignment of specific runways for take-off and landing 

for each aircraft category [9]. Heblij et al. developed the 

Noise Allocation Planning Tool that maintained an equal 

noise level over a wider area, effectively reducing peak levels 

[10]. Zaporozhets and Tokarev formulated and solved several 

problems related to minimisation of aircraft noise impact, 

including a selection of optimum operations around an airport 

by distributing the aircraft between the routes [11]. On a 

tactical level, Nibourg et al. have developed Runway 

Allocation Advice System (RAAS) which is currently in 
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operation at Amsterdam Airport Schiphol (AAS) and Basel 

Euro Airport and which allows controllers to choose the 

optimal runway (combination) in any given situation with 

respect to noise preferential runway system in place [12]. 

Kuiper et al. proposed an optimization approach that aims to 

minimize the risk of exceeding the limit at any predefined 

location in the vicinity of the airport by distributing flights 

over different runways [13].  

Each decision regarding the assignment of aircraft to routes 

should consider the number of people who will be exposed to 

adverse noise levels. Due to population daily migrations, 

number of people in some residential areas could 

significantly differ from census data. Ott was one of the first 

researchers to spot the drawback when relying to census data 

since it leads to overlooking the fact that some residents 

spend a long time far from the area, which is supposed to 

represent their exposure [14]. Ganić et al. [15] incorporated 

population daily migrations into air traffic assignment 

optimisation model with the aim to reduce the number of 

people exposed to noise but without taking into account fuel 

consumption. Although the importance of analysis of daily 

migrations has been recognized in many transportation 

studies [16]–[21], to the best of the authors’ knowledge, none 

of the air traffic assignment strategies addressed trade-off 

between population noise exposure and fuel consumption in 

combination with temporal and spatial variations in 

population in an airport’s vicinity. 

The idea presented in this paper is to tailor air traffic 

assignment of aircraft to departure and arrival routes taking 

into account temporal and spatial variations in population in 

an airport’s vicinity in order to reduce the number of people 

exposed to noise as well as fuel consumption. The approach 

was demonstrated on Belgrade airport to show the benefits of 

the proposed model on a real data example. The obtained 

results indicate that the proposed approach can provide 

solutions which offer a good trade-off between the concerned 

metrics.  

The rest of the paper is organised as follows. Section 2 

presents the formulation of the multi-objective optimization 

problem by defining the mathematical model, explaining the 

necessary input data as well as the proposed (used) NSGA-II 

algorithm. Section 3 describes the Belgrade airport case study 

which is used to assess the capability of the proposed air 

traffic assignment model. The results are presented in Section 

4. Finally, Section 5 provides the conclusion and ideas for 

further research.  

2. MULTI-OBJECTIVE OPTIMIZATION PROBLEM 
FORMULATION 

To generate optimal air traffic assignment with respect to 

population daily migrations, the mathematical model of an 

optimization problem with two objectives is developed. As a 

continuation of the research done by Ganić et al. [15], besides 

population noise exposure, this research takes into account 

fuel consumption as the second objective. 

2.1. Input data 

Description of proposed air traffic assignment model requires  

following input data: 

 air traffic data, 

 departure and arrival routes for each runway, 

 noise data for each location produced by each 

aircraft flying over routes, 

 fuel consumption data for each aircraft flying over 

each route, 

 population data, 

 human mobility patterns based on daily migrations. 

Air traffic data includes information about origin and 

destination, aircraft type, actual take-off time (ATOT), arrival 

time, runway in use, operation type (take-off or landing) and 

can be obtained from Air Traffic Control. Real radar data 

could be used to represent departure and arrival routes or they 

could be obtained from Aeronautical Information Publication 

(AIP). 

Noise level for each location produced by each aircraft flying 

over routes could be either measured or calculated. In the first 

case, noise levels are measured at noise monitoring stations 

which represent locations. In the second case, noise levels are 

calculated using some noise prediction and mapping 

software, such as Predictor-LimA, SoundPlan, Integrated 

Noise Model (INM), etc. Even though the first approach 

gives the opportunity to work with real-time data, the second 

approach seems more appealing since there are no limitations 

regarding the number of locations and their position. 

Selection of locations for which noise levels will be assessed 

together with the actual number of people exposed to those 

noise levels during the observed periods is crucial for the 

population noise exposure assessment. Low level of detail 

required for this research allows each settlement to be 

represented by a single point, i.e. location instead of 

observing each housing unit in particular. 

Fuel consumption was calculated using the EMEP/EEA air 

pollutant emission inventory guidebook – 2016 [22]. Fuel 

burn for Landing and Take-Off (LTO) flight phases was 

assessed using information about origin and destination 

airports, aircraft type (engine type, number of engines), 

duration for each LTO phase (taxi, take off, climb out, 

approach) and rate of fuel burn (kg/s/engine). For 

Climb/Cruise/Descent (CCD) flight phases fuel consumption 

was calculated based on CCD stage length and aircraft type. 

Population data are collected for each location which implies 

gathering the number of people living in each settlement 

based on census data. During some period of the day, 

especially when employees go to work and pupils and 

students go to schools and faculties, number of people at 

some residential areas could significantly differ from census 

data due to population daily migrations. Having that in mind, 

assessment of human mobility patterns based on daily 

migration gives an estimation of how many people will 

actually be present at some location during a defined period 

of time. Daily migrations presented in this paper include a 

special form of spatial mobility of economically active 

population performing an occupation, of pupils and students. 

This data can be obtained from the National Statistical Office 

for each municipality around the airport [23]. 

2.2. Mathematical model 

To formulate this model, the following notations are used: 

Parameters: 

  is the set of periods,     

   is the set of operations during period  ,     ,     
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  is the set of locations,     

   is the set of feasible operational options of operation  , 
     

    is the duration of period  ,     

    is the number of population living at a location   during 

period   

    is the legal noise limit at a location   during period   

         is the fuel consumption that operation   costs when 

option   is selected 

       is the noise level that operation   cause when option   

is selected 

Design variables: 

               is the vector of optimal assignment of all 

operations to routes.  

  : is an optimal option of operation  , which is selected from 

set of all feasible operational options   , (     ).  

The set of operational options              is defined 

based on its operational type (departure/arrival) and 

navigation point, in which         is the number of options 

that can be derived for aircraft operation  . For each option, 

noise level (      ) and fuel consumption (        ) are 

predefined. 

Objective functions: 

                     (1) 

- Fuel consumption:  

                  

    

 (2) 

- Number of people affected by noise: 

                

   

 (3) 

       
                  

(4) 

            
 

 
              

    

     
(5) 

It should be noted that besides the introduction of a new 

objective, i.e., fuel consumption, this model also contains a 

new promising feature in comparison with the model 

proposed in [15]. Particularly, in the model [15], for each 

operation, all feasible options it can be assigned to are 

considered as binary design variables, which means that only 

one of these options is equal to 1 if it is selected, and the rest 

of them will be equal to 0. Consequently, the size of 

optimization problem will be extremely enlarged when the 

number of operations increases. This may make the problem 

more difficult to solve by using evolutionary algorithms or 

even integer nonlinear programming models. On the contrary, 

in the paper, each operation is considered as a design 

variable, and all its feasible assignments will serve as its 

design space. As a result, the number of design variables of 

the problem will dramatically decrease, and hence the 

problem can be effectively solved by using evolutionary 

algorithms. 

2.3. NSGA-II algorithm 

As described in Section 2.2, the formulated problem is an 

integer nonlinear optimization problem with two objective 

functions, which is hard to be solved by gradient-based 

optimization methods or linear/nonlinear programming 

models. Fortunately, in recent years, many evolutionary 

algorithms have been proposed that are capable of effectively 

solving such kind of problems. Among them, nondominated 

sorting genetic algorithm II (NSGA-II) proposed by K. Deb 

et al. [24] emerged as one of the most powerful methods, 

which has been widely used in many different engineering 

applications. In this paper, it is therefore utilized to deal with 

the optimization problem stated above. Since the details of 

the algorithm have been given in [24], interested readers are 

encouraged to refer to this reference.  

3. BELGRADE AIRPORT CASE STUDY 

To demonstrate the reliability and applicability of the 

proposed approach, a case study is carried out in this section. 

Belgrade airport Nikola Tesla (ANT), the largest and busiest 

international airport in Serbia, situated 18 km west of 

downtown Belgrade, has been chosen as the case study. In 

2017, the airport handled more than 5 million passengers and 

approximately 60 thousand aircraft operations with single 

runway 3400 m long (direction 12/30). 

The first step in this case study was to obtain detailed air 

traffic data for one day. September 16
th

, 2016 has been 

chosen since it was a summer day with relatively heavy 

traffic and some of the data was already available from the 

previous study [25] which also included measured noise 

levels at one location near Belgrade airport.  

Daily traffic consisted of 220 operations, including 109 

departures and 111 arrivals. Distribution of operations 

between runways was slightly in favour of runway 12 which 

handled 128 operations (58.2%), while the runway 30 was 

used for 92 operations (41.8%).  

Departure and arrival routes for each runway were obtained 

from radar data since Standard Instrument Departure (SID) 

and Standard Arrival Routes (STAR) could not be considered 

accurate due to aircraft vectoring mostly in place at ANT. 

Taking into account that aircraft vectoring at ANT is usually 

done in a similar way, radar data could be regarded as 

constant since changes in departure/arrival routes derived 

from radar data from one day to another are minor. 

From a bundle of radar tracks presented in Fig. 1a, a 27 

different routes were selected to represent actual SID/STAR 

routes. There are seven departure routes and seven arrival 

routes from runway 12 (Fig. 1b) and six departure routes and 

seven arrival routes from runway 30 (Fig. 1c). Departure 

routes are marked in blue while red colour corresponds to 

arrival routes. 

Noise and fuel data are in function of aircraft type. For the 

observed day, fleet mix consisted of 25 different aircraft 

types. However, for the purpose of simplifying the 

calculations, they were classified into 11 groups based on the 

similarity of aircraft types. In this way, 85% of the operations 

were presented by the aircraft types that were actually flown 

that day, while the remaining 15% were presented by aircraft 
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types that have approximately the same level of noise 

exposure and fuel consumption as their representative.  

Table 1 shows the number of departure and arrival operations 

per each period per each aircraft type categorised as per the 

INM [26]  and AzB [27] databases. 

Before calculating the noise data, it is pivotal to choose the 

optimal number and position of locations for which the noise 

and population data will be obtained. Since ANT is 

surrounded by populated areas, 23 different municipalities 

were considered to be affected by aircraft noise: 17 Belgrade 

municipalities and the municipalities of Stara Pazova, Indjija, 

Irig, Ruma, Pecinci and Pancevo. In order to be certain that 

adequate locations would be selected, the conservative 

approach of calculating noise exposure of each location 

around the airport was applied in the following way: the most 

unfavourable case for a certain selected location is when all 

operations are assigned to departure and arrival routes that 

are closest to that location and when the noisiest aircraft type 

is overflying the location (in this study it is "Airbus A330-

200"). From 306 locations (settlements) for which the noise 

exposure was calculated using a conservative approach, only 

17 locations were selected since the noise levels at these 

locations were above legal noise limit values (above 55dB 

Lden and/or 45dB Lnight). Table 2 shows legal noise limits and 

population data for each selected location. 

As it can be seen from Table 2, population data are presented 

in four different columns. Data in the first column represents 

2011 census data [23]. In order to take into account human 

mobility patterns and to simulate the three-8h working shifts 

the day has been divided into three-8h periods: Period 1 from 

8 am to 4 pm (90 operations), Period 2 from 4 pm to12 am 

(79 operations) and Period 3 from 12 am to 8 am (51 

operations). In order to obtain data on daily migrations of 

economically active persons who perform an occupation, 

pupils and students for each of the 23 municipalities around 

the airport it was necessary to make private request for 

special processing of data collected in the 2011 census to the 

Statistical Office of the Republic of Serbia since this data was 

not available publicly. Definition provided in 2011 Census 

methodology describes daily migrants as persons who work 

or go to school/university outside the place of their usual 

residence, but who return on a daily basis or several times a 

week [23]. Data on daily migrations was the key to calculate 

the total daily inflow and outflow of inhabitants for each 

municipality. Based on that, the approximation of total daily 

inflows and outflows of the inhabitants for each settlement 

within the municipality was done in proportion to the number 

of inhabitants in the settlement.  

Having in mind that in this way, human mobility patterns are 

obtained for the whole day only, and not for the separate 

periods of the day, some assumptions were needed to be 

made in order to assess how many people would actually be 

present at each location during a defined period of time. It 

was assumed that 50% of employees work first shift, 40% 

work second shift, and 10% work night shift, while pupils 

and students go to school in two shifts (Period 1 and 2) 

equally. In this way, for each period population data were 

calculated based on the census and daily migration data 

showing the difference in the number of people at the 

locations between periods. The total number of residents 

living near these 17 locations based on census data was 

238,741.  

Legal noise limit values for day, evening and night, given in 

Table 2, represent the limit values for EU common noise 

indicators Lden and Lnight in the Republic of Serbia, for 

residential areas (see [28]). For Period 1 and 2, representing 

the day and evening, legal noise limit values in dB (A) were 

set to 55dB, while for Period 3 representing the night noise 

limit value of 45dB was used. 

INM software was used to calculate the sound exposure 

levels (SEL) for each aircraft type in the fleet mix, flying 

over each route, for each location separately. This data was 

used as input for noise objective in optimization model. For 

each operation, standard INM profile settings were used 

taking into account the fact that different aircraft types 

overfly locations at different altitudes and thrust settings. In 

addition, different profile parameters for each aircraft type 

were assigned including take-off and landing masses, thrust 

and flaps settings, climb rate, descent angle,... 

 

Table 1 Flight statistics and aircraft classifications 

Aircraft type 
Assigned 

AzB class 

INM airplane 

code 

Departure Arrival 

Period 

1 

Period  

2 

Period 

3 

Period 

1 

Period  

2 

Period 

3 

Boeing 737-300 S 5.2 737300 4 1 3 5 3 1 

Boeing 737-800 S 5.2 737800 2 2 1 3 1 0 

Airbus A319 S 5.2 A319-131 10 9 9 11 15 3 

Airbus A320 S 5.2 A320-211 11 4 6 12 5 5 

Airbus A330-200 S 6.1 A330-301 1 1 0 0 1 1 

BE20 P 1.4 CNA441 1 0 1 1 0 0 

Cessna 560 XL S 5.1 CNA560XL 1 1 2 2 1 1 

SW4 P 2.1 DHC6 1 2 1 3 1 0 

ATR 42 P 2.1 DHC8 1 3 0 1 3 0 

ATR 72 P 2.1 DO328 7 8 10 6 14 6 

Embraer 190 S 5.2 EMB190 4 2 0 3 2 1 

  
Total 43 33 33 47 46 18 

4

82 PAPER 4.1



73 

 

Fig. 1 Radar data and departure and arrival routes (source: Flightradar24.com, using Google Earth) 

Table 2 Location and population data 

No. Municipality Settlement 

Legal noise limit (dB)  Population 

Day and Evening    Night 
 2011 

Census 
Period 1 Period 2 Period 3 

1 Cukarica Banovo Brdo 55 45  44669 40098 40790 43978 

2 Cukarica Cerak 55 45  43993 39492 40172 43312 

3 Cukarica Zarkovo 55 45  30979 27809 28289 30500 

4 Novi Beograd Bezanijski blokovi 55 45  22455 22725 22610 22570 

5 Novi Beograd Ledine 55 45  6813 6895 6860 6848 

6 Novi Beograd Sava 55 45  18899 19126 19029 18996 

7 Rakovica Kanarevo Brdo 55 45  11389 9975 10194 11170 

8 Rakovica Kosutnjak 55 45  4944 4330 4425 4849 

9 Rakovica Miljakovac 55 45  7622 6676 6822 7476 

10 Rakovica Skojevska 55 45  4739 4151 4242 4648 

11 Surcin Dobanovci 55 45  8503 8055 8089 8469 

12 Vozdovac Jajinci 55 45  8876 8672 8733 8815 

13 Vozdovac Kumodraz 55 45  6064 5924 5966 6022 

14 Vozdovac Kumodraz 1 55 45  3852 3763 3790 3826 

15 Vozdovac Rakovica 55 45  3292 3216 3239 3269 

16 Zemun Ugrinovci 55 45  10807 10585 10616 10776 

17 Stara Pazova Krnjesevci 55 45  845 809 813 841 

         Total  238741 222301 224679 236365 
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4. RESULTS AND DISCUSSION 

The results obtained by the proposed approach for three 

different periods in comparison with those acquired by the 

base case and the model in [15] are depicted in Fig. 2. At first 

glance, it can be seen from Fig. 2 that the present approach 

offers a wide range of solutions (denoted as Pareto front), 

which try to make a good trade-off between the population 

noise exposure and fuel consumption. Another observation is 

that, for all three periods, the proposed model can provide 

solutions that dominate the base case, while compared with 

those obtained by [15], they are worse in terms of noise 

criterion and better regarding fuel burn.  

In order to make the comparison more apparent, for each 

period, three different solutions are selected and highlighted, 

as shown in Fig. 2. With this selection, solution 1 represents 

for fuel optimization, solution 3 prefers to noise criterion, 

whereas solution 2 is one of solutions from the Pareto fronts 

which is close to the base case. All the metrics derived from 

these solutions are given in Table 3, where those obtained by 

the base case and the model in [15] are also provided.  

From the table, a common trend for all the periods can be 

observed. Specifically, compared to base case, solution 1 

offers a better performance in fuel burn, solution 2 performs 

better in noise criterion, while with almost the same amount 

of fuel consumption, solution 3 achieves a significant 

reduction in population noise exposure. For example, in 

Period 1, solution 1 has a reduction of 0.7% and 0.5% in fuel 

burn and route length, respectively, and an increase of 3.3% 

in population noise exposure, compared with the base case. 

Solution 2 has a very good performance in noise criterion 

with a considerable decrease of 43.8% in comparison with 

the base case, which is almost the same with that of the 

model in [15]. However, it is worse than the base case in term 

of fuel burn and route length. For solution 3, there is a good 

trade-off between all the concerned metrics to be found. With 

the same amount of fuel burn, it gains a great reduction of 

42.7% in noise metric, while the one acquired by Ganic et al. 

[15] has a reduction of 43.8%, but causes a significant 

increase up to 0.7% in fuel burn.           

From the results obtained above, it can be concluded that the 

proposed approach is reliable and quite effective. It not only 

provides reliable solutions, but also offers a variety of options 

for interested users to choose with only one single run. This 

feature has made the proposed approach dominating other 

single objective approaches in previous studies. Moreover, 

with the new form of the optimization problem given in 

Section 2.2, the problem size is reduced significantly, which 

allows the proposed model to be capable of solving large 

scale problems.   

 
                                               a) Period 1                                                                  b) Period 2 

 
       c) Period 3 

Fig. 2 Pareto front obtained by the NSGA-II algorithm 
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Table 3 Comparison of the metrics of the representative solutions and the reference case 

Period Metrics 
Base 

case 

Ganić et al. [15]  Solution 1 Solution 2 Solution 3 

Absolute 

value 

% 

reduction 
 

Absolute 

value 

% 

reduction 

Absolute 

value 

% 

reduction 

Absolute 

value 

% 

reduction 

1 

Population noise 

exposure 
103541 58187 -43.8%  106974 3.3% 58211 -43.8% 59359 -42.7% 

Fuel consumption 

(kg) 
339844 342358 0.7%  337567 -0.7% 341761 0.6% 339798 0.0% 

Route length (NM) 51459 52065 1.2%  51227 -0.5% 51923 0.9% 51647 0.4% 

2 

Population noise 

exposure 
103506 78332 -24.3%  95643 -7.6% 78356 -24.3% 79518 -23.2% 

Fuel consumption 

(kg) 
224527 225682 0.5%  223897 -0.3% 225315 0.4% 224477 0.0% 

Route length (NM) 38664 38924 0.7%  38515 -0.4% 38833 0.4% 38644 -0.1% 

3 

Population noise 

exposure 
197999 115514 -41.7%  190204 -3.9% 115539 -41.6% 160493 -18.9% 

Fuel consumption 

(kg) 
207735 209631 0.9%  207488 -0.1% 209248 0.7% 207695 0.0% 

Route length (NM) 33713 34279 1.7%  33639 -0.2% 34191 1.4% 33700 0.0% 

 

5. CONCLUSION  

In this paper, a new approach for air traffic assignment is 

developed. The proposed model is based on a new form of 

the optimization problem, in which two conflicting objective 

functions, including noise and fuel criteria, are taken into 

account simultaneously. The formulated problem is then 

solved by the well-known multi-objective optimization 

method, named NSGA-II. The reliability and applicability of 

the proposed approach are demonstrated through a case study 

at Belgrade Airport in Serbia. Through the evaluation and 

comparison of the obtained results with those of the base case 

and the model in [15], it reveals that the proposed method is 

reliable and quite effective. It does not only provide reliable 

solutions but also gives a wide range of solutions – featuring 

a good trade-off between the considered two objectives –

which can be a good reference base for users to refer to 

before making decisions.    

Furthermore, thanks to the new ways of formulating the 

optimization problem, the proposed approach is promising to 

be extended for solving large problems in busy airports.  
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A B S T R A C T

The paper first investigates the influence of daily mobility of population on evaluation of aircraft
noise effects. Then, a new air traffic assignment model that considers this activity is proposed.
The main objective is to reduce the number of people affected by noise via lowering as much as
possible the noise exposure level Lden of individuals or groups of people who commute to the
same locations during the day. It is hereby intended to reduce the noise impact upon individuals
rather than to reduce the impact in particular – typically densely populated – areas. However,
sending aircraft farther away from populated regions to reduce noise impact may increase fuel
burn, thus affecting airline costs and sustainability. Therefore, a multi-objective optimization
approach is utilized to obtain reasonable solutions that comply with overall air transport sus-
tainability. The method aims at generating a set of solutions that provide proper balance between
noise annoyance and fuel consumption. The reliability and applicability of the proposed method
are validated through a real case study at Belgrade airport in Serbia. The investigation shows that
there is a difference between the number of people annoyed (NPA) evaluated based on the census
data and the NPA evaluated based on the mobility data. In addition, these numbers differ sig-
nificantly across residential locations. The optimal results show that the proposed model can
offer a considerable reduction in the NPA, and in some cases, it can gain up to 77%, while
maintaining the same level of fuel consumption compared with the reference case.

1. Introduction

Proper allocation of aircraft to departure and arrival routes may play an important role in reducing aircraft noise effects on
communities located near airports, and this issue has attracted considerable attention of researchers and authorities over the years.
Although this topic has been well studied, research is often conducted based on census data, and hence it is assumed that people
remain at the same location throughout the day. In reality, however, people spend substantial portion of the day at school, work or
other places outside their homes. Consequently, analyses of daily population mobility have been considered in many transportation
studies (Hatzopoulou and Miller, 2010; Jiang et al., 2017; Kaddoura et al., 2016; Novák and Sýkora, 2007) as an important factor for
a more precise estimation of noise effects. Nevertheless, there is a lack of this kind of research for air traffic assignment problems. This
paper, therefore, first investigates the influence of population’s daily mobility upon evaluation of aircraft noise effects. Then, a new

https://doi.org/10.1016/j.trd.2019.04.007
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air traffic assignment model that takes daily movement of population into account is proposed. In the proposed model, the main
objective is to minimize the number of people affected by aircraft noise while maintaining fuel consumption as low as possible. In
order to achieve this purpose, a multi-objective optimization approach is utilized herein. The method aims at producing a set of
solutions that are able to deliver a proper balance between conflicting objectives, i.e., noise annoyance and fuel consumption. An
extensive review of the literature that served as the background and that motivated the authors to conduct this research is presented
below.

Over the years, significant efforts have been devoted to relieving the noise impact as well as to reducing fuel consumption and
pollutant emissions. At the European level, a legislative framework has been introduced, namely the Environmental Noise Directive
2002/49/EC (END) (EC, 2002) for the assessment and management of environmental noise. The Directive regulated the obligation to
develop strategic noise maps and noise action plans with the aim of avoiding, preventing and reducing the harmful effects of noise on
public health, and these have been successfully implemented at many airports (Glekas et al., 2016; Vogiatzis, 2014, 2012). After more
than 15 years of enforcement, both the implementation review and the evaluation of END have been done twice so far, addressing
questions related to effectiveness, efficiency, coherence, relevance and EU added value (European Commission, 2016). In addition,
common noise assessment methods (CNOSSOS-EU) for the determination of the noise indicators Lden and Lnight have been adopted by
the EC through the revision of Annex II of the END in 2015 (Coelho et al., 2011; Kephalopoulos et al., 2014; Vogiatzis and Remy,
2014). CNOSSOS-EU has been developed to improve the consistency and the comparability of noise assessment results across the EU
member states, providing a harmonized framework for assessment of each noise source covered by END. Upon the release of the
Directive, numerous initiatives to reduce fuel consumption and emissions have been launched in recent years, as well. The examples
include the Atlantic Interoperability Initiative to Reduce Emissions (AIRE)2, Asia and South Pacific Initiative to Reduce Emissions
(ASPIRE)3, ACI Airport Carbon Accreditation4, and the European Advanced Biofuels Flightpath5.

In addition to the above initiatives that require enormous budgets and focus more on strategical levels, at a practical level it has
been observed that the variation of aircraft/airport operational procedures is one of the feasible options that could bring short-term
improvements and could be less costly (Marais et al., 2013). From this perspective, literature shows that research efforts in designing
optimal departure and arrival routes with less noise and fuel burn have been well studied over the past decades, and various strategies
have been proposed (Prats et al., 2011; Visser, 2005; Visser and Wijnen, 2001). Recently, with the utilization of multi-objective
optimization techniques, research has also demonstrated that the obtained optimal routes are beneficial not only from the noise
perspective, but also in terms of fuel burn (Ho-Huu et al., 2017; Vinh Ho-Huu et al., 2018; Torres et al., 2011; Zhang et al., 2018). In
addition to efforts invested to improve environmentally friendly departure and arrival routes, optimal distribution of aircraft and
operational procedures to specific routes could also contribute significantly to environmental impact decrease (Frair, 1984; Heblij
et al., 2007; Kuiper et al., 2013; Netjasov, 2008; Nibourg et al., 2012; Zachary et al., 2011, 2010).

In order to assess the impact of flight operations on communities located near airports, it is critical to include distribution data of
populations in the vicinity of airports, as done in a number of previous studies. However, census data takes into account only the
homes of people, whereas, in reality, people spend substantial portions of the day at work, school, university or other places away
from their residential locations. Consequently, the population may experience noise exposures which are very different from the ones
predicted when using only the census data. One of the first studies that has called attention to the drawback of relying on census data
was carried out by Ott (1982). In this study, the author shows that employees and students usually spend a long time away from their
residential locations, and this leads to a different overall impact of, in this case, air pollutants. The same observation is also re-
cognized in a recent study by Kaddoura et al. (2017). In this work, the authors suggest that the evaluation of population’s exposure to
road traffic noise should take spatial and temporal variations in the population into account, because the use of static data would lead
to an overassessment.

One of the first air traffic assignment studies that takes daily mobility of population into account was done by Ganić et al. (2018).
In this study, however, the evaluation of noise effects is based only on the change of population at several locations through three
different periods of day, and is hence treated as three separate optimization problems. Furthermore, the model of air traffic as-
signment developed in Ganić et al. (2018) has some limitations, as well. The problem was formulated as a binary nonlinear opti-
mization problem, in which, for each operation, every feasible assignment of routes was considered a decision variable. Therefore,
the size of the problem is rather large and hence it is difficult to solve the problem when the number of aircraft operations increases.
In addition, only the noise objective is considered, while fuel consumption and local air quality are not considered, and these may
very well be adversely affected.

Motivated by the above limitations, the authors of this paper considered the information on daily mobility of population in the air
traffic assignment model. To evaluate whether the inclusion of mobility data is necessary or not, the influence of census and mobility
data on evaluation of noise effects is investigated first. Then, a new air traffic assignment model that is capable of taking daily
mobility of population into account is developed. In order to reduce the number of people affected by aircraft noise, the noise
exposure level Lden is calculated for each individual or group of people who commute to the same locations during an entire day from
00:00 to 24:00 h. Afterwards, a noise annoyance criterion recommended by EEA (2010) is employed to obtain the number of people
annoyed. Furthermore, to acquire optimal solutions which are able to balance between noise impact and fuel consumption

2 https://ec.europa.eu/transport/modes/air/environment/aire_en (assessed 9 September 2018)
3 https://aviationbenefits.org/case-studies/aspire/ (assessed 9 September 2018)
4 https://www.airportcarbonaccreditation.org/ (assessed 9 September 2018)
5 https://www.biofuelsflightpath.eu/about (assessed 9 September 2018)
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effectively, a bi-objective optimization problem is formulated. In addition, since the considered problem is an integer nonlinear multi-
objective optimization problem, it is rather difficult to solve it by nonlinear optimization programming models as applied in Ganić
et al. (2018). To allow the problem to be solved with a multi-objective evolutionary algorithm, a new problem formulation is
proposed. In the proposed formulation, each operation is considered a decision variable, and its feasible assignments of routes, after
taking into account wind conditions, runway configurations and separation minima, are considered its search space. With the ap-
plication of this formulation, the size of the problem reduces significantly, and hence the problem can be solved effectively by
employing an evolutionary algorithm. The proposed approach is then applied to a real case study at Belgrade airport in the Republic
of Serbia.

The structure of the paper is as follows. In Section 2, first the problem definition is presented, and then the mathematical
formulation and data preparation are described in detail. Section 3 provides a brief description of the optimization method, namely
the non-dominated sorting genetic algorithm (NSGA-II) which is applied to solve the formulated problem. The Belgrade airport case
study is presented in Section 4. The results and discussion are presented in Section 5. Finally, some conclusions, remarks and ideas for
future work are presented in Section 6.

2. Problem definition

This section presents the model of the air traffic assignment problem in detail. The main idea of the formulated problem is to
assign aircraft to suitable routes with the aim of minimizing noise impact on communities close to the airport and fuel consumption.
First, the mathematical form is presented. Then, the preparation of the input data is described.

2.1. Mathematical formulation

The mathematical model of the optimization problem is formed based on several assumptions which are explained in detail in
Section 2.2. The model is described through three components: notations, decision variables, and objective functions, as follows.

Notations:

O is the set of aircraft movements departing from and arriving at an airport during a considered day;
Si is the set of feasible routes to which aircraft movement i can be assigned, and which takes into account runway configuration,
wind conditions and separation minima, i∈O;
L is the number of considered locations;
J is the set of individual persons or groups of people commuting to the same location during an entire day (from 00:00 to 24:00 h);
T is the number of time periods;
SELitl is the sound exposure noise level (SEL) generated by the movement i at the time t and the location l, i ∈O, t∈ T, l ∈ L;
pj is the number of people in the group of people j who commute to the same location at the same time during the day, j∈ J;

Decision variables:

xi is an integer design variable of route assignment of the movement i, which is selected from the set of feasible operational
options Si (xi ∈ Si). It should be noted that the noise level SEL at all locations in L and the fuel consumption for an entire flight are
predefined for each option within Si.
x is the vector of the design variable xi, containing the optimal assignments of all movements to routes.

Objective functions:
With the aim of finding optimal solutions that are capable of balancing effectively between the number of people affected by

aircraft noise and fuel consumption, an optimization problem with two objectives is considered. The first one is the total number of
people annoyed (hereinafter referred to as NPA), which is defined as follows:

=xNPA PA p( ) % ·
j J

j j
(1)

where %PAj is the percentage of people in the group of people j who are annoyed due to being exposed to a certain level of aircraft
noise. According to EEA (2010), it is based on the Lden cumulative noise metric, and estimated as follows:

= × + × +PA L L L% 8.588 10 ( 37) 1.777 10 ( 37) 1.221 ( 37)j
6

den
3 2

den
2

denj j j (2)

where Lden j is the day-evening-night noise level to which the group of people j is exposed during the day, and it is determined as
follows:

=
+

L
T

j10log 1 10 ,
d i O t T

den 10j
SELitl wden

10

(3)

where =w {0, 5, 10}den is the weighting factor to account for day, evening and night time operations, and it is defined based on the
time at which the movement i takes place. Td is the considered time period of an entire day in seconds (Td = 24 × 3600 s). It should
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be noted that, for further analyses in the later sections, the number of people who are highly annoyed (hereinafter referred to as
NPHA) is used as well. This criterion is also developed by EEA (2010) and defined as follows:

=xNPHA PHA p( ) % ·
j J

j j
(4)

where %PHAj is the percentage of people in the group of people j who are highly annoyed due to their exposure to a certain level of
aircraft noise, and it is calculated by:

= × + × +PHA L L L% 9.199 10 ( 42) 3.932 10 ( 42) 0.2939 ( 42)j
5

den
3 2

den
2

denj j j (5)

The second objective is the total fuel burn. The EMEP/EEA air pollutant emission inventory guidebook – 2016 (Part B: sectoral
guidance chapters, 1.A.3.a Aviation 2016) (Winther et al., 2017) is used to calculate the fuel consumption for each operation.
Particularly, the LTO and Master Emission calculators in Annex 5 of this document, which use the data from the ICAO Aircraft Engine
Emissions Databank (ICAO, 2017), are applied. These calculations have been done in the previous study (Ganić et al., 2018), and they
are again to be used in this research. Then, the fuel objective is defined as follows:

=xT fuel x( ) ( )fuel
i O

i
(6)

where fuel(xi) is the fuel consumption for the movement i.

2.2. Data requirements

As described in the notations, the model needs the following input data:

• air traffic data,
• departure and arrival routes for each runway with a predefined set of feasible routes,
• population locations,
• noise data for each location caused by all aircraft operating on all feasible routes,
• fuel consumption of all aircraft operating on all feasible routes,
• population data,
• daily mobility patterns.

The air traffic data includes information about origin and destination, aircraft type, actual take-off time, arrival time, and runway
in use. This information can be obtained from Air Traffic Control. Real radar data can be used to represent departure and arrival
routes, or the routes can be obtained from Aeronautical Information Publication (AIP). In this research radar data were used. Runway
configuration, wind condition forecasts from METAR reports and separation minimum are taken into account to determine the set of
feasible routes for each aircraft operation.

The noise levels caused by each aircraft movement on all feasible routes need to be determined a priori and stored in a database.
The locations at which the noise is determined coincide with the census data and the data on population’s daily mobility. Considering
the low level of detail required for this research, each settlement can be represented as a single point, i.e., location since it is not
required to observe each housing unit in particular.

The fuel consumption is calculated by using the EMEP/EEA air pollutant emission inventory guidebook – 2016 (Winther et al.,
2017). Fuel burn for Landing and Take-Off (LTO) flight phases is assessed by using the origin and destination information of airports,
as well as aircraft type (engine type, number of engines), duration for each LTO phase (taxi, take off, climb out, approach) and rate of
fuel burn (kg/s/engine). For Climb/Cruise/Descent (CCD) flight phases fuel consumption is calculated based on CCD stage length and
aircraft type.

Static population data are collected for each location based on the census data. Census data essentially represent home addresses
of the population. To account for daily mobility patterns the population is divided into groups of people commuting to the same
locations during the day at the same time period. Daily mobility presented in this paper includes a special form of spatial mobility of
economically active populations (who perform an occupation), pupils and students. This data for each municipality around the
airport is available at National Statistical Office (Statistical Office of the Republic of Serbia, 2013).

3. Optimization algorithm

As described in Section 2, the formulated problem is an integer nonlinear optimization problem with two objective functions.
Thus, it is rather challenging to solve it using gradient-based optimization methods or nonlinear programming models. The diffi-
culties lie in two aspects. Firstly, the decision variables are options that do not link directly to the objective functions, and hence they
are difficult to solve with gradient-based optimization methods and nonlinear programming models. Secondly, even under the as-
sumption that these models can be applied, they need to be combined with other techniques, such as weight methods, to solve the
multi-objective optimization problem. Nevertheless, it is still hard to decide which weight vectors should be used. In addition, it is
challenging to obtain a well-distributed Pareto front by applying these approaches when the considered problem is nonlinear.

Fortunately, many evolutionary algorithms capable of effectively dealing with similar problem have been proposed in recent
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years. Among them, the non-dominated sorting genetic algorithm II (NSGA-II) proposed by Deb et al. (2002) has emerged as one of
the most powerful methods. The algorithm has been successfully applied in various engineering applications, for instance, structural
optimization problems (Thang et al., 2018; Vo-Duy et al., 2017), scheduling problems (Martínez-Puras and Pacheco, 2016; Wang
et al., 2017), allocation problems (Abouei and Taghi, 2018; Alikar et al., 2017), noise abatement departure trajectories (Hartjes and
Visser, 2016), etc.

The NSGA-II algorithm is the improved version of NSGA developed earlier by Srinivas and Deb (1994) with a fast non-dominated
sorting procedure and a crowded-comparison technique. Due to the outstanding features of these techniques, the performance of
NSGA-II has been significantly enhanced in comparison to the previous version. In NSGA-II, the optimization process is started with a
random number of solutions called the initial population Pt, in which t is the generation. Then, for each candidate solution in the
population, the objective functions are evaluated. In order to gradually evolve the population towards the optimal solutions, from the
previous (parent) population, an offspring population Qt is generated by using genetic operators, such as tournament selection,
crossover and mutation. Similarly, the objective function information of these solutions is also assessed. Next, both the parent
population and the offspring population are combined and denoted as Rt. From the combined population Rt, the fast non-dominated
sorting procedure and the crowded-comparison technique are applied to obtain a new population Pt+1 for the next generation. The
algorithm repeats the same procedures until the maximum generation or a stopping condition is reached. Once the search process of
the algorithm is terminated, the set of optimal solutions called the Pareto front is obtained. They are non-dominated solutions that
can provide a sound basis for users to make decisions. A brief description of NSGA-II for one generation is shown in Fig. 1 (Deb et al.,
2002).

Due to its outstanding performance, NSGA-II has been implemented in various programming languages including MATLAB, which
is used in this paper. However, this version handles only the optimization problem with continuous design variables. Therefore, to
enable the algorithm to solve the presented problem with integer design variables, a rounding technique is applied. By using this
technique, whenever the algorithm introduces new candidate solutions, these solutions are all rounded to their nearest integer values
before their objective functions are evaluated. Although the technique is rather simple, it has been demonstrated to be effective when
dealing with discrete and integer design variables in evolutionary algorithms (V. Ho-Huu et al., 2018).

4. Case study: Belgrade Airport

In order to validate and demonstrate the reliability and applicability of the proposed approach, Belgrade Airport is selected as the
case study in this paper. The airport is the largest and the busiest international airport in the Republic of Serbia, located 18 km west of
the Belgrade capital. With a single runway 3,400 m long (direction 12/30), the airport handled more than 5 million passengers and
approximately 60 thousand aircraft operations in 2018.

As presented in Section 2, detailed air traffic data is required to prepare the input data for the model. The operations on Sep-
tember 16th, 2016 were chosen as it was a summer day with relatively heavy traffic. In addition, some of the data have been already
available from the previous study (Ganić et al., 2016), which included measured noise levels at locations near the airport as well.
Daily traffic comprised of 220 operations, consisting of 109 departures and 111 arrivals. The distribution of operations between
runways was slightly in favor of runway 12, which handled 128 operations (58.2%), while runway 30 was used for 92 operations
(41.8%). Departure and arrival routes for each runway were obtained from the radar data (flightradar24.com) because the Standard
Instrument Departure (SID) and Standard Arrival Routes (STAR) could be less accurate, as most aircraft are vectored at Belgrade
Airport.

From the radar tracks presented in Fig. 2a, 27 representative routes were selected, each representing a SID or STAR route. There
are seven departure routes and seven arrival routes from runway 12 (Fig. 2b), and six departure routes and seven arrival routes from
runway 30 (Fig. 2c). Departure routes are marked blue, and arrival routes are marked red. Note that since operations in solutions
obtained by the proposed model could be assigned to arrival/departure routes that are different from the ones assigned in the

Rejected 

Pt

Qt

Rt

F1

F2

F3

Pt+1

Crowding distance sorting Non-dominated 
sorting 

Fig. 1. Illustration of NSGA-II procedure.
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reference case (the base-case scenario), the routes shown in Fig. 2b and Fig. 2c are complemented by parts of the route which connect
them with border corridors applied in the reference case. For more details, interested readers may refer to Ganić et al. (2018). Noise
and fuel data have to be defined for each aircraft type. For the observed day, the fleet mix consisted of 25 different aircraft types.
However, in an effort to simplify the calculations, the aircraft were classified into 11 groups based on the similarity of aircraft types
using principles of acoustic equivalency and noise significance (ECAC, 2016). Thereby, 85% of the operations are presented by the
aircraft types that were actually operated that day, while the remaining 15% are presented by aircraft types that have approximately
the same level of noise exposure and fuel consumption as their representative type. Table 1 shows the number of departure and
arrival operations for different periods with different aircraft types that are categorized based on the INM (Federal Aviation
Administration, 2007). The classification of these aircraft types in AzB databases is also provided and it can be used as an alternative
when the AzB noise model is applied (AzB-08, 2008; Isermann and Vogelsang, 2010).

The sound exposure levels (SEL) at each location caused by each aircraft type on the different routes are calculated by the INM
software, which is used as input for the noise objective in the optimization model. For each operation, the standard INM profile
settings are used and the fact that different aircraft types overfly locations at different altitudes and thrust settings is taken into
account. In addition, different profile parameters for each aircraft type are also assigned, including take-off and landing weights,
thrust and flaps settings, climb rate, and descent angle.

Before calculating the noise data, it is crucial to choose reasonable numbers and positions of locations for which the noise data
and the population data will be obtained. Since the airport is surrounded by populated areas, 23 different municipalities are con-
sidered to be affected by aircraft noise, viz. 17 municipalities of Belgrade and 5 municipalities of Stara Pazova, Inđija, Irig, Ruma,
Pećinci and Pančevo. In this case study, the SEL was calculated for 306 locations with each location representing one settlement in
these 23 municipalities around the airport. Table 2 shows the population data and the number of settlements/locations for each

Fig. 2. Radar data and representative departure and arrival routes (source: Flightradar24.com using QGIS).
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municipality and for each period of time in accordance with human mobility patterns and 2011 census data (Statistical Office of the
Republic of Serbia, 2013).

In order to take into account human mobility patterns and to simulate working shifts of employees, pupils and students, the day
has been divided into five periods, as shown in Fig. 3. The periods are defined in such a way that the number of people at each
location remains constant for the duration of the period. This data was made available by the Statistical Office of the Republic of
Serbia.

The definition provided in the 2011 Census methodology describes daily migrants as persons who work or go to school/university
outside the place of their usual residence, but they return on a daily basis or several times a week (Statistical Office of the Republic of
Serbia, 2013). The daily mobility data is the key to calculate the total daily inflow and outflow of inhabitants for each settlement. This
was used as the basis to calculate groups of people commuting to the same location at the same period of time during the day.

Having in mind that human mobility patterns are obtained for the whole day only, and not for separate periods of the day, some
assumptions are needed in order to assess how many people would actually be present at each location during a defined period of
time. Therefore, it has been assumed that 50% of employees work first shift, 30% work second shift, and 20% work night shift. Out of

Table 1
Flight statistics and aircraft classifications.

Aircraft type Assigned AzB class INM airplane code Departure Arrival

Day Evening Night Day Evening Night

Boeing 737-300 S 5.2 737300 6 1 1 5 2 2
Boeing 737-800 S 5.2 737800 2 2 1 3 0 1
Airbus A319 S 5.2 A319-131 18 5 5 19 2 8
Airbus A320 S 5.2 A320-211 15 3 3 14 3 5
Airbus A330-200 S 6.1 A330-301 1 1 0 0 1 1
Beechcraft King Air P 1.4 CNA441 1 0 1 1 0 0
Cessna 560 XL S 5.1 CNA560XL 3 0 1 2 1 1
Swearingen Metroliner P 2.1 DHC6 3 1 0 3 0 1
ATR 42 P 2.1 DHC8 1 3 0 3 1 0
ATR 72 P 2.1 DO328 14 6 5 12 6 8
Embraer 190 S 5.2 EMB190 5 1 0 6 0 0

Total 69 23 17 68 16 27

Table 2
Population data and the number of settlements for municipalities around the airport.

Municipality Number of settlements Census population
(2011)

Period

1 2 3 4 5

Barajevo 14 27,110 25,050 24,422 26,020 25,559 26,497
Čukarica 9 181,231 166,349 159,679 172,064 168,848 176,209
Grocka 15 83,907 76,011 73,679 78,942 78,573 81,748
Lazarevac 34 58,622 60,304 62,146 59,584 60,969 59,545
Mladenovac 22 53,096 51,297 51,024 52,022 52,108 52,752
Novi Beograd 16 214,506 222,238 226,900 218,799 222,321 217,613
Obrenovac 29 72,524 69,586 68,859 70,803 70,635 71,802
Palilula 13 173,521 176,540 174,006 175,343 172,061 172,950
Rakovica 13 108,641 96,108 90,980 100,827 98,808 104,699
Savski venac 1 39,122 75,290 88,058 61,474 65,749 49,778
Sopot 17 20,367 19,270 19,054 19,930 19,711 20,122
Stari grad 1 48,450 88,436 96,797 73,554 71,702 57,748
Surčin 7 43,819 41,546 41,638 42,342 43,130 43,544
Voždovac 24 158,213 160,242 155,406 159,370 153,766 156,380
Vračar 1 56,333 64,953 66,643 61,698 61,250 58,312
Zemun 5 168,170 170,663 169,291 169,851 167,703 167,986
Zvezdara 11 151,808 147,073 140,364 148,991 143,108 148,303
Pančevo 10 123,414 119,466 119,439 121,154 121,946 122,873
Indjija 11 47,433 45,032 44,657 46,029 46,160 46,930
Irig 12 10,866 10,336 10,328 10,533 10,669 10,786
Pećinci 15 19,720 18,965 19,155 19,447 19,579 19,670
Ruma 17 54,339 51,925 52,171 52,991 53,643 54,060
Stara Pazova 9 65,792 61,430 61,113 63,249 63,797 65,018

Total 306 1,981,004 2,018,110 2,015,809 2,005,017 1,991,795 1,985,325

People living in other municipalities, but commuting to these 23
municipalities or vice versa

88,942 51,836 54,137 64,929 78,151 84,621
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the total pupils and students going to schools or universities, 60% follows the first shift, and 40% the second. Hereby, 76,423 groups
of people were observed, and the population data calculated based on the census data and the daily mobility data show a difference in
the number of people at each location in the pre-defined periods. The total number of residents living within these 306 locations
based on the census data was 1,981,004. This research also includes the mobility of people living outside the 23 municipalities
mentioned above, but working or studying in some of these municipalities, and vice versa.

By comparing the total number of people for different periods with the census population data, it can be seen that the highest
absolute difference is 2% for Period 1. The reason behind is the fact that this study takes into account only the daily mobility of
employees going to work and pupils and students going to schools and universities.

5. Results and discussions

As mentioned in Section 1, although the influence of the mobility data on evaluation of noise effects has been well recognized in
previous transportation studies (Kaddoura et al., 2017, 2016), the investigation of mobility data influence in air traffic models is still
limited. Therefore, before executing the optimization problem, the influence of the mobility patterns on evaluation of aircraft noise
effects is assessed first. Afterwards, the optimal solutions based on the mobility data and derived from the proposed model are
obtained and analyzed.

5.1. Influence of daily population mobility on evaluation of aircraft noise effects

In order to assess the influence of census data and mobility data on evaluation of aircraft noise effects, the real air traffic
operations on 16 September 2016 are used, which is hereinafter referred to as the reference case. The Lden noise contours caused by
all the operations are shown in Fig. 4, where the NPA at each (residential) location is also indicated. At first glance, it can be observed
that there is a significant difference between the census data and the mobility data among noise-affected locations. In fact, with the
census data (depicted by triangles), only people at locations enclosed in the noise contours are affected. Meanwhile, when using the
mobility data (depicted by circles), the noise effects occur not only at these locations, but also at locations outside of the noise
contours. This can be explained by considering that people who live outside the area affected by aircraft noise may work or study
within these areas at some time during the day, and are therefore affected by aircraft noise.

For a specific evaluation, the NPA at the locations covered by Lden noise contours ≥37 dB (Lden ≥ 37 dB), as shown in Fig. 4, is
estimated for both datasets and presented in Table 3. As seen from the table, the total NPA at these locations for the census data is
57,519, which is by 2.18% relatively higher (by 1228 in absolute numbers) than the NPA based on the mobility data. The same
situation is observed for the NPHA, where the difference is even higher, 5.24%. These observations show that even though people live
inside the noise contours, some of them are still not annoyed by aircraft noise due to their mobility for working or studying purposes
to locations far away from the airport.

Furthermore, in order to see how many people live outside the noise contours, but still experience noise impact, the NPA based on
the mobility data at all locations is evaluated and presented in Table 4. The table shows that the total NPA is 60,265, more than
7.05% of whom live outside the Lden ≥ 37 dB. The same trend is observed for the total NPHA as well. This is easily explained when
considering that people who live farther away from the airport may still work or study in the areas affected by aircraft noise.

Apart from the observations in the above tables, it is also noted that although the absolute difference of the total NPA between the
census data and the mobility data is relatively small, the difference in the NPA at each location is rather significant, as shown in
Fig. 5. Summarizing the relative difference at all locations compared to the NPA obtained by the census data can add up to 52.9%.
This number indicates that there is a significant change in the number of people at each location during the day. For example, for
location 220, the NPA based on the census data is 0, while the NPA based on the mobility data is 307; and for location 15, the NPA
based on the census data is 8286, whereas the NPA based on the mobility data is 7936.

For a better illustration of the daily mobility of population outside and inside the noise contours, movements at locations 15 and
220 are highlighted in Fig. 6 and Fig. 7, respectively. Fig. 6 shows that location 15 is located nearby the airport and enclosed in the

Period  Period 1 Period 2 Period 3 Period 4 Period 5

Time of the day  08:00 - 14:00 14:00 - 16:00 16:00 - 20:00 20:00 - 22:00 22:00 - 08:00

1 Employees 1st shift

2 Employees 2nd shift noitacollaitnediseRnoitacollaitnediseR

3 Employees 3rd shift

4 Students 1st shift Studying location

5 Students 2nd shift Residential location

6 Staying at home

76 14 51 13 66

Studying location Residential location

Residential location

Group 
Number

Number of aircraft movements

noitacollaitnediseRnoitacolgnikroW

Working location

noitacolgnikroWnoitacollaitnediseR

Residential location

Fig. 3. Groups of people and periods based on working shifts of employees, pupils and students.
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noise contours of Lden > 45 dB. However, some of the people living at this location may experience less noise than others, as they
work or study outside the area. Therefore, the total NPA calculated using the mobility data at this location is less than the NPA
obtained by the census data. In contrast, an opposite situation can be observed for location 220 in Fig. 7. At this location, people who
live outside the noise contours work or study at locations close to the airport, and hence they can experience significant noise impact.
This explains the significant difference in the NPA at each location. In addition, the combined mobility at locations 15 and 220
explains why the difference in the total NPA between the census data and mobility data is relatively small.

To enable further examination of the influence that mobility data has on the number of people affected by aircraft noise during
the night, the sleep disturbance criteria6 based on Lnight recommended by WHO (2009) are also evaluated. These evaluations are
provided in Table 5 and Table 6. As can be seen in the tables, the results obtained by using Lnight also have the same trend as those

NPA at each location
(Mobility data)

Fig. 4. Illustration of people at locations affected by noise with Lden ≥ 37 dB. (All the figures with the Google earth background are created using the
open source software, QGIS (https://qgis.org/en/site/).)

Table 3
Number of people affected by noise at locations enclosed in Lden ≥ 37 dB.

Criterion Census data Mobility data Absolute difference Relative difference

NPA 57,519 56,291 1,228 2.18%
NPHA 10,583 10,056 527 5.24%

Table 4
Number of people affected by noise based on mobility data (Lden ≥ 37 dB).

Criterion All locations Only locations enclosed in Lden ≥ 37 dB Absolute difference Relative difference

NPA 60,265 56,291 3,974 7.05%
NPHA 10,499 10,056 443 4.40%

6 %SD = 13.714–0.807 Lnight + 0.01555 (Lnight)2, and %HSD = 18.147 – 0.956 Lnight + 0.01482 (Lnight)2, where %SD and %HSD are the
percentages of people whose sleep is disturbed and highly disturbed, respectively (WHO, 2009).
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obtained by using Lden even though during the night only the mobility of employees is considered. The explanation for this is that,
according to the mobility data, groups of employees account for a significant portion in the mobility of the entire population, which is
approximately twice as high as the groups of students. In addition, the noise impact during the night is more sensitive compared to
the noise impact during the day and evening, and hence the percentage of disturbed people in each group is higher. Consequently, the
mobility data also has a noticeable impact on the estimation of aircraft noise effects during the night.

Fig. 5. Difference in the NPA between census data and daily mobility data at all locations.

Commute from location 15
Settlements connected to location 15

Fig. 6. Illustration of population at location 15 commuting outside Lden ≥ 37 dB.
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Based on the above considerations, it can be concluded that evaluation of aircraft noise effects is significantly dependent on population
data (i.e., the census data and the mobility data). Although the difference in the total NPA between these data is small, the difference in the
NPA at each individual location is considerable as a result of the daily mobility. From the perspective of air traffic assignment, variations of
population at each location may lead to different optimal assignments compared to the case when solely census data are used. This is
because, in order to reduce the noise impact, optimal allocation of aircraft should avoid locations at which most people are present during
the day, rather than just their home addresses. Consequently, developing a methodology that is capable of creating optimal air traffic
assignments based on mobility data is important and necessary. In the following section, therefore, the methodology presented in the
previous sections is applied to solve the optimization problem of the air traffic assignment. The obtained results are analyzed and com-
pared to those obtained by the reference case. Since the main aim of the research is to find optimal air traffic assignments for an entire day,
only the noise criteria based on Lden are employed for the optimization problems and further analyses as well.

5.2. Air traffic assignment based on daily population mobility

The NSGA-II algorithm with a population size of 70 and a maximum generation (Gen.) of 1500 is applied to solve the multi-
objective optimization problem stated in Section 2. The method is set with an intermediate crossover rate of 1.5 and the Gaussian

Commute from location 220
Settlements connected to location 220

Fig. 7. Illustration of population at location 220 commuting inside Lden ≥ 37.

Table 5
Number of people affected by noise at locations enclosed in Lnight noise contour ≥ 30 dB.

Criterion Census data Mobility data Absolute difference Relative difference

NSD 33,750 32,601 1149 3.52%
NHSD 21,103 20,381 722 3.54%

Table 6
Number of people affected by noise based on mobility data (Lnight > 30 dB).

Criterion All locations Only locations enclosed in Lnight > 30 dB Absolute difference Relative difference

NSD 33,809 32,601 1208 3.71%
NHSD 21,138 20,381 757 3.71%
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mutation technique with a scale of 0.8 and a shrink of 0.1. All the simulations are run on an Intel Core i5, 8 GB RAM desktop and
MATLAB 2016b.

Fig. 8 presents the optimal solutions obtained in comparison with that of the reference case. Fig. 8 shows that the proposed
approach generates solutions which are much better than that of the reference case. When a population size of 70 is used, the Pareto
font contains 70 distinct non-dominated solutions, and all of them dominate the reference case. Generally, all solutions will have the
same weight of advantages, which spread from noise to fuel preference. Basically, decision makers can, therefore, choose any of the
solutions based on their specific needs. However, to arrive at acceptable trade-off solutions from all of them, systematic analyses
which are not considered in this study are needed. Therefore, only some representative solutions are chosen for further analyses later
on.

In terms of computational cost, Fig. 9 shows the convergence history of results after specific generations with a particular amount
of computational time. As seen from Fig. 9, the results seem to converge faster after 800 generations, and there are no significant
improvements after 1200 generations. The computational cost (CPU time) is also recorded after each generation. To reach the last
generation, the method spends almost 24 h, mostly on calculating Eq. (3) for all 76,423 groups of people. Although the computation
time is high, the algorithm is still applicable as the flight schedule can be obtained some days in advance. Moreover, with the
development of powerful computers such as cluster and cloud computing, this issue can be addressed relatively easily.

For a better overview on the optimal solutions, three distinct solutions are selected, viz. 1, 23 and 70 as marked in Fig. 8, for
further examinations. For these solutions, solutions 1 and 70 represent the minimum noise and fuel solutions, respectively, while
solution 23 shows the same fuel consumption as the reference case, but has significantly better noise performance. Table 7 presents
the objective values of the optimization problem (i.e., the total NPA and fuel consumption) and other concerned metrics obtained by
the representative solutions and the reference case. At first glance, the table indicates that all the solutions have better NPA and
NPHA in comparison with the reference case. Particularly, the total NPA of solutions 1, 23 and 70 are, respectively, 10,061, 13,663
and 51,234, and hence there is a reduction of 83.31%, 77.33% and 14.99%, respectively, compared to that of the reference case (with
60,265 people annoyed). Similar relative amounts of the reduction are observed for the NPHA as well.

Regarding the total fuel consumption and route length, due to focusing on the noise preference and hence assigning aircraft to
routes which are farther away from the populated regions, solution 1 generates more fuel consumtion than the reference case with an
increase of 0.43%. However, even though it results in a significant reduction of the noise impact, solution 23 still keeps the total fuel
consumption slightly lower than that of the reference case, whilst with a still smaller amount of noise impact reduction, solution 70
provides the best option for fuel preference. The same trend is also recognized for the total route length, except for solution 23. For
this solution, although the total fuel burn is slightly less than that of the reference case, the total route length is still higher. This can

Fig. 8. Illustration of optimal solutions obtained by proposed method and reference case.
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Table 7
Comparison of different metrics of representative solutions and reference case.

Method Case number NPA NPHA Fuel consumption (kg) Route length (NM)

This study Solution 1 10,061 2059 775,457 124,771
Absolute reduction −50,204* −8440 +3351 +935
% reduction −83.31 −80.39 +0.43 +0.76
Solution 23 13,663 2308 772,030 124,139
Absolute reduction −46,602 −8191 −76 +303
% reduction −77.33 −78.02 −0.01 +0.24
Solution 70 51,234 8892 769,013 123,391
Absolute reduction −9031 −1607 −3093 −445
% reduction −14.99 −15.31 −0.40 −0.36

Reference case 60,265 10,499 772,106 123,836

* The signs “+” and “−” indicate increase and reduction compared to reference case, respectively.

Table 8
Comparison of the number of people enclosed in specific Lden noise contours.

Method Noise band

< 40 [40–45) [45–50) [50–55) [55–60) [60–65) ≥65

This study Solution 1 1,987,474 59,075 5326 10,860 7211 0 0
Solution 23 1,970,373 72,420 7897 8891 10,365 0 0
Solution 70 1,654,134 241,767 125,281 41,829 3684 3251 0

Reference case 1,595,717 253,308 156,340 57,587 1803 5191 0

Fig. 9. Convergence history of optimal solutions.
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be explained by considering the distribution of aircraft types. Even though the total route length has increased, the route length of
aircraft with higher fuel burn has reduced, leading to an overall reduction in fuel consumption.

It is also worth noting that the reason for the relatively small difference in fuel burn between the solutions and the reference case
is due to the fact that departure and arrival operations account only for a small part of the flight. Nevertheless, there is an identifiable
effect when considering the absolute values. Specifically, for solution 70, 3093 kg can save airline companies around $ 2327 per day

Table 9
Comparison of optimal route assignments of three representative solutions.

Route number Number of operation Route number (continued) Number of operation

Solution 1 Solution 23 Solution 70 Solution 1 Solution 23 Solution 70

1 0 3 7 15 4 10 3
2 0 1 3 16 10 7 1
3 0 0 2 17 8 2 5
4 0 2 19 18 9 7 7
5 31 24 11 19 12 12 10
6 0 1 0 20 24 26 22
7 3 11 9 21 2 7 9
8 20 13 12 22 16 8 6
9 19 15 15 23 0 1 9
10 23 19 18 24 0 2 1
11 0 6 7 25 0 0 0
12 10 6 4 26 0 1 4
13 3 8 2 27 0 5 15
14 26 23 19

Fig. 10. Illustration of NPA at each location (solution 1).
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(with an average cost of jet-A1 fuel of $ 86.1 per barrel7 in 2018), and generate roughly 9.7 ton of CO2
8 emission less.

Besides the evaluation of the criteria as given in Table 7, the number of people enclosed in specific Lden noise contours is also
evaluated and provided in Table 8. A comparison of the representative solutions and the reference case shows that the number of
people enclosed in the higher noise contours reduces for solutions with more emphasis on noise. This behavior is expected, and it is
comparable with the trends of the NPA and the NPHA in Table 7. According to the formula in Eq. (2), it is obvious that the higher the
value Lden each group of people is subjected to, the greater the number of people annoyed that group has.

In order to perceive the difference between the optimal solutions in terms of air traffic assignments as well as the noise contours
and the NPA at each location, the features of solutions 1, 23 and 70 are further analyzed. The optimal assignment of these solutions is
shown in Table 9, which provides the number of aircraft assigned to each route, while their Lden noise contours and the NPA at each
location are depicted in Fig. 10, Fig. 11 and Fig. 12, respectively.

Table 9 shows that the distribution of aircraft over the routes between the solutions is rather different. For example, for route 5,
solution 1 has 31 operations, and solution 23 has 24 operations, while solution 70 has only 11 operations. On the other hand, for
route 27, there is no operation from solution 1, but 5 operations from solution 23, and 15 operations from solution 70. More
specifically, solution 1 tends to send more aircraft to route 5 as it is positioned farther away from the populated regions. However,
this selection will result in longer routes for aircraft that have their final destination in a different direction, and it will consequently
cost more fuel. Meanwhile, solution 70 tends to directly send aircraft along routes in the direction of their final destinations dis-
regarding populated areas, and hence leading to an increase in the NPA. Solution 23 tends to balance between noise and fuel
concerns, and hence its distribution falls in the middle of those of solutions 1 and 70.

The above examinations are even more apparent when looking at Fig. 10, Fig. 11 and Fig. 12. In these figures, the variation in the
NPA between the solutions can be observed in the region that is highlighted by the white dotted line. In fact, for solution 1, there are
only 3 locations which have people affected by noise due to their daily mobility, while 8 locations are recognized in solution 23, and

Fig. 11. Illustration of NPA at each location (solution 23).

7 https://www.iata.org/publications/economics/fuel-monitor/Pages/index.aspx (assessed 19 January 2019)
8 https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx(assessed 19 January 2019)
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up to 18 locations in solution 70. Moreover, upon a closer look at the legends on the figures, it is also noted that the scale of the NPA
at each location of these solutions is rather different. A further distinction of this comparison can be clearly recognized in Fig. 13. It
can be seen from the figure that the difference of the NPA occurs not only at the highlighted region, but also at other locations.

5.3. Evaluation of optimal assignments based on census data and mobility data

As noted earlier at the end of Section 5.1, the variation of population at each location between the census data and the mobility
data during the day may lead to a change in the optimal assignments obtained by these data as well. Therefore, to estimate this
concern for the applied case study, the air traffic assignment problem based on the census data is also performed. The obtained results
are then compared with those based on the mobility data.

Fig. 14 and Fig. 15 compare the objective functions (i.e., the total NPA and fuel consumption) for both datasets. In Fig. 14, the
comparison is made based on the optimal assignments using the census data, whereas the comparison in Fig. 15 is made based on the
optimal assignments using the mobility data. Both figures indicate that there is a small difference in the NPA between solutions
evaluated based on the difference of datasets. Note that since the assignments for each comparison in each figure are the same,
consequently the fuel consumption will be the same regardless of the data used. The variation increases from solution 1 to solution
70. Therefore, there is a difference in their optimal assignments. The variation of the optimal assignments between both sets of
solutions can be readily explained. As mentioned earlier in Section 5.1, due to the daily mobility, the population at each location
changes at different times of the day. Therefore, to reduce the noise impact, the optimal assignments should be changed as well. It

Fig. 12. Illustration of NPA at each location (solution 70).
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Fig. 13. Comparison of NPA between solutions 1, 23 and 70 at each location.

Solutions based on the census data
Reference case
Solutions based on the mobility data

Fig. 14. Comparison based on the optimal assignments using the census data.
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should also be noted that although the change in the total NPA between the census data and the mobility data is relatively small, the
change of the NPA at each location can be rather large, which has been discussed earlier in Section 5 as well.

In order to further analyze the difference above, the optimal assignments of two representative solutions, viz. 1 and 70 obtained
by using both datasets are extracted and presented in Table 10. This table shows that the optimal assignments are slightly different.
For example, for route 9 of solution 1, the difference in the number of operations is 6, whilst for route 15 of solution 70 it is 3. It
should be also noted that although the number of operations on each route for both datasets used is more or less the same, the
distribution of aircraft types also contributes to the variation in the NPA.

To get a better insight into the effect of the change in the optimal assignments, the resulting Lden noise contours for these
assignments are illustrated in Fig. 16 and Fig. 17, for solutions 1 and 70, respectively. As seen in the figures, the noise contours are
rather different, especially for solution 70.

Solutions based on the census data
Reference case
Solutions based on the mobility data

Fig. 15. Comparison based on the optimal assignments using the mobility data.

Table 10
Comparison of the optimal route assignments of solutions 1 and 70 based on both data.

Route
number

Number of operation Route number
(continued)

Number of operation

Solution 1 Solution 70 Solution 1 Solution 70

Census data Mobility data Census data Mobility data Census data Mobility data Census data Mobility data

1 0 0 6 7 15 5 4 0 3
2 0 0 5 3 16 14 10 2 1
3 0 0 1 2 17 5 8 2 5
4 0 0 16 19 18 10 9 10 7
5 28 31 12 11 19 10 12 10 10
6 0 0 0 0 20 21 24 21 22
7 6 3 8 9 21 3 2 7 9
8 17 20 12 12 22 15 16 9 6
9 25 19 14 15 23 0 0 6 9
10 22 23 17 18 24 0 0 3 1
11 0 0 9 7 25 0 0 0 0
12 8 10 7 4 26 0 0 3 4
13 3 3 2 2 27 0 0 16 15
14 28 26 22 19

V. Ho-Huu, et al. Transportation Research Part D 72 (2019) 127–147

144

4

104 PAPER 4.2



Fig. 16. Comparison of Lden noise contours based on census data and on daily mobility data (solution 1).

Fig. 17. Comparison of Lden noise contours based on census data and on daily mobility data (solution 70).
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6. Conclusions and future work

This paper introduces a new air traffic assignment model which is capable of taking the daily mobility of a city’s population into
account, in addition to having a acceptable trade-off between conflicting objectives (i.e., the NPA and fuel consumption).
Furthermore, substantial efforts have been invested to investigate the influence of the data used on the evaluation of aircraft noise
effects. Then, the optimal solutions of the air traffic assignment based on the mobility data are obtained and compared with that of
the reference case and those based on the census data. The following conclusions can be drawn from this work:

(1) The evaluation of aircraft noise impact is influenced by the daily population mobility data used. Specifically, when the census
data are used, only people who live inside the noise contours get annoyed, whereas it has been found that people living outside
the noise contours could be annoyed when the mobility data are used. Moreover, not all of the annoyed people suggested from the
census data will actually be annoyed if their daily mobility is taken into account. Although the total NPA obtained by using either
census data or mobility data is very similar, the NPA at each location is significantly different.

(2) Compared to the reference case herein, the proposed methodology can generate solutions that are much improved in terms of
both the total NPA and fuel consumption. Even with a small change in the total fuel consumption, the method can still offer a
solution which can reduce the total NPA up to 77%. Furthermore, the proposed approach also provides a wide range of solutions
with different benefits to either noise or fuel burn, and these solutions can serve as a valuable input for authorities and pol-
icymakers in their decision making.

(3) The optimal assignments obtained by both datasets are different since there is a significant difference in the number of people at
each location during the day. The evaluation thereof also indicates that the difference in the optimal assignments is rather
dependent on the case study under consideration, and on whether the variation of population at each location is significant or
not, relative also to the population distribution and airport layout.

Some inherent limitations of the work which have not yet been considered in this study are also worth mentioning. First, the
mobility data are considered only for three distinct groups of people, including students and pupils, employees and people staying at
home. This assumption may lead to variations in optimal assignments as a result of the change of population at each location during
the day if other types of mobility are also considered. Further research should also investigate to a larger extent the assumption
regarding the allocation of employees, students and pupils to shifts. Second, for the air traffic assignment model, only the feasible
options for each operation are considered, while the runway and airspace capacity (e.g., aircraft sequencing), which can lead to delay
of flights, are not yet considered. This model could be regarded as pre-tactical and intended to be used for planning purposes since it
takes into account forecasted data for the whole day and it is not resistant to any disruption in the pre-defined timetable. In order to
render it suitable for tactical use in real-time operations, changes in runway in use, aircraft changes as well as delays should be
included in the model. Therefore, these issues will be dealt with in further work. Furthermore, by using the mobility data, changes in
population at sensitive regions such as schools and hospitals, can be recognized. These more detailed mobility data can help develop
more realistic, applied solutions in terms of applying more complex fair weightings for each different category.
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5
LINKING AIRCRAFT ROUTE DESIGN

AND FLIGHT ALLOCATION

In the previous chapters, the development and application of methodologies addressing
the two individual problems of route design and flight allocation have been presented.
The chapter presents a study aiming to establish a suitable approach that can solve both
problems in a linked manner. The developed framework features two consecutive steps.
In the first step, multi-objective trajectory optimization is used to compute and store a set
of routes for each given SID route. The obtained sets then serve as input to the optimiza-
tion problem in the second step. In this second step, the selection of routes from the set
of optimal routes and the optimal allocation of flights among these routes are conducted
simultaneously. To validate the proposed framework, an analysis involving an integrated
(one-step) approach, in which both trajectory optimization and flight allocation are for-
mulated as a single integrated optimization problem, is also conducted. A comparison of
both approaches is then performed, and their advantages and disadvantages are identi-
fied.

The content of this chapter is based on the following research article:

V. Ho-Huu, S. Hartjes, H. G. Visser, and R. Curran, An optimization framework for route design and allocation
of aircraft to multiple departure routes, Transportation Research Part D: Transportation and Environment, vol.
76, pp. 273-288, 2019. -> Paper 5
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5.1. PROBLEM STATEMENT
As already observed in Chapters 3 and 4, various studies have been proposed to miti-
gate aircraft noise impact and fuel consumption over the years. However, these studies
typically consider only a single problem of aircraft or airport operations at a time. Con-
sequently, the potential reduction of environmental impact by formulating and solving
problems that consider different problems (e.g., the design of optimal routes, the alloca-
tion of aircraft movements to routes and runways) in a linked manner has not yet been
fully investigated.

In an attempt to address the above-mentioned research gap, an optimization frame-
work, which is able to consider both strands of problem (i.e., route design and flight allo-
cation) in a linked manner, is proposed in this chapter. The main aim of the framework
is to minimize cumulative noise annoyance and fuel consumption. The performance
and capabilities of the developed approach are demonstrated using a case study at Am-
sterdam Airport Schiphol in The Netherlands. The details of the study are presented in
Ho-Huu et al. [41].

5.2. CONTRIBUTIONS
In this chapter, a two-step optimization framework has been developed, which is able
to effectively solve both the problems of route design and flight allocation in a linked
manner. The reliability of the framework has been validated through the analysis of an
employed noise criterion and the solution of the integrated optimization problem in a
single step. A case study at Amsterdam Airport Schiphol in The Netherlands, where 337
departure flights and 4 SID routes are considered, has been used to evaluate the effi-
ciency and capability of the proposed framework. The obtained results show that the
proposed framework can provide a trade-off solution which can gain a reduction in the
number of people annoyed of up to 31% and a reduction in fuel consumption of 7.3% rel-
ative to the reference case solution. Furthermore, a comparison between the one- and
two-step approaches indicates that the two-step approach is more flexible to adapt to
the changes in the number of flights, when a reallocation of flights is demanded or new
routes and runways are considered. It is worth mentioning that the obtained results in
this chapter are based on a specific application at Amsterdam Airport Schiphol. There-
fore, the overall potential of the developed method should be investigated for other types
of airport architectures.
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A B S T R A C T

In this article, we present the development of a two-step optimization framework to deal with the
design and selection of aircraft departure routes and the allocation of flights among these routes.
The aim of the framework is to minimize cumulative noise annoyance and fuel burn. In the first
step of the framework, multi-objective trajectory optimization is used to compute and store a set
of routes that will serve as inputs in the second step. In the second step, the selection of routes
from the sets of pre-computed optimal routes and the optimal allocation of flights to these routes
are conducted simultaneously. To validate the proposed framework, we also conduct an analysis
involving an integrated (one-step) approach, in which both trajectory optimization and route
allocation are formulated as a single optimization problem. A comparison of both approaches is
then performed, and their advantages and disadvantages are identified. The performance and
capabilities of the present framework are demonstrated using a case study at Amsterdam Airport
Schiphol in The Netherlands. The numerical results show that the proposed framework can
generate solutions which can achieve a reduction in the number of people annoyed of up to 31%
and a reduction in fuel consumption of 7.3% relative to the reference case solution.

1. Introduction

Over the past decades, aircraft noise and pollutant emissions have remained major issues in the aviation sector. These en-
vironmental issues do not only negatively affect the quality of life of communities surrounding airports and global climate change,
but also hamper the expansion of flight and airport operations. Research efforts towards mitigating these negative impacts have
received much attention, and some important achievements have been reported (Casalino et al., 2008; Lee et al., 2009). However, it
appears that these attempts still remain insufficient to meet the need to accommodate the expected rapid growth in air traffic demand
in the coming years (Girvin, 2009). In order to support the sustainable development of the aviation industry, more research on these
topics is necessary. There are several possible strategies to achieve this objective; for example, adjusting operational procedures at
airports, developing new aircraft technologies and using alternative fuels, or setting new rules and regulations (Marais et al., 2013).
While new technologies and sustainable fuels may provide a significant reduction in environmental impact, they require more effort
and time to develop and implement. In contrast, despite having smaller mitigation potential, operational changes can be carried out
in the short-term period (Marais et al., 2013). As promising options in this category, the design of optimal aircraft routes and the
assignment of aircraft to specific runways and routes have been well recognized and have shown promising results over the years
(Frair, 1984; Visser, 2005).
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Regarding the design of optimal aircraft routes, research has been typically aimed at minimizing community noise impact and fuel
consumption or pollutant emissions such as nitrogen oxides (NOx) and carbon dioxides (CO2). Based on the use of noise criteria,
studies can be classified into two groups. The first group includes research that employs noise criteria derived from a single fly-over
noise event. For instance, the awakening criterion proposed by the Federal Interagency Committee on Aviation Noise (FICAN, 1997)
was used in Hartjes et al. (2010), Hartjes and Visser (2016), Hogenhuis et al. (2011), and Visser and Wijnen (2001, 2003), while the
more recent dose-response relationship developed by the American National Standards Institute (ANSI, 2008) was utilized in Ho-Huu
et al. (2017), Yu et al. (2016), and Zhang et al. (2018). Also, noise nuisance criteria based on the maximum perceived sound level
were applied by Prats et al. (2011, 2010a, 2010b) and Torres et al. (2011). The second group consists of studies in which the
aggregation of multiple noise events is utilized as a noise criterion. For example, the annoyance criterion based on the Lden cumu-
lative noise metric was used in Braakenburg et al. (2011), Ho-Huu et al. (2018a), and Song et al. (2014), whilst a sleep disturbance
criterion based on the Lnight cumulative noise metric was used by Hartjes et al. (2014).

In terms of research on the allocation of flights to specific routes and runways, Frair (1984) developed an integer optimization
model to find the optimal allocation of aircraft among available approach and departure routes with the aim of minimizing com-
munity annoyance. Kuiper et al. (2012) maximized the number of aircraft movements operating at an airport within an allotted
annual noise budget by optimally assigning annual flights to available routes and runways. Kim et al. (2014) minimized airport
surface emissions by concurrently allocating aircraft among runways and scheduling departure and arrival flights on these runways.
Zachary et al. (2010) formulated and solved an optimization problem to minimize noise and pollutant emissions by simultaneously
considering operational procedures, arrival and departure routes, and fleet combination. In later research, with a similar approach,
Zachary et al. (2011) evaluated the potential reduction in operational cost that could be gained by optimal solutions. Ganić et al.
(2018) and Ho-Huu et al. (2019) developed integer optimization models to allocate flights among available departure and arrival
routes with the aim of reducing population noise exposure, while taking into account daily migrating populations.

A review of the above literature reveals that the design of aircraft routes and the assignment of flights to available routes and
runways have indeed been broadly studied. These studies were, however, typically carried out separately, while studies that consider
both trajectory optimization and allocation problems together are lacking. In particular, with respect to the problem of designing
aircraft routes, research has been aimed at finding the optimal flight trajectories for a given standard route. On the other hand,
studies focusing on the allocation of aircraft movements generally only considered existing standard routes rather than optimized
routes. Consequently, the potential reduction of environmental impact by formulating and solving an integrated optimization pro-
blem that consists of these two sub-problems has not yet been fully explored. It is important to note that the two sub-problems of
route design and aircraft allocation are intrinsically coupled when a cumulative noise metric such as Lden is considered. This coupling
is brought about by the fact that the optimal route obtained by the route design problem directly depends on the number of aircraft
(of any given types) which is assigned to that route.

Although the problem of integrating both sub-problems could, in principle, be formulated and solved as a single integrated
problem, it is likely to be prohibitively large and complicated due to high computational cost. In an attempt to fulfil the above
research gaps and to overcome the aforementioned challenges, an optimization framework consisting of two sequential steps is
developed in this paper. In the first step, the optimization problem of designing optimal routes is formulated and solved. The results
obtained in this step contain sets of optimal routes which can effectively balance between noise annoyance and fuel consumption.
Next, these data sets are used as the inputs for the allocation problem in the second step, in which the selection of optimized routes
and the optimal allocation of aircraft movements among these routes are conducted concurrently.

In order to assess the reliability of the present approach, we also perform an integrated problem (here also referred to as the one-
step approach), which combines both optimization sub-problems into a single integrated problem. A comparison between the one-
step and two-step approaches is then presented, and the advantages and disadvantages of both approaches are discussed. Since only
the ground tracks of routes were considered in previous research using annoyance criteria (Braakenburg et al., 2011; Hartjes et al.,
2014; Ho-Huu et al., 2018a; Song et al., 2014), the potential of including optimized vertical profiles is also evaluated in the proposed
framework. As a consequence, two different cases are investigated. In the first case, only the ground tracks are optimized, whilst in
the second case, the ground tracks and the vertical profiles are optimized simultaneously. Furthermore, the consideration of these two
case studies also aims to validate the reliability of the proposed two-step approach, as well as to highlight the drawbacks of the one-
step approach. All computational experiments have been carried out in a case study involving Amsterdam Airport Schiphol (denoted
as AMS) in The Netherlands.

The remainder of the paper is structured as follows. Theoretical backgrounds are provided in Section 2. Section 3 presents the
proposed two-step optimization framework in detail, while numerical results and discussion are presented in Section 4. Finally,
conclusions and future work are discussed in Section 5.

2. Theoretical background

2.1. Aircraft model

To evaluate aircraft performance, an intermediate point‐mass dynamic model that has been widely utilized in previous research
(Hartjes et al., 2014; Visser and Wijnen, 2001) is employed in this study. This dynamic model relies on the assumptions that: (1) no
wind is present, (2) the Earth is flat and non-rotating, (3) flight is coordinated, and (4) the flight path angle is sufficiently small
(γ <150). The equations of motion are then given by
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where V s h W, , ,TAS are, respectively, the derivatives with respect to time of the true airspeed, ground distance flown, altitude and
aircraft weight; and T, D, m0, and g0 are thrust, drag, fuel flow and the gravitational acceleration, respectively.

Since departure operations take place at low airspeeds and altitudes, the equivalent airspeed VEAS can be used as a proxy for the
indicated airspeed. Based on the relationship with the true airspeed, VEAS can be defined as follows:
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where ρ0 and are, respectively, the air density at sea level and the ambient air density.
With the use of the relationship in Eq. (2), Eq. (1) can be redefined by:
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in which
h
is the derivative of the ambient air density ρ with respect to altitude h.

2.2. Trajectory parameterization

To parameterize the trajectory of a route, the method presented in Hartjes and Visser (2016) is utilized. This technique divides a
trajectory into two different components: a horizontal and a vertical profile. In the horizontal profile, the flight path is constructed by
employing Required Navigation Performance (RNP) based on flight legs, relying on two common leg types, i.e., track-to-a-fix (TF)
and radius-to-a-fix (RF). This essentially results in a ground track that consists of an alternating sequence of straight segments and
constant radius turns. For an example of how these leg types are used to create a route, interested readers can refer to Ho-Huu et al.
(2017).

For the generation of the vertical profile, the flight procedures outlined in ICAO (2006) are applied. In the trajectory synthesis
conducted in this study, a decrease in altitude and/or a deceleration in velocity during departure is not allowed, and similarly, an
increase in altitude and/or acceleration in velocity is also prohibited during approach. The parameterization of the vertical profile has
been based on splitting a trajectory into a number of segments. Depending on operational requirements, the two control inputs in
each segment, viz. the throttle and flight path angle settings, are designated either as design (optimization) variables or their values
are directly assigned. The vertical profile is then projected onto the ground track, yielding a complete 3-dimensional trajectory. For
more details on the applied technique, interested readers can refer to Hartjes and Visser (2016) and Ho-Huu et al. (2017).

By using this technique, the design variables of a route comprise all parameters defining the ground track and vertical profile.
However, in case the vertical profile is a priori fixed, the design variables only relate to the parameters defining the ground track.

2.3. Optimization criteria

In the field of design and allocation of optimal aircraft routes, two widely used objectives are fuel burn and noise annoyance.
While the fuel-burn criterion can be readily assessed by estimating the change of aircraft gross weight during departure, the second
criterion is significantly difficult to gauge due to the lack of consistency between single-event and multi-event noise metrics. Two
noise criteria that have been broadly utilized in previous studies are the number of expected awakenings (ANSI, 2008) and annoyance
(EEA, 2010). The awakening criterion is a single-event noise metric, which only considers a single noise event at a time and hence is
only suitable for assessing the noise impact of a single movement of a single aircraft type. Although it might be used to design optimal
routes in the first step of the framework, it is not suitable to be used for the allocation problem in the second step, as this step - by
definition - considers the impact of multiple aircraft movements. Consequently, it does not represent a feasible option for the pro-
posed framework. The annoyance criterion, however, is based on the accumulation of multiple noise events, and it can, therefore, be
applied in both steps. For this reason, this particular criterion has been adopted within the optimization framework. Its im-
plementation is described below.

As indicated by EEA (2010), the percentage of people annoyed (%PA) based on the Lden cumulative noise metric at a given
location on the ground is given by

= × + × +PA L L L% 8.588 10 ( 37) 1.777 10 ( 37) 1.221 ( 37)6
den

3 2
den

2
den (4)

where Lden is the day-evening-night noise level, determined as follows:
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where Nr is the total number of departure routes; Nat is the total number of aircraft types; SELki is the sound exposure level resulted
from aircraft type i on route k; =w {0, 5, 10}den is a weighting factor to account for day, evening and night time operations; aki is the
number of aircraft type i operating on route k; and T is the considered time period in seconds (in this case T=24×3600 s). The SEL
metric is calculated at each location on the ground by using a replication of the noise model given in the technical manual of the
Integrated Noise Model (INM) (FFA, 2008).

It should be noted that, in order to evaluate this criterion, the total number of movements on each individual route within a given
time period needs to be known in advance. However, given that the trajectory optimization process precedes the allocation of flights,
the optimal number of flights is yet unknown. To overcome this, a strategy has been developed to identify appropriate estimates of
the number of flights that are allocated to each route, allowing to generate a sufficiently comprehensive set of alternative routes in
step one. This strategy will be further discussed in Section 4.1.

2.4. Optimization method

To solve the optimization problems in two steps, a novel variant of the multi-objective evolutionary algorithm based on de-
composition (MOEA/D), recently developed in Ho-Huu et al. (2018a), has been employed. The MOEA/D method was originally
proposed by Zhang and Li (2007) and has been proven to be one of the most effective multi-objective evolutionary algorithms in
recent years (Trivedi et al., 2016). In MOEA/D, decomposition approaches such as Tchebycheff decomposition are utilized to
transform a multi-objective optimization problem into a set of scalar optimization sub-problems. Then, an evolutionary algorithm
such as genetic algorithm (GA) or differential evolution (DE) is employed to solve the sub-problems concurrently. The performance of
MOEA/D for solving the optimization problems of designing optimal aircraft routes has been clarified in Ho-Huu et al. (2017),
demonstrating that MOEA/D performed much better than the non-dominated sorting genetic algorithm II (NSGA-II) proposed by Deb
et al. (2002). Since the details of the algorithm have been given in Ho-Huu et al. (2017, 2018b), and Zhang and Li (2007) interested
readers are encouraged to refer to these references.

3. A two-step optimization framework

Before the description of the proposed framework is presented in detail, it is worth mentioning that the first step in the opti-
mization framework (i.e., the design of optimal routes) is a planning step which needs to be executed off-line based on a flight
schedule and a variety of runway configurations. Indeed, due to the high computational cost, the first step cannot be executed on-line.
Meanwhile, the second step (i.e., the allocation problem) can be performed within half an hour CPU time, and hence it might be
quickly adapted to unplanned changes in flight schedules and runway configurations. The details of the two optimization steps are
presented below.

Step 1: design of optimal routes
The main objective of the first step is to identify optimal routes for a given standard instrument departure route (hereafter referred

as SID), in which a trade-off between the number of people annoyed and fuel burn is considered. The optimization problem is
formulated as follows:

N T

µ t µ h i N

d dmin ( ( ), ( ))

s.t. ( ) ( ),i

d
pa fuel

max at (6)

where Npa(d) and Tfuel(d) are the two objective functions which are, respectively, the total number of people annoyed and the total
fuel burn of all aircraft following the SID, and d is the vector of design variables that contains the parameters defining the route as
described in Section 2. The index Nat is the number of aircraft types, and the variable μi(t) is the bank angle of aircraft type i during a

turn. With the use of the assumptions indicated in Section 2.1, the bank angle can be expressed as: = ±µ t( ) tani
V

g R
1 iTAS,

2

0
, where

VTAS,i is the true airspeed of aircraft type i, and R is the turn radius. The parameter µmaxis the maximum permissible value of μ,
varying according to altitude h (ICAO, 2006).

In Eq. (6), the objective Npa(d) is calculated by aggregating over all grid cells the product of %PA in Eq. (4) in each grid cell with
the population in that cell. The population residing in each grid cell is retrieved from a Geographic Information System (GIS)
containing population density data surrounding an airport. It is noted that Nr in Eq. (5) is equal to 1 in this case, since only one SID at
a time is evaluated. The objective Tfuel(d) is the sum of the fuel burn of all aircraft during the specific departure period and is
evaluated by

=T a fueld d( ) ( )
i N

i ifuel
at (7)

where ai is the number of aircraft type i, fueli(d) is the fuel burn of aircraft type i.
By solving the problem defined in Eq. (6) for each SID, the sets of optimal routes and associated performances are found, which

then serve as inputs to the optimization problem in the second step. It should be noted that the aircraft types selected when designing
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optimal routes are assumed to be given. Also, to be able to adapt to different runway configurations, the optimal routes for all
standard routes of each runway should be obtained.

Step 2: selection of routes and allocation of aircraft to these routes
Based on the sets of optimal routes obtained in Step 1 for all SIDs, this step aims to define which routes from the sets are preferred,

and how many movements of each aircraft type should be allocated to these preferred routes for different operational times. The
answer to these questions can be obtained by solving the optimization problem stated as follows:
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where r= {r1,.., rk…, rNr} is the vector of design variables of departure routes, in which the preferred route rk is selected from the set
of optimal routes Ok obtained in Step 1 for SID k, and Nr is the total number of considered SIDs. The vector a is the design variable
vector of aircraft allocation, in which aitk is the number of aircraft type i at time t on route k. The index t is the operating time of
aircraft (i.e. day (d), evening (e) or night (n)). The index s is the terminal point (i.e., the end point of departure procedure), and Tp is
the set of terminal points. The vector SDs is the vector that contains SIDs having the same terminal point s. The identification of SIDs
with the same terminal point allows the algorithm to allocate aircraft movements on different SIDs originating from the same or
different runways. The parameter Tat,its is the total number of aircraft type i at time t sent to departure routes having the same
terminal point s. The parameterN kf, is the upper bound of the number of movements that route k can handle in a certain period of
time. Finally, the parameter aitk is the upper bound of the number of aircraft type i on route k at time t. It should be noted that the exit
point of each flight in a flight schedule can be specified in advance based on its destination airport.

In Eq. (8), the objectives Npa(r,a) and Tfuel(r,a) are the same as the ones considered in Step 1, however, the design variables are
different. Specifically, the design variables in this problem represent the selection of routes from the sets of optimal routes for each
SID, and the distribution of aircraft on these routes. As in Step 1, the objective Npa(r,a) is evaluated by the sum of the multiplication of
%PA in each grid cell with the population in that cell. However, the SEL metric for each route is now known in advance, as it was
stored in Step 1. Consequently, both Lden and %PA can be determined directly from the SEL-data stored in the set of optimal routes by
applying Eqs. (5) and (4). The objective Tfuel(r,a) is defined as follows:

=T a fuel rr a( , ) ( )
k N i N

ki ik kfuel
r at (9)

where fuel r( )ik k is the fuel burn of aircraft type i on route rk.
It should be noted that, in the problem stated in Eq. (8), airspace capacity and aircraft sequence are assumed to be satisfied via the

constraint, in which each route can only accommodate a certain number of flights within the considered time frame (24 h in this
case). The actual influence of optimal allocation solutions on the airspace capacity and aircraft sequence, which is a challenging
problem, is not considered yet. This aspect will be explored in future work.

4. Numerical examples and discussion

In this section, a case study at AMS in The Netherlands, as shown in Fig. 1, is presented to exemplify the capabilities of the
proposed framework. For this case study, four existing standard instrument departures (SIDs), viz. LEKKO, KUDAD, LUNIX and
RENDI departing from two different runways, viz. RW18 and RW24, are considered. The SIDs LEKKO and KUDAD both end at the
LEKKO intersection, whereas LUNIX and RENDI both terminate at IVLUT. On the selected reference day, 337 flights operating on
these routes were recorded. These flights can be classified into three groups with different departure times, viz. 237 day flights
(07h00-19h00) accounting for 70% of the total traffic volume, 43 evening flights (19h00-23h00) accounting for 13%, and 57 night
flights (23h00-7h00) accounting for 17% (Dons, 2012). Although many different aircraft types operate on these routes, for the sake of
simplicity all flight movements are assumed to be conducted by either of two aircraft types, namely the Boeing 737-800 (B738) and
Boeing 777-300 (B773). It is assumed that the B738 represents all small and medium aircraft, accounting for 80% of the total number
of flights, while the B773 represents heavy aircraft accounting for 20%. Both aircraft types are modelled based on the Base of Aircraft
Data (BADA) (Nuic et al., 2010). The population data acquired from the Dutch Central Bureau of Statistics (CBS) with a grid cell size
of 500×500m, as shown in Fig. 1, is utilized. The MOEA/D algorithm with a population size of 50 and a maximum number of
iterations of 1000 is applied to solve all optimization problems. The simulations are performed on an Intel Core i5, 8 GB RAM desktop
with the use of MATLAB 2016b.

4.1. Sensitivity analysis of noise criterion

As mentioned in Section 2.3, to use the noise annoyance criterion for the design of optimal routes, the number of aircraft
movements on each SID has to be known a priori. However, this information is unknown within Step 1 of the framework. Therefore,
to choose a representative number of movements that leads to a comprehensive set of alternative routes for the allocation problem in
the second step, a brief analysis to determine a valid assumption for the number of movements is carried out in this section. For this
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analysis, the LUNIX SID and the B738 model are used. By considering the actual operational data, approximately 100 flights (in-
cluding 66% day, 3% evening and 31% night) could be identified, and this number of flights might be used as a “representative”
number. However, as the allocation algorithm may actually result in a totally different number of flights assigned to either SID, a
significant variation (either positive or negative) to this number needs to be taken into account. Therefore, we assess the results for
the assumed number of 50, 100 and 150 flight movements, using the percentages of 66%, 3% and 31% for day, evening and night,
respectively.

The comparison of optimal ground tracks and vertical profiles corresponding to different assumed numbers of flights is illustrated
in Fig. 2. At first glance, it can be seen from Fig. 2 that the number of flights has a significant influence on the optimal results. The
reasons for this are due to the significant increase of Lden with increasing number of movements and the distribution of the popu-
lation. An illustration of the Lden contours for different numbers of flights is given in Fig. 3. By taking a closer look at Fig. 2, however,
it can be observed that the solutions obtained by assuming 150 flights include those acquired by assuming 50 and 100 flights. This
can also be seen in Fig. 4, where most of the solutions obtained by assuming 50 and 100 flights are on the Pareto front obtained by
150 flights.

Consequently, assuming a large number of flights results in the most comprehensive set of alternative trajectories. Therefore, the
maximum number of flights that can be allocated to a specific SID – based on the projected number of movements in the entire
scenario – is considered as an acceptable assumption in Step 1. It should be noted that although only the analysis for the LUNIX SID
with a B738 is presented here, the same behavior is also observed for different aircraft types (i.e., B773) and different SIDs.

4.2. 2D optimization case

As mentioned before, the problem that integrates both sub-problems can theoretically be formulated and solved. Nevertheless,
due to the high computational cost, it is likely to be prohibitively large and complex. To still be able to validate the proposed
framework by comparing it with an integrated problem formulation, a relatively simple problem scenario is considered in this
section. Specifically, for the optimization problems in the first step, only the ground tracks of routes are optimized, whilst the vertical
profiles are fixed and derived from the noise abatement departure procedure 2 (NADP2)1 (ICAO, 2006) and typical airline proce-
dures.

As shown in Fig. 1, all SIDs are modelled by two turns and three straight legs, which results in 5 design variables for each optimal
route design problem. The definition of these design variables can be found in Ho-Huu et al. (2017). It is noted that both B738 and
B773 are assumed to follow the same route. The SIDs are assumed to start at the end of the runways at an altitude of 35 ft and a take-
off safety speed of V2+ 10 kts, and to terminate at an altitude of 6000 ft and an equivalent airspeed (EAS) of 250 kts. To design

Fig. 1. Illustration of the case study at AMS.

1 In this study, the vertical profile is set as follows: from the start to an altitude of 800 ft, full take-off thrust is applied, and V2+10 kts is
maintained. After reaching 800 ft, thrust is cut back to climb thrust, and the aircraft is accelerating to Vclean whilst continuing a moderate climb.
After retracting the flaps, the aircraft maintains climb thrust at a moderate climb gradient until the final conditions are met. At that point, thrust is
reduced to maintain these conditions.
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a) Ground tracks  b) Vertical profiles

Fig. 2. Comparison of vertical profiles and ground tracks with different numbers of flights.

Fig. 3. Comparison of the Lden noise contours (37 dBA) caused by different numbers of flights.

Fig. 4. Comparison of objectives with different numbers of flights.
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optimal routes for each SID in step one, a number of 150 flights – which is representative for the maximum possible number of
movements on any of the SIDs under consideration – is used. The percentage of day, evening and night flights and the distribution of
aircraft types as stated in Section 4 are also applied to this number of movements. For the second step, the main objectives are to
choose suitable routes for the four SIDs and to allocate all the 337 flights featuring two different aircraft types and flown in different
time periods (day, night or evening) to these routes. The details of the 337 flights under consideration can be seen in the reference
case in Table 1. The optimization problem in Step 2 features 28 design variables, viz. 4 variables for route selection and 24 variables
for aircraft allocation (which are the result of the consideration of four SIDs, two aircraft types and three different operational time
periods). By looking at the distribution of the population in Fig. 1, it can be seen that the LUNIX SID is the route that causes less
annoyance simply because fewer people live in its direct vicinity. From an airport operational perspective, therefore, this route should
accommodate as many flights as possible. However, based on the reference data in Table 1, only around 50% of the flights departing
towards the IVLUT intersection are recorded on this route. This is the consequence of the fact that the LUNIX SID intersects the
KUDAD SID, limiting the use of the LUNIX SID. Therefore, to include this issue in the allocation problem, we assume that the KUDAD
and LUNIX SIDs can handle only 50% of the total number of movements, while RENDI and LEKKO can handle up to 80%. It should
also be noted that this assumption can be easily adapted in the framework when the actual operational capacity becomes available.
For the integrated optimization problem (the one-step approach), the design variables are the combined variables of both steps in the
two-step approach, except for the 4 variables related to route selection. This leads to an optimization problem with 44 variables in
total.

To evaluate the reliability and efficiency of both approaches, the results based on the reference case and those derived from the
optimal allocation of aircraft movements based on the current SID routes are also estimated and provided. It should be noted that
since the studies that address the problem as presented in this paper are not available in the literature, only the results derived from
the reference case are used for comparison purposes. All results are shown in Fig. 5. At first glance, it can be seen that both
approaches offer solutions that are significantly better than those derived from the reference cases in terms of both the number of
people annoyed and fuel burn. A comparison of the result obtained by the reference case and those obtained by the optimal allocation
based on the current SID routes indicates that the optimal allocation of flights has a positive influence on the reduction of noise
annoyance and fuel burn. Once the optimized routes are also included, both one-step and two-step approaches produce

Table 1
Optimal aircraft allocation of the representative solutions and the reference case.

Aircraft allocation One-step approach Two-step approach Reference case

Sol. 3 Sol. 39 Sol. 51 Sol. 1 Sol. 34 Sol. 50

B738 KUDAD [34,0,0] * [7,0,0] [5,0,0] [38,0,1] [5,0,0] [5,0,0] [36,10,0]
LEKKO [32,10,21] [59,10,21] [61,10,21] [28,10,20] [61,10,21] [61,10,21] [30,0,21]
LUNIX [15,3,25] [50,24,25] [52,24,25] [18,0,25] [47,24,25] [45,24, 25] [53,2,25]
RENDI [108,21,0] [73,0,0] [71,0,0] [105,24,0] [76,0,0] [78,0,0] [70,21,0]

B773 KUDAD [17,3,4] [17,3,0] [17,3,0] [17,2,1] [17,2,0] [17,3,0] [10,3,0]
LEKKO [0,0,1] [0,0,5] [0,0,5] [0,1,4] [0,1,5] [0,0,5] [7,0,5]
LUNIX [0,0,0] [0,0,6] [1,0,6] [0,0,0] [0,6,6] [1,6,6] [13,1,6]
RENDI [31,6,6] [31,6,0] [30,6,0] [31,6,6] [31,0,0] [30,0,0] [18,6,0]

[…]*: Number of flights [day, evening, night].

Fig. 5. Comparison of solutions obtained by the one- and two-step approaches and the reference case.
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approximately the same solutions. It should be noted that the one-step approach will theoretically outperform the two-step approach.
This is because the former approach allows the coupling between the generation of optimal routes for given SIDs and the flight
allocation to take place directly in the same problem. However, there is no significant difference between the results from both
approaches because of the following reason. The routes generated in Step 1 of the two-step approach are likely to cover most
situations of flight allocations in Step 2, due to the nature of the applied noise criterion (see Section 4.1). Therefore, this approach can
generate route selections that can lead to similar solutions as those from the one-step approach.

Regarding the computational cost, the two-step approach is far more efficient than the integrated approach. Specifically, to obtain
these results, the one-step approach requires about 35 h (h) CPU time, while the calculation time of the two-step approach is only 18 h,
mainly spent on the design of optimal routes in Step 1. Clearly, the computational cost is a major restriction of the integrated approach and
may be limiting for large applications. Also, the obtained results are less flexible when in practice the number of flights is changed, and a
reallocation of flights to the routes is required. Meanwhile, since the two-step approach solves the problem via separate steps, the com-
plexity of the optimization problems has been decreased significantly. In addition, with the optimal routes obtained in the first step, the
allocation of flights can be easily reevaluated at a computational cost of around 30min CPU time when a reallocation of flights is
requested. Furthermore, the computational cost of the allocation problem can also be further improved by using parallel computing with
multiple cores or cluster computing. This is because the evaluation of objective functions in the optimization algorithm is independent.

Fig. 6 shows the optimal ground tracks obtained by the one-step approach, while those of the two-step approach are displayed in
Fig. 7. A comparison of the ground tracks in Figs. 6 and 7b shows that they are quite similar for both SIDs. From Fig. 6, it can also be
observed that the integrated approach creates more route options than the two-step approach. As can be seen in Fig. 5, however, the

Fig. 6. Optimal ground tracks obtained by the one-step approach (the colors indicate the routes of different SIDs). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

a) Step 1 b) Step 2
Fig. 7. Optimal ground tracks obtained by the two-step approach (2D optimization).
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difference in objective functions between both approaches is moderate.
For a more detailed evaluation of the optimal results, the optimal routes of representative solutions (3, 39 and 51 for the one-step

approach, and 1, 34 and 50 for the two-step approach) as labelled in Fig. 5 are presented in Fig. 8. The reason for selecting these solutions is
that they effectively represent the different aspects of noise and fuel preference, while they are closely located on the Pareto fronts. The
details of aircraft allocation of these solutions are provided in Table 1. From Fig. 8, it can be seen that all the routes tend to be close together,
which reduces the width of the Lden contour areas, and consequently, may result in a narrow corridor of high noise exposure between major
communities. It is also observed from the figure that the solutions acquired by both approaches exhibit the same trend. It should be noted
that the aim of choosing these representative solutions is just to give an overview of the optimal solutions, and does not mean that they are
solutions to be recommended for authorities or policymakers. The selection of solutions should be based on their preference, such as noise
impact, fuel consumption or the trade-off between them. Also, other criteria associated with each solution, such as sleep disturbance, the fair
distribution of noise over population and airspace capacity should be considered. Therefore, to select suitable solutions, deeper analyses and
selection methods should be studied. However, they are not covered in this work and hence are left for further research.

In a comparison of the allocation of aircraft to the presented routes, Table 1 shows the difference in the distribution of aircraft
types and the number of flights to the routes between the solutions and the reference case. From Table 1, it can be seen that the
general distribution of movements is quite similar for both approaches. Solutions with a lower number of annoyed people (i.e.
solutions 50 and 51) tend to prefer the LEKKO SID for the large number of B738s, whereas the B773s are mostly using the KUDAD
SID. This is mostly because the limited number of B773s cause less noise, but more importantly, burn more fuel and as such prefer the
shorter KUDAD route. Another observation from these results is that although the total number of aircraft using the LUNIX or RENDI
SID is quite similar, the LUNIX SID is clearly preferred for evening and night flights, for either aircraft type. This is again due to the
balance of fuel and noise. The LUNIX SID causes less annoyance but is a longer route than RENDI. As a result of the weighting factors
in Eq. (5) for evening and night flights, moving specifically these flights to LUNIX has a significant positive influence on the noise
impact, whereas the overall increase in fuel burn is limited. Table 2 presents the comparison of specific criteria obtained by these
solutions and the reference case. It should be noted that while Table 1 displays the changes in the number of flights on each route, the
associated changes in the flight schedule and flight delays are still unknown at this stage, due to the fact that the aircraft sequencing
problem has not yet been taken into account. These evaluations will be further studied in future work.

As can be expected, the integrated approach, in general, provides the best solutions, as can be observed from Fig. 5. However, the
differences with the two-step approach are very small indeed, and the latter approach clearly outperforms the former approach in
terms of computational effort and flexibility. It can, therefore, be concluded that the two-step approach provides a valid mean to
combine the optimal routing and allocation problems.

a) One-step approach b) Two-step approach

Fig. 8. Optimal ground tracks of the representative solutions obtained by the one-step and two-step approaches.

Table 2
Comparison of the criteria of the representative solutions and the reference case.

Criteria One-step approach Two-step approach Reference case

Sol. 3 Sol. 39 Sol. 51 Sol. 1 Sol. 34 Sol. 50

No. of people annoyed 40,918 34,654 32,588 41,167 34,687 32,606 43,759
Fuel (ton) 187.62 194.83 202.08 187.48 195.20 201.93 196.26
Distance (km) 13,372 14,412 15,394 13,359 14,414 15,378 14,327
Flight time (h) 28.82 30.81 32.76 28.79 30.82 32.78 30.66
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4.3. 3D optimization case

In this section, the performance of both approaches is further evaluated for a more complicated optimization problem, where the
vertical profile along the route is also considered in the trajectory optimization in Step 1. This case study is also used to assess the
potential benefits of optimized vertical profiles in terms of reducing noise impact, which were not considered in previous studies
(Braakenburg et al., 2011; Hartjes et al., 2014; Song et al., 2014).

By introducing new design variables for the vertical profile, the number of design variables of the optimization problem in Step 1
is increased significantly. While the ground track of the route is defined in the same way as in the previous section, the vertical part is
subdivided into 10 segments and parameterized following the study in Hartjes and Visser (2016), resulting in an addition of 18 design
variables. By optimizing the vertical profiles for two different aircraft types concurrently, the number of design variables for the
optimization problem in this step now totals 41. Meanwhile, the optimization problem in Step 2 is kept the same as the one in the
previous section. The number of design variables of the integrated optimization problem is now 186 in total.

Fig. 9 compares the solutions obtained by the two different approaches and the reference case. As can be seen in Fig. 9, there is a
significant reduction in both fuel burn and the number of people annoyed when the vertical profiles are also optimized. This shows
that the vertical profile has an important influence on the objective functions when minimizing for fuel burn and noise impact.
Comparing the solutions obtained by both approaches reveals that the two-step approach provides solutions that are better than those
of the one-step approach. It should be noted that to achieve these results, the two-step approach spent 26 h CPU time in total (of
which only 0.58 h is used for the allocation problem with 443 iterations). Meanwhile, the one-step approach took 73 h CPU time after
reaching the maximum number of iterations of 1000 that was set for the algorithm. This means that the solutions of the integrated
problem still did not yet reach convergence. Although the integrated approach should theoretically always identify better results than
the proposed two-step approach, it is clear from these results that the required computational effort is just too high. The results of the
integrated solution in 3D are, therefore, not analyzed any further in this section.

In an effort to provide a more detailed analysis of these solutions, some representative solutions (as labelled in Fig. 9) for both 2D
and 3D approaches and the reference case are selected. The specific performance metrics obtained by these solutions are presented in
Table 3. With almost the same performance associated to fuel burn, it can be seen from Table 3 that the 3D solution 47 offers a
reduction of up to 23.9% in the number of people annoyed compared to the 2D solution 34, and 39.6% compared to the reference
case. Although there is a slight increase of 6.1% in the total distance as a result of avoiding populated regions, owing to the optimized
vertical profile the fuel burn has still been reduced. Along the Pareto front of the 3D solutions, we can also identify solutions that
outperform both the 2D solutions and the reference case regarding all defined metrics. An example of this is solution 18. Besides
achieving a 7.3% reduction in fuel burn, solution 18 also provides good performance in the number of people annoyed, total distance

Fig. 9. Comparison of objectives obtained by the one-step and two-step approaches and the reference case.

Table 3
Comparison of criteria of the 2D and 3D representative solutions and the reference case.

Criteria Reference case 2D optimization 3D optimization

(solution 34) (solution 47) (solution 18)

No. of people annoyed 43,759 34,687 26,400 30,189
Fuel (ton) 196.26 195.20 194.23 181.90
Distance (km) 14,327 14,414 15,207 13,511
Flight time (h) 30.66 30.82 32.16 28.60
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and flight time, showing a decrease of 31%, 5.7% and 6.7%, respectively, compared to the reference case.
Fig. 10 shows the ground tracks obtained by the two-step approach, while the ground tracks and the vertical profiles of the

solutions 18, 34 and the reference case are given in Figs. 11 and 12, respectively. From Fig. 12, it can be seen that there is a significant
difference between the optimized vertical profiles and the reference profile in the first part of the routes. In the optimized profiles, the
emphasis lies more on acceleration in the initial part of the trajectory, whilst the standard profiles try to keep a balance between
speed and altitude. The increased acceleration featured in the optimized profile allows for an earlier flap retraction and, in general,
better performance in terms of fuel burn. In addition, the low altitude flight at a higher airspeed reduces the noise impact. The reason
for this is twofold. Firstly, the higher airspeed leads to a lower exposure time and hence lower SEL and Lden values. In addition, the
low altitude flight – although the noise exposure directly below the flight path is higher – leads to a lower noise exposure astride the
trajectory, as the lateral attenuation losses are significantly higher. As a result, the number of annoyed people has significantly
reduced. The illustration of this can be seen in Fig. 13, where the difference of Lden noise contour areas caused by solutions 18, 34 and
the reference case, and the number of people annoyed on each grid cell are clearly illustrated.

5. Conclusion

In this paper, we have presented and validated a two-step optimization framework for the design of optimal aircraft departure
routes and the distribution of aircraft movements over these routes. Firstly, to explore the potential of reducing noise and fuel burn
for each standard instrument departure (SID), the multi-objective trajectory optimization problem is formulated and solved in the
first step. Secondly, the obtained sets of optimal routes are then used as the inputs for the optimization problem in the second step,
where the selection of optimal routes for SIDs and the assignment of flights among these routes are optimized simultaneously. The
reliability of the framework has been validated through the analysis of the employed noise criterion and the solution of the integrated
optimization problem in a single step. A case study at Amsterdam Airport Schiphol (AMS) in The Netherlands has been used to assess

Fig. 10. Optimal ground tracks obtained by the two-step approach (3D optimization).

Fig. 11. Comparison of solutions obtained by the 2D and 3D optimization and the reference case.
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a) Route KUDAD

b) Route LEKKO

c) Route LUNIX
Fig. 12. Vertical profiles of the 3D solution (solution 18) and those based on the reference profile (solution 34).
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d) Route RENDI
Fig. 12. (continued)

a) Reference case b) 2D optimization (solution 34)

c) 3D optimization (solution 18)

Fig. 13. Illustration of Lden and the number of people annoyed caused by the representative solutions and the reference case.
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the efficiency and capability of the proposed framework.
The numerical results indicate that the two-step framework is reliable and able to provide solutions which can significantly reduce

noise annoyance and fuel consumption. Moreover, the obtained results have shown that from a theoretical perspective, the one-step
approach can, in principle, fully exploit the potential of noise and fuel reduction by solving the integrated optimization problem.
However, the computational cost and the complexity associated to the integrated optimization problem are prohibitively large.
Furthermore, this approach is also less flexible with respect to changes in the number of flights when a reallocation of flights is
demanded or new routes or runways are considered. Although the integrated problem can theoretically lead to better results, the two-
step framework proposed in this study has proven to be a valid and viable alternative, able to overcome the mentioned issues.

In view of the attained favorable results, the two-step framework appears to be suitable for extension to other applications such as
the design and allocation of aircraft arrival routes, and the combined problem of departure and arrival routes. Moreover, an ap-
plication with larger scale and scope, for instance, an entire airport, will also be considered in follow-on studies. In the current study,
the actual influence of optimal allocation solutions on the airspace capacity and aircraft sequencing problem has not yet been
considered. This issue will also be addressed in further research. Furthermore, since the results obtained by the proposed framework
are Pareto solutions, it is a challenge for potential users to choose a suitable option from those solutions. Therefore, the development
of selection methods and more in-depth analyses of the optimal results are necessary in future work.
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Appendix A. Notation

VTAS The derivative of the true airspeed with respect to time, VTAS
VEAS The derivative of the equivalent airspeed with respect to time, VEAS
s The derivative of the ground distance flown with respect to time, s
h The derivative of the altitude with respect to time, h

W The derivative of the aircraft weight with respect to time, W

h
The derivative of the ambient air density with respect to altitude h

m0 Fuel flow
T Thrust
D Drag
γ Flight path angle
g0 Gravitational acceleration
ρ Air density at sea level

0 Ambient air density
%PA The percentage of people annoyed
Lden Day-evening-night cumulative noise metric
Nr Total number of departure routes (SIDs)
Nat Total number of aircraft types
SELki Sound exposure level resulted from aircraft type i on route k
wden Weighting factor
aki Number of aircraft type i operating on route k
T Considered time period
Npa(d) Total number of people annoyed in Step 1
Tfuel(d) Total fuel burn in Step 1
d Vector of design variables
μi(t) Bank angle of aircraft type i
R Turn radius
µmax Maximum permissible value of μ
ai Number of aircraft type i
fueli(d) Fuel burn of aircraft type i
r Design variable vector of departure routes
Ok Set of optimal routes for the SID k
a Design variable vector of aircraft allocation
aitk Number of aircraft type i at time t on route k
SDs Vector containing SIDs having the same terminal point s
Tat,its Total number of aircraft type i at time t sent to departure routes having the same terminal point s
N kf, Upper bound of the number of movements that route k can handle in a certain period of time
aitk Upper bound of the number of aircraft type i on route k at time t
Npa(r,a) Total number of people annoyed in Step 2
Tfuel(r,a) Total fuel burn in Step 2
fuel r( )ik k Fuel burn of aircraft type i on route rk
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Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.trd.2019.10.003.
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6
A MULTILEVEL OPTIMIZATION

FRAMEWORK WITH INTEGRATED

OPERATIONAL REQUIREMENTS

In Chapter 5, a two-step optimization framework has been developed. However, opera-
tional conditions - mainly aircraft sequencing and separation - were not considered in
this study. To take these issues into account, in this chapter three novel techniques are
therefore proposed and added to the previously developed optimization framework. These
techniques include a runway assignment model, a conflict detection algorithm, and a
rerouting technique. Owing to the inclusion of these operational constraints, the formu-
lation of the optimization problems has also been changed and reformulated. Finally, a
completed multilevel optimization model is developed. The performance of the extended
model is demonstrated through a realistic case study at Amsterdam Airport Schiphol in
The Netherlands, in which 599 departure flights and 13 different standard instrument de-
partures (SIDs) are considered.

The content of this chapter is based on the following research article:

V. Ho-Huu, S. Hartjes, J. A. Perez-Castan, H. G. Visser, and R. Curran, A multilevel optimization approach to
route design and flight allocation taking aircraft sequencing and separation constraints into account, Trans-
portation Research Part C: Emerging Technologies, Under minor revision, 2019. -> Paper 6
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6. A MULTILEVEL OPTIMIZATION FRAMEWORK WITH INTEGRATED OPERATIONAL

REQUIREMENTS

6.1. PROBLEM STATEMENT
Thanks to the advantages inherited from the combination of route design and flight allo-
cation problems, the two-step framework developed in Chapter 5 revealed the potential
to considerably reduce noise impact and fuel consumption. Furthermore, the study in-
dicated that the application of the two-step approach can help to significantly reduce
the complexity of the combined problem, while keeping the quality of solutions at al-
most the same level as in the fully integrated (one-step) approach. Also, the framework
proved to be sustainable and more efficient in terms of the computational cost and flex-
ibility in adapting to changes in the flight schedules.

However, since the research mainly focused on the development and validation of an
appropriate approach to cope with the complexity of the combined problem, some other
operations-related constraints were ignored. Specifically, in the framework, the capacity
limits of routes and runways were implicitly assumed to be satisfied by enforcing a con-
straint that limits the number of aircraft movements on each route. Moreover, because
the sequencing and separation requirements for flights were essentially ignored, the re-
sults found were just simple distribution solutions that do not contain any information
on individual aircraft movements.

As a continued development of the previous work, this chapter proposes three ad-
ditional techniques and integrates them into the previous model to help overcome the
above-mentioned research gaps. The first one is the development of a runway assign-
ment model that is used to make sure that the separation requirements for all departing
aircraft on runways are satisfied. The second additional component concerns a con-
flict detection algorithm that is included to check the separation requirements between
aircraft along selected routes. Finally, a rerouting technique is proposed to resolve any
separation violation between aircraft along the selected routes that might exist due to
the assignment of flights. Furthermore, due to the inclusion of new operations-related
constraints, the optimization problem in the second step of the framework has been re-
formulated. The details of this study are presented in Ho-Huu et al. [42].

6.2. CONTRIBUTIONS
The main contributions of this chapter are as follows:

1. A pure flight allocation model that takes aircraft sequencing and separation re-
quirements at runways into account is formulated and solved. The obtained re-
sults reveal that the developed model is reliable and able to provide better options
that can help significantly reduce the noise impact and fuel consumption com-
pared with the reference case.

2. A completed multilevel optimization framework that is able to consider both the
optimal route design and flight allocation problems, while taking operations-related
constraints into account is proposed. The proposed framework is now able to fully
addresses the main research objectives as stated in Chapter 1, in which for each
given SID route, a suitable route and the number of movements of each aircraft
type assigned to this route are defined, while taking aircraft sequencing and sepa-
ration requirements for an entire operational day into account .



6.2. CONTRIBUTIONS
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3. The performance of the proposed optimization framework has been demonstrated
through a full case study, in which 599 departure flights and 13 different SIDs
are considered. The optimization results show that the proposed model can of-
fer conflict-free solutions which can lead to a reduction in the number of people
annoyed of up to 21%, and a reduction in fuel consumption of 8% relative to the
reference case solution.
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Abstract 

This paper presents the development of a multilevel optimization framework for the design and selection 

of departure routes, and the distribution of aircraft movements among these routes, while taking the 

sequence and separation requirements for aircraft on runways and along selected routes into account. 

The main aim of the framework is to minimize aircraft noise impact on communities around an airport, 

and the associated fuel consumption. The proposed framework features two consecutive steps. In the 

first step, for each given Standard Instrument Departure (SID), multi-objective trajectory optimization 

is utilized to generate a comprehensive set of possible alternative routes. The obtained set is subsequently 

used as input for the optimization problem in the second step. In this step, the selection of routes for 

each SID and the distribution of aircraft movements among these routes are optimized simultaneously. 

To ensure the feasibility of optimized solutions for an entire operational day, the sequence and separation 

requirements for aircraft on runways and along selected routes are included in this second phase. In 

order to address these issues, three novel techniques are developed and added to a previously developed 

multilevel optimization framework, viz., a runway assignment model, a conflict detection algorithm, and 

a rerouting technique. The proposed framework is applied to a realistic case study at Amsterdam Airport 

Schiphol in the Netherlands, in which 599 departure flights and 13 different SIDs are considered. The 

optimization results show that the proposed model can offer conflict-free solutions, one of which can 

lead to a reduction in the number of people annoyed of up to 21%, and a reduction in fuel consumption 

of 8% relative to the reference case solution. 
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conflict detection. 
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1. Introduction 

Air transport is predicted to rapidly increase in the coming years due to its social and economic benefits 

(Boeing, 2016). The increase in air traffic volume may bring certain advantages to the development of 

society such as job creation, tourism, and industrial globalization. However, it also causes negative 

impacts on the quality of life of communities surrounding airports, especially as a result of aircraft noise 

nuisance and pollutant emissions (Asensio et al., 2017). Aircraft noise has been linked to various human 

health effects such as cardiovascular diseases, sleep disturbance, hearing loss, communication 

interference, and annoyance (Janssen et al., 2014; Morrell et al., 1997). Noise impact has been well 

recognized as one of the most significant factors leading to restrictions on the expansion of flight and 

airport operations (Rodríguez-Díaz et al., 2017). 

 In an effort to support the sustainable development of air transport, the International Civil Aviation 

Organization (ICAO) has provided the guideline for air traffic management (ICAO, 2016), and various 

approaches have been studied and proposed over the years (Casalino et al., 2008; Filippone, 2014; Gardi 

et al., 2015). In order to reduce noise impact caused by aircraft departure/arrival operations, noise 

abatement trajectory optimization has been applied to generate optimal trajectories, and a significant 

reduction in both the number of people affected by aircraft noise and fuel consumption has been reported 

(Zaporozhets and Tokare, 1998; Braakenburg et al., 2011; Hartjes et al., 2014, 2010, 2016; Ho-Huu et 

al., 2017, 2018; Hogenhuis et al., 2011; Prats et al., 2011, 2010b, 2010a; Song et al., 2014; Torres et al., 

2011; Visser and Wijnen, 2003, 2001; Yu et al., 2016; Zhang et al., 2018). Furthermore, the development 

of allocation models to distribute aircraft movements over specific routes and runways have contributed 

to a significant reduction of aircraft noise effects (Chatelain and Van Vyve, 2018; Frair, 1984; Ganić et 

al., 2018; Ho-Huu et al., 2019a; Kuiper et al., 2012; Zachary et al., 2011, 2010). In addition to the 

research on aircraft noise reduction, research on improving airport capacity and fuel consumption has 

been widely conducted (D’Ariano et al. 2015; Sama et al. 2017a, 2017b, 2018, 2019).  

 Although a large effort has been made towards finding suitable options to support the continued 

growth of air transport, there is still a lack of studies that consider different aspects of flight and airport 

operations concurrently. In particular, research on the design of optimal routes typically considered only 
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one standard route at a time, while its interaction with other routes was not included, as evident from 

Refs. (Braakenburg et al., 2011; Hartjes et al., 2014, 2010, 2016; Ho-Huu et al., 2017, 2018; Prats et al., 

2011, 2010a; Torres et al., 2011; Visser and Wijnen, 2001, 2003; Zhang et al., 2018). Although optimal 

routes can offer certain benefits, either in terms of noise impact or fuel burn, from an operational 

perspective, they might be rather difficult to apply when other factors, such as airspace capacity or 

aircraft separation, are not taken into account. Meanwhile, research on the allocation of aircraft to 

current-in-use runways and routes can provide more realistic solutions, as reported in Refs. (Chatelain 

and Van Vyve, 2018; Frair, 1984; Ganić et al., 2018; Kuiper et al., 2012; Zachary et al., 2011, 2010). 

However, these studies relied on the assumption that the optimal solutions satisfy operational 

requirements, such as aircraft sequence and separation. Therefore, the true influence of optimal 

allocation solutions on these issues has not yet adequately studied. Moreover, since these models only 

considered standard routes instead of optimized routes, the potential noise and fuel reduction benefits 

were not fully exploited. As a result, there is a need for the development of methodologies that can 

exploit the advantages of these two types of problems by considering them simultaneously or in a linked 

manner. 

 In recent work (Ho-Huu et al., 2019b), a two-step optimization framework was developed that can 

partly deal with the combination of the above two problems. Owing to the advantages inherited from 

the combination of optimal route design and the distribution of flights among these routes, the two-step 

framework revealed the potential to considerably reduce the number of people annoyed and fuel 

consumption. Furthermore, the study indicated that the application of the two-step approach can help to 

significantly reduce the complexity of the combined problem, while keeping the quality of solutions at 

almost the same level as in the fully integrated (one-step) approach. Also, the framework proved to be 

substantially more efficient in terms of the computational cost and flexibility to adapt to changes in the 

flight schedules. However, since this research mainly focused on the development and validation of an 

appropriate approach to cope with the complexity of the combined problem, some other operations-

related issues were simplified. Specifically, the capacity limits of routes and runways in the framework 

were implicitly assumed to be satisfied by enforcing a constraint that limits the number of aircraft 

movements on each route. Moreover, because the sequence and separation requirements for flights were 
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essentially ignored, the results found were just simple distribution solutions that do not contain any 

information on individual aircraft movements, such as departure times. 

As a continued development of the previous work, this paper proposes additional techniques and 

integrates them into the previous model to help overcome the above-mentioned research gaps. Similar 

to the previous model, the newly proposed framework also features two consecutive steps, in which Step 

1 addresses the design of optimal routes, whilst Step 2 copes with the selection of routes and the 

distribution of flights among selected routes. Since the main research gaps of the previous work relate 

to Step 2, the problem model in Step 1 remains unchanged. In contrast, the optimization model in Step 

2 has been reformulated as a result of the introduction of new constraints on the throughput capacity of 

runways and routes. In order to handle these new constraints, three new tool components are proposed. 

The first one is the development of a runway assignment model that is used to make sure that the safe 

separation requirements for all aircraft on runways are satisfied. The second additional component 

concerns a conflict detection algorithm that is included to check the separation requirements between 

aircraft along selected routes. Finally, a rerouting technique is proposed to resolve any separation 

violation between aircraft along the selected routes that still might exist after the conflict detection 

algorithm has been applied.  

The proposed framework is demonstrated through a realistic case study at Amsterdam Airport 

Schiphol (denoted as AMS), in which a full operational day involving 599 fights and 13 different given 

standard instrument departure routes are considered. The obtained results are then analyzed and 

compared with those obtained from the reference case.  

 The remainder of the paper is organized as follows. Section 2 provides a brief introduction of the 

problem statement. Section 3 presents the proposed framework in detail, including a reformulated two-

step optimization approach, a runway assignment model, a conflict detection algorithm, and a rerouting 

technique. Section 4 provides brief information on the optimization techniques that are used to solve 

optimization problems in the framework. The application of the proposed framework for a case study at 

AMS is presented in Section 5. Finally, conclusions are drawn in Section 6. 
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2. Problem statement 

Before discussing the functioning of the proposed framework, an example of a representative problem 

at a generic airport is presented first. Fig. 1 shows a hypothetical example of four Standard Instrument 

Departure (SID) routes (hereafter referred to as SIDs‡) and the surrounding communities near an airport. 

Since noise caused by aircraft operations has significantly negative influences on the quality of life of 

communities surrounding the airport (in particular, those located near or underneath the routes), the 

design and selection of routes for each given SID (i.e., Question 1) should be made such as to avoid as 

many (highly) populated areas as possible. In addition, due to the accumulative nature of noise impact, 

the distribution of aircraft movements among these routes while guaranteeing aircraft sequence and 

separation requirements (i.e., Questions 2 and 3) is also an important factor that needs to be considered. 

Therefore, from a noise perspective, it is apparent that the design and use of noise-optimized routes and 

the optimal distribution of aircraft movements among these routes emerge as appropriate options that 

can help to reduce the aircraft noise impact on communities around the airport. However, due to the 

intricate coupling that exists between these two problems and the associated high computational cost, it 

is challenging to solve these problems integrally in a single step.     

 
Fig. 1. An example of routes and communities around an airport. 

                                                           
‡ Please note that the notation of SID is used to denote an existing published Standard Instrument Departure route that connects 

a given runway to a defined terminal endpoint, while “routes” are used in the context of this paper to represent the optimized 

ground tracks that are created for each SID by using an optimization algorithm. 

      

Route 1 
Route 2 

Route 3 

Route 4 

Endpoint 1 Endpoint 2 

Runway 24 

Runway 18 

    

1. Which route 
is better ? 

(Route design) 

2. How many flights and which 
aircraft types on each route ? 

(Flight allocation)  

  

3. Are sequencing and separation 
requirements satisfied ? 

(Operational requirements) 
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In this work, a multilevel optimization framework is developed to overcome the complexity of the 

integrated problem, as well as the limitations of the computational burden. The main aim of the 

framework is to provide solutions that address all three questions together while minimizing the number 

of people affected by aircraft noise. Particularly, the final goal of the framework is to determine, for 

each given SID, which route is optimal, and how many movements of each aircraft type should be 

assigned to this route while taking aircraft sequence and separation requirements into account. 

Nevertheless, purely focusing on noise impact may lead to an increase in fuel burn as a result of aircraft 

seeking to circumnavigate populated areas. Therefore, fuel consumption is included as a second 

objective function in the formulation of the optimization problem. The two objectives are briefly 

described below. 

To determine the Number of People Annoyed (hereafter defined as NPA), the Lden-based annoyance 

criterion, proposed by EEA (2010), is applied in this study. According to EEA (2010), the percentage 

of People Annoyed (%PA) at a given location on the ground is defined as  

6 3 2 2
den den den% ( ) ( ) ( )8.588 10 – 37  1.777 10 – 37  1.221 – 37P L LA L       (1) 

where Lden is the day-evening-night noise level, determined by 

den,

r at t

10
den 10 1010log 10 10log (dBA),

ik jSEL w

ikj
k N i N j O

L a T



  

 
  
 
  

    (2) 

where Nr is the total number of given SIDs; Nat is the total number of aircraft types; Ot is the operational 

time, which includes day, evening and night time; SELik is the sound exposure level caused by aircraft 

type i on route k; den, jw  is a penalty weighting factor, which is either of 0, 5, or 10 dBA, accounting for 

day, evening and night time operations, respectively; aikj is the number of aircraft type i operating on 

route k at the time period j; and T is the considered period of time in seconds (T = 243600 seconds in 

this case). In Eq. (2), the SEL metric is computed at each location on the ground by using a replication 

of the noise model laid down in the technical manual of ECAC (2016). 

The fuel objective is determined as 

r at

fuel ik ik
k N i N

T a fuel

 

    
(3) 
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where fuelik is the fuel that aircraft type i consumes when operating on route k. The fuelik is calculated 

by using an intermediate point-mass model (Hartjes et al., 2016) and the Base of Aircraft DAta (BADA) 

(EUROCONTROL, 2014b).    

3. A multilevel optimization framework  

In this section, the proposed multilevel optimization framework is presented in detail. The flowchart of 

the framework is illustrated in Fig. 2, while a description of the details will be given in the following 

subsections.  

  
Fig. 2. Flowchart of the multilevel optimization framework. 

3.1. A two-step approach 

3.1.1. Step 1: design of optimal routes  

In order to generate, for each given SID, a set of optimal routes that effectively balances between NPA 

and fuel burn, a multi-objective trajectory optimization problem is formulated and solved. The 

optimization problem is defined as 

 pa fuelmin ( ), ( )N T
p

p p  (4) 

max ats.t. ( ) ( ),   i t h i N  
(5) 

Select an optimal route for each SID and 
distribute aircraft to these routes 

Obtain final solutions 

Step 1 

Step 2 • Solve a runway assignment model 
• Apply a conflict detection algorithm 
• Apply a rerouting technique 

Input data 
- Number of given SIDs 
- Flight data 
- Population data 

Determine a set of optimal routes for each given 
SID 
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where Npa(p) is the total NPA, and Tfuel(p) is the total fuel consumption of all aircraft following the SID. 

The design variables are the parameters that define a route; these parameters are collected in the vector 

p. For more details about the definition of the vector p, interested readers can refer to Ho-Huu et al. 

(2017; 2019b). The variable i(t) in Eq.(5) is the bank angle of aircraft type i during a turn at time t, and 

max is the maximum permissible value of , varying according to altitude h (ICAO, 2006).  

 In Eq. (4), the objective Npa(p) is calculated by considering the multiplication of %PA in Eq. (1) in 

each grid cell with the population in that cell and subsequent aggregation over all cells. The population 

density data surrounding an airport is retrieved from a Geographic Information System (GIS). The 

objective Tfuel(p) in Eq. (4) is defined similarly as in Eq. (3). It is noted that Nr is now by default equal 

to 1 since only one SID at a time is evaluated.  

The optimization problem is applied for all considered SIDs. The obtained sets of optimal routes 

and their associated performances for all SIDs are then utilized as inputs for the optimization problem 

in Step 2. It should be noted that to be able to adapt to different runway configurations, the optimal 

routes for all given SIDs originating from each runway should be obtained. 

3.1.2. Step 2: selection of routes and distribution of flight among these routes 

Before going to the formulation of an optimization problem, it is assumed that the terminal point for 

each flight listed in the flight schedule is assumed to be specified in advance, based on its destination 

airport. From the sets of optimal routes obtained in Step 1, this step aims to determine, for each given 

SID, which route from the set should be selected, as well as to determine how many movements of each 

aircraft type should be assigned to this route for an entire day. The formulation of the flight distribution 

optimization problem is mathematically formulated as follows. 

 pa fuel
,

min ( , ), ( , )N T
a r

a r a r  (6) 

a, at ps.t. , ,

s

ik is
k SD

a T i N s T



      
(7) 

d ( , ) 0f a r  (8) 

sr ( , ) 0f a r  (9) 

at0 , ,ik ik sa a k SD i N       (10) 
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where a is the design variable vector of flight distribution, in which aik is the number of aircraft type i 

on route k. The vector r = {r1,.., rk…, rNr} is the design variable vector of route selection, where the 

preferred route rk is chosen from the set of optimal routes Ok obtained in Step 1 for SID k. The index s 

relates to the terminal point (defined as the endpoint of each departure procedure), and Tp is the set of 

terminal points, sTp. The vector SDs is the vector that collects the SIDs which share the same terminal 

point s. The parameter Ta,is is the total number of aircraft type i assigned to SIDs having the same terminal 

point s. Eq. (10) represents the set of boundary constraints on the design variables, where the parameter

ika is the upper bound of the number of aircraft type i on route k, and it can be extracted from the flight 

schedule as the total number of aircraft type i assigned to SIDs having the same terminal point. The 

function fd(a,r) is a constraint imposing the separation requirements between aircraft on the runways 

and is defined in the runway assignment model presented in Section 3.2. Similarly, the function fsr(a,r) 

is related to safeguarding the separation requirements between aircraft along the selected routes and is 

defined in the conflict detection algorithm presented in Section 3.3. 

In the above optimization problem (Eqs. (6-10)), the objectives Npa(a,r) and Tfuel(a,r) are defined in 

a similar fashion as in Step 1. However, the design variables considered here are different. Particularly, 

the design variables in this step represent the routes selected from the sets of available optimal routes 

for each SID, and the distribution of flight among these routes. Meanwhile, the design variables in Step 

1 are the geometric parameters that are used to construct a SID route. Note that the two objective 

functions in Eq. (6) are only calculated if the constraint in Eq. (8) is satisfied; otherwise, large numbers 

are assigned to the criteria, representing penalties on an infeasible solution. This avoids the 

computationally expensive calculation of the objective values when infeasible solutions are considered. 

Also, all the information associated with routes and aircraft types is known a priori in Step 2, as this 

information has been stored in Step 1. 

3.2. Runway assignment model 

The main objective of the model is to find, for any given instance of (a,r) considered in Step 2, a suitable 

conflict-free solution for the assignment of individual flights to specific routes and runways, while 
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minimizing the total departure delay (relative to the departure times listed in the flight schedule) at 

runways. It is noted that the original objectives in Eq. (6) – NPA and fuel – are the focus of the main 

distribution algorithm, which determines which share of the total movements (for each aircraft type) are 

assigned to a specific route. In other words, the flight distribution optimization problem only considers 

the flows of aircraft movements. The flight to runway assignment model, on the other hand, merely 

determines how individual flights are assigned to runways, essentially looking for a conflict-free 

realization at the runways of the flow solution generated by the flight distribution optimization 

algorithm, taking departure times into account. Therefore, the flight to runway assignment has no impact 

on the original objectives NPA and fuel. It is important to note that although the runway assignment 

model yields solutions that are free of conflict at the departure runway, separation conflicts might still 

occur down-route. The handling of potential down-route conflicts is discussed in Section 3.3. It is also 

important to note that when a flight is assigned to a runway, its route is automatically determined. The 

flight to runway assignment model is mathematically written as follows.       

 
,

min j
j J

d




x d

 (11) 

 1 1 1 ss.t ( ) ( ) 2 , ,r r
j j j j j jt d t d Mx Mx t M j J r R              
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at p, , ,


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j J

c x N i N s T r R  (15) 

where x is the vector of binary design variables
r
jx , in which 

r
jx  represents the assignment of flight j to 

runway r, 
r
jx {0,1}. The vector d is the vector of delay variables dj, where dj (dj  0) represents the 

departure delay of flight j at the runway. The parameters J and R are, respectively, the set of flights in 

the flight schedule and the set of runways. The parameter tj is the scheduled departure time of flight j, 

and ts is the required time separation, which depends on the weight classes of following and leading 

aircraft, as indicated in EUROCONTROL (2018) (see Table 1). Note that the empty fields in Table 1 

indicate a minimum departure interval of 60 seconds (Delsen, 2016). The parameter cjis is the constraint 

coefficient of flight j that is associated with aircraft type i and terminal point s. The coefficient cjis will 
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be equal to 1 if flight j of aircraft type i flies to terminal point s, otherwise it will be equal to 0. The 

parameter r
isN  is the total number of aircraft type i departing from runway r to terminal point s. It is 

noted that, for any instance of (a,r) produced by the aircraft distribution optimization algorithm, the 

parameters r
isN  can be determined up front from the flight schedule information. 

Table 1. RECAT-EU wake turbulence time-based separation minima on departure (EUROCONTROL, 

2018). 

 

In the optimization problem (Eqs. (11-15)), the objective function represents the minimization of 

the total departure delay. The first constraint aims to ensure that the separation requirement between two 

consecutive aircraft on the same runway is always satisfied. The parameter M in the constraint is a large 

number (e.g., 106) that helps to render the constraint inactive in the case that two consecutive aircraft 

are assigned to two different runways. For example, if two consecutive aircraft are assigned to two 

different runways (i.e., 
r
jx  = 1 and 1

r
jx  = 0 or 

r
jx  = 0 and 1

r
jx  = 1), and the separation time between 

them is smaller than ts, the constraint is still satisfied, which can be readily inferred from Eq. (12). In 

contrast, if two consecutive aircraft are assigned to the same runway, the separation between them has 

to be larger than ts; otherwise, the allocation solution is infeasible. The second constraint Eq. (13) ensures 

that the sequence of flights listed in the flight schedule is kept unchanged when departure delays are 

introduced. The third constraint guarantees that each flight is assigned to one runway only. Finally, the 

last constraint aims to ensure that the assignment of aircraft on each runway always matches the 
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information of the distribution variables in the main optimization problem in Step 2 and complies with 

the flight information and aircraft sequence as given in the flight schedule.  

  In order to determine the constraint Eq. (8) in Step 2, the function fd(a,r) is defined as  

d ( , ) Dj
j J

f d



 a r  (16) 

where D  is the total delay at the runways, which is derived from the runway assignment problem 

without considering the distribution constraint Eq. (15). Therefore, the delay D  is independent from the 

solution (r,a) and can be calculated up front by solving the optimization problem in Eqs. (11-14) based 

on a given flight schedule and set of available runways. Meanwhile, the delay ∑dj  in Eq. (16) associated 

to a solution instance (r,a) might be influenced by the inclusion of the constraint Eq. (15). Since the 

problem in Eqs. (11-14) represents a relaxation of the problem in Eqs. (11-15), the value of D  will not 

exceed that of ∑dj. Therefore, the constraint fd(a,r) = 0 enforced in Eq.(8) makes sure that the solutions 

obtained by the optimization problem in Step 2 do not cause a delay compared with the delay D , and 

hence the runway capacity is kept at the maximum level.      

3.3. Conflict detection algorithm  

Once the result of the runway assignment model has been returned, an additional check is carried out 

with respect to the satisfaction of constraint Eq. (9) along the routes. If the returned result does not 

satisfy the delay constraint Eq. (8), the check is no longer needed, and a large penalty number is assigned 

to this constraint. Otherwise, a conflict detection algorithm will be evoked to check the separation 

requirement of aircraft along the selected routes.  

From the flight schedule and the assignment solution returned by the assignment model, the route 

information and associated performance can be obtained for each flight. This information comprises the 

flight trajectory (i.e., position coordinates, velocity, altitude, time), fuel burn and noise value (i.e., SEL). 

After the trajectories for all flights in the flight schedule have been defined, a simulation process is 

carried out for all flights contained in the schedule, using an iteration time step of 10 seconds (as 

suggested by Isaacson and Erzberger (1997)). In order to check the aircraft separation requirements in 

both vertical and horizontal dimensions, the distance separation minima suggested by ICAO (2016) and 
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EUROCONTROL (2018) is applied. The vertical separation is set to 1,000 ft (ICAO, 2016), while the 

horizontal separation standards are given in Table 2 (EUROCONTROL, 2018). The horizontal 

separation is defined here as the Euclidean distance in the horizontal plane between the aircraft in each 

pair (Isaacson and Erzberger, 1997; Visser, 2008). It is noted that the separation minima indicated in 

Table 2 are applied to flights operating on the same routes, while for those operating on different routes, 

a minimum radar separation of 3 NM is enforced. It should also be noted that only the wake vortex 

separation minima are enforced and that all runways are assumed to be operated independently, i.e., 

departures can take place simultaneously at all runways. The main procedure of the algorithm is 

described in Algorithm 1. 

Table 2. RECAT-EU wake turbulence distance-based separation minima on approach and departure. 

(EUROCONTROL, 2018).  

 
(*) means minimum radar separation (MRS), set at 2.5 nautical mile (NM), is applicable  

as per current ICAO doc 4444 provisions. 
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Algorithm 1. Conflict detection algorithm. 

Input:  
- Flight data; 
- Route trajectories; 
- Time step; starting time, ending time; 
- Set the couple of flights violating the required distance separation (VS) to 0, VS = 0;  

For each time step 
  Define flights entering into the time window; 
 Extract the flight trajectories for these flights; 
 Calculate the vertical distance for each couple of flights; 
  For each couple of flight 
       If the vertical separation is violated 
                   Calculate the horizontal distance  
   If the horizontal separation is violated 

               Set VS = VS + 1; 
  End  
  End  
End  

End 

Output: A set of couple of flights violating the required separation, VS. 

Once the algorithm has terminated, the number of instances of flights violating the required distance 

separation standards is stored in the parameter VS. If VS is equal to 0, the constraint in Eq. (9) is satisfied, 

and hence the allocation solution is feasible. Otherwise, the allocation solution is infeasible.  

It should be noted that the resolution of the runway assignment problem in Section 3.2 may lead to 

a situation in which multiple (non-unique) optimal solutions are found. Since the assignments of aircraft 

on runways for the various optimal solutions may lead to different conflict situations down-route, the 

conflict algorithm will be applied for each optimal solution obtained by the runway assignment model. 

Subsequently, the solution without any conflicts or that with the smallest number of conflict cases is 

selected. In the latter case, the rerouting technique will be subsequently applied to the identified 

conflicting flights and will be presented in detail in the following section. 

3.4. Rerouting technique 

The conflict detection algorithm is applied to every distribution solution obtained for the optimization 

problem in Eqs. (6-10). If any couple of flights in these solutions violate separation minima which is 

discovered by the conflict detection algorithm, a rerouting technique is used. The idea behind the 

rerouting method is similar to that of the vectoring solutions as currently issued by Air Traffic 

Controllers (ATC), which is used to resolve the conflict between flights listed in the schedule when they 

fly along the selected routes. In the rerouting method, alternative routes are assigned to each pair of 
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flights whose separation distances violate the specified minima while still optimizing noise impact and 

fuel consumption. To this end, an optimization problem is formulated and solved for each pair of 

conflicting flights in the flight distribution solution. The associated optimization problem is written as 

follows. 

ac

pa ac fuel ac
1 2

pa fuel

( ) ( )
min

( , ) ( , )

N T
w w

N T


r

r r

a r a r
 

(17) 

srs.t. ( ) 0f r  (18) 

where rac is the design variable vector of alternative routes for the pair of conflicting flights whose 

separation violates the separation standard; the alternative routes are again selected from the sets of 

optimal routes obtained in Step 1. The objective function is the normalization of the NPA and fuel 

consumption, in which Npa(rac) and Tfuel(rac) are the NPA and the total fuel burn associated with new 

alternative routes for conflicting flights, respectively; and Npa(a,r) and Tfuel(a,r) are, respectively, the 

NPA and the total fuel burn associated with the design variables of the optimization problem in Eqs. (6-

10). Note that Npa(a,r) and Tfuel(a,r) are known at this stage. The parameters w1 and w2 are the weighting 

factors, which are used to transfer a bi-objective optimization problem into a single objective one. In 

this case, w1 and w2 are set to 0.5 with the aim of giving an equal priority to both the NPA and fuel 

consumption. This setting also aims to retain the diversity of solutions in the original Pareto front. As 

illustrated in Fig. 3, due to the use of the equivalent weight of 0.5 for both objectives, the solution 

obtained by the optimization problem in this section is expected to be located along the dotted diagonal 

line, which is the line having an angle of 45 degrees relative to the horizontal axis.  

 
Fig. 3. Illustration of the optimal solution of the optimization problem in Eqs. (17-18). 
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The evaluation of the constraint is performed by evoking the conflict detection algorithm in Section 

3.3. In this case, however, only flights involved in a time interval, within which conflict between flights 

take place, are taken into account. The time interval is determined by the total travel time of the pair of 

conflicting flights from the runways to the endpoints. To make sure the selection of new routes for the 

conflicting flights do not cause any conflicts to other flights outside of the time interval, the travel time 

of the conflicting flights is estimated based on the longest route stored in the set of available routes for 

each SID. The determination of the time interval and the identification of flights within this interval is 

illustrated in Fig. 4. In the figure, the two conflicting flights are f3 and f4; the time interval is delimited 

by the starting time of flight f3 and the ending time of flight f4; and the flights involved in this time 

interval are f1, f2, and f5. Since only flights operating within the time interval are considered, the rerouting 

of conflicting flights does not influence flights outside this time interval. Furthermore, since typically 

only a few flights in the flight schedule are involved, the computational cost of solving the problem in 

this step is relatively small, just a few seconds of CPU time.   

 

Fig. 4. Illustration of the number of flights involved in the time interval within which the conflict takes 

place. 

When the conflict detection tool identifies more than one pair of conflicting aircraft, the rerouting 

algorithm is sequentially applied to each conflicting pair. Note that the rerouting technique is applied to 

every distribution solution obtained for the optimization problem in Eqs. (6-10) if the solution contains 

any couple of flights violating the separation standard. 
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4. Optimization techniques 

As can be seen in Section 3, four different optimization problems have been established. The first two 

problems are nonlinear multi-objective parameter optimization problems. The third problem is a mixed 

integer linear programming problem (MILP) which is nested in the second problem, and the last one is 

a nonlinear single-objective parameter optimization problem. To solve these four problems, four 

different optimization methods are used. For the first problem (Eqs. (4-5)), the Multi-objective 

Optimization Evolutionary Algorithm based on Decomposition (MOEA/D), as proposed by Zhang and 

Li (2007) and improved by Ho-Huu et al. (2017), is applied. This choice is motivated by the fact that 

MOEA/D has been demonstrated to be an efficient method to deal with this type of problems (Ho-Huu 

et al., 2017). Meanwhile, the Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb et al., 2002) 

is utilized to solve the second problem (Eqs. (6-10)). The preference for this method is, in this case, 

because the design space of this problem is very restricted, and hence the solutions easily violate the 

constraints. Therefore, NSGA-II is more suitable than MOEA/D in this case. A mixed integer linear 

solver from the CPLEX optimization suite/library§ is applied to solve the linear optimization problem 

(Eqs. (11-15)). Finally, the last problem (Eq. (17-18)) is solved by using the Differential Evolution (DE) 

algorithm (Storn and Price, 1997). For more details on MOEA/D, NSGA-II, and DE, interested readers 

are referred to Refs. (Ho-Huu et al., 2017; Zhang and Li, 2007), (Storn and Price, 1997), and (Deb et 

al., 2002), respectively. It should be noted that, in order to deal with the equality constraint in Eq. (7), a 

constraint handling technique developed in (Ho-Huu et al., 2018) has been applied and coupled to the 

NSGA-II algorithm. Please note that since some of the applied optimization methods, including 

MOEA/D, NSGA-II and DE, are heuristic methods, the solutions obtained by these methods are only 

approximate or nearly optimal solutions.  

5. Numerical results and discussion 

In this section, the reliability and efficiency of the proposed framework are evaluated using a realistic 

case study at Amsterdam Airport Schiphol (denoted as AMS) in The Netherlands. On the selected 

                                                           
§
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.9.0/ilog.odms.cplex.help/CPLEX/MATLAB/topics/cplex_matlab_overview.html 

(accessed 6 January 2020).  
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reference day, 599 departure flights were recorded, that operated on two runways, viz., RWs 24 and 18L 

(Dons, 2012), as shown in Fig. 5.  

 
Fig. 5. Illustration of real departure operations at AMS. 

 
Fig. 6. Illustration of departure routes at AMS. 

According to the flight data and the Aeronautical Information Publication (AIP)**, 13 distinct SIDs 

were in use on the reference day, as shown in Fig. 6. In the figure, the solid routes originating from 

RW18L are highlighted and numbered in orange, while the dashed routes originating from RW24 are 

highlighted and numbered in blue. There are 6 terminal points (defined as the endpoints of departure 

                                                           
** https://www.lvnl.nl/eaip/2019-12-19-AIRAC/html/index-en-GB.html (accessed 2 January 2020). 
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procedures in this study), viz. ANDIK, IVLUT, LOPIK, LEKKO, VALKO and BERGI. Each terminal 

point is connected by two routes originating from either RW24 or RW18L, except for ANDIK that is 

connected by three routes, consisting of route 1 from RW18L and routes 2 and 3 from RW24. Note that, 

from the assignment solution produced by the runway assignment model, the assignment of flights to 

routes for the terminal points IVLUT, LOPIK, LEKKO, VALKO, and BERGI is automatically known, 

as there is only a single route available from each runway. 

However, for the terminal point ANDIK, two different routes are available from RW24 runway, 

and hence an additional step is needed. To determine which flight is assigned to either route 2 or 3 from 

RW24, the following heuristic rule is applied. In order to reduce the number of potential crossing 

conflicts between flights during the peak hours, flights operating in this time period are assigned to route 

3 until its capacity limit is reached; the remainder of the flights are assigned to route 2. 

Though many different aircraft types operate on these routes, for the sake of simplicity, all flight 

movements are represented here by either of three aircraft types, namely, Fokker 100 (F100), Boeing 

737-800 (B738), and Boeing 777-300 (B773). It is assumed that the F100, B738, and B773, respectively, 

represent lower medium (LM), upper medium (UM) and upper heavy (UH) aircraft, as classified by 

EUROCONTROL (2015). The population data provided by the Dutch Central Bureau of Statistics 

(CBS) (Centraal Bureau voor de Statestiek) with a grid cell size of 500 x 500 m, as shown in Fig. 6, is 

used. The detailed data of aircraft movements is provided in Table 3. All the simulations are carried out 

in MATLAB 2018b on an Intel Core i5 and 8GB RAM desktop.  

Table 3. The detailed data for aircraft operations. 

Terminal point 

Number of aircraft movements 

Entire day 

[LM, UM, UH] 

Day (7h00-19h00) 

[LM, UM, UH] 

Evening (19h00-23h00) 

[LM, UM, UH] 

Night (23h00-7h00) 

[LM, UM, UH] 

ANDIK [45,   22,   8] [32,  14,    3] [6,   6,   5] [7,  2,    0] 

IVLUT [74,   98,   43] [57,   69,   28] [9,   10, 12] [8,  19,  3] 

LOPIK [7,     11,   2] [4,     9,     2] [2,   1,   0] [1,  1,    0] 

LEKKO [35,   76,   3] [30,   46,   3] [3,   8,   0] [2,   22, 0] 

VALKO [36,   31,   12] [27,   24,   10] [4,   4,   1] [5,   3,   1] 

BERGI [34,   26,   36] [27,   18,   35] [4,   7,   0] [3,   1,   1] 

Total [231, 264, 104] [177, 180, 81] [28, 36, 18] [26, 48, 5] 

 

5.1. Evaluation of the distribution model in Step 2 

Since the aircraft sequence and separation requirements are considered and integrated into the 

distribution model in Step 2, it is important to investigate the performance of this model independently. 
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The main aim of this investigation is to see whether, based on the current SIDs, the model can provide 

better distribution options to reduce noise impact and fuel consumption compared with the reference 

case.  

Before executing the model, the reference case is determined first. The reference case considers the 

599 flights, as shown in Fig. 5. It is noted that due to capacity reasons, the flights in Fig. 5 have been 

vectored by Air Traffic Controllers (ATC). In order to make the calculation of the reference case simpler, 

it is assumed here that all vectored flights are simply assigned to one of the fixed routes as shown in Fig. 

6. By recreating the traffic flow based on the reference data (which include the actual departure times) 

and the standard routes as defined in Fig. 6, the number of people annoyed and the total fuel burn in ton 

are 75,800 and 332.20, respectively, and there is no delay at the runways, i.e., D 0 . The result also 

shows that 8 cases of flights which violate the required separation minima emerge. Nevertheless, the 

number of conflicting flights remains small, representing less than 2% of the total traffic volume. For 

comparison purposes, therefore, it is assumed that all distribution solutions derived from the distribution 

model are deemed acceptable if they feature less than 8 violations.  

 To solve the problem defined by Eqs. (6-10), the NSGA-II algorithm with a population size of 70 

and a maximum number of 1500 generations (Gen.), as used in Ho-Huu et al. (2019a), is applied. Fig. 7 

shows the optimal results obtained by the distribution model and the solution to the reference case. As 

expected, it can be seen from Fig. 7 that all the solutions from the model dominate that of the reference 

case and are much better in both the NPA and fuel consumption. In addition, only 7 violations are 

recorded for solutions obtained by the proposed model, which is one case less compared with that of the 

reference scenario. Note that in this section the rerouting technique is not yet applied. 

Regarding the performance of the optimization algorithm, it can be seen from Fig. 8 that the 

algorithm has a good convergence rate. After 1200 generations, the solutions start to converge, and there 

are no significant changes after 1300 generations. The total time for the algorithm to reach the final 

generation is 7.39 hours. It should be noted that because the flight schedule can be obtained some days 

in advance, the model can be used as a planning tool to deliver reasonable solutions for the assignment 

of flights a priori. Furthermore, owing to the independent evaluation of objective functions in the 
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optimization algorithm, the computational cost of the distribution problem can be further improved by 

using parallel computing with multiple cores or cluster computing.    

  
Fig. 7. Comparison of the NPA and fuel consumption 

obtained for the reference case and the optimized distribution 

solutions based on the current SID routes. 

 
Fig. 8. Convergence history of the optimized 

distribution solutions based on the current SID routes. 

  To further examine the advantage of the model, a single representative solution, i.e., solution 1 as 

highlighted in Fig. 7, is selected for further analyses. The Lden noise contours associated to this solution 

are illustrated in Fig. 9, along with those resulting from the reference case. As can be seen from the 

figure, there is a distinct difference in the size of the Lden contours between the two solutions. Indeed, 

the contours associated with solution 1 appear to avoid populated regions better than those associated to 

the reference case, hence leading to a reduction in the NPA.  
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Fig. 9. Comparison of the Lden noise contours caused by the reference case and the optimized distribution 

solution (solution 1) based on current SIDs. 

To provide a better understanding of the reason leading to the change of the contours in Fig. 9, the 

distribution of flights among the routes obtained in solution 1 is also provided numerically in Table 4. 

At first glance, it can be noted in Table 4 that there is a large shift of aircraft movements between routes 

8 and 9. Specifically, on route 8 in the reference case, there are 44 daytime flights (21 F100s, 20 B738s 

and 3 B773s), 11 evening flights (3 F100 and 8 B738s), and no night flights, whilst in solution 1 there 

are 74 daytime flights (27 F100s, 44 B738s and 3 B773s), 10 evening flights (2 F100s and 8 B738s), 

and up to 24 night flights (2 F100s and 22 B738s). This redistribution of movements explains why in 

Fig. 9 the contours shift to the right of routes 8 and 9, which, evidently, results in a reduction in the 

NPA. Moreover, since the track along route 8 is shorter than that of route 9, more aircraft are assigned 

to route 8, and more fuel can be saved. The same situation can also be observed in the distribution of 

flights among routes 4 and 5, contributing to a significant reduction in fuel burn as a result of aircraft 

flying on a shorter route. 

Table 4. Comparison of flight distribution obtained by the reference case and the optimized distribution solution 

(solution 1) based on current SIDs. 
Route 

number 
Approach 

Day  Evening  Night 

F100 B738 B773  F100 B738 B773  F100 B738 B773 

1 
RC*  0 0 0  2 2 2  0 0 0 

OD#  11 10 2  2 4 3  7 2 0 

2 
RC  3 5 2  0 1 1  7 2 0 

OD  0 0 0  0 0 0  0 0 0 

3 
RC  29 9 1  4 3 2  0 0 0 

OA  21 4 1  4 2 2  0 0 0 

4 RC  20 31 15  1 2 1  8 19 3 
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OD  3 2 3  0 0 3  0 0 0 

5 
RC  37 38 13  8 8 11  0 0 0 

OD  54 67 25  9 10 9  8 19 3 

6 
RC  3 6 0  2 1 0  0 0 0 

OD  3 9 2  2 1 0  1 1 0 

7 
RC  1 3 2  0 0 0  1 1 0 

OD  1 0 0  0 0 0  0 0 0 

8 
RC  21 20 3  3 8 0  0 0 0 

OD  27 44 3  2 8 0  2 22 0 

9 
RC  9 26 0  0 0 0  2 22 0 

OD  3 2 0  1 0 0  0 0 0 

10 
RC  0 0 0  0 2 0  0 0 0 

OD  13 17 4  0 1 1  5 3 1 

11 
RC  27 24 10  4 2 1  5 3 1 

OD  14 7 6  4 3 0  0 0 0 

12 
RC  0 0 0  0 3 0  0 0 0 

OD  2 7 13  1 3 0  1 1 1 

13 
RC  27 18 35  4 4 0  3 1 1 

OD  25 11 22  3 4 0  2 0 0 

      RC*: Reference Case; OD#: Optimized Distribution 

 Based on the results obtained above, it can be concluded that the distribution model in Step 2 is 

reliable and effective. The proposed model can provide better distribution options in terms of both noise 

impact and fuel consumption.  

5.2. Evaluation of the entire framework 

In this section, the performance of the framework in its entirety is evaluated. However, in Step 1 of the 

framework, the set of optimized routes for each given SID can be obtained by using either 2D 

optimization or 3D optimization. For the 2D optimization, only ground tracks are optimized while 

vertical profiles comply with standard departure procedures, such as Noise Abatement Departure 

Procedures 1 and 2 (NADP1, NADP2) (ICAO, 2006). For the 3D optimization, both ground tracks and 

vertical profiles are optimized simultaneously. Therefore, before generating the optimized solutions, a 

comparison of these two approaches is first carried out in the next subsection. This comparison also 

aims to provide a better understanding of the final optimized solutions for the complete problem, which 

will be considered in Section 5.2.2.  

5.2.1. A comparison of optimized routes based on the different settings of vertical profiles 

In order to evaluate the influence of the vertical profiles, including NADP1, NADP2, and optimized 

vertical profiles, on the noise impact and fuel consumption, three distinct optimization problems 

corresponding to three different vertical profile scenarios are performed for an example route. For this 
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comparison, route 3 is used. The evaluation is also a first study that compares the two different settings 

of vertical profiles in the field of the aircraft route design problem. To determine optimized solutions, 

the number of aircraft, as indicated in Table 3 for the terminal point ANDIK with an additional 30% of 

traffic (which accounts for a potential increase in the number of movements due to the application of 

the distribution algorithm), is applied. For further details on the motivation to add 30% extra traffic, 

interested readers are encouraged to read Ho-Huu et al. (2019b). For each optimization problem, aircraft 

of all types follow a shared ground track, but each with its own distinct vertical profile, which is either 

a standard procedure or an optimized vertical profile. A SID is assumed to start at the end of the runway 

at an altitude of 35 ft AGL and at a take-off safety speed V2+10 kts, and to terminate at an altitude of 

6,000 ft and an equivalent airspeed of 250 kts. To solve the three optimization problems, the MOEA/D 

algorithm with a population size of 50 and a maximum of 1,000 generations, as used in Ho-Huu et al. 

(2017), is applied. To generate optimized routes for each SID in Step 1 of the framework, the same 

approach is also applied to all the 13 SIDs.  

The optimized solutions are shown in Fig. 10. It can be seen in Fig. 10 that, as expected, the 

optimized vertical profile is the best approach and significantly outperforms NADP1 and NADP2, while 

NADP2 generally performs better than NADP1. A closer look at Fig. 10 shows that there are still two 

NADP1-based solutions that dominate some of the NADP2-based solutions. The reason for this is that, 

due to the focus on climbing in the initial phase of the departure, the airspeed in a NADP1 is lower than 

for a NADP2. The lower airspeed allows aircraft to make tighter turns over less populated regions while 

still satisfying the bank angle constraints, as defined by Eq. (5).  
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Fig. 10. Comparison of the optimized solutions obtained by NADP1, NADP2 and optimized 

vertical profiles.  

Fig. 11 illustrates the optimized ground tracks obtained for three different optimization problems. 

It can be observed in Fig. 11 that all ground tracks attempt to avoid populated areas as far as possible. 

While the differences between the ground tracks obtained by using NADP1 and NADP2 are small, they 

are quite significant between those obtained by 3D optimization and 2D optimization. For a better 

understanding of the combination of ground tracks and vertical profiles, some representative solutions 

of each case, as highlighted in Fig. 11 in yellow, are selected. The vertical profiles derived from a B738 

for each approach are depicted in Fig. 12. It is seen in Fig. 12 that there is a significant difference in the 

airspeed profile between the approaches.  

 
Fig. 11. Comparison of optimized ground tracks obtained by NADP1, NADP2 and optimized 

vertical profiles. 
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Fig. 12. Comparison of vertical profiles obtained by the representative solutions.  

From noise and fuel perspectives, the optimized routes obtained by the 3D optimization approach 

are the best candidates and should be used in the set of alternative route options for the distribution 

problem in the second step. From a practical point of view, however, the implementation of the 

optimized vertical profiles may prove significantly more difficult. In contrast, NADP1 and NADP2 are 

the current standard procedures that are widely used. Also, compared with NADP1, NADP2 is generally 

a better option; however, the difference is small. The differences between their vertical profiles, 

however, may prove useful in dealing with separation conflicts between aircraft. Therefore, to obtain a 

better understanding from both a theoretical and a practical perspective, two different scenarios in input 

data are defined for the optimization problem in the second step. In the first scenario, only the routes 

obtained by NADP1 and NADP2 are applied, while in the second scenario the routes obtained by all the 

three types of vertical profiles are used. An overview of ground tracks obtained for all the SIDs 

originating from RW24 and RW18L in both 2D and 3D optimization scenarios is given in Fig. 13.  
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a) RW24                                                                                 b) RW18L 

Fig. 13. Illustration of optimized routes for each SID obtained after Step 1. 

5.2.2. Optimized solutions derived from the entire problem 

As mentioned earlier, two different sets of input data are considered for the distribution problems in the 

second step. Therefore, two distinct optimization problems need to be solved in this section. These 

problems are again referred to as 2D and 3D optimization scenarios, respectively. To solve these 

problems, the NSGA-II algorithm with a population size of 70 and a maximum number of generations 

of 1500, as used in Ho-Huu et al. (2019a), is applied. 

 A closer look at the results obtained for both scenarios reveals that all the solutions obtained by the 

3D optimization scenario have a unique route for each SID, while for the solutions obtained by the 2D 

optimization scenario, some SIDs require two routes to avoid potential conflicts. In addition, there is no 

delay at the runways for all solutions obtained by both approaches. Fig. 14 shows the Pareto-optimized 

solutions obtained for the 2D and 3D optimization problems and compares them with the reference case 

solution, presented previously in Section 5.1. As expected, the 3D optimization approach provides the 

best solutions (denoted as 3D solutions), that significantly outperform the solutions obtained by the 2D 

optimization approach (denoted as 2D solutions), as well as those obtained for the reference case, in 

terms of both the NPA and fuel consumption.  
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Fig. 14. Comparison of the optimized solutions obtained by the reference case, 2D and 3D optimization. 

To further analyze the optimized results, three representative solutions, including solution 1 of the 

2D optimization scenario and solutions 1 and 70 of the 3D optimization scenario, as highlighted in Fig. 

14, are selected. Table 5 provides a comparison of specific criteria extracted for these solutions. From 

Table 5, it can be seen that all the compared metrics obtained by solution 1 (2D optimization) and 

solution 70 are better than those found for the reference case. Specifically, solution 1 offers, respectively, 

15.08%, 1.20%, 0.96%, and 0.75%  reduction in the NPA, fuel consumption, flight distance and flight 

time, while the corresponding reductions obtained for solution 70 are, respectively, 21.06%, 8.26%, 

8.22% and 8.98%. In a comparison of solution 1 (3D optimization) with the reference case, solution 1 

results in a significant decrease in the NPA of about 43.29%, while still saving 1.3% on fuel. Although 

there is an increase in the flight distance and elapsed time as a result of longer routes to avoid populated 

regions, the use of optimized vertical profiles results in a fuel burn that is still less than that of the 

reference case. Note that the purpose of selecting these representative solutions is to merely give insight 

into the solution behavior; it does not necessarily imply that the selected solutions should be 

recommended to authorities or policymakers. Essentially, the trade-off between criteria and the 

subsequent selection of the most desirable solution from the Pareto front is left to the authorities or 

policymakers. 
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Table 5. Comparison of the criteria of the representative solutions and the reference case. 

Criteria 
Solution 1  

(2D optimization) 

Solution 1  

(3D optimization) 

Solution 70  

(3D optimization) 

Reference 

case 

Number of people annoyed 64,367 42,985 59,834 75,800 

Fuel consumption (ton) 328.21 327.66 304.77 332.20 

Flight distance (km) 25,240.57 27,357.49 23,388.53 25,484.13 

Flight time (h) 56.71 59.80 52.01 57.14 

The explanations provided for the comparisons in Table 5 are confirmed by the results shown in 

Figs. 15- 17. where the optimized routes, the Lden noise contours, and the NPA obtained by the three 

solutions are illustrated. A closer look at the optimized routes shows that although the optimized routes 

selected by these solutions are different, all of them seek to avoid high-density residential areas and tend 

to be close to each other. This results in narrower Lden contours and hence a reduced number of people 

affected by noise. Another observation is that the routes selected in solutions 1 (both 2D and 3D 

optimization) are longer than those selected by solution 70. This is according to expectations, as both 

solutions for 1 are noise-preferred solutions, and hence their routes tend to be longer to avoid populated 

regions. In contrast, solution 70 is a fuel-preferred solution and therefore prefers to choose shorter routes 

to reduce the fuel burn. Note that the red routes in Fig. 15 (solution 1 of 2D problem) are two alternative 

routes that are only used by some conflicting flights, whilst the remainder of the scheduled flights make 

use of one of the blue routes for each SID. 

  
                         a) Optimized routes                                                            b) Lden noise contours and the NPA 

Fig. 15. Illustration of the optimized routes, the Lden noise contours, and the NPA (solution 1 – 2D optimization). 
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                         a) Optimized routes                                                            b) Lden noise contours and the NPA 

Fig. 16. Illustration of the optimized routes, the Lden noise contours, and the NPA (solution 1 – 3D optimization). 

  
                         a) Optimized routes                                                            b) Lden noise contours and the NPA 

Fig. 17. Illustration of the optimized routes, the Lden noise contours, and the NPA (solution 70 – 3D optimization). 

Table 6 provides the detailed distribution of flights among the optimized routes obtained in the 

selected solutions. It should be noted that as the selection of routes and the distribution of flights among 

these routes are optimized simultaneously, each solution will have its own optimal combination of 

selected routes and flight distribution. Therefore, it is difficult to make a direct comparison regarding 

the aircraft distribution between them, especially the comparison between 2D and 3D solutions. As a 

result, Table 6 merely aims to give insight into the optimized solution behavior, rather than serving as a 

basis for comparison. 
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Table 6. Distribution of flights to the optimized routes obtained by the 2D and 3D representative solutions. 
Route 

number 
Solution 

Day  Evening  Night 

F100 B738 B773  F100 B738 B773  F100 B738 B773 

1 

1 (2D) 6 0 0  0 0 0  0 0 0 

1 (3D) 4 11 0  0 4 1  0 2 0 

70 (3D) 12 11 2  1 4 3  5 2 0 

2 

1 (2D) 3 1 0  0 0 0  7 2 0 

1 (3D) 0 0 3  0 0 4  6 0 0 

70 (3D) 0 0 1  0 0 2  2 0 0 

3 

1 (2D) 23 13 3  6 6 5  0 0 0 

1 (3D) 28 3 0  6 2 0  1 0 0 

70 (3D) 20 3 0  5 2 0  0 0 0 

4 

1 (2D) 5 38 9  1 5 8  0 19 3 

1 (3D) 30 37 15  4 4 10  8 19 2 

70 (3D) 4 11 4  0 1 6  0 1 0 

5 

1 (2D) 52 31 19  8 5 4  8 0 0 

1 (3D) 27 32 13  5 6 2  0 0 1 

70 (3D) 53 58 24  9 9 6  8 18 3 

6 

1 (2D) 2 7 2  2 1 0  0 1 0 

1 (3D) 2 9 1  2 1 0  0 1 0 

70 (3D) 4 9 2  2 1 0  1 1 0 

7 

1 (2D) 2 2 0  0 0 0  1 0 0 

1 (3D) 2 0 1  0 0 0  1 0 0 

70 (3D) 0 0 0  0 0 0  0 0 0 

8 

1 (2D) 25 16 3  2 5 0  2 0 0 

1 (3D) 28 44 3  2 7 0  2 22 0 

70 (3D) 28 44 3  2 7 0  2 22 0 

9 

1 (2D) 5 30 0  1 3 0  0 22 0 

1 (3D) 2 2 0  1 1 0  0 0 0 

70 (3D) 2 2 0  1 1 0  0 0 0 

10 

1 (2D) 12 19 4  0 2 1  5 3 1 

1 (3D) 9 17 1  0 2 1  5 3 1 

70 (3D) 3 9 0  0 0 0  1 1 0 

11 

1 (2D) 15 5 6  4 2 0  0 0 0 

1 (3D) 18 7 9  4 2 0  0 0 0 

70 (3D) 24 15 10  4 4 1  4 2 1 

12 

1 (2D) 0 7 0  0 2 0  1 1 0 

1 (3D) 0 2 0  0 1 0  0 0 0 

70 (3D) 0 3 0  0 0 0  0 0 0 

13 

1 (2D) 27 11 35  4 5 0  2 0 1 

1 (3D) 27 16 35  4 6 0  3 1 1 

70 (3D) 27 15 35  4 7 0  3 1 1 

In order to make the comparison regarding the vertical profiles more transparent, the representative 

vertical profiles of a Fokker 100 obtained for solutions 1 (both 2D and 3D optimization) are depicted in 

Fig. 18. As expected, despite not having the best performance in terms of either noise or fuel burn, 

NADP1 is still selected in both the 2D and 3D solutions, merely because it helps avoid conflicts. 

However, due to its poor performance, it is rarely used. More specifically, for both the 2D and 3D 

solutions, only 1 route selects NADP1 as the optimal option, while the remainder chooses either NADP2 

or the optimized vertical profiles. The selection of NADP1 has shown that the separation requirement is 

an important and challenging issue that will be very difficult to solve if only one type of vertical profiles 

is available for all aircraft movements, especially for operations at peak hours. This issue again can be 
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seen in the 3D solution. In this solution, even though the optimized vertical profile offers the best 

performance in both criteria, only 7 routes use it as the optimal option, while there are still 4 routes using 

NADP2 and 1 route using NADP1. Thanks to the combination of all three different vertical profiles, the 

3D optimized solutions are the only ones that offer conflict-free solutions by using only one route for 

each SID for the entire flight schedule. 

  
a) Solution 1 (2D optimization)                                                         b) Solution 1 (3D optimization) 

Fig. 18. Comparison of the vertical profiles of Fokker 100 obtained by 2D and 3D optimization. 

 

6. Conclusions  

In this paper, we have presented a multilevel optimization framework for the design of optimal departure 

routes and the distribution of aircraft movements among these routes, while taking the sequence and 

separation constraints of aircraft into account. The proposed framework consists of two successive steps: 

1) the design of optimal routes for each SID, and 2) the selection and distribution of flights among  these 

routes. In order to deal with the sequence and separation requirements for aircraft, a runway assignment 

model, a conflict detection algorithm, and a rerouting technique have also been developed. 

The performance and applicability of the proposed framework have been demonstrated through a 

case study at Amsterdam Airport Schiphol (AMS) in The Netherlands. In this case study, the departure 

operations for an entire day, featuring 599 flights and 13 distinct routes, have been considered. First, to 

validate the integration of the runway assignment model and the conflict detection algorithm into the 

allocation model in Step 2, a pure allocation problem based on the current SIDs has been executed. The 
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obtained results reveal that the distribution model is reliable and able to provide better options that help 

significantly reduce the noise impact and fuel consumption compared with the reference case. 

Subsequently, optimized solutions have been generated using the fully integrated framework. In order 

to provide a better view from both theoretical and practical perspectives, two different settings of input 

data for the distribution model in Step 2 have also been assessed. The numerical results have revealed 

that both problems can provide solutions that are much better in terms of both noise and fuel, relative to 

the reference case. Also, the 3D optimization approach significantly outperforms the 2D optimization 

approach.  

 In view of the attained favorable results, the framework appears to be suitable for expansion to other 

applications such as the design of arrival routes and the allocation of flights among these routes, and the 

problem that considers both departure and arrival operations concurrently. Moreover, instead of using 

the rerouting technique in the developed framework, at some occasions, Air Traffic Controllers could 

implement small delays on the ground or slow down or speed up one of the conflicting flights without 

changing the given SIDs to avoid conflict in the air. These considerations can also be integrated into the 

developed framework in future research. In addition, since the results obtained by the framework are 

Pareto solutions, it is a challenge for potential users to choose a suitable solution from a given Pareto 

front. Therefore, the development of selection methods and more in-depth analyses of the optimal results 

are necessary in future work.  
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7
CONCLUSIONS

7.1. REVIEW OF OBJECTIVES
Along the course of the thesis, five objectives have been introduced and addressed. In
this section, these objectives and key conclusions obtained from the research are re-
viewed.

1. To select or develop (a) suitable and efficient optimization method(s)
capable of addressing the specific problems of route design and flight
allocation for multiple objectives.

In Chapter 2, a new version of the MOEA/D algorithm was developed, which is capa-
ble of effectively handling multi-objective optimization problems. The performance of
the developed method was tested on well-known benchmark test functions and struc-
tural optimization problems. The obtained results indicated that the developed method
outperforms other approaches both in terms of convergence rate and solution quality.
The method was then tested on route design problems with noise impact and fuel con-
sumption as objective criteria. The obtained results also revealed that the method is
suitable for and applicable to such a problem.

2. To improve the performance of solving aircraft route design problems
based on the application of the developed method.

In Chapter 3, the selected MOEA/D algorithm was applied to more complex route
design problems. This has given valuable insights into the characteristics of the problem,
which has allowed for a further improvement in terms of algorithm performance. Specif-
ically, computational cost has gone down by more than a factor 10. The performance of
the developed approach was also demonstrated for a more complicated problem, where
both problems of route design and flight allocation are addressed simultaneously. This
study also considered a new criterion that aims to fairly distribute noise events over com-
munities. With the introduction of the new noise criterion, the obtained results did not
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only create good options for routes with less noise impact and fuel consumption, but
also offer a fair distribution of noise among communities.

3. To develop a flight allocation problem formulation that allows to ad-
dress noise impact and fuel consumption concurrently.

In Chapter 4, a new air traffic assignment model was proposed, in which both air-
craft noise impact and fuel consumption are optimized concurrently. The model has
been demonstrated to be efficient and able to provide proper trade-off solutions be-
tween two potentially conflicting objectives. Compared with a comparable model in
[23], the developed model does not only give reliable solutions but also offers a range of
solutions that can be a good reference base for users to refer to before making decisions.
In addition, due to the consideration of each operation as a design variable, the size of
the optimization problem, as well as the computational cost have been significantly re-
duced. The capability of the method has also been demonstrated in a more complicated
case study with the consideration of a daily commuting population. The study showed
that aircraft noise not only affects people living close to the airport, but also people living
farther away the airport as a result of commuting to places close to the airport for work,
while the opposite site is also observed. Due to the changes in population distribution
at each location during the day, the research also indicated that the optimal assignments
obtained by using the static (census) data and mobility data are different.

4. To establish a suitable approach that is capable of solving the problems
of aircraft route design and flight allocation in a linked manner.

In Chapter 5, a two-step optimization framework that is able to cope with the con-
sideration of both types of problems in a linked manner was developed. The reliability of
the framework has been validated through the analysis of the employed noise criterion
and the solution of the integrated optimization problem in a single step. A case study at
Amsterdam Airport Schiphol in The Netherlands, including 337 departure flights and 4
SIDs, has been used to evaluate the efficiency and capability of the proposed framework.
The obtained simulation results showed that the proposed framework can provide solu-
tions which can gain a reduction in the number of people annoyed of up to 31% and a
reduction in fuel consumption of 7% relative to the reference case solution. The obtained
results also indicated that, besides the difference in routes, the allocation of flights ob-
tained by the proposed framework and the reference case is also significantly different.
As a result, the combination of route design and flight allocation has a positive impact
on the reduction of noise and fuel. Furthermore, a comparison between the one- and
two-step approaches indicated that the two-step approach is more flexible to adapt to
changes in the number of flights when the reallocation of flights is demanded or new
routes and runways are considered.

5. To develop an optimization framework that can effectively address the
former points simultaneously.

In Chapter 6, a completed multilevel optimization model that is able to deal with
the link between route design and flight allocation while taking aircraft sequencing and
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separation into account was proposed. The reliability and applicability of the proposed
model have been demonstrated though a realistic case study at Amsterdam Airport Schiphol,
in which 599 departure flights and 13 different SIDs are considered. The optimization
results showed that the proposed model can offer conflict-free solutions which can lead
to a reduction in the number of people annoyed of up to 21%, and a reduction in fuel
consumption of 8% relative to the reference case solution. Furthermore, the research in-
dicated that the resolving of the conflict between flights has been the most difficult part
which is to make sure that all flights in the flight schedule going to the same terminal
points are operated on the same indicated routes. This has been a reason that some so-
lutions in the Pareto front obtained by the 2D optimization approach use two different
routes instead of one route for a given SID route to handle the conflict between flights for
different periods of time during the day. The comparison of the results obtained by the
2D and 3D optimization approaches showed that the consideration of different vertical
profiles in route design problems has a positive impact on resolving the conflict between
flights. Due to the diversity of vertical profiles, i.e., the differences in speed and altitude
between aircraft types on different routes, the chance of obtaining suitable routes which
are able to handle the conflict is greater. Consequently, all solutions in the Pareto front
obtained by the 3D optimization approach use only one route for a given SID route.

The five objectives mentioned here together address the main objective presented
in Chapter 1, which is to determine for each given SID route, which route is optimal,
and how many movements of each aircraft type should be assigned to this route while
taking into account operational constraints related to aircraft sequencing and separation
requirements.

7.2. RESEARCH NOVELTY AND CONTRIBUTION
This thesis has contributed to the field of aircraft and airport operations through the
development of an efficient tool that can improve the operations of aircraft at an airport
to become more efficient in terms of noise impact and fuel consumption. The research
methodology has been established to deal with the problems of route design and flight
allocation in a linked manner effectively. The reliability and capability of the proposed
approach has been validated through many case studies along the thesis. To the best of
the authors’ knowledge, there is no work properly coping with the link between these
two problems.

The main novelty of the research lies in the development of a multilevel optimization
framework to address the problems of route design and flight allocation in conjunction.
In addition to providing good options of route and flight allocation with less noise and
fuel, the proposed framework also guarantees that the obtained solutions comply with
operational requirements related to the sequencing of and separation between aircraft
on runways and along routes. Furthermore, along the way to the successful develop-
ment of the framework, the thesis has addressed certain limitations that existed in each
research category, i.e., optimization techniques, aircraft route design, and flight alloca-
tion.

Firstly, a new version of the MOEA/D algorithm is developed. The developed method
does not only provide fast solutions, but also offers a range of well-distributed Pareto so-
lutions for multi-objective optimization problems featuring complex Pareto fronts. Sec-
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ondly, an efficient optimization procedure that can significantly reduce the computa-
tional cost of solving aircraft route design problems is proposed. The proposed pro-
cedure can reduce up to two thirds the computational cost compared with traditional
approaches. Thirdly, a new model for aircraft assignment problems is developed. With
the simultaneous optimization of two potentially conflicting objectives, i.e., noise im-
pact and fuel consumption, the proposed model is able to provide trade-off solutions
between these objectives. Furthermore, the size and the complexity of the optimization
problem are significantly reduced as a result of considering each aircraft operation as a
single decision variable.

Lastly, a generic optimization framework is developed, which can support the oper-
ations of aircraft at an airport more efficiently in terms of noise impact and fuel burn.
The model is able to consider the route design and flight allocation problems in a linked
manner while taking aircraft sequencing and separation requirements into account. The
model has been demonstrated to be sufficiently efficient and able to offer conflict-free
and trade-off solutions between potentially conflicting objectives, which can reduce in
the number of people annoyed up to 21%, and 8% in fuel consumption relative to the ref-
erence case solution. The proposed framework may be a promising approach for noise
management at airports not only in the short-term but also for a long-term outlook.

7.3. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE RE-
SEARCH

The research in the thesis has been carried out based on some assumptions. Therefore,
there will be a need for further research. Firstly, the operations of aircraft at airports are
assumed to take place in standard weather conditions. This assumption implies that the
effects of wind, temperature and precipitation on aircraft and airport operations, aircraft
performance and aircraft noise have not been taken into account. Although the model
can theoretically account for these effects, their inclusion may affect the final results and
the performance of the framework, especially in terms of computational cost. Therefore,
research to include these effects into the proposed framework is recommended in future
work.

Secondly, the developed framework relies upon a specific noise criterion, i.e., noise
annoyance, and hence optimality can only be guaranteed for this criterion. Therefore,
the performance evaluation of the obtained solutions on other criteria and metrics should
be considered. Moreover, due to the nature of the employed criterion, the link between
two different problems (i.e., route design and flight allocation) at two steps of the frame-
work is guaranteed. Although the employed noise criterion is one of the common criteria
currently in use for the assessment of cumulative noise impact, there may be new crite-
ria and metrics that can be considered to apply in the near future. To make the proposed
framework still applicable, the analysis and investigation of these criteria and metrics
should be considered.

Thirdly, the model developed in the thesis is mainly applied in the context of de-
parture operations. Although the model can theoretically be extended to arrival oper-
ations, the formulation of operational constraints will be different due to the distinct
nature in operations between arrivals and departures. In addition, the separation be-
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tween arrival and departure flows needs to be guaranteed. Furthermore, only main op-
erational requirements related to aircraft sequencing and separation are taken into ac-
count, depending on airport and airline policies there will be other operational require-
ments which also need to be considered.

Regarding the computational cost, although the performance of the methods devel-
oped in the thesis has been improved significantly, the computational cost of solving the
optimization problems is still high. This limits the developed framework to be used as
an operational tool. The computational cost of the framework can be divided into two
parts corresponding to two separate steps. However, the optimization problems in Step
1 can be executed early in advance, and the computational cost of solving the route de-
sign problem has also been considerably improved. Therefore, to enable the proposed
framework to work as an operational tool, the improvements should focus on Step 2,
where the optimization problem may need to be resolved for every change in daily flight
schedules. For this improvement, the development and application of new optimization
methods should also be considered.

Last but not least, the results obtained by the proposed framework are non-dominated
solutions due to the application of the multi-objective optimization approach. It is,
therefore, a challenge for potential users to choose a suitable option from those solu-
tions. Consequently, the development of selection methods and more in-depth analyses
of the obtained optimal results are necessary in future work. Furthermore, the develop-
ment of a tool based on the framework would also be interesting for airport stakeholders.
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