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Abstract

Supersymmetric lattice models of constrained fermions are known to feature exotic phe-
nomena such as superfrustration, with an extensive degeneracy of ground states, the na-
ture of which is however generally unknown. Here we address this issue by considering
a superfrustrated model, which we deform from the supersymetric point. By numerically
studying its two-parameter phase diagram, we reveal a rich phenomenology. The vicin-
ity of the supersymmetric point features period-4 and period-5 density waves which are
connected by a floating phase (incommensurate Luttinger liquid) with smoothly vary-
ing density. The supersymmetric point emerges as a multicritical point between these
three phases. Inside the period-4 phase we report a valence-bond solid type ground
state that persists up to the supersymmetric point. Our numerical data for transitions
out of density-wave phases are consistent with the Pokrovsky-Talapov universality class.
Furthermore, our analysis unveiled a period-3 phase with a boundary determined by a
competition between single and two-particle instabilities accompanied by a doubling of
the wavevector of the density profiles along a line in the phase diagram.
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1 Introduction: superfrustration and multicriticality

Generally speaking, the physics of a quantum many-body system is determined by a compe-
tition between various terms, in particular the kinetic and interaction terms, of its Hamilto-
nian. For lattice models, endowing the kinetic term with additional density dependent con-
straints leads to so-called kinetically constrained Hamiltonians, for instance, the East [1–3]
and PXP [4–7] models. Focusing on bosonic or fermionic models, such constraints turn out
to have dramatic consequences for their physics, resulting for instance in topological order-
ing [8] or non-thermalizing behaviour following a quantum quench [9–13]. Among lattice
models with kinetic constraints, supersymmetric models of spin-less fermions play a special
role due to an enhanced mathematical control offered by the supersymmetry. Despite this
fact, these models come with many outstanding questions. In particular, when going beyond
one spatial dimension, it is not only the dynamics, but even the nature of the ground states
which remains essentially unexplored. In this work, we consider such a model with a sim-
plest geometry beyond a strictly 1D chain - a zig-zag ladder - and study its ground state phase
diagram as we now describe.

Supersymmetric lattice models It has long been known that (space-time) supersymmetry
in a quantum field theory (QFT) leads to special features in the physics described by such
QFT, and to an enhanced mathematical control. An example of the latter is the Witten index
[14] for theories with a complex (N = 2) supersymmetry, which guarantees the existence of
zero-energy ground states, without the need of diagonalizing the Hamiltonian. The papers
[15–17] traced the N = 2 supersymmetry in critical (conformal) or massive QFT’s in 1+1
dimensions to an exact supersymmetry in associated 1D lattice models of spin-less fermions.
These supersymmetric lattice models, dubbed the Mk models, have a characteristic constraint,
allowing at the most k nearest neighbour sites to be occupied.

Superfrustration Among the Mk models, the M1 model is particularly interesting - it features
spin-less fermions with nearest neighbour exclusion principle, forbidding the simultaneous oc-
cupation of nearest neighbour sites. Consequently, this allows the M1 model to be formulated
on any graph G and there exist proposals how to engineer it in 1D systems using Rydberg
atoms exploiting the blockade mechanism to implement the kinetic constraint [18–20].

Evaluating the Witten index for such models beyond 1D led to a surprise: many choices
of G, such as ladders and 2D grids with underlying triangular, hexagonal or kagome lattice
geometries, have a Witten index that is extensive in the system size N (number of vertices of
G) [21–23]. This implies that the number of ground states grows exponentially with N , and
that the ground state entropy per site is finite. This phenomenon was dubbed superfrustration
in [22].
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The ground state counting problem for a variety of choices of G has been addressed, with
varying degree of success. For the 2D square lattice with toroidal boundary conditions (BC)
precise results have been obtained, establishing that, depending on the choice of toroidal BC,
the ground state entropy is at the most sub-extensive, scaling with the linear dimension of
the system [24]. For the triangular lattice many results were obtained (bounds on ground
state fermion densities [25,26], ground states on ladders [27] and finite patches [28]) but the
ground state counting problem remains, to the best of our knowledge, still unsolved.

Multicriticality The massive degeneracy of ground states (which typically come with a range
of fermion densities) indicates that supersymmetric points are highly singular points in the
ground state phase diagrams of these lattice models. To study this phenomenon, we focus
on a relatively simple case, which is the M1 model on a zig-zag ladder. This model, while
simple enough to allow powerful numerics, does display superfrustration, with ground states
coming in a range of fermion densities 1/5 ≤ N f /N ≤ 1/4. Here and in what follows, N f is
the fermion number. In this paper we study how this model is embedded in a phase diagram
set by a Hamiltonian H, given in eq. (4), with parameters t, U , V3 and V4, and reducing to the
M1 model for U = −t, V3 = t, V4 = t. We explore the vicinity of the supersymmetric point,
which turns out to be a multicritical point connecting both gapped and floating phases.

Methods Our main tool has been numerical simulations performed with the state-of-the-art
density matrix renormalization group (DMRG) algorithm [29–32] operating directly within
the constrained Hilbert space [33, 34]. The explicit implementation of the nearest-neighbor
blockade on a zig-zag ladder allows us to reach convergence for critical systems with up to
N = 1201 sites, keeping up to 1500 states (bond dimension of local tensors) and truncating
singular values below 10−9. Further details of the algorithm will be discussed in Appendix A.
Additionally, we supplement the numerics by analytic arguments that are possible in special
regions of the phase diagram.

Specifically, considering a parameter space specified by the two interaction strenghts V3 and
V4, cf. Sec. 2, we probe a phase diagram described in Sec. 3, where we identify a floating
phase (Sec. 3.2) and period-3,4 and 5 density wave phases and analyze the transitions out of
them (Sec. 3.3-3.5). We also discuss in Sec. 3.3 how the boundaries of the period-3 phase can
be estimated from single- and two-particle instabilities. Furthermore, we provide analytical
explanation of the observed valence-bond type state in period-4 and of the density profiles in
period-5 phases in Sec. 3.4 and Sec. 3.5 respectively. Sec. 3.6 explores the effect of changing
the chemical potential U . We conclude in Sec. 4.

2 The model

We start by recalling the construction of a supersymmetric model for constrained fermions on
a lattice. N = 2 supersymmetry is explicitly realized in the following Hamiltonian built out of
two fermionic generators Q+ and Q−

HSUSY = {Q+,Q−} . (1)

Supercharges Q+ and Q− are constructed from constrained fermions, i.e. the fermions with
nearest-neighbor blockade on a selected lattice graph:

Q+ =
∑

i

Pic
†
i , Q− =

∑

i

ci Pi , (2)
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Blockade

Figure 1: Sketch of the system governed by the Hamiltonian Eq. (4). The hopping
t and the interaction terms V3, V4 are highlighted as solid blue and dashed red lines
respectively. The orange region indicates the radius of the blockade where double
occupancy is excluded, ni(1− ni) = nini+1 = nini+2 = 0, ∀i.

where Pi =
∏

<i, j>(1 − n j) is a projector onto a constrained Hilbert space, with n j = c†
j c j

the local occupation operator and < i, j > denoting nearest neighbours on the lattice. On a
generic graph the N = 2 supersymmetric Hamiltonian can therefore be rewritten as:

HSUSY =
∑

<i, j>

(Pic
†
i c j Pj + Pjc

†
j ci Pi) +

∑

i

Pi . (3)

In this paper we investigate the emergence of the supersymmetric point on a zig-zag ladder.
Our many-body Hamiltonian acts on a restricted Hilbert space with ni(1 − ni) = nini+1 =
nini+2 = 0 and is given by

H = t
∑

i

(c†
i ci+1 + c†

i ci+2 + h.c.) + 4U
∑

i

ni + 2V3

∑

i

nini+3 + V4

∑

i

nini+4 . (4)

The first two terms describe constrained nearest-neighbor hopping, the third term plays the
role of a chemical potential and controls the density, while the last two terms describe the
repulsion beyond the blockade. A sketch of the lattice geometry and the Hamiltonian terms
can be found in Fig.1. Supersymmetry emerges when −U/t = V3/t = V4/t = 1, and (4)
reduces to (3). Without loss of generality we fix t = 1. In addition we fix U = −1 and explore
the vicinity of the supersymmetric point in the remaining two-dimensional parameter space of
coupling constants V3 and V4.

In quasi-1D systems (chains or ladders) with open boundary conditions (OBC) the fermio-
nic nature of the particles does not manifest itself due to local constraints. So fermionic op-
erators in the Hamiltonian eq. (4) can be replaced by hard-boson operators with nearest and
next-nearest neighbor blockade. We also note that the Hamiltonian (4) preserves the total
number of particles N f =

∑

i ni .
The supersymmetric point U = −1, V3 = 1, V4 = 1 is accompanied with massive degeneracy

of zero-energy ground states. For periodic boundary conditions (PBC), the supersymmetric
Hamiltonian is HSUSY,PBC = H+N , with N the number of lattice sites. For OBC, supersymmetry
requires the following boundary terms

HSUSY,OBC = H + N + 2n1 + n2 + nN−1 + 2nN . (5)

As a simple example, consider N = 5. For PBC, the Witten index is

W = Tr
�

(−1)N f
�

= 1− 5= −4 . (6)

For N f = 1 and in the single particle basis {|1〉 , . . . , |5〉}, where |i〉 denotes a fermion at site i,
the Hamiltonian is given by

HSUSY,PBC
N=5,N f =1 =











1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1











. (7)
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The translationally invariant state 1p
5
(1,1, 1,1, 1), with energy E = 5, is the superpartner

of the state with zero particles. The supersymmetric ground states can be chosen to be the
eigenstates of the translation operator T with eigenvalues t l = e2πil/5 with l = 1, . . . , 4.

For N = 5, OBC, the Witten index is

W = Tr
�

(−1)N f
�

= 1− 5+ 3= −1 . (8)

We thus expect at least one supersymmetric ground state with an odd N f . As for (7), for N f = 1
and in the single particle basis {|1〉 , . . . , |5〉}, the Hamiltonian is given by

HSUSY,OBC
N=5,N f =1 =











3 1 1 0 0
1 2 1 1 0
1 1 1 1 1
0 1 1 2 1
0 0 1 1 3











. (9)

The coefficients of the unique supersymmetric ground state
∑

i v i
GS |i〉 of energy E = 0 are

vGS = (v1
GS, . . . , v5

GS) =
1p
20
(1,1,−4,1, 1).

In [35, 36] an exact expression was found for the generating function PN (z) = TrGS

�

zN f
�

of the ground state multiplicity for the M1 model (with OBC) on the N -site zig-zag ladder.
Unlike in the Witten index Eqs. (6),(8), where the trace is evaluated over the whole Hilbert
space, here the trace is taken only over the subspace spanned by the ground states. It turns
out that the generating function satisfies the recursion PN (z) = zPN−4 + zPN−5 and a general
formula can be found and reads

PN (z) =
∑

f ∈Z

��

f
N − 4 f + 2

�

+

�

f
N − 4 f + 1

�

+

�

f
N − 4 f

��

z f . (10)

We note that P5(z) = z, i.e. there is a single ground state for N = 5 and OBC, in agreement with
the explicit example discussed above, cf. Eqs. (8) and (9). The formula (10) reveals a massive
(extensive) degeneracy of E = 0 ground states at the supersymmetric point, at densities in the
interval 1/5≤ N f /N ≤ 1/4. Their total number grows like 1.167N [35,36]. This clearly raises
the question of the phase diagram in the vicinity of the supersymmetric point, which should
be such that ground states at densities in the given interval all meet at a highly singular point
in phase space.

2.1 Mapping to spins

Before analyzing the phase diagram we present a reformulation, first explored in [35], of the
model (with OBC) in terms of unconstrained spin-1

2 degrees of freedom. Allowed configura-
tions of the zig-zag ladder model are sequences of 0 and 1 with each 1 accompanied by at least
two 0 on both sides. Now add ‘0’ at ficticious sites i = 0 and i = N + 1 and then substitute
010→↑ and then 0→↓ for the remaining 0. This gives a sequence of N↑ = N f up spins and
N↓ = N + 2 − 3N f down spins on a chain of length Ns = N↑ + N↓ = N + 2 − 2N f . Note that
the number of spin degrees of freedom depends on the density of the fermions. Translating

5
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various terms in HSUSY,OBC into the spin language gives

HSUSY,OBC
spin = Ns − 2− 2

Ns
∑

j=1

1+σz
j+1

2

+
Ns−1
∑

j=1

(σ+j σ
−
j+1 +σ

−
i σ
+
j+1) +

Ns−2
∑

j=1

(σ+j
1−σz

j+1

2
σ−j+2 +σ

−
j

1−σz
j+1

2
σ+j+2)

+2
Ns−1
∑

j=1

1+σz
j

2

1+σz
j+1

2
+

Ns−2
∑

j=1

1+σz
j

2

1−σz
j+1

2

1+σz
j+2

2

+2
1+σz

1

2
+

1−σz
1

2

1+σz
2

2
+

1+σz
Ns−1

2

1−σz
N

2
+ 2

1+σz
N

2
. (11)

We remark that spin Hamiltonians with tri-linear coupling similar to those in HSUSY,OBC
spin have

been proposed in the context of superconducting circuits [37] and recently realized experi-
mentally [38]. It would be thus interesting to investigate whether one could engineer and
quantum simulate the specific Hamiltonian (11) in these systems.

3 Phase diagram

3.1 Overview

We explore the vicinity of the supersymmetric point by tuning the coupling constants V3 and
V4 of the Hamiltonian Eq. (4) (with t = 1, U = −1). Our main results are summarized in the
phase diagram in Fig. 2. It contains three gapped density-wave phases with periodicity three,
four and five; and a critical Luttinger liquid phase with the density not frozen to a specific value
but continuously tuned by two coupling constants. The latter results into incommensurate
quasi-long-range order, known in the literature as a floating phase [39]. The supersymmetric
point emerges as a multicritical point between the gapped period-4 and period-5 phases and
the critical floating phase with the density range 1/5< N f /N < 1/4.

In the period-3 phase every third site is occupied by a fermion while the hopping is com-
pletely suppressed due to local constraints. Using a notation (ni , . . . , ni+p) for a repeated pat-
tern of period p of particle densities, the resulting three ground states are classical of the form
(1,0,0) (and (0,1,0) and (0,0,1) respectively) and are decoupled in the sense they are invari-
ant under the action not only of the full Hamiltonian Eq. (4) but also of its individual terms.
They also span (in the thermodynamic limit) the N f /N = 1/3 sector and are thus decoupled
from each other and the rest of the Hilbert space. An example of the local density profile in
the period-3 phase is presented in Fig. 3(a). In the period-5 phase the density is fixed to 1/5.
Here, every fifth site is occupied, however, by contrast to the period-3 phase, quantum fluc-
tuations are not suppressed. As a result the density profile is different from (1,0, 0,0, 0), as
shown in Fig. 3(c). The density of the period-4 phase is fixed to 1/4. The density profile is very
different from the previous two cases: single particles resonate between two nearest-neighbor
sites followed by two empty sites (see Fig. 3(b)). Based on the numerical results, we have
phenomenologically established that the valence-bond solid type pattern (0.5,0.5, 0,0) is an
exact ground state along a line V3 = V4 for 0.8® V3, V4 ≤ 1, see the dash-dotted line in Fig. 2.

The remaining part of the phase diagram is occupied by a floating phase. The density of
the ground state varies inside the phase and is controlled by both coupling constants V3 and
V4. In systems with OBC open edges act as a local impurity and induce Friedel oscillations.
In turn, the latter lead to standing density waves, a few examples of which are provided in
Fig. 3(d)-(f). Below we provide further details on the phases and phase boundaries.

6
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pe
ri

od
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period-4

SUSY point

Figure 2: Phase diagram of constrained fermion model Eq. (4) on a zig-zag ladder as a
function of third and fourth nearest neighbor interactions V3, V4. The supersymmetric
point (red dot) is a multicritical point between period-4 (yellow) and period-5 (blue)
gapped phases and the floating phase. At small V3 and V4 sufficiently positive, the
system is in the classical period-3 phase. Dotted lines are equal-density lines inside
the floating phase. The dash-dotted line marks the location where the valence-bond
solid type pattern (0.5,0.5, 0,0) is the exact ground state. The dashed green lines
indicate the estimated boundaries of period-3 phase delimited by the leading insta-
bilities given by the three single and double defects V d,d,d

3 and V 2d,2d,2d
3 , cf. Sec. 3.3.

3.2 Floating phase

In the thermodynamic limit the density changes continuously inside the floating phase. We
extract the density by averaging the local density over a number of sites as

n̄= 〈ni〉=
imax
∑

i=imin

ni

imax − imin + 1
. (12)

The interval [imin, imax] over which we average always lies between two local maxima, as
indicated by the red arrows in Fig. 3(d)-(f). This way, even if the wave-vector q is close to
a commensurate value (which is in particular relevant in the vicinity of the periodic density-
wave phases, cf. also Figs. 4,7,8,11), we obtain meaningful results. To reduce the edge effects
we start with the maxima located at a distance of 20-80 sites from the edges. In Fig. 4 we
demonstrate how the density changes across the floating phase for two selected cuts across
the phase diagram. In Fig. 4(a) the cut at V4 = 0.8 goes through the period-4 phase reflected
in a pronounced plateau at 1/4 filling. Fig. 4(b) shows how the density changes between the
period-3 and period-5 phases in the upper part of the phase diagram along V4 = 2. By mapping
the density profiles throughout the phase diagram we extract equal-density lines shown in the
phase diagram in Fig.2.
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Figure 3: Local density profiles inside (a) period-3, (b) period-4, (c) period-5, and
(d)-(f) floating phases. All presented profiles are computed for N = 361. For clarity,
panels (a)-(c) show only the central part of the profile. In (d)-(f) the average density
has been calculated between the peaks marked by the red arrows.
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Figure 4: Average density n̄ as a function of coupling constant V3 along (a) V4 = 0.8
and (b) V4 = 2. The density changes continuously inside the floating phase. Finite-
size corrections are reflected in errorbars and are equal to 1/N . (a) A plateau at 1/4
corresponds to the ordered period-4 phase. In (b) the density interpolates between
the period-3 and period-5 phases through the floating phase. The blue and red data
points correspond to system sizes N = 361, N = 601 respectively (and analogously
in subsequent figures).

Surprisingly, part of the floating phase with the density range 1/5< n̄< 1/4 collapses into
the supersymmetric point in the “wedge” delimited by the period-4 and period-5 phases, cf.
Fig. 2, and re-emerges on the other side of the wedge, within the same density range. The
observed collapse leads to an extensive degeneracy of the ground states within the specified
density range, resulting in the superfrustration at the supersymmetric point.

The floating phase is a critical phase in the Luttinger liquid universality class. We check this
by extracting the central charge from the scaling of the entanglement entropy with the block
size in open systems. According to conformal field theory (CFT), the entanglement entropy
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Figure 5: Scaling of entanglement entropy S(l) as a function of conformal distance
d(l) = 2N

π sin
�

πl
N

�

at various points inside the floating phase with 1 � l � N the
size of a sub-block of consecutive ladder sites. The numerical values of the central
charge extracted from the slope of the entanglement entropy are in good agreement
with the theory prediction c = 1 for a Luttinger liquid.

scales as [40]
SN (l) =

c
6

ln d(l) + s1 + log g , (13)

where d(l) is the conformal distance d(l) = 2N
π sin

�

πl
N

�

, l is a size of the sub-block (1� l � N)
and s1 and g are non-universal. Friedel oscillations of the local density cause significant oscil-
lations in the entanglement entropy profile. Nevertheless, when the system size is sufficiently
large to accommodate many oscillations they can be safely averaged out, for example, by fit-
ting the local maxima as shown in Fig. 5. The obtained values for the central charge at various
points in the floating phase agree within 5% with the CFT prediction c = 1 for a Luttinger
liquid.

We close this section by commenting on the criticality of ground states at the supersym-
metric point. The issue was analysed in [23, 35], by studying the response of the model with
PBC to a twist in the boundary conditions. The conclusion was that, while many of the super-
symmetric ground states are gapped, some show critical behavior compatible with the number
k unitary minimal model of N = 2 superconformal field theory, with central charge ck =

3k
k+2 ,

with k even. Our present analysis is complementary to this approach, but it does suggest
that, at the supersymmetric point, critical states exist at all (rational) fillings between 1/5 and
1/4. Such states can be obtained by following the floating phase state at given filling into the
supersymmetric point.

3.3 Boundary of the period-3 phase

An estimate of the location of the boundary of the period-3 phase can be obtained via the
following argument. Given the exclusion rule, the only possible density pattern at filling
N f /N = 1/3 is of the form ..100100... Let us now imagine taking one particle out N f → N f −1.
The resulting ‘size 5’ hole can split into three independent ‘size 3’ holes, that is to say, defect
patterns d = ..10010001001.., where we have highlighted the position of the defect in red.
Let us further assume PBC and denote the fully packed state and the state with the defects d
as |ψ〉 = |..100100..〉 and |ψd,d,d〉 = |..d..d..d..〉, respectively. We then find for the potential
energy difference ∆V = 〈ψd,d,d |H(t = 0)|ψd,d,d〉 − 〈ψ|H(t = 0)|ψ〉 = 4 − 8V3 + 3V4, where
H(t = 0) is the Hamiltonian Eq. (4) evaluated at zero hopping.

Furthermore, each of the defects d has a unit-strength hopping amplitude, giving a kinetic
energy of ∆K = −2 per defect in the large-N limit. Assuming that the defects are far apart
and independent gives as energy difference between the defect and the fully packed states

∆Ed,d,d = 3∆K +∆V = −8V3 + 3V4 − 2 . (14)
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Setting ∆Ed,d,d = 0 provides the estimated phase boundary, which corresponds to the line
V d,d,d

3 = (3V4 − 2)/8.
Repeating the exercise for a combination of a ‘size 4’ hole (double defect 2d) plus a defect

d gives
∆E2d,d = 4− 6V3 + V4 − 4= −6V3 + V4 , (15)

where we used that in leading order each of the holes can hop with unit amplitude. This gives
as phase boundary V 2d,d

3 = V4
6 . The relative potential energy for a size-5 hole (triple defect

3d) is
∆E3d = 4− 4V3 . (16)

We note that the triple defect does not involve a direct hopping term, i.e. hopping between two
3d defects. More specifically, it is connected by the kinetic term to adjacent pairs of defects of
the form 2d, d or d, 2d. Such terms represent corrections to our simplified treatment, where
we only consider defects which are far apart from each other. The relative potential energy
∆E3d crosses zero at the line V 3d

3 = 1. Taken together, the three lines V d,d,d
3 , V 2d,d

3 and V 3d
3

provide a first approximation to the boundary of the period-3 phase.
Interestingly, we find that for V4 sufficiently positive, the leading instability of the fully

packed period-3 phase is to a configuration with N f =
N
3 − 2 particles. Assuming that the 6

resulting defects group as 2d, 2d, 2d, we find a potential energy difference ∆V = 8− 10V3.
The nearest neighbour hopping terms in H of the bare particles, cf. Fig. 1, lead to unit-strength
hopping of the double defects 2d, so that the estimated energy difference is,

∆E2d,2d,2d = 2− 10V3 , (17)

putting the phase boundary at V 2d,2d,2d
3 = 1/5.

The instabilities V d,d,d
3 and V 2d,2d,2d

3 meet at the corner (V3, V4) = (1/5, 6/5), where, in
our simple reasoning, they are degenerate with other patterns such as 2d, d and 2d, 2d, d, d.
Together these two lines establish an estimated phase boundary of the period-3 phase, which
agrees well with the numerical findings, cf. the dashed green lines in Fig. 2.

Clearly, our reasoning here is not exact as (i) there are finite size corrections, (ii) there is
a dependence on boundary conditions (open vs periodic) and (iii) the actual lowest energy
states at N f =

N
3 − 1 and N f =

N
3 − 2 are hybridizations of the single and double defect

states described in the above. Nevertheless, the agreement of V d,d,d
3 and V 2d,2d,2d

3 with the
numerically found phase boundaries is excellent for sufficiently large system sizes.

In order to get further insight into the nature of the transition out of the period-3 phase we
look at the energy level crossings in the immediate vicinity of the phase boundary. Because the
total number of fermions is a conserved quantum number, on a finite size system we expect to
see a set of explicit level crossings between the fully-packed period-3 state, and the states with
one, two etc. particles less. We perform the simulation on systems with OBC and N = 31 and
N = 49. OBC favors first and last sites to be occupied by the fermion, thus the fully packed
period-3 state has in total N f =

N−1
3 + 1 fermions. We look at the level crossing between

this state and the states with one and two particles less. Based on the results presented in
Fig. 6 we conclude that the single particle instability is a relevant excitation out of period-3
phase for V4 ® 1.2, while for V4 ¦ 1.2 the system is driven out of the period-3 phase by the
double-fermion instability. In section 3.5 we find that this change of behaviour is connected to
a doubling of the dominant density profile wave-vector q in the floating phase. In the vicinity
of the period-3 phase, it changes from q = 2πN f /N for V4 ® 1.2 to q = 4πN f /N for V4 ¦ 1.2.

The commensurate-incommensurate transition between the ordered and the floating
phases is expected to be in the Pokrovsky-Talapov universality class [41]. In Fig. 7 we show
how density changes in the vicinity of the period-3 phase boundary. We fit our DMRG data
with A|V3 − V c

3 |
β̄ , where β̄ = 1/2 is a Pokrovsky-Talapov critical exponent, and A and V c

3 are
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Figure 6: Crossings of the ground state energy for systems with OBC in the vicinity
of the period-3 phase boundary and N = 31 (top) and N = 49 (bottom) between
the fully packed state with N f =

N−1
3 + 1 (green), one fermion less (blue) and two

fermions less (red). The interval of the single-particle instability δV3 is indicated on
panels (a)-(e) and is decreasing with N , indicating its finite-size nature. Upon in-
creasing V3 for V4 = 1 (a)-(b) the ground state changes from the fully packed state to
a state with one fermion less, then with two fermions less etc. However, starting from
V4 ≈ 1.2 and above the width of the single-fermion instability vanishes rapidly with
the system size and for sufficiently large system the period-3 state changes directly
into a state with two fermions less. For V4 = 1.4 we do not observe a single-fermion
instability as a ground state for N = 49 and larger; for V4 = 2 a single-fermion insta-
bility does not show up for systems as small as N = 31.
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Figure 7: Average density n̄ as a function of coupling constant V3 along (a) an oblique
cut V4 = 1 − V3, and two horizontal cuts along (b) V4 = 1.2 and (c) V4 = 2. Solid
lines are results of the fit∝ |V3 − V c

3 |
β̄ with critical value V c

3 as a fitting parameter
and Pokrovsky-Talapov critical exponent β̄ = 1/2.

the two fitting parameters. Agreement with the field-theory prediction is remarkable for all
cuts, below and above V4 = 1.2, indicating that the double-fermion instability discussed above
does not change the nature of the transition in the thermodynamic limit.

3.4 Period-4 phase

By contrast to the period-3 and period-5 phases, where (up to quantum fluctuations) a fermion
occupies a single site followed then by 2 or 4 empty sites, the density profile of the period-4
phase is fundamentally different: the fermion resonates between two nearest-neighbor sites
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followed by two nearly empty sites. This state is reminiscent of a valence-bond solid (VBS)
state in quantum magnets.

Phenomenologically we have established that the pattern (0.5,0.5, 0,0) corresponds to an
(approximate) ground state along a line V3 = V4 starting from V3, V4 ≈ 0.8 and up to the
supersymmetric point V3, V4 = 1, cf. the dash-dotted line in Fig. 2. At the supersymmetric
point, it is easily checked that state (assuming N = 4N f − 2 and OBC)

1

2N f /2
(c†

1 − c†
2)(c

†
5 − c†

6) . . . (c†
N−1 − c†

N )|0〉 (18)

is annihilated by both Q and Q† and is thus a E = 0 supersymmetric ground state of HSUSY,OBC

[35]. We have observed that within the period-4 phase, essentially the same VBS state survives
as ground state of H along the line V3 = V4 = a, 0.8® a < 1.

This is easiest established for periodic boundary conditions (PBC) and N = 4N f , where
the VBS state

1

2N f /2
(c†

1 − c†
2)(c

†
5 − c†

6) . . . (c†
N−3 − c†

N−2)|0〉 (19)

(together with three similar states obtained by translating (19) over 1, 2 or 3 sites) is an exact
eigenstate of H with energy E = −N − N f (a− 1).

For OBC the situation is more subtle. Away from the edges the VBS pattern (0.5, 0.5,0, 0)
is again favored by the Hamiltonian with V3 = V4 = a, 0.8 ® a < 1, but there are corrections
near the edges. In addition, for N odd (N = 4N f ± 1), the VBS pattern requires a breaking
of the left-right reflection symmetry i ↔ N − i of the ground state (we indeed observe such
symmetry breaking produced in our numerical DMRG procedure). For N even (N = 4N f −σ,
σ = 0,2), the finite size corrections to the PBC ground state can be understood in two ways:
either one has to deform the Hamiltonian H at the boundaries to make the VBS state [such as
(18)] an eigenstate or one has to modify the state itself to be an eigenstate of H. Assuming
N = 4N f − 2 for specificity, in the former case if we modify the Hamiltonian into Ha, defined
as

Ha = H + a(2n1 + n2 + nN−1 + 2nN ) , (20)

the VBS state eq. (18) is once again an exact eigenstate, with E = −N + (N f + 2)(a− 1), and
it is a ground state for a < 1 close enough to a = 1. In the latter case, considering H instead,
the VBS state is modified near the edges. For example, for N = 10, N f = 3, and V3 = V4 = 0.9,
the ground state has densities

(n1, n2, . . . , nN ) =

(0.7323, 0.2605,0.0072, 0.0007,0.4993, 0.4993,0.0007,0.0072, 0.2605,0.7323) (21)

recovering thus the pattern ≈ (0.5, 0.5,0,0) in the bulk.
As shown in Fig. 8(b) the exact line terminates at V3 = V4 ≈ 0.8 with the Pokrovsky-Talapov

transition into the floating phase with density N f /N > 1/4. The density scales towards the
transition with the Pokrovsky-Talapov critical exponent β̄ = 1/2. The location of the critical
point is affected by noticeable finite-size effects. The transition across the remaining two sides
of the period-4 phase is into the floating phase with lower density N f /N < 1/4. In Fig.8(a)
we show how the density scales approaching the period-4 phase from above (larger V4). The
results suggest that the transition remains in the Pokrovsky-Talapov universality class.

3.5 Period-5 phase

The density profile in the period-5 phase has a characteristic pattern with peaks every 5 sites
and small but non-zero values in between. Below we argue that the change in the local density
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Figure 8: Average density n̄ as a function of coupling constant V3,4 (a) along the
vertical cut at V3 = 0.85 and (b) along the oblique cut V4 = V3. Solid lines are results
of the fit ∝ |V3 − V c

3 |
β̄ with critical value V c

3 as a fitting parameter and Pokrovsky-
Talapov critical exponent β̄ = 1/2.
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Figure 9: Local density profile for three different points inside the period-5 phase.
Change of the dominant wave-vector from q = 2π/5 (V4 = 2, V3 = 1.6) to q = 4π/5
(V4 = 2, V3 = 1.2) is reflected with the pronounced change of curvature of the local
density between the main period-5 peaks.

curve of the four quasi-unoccupied sites from concave to convex (see Fig. 9) is due to the
dominant density wave-vector q changing its value from 2π/5 to 4π/5. The observed doubling
of the wave-vector can be understood from the following analysis of a finite size system with
PBC, where we add a symmetry breaking term that induces the density profile.

As an example, consider the ladder with PBC, 15 sites, 3 particles. Starting at the supersym-
metric point V3 = 1, V4 = 1, we observe 7 degenerate E = 0 ground states, with eigenvalues
t l of the translation operator given by

t l = exp(l
2πi
15
) , l = 0,±3,±5,±6 . (22)

In each of these states the density profile is flat at value 1/5. We then break the symmetry
(both the supersymmetry and the translational invariance) by adding a term

Hε = −ε(n1 + n6 + n11) . (23)

Due to the strict ground state degeneracy, any 0 < ε � 1 immediately breaks the symmetry
and leads to a ground state with characteristic period-5 density profile. This same pattern
arises in the setting with OBC for large enough system sizes.

The qualitative form of the fluctuations in the density profile after breaking the symmetry
can be understood as follows. The perturbation away from the supersymmetric point breaks
the ground state degeneracy. For example, it turns out that V3 = 1.2, V4 = 2 gives a pair
of ground states with l = ±3, while V3 = 1.6, V4 = 1.6 has two ground states with l = ±6.
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Figure 10: Phase diagram of Fig. 2 with indicated region (magenta), where the
dominant ground state density wave vector q > 2π/3. Dash-dotted lines indicate the
two cuts along which we vary the on-site potential U as presented in Fig.12

Turning on ε leads to a ground state that is a superposition of states with all five momenta
satisfying t5

l = 1, but we observe from the numerical solution that the convexity of the density
profile follows the pattern at ε= 0.

For V3 = 1.2, V4 = 2, among the states with l = ±3, the symmetry breaking term favors
the following combination of these states

|v3〉=

√

√2
5

4
∑

i=1

cos(i
2π
5
)|i, i + 5, i + 10〉 , (24)

which also provides the leading contribution to the density profile

ni = 〈v3|c
†
i ci|v3〉=

2
5

cos(i
2π
5
)2 =

1
5
[1+ cos(i

4π
5
)] , (25)

with q-vector of 4π/5. For V3 = 1.6, V4 = 1.6, the analogous analysis with l = ±6 leads to
a density pattern with q-vector 8π/5, which is equivalent to 2π/5. This explains the change
of the behaviour of the local profiles between the dominant density peaks observed in Fig. 9
from concave to convex.

Scanning the density profiles in the period-5 phase, we find that the q-vector is always 2π/5
or 4π/5 depending on V3 and V4. This pattern extends to the rest of the phase diagram, cf. Fig.
10: for low enough values of V4 the q-vector equals 2πn with n = N f /N the fermion density,
but for higher values of V4 we find double that value, q = 4πn. Interestingly, the line separating
the two behaviours connects to the period-3 phase at the cusp point (V3 = 1/5, V4 = 6/5)
where the leading instability out of the period-3 phase changes from 1-particle to a 2-particle
instability, as discussed in section 3.3.

In analogy with the commensurate-incommensurate transitions out of the period-3 and
period-4 phases, the critical line between the floating phase and the period-5 phase is also
expected to be in the Pokrovsky-Talapov universality class. Fig. 11 depicts how the density
in the floating phase scales towards the transition. For V4 = 1.6 we show in Fig.11(a) that
the density approaches its commensurate value 1/5 with critical exponent consistent with the
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Figure 11: Scaling of the average density n̄ inside the floating phase upon approach-
ing the period-5 phase (a) along the horizontal cut at V4 = 1.6, and (b) along the
vertical cut at V3 = 1.6. Solid (dashed) lines are results of the fit ∝ |V3,4 − V c

3,4|
β̄

with fixed (fitted) value of the critical exponent β̄ .

field-theory prediction β̄ = 1/2. We extract an "effective" critical exponent by including β̄
in the set of fitting parameters. The obtained value β̄ ≈ 0.62 agrees within 25% with the
Pokrovsky-Talapov value. For V3 = 1.6 presented in Fig.11(b) the computed critical exponent
β̄ ≈ 0.93 differs significantly from the theoretical expectation. Likely, this is because the
presented data points are still too far from the transition to resolve the correct critical behavior.
This is supported by the fact that the density in the immediate vicinity of the transition shows
fast decrease down to 1/5 with an increasing system size, consistent with the shift of the
critical value V c

4 towards the smaller values and followed by the decrease of an effective critical
exponent β̄ . Unfortunately, accurate resolution of the Pokrovsky-Talapov transition in these
two cases would require an access to much larger system sizes inside the floating phase which
is currently beyond the limitation of our computing capacity.

3.6 Changing the chemical potential

In order to make the problem tractable, so far we have been focusing at a particular cut of the
phase space of the Hamiltonian (4) at a chemical potential U = −1. It is thus interesting to
investigate the ground state properties where also the chemical potential is varied. To this end
Fig. 12 shows the situation along two cuts in the V3 − V4 plane, namely for V4 = 1 (Fig. 12a)
and V4 = 2V3−1 (Fig. 12b). Both cuts are also indicated as dash-dotted lines in Fig. 10, where
the former crosses the supersymmetric point from and to a floating phase, while the latter
from a crystalline period-4 to a period-5 phase. It is apparent from the results in Fig. 12 that
the multicritical nature of the supersymmetric point remains preserved in other planes in the
parameter space, namely that the period-4 and period-5 phases remain always separated by a
floating phase with varying particle density.

4 Conclusion

The model studied in the paper is a prototypical example of a model displaying superfrustra-
tion: an exponentially large degeneracy of supersymmetric ground states or, equivalently, a
ground state entropy that is extensive in the system size [21–23]. By studying a two-parameter
phase diagram in the vicinity of the supersymmetric point we find that it emerges as a multicrit-
ical point connecting period-4 and period-5 many-body ground states. Superfrustration arises
through the collapse of a floating phase, with intermediate densities, into the supersymmetric
point.
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Figure 12: Phase diagram of constrained fermion model Eq. (4) on a zig-zag ladder
as a function of third nearest neighbor interaction V3 and on-site potential U for (a)
V4 = 1 and (b) V4 = 2V3 − 1. The location of these cuts on a V3 − V4 plane is shown
with the dash-dotted lines in Fig.10. These two phase diagrams are extracted with
N = 201 and fixed boundary conditions with the edge sites occupied.

It would be extremely interesting to generalize our conclusion beyond the models that
are supersymmetric by construction. This can be achieved, for example, by weakening the
blockade. Both gapped phases as well as the floating phase are expected to survive in the soft-
blockade regime and there is no immediate argument that would prevent the multicritical point
to appear. It would be thus interesting to investigate how the properties such as the number of
the ground states or the supersymmetric nature of this multicritical point get modified when
softening the blockade.

In light of our results, it might be wise to look further into the surroundings of the super-
conformal points in other systems, for instance, in chains of SU(2)k anyons [42]. In particular,
it would be interesting to study what will happen to the superconformal critical point separat-
ing Z2 phase from the Haldane phase in the presence of perturbations that breaks translation
or topological symmetry. It would also be interesting to investigate whether various Zn phases
can be connected via a floating phase.

The zig-zag ladder studied here is a special example of a 2D square lattice with toroidal
boundary conditions (with ground state degeneracies exponential in the linear dimension of
the systems). Other 2D grids, such as triangular, hexagonal or kagome, have ground state
degeneracies that are exponential in the number of lattice sites. It would be most interesting
to extend the analysis reported here to these 2D systems. Keeping the width of these 2D lattices
sufficiently small the problem can be addressed with constrained DMRG adjusted to satisfy the
blockade on a selected geometry. The nature of the ground states, however, can be addressed
directly in the thermodynamic limit by means of constrained infinite projected entangled pair
states [43–45]. In either case, an extensive degeneracy has to be lifted before the system can
be efficiently simulated with tensor networks. The strategy proposed in this paper - to explore
the vicinity of the supersymmetric point and how various phases fuse into it - seems to provide
a good solution to this technical challenge.
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A Constrained DMRG

Explicit next-nearest-neighbor blockade implies that the total dimension of the Hilbert space
grows with the length of the chain as H(N) ∝ 1.466N [34] which is much slower than
H(N)∝ 2N for an unconstrained model of spin-less fermions. In order to fully profit from a
restricted Hilbert space of constrained fermions, the next-nearest-neighbor blockade has been
explicitly encoded into DMRG. Here we briefly recap the main set of implementation details.

First, we perform a rigorous mapping onto an effective model that spans the local Hilbert
space over three consecutive sites on the original lattice as shown in Fig. 13(b). Empty cir-
cles indicate original local degrees of freedom - empty l1〉 or occupied l2〉. Green and blue
circles corresponds to the left and right normalized MPS tensors. By spanning local degrees
of freedom over three sites (dotted lines) the local Hilbert space increases from two states |li〉
sketched in Fig. 13(a) to four states |hi〉 sketched in Fig. 13(c). States with two and more occu-
pied sites are forbidden by the constraint. The new local Hilbert space |hi〉 corresponds to the
physical leg of the local tensor shown as a vertical solid line in Fig. 13(b). From the Fig. 13(b)
it is obvious that any of the two consecutive tensors have a pair of common (or shared) sites.
Three possible states of these two sites can be used as quantum labels (00), (10) and (01) for
auxiliary legs that naturally create a block-diagonal structure of local tensors. The latter dras-
tically reduces the computational cost of simulations. In the bulk, quantum labels of the left
environment are changing according to the fusion graph shown in Fig. 13(d). Fusion graph
can be interpreted in the following way: to the chain that ends with two empty sites on the
right and therefore labeled by (00) on the right side of the chain one can add either an occu-
pied site that would corresponds to the local state |h2〉 and change the label of the chain to
(01), or one can add another empty site that corresponds to the local Hilbert space |h1〉 and
does not change the label (loop on the top of the fusion graph); if the chain ends with an oc-
cupied site it is labeled by (01) and only an empty site with |h3〉 can be added on its right side,
in this case the label changes to (10); finally, if the chain ends with an occupied site followed
by an empty site it is labeled with (10), due to two-site blockade one can add only empty site
next to it that corresponds to |h4〉 and the new label will be (00). For the right environment,
i.e. when we add sites on the left side of the chain, the direction of the arrows in the fusion
graph has to be reversed. An example of the label assignment on a pair of consecutive tensors
is provided in Fig. 13(e).

At the next step, we have to write down the Hamiltonian Eq. (4) in terms of local matrix
product operators (see e.g. Ref. [32] for the review on the MPO approach). For this one has to
rewrite the spin-less fermion model given by Eq.4 in terms of the new local variables |hi〉. For
example, the local occupation number operator ni can be written in the new local Hilbert space
as a 4×4 matrix ñi with the only non-zero element ñi(3,3) = 1.The interaction terms 2V3nini+3
and V4nini+4 are transformed into two- and three-body terms 2V3 f̃1 f̃2 and V4 f̃1 f̃3 f̃2 corre-
spondingly, where each of the f̃ -matrix has only one non-zero entry: f̃1(4,4) = 1, f̃2(2, 2) = 1,
and f̃3(1,1) = 1.

Finally the constrained nearest- and next-nearest neighbor hopping terms transformed
into t ã b̃c̃ d̃ + H.c. and t ãõp̃q̃d̃ + H.c., where the only non-zero entries of the matrices are:
ã(2, 1) = 1, b̃(3,2) = 1, c̃(4, 3) = 1, d̃(1, 4) = 1, õ(3,1) = 1, p̃(4,2) = 1, and q̃(1,3) = 1.
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Figure 13: (a) Local Hilbert space of the original model |li〉. The open (filled) circle
stands for an empty (occupied) site. (b) Rigorous mapping onto a model with a local
Hilbert space of the MPS (blue and green tensors) spanned over three consecutive
sites (empty circles) that consist of four states sketched in (c). These four states
form physical bond (vertical lines) of local tensors (blue and green circles), with
are contracted with each other via auxiliary bonds (horizontal lines). (d) Fusion
graph for the recursive construction of the left environment (green tensors in (b));
for the right environment (blue tensors in (b)) the direction of the arrows should be
inverted. (e) Example of the label assignment on two consecutive tensors written for
the selected state.

With these definitions, the MPO in the bulk takes the following form:
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, (26)

where the dots mark zero entries of the tensor. Note that all entries are 4 × 4 matrices, so
resulting MPO is a rank-4 tensor with dimensions 4 × 4 × 14 × 14. Close to the edges one
has to carefully modify the MPO to properly encode the boundary terms. This requires the
definition of local operators slightly different from those used in the bulk. Further details on
constrained DMRG can be found in Refs. [33,34].
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