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SUMMARY

With the development of more advanced and complex aircraft, new fault modes, which
have never been encountered before, may occur during flight. These faults can be dif-
ficult to detect using existing onboard monitoring systems, harming aviation safety. To
mitigate potential hazardous consequences, Fault-Tolerant Control (FTC) systems have
been proposed to enhance aircraft safety in case unknown faults occur.

Generally speaking, two types of FTC systems exist: Active Fault-Tolerant Control
(AFTC) systems and Passive Fault-Tolerant Control (PFTC) systems. The key difference
between these two systems is whether the system includes a capability to detect faults
and provide fault information to the FTC system, or not. This capability is referred to
as Fault Detection and Diagnosis (FDD). Because PFTC systems do not include fault de-
tection they can only deal with limited fault types and have difficulties in dealing with
sensor faults. In this thesis active systems are considered, including FDD, which are de-
signed to deal with a great variety of fault types, including sensor faults.

Current onboard monitoring systems available to cope with sensor faults are primar-
ily based on establishing redundancy in the physical hardware, and then perform statis-
tical consistency checks among the set of similar sensors. These checking schemes can
fail, however, when unexpected faults occur that were never encountered before and for
which the scheme has not been designed. This motivates the development of analytical
redundancy, which uses mathematical models of the aircraft.

Analytical redundancy differs from hardware redundancy as it replaces the set of
physical sensors with mathematical models. Combining these mathematical models
with the measured inputs and outputs to the system, methods based on analytical re-
dundancy then check whether faults occur in the inputs, outputs or the system itself. An
additional advantage is that it reduces weight, cost and volume as compared to hardware
redundancy. This is beneficial especially for small Unmanned Aerial Vehicles (UAVs)
such as quadrotors or micro aerial vehicles.

The performance of analytical redundancy can be significantly degraded by model
uncertainties and disturbances. Disturbances include external disturbances such as
wind and turbulence, and internal disturbances such as noise. In addition, most existing
FDD approaches are based on the aerodynamic model of the aircraft. To compute the
state of the aircraft such as the translational and rotational velocities, the aerodynamic
forces and moments are required. The aerodynamic forces and moments are calculated
based on the stability derivatives and control derivatives. These derivatives vary accord-
ing to the flight conditions depending on variables such as dynamic pressure and Mach
number. Although computational fluid dynamics, wind tunnel tests and extensive flight
tests are performed to obtain these derivatives, their accuracy is limited, which leads to
model uncertainties. Due to the model uncertainties, the calculation of the aerodynamic
forces and moments will not be correct, which results in incorrect translational and rota-
tional velocities. In addition, the disturbances can also generate additional aerodynamic
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viii SUMMARY

forces and moments which affect the calculation of the forces and moments. Overall, the
performance of the analytical redundancy is limited.

Model uncertainties and disturbances also affect the performance of the FTC sys-
tem. The FTC system contains a reconfigurable controller, which is usually designed
based on aircraft models that are linearized around different operating points. Since the
aircraft model is nonlinear, gain scheduling is required. The design of gain-scheduling
linear controllers for the entire aircraft flight envelope is time-consuming, however, and
nonlinear control approaches have been proposed to solve this problem.

Nonlinear Dynamic Inversion (NDI) and Backstepping (BS) are model inversion-
based control approaches which can deal with nonlinearities in the system and remove
the need for gain scheduling. However, since these approaches are also based on the
aircraft model, uncertainties in the model and unknown disturbances will still influence
the performance of the controllers. The way in which model uncertainties and distur-
bances affect the performance of the controllers is very similar to the influence on the
FDD system. That is, the calculated aircraft velocities and angular rates will be wrong
when there are model uncertainties in the calculation of the aerodynamic forces and
moments.

In literature, several control approaches have been proposed to deal with model un-
certainties such as NDI with online model identification. The core of these methods is
that the uncertain derivatives are identified online through parameter estimation. The
identified parameters are then fed back to the controller to reduce the influence of model
uncertainties. However, this approach typically requires excitation of the aircraft which
can be dangerous when faults occur. Adaptive Backstepping (ABS) is another type of
control method which can guarantee the stability of the system by updating the un-
known parameters through a parameter update law. However, the computational load
involved with ABS is intensive and the tuning of the parameter update laws can be te-
dious, especially when there are many unknown parameters.

The main research goal of this dissertation is to increase the robustness of FDD and
FTC approaches in the presence of aircraft model uncertainties and disturbances. The
following three research problems are addressed:

• How to increase the robustness of sensor FDD systems?

• How to increase the robustness of actuator FTC systems?

• How to achieve simultaneous sensor and actuator FTC?

The first question is addressed in two parts of the thesis: Part I and Part II. The con-
sidered sensor types in this research are the Inertial Measurement Unit (IMU) sensor and
the Air Data Sensor (ADS).

Part I aims to increase the robustness of sensor FDD systems with respect to model
uncertainties. First of all, an airspeed-based kinematic model (AS-KM) is used instead of
the aerodynamic model. In contrast to existing approaches which use the aerodynamic
model, here we calculate the aerodynamic forces directly through the measurements of
specific forces. This step significantly reduces the effects of model uncertainties encoun-
tered in existing techniques.
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Apart from the choice of the model that underlies the computations, advanced filter-
ing techniques are required to estimate both the state and the faults. A second advance-
ment of this thesis is that existing filtering techniques have been improved and several
novel advanced filters are proposed:

• A Selective-Reinitialization Multiple-Model Adaptive Estimation (SRMMAE) ap-
proach is proposed for the FDD. It introduces three novel Selective Reinitializa-
tion (SR) algorithms, which significantly improve the FDD performance of existing
Multiple-Model Adaptive Estimation (MMAE) approaches. The SRMMAE reduces
the number of false alarms, and also more quickly detects that faults have been
resolved as compared to conventional MMAE techniques.

• A novel Double-Model Adaptive Estimation (DMAE) approach is proposed. Al-
though the SRMMAE improves the performance of the MMAE, its computational
load is intensive as it requires a model set consisting of a number of models to rep-
resent different fault scenarios. Especially when it deals with simultaneous faults,
the number of models in the model set can be large. The proposed DMAE ap-
proach reduces this number to two, even when it deals with simultaneous faults.
The SR algorithms developed before are used to maintain satisfactory performance
of the SRMMAE.

• A number of other state-of-the-art filtering approaches are improved. For instance,
to reduce the sensitivity of the Optimal Two-Stage Extended Kalman Filter (OT-
SEKF) to initial conditions, an Iterated Optimal Two-Stage Extended Kalman Filter
(IOTSEKF) is proposed in this thesis. To reduce the sensitivity of the Robust Three-
Step Unscented Kalman Filter (RTS-UKF) to initial condition errors, an Adaptive
Three-Step Unscented Kalman Filter (ATS-UKF) is proposed.

Finally, many of the proposed techniques have been successfully validated using real
flight test data. These data contain real-life model uncertainties and disturbances, which
are by definition unknown and which yield a good source to validate the performance of
the proposed approaches.

In Part II of the thesis a number of solutions are discussed to increase the robust-
ness of the FDD approaches with respect to external disturbances such as time-varying
wind and turbulence. First, when dealing with IMU sensor faults in the presence of dis-
turbances, a ground speed-based kinematic model (GS-KM) model is proposed as the
model for FDD. The AS-KM is not accurate when there are disturbances because the dis-
turbances are unknown. The performance of using the GS-KM for IMU sensor FDD is
compared to that of using the AS-KM, which demonstrates the advantage of using the
GS-KM. For the GS-KM, the ground velocity measurements are assumed to be fault-free
while for the AS-KM, the air velocity measurements are assumed to be fault-free.

Second, advanced filtering techniques are required to perform the state and fault es-
timation. For IMU sensor FDD, an IOTSEKF is proposed which is an iterated version
of the OTSEKF. However, its performance is degraded by a bad choice of the covari-
ance matrices. Therefore, an Adaptive Two-Stage Extended Kalman Filter (ATSEKF) is
proposed which adaptively updates the covariance matrices and improves the perfor-
mance of the IOTSEKF. Regarding ADS FDD in the presence of turbulence, the DMAE is
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extended so that it can handle the disturbances such as the turbulence. Finally, in or-
der to demonstrate the performance of the proposed approaches in the presence of dis-
turbances such as time-varying wind and turbulence, more flight tests were performed.
Aircraft response data in various flight conditions were recorded including the presence
of turbulence. The recorded flight test data are used to validate the performance of the
proposed approaches, which confirms their performance in the presence of external dis-
turbances.

In Part III of the thesis the second and third research questions are considered.
To increase the robustness of actuator FTC systems, the Incremental Nonlinear Dy-

namic Inversion (INDI) and Incremental Backstepping (IBS) approaches are proposed
as the reconfigurable controller. The INDI, which is able to deal with actuator faults,
is extended in its application. An aircraft trajectory controller is designed to follow the
trajectory references in the presence of actuator faults. Existing approaches require a
parameter update law design or model identification. Furthermore, an aerodynamic
model structure has to be designed. The idea of designing the controller is to design the
flight path control and angular rate control loops, which contain model uncertainties
due to unknown stability and control derivatives, using incremental control approach.
The other two loops, the position control and the attitude control loops, are designed
based on NDI approach since there are typically no uncertainties in these two loops.
The performance of the proposed controller is compared to existing approaches such as
the Nonlinear Dynamic Inversion with online Model Identification (NDI-MI). The vali-
dation results demonstrate that the proposed control structure can follow the trajectory
reference well, without designing a parameter update law or online model identifica-
tion. In addition, it does not require additional effort to design the aerodynamic model
structure.

To achieve simultaneous sensor and actuator FTC, this thesis proposes an FTC sys-
tem which consists of a sensor FDD system and a reconfigurable controller. State-of-
the-art sensor FDD approaches use information of the actuator, such as the commanded
or measured control surface deflections, which becomes problematic when the control
surfaces themselves have (partly) failed. Therefore, in this dissertation, the sensor FDD
is performed without using actuator information; actuator faults are dealt with by the re-
configurable controller. Through doing this, even in the presence of actuator faults, the
sensor FDD can still be performed, allowing for simultaneous sensor and actuator FTC.
The performance of the proposed FTC system is validated with different fault scenarios
where sensor and actuator faults happen at the same time.

Future studies on sensor FDD in the presence of more fault scenarios are recom-
mended. This can further demonstrate the performance of the proposed approaches to
deal with unknown fault types. Regarding further research on FTC systems, implementa-
tion on real aircraft (especially fixed wing aircraft) is recommended, to improve aviation
safety.
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Met de ontwikkeling van meer geavanceerde en complexere vliegtuigen kunnen nieuwe
fouten tegengekomen worden tijdens de vlucht, die nog niet eerder waargenomen zijn.
Deze nieuwe fouten kunnen moeilijk detecteerbaar zijn met de monitorende systemen
aan boord, met als gevolg dat deze fouten de veiligheid en betrouwbaarheid van en vlieg-
tuig in gevaar brengen. Om mogelijke gevaarlijke gevolgen te verminderen zijn foutto-
lerante besturingssystemen (FTC) voorgesteld om de veiligheid van het vliegtuig te ver-
groten wanneer onbekende fouten optreden.

In het algemeen kunnen FTC systemen ingedeeld worden in twee types: Actieve
fouttolerante besturingssystemen (AFTC) en passieve fouttolerante besturingssystemen
(PFTC). Het onderscheid tussen deze twee systemen wordt gemaakt door de aanwezig-
heid van een fout detectie en diagnose systeem (FDD) dat informatie over de fout aan
het FTC systeem kan geven. Omdat PFTC geen gebruik maakt van FDD kan PFTC slechts
overweg met een beperkt aantal types fouten. Het is voor PFTC bijvoorbeeld moeilijk om
met sensorfouten om te gaan. In dit proefschrift worden actieve systemen beschouwd,
inclusief FDD, die ontworpen zijn om met meer foutsoorten overweg te kunnen, waar-
onder ook sensorfouten.

Huidige systemen aan boord die beschikbaar zijn om met sensorfouten overweg te
gaan zijn primair gebaseerd op het creëren van redundantie in de hardware, om ver-
volgens statistische consistentietesten uit te voeren op de set van gelijke sensoren. Deze
vorm van sensorcontrole kan echter problemen ondervinden wanneer nieuwe fouttypes
voorkomen, aangezien de sensor controle niet ontworpen is om met onbekende fouten
om te gaan. Dit vormt de motivatie voor de ontwikkeling van een analytische sensorcon-
trole die gebruik maakt van een mathematisch model van het vliegtuig.

De analytische controle onderscheidt zich van de methode die gebruik maakt van
overtollige hardware door een set van sensoren te vervangen door mathematische mo-
dellen van het systeem. Door de invoer en uitvoer van het model te combineren kan de
analytische methode vaststellen of er fouten voorkomen in de invoer, in de uitvoer, of
in het systeemproces. Een bijkomend voordeel van de analytische methode is dat het
gewicht, volume en de kosten kleiner zijn dan bij de controle door middel van overtol-
lige hardware. Dit is in het bijzonder belangrijk voor kleine onbemande luchtvaartuigen
(UAV’s), zoals bijvoorbeeld quadrotors en micro-UAV’s.

De prestatie van de analytische methode kan significant verminderd worden door
onzekerheden in het model en door verstoringen. Verstoringen kunnen extern zijn, zo-
als wind en turbulentie, of intern, zoals meetruis. Bestaande FDD methodes maken
gebruik van het aerodynamische model van het vliegtuig. Om de toestandsvariabelen
van een vliegtuig, zoals de translatie- en rotatiesnelheden, te berekenen zijn de aerody-
namische krachten en momenten vereist. De aerodynamische krachten en momenten
worden berekend met behulp van de stabiliteits- en besturingsafgeleiden. Deze afgelei-
den zijn afhankelijk van onder andere de dynamische druk en het Mach getal en varië-
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ren daardoor met de vliegconditie. Computational Fluid Dynamics(CFD) programma’s,
windtunnel testen en testvluchten worden gebruikt om deze afgeleiden te bepalen. Ech-
ter is het moeilijk om deze afgeleiden met hoge nauwkeurigheid te bepalen, waardoor er
altijd een mate van modelonzekerheid is. Deze modelonzekerheden zorgen voor een in-
correcte berekening van de aerodynamische krachten en momenten, wat leidt tot incor-
recte berekening van de translatie- en rotatiesnelheden. Bijkomstig kunnen verstorin-
gen extra aerodynamische krachten en momenten genereren die consequenties hebben
voor de berekening van de krachten en momenten.

Modelonzekerheden en verstoringen hebben ook effect op de prestatie van FTC sys-
temen. Het FTC systeem bevat een herconfigureerbare regelaar, die in het algemeen ont-
worpen wordt op basis van het vliegtuigmodel dat gelineariseerd is voor verschillende
vliegcondities. Aangezien het vliegtuig niet lineair is, wordt een interpolatiemethode
toegepast op de parameters van de lineaire regelaars. Het bepalen van de parameters
voor de lineaire regelaars in alle mogelijke vliegcondities is tijdrovend. Om dit probleem
te verhelpen zijn niet-lineaire regelsystemen geïntroduceerd.

Niet-lineaire model inversie (NDI) en Backstepping (BS) zijn methodes, gebaseerd
op model inversie, die overweg kunnen met niet-lineaire modellen en het gebruik van de
interpolatie methode onnodig maken. Echter, aangezien deze methodes gebruik maken
van het model van het vliegtuig, zullen onzekerheden en verstoringen in dit model de
prestatie van het regelsysteem beïnvloeden. De manier waarop modelonzekerheden en
verstoringen de prestaties beïnvloeden is soortgelijk aan de invloed op het FDD systeem.
De berekende translatie- en rotatiesnelheden zijn incorrect wanneer er modelonzeker-
heden zitten in de berekening van de aerodynamische krachten en momenten.

In de literatuur zijn verschillende methodes voorgesteld die overweg kunnen met
modelonzekerheden, zoals bijvoorbeeld NDI met modelidentificatie. In de kern van
deze methode worden de onzekere afgeleiden tijdens de vlucht geschat door middel van
een parameter identificatiemethode. De geïdentificeerde parameters worden terugge-
voerd naar het regelsysteem om zo de invloed van modelonzekerheden te minimalise-
ren. Deze identificatiemethode vereist echter excitatie van het vliegtuig, wat gevaarlijk
kan zijn wanneer er fouten zijn. Adaptive Backstepping (ABS) is een andere regelme-
thode die stabiliteit garandeert door het aanpassen van de onbekende parameters door
middel van een parameter identificatiemethode. ABS vereist echter veel berekeningen
en het afstemmen van de parameter identificatiemethode kan lastig zijn, vooral wanneer
er veel onbekende parameters zijn.

De hoofdonderzoeksdoel van dit proefschrift is om de robuustheid van FDD en FTC
methodes voor modelonzekerheden en verstoringen te vergroten. De volgende onder-
zoeksvragen zijn opgesteld om dit hoofddoel te bereiken:

• Hoe kan de robuustheid van sensor FDD systemen vergroot worden?

• Hoe kan de robuustheid van aandrijvings-FTC systemen vergroot worden?

• Hoe kan simultaan sensor- en aandrijvings-FTC bewerkstelligd worden?

De eerste vraag wordt behandeld in twee delen van dit proefschrift: Part I en Part II.
De sensoren die beschouwd worden in dit onderzoek zijn de Inertial Measurement Unit
(IMU) en luchtdata sensors (ADS).
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Part I beschrijft de robuustheid van sensor FDD voor modelonzekerheden. Ten eer-
ste wordt een op de snelheid ten opzichte van de lucht gebaseerd kinematisch model
(AS-KM) gebruikt in plaats van een aerodynamisch model. In tegenstelling tot bestaande
methodes, die gebruik maken van het aerodynamische model, worden de aerodynami-
sche krachten hier berekent uit de gemeten specifieke krachten, waardoor de invloed
van modelonzekerheden op de berekening van de aerodynamische krachten vermin-
dert.

Afgezien van de keuze voor het onderliggende model, zijn ook geavanceerde filter-
technieken nodig om zowel de toestandsvariabelen als de fouten te schatten. Een tweede
bijdrage van dit proefschrift is een verbetering van de bestaande filtertechnieken en het
ontwerp van nieuwe filtertechnieken. Deze zijn als volgt:

• Een Selective-Reinitialization Multiple-Model Adaptive Estimation (SRMMAE) me-
thode wordt voorgesteld voor FDD. De SRMMAE methode heeft drie nieuwe Selective-
Reinitialization (SR) algoritmes die de prestaties van de FDD methode in Multiple-
Model Adaptive Estimation (MMAE) methodes significant verbetert. De SRMMAE
methode vermindert het aantal valse foutmeldingen en kan sneller detecteren wan-
neer een fout verwijderd is dan MMAE methodes.

• Een innovatieve Double-Model Adaptive Estimation (DMAE) methode wordt voor-
gesteld. Alhoewel de SRMMAE methode de prestaties van de MMAE methode ver-
groot, is een grote rekenkracht nodig voor SRMMAE omdat voor elk foutscenario
een apart model vereist is. Het aantal vereiste modellen kan heel groot worden, in
het bijzonder wanneer er simultane fouten zijn. De voorgestelde DMAE methode
beperkt het aantal vereiste modellen tot twee, zelfs bij simultane fouten. De SR
algoritmes worden toegepast om de goede prestaties van de SRMMAE methode te
behouden.

• Er is ook een aantal moderne filtertechnieken verbetert. Zo is bijvoorbeeld een
Iterated Optimal Two-Stage Extended Kalman Filter (IOTSEKF) voorgesteld om de
gevoeligheid van het Optimal Two-Stage Extended Kalman Filter (OTSEKF) voor
initiële condities te minimaliseren. Om de gevoeligheid van het Robust Three-
Step Unscented Kalman Filter (RTS-UKF) voor fouten in de initiële condities te
verminderen wordt een Adaptive Three-Step Unscented Kalman Filter (ATS-UKF)
voorgesteld.

Tot slot zijn de voorgestelde methodes succesvol gevalideerd met data uit testvluch-
ten. De data uit deze testvluchten bevat realistische modelonzekerheden en verstorin-
gen, welke per definitie onbekend zijn. De data is daardoor een goede bron om de pres-
taties van de voorgestelde methodes te valideren.

In Part II van dit proefschrift wordt een aantal methodes besproken die de robuust-
heid van FDD methodes voor externe verstoringen zoals variërende wind en turbulentie
vergroten. Ten eerste wordt een kinematisch model, gebaseerd op de snelheid ten op-
zichte van de grond (GB-KM), voorgesteld als FDD model wanneer er zowel IMU sen-
sorfouten zijn als verstoringen. Het AS-KM is niet nauwkeurig onder invloed van versto-
ringen, omdat deze onbekend zijn. Uit de vergelijking tussen het AS-KM en het GS-KM
voor IMU sensor FDD komt het voordeel van het GS-KM naar voren. Voor het GS-KM
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wordt verondersteld dat de metingen van de grondsnelheid foutvrij zijn, net zoals ver-
ondersteld wordt dat de snelheidsmetingen ten opzichte van de lucht foutvrij zijn bij het
gebruik van het AS-KM.

Ten tweede zijn geavanceerde filtertechnieken nodig voor de schatting van de toe-
standsvariabelen en de fouten. Voor IMU sensor FDD wordt een IOTSEKF voorgesteld,
welke een itererende versie is van het OTSEKF. Echter zal een slechte keuze van de covari-
antiematrices de prestaties verminderen. Daarom wordt het Adaptive Two-Stage Exten-
ded Kalman Filter (ATSEKF) voorgesteld om de covariantiematrices aan te passen en om
de prestaties van OTSEKF te verbeteren. Voor de ADS FDD onder invloed van turbulen-
tie wordt de DMAE methode uitgebreid zodat het om kan gaan met deze verstoringen.
Tot slot zijn meer testvluchten gemaakt om de prestaties van de voorgestelde aanpak te
testen onder invloed van realistische verstoringen, zoals variërende wind en turbulentie.
De toestandsvariabelen van het vliegtuig zijn gemeten in verschillende vliegcondities en
onder invloed van turbulentie. De gemeten data is gebruikt om de prestaties van de
voorgestelde methodes onder invloed van verstoringen te valideren.

In Part III van dit proefschrift worden de tweede en derde onderzoeksvraag behan-
delt.

Om de robuustheid van aandrijvings-FTC te vergroten worden een incrementele niet-
lineaire model inversie (INDI) regelaar en een incrementele Backstepping (IBS) regelaar
voorgesteld als herconfigureerbare regelaars in het FTC systeem. De INDI methode, die
overweg kan met fouten in de aandrijving van de stuurorganen, wordt toegepast in een
regelsysteem dat de baan van het vliegtuig regelt terwijl er fouten zijn in de aandrij-
ving van de stuurorganen. Bestaande methodes hebben hiervoor een parameter aan-
passingsalgoritme of een modelidentificatie voor nodig. Bovendien moet de structuur
voor het aerodynamische model ontworpen worden. Een op INDI gebaseerd regelsys-
teem wordt voorgesteld waarbij de regellussen voor de baanhoek en de rotatiesnelhe-
den door INDI aangestuurd worden, omdat deze toestandsvariabelen beïnvloed worden
door modelonzekerheden in de besturings- en stabiliteitsafgeleiden. De overige twee re-
gellussen, voor positie en standhoeken, worden ontworpen met een NDI regelaar, aan-
gezien er in deze regellussen geen onzekerheden zijn. De prestaties van de voorgestelde
regelaar is vergeleken met bestaande regelaars, zoals niet-lineaire model inversie met
modelidentificatie (NDI-MI). De validatie-resultaten tonen aan dat de INDI regelaar het
referentie vliegpad goed kan volgen, zonder dat daar een parameter aanpassingsalgo-
ritme of een modelidentificatie voor nodig is. Bovendien is er geen extra inspanning
vereist om een aerodynamische modelstructuur te ontwerpen.

Om simultaan sensor- en aandrijvings-FTC te bewerkstelligen stelt dit proefschrift
een FTC systeem voor dat bestaat uit een FDD systeem en een herconfigureerbare re-
gelaar. Moderne FDD methodes gebruiken informatie van de stuurorgaanaandrijving,
zoals bijvoorbeeld het aansturingssignaal voor een stuurvlak of de gemeten uitslag van
het stuurvlak. Dit kan echter problematisch zijn wanneer de stuurorgaanaandrijving
(deels) kapot is. Daarom wordt in dit proefschrift het simultaan sensor- en aandrijvings-
FTC probleem opgelost zonder gebruik te maken van informatie van de stuurorgaan-
aandrijving. De fouten in de aandrijving van de stuurorganen worden gecompenseerd
door de herconfigureerbare regelaar. Hiermee is simultaan sensor- en aandrijvings-FTC
gerealiseerd, zelfs bij fouten in de aandrijving van de stuurorganen. De prestaties van
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het voorgestelde FTC systeem zijn gevalideerd met verschillende foutscenario’s, waarin
zowel fouten in de sensoren als fouten in de stuurorgaanaandrijving voorkomen.

Meer studies naar sensor FDD onder invloed van meerdere foutscenario’s worden
aanbevolen. Deze studies zullen de prestaties van de voorgestelde methodes bij onbe-
kende fouttypes verder kunnen demonstreren. Met betrekking tot verder onderzoek op
het gebied van FTC systemen wordt aanbevolen om deze toe te passen in vliegtuigen,
aangezien dit nog steeds een uitdaging is, maar tegelijk belangrijk is om de veiligheid
van vliegen te verhogen.
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1
INTRODUCTION

1.1. AIRLINER ACCIDENTS DUE TO SENSOR AND ACTUATOR

FAULTS

S AFETY is of paramount importance in the aviation community, especially for civil air-
craft. In civil aviation, many developments focus on further improving aircraft safety

and reliability levels. Although most modern aircraft are equipped with fault detection
and protection systems, accidents due to sensor and actuator failures still occur.

Consider for example the Air Data Sensors (ADSs) which measure the key air data
parameters of the aircraft, such as airspeed and angle of attack (AOA). Failures of the
ADSs can result in serious accidents, such as with the Airbus A330 flight AF 447 [1]. Here,
the airspeed indicators were incorrect, presumably caused by the obstruction of the pitot
probes by ice crystals, which led the flight control law to change from normal law to
alternate law [1]. In normal law, the flight envelope is protected whereas the protections
are lost in alternate law [1]. The pilots failed to control the aircraft flight path correctly,
resulting in a stall situation which led the aircraft to collapse into the Atlantic ocean.

Since the design of aircraft has become more complex, fault modes which had not
been previously encountered can occur. For instance, the in-flight upset of an Airbus
330-303 aircraft (Figure 1.1(a)), operated as Qantas flight 72, was caused by multiple
spikes in the AOA data coming from one of the three Air Data Inertial Reference Units
(ADIRUs), a very rare and specific situation [2]. These spikes in the data caused the pri-
mary Flight Control Computers (FCCs) to command the aircraft to rapidly pitch down,
which resulted in at least 110 of the 303 passengers and nine of the 12 crew members
being injured and 12 of the occupants being seriously injured. After the investigation of
the accident, the aircraft manufacturer became aware of the problem and improved the
FCC design, to make sure that such faults will not occur again.

Several accidents involving military aircraft were also caused by ADS faults. On 23
February 2008, a B-2A bomber departed Andersen AFB Guam and crashed 17 seconds
after takeoff [3]. The aircraft was destroyed by fire after impact, both pilots successfully
ejected. It was found that during the air data calibration procedure, three Port Trans-

1
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(a) VH-QPA Qantas Airbus A330-303,
©Lance C Broad

(b) El Al Boeing 747-200F REG 4X-AXG, the aircraft in-
volved, in Amsterdam in June 1991, ©Werner Fischdick

Figure 1.1: Aircraft accidents due to sensor and actuator faults.

ducer Units (PTUs) contained moisture and required a bias correction that was larger
than necessary. The inappropriate bias values were given to the PTUs during the air data
system calibration. The air data system failure was not detected until the moment air-
craft reached the weight-off-wheels state. At this exact moment, an excessive negative
AOA value was calculated, which resulted in the aircraft to pitch up in such a rapid way
the pilots were unable to override in time [3].

Apart from the accidents caused by aircraft sensor faults, accidents also happened
because of aircraft actuator faults. An infamous example was the El Al Cargo Flight LY
1862, a Boeing 747-200F freighter aircraft (Figure 1.1(b)), which departed from Ams-
terdam airport on a flight towards Tel Aviv on October 4, 1992. While the aircraft was
climbing, engine number 3 had a failure, which also impacted engine number 4. These
damages resulted in further loss of all outboard ailerons, the outboard flaps, spoilers,
the inner left and outer right elevators. Although the crew attempted to make an emer-
gence landing, the aircraft crashed due to the serious damage, killing all four on-board
and thirty-nine people on the ground [4].

Not only a partial loss of hydraulics can lead to disasters, malfunctions of hydraulics
can also result in severe accidents. An United Airlines Boeing 737-200, operating as flight
585, rolled steadily to the right and pitched nose down until it reached a nearly vertical
attitude. The cause of the accident was probably a loss of control resulting from the
movement of the rudder surface to its blowdown limit [5]. A similar accident occurred
to USAir flight 427, which is a Boeing 737-3B7 aircraft [6].

Recent studies show that several accidents could have been avoided if a certain type
of Fault-Tolerant Control (FTC) system was implemented on-board [7]. This motivates
the research on FTC and Fault Detection and Diagnosis (FDD) systems which aim at
further increasing the safety of the aircraft.

1.2. FAULT DIAGNOSIS AND FAULT-TOLERANT CONTROL
Presently, most aircraft are equipped with certain types of FDD, and FTC systems. One
type of sensor and actuator FDD and FTC system can be given in Figure 1.2. In this
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Figure 1.2: Block diagram of the aircraft sensor and actuator FDD and FTC system.

section, an overview of various FDD and FTC approaches is presented, together with
their advantages and drawbacks.

1.2.1. FAULT DETECTION AND DIAGNOSIS

An FDD system performs fault detection, fault isolation and fault identification (estima-
tion or reconstruction) [8]. The objective of fault detection is to detect the occurrence
of a fault [8]. To determine which sensor or which actuator fails is called fault isolation
[8]. Fault identification is essential since it estimates the magnitude of the fault which is
important to achieve FTC.

Regarding aircraft sensor and actuator FDD, the current practice in the industry is
hardware redundancy [9], which uses multiple parallel sensors fulfilling the same func-
tions. For example, three ADIRUs provide three independent AOA values, denoted as
AOA1, AOA2 and AOA3. The median value of these three values can be used for con-
sistency checks [2]. In the normal case, all three AOA values are consistent. If AOA1
continues to differ from the median value by more than a predefined threshold denoted
as Tm , as shown in Figure 1.3(a), it will be declared as faulty and it will not be used for
subsequent calculations of the AOA values. It should be noted that the logic shown in
the figure only serves as an example showing how hardware redundancy works. Real
implementations of the checking logic are much more comprehensive and complex.

However, there are also limitations associated with this checking scheme. For in-
stance, in the case shown in Figure 1.3(b), two faulty sensors, AOA1 and AOA2, behave
similarly such that the third correct one (AOA3), which deviates from the median value
by more than Tm , is rejected and declared to be faulty. Although the possibility of this
situation to occur is extremely low (smaller than 10−9 per flight hour [2]), it could lead
to hazardous situations. Another possible limitation is that if one of the sensors (such as
AOA1) has been declared to be faulty, it is more difficult to detect a fault in the remaining
two sensors (AOA2 and AOA3) since there are only two measurements and the system
cannot determine which one to trust.
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the true AOA value.

Figure 1.3: Different cases when one or two sensors fail.

All of these limitations have led to the development of analytical redundancy (also
referred to as model-based FDD [8]) [10], a method which uses a mathematical model of
the monitored process rather than using multiple sensors and actuators with equal func-
tions. The analytical redundancy method reduces weight and cost for the design, which
is useful especially for small Unmanned Aerial Vehicles (UAVs) with limited payload.

Consider a nonlinear discrete-time dynamic system model of the form:

{
xk = f̄ (xk−1)+∆ f̄ (xk−1)+Ek−1dk−1 +Gk−1wk−1 (1.1)

yk = h(xk )+Fk fk +vk (1.2)

where x is the state vector, y is the measurement vector, d is the external disturbance
vector, f is the fault vector, the subscript k represents the time step. The internal dis-
turbances w and v are the process noise and measurement noise vectors, respectively,
with assumption E [w ] = 0 and E [v ] = 0. f̄ and h are nonlinear functions; ∆ f̄ repre-
sents model uncertainties in f̄ . One way to detect the fault is to monitor the residual
(innovation for Kalman filter-based approaches) γk which is the difference between the
measured output yk and the estimated output ŷk :

γk = yk − ŷk (1.3)

= h( f̄ (xk−1)+∆ f̄ (xk−1)+Ek−1dk−1 +Gk−1wk−1)+Fk fk +vk −h( f̄ (x̂k−1)) (1.4)

where x̂k−1 is the estimate of xk−1 at time step k −1. Assume that the state estimate is
unbiased and ∆ f̄ (xk−1) = 0,dk−1 = 0, the expectation of γk is then:

E [γk ] = Fk fk (1.5)

For the fault-free case ( fk = 0), γk should be zero-mean. In the case of faults, γk will
deviate from zero and the faults can be detected if a residual evaluation function J (γk )
exceeds a threshold. There are many ways to design the residual evaluation function
and thresholds [8]. As an example, a norm of γk can be used as the residual evaluation
function and a constant value can be used as the threshold [8].
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If only the state estimate is unbiased, ∆ f̄ (xk−1) 6= 0, dk−1 6= 0, then the expectation of
γk is:

E [γk ] = Fk fk +h( f̄ (xk−1)+∆ f̄ (xk−1)+Ek−1dk−1)−h( f̄ (x̂k−1)). (1.6)

It is seen that the expectation can also deviate from zero and exceed a threshold due to
the presence of ∆ f̄ (xk−1) and dk−1. In this case, since the model uncertainties ∆ f̄ (xk−1)
and external disturbance dk−1 are both unknown, detecting the presence of faults or
extracting fault information using γk is challenging for model-based FDD approaches.
In addition, wk−1 and vk can further influence the performance of approaches such as
observers, which makes the detection of faults even more challenging. This challenge
motivates the design of robust FDD approaches. An FDD approach is robust if it is in-
sensitive or even invariant to model uncertainties ∆ f̄ (xk−1), internal disturbances wk−1

and vk , and external disturbances dk−1.
In the past few decades, many model-based FDD approaches have been proposed

to achieve sensor or actuator FDD [10–14]. A brief overview of these approaches will
be presented in the following. It should be noted that this overview is by no means com-
plete, it merely provides examples of different approaches together with their drawbacks
and advantages.

OBSERVERS

Observer-based approaches were commonly-used in the 1980s [8]. They are used to gen-
erate residuals which can be used for fault diagnosis [8, 12]. To cope with unknown in-
puts, such as external disturbances dk−1 in Equation (1.1), unknown input observers are
proposed [8, 15]. The principle is to make the state estimation error decoupled from the
influence of disturbances [8]. A lot of contributions have been made to the development
of fault detection using the unknown input observers [8, 10]. Unknown input observers
are also applied to the aircraft sensor and actuator FDD problem [16, 17].

Sliding Mode Observers (SMOs) can also generate residuals and can be used for sen-
sor and actuator fault detection for a class of uncertain systems [18]. By maintaining
the sliding mode on the residual in the presence of faults, sensor and actuator faults are
reconstructed using a so-called equivalent output injection signal which represents the
effort necessary to maintain the sliding mode [19]. Applications of SMOs to the aircraft
sensor and actuator FDD problem can also be found [20].

These observers are usually designed based on Linear Time-Invariant (LTI) systems.
To extend to nonlinear and time-varying systems, normally a Linear Parameter Varying
(LPV) model is needed. Another limitation of these observers is that they are suitable for
deterministic systems (w = v = 0). For stochastic systems with noise (w 6= 0, v 6= 0), the
following approaches have been developed.

H∞ FILTERS

The goal of the FDD using H∞ optimization methods is to make the generated residual
more robust to modeling uncertainties∆ f̄ (xk−1) and external disturbances dk−1 (both in
Equation (1.1)) and more sensitive to faults fk (in Equation (1.2)) [8, 21]. Fault detection
can be achieved by factorization [21], standard H∞ filtering approaches [22, 23]. The
optimization problem can be solved using linear matrix inequality approaches [24].
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H∞ filtering approaches have also been used to detect and estimate aircraft sensor
or actuator faults [23, 25]. Marcos et al. [23] designed five H∞ filters to detect and isolate
the aircraft sensor faults. Freeman et al. [25] also designed two H∞ filters to detect and
estimate the faults in the ADS. These methods are designed based on LTI systems. LPV
systems should be used for FDD of nonlinear, time-varying systems.

KALMAN FILTERS

The Kalman Filter (KF), the optimal linear filter, was proposed in 1960 [26] and later ex-
tended to the Extended Kalman Filter (EKF) for nonlinear systems. Because the EKF lin-
earizes the nonlinear systems and thus can introduce linearization errors, its use could
lead to filter divergence. In 1997, an Unscented Kalman Filter (UKF) was proposed which
reduces the linearization errors by using sigma point approximations [27]. Later, the KF
was further extended to Particle Filter (PF) [28] for system with non-Gaussian noise.

The history of using KF for FDD can be traced back to the 1970s [29]. To cope with
unknown inputs such as faults and disturbances, many KF variations have been pro-
posed, such as Adaptive Fading Kalman Filters (AFKFs) [30], Adaptive Kalman Filters
(AKFs) [31] and Two-Stage Kalman Filters (TSKFs) [32, 33]. There are also multiple-
model-based KFs, which are composed of a bank of KFs. The multiple-model-based
KFs include Multiple-Model Adaptive Estimation (MMAE) [34] and Interacting Multiple-
Model (IMM) [35]. These methods can all be used for FDD. Ample applications of these
methods on aircraft sensor and actuator FDD can be found in the literature [36–38].
More information on various adaptive KFs can be found in Chapters 2 to 7 of this dis-
sertation.

Although numerous model-based aircraft sensor and actuator FDD techniques are
proposed, the real application on large fixed-wing aircraft is still quite uncommon. One
example is the actuator fault detection system in the A380, which detects oscillatory fail-
ure modes in the actuators [39].

1.2.2. FAULT-TOLERANT CONTROL
The aforementioned FDD is important to achieve sensor FTC. However, to deal with ac-
tuator faults, not all FTC systems include an FDD system. Generally speaking, there are
two types of actuator FTC systems: Passive Fault-Tolerant Control (PFTC) and Active
Fault-Tolerant Control (AFTC) [40]. For PFTC, the controller is fixed and FDD is not re-
quired [40]. Therefore, it has limited fault-tolerant capabilities [40]. In contrast, AFTC
makes use of the FDD information and reconfigures the controller based on the infor-
mation of the faults, such that a safe flight can still be maintained.

For both FTC types, a reconfigurable controller (as shown in Figure 1.2) is necessary,
especially when the considered faults are actuator faults. The objectives of designing
a reconfigurable controller is to achieve certain satisfactory performance not only when
there are no faults in the system but also in cases when there are sensor or actuator faults
[40]. In cases such as actuator faults, reconfigurable controllers achieve control objec-
tives by using remaining control authority to compensate for the failed control surfaces.
A short introduction of several reconfigurable control techniques is given below. For a
more general overview and also comparisons among different techniques involved, the
reader is referred to survey papers [11, 40]. It should be noted that the following recon-
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figurable control approaches mainly deal with actuator faults.

MODEL PREDICTIVE CONTROL

Model predictive control is an optimal control technique which can handle system input
and output constraints [41]. It is proposed for control reconfiguration mainly because it
can systematically handle changing model dynamics and constraints [42]. To deal with
faults such as actuator faults, a fault model of the actuator fault is required [42]. In case
of an actuator fault, the model predictive controller can handle it by changing the actua-
tor limits and rate constraints [42, 43]. However, it requires a computationally intensive
online optimization at each time step, which can limit its application in real-life such as
in flight control.

ROBUST H∞ CONTROL

Robust control can deal with various types of uncertainties [44]. The H∞ controller is
designed for worst-case uncertainty cases. Since the design of robust controllers has al-
ready taken actuator faults into consideration, it works in nominal as well as in faulty
situations [44]. As such, it can suffer from performance degradation in nominal condi-
tions, when there are no faults, because performance in nominal conditions is sacrificed
to guarantee robustness. Furthermore, the order of the final designed controller is usu-
ally higher than the system order due to the inclusion of weights [45]. Consequently,
model reduction is required to reduce the order of the controller [45]. Different design
methods are available such as mixed sensitivity, loop shaping and µ synthesis [44]. Ex-
amples of an H∞ controller design in the presence of actuator faults can be found in
[46].

SLIDING MODE CONTROL

Sliding mode control has become a popular technique in recent years, due to its fast con-
vergence property and its robustness to model uncertainties [18]. Sliding mode control
contains linear sliding mode control and terminal sliding mode control [47]. In [48], a
boundary layer adaptation scheme is proposed to handle partial actuator faults. This
adaptation scheme can also prevent actuators from magnitude and rate saturation [48].
In [49], it is argued that sliding mode control is inherently robust to partial actuator
faults. Despite recent developments of sliding mode controllers, they still suffer from
the chattering problem (high frequency oscillations in the system states) [18]. A number
of solutions are proposed to reduce the effects of the chattering [18, 47, 50–52]. Applica-
tions of sliding mode controllers for aircraft can be found in [48, 49].

ADAPTIVE CONTROL

Adaptive Control is a control technique which can adjust the controller parameters on-
line to deal with faults. Two examples of adaptive controllers are:

• L1 adaptive control
L1 adaptive control, which was recently proposed, has guaranteed tracking per-
formance by increasing the adaptation rate [53, 54]. The tracking performance of
the L1 adaptive controller when dealing with systems with uncertainties and dis-
turbances is also guaranteed [55]. Therefore, it can also be applied to deal with
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actuator faults. Some applications of the L1 adaptive controller can be found in
[56, 57].

• Adaptive Nonlinear Dynamic Inversion (NDI) and Backstepping (BS)
NDI or Feedback linearization, and BS [58] are model inversion-based control tech-
niques. These techniques are suitable for nonlinear systems due to the fact that
they make explicit use of an accurate model of the controlled system. There-
fore, gain scheduling is not required. However, these methods are also sensitive
to model uncertainties and can fail in the presence of actuator faults. To cope
with that, numerous adaptive NDI and BS approaches are proposed, for example
Adaptive Nonlinear Dynamic Inversion (ANDI) with online model identification
[59], Adaptive Backstepping (ABS) [60] and Command Filter ABS [61–63].

Applications of FTC in real aircraft already exist. In 1999, the F-18E/F was delivered
with an FTC system which can compensate for a single stabilizer actuator fault [63].

1.3. CHALLENGES IN THE FIELD OF AIRCRAFT SENSOR AND AC-
TUATOR FDD AND FTC

As mentioned in the previous section, although extensive research has been devoted to
the sensor and actuator FDD and FTC, there are only few real applications. This is mainly
because there are still a number of challenges which have not been completely solved.
The main challenges related to the FDD and FTC approaches are real-life model uncer-
tainties ∆ f̄ (xk−1), effects of disturbances including external disturbances dk−1 (such as
time-varying wind and atmospheric turbulence) and internal disturbances (wk−1 and
vk ), and computational constraints.

Take the air velocities for example, the derivatives and measurements can be given
as follows:





V̇a =−ω×Va − V̇w −ω×Vw +Tbe g +




X /m

Y /m

Z /m


 (1.7)

y = h(Va)+ fVa +νVa (1.8)

with

Va = [ua , va , wa]T , ω= [p, q,r ]T ,Vw = [uw , vw , ww ]T , (1.9)

y = [Vm ,αm ,βm]T , fVa = [ fV , fα, fβ]T ,νVa = [νV ,να,νβ]T (1.10)

where ua , va and wa are the air velocity components expressed along the body axis, p,
q and r are the body angular rates, uw , vw and ww are the wind velocity components
expressed along the body axis, Vm is the measured true airspeed, αm and βm are the
measured angle of attack and sideslip. fVa and νVa represent the faults and noise in the
measurements y . X , Y and Z are total aerodynamic forces including propulsion forces
along body axis. Tbe is the transformation matrix from earth axis to body axis.
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Most FDD and FTC approaches make use of the aircraft aerodynamic model which
calculates the aerodynamic forces and moments. For instance, the forces X , Y and Z can
be expressed as the following Taylor series (higher-order terms are neglected for simplic-
ity of explanation):

X = q̄SCX = q̄S(CX0 +CXαα+CXq q +CXδe
δe +CXPL A PL A) (1.11)

Y = q̄SCY = q̄S(CY0 +CYββ+CYp

pb

2V
+CYr

r b

2V
+CYδa

δa +CYδr
δr ) (1.12)

Z = q̄SCZ = q̄S(CZ0 +CZαα+CZq

qc

V
+CZδe

δe +CZPL A PL A) (1.13)

where q̄ is the dynamic pressure, S the surface area, b and c̄ are the wing span and mean
aerodynamic chord. PL A is the power level angle, δa , δe and δr are the deflections of
aileron, elevator and rudder. The derivatives CXPL A ,CXδe

,CYδa
,CYδr

,CZδe
,CZPL A are con-

trol derivatives. Other derivatives are stability derivatives. These derivatives are time-
varying according to flight conditions. Computational fluid dynamics, wind tunnel tests
and flight tests are usually performed to obtain these parameters. However, accurate
values of these derivatives are difficult to obtain, which results in model uncertainties.
It becomes even more challenging as the structure of modern aircraft is becoming more
complex such as those with flexible wings. The influence of model uncertainties on FDD
can be seen in Equation (1.4). Model uncertainties can also cause the residual to devi-
ate from zero when there are no faults, which can result in false alarms (here the FDD
system provides an alarm when there are in fact no faults occurring). To reduce the in-
fluence, much research effort is focused on increasing the robustness of the FDD and
FTC approaches with respect to model uncertainties [8].

Real-life external disturbances can severely degrade the performance of FDD and
FTC approaches. In Equation (1.7), V̇w +ω×Vw represents the additional accelerations
generated by the wind. The influence of the disturbances on FDD can be readily ex-
plained using Equation (1.4). The faults and disturbances can both influence γk and
it is difficult to distinguish between the fault and disturbances. Such disturbances are
unavoidable and can occur during any part of the flight. Time-varying wind and atmo-
spheric disturbances, such as turbulence, can influence the motion of the aircraft and
affect the performance of FDD and FTC approaches. Internal disturbance, sensor noise,
is unavoidable as well and must be taken into consideration.

Hence, the robustness with respect to these internal and external disturbances must
be taken into consideration. One of the main functions of a control system is to suppress
the influence caused by such disturbances (dk−1, wk−1 and vk ). For FDD, these distur-
bances can make the residual deviate from zero even when there are no faults. When
using a fixed threshold, false alarms can occur if the threshold is low. If the threshold
is chosen too high, the false alarm rate can be reduced, at the cost, however, of missed
detections [8]. Finding the right balance between the rate of false alarms and possible
occurrences of missed detection is a challenge for FDD.

Computational burden also limits the implementation of many FDD and FTC algo-
rithms. A computationally intensive program may not be able to run in real-time at a
high update rate, which will degrade its performance. Therefore, the development of
advanced FDD and FTC approaches must take the computational load into account.
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1.4. MAIN RESEARCH QUESTION
The challenges mentioned in the previous section motivate the main research question
of this dissertation:

Research question

How to increase the robustness of the sensor and actuator FDD and FTC ap-
proaches with respect to real-life model uncertainties and internal and external
disturbances?

By robustness, we mean that the performance of the FDD and FTC approaches is
insensitive, or even invariant, to model uncertainties and internal and external distur-
bances. Only when the FDD and FTC approaches are robust to real-life model uncer-
tainties and disturbances, can they be applied in practice to truly enhance the safety
and survivability of the aircraft.

In this thesis, also some efforts are made to reduce the computational burden of the
algorithms; however, it is at present considered of secondary importance. With the rapid
development of more advanced computers, algorithms with intensive computational
load are expected to become feasible in the next decade. The research subject presented
in this dissertation is fixed-wing aircraft, despite the fact that several approaches have
also been applied to rotary-wing aircraft.

1.5. RESEARCH GOALS AND APPROACH
The following goals are formulated, together with feasible approaches to address the
main research question in a systematic fashion.

1.5.1. ROBUST SENSOR FDD
The models proposed for sensor FDD in this dissertation differ from the models used by
existing approaches. As mentioned, existing approaches primarily use the aerodynamic
model which calculates the aerodynamic forces and moments. The forces are given in
Equations (1.11)-(1.13) and contain model uncertainties. In addition, to compute the
forces, the control surface deflections δa , δe and δr are needed. The block diagram for
this existing sensor FDD approach is given in Figure 1.4(a).

The approach proposed in this dissertation for sensor FDD is to use the kinematic
models of the aircraft. By replacing Equations(1.11)-(1.13) with Equations(1.14)-(1.16),
the forces X , Y and Z are directly obtained by the measurements of the accelerometers
(Axm , Aym and Azm).

X = m Axm (1.14)

Y = m Aym (1.15)

Z = m Azm (1.16)

The accelerometers measure the specific forces (the difference between the inertial ac-
celeration and the gravitational acceleration assuming the accelerometers are at the cen-
ter of gravity of the aircraft [64]). Equations (1.7)-(1.8) together with (1.14)-(1.16) com-
pose the air velocity-based kinematic model. Through doing this, model uncertainties
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Figure 1.4: Aircraft sensor FDD block diagrams using aerodynamic model and kinematic model.

are reduced due to the measurements from the accelerometers. In addition, the control
surface deflections δa , δe and δr are not needed. In other words, the input of the aircraft
dynamic model does not consist of δa , δe and δr , as in many conventional FDD tech-
niques. Rather, we propose to use the measurements Axm , Aym and Azm , as illustrated
in Figure 1.4(b). The control surface deflections are then no longer required by the sen-
sor FDD. To give an example, the input and outputs when using the kinematic model for
ADS FDD are shown in Figure 1.5. The input consists of the Inertial Measurement Unit
(IMU) measurements (measurements from the accelerometers and rate gyros).

It is also noted in the figure that a filtering block is included in the block diagram. The
kinematic models only provide a model, which contains fewer model uncertainties, for
the FDD. The detection and diagnosis of the faults as well as state estimation still have to
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Figure 1.5: ADS FDD using the kinematic model.

be solved. In this dissertation, several advanced filtering techniques are developed and
improved exactly for this purpose.

1.5.2. ROBUST ACTUATOR FTC
As for actuator FTC, reconfigurable controllers are required. NDI and BS are reconfig-
urable control approaches which can deal with nonlinearities in the system. However,
they also suffer from performance degradation in the presence of either model uncer-
tainties or actuator faults. In this thesis, the incremental form of these two approaches
is applied, to deal with aircraft trajectory and attitude control in the presence of model
uncertainties and actuator faults. Aircraft trajectory control is especially important for
air traffic control, and challenging due to the model uncertainties in both the flight path
control loop and the angular rate control loop. In this dissertation, a new control struc-
ture is proposed to solve trajectory control.

1.5.3. SIMULTANEOUS SENSOR AND ACTUATOR FTC
As seen in Figure 1.4(a), existing sensor FDD approaches rely on the information of the
commanded or measured control surface deflections δa , δe and δr . However, things
become more complicated when there are no direct measurements of control surface
deflections available as well as sensor and actuator faults occur simultaneously. When
there are simultaneous sensor and actuator faults, the input and output of the sensor
FDD system using existing approaches (Figure 1.4(a)) are both incorrect, and sensor
FDD is difficult to achieve. To achieve simultaneous sensor and actuator FTC, this dis-
sertation explores a framework which deals with simultaneous sensor and actuator FTC.

1.6. RESEARCH CONTRIBUTIONS
The main contributions of this dissertation can be generalized as follows.

First of all, several improvements regarding advanced filtering techniques are made.
These are listed as follows:

• A Selective-Reinitialization Multiple-Model Adaptive Estimation (SRMMAE) is pro-
posed which significantly improves the performance of normal MMAE. The SRM-
MAE contains three Selective Reinitialization (SR) algorithms which remove the
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drawbacks of the MMAE with respect to FDD. However, the computational load of
the SRMMAE is still intensive. This leads to the following proposed filter.

• A novel Double-Model Adaptive Estimation (DMAE) approach is developed which
reduces the number of the model set required by the MMAE to only two. It reduces
the computational load and design complexity, especially when dealing with si-
multaneous faults. It also decreases the false alarms when using the MMAE or
SRMMAE.

• Furthermore, state-of-the-art approaches on unknown input Kalman filters re-
quire that an existence condition is satisfied (physically it means that the influence
of disturbances and faults can be decoupled). In this dissertation, the DMAE is fur-
ther extended to deal with a case when the existence condition is not satisfied.

• Other improvements include the Adaptive Two-Stage Extended Kalman Filter (AT-
SEKF) which can adaptively estimate the faults and Adaptive Three-Step Unscented
Kalman Filter (ATS-UKF) which extends the Robust Three-Step Kalman Filter (RTS-
KF) to nonlinear systems and is robust to initial condition errors. In addition, an
Iterated Optimal Two-Stage Extended Kalman Filter (IOTSEKF) is proposed to re-
duce the sensitivity of the Optimal Two-Stage Extended Kalman Filter (OTSEKF) to
initial condition errors.

Secondly, IMU and ADS sensor faults are considered. The sensor FDD is tackled by
reducing the influence of model uncertainties as well as disturbances. More importantly,
the proposed sensor FDD approaches are validated by real flight test data which contain
real-life model uncertainties. Real flight test data recorded in the presence of unknown
disturbances such as time-varying wind and turbulence are also applied to validate the
performance of the proposed techniques.

Finally, this thesis proposes a strategy to achieve simultaneous sensor and actuator
FTC. The key point is to achieve the sensor fault diagnosis without using any actuator
information. To be more specific: to perform the sensor FDD without any knowledge
regarding either the commanded or measured control surface deflections. This is very
important since, if we succeed, we can guarantee that even when there are actuator fail-
ures, sensor fault diagnosis can still be achieved.

1.7. OUTLINE OF THE THESIS
The dissertation consists of three parts, see Figure 1.6.

In Part I, the aircraft sensor FDD in the presence of model uncertainties is treated. It
consists of three chapters: Chapters 2, 3 and 4. Chapter 2 deals with ADS FDD. The in-
fluence of model uncertainties is reduced by using the airspeed-based kinematic model
(AS-KM) of the aircraft. Chapter 3 treats both IMU and ADS FDD using an improved
MMAE approach: the SRMMAE method. Although the SRMMAE can achieve a better
FDD performance, the computational load is intensive especially when dealing with si-
multaneous faults. To overcome this limitation while maintaining satisfactory perfor-
mance, a novel DMAE approach is proposed in Chapter 4, for the ADS FDD. Computa-
tional load is reduced and the false alarms are also reduced.
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Figure 1.6: Visual outline of the dissertation.
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Part II considers the sensor FDD in the presence of both model uncertainties and
external as well as internal disturbances. It consists of three chapters: Chapters 5, 6 and
7. Chapter 5 proposes to deal with the IMU FDD in the presence of model uncertain-
ties and disturbances by exploiting the ground speed-based kinematic model (GS-KM)
of the aircraft. An IOTSEKF is proposed to estimate both the state and the faults. Perfor-
mance is validated by real flight test data. However, the real flight tests were performed
while avoiding atmospheric disturbances. Therefore, aircraft response data during the
presence of turbulence was not collected. More flight tests were performed to gather air-
craft response data in the presence of turbulence and the validation results using these
data are included in Chapter 6. In addition, since the IOTSEKF used in Chapter 5 suffers
from performance degradation when covariance matrices are not chosen wisely, a novel
ATSEKF is proposed in Chapter 6, a method that adaptively updates the covariance ma-
trices. Chapter 7 discusses a novel DMAE approach which is extended to solve the ADS
FDD in the presence of model uncertainties and disturbances.

In Part III, simultaneous sensor and actuator FTC is considered in two chapters.
Chapter 8 deals with aircraft trajectory control in the presence of model uncertainties
and actuator faults. Finally, Chapter 9 proposes a new FTC framework which can cope
with the case when sensor and actuator faults occur simultaneously.

1.8. THESIS PUBLICATIONS
In this section, the publication sources for each chapters are listed:

• Chapter 2 is based on the following publication: P. Lu, L. Van Eykeren, E. van Kam-
pen, C. C. de Visser, Q.P. Chu. Adaptive Three-Step Kalman Filter for Air Data Sen-
sor Fault Detection and Diagnosis. Journal of Guidance, Control and Dynamics,
39(3), 590-604, 2016.

• Chapter 3 is based on the following publication:

P. Lu, L. Van Eykeren, E. van Kampen, Q.P. Chu. Selective-Reinitialization Multiple
Model Adaptive Estimation for Fault Detection and Diagnosis. Journal of Guid-
ance, Control and Dynamics, 38(8), 1409-1424, 2015.

• Chapter 4 is based on the following publication:

P. Lu, L. Van Eykeren, E. van Kampen, C. C. de Visser, Q.P. Chu. Double-model
Adaptive Fault Detection and Diagnosis Applied to Real Flight Data. Control Engi-
neering Practice, (36), 39-57, 2015.

• Chapter 5 is based on the following publication:

P. Lu, L. Van Eykeren, E. van Kampen, C. C. de Visser, Q.P. Chu. Aircraft Inertial
Measurement Unit Fault Identification with Application to Real Flight Data. Jour-
nal of Guidance, Control and Dynamics, 38(12), 2467-2475, 2015.

• Chapter 6 is based on the following publication:

P. Lu, E. van Kampen, C. C. de Visser, Q.P. Chu. Nonlinear Aircraft Sensor Fault Re-
construction In the Presence of Disturbances Validated by Real Flight Data. Con-
trol Engineering Practice, (49), 112-128, 2016.
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• Chapter 7 is based on the following publication:

P. Lu, E. van Kampen, C. C. de Visser, Q.P. Chu. Novel Framework to State and
Unknown Input Estimation for Time-varying Systems. Automatica, 2016, http:
//dx.doi.org/10.1016/j.automatica.2016.07.009.

• Chapter 8 is based on the following publication:

P. Lu, E. van Kampen, C. C. de Visser, Q.P. Chu. Nonlinear Aircraft Fault-Tolerant
Trajectory Control Using Incremental Nonlinear Dynamic Inversion. Journal of
Guidance, Control and Dynamics, (under review).

• Chapter 9 is based on the following publication:

P. Lu, E. van Kampen, C. C. de Visser, Q.P. Chu. Nonlinear Simultaneous Aircraft
Sensor and Actuator Fault-Tolerant Flight Control. Journal of Guidance, Control
and Dynamics, (under review).

http://dx.doi.org/10.1016/j.automatica.2016.07.009
http://dx.doi.org/10.1016/j.automatica.2016.07.009
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In this chapter, the aircraft ADS FDD in the presence of model uncertainties is consid-
ered. The model used for FDD is the airspeed-based kinematic model. First, the kine-
matic model including ADS faults is introduced. Then, the problem of the existing ap-
proach for state and fault estimation (Robust Three-Step Unscented Kalman Filter) is an-
alyzed and modified, which leads to a novel state and fault estimation approach (Adap-
tive Three-Step Unscented Kalman Filter). The Adaptive Three-Step Unscented Kalman
Filter is applied to the ADS FDD using the airspeed-based kinematic model. Simula-
tion and real flight test data validations demonstrate the satisfactory performance of the
proposed approach.

Parts of this chapter are based on:

P Lu, L Van Eykeren, E van Kampen, C C de Visser, Q P Chu. Adaptive Three-Step Kalman Filter for Air Data
Sensor Fault Detection and Diagnosis. Journal of Guidance, Control and Dynamics. available online. [65]
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ADS FDD is important for the safety of aircraft. In this chapter, first an extension of
the RTS-KF to nonlinear systems is made by proposing a Robust Three-Step Unscented
Kalman Filter (RTS-UKF). The RTS-UKF is found to be sensitive to the initial condition
error when dealing with ADS fault estimation. A theoretical analysis of this sensitivity is
presented and a novel ATS-UKF is proposed which is able to cope with not only the estima-
tion of the ADS faults but also the detection and isolation of faults. The ATS-UKF contains
three steps: time update, fault estimation and measurement update. This approach can
reduce the sensitivity to the initial condition error. Finally, the ADS FDD performance of
the ATS-UKF is validated using simulated aircraft data. Additionally, its performance is
further validated using real flight test data to demonstrate its performance under realistic
uncertainties and disturbances. The results using both the simulated data and real flight
test data demonstrate the satisfactory FDD performance of the ATS-UKF and verify that it
can be applied in practice to enhance the safety of aircraft.

2.1. INTRODUCTION

PRESENTLY, Fault Detection and Isolation (FDI) has an important role in achieving
fault-tolerance of aircraft [11]. During the past few decades, many approaches have

been proposed for sensor or actuator FDI [12, 66, 67]. In aerospace engineering, the FDI
of sensors and actuators for fixed-wing aircraft is widely studied, as can be found in Pat-
ton [11], Marzat et. al [13], and Hajiyev and Caliskan [68]. Investigation of the FDI for
Unmanned Aerial Vehicles can also be found [13, 69]. For recent advances, the reader
is referred to Goupil [9] and Zolghadri [14, 70]. The ADSs measure the dynamic pres-
sure, airspeed, angle of attack and angle of sideslip of the aircraft, providing essential
information on the aircraft states to the pilot [71]. The ADSs are usually installed out-
side the aircraft fuselage and can suffer from icing or water accumulation, which may
result in faults such as blockage faults [25]. These faults may negatively influence the in-
formation provided to the pilot, which can lead to catastrophic accidents. In the recent
past, there have been commercial aircraft accidents caused by ADS faults. Due to faults
in the ADSs, the flight crew of Austral Lineas Aeroeas Flight 2553 improperly referenced
the airspeed indicator and induced a structure failure by exceeding safe airspeed limits
[72]. More recently, the final report of the Air France Flight 447 accident stated that er-
roneous airspeed measurements from the pitot probes were a contributing factor [73].
Since 2003, commercial aircraft have had more than 35 recorded incidents of multiple
ADS faults [72]. There have also been accidents of military aircraft caused by ADS faults.
The crash of a B-2 bomber is due to a large bias to the ADSs which is caused by mois-
ture in the port transducer units [73]. These facts indicates the importance of the fault
detection of the ADSs.

The fault detection of ADSs has been investigated in a number of studies [25, 74].
Some researchers propose to use alternative air data sensing systems such as a flush
air-data sensing system [74, 75]. Nebula et. al propose a virtual air data system against
ADS failures [76, 77]. Looye and Joos [78] propose to use the data from a navigation sys-
tem to determine the air data information. On the other hand, the faults of the ADSs
can be detected. Houck and Atlas [71] are one of the first to analyze ADS faults. The
limitation of their approach is that independent static pressure measurements are not
always available in UAV applications [72]. Cervia et al. [79] and Eubank et al. [72] de-



2.1. INTRODUCTION

2

21

tect the faults using a multiple-redundancy air data system. The air data system studied
by Cervia et al. is based on pseudo-quadruplex redundancy which employs four self-
aligning air data probes. Freeman et al. [25] investigate analytical redundancy instead
of hardware redundancy for the ADS fault detection. They use a longitudinal dynam-
ics model of the aircraft and two linear H∞ filters are designed to detect the faults and
provide robustness to model errors.

Alternatively, the kinematic model can be used to detect the faults in the ADSs, thereby
reducing the influence of model uncertainties caused by the calculation of the aerody-
namic forces and moments [80, 81]. Van Eykeren and Chu [82] use an adaptive Extended
Kalman Filter to detect the faults in the ADSs. However, the estimation of the faults is
not addressed in their work. In Lu et al. [83], a Selective-Reinitialization Multiple-Model
Adaptive Estimation approach is proposed for the ADS FDD. The approach improved
the FDD performance of the Multiple-Model-based approaches. However, the compu-
tational load of the approach is intensive when dealing with simultaneous faults.

In this chapter, a newly-developed RTS-KF [84] is combined with the kinematic model
to estimate the ADS faults. First, the RTS-KF is extended to cope with nonlinear systems
by proposing a novel RTS-UKF. The RTS-UKF is able to reduce linearization errors. How-
ever, it is found that the RTS-UKF is sensitive to the initial condition error. Second, the
sensitivity of this three-step Kalman Filter to the initial condition error is analyzed theo-
retically. It is proved that the RTS-UKF does not use some of the measurements to update
the state estimation which causes the sensitivity to the initial condition error.

Finally, a novel ATS-UKF is proposed which does not only estimate the ADS faults,
but also detect and isolate the faults. The ATS-UKF contains three steps: time update,
fault estimation and measurement update. The fault detection is performed before the
fault estimation. This approach also reduces its sensitivity to the initial condition. The
fault detection is performed by checking the innovation variances. In the presence of
faults, the innovation variance increases. If the innovation variance exceeds a pre-defined
threshold, then the fault alarm is triggered. The FDD performance of the ATS-UKF is
tested using simulated aircraft data with the objective of detecting, isolating and estimat-
ing ADS faults. Two different fault scenarios (multiple faults and simultaneous faults) are
implemented to test the performance and the results demonstrate the satisfactory per-
formance of the ATS-UKF. The fault types contain not only bias and drift fault, but also
oscillatory faults.

Furthermore, the FDD performance of the ATS-UKF is validated using real flight test
data of a Cessna Citation II aircraft. The sensor measurements from the real flight test
contain biases and uncertainties and are suitable for testing the performance of the ATS-
UKF. Different fault scenarios are generated and the faults are injected into the real flight
data. The ADS FDD results of the ATS-UKF demonstrate its performance and verified
that it can be applied in practice to enhance the safety of the aircraft.

The structure of the chapter is as follows: In Section 2.2, the ADS FDD problem is for-
mulated. The kinematic model including ADS faults is introduced. Section 2.3 extends
the RTS-KF to cope with nonlinear systems by proposing the RTS-UKF. The RTS-UKF is
applied to estimate the ADS faults, which turns out to be sensitive to the initial condi-
tion. The sensitivity problem is analyzed theoretically and a novel ATS-UKF is proposed
to deal with not only the estimation of the ADS faults, but also the detection and isola-
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tion of the faults. The performance is tested using a simulated aircraft model. In Sec-
tion 2.4, the performance of the ATS-UKF is further validated using the real flight data of
the Cessna Citation II aircraft. The performance is shown and some remarks are given.
Finally, the conclusions are made in Section 2.5.

2.2. AIR DATA SENSOR FDD USING THE KINEMATIC MODEL

The objective of this chapter is the FDD of the aircraft ADSs. However, model-based ap-
proaches are sensitive to model uncertainties. In order to make the proposed approach
more robust, the kinematic model of aircraft, which does not involve the computation
of aerodynamic forces and moments, is used instead of the aerodynamic model.

2.2.1. AIRCRAFT KINEMATIC MODEL WITH ADS FAULTS

The kinematic model of the aircraft including ADS faults is described as

ẋ(t ) = f̄ (x(t ),um(t ), t )+G(x(t ))w (t ) (2.1)

y(t ) = h(x(t ),um(t ), t )+v (t )+F(t ) f o(t ), t = ti , i = 1,2, ... (2.2)

where x ∈RL represents the system states, um ∈Rl the measured input, y ∈Rm the mea-
surement. The functions f̄ and h are nonlinear functions. G and F are the noise distribu-
tion matrix and output fault distribution matrix. The function f ∈ Rp represents output
faults.

The system equation variables are defined as follows:

x = [V α β φ θ ψ]T (2.3)

um = [Axm Aym Azm pm qm rm ]T = [Ax Ay Az p q r ]T +w (2.4)

y = [Vm αm βm φm θm ψm]T (2.5)

w = [w Ax w Ay w Az wp wq wr ]T (2.6)

v = [vV vα vβ vφ vθ vψ]T (2.7)

f o = [ fV fα fβ]T (2.8)

where the input um is the IMU measurement which measures the specific forces (Ax ,
Ay and Az ) and angular rates (roll rate p, pitch rate q , and yaw rate r ) of the aircraft. y
is the output measurement which measures the air data information (true airspeed V ,
angle of attack α, and angle of sideslip β) and Euler angles (roll angle φ, pitch angle θ,
and yaw angleψ). [ fV fα fβ]T are the faults of the ADSs, i.e. fV , fα and fβ are the faults in
the velocity sensor, angle of attack sensor, and angle of sideslip sensor, respectively. It is
assumed that there are no faults in the IMU and Attitude and Heading Reference System
which measures the Euler angles and the influence of changing wind such as turbulence
is limited. Therefore, the input noise vector w (t ) can be assumed to be a continuous time
white noise process while the output noise vector v (t ) can be assumed to be a discrete
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time noise sequence.

E [w (t )] = 0

E [w (t )w T (tτ)] = Qδ(t −τ) , Q = diag(σ2
w Ax

, σ2
w Ay

, σ2
w Az

, σ2
wp

, σ2
wq

, σ2
wr

), (2.9)

E [v (t )] = 0

E [v (ti )v T (t j )] = Rδ(ti − t j ) , R = diag(σ2
vV

, σ2
vα , σ2

vβ , σ2
vφ , σ2

vθ , σ2
vψ ), (2.10)

E [w (t )v T (ti )] = 0 , t = ti , i = 1,2, ... (2.11)

The kinematic model is given in the following [82, 83]. For detailed derivations, please
refer to Appendix B.

V̇ = (Axm −w Ax − g sinθ
)

cosαcosβ+ (Aym −w Ay + g sinφcosθ)sinβ

+ (Azm −w Az + g cosφcosθ)sinαcosβ (2.12)

α̇= 1

V cosβ

[− (Axm −w Ax )sinα+ (Azm −w Az )cosα+ g cosφcosθcosα

+ g sinθ sinα
]+qm −wq − [(pm −wp )cosα+ (rm −wr )sinα] tanβ (2.13)

β̇= 1

V

[− (Axm −w Ax − g sinθ)cosαsinβ+ (Aym −w Ay + g sinφcosθ)cosβ

− (Azm −w Az + g cosφcosθ)sinαsinβ
]+ (pm −wp )sinα− (rm −wr )cosα (2.14)

φ̇= (pm −wp )+ (qm −wq )sinφ tanθ+ (rm −wr )cosφ tanθ (2.15)

θ̇ = (qm −wq )cosφ− (rm −wr )sinφ (2.16)

ψ̇= (qm −wq )
sinφ

cosθ
+ (rm −wr )

cosφ

cosθ
(2.17)

and G(x(t )) is defined as:

G(x(t )) =




−cαcβ −sαcβ −sαcβ 0 0 0

sα/(V cβ) 0 −cα/(V cβ) cαtβ −1 sαtβ

cαsβ/V −cβ/V sαsβ/V −sα 0 cα

0 0 0 −1 −sφtθ −cφtθ

0 0 0 0 −cφ sφ

0 0 0 0 −sφ/cθ −cφ/cθ




(2.18)

where s(•), c(•) and t(•) denote the trigonometric functions sin(•), cos(•) and tan(•) re-
spectively. Therefore, the measurement model including the ADS faults is

Vm =V + fV + vV (2.19)

αm =α+ fα+ vα (2.20)

βm =β+ fβ+ vβ (2.21)

φm =φ+ vφ (2.22)

θm = θ+ vθ (2.23)

ψm =ψ+ vψ (2.24)
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Table 2.1: Fault scenario of multiple faults

Time interval Sensor Fault type Fault magnitude Fault unit

10 s < t < 20 s V bias 2 [m/s]

30 s < t < 40 s α drift 0.01t [rad/s]

50 s < t < 60 s β oscillatory −2πsin(πt )/180 [rad]

Table 2.2: Fault scenario of simultaneous faults

Time interval Sensor Fault type Fault magnitude Fault unit

10 s < t < 20 s

V oscillatory 2sin(πt ) [m/s]

α drift 0.01t [rad/s]

β drift −0.01t [rad/s]

30 s < t < 40 s

V drift −0.2t [m/s2]

α bias −2π/180 [rad]

β oscillatory −2πsin(πt )/180 [rad]

The measurement model can be rewritten into

y(t ) = x(t )+F(t ) f o(t )+v (t ), t = ti , i = 1,2, ... (2.25)

where

F = [I3 03×3]T (2.26)

The objective of the ADS FDD problem is to detect, isolate and estimate f o = [ fV fα fβ]T .
This chapter assumes that there are no faults in the IMU sensors. If there are faults in the
IMU sensors, they can be detected and estimated by other methods using another set of
kinematic model [85].

2.2.2. FAULT SCENARIOS FOR THE ADS FDD
In this chapter, two different fault scenarios are used to test the performance of the ap-
proaches. The fault scenario for multiple ADS faults is given in Table 2.1 while that for
simultaneous ADS faults is given in Table 2.2. The fault type, magnitude and unit are
given in the table. The units of the drift faults are given by the units of the drift rates.
It can be seen that the fault types not only contains bias faults but also drift faults and
oscillatory faults.

2.2.3. STATE OBSERVABILITY AND FAULT RECONSTRUCTIBILITY
This section check the observability of the system described by Equations (2.1) and (2.2).
The observability analysis of the system can be performed by checking the rank of the
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following observability matrix:

O =




δx h

δx (L f̄ h)
...

δx (LL−1
f̄

h)




(2.27)

where δx h denotes the gradient of h with respect to x . The Lie derivative is defined as
follows:

L f̄ h = δx h · f̄

... (2.28)

LL−1
f̄

h = δx (LL−2
f̄

h) · f̄

It can be readily checked that O is of full rank. Therefore, the system state is observable.
In order to reconstruct the faults, additional conditions are required which are given in
(2.29).

2.3. EXTENSION OF THE ROBUST THREE-STEP KALMAN FIL-
TER

This section extends the RTS-KF to estimate output faults. First, in Section 2.3.1, the RTS-
KF is extended to nonlinear systems by proposing a RTS-UKF. This RTS-UKF is applied
to the ADS fault estimation problem and is found to be sensitive to the initial condi-
tion errors. This sensitivity problem is analyzed theoretically in Section 2.3.2. Then, in
Section 2.3.3, an ATS-UKF is proposed which can detect, isolate and estimate the faults.
Finally, the ATS-UKF is applied to the ADS FDD problem in Section 2.3.4 to demonstrate
its FDD performance.

2.3.1. ROBUST THREE-STEP UNSCENTED KALMAN FILTER
The RTS-KF [84] can be used for output FDD. Consider the aircraft kinematic model de-
scribed by Equations (2.1) and (2.2). For this system, since the system state is observable,
the existence condition of a RTS-KF is [84]:

m ≥ p, rank Fk = p (2.29)

In this study, m = 6, p = 3 and rank Fk = 3. Therefore, a RTS-KF can be designed to
estimate the ADS faults.

However, the RTS-KF is designed for linear systems while the kinematic model is
nonlinear. Therefore, the RTS-KF needs to be extended to cope with nonlinear systems.
The UKF is a nonlinear filter which can achieve a better level of accuracy than the EKF
[27, 86]. This section extends the RTS-KF to nonlinear systems by proposing a RTS-UKF.

According to the technique in Lu et al. [81], the RTS-UKF can be derived as follows:
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Step1 Sigma points calculation and time update

X0,k−1 = x̂k−1|k−1 (2.30a)

Xi ,k−1 = x̂k−1|k−1 −
(√

(L+γ0)Pk−1|k−1

)
i
, i = 1,2, ...,L (2.30b)

Xi ,k−1 = x̂k−1|k−1 +
(√

(L+γ0)Pk−1|k−1

)
i−L

, i = L+1,L+2, ...,2L (2.30c)

w (m)
0 = γ0/(L+γ0) (2.31a)

w (c)
0 = γ0/(L+γ0)+ (1−α2

0 +β0) (2.31b)

w (m)
i = w (c)

i = 1/{2(L+γ0)}, i = 1,2, ...,2L (2.31c)

with Xi ,k−1 the sigma points of the states (dimension L) at step k−1. w (m)
i and w (c)

i
are the weights associated with the i th point with respect to x̂k−1|k−1 and Pk−1|k−1,
respectively. γ0 = α2

0(L +κ) − L is a scaling factor, α0 determines the spread of
the sigma points around x̂k−1|k−1, κ is a secondary scaling factor, β0 is used to
incorporate the prior knowledge of the distribution of x. In this chapter, κ = 0,
α0 = 0.8 and β0 = 2.

After the creation of the sigma points through the nonlinear transformation, the
predicted mean and covariance are computed as follows

Xi ,k|k−1 =Xi ,k−1 +
∫ tk

tk−1

f̄ (Xi ,k−1,u(τ),τ)dτ (2.32)

x̂k|k−1 =
2L∑

i=0
w (m)

i Xi ,k|k−1 (2.33)

Pk|k−1 =
2L∑

i=0
w (c)

i [Xi ,k|k−1 − x̂k|k−1][Xi ,k|k−1 − x̂k|k−1]T +Qd (2.34)

X ∗
i ,k|k−1 = [X0:2L,k|k−1 X0,k|k−1 −ν

√
Qd X0,k|k−1 +ν

√
Qd ]i (2.35)

Y ∗
i ,k|k−1 = h(X ∗

i ,k|k−1) (2.36)

ŷk =
2La∑

i=0
w∗(m)

i Y ∗
i ,k|k−1 (2.37)

Px y,k =
2La∑

i=0
w∗(c)

i [Xi ,k|k−1 − x̂k|k−1][Yi ,k|k−1 − ŷk ]T (2.38)

Py y,k =
2La∑

i=0
w∗(c)

i [Yi ,k|k−1 − ŷk ][Yi ,k|k−1 − ŷk ]T +R (2.39)

where La = 2L, ν=√
L+γ0 , w∗(m)

i and w∗(c)
i are calculated similar to Equation (2.31)

with the replacement of L by La , Qd is approximated by G(x̂k|k−1)QGT (x̂k|k−1)∆t
where ∆t = tk − tk−1 [87].
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Step2 Estimation of the faults

γk = (yk − ŷk ) (2.40)

Nk = (FT
k P−1

y y,k Fk )−1FT
k P−1

y y,k (2.41)

f̂ o
k = Nkγk (2.42)

P f
k = (FT

k P−1
y y,k Fk )−1 (2.43)

whereγk is the innovation, f̂ o
k is the estimation of f o

k and P f
k is its error covariance

matrix. Nk is the gain matrix which can achieve an unbiased estimation of f o
k .

Step3 Measurement update

Kk = Px y,k P−1
y y,k (2.44)

x̂k|k = x̂k|k−1 +Kk (yk − ŷk −Fk f̂ o
k ) (2.45)

Pk|k = Pk|k−1 −Kk (Py y,k −Fk P f
k FT

k )KT
k (2.46)

This measurement update is different from that of the normal UKF [27, 81] which is given
below for comparison and quick reference:

Kk = Px y,k P−1
y y,k (2.47)

x̂k|k = x̂k|k−1 +Kk (yk − ŷk ) (2.48)

Pk|k = Pk|k−1 −Kk Py y,k KT
k (2.49)

It can be seen that the measurement update of the normal UKF, as given by Equa-
tions (2.47)-(2.49), does not take the fault estimation and error covariance into account.
Also note that the normal UKF does not estimate the faults, which means that it does not
contain Equations (2.40)-(2.43).

The ADS fault estimation using the RTS-UKF is shown in the following.

ADS FAULT ESTIMATION USING THE RTS-UKF
The performance of the RTS-UKF will be demonstrated under different initial condi-
tions. The simulation data is taken from the simulation model of a Cessna Citation II
aircraft. During 10 s < t < 17 s. there is a 3-2-1-1 command on the aileron. The fault
scenario is given in Table 2.1. The true initial state x0 is as follows:

x0 = [90, 0.056, 0, 0, 0.0037, 0]T (2.50)

First, the true initial condition (2.50) is used as the initial guess x̂0 in the filter. P0 =
10−3 · I6. The standard deviations of the measurement noises are:

σw Ax =σw Ay =σw Az = 0.001 m/s2

σwp =σwq =σwr = 0.000018 rad/s

σvV = 0.1 m/s, σvα =σvβ = 0.0018 rad

σvφ =σvθ =σvψ = 0.0018 rad
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Figure 2.1: Result of state and ADS fault estimation using the RTS-UKF approach and initial condition (2.50)
in the presence of multiple faults

Therefore, Q and R can be inferred from Equations (2.9) and (2.10). The results are
shown in Figure 2.1.

The estimation errors of V ,α andβ, as shown in Figure 2.1(a), are close to zero-mean.
The estimation errors of φ, θ and ψ using the RTS-UKF are given in Figure 2.1(b). It can
be seen that the estimation errors are zero-mean except during the period when there is
a maneuver (10 s < t < 17 s). However, during this period the estimation errors are small,
e.g., the maximum estimation error of φ is less than 2×10−3 rad.

The estimation of fV , fα and fβ is given in Figure 2.1(c). As can be seen, all the faults
are estimated in an unbiased sense. The estimation errors can be found in Figure 2.1(d).

Next, the performance with two different initial conditions for x̂0 is tested. The two
initial conditions are as follows:

x̂0 = [90, 0, 0, 0, 0, 0]T , (2.51)

x̂0 = [1, 0, 0, 0, 0, 0]T . (2.52)
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The initial condition (2.52) significantly deviates from the true initial condition (2.50)
whereas condition (2.51) slightly deviates from condition (2.50). P0 is the same with the
previous simulation and is 10−3 · I6.

The state estimation errors of the RTS-UKF using the initial condition Equation (2.51)
are shown in Figure 2.2(a) and 2.2(b). As can be seen from Figure 2.2(a), the estimation
errors of V , α and β are larger than those shown in Figure 2.1(a). The estimation errors
of φ, θ and ψ, shown in Figure 2.2(b), are the same as those shown in Figure 2.1(b).

The state estimation errors of the RTS-UKF using the initial condition Equation (2.52)
are shown in Figure 2.2(c) and 2.2(d). The estimation errors of V , α and β, shown in
Figure 2.2(c), are significantly worse than those shown in Figure 2.1(a) and Figure 2.2(a).
However, the estimation errors ofφ, θ andψ, shown in Figure 2.2(d), are still zero-mean.

The estimates of fV , fα and fβ using the initial condition Equations (2.51) and (2.52)
are demonstrated in Figure 2.2(e) and 2.2(f) respectively. As can be seen from Fig-
ure 2.2(e), when the initial x0 deviates from the true state, the estimates of the faults
also deviate from their true magnitudes especially that of fα. When the initial condition
deviates significantly from the true initial condition, the performance becomes signifi-
cantly worse, as can be seen in Figure 2.2(f).

Based on the above simulation results, it is seen that the RTS-UKF is sensitive to the
initial condition errors. This sensitivity problem will be analyzed theoretically in the
following section.

2.3.2. PROBLEM ANALYSIS OF THE ROBUST THREE-STEP FILTER
In the previous sections, it was shown that the performance of the RTS-UKF is influenced
by the given initial condition. This section analyzes the problem of the sensitivity to the
initial condition.

Rewrite Equation (2.45) into

x̂k|k = x̂k|k−1 +Lkγk (2.53)

where Lk is defined as

Lk := Kk (I−Fk Nk ) (2.54)

The covariance matrix Px y,k , fault distribution matrix Fk , the innovation γk and x
can be partitioned as follows:

Px y,k =

P11 P12

P21 P22


 , Fk =


Ip

0


 ,

γk =

 γp

γm−p


 , x =


 xp

xL−p


 (2.55)

Since Py y,k is invertible, its inverse can be partitioned as follows:

P−1
y y,k =


R̃11 R̃12

R̃21 R̃22


 (2.56)
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Figure 2.2: Result of state and fault estimation using the RTS-UKF approach and two different initial
conditions in the presence of multiple faults
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where R̃11 ∈ Rp×p , R̃12 ∈ Rp×(m−p), R̃21 ∈ R(m−p)×p and R̃22 ∈ R(m−p)×(m−p). Therefore,
Equation (2.41) can be computed by

Nk = [R̃−1
11 0]


R̃11 R̃12

0 0




=
[

Ip R̃−1
11 R̃12

]
(2.57)

Substituting Equation (2.57) into Equation (2.54), it follows

Lk = Px y,k P−1
y y,k


0 −R̃−1

11 R̃12

0 Im−p


 (2.58)

=

0 L12

0 L22


 (2.59)

where L12 and L22 are defined as

L12 := P12(R̃22 − R̃21R̃−1
11 R̃12)

L22 := P22(R̃22 − R̃21R̃−1
11 R̃12)

Therefore, the measurement update of the robust three-step filter, denoted in Equa-
tion (2.53), can be further written as follows:

x̂k|k = x̂k|k−1 +

L12γm−p

L22γm−p


 (2.60)

It can be seen that γp is not used in the measurement update. Since γp is not used, the
estimation of xp is not updated by measurements of xp . Therefore, the estimation of
xp (V , α and β), is sensitive to the initial condition. If the initial x0 significantly deviates
from the true value, it will not be corrected to the true value. However, the estimation
of φ, θ and ψ is not influenced since they are updated by the measurement. This is
consistent with the result shown in Figures 2.2(b) and 2.2(d), where the estimation of φ,
θ and ψ is still good even when that of V , α and β is not.

In case that p = m and rank Fk = m, it can be found that

Nk = F−1
k (2.61)

Lk = 0 (2.62)

Consequently, the measurement update of the three-step Kalman filter is

x̂k|k = x̂k|k−1 (2.63)

This means that all the states are not updated by their measurements. In this situation,
all the state estimation will be sensitive to the initial condition.
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Through the analysis in this section and the performance demonstration of the RTS-
UKF in Section 2.3.1, the need for a modification of the RTS-UKF is emphasized. In real
life, the exact initial condition is difficult to obtain due to uncertainties in the system
(which can also be found in Section 2.5). The RTS-UKF will interpret the initialization
error as a fault, which results into wrong fault estimation. Therefore, the RTS-UKF can
not be applied to the FDD of the ADSs.

2.3.3. NOVEL ADAPTIVE THREE-STEP UNSCENTED KALMAN FILTER FOR

ADS FDD
Having found the cause for performance degradation of the RTS-UKF, this section pro-
poses a novel ATS-UKF to solve the ADS FDD. The sensitivity to the initial condition of
the RTS-UKF can be solved by performing the measurement update of normal UKF.

It should be noted that the RTS-UKF only considers the estimation of the faults. It
does not detect and isolate the faults. The proposed ATS-UKF deals with not only the
estimation of the faults, but also the detection and isolation.

In the following, the initial measurement update and FDI scheme are introduced.
Then the complete FDD system is introduced.

INITIAL MEASUREMENT UPDATE

The solution to reduce the sensitivity of the RTS-UKF to the initial condition is pro-
posed in this subsection, which is to use the measurement update of normal UKF (Equa-
tions (2.47)-(2.49)) when the state estimation is influenced by the initialization error.
However, when the correction is sufficient, i.e., when the measurement update of the
UKF is sufficient, needs to be determined. This chapter proposes a criteria which can
determine whether the measurement update of the UKF is sufficient. The details are
given as follows:

Let Ci i ,k , i = 1,2,3 denote the i th diagonal elements of the innovation covariance
matrix Ck associated with the measurements which are not used in the update of the
RTS-UKF at time step k. (i.e., the measurement of V , α and β respectively in this chap-
ter).

Define the change of the innovation variance ∆Ci i ,k as

∆Ci i ,k :=Ci i ,k −Ci i ,k−1, i = 1,2,3. (2.64)

When the following inequality holds, the measurement update can be regarded as
sufficient. The inequality is

∆Ci i ,k < ηi , i = 1,2,3. (2.65)

where ηi , i = 1,2,3 are pre-defined constants which can be tuned to stop the measure-
ment update. The principle is that if there are initialization errors, Ci i ,k is not constant.
When the filter achieves steady-state, Ci i ,k is approximately constant. Therefore, ∆Ci i ,k

should be small. If ∆Ci i ,k is smaller than ηi , then it indicates that the filter has reached
steady-state and the measurement update of the UKF is sufficient. If ηi is chosen to be
small, then the number of initial measurement update will be bigger while the influence
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of the initial condition error will be less. Ck can be estimated using the following [88, 89]:

Ĉk = 1

N

k∑

j=k−N+1
γ jγ

T
j (2.66)

where γ j denotes the innovation at time step j .

FAULT DETECTION AND ISOLATION

The fault detection is performed by monitoring the innovation variance of the filter. In
the presence of i th fault, Ci i ,k increases. The fault detection and isolation logic at time
step k is:

if Ci i ,k > Ti , FAi = 1. otherwise FAi = 0, i = 1,2,3.
where FA = [FAV FAα FAβ ]T are the alarm indicators. Ti are the thresholds which are

designed to detect the faults in the V , α and β sensors respectively. These thresholds are
designed based on the fault-free case. It can be seen that the fault detection and isolation
are simultaneously realized.

The weighted fault estimation can be calculated as follows:

f̄ o
i ,k = FAi f̂ o

i ,k , i = 1,2,3. (2.67)

ADAPTIVE THREE-STEP UNSCENTED KALMAN FILTER

When the initial measurement update is sufficient, there are two options to achieve FDD
which are as follows:

1. After the initial measurement update, the FDI scheme is used to detect and isolate
the faults. The RTS-UKF is used to estimate the faults.

2. After the initial measurement update, the FDI scheme is used to detect and isolate
the faults. If there are no faults detected, the UKF is used and the fault estimation
is considered to be zero. If there are faults detected, then the RTS-UKF is used for
the fault estimation and measurement update.

The ATS-UKF proposed in this chapter, is based on the latter one since it can reduce
the computational load. The measurement update of the ATS-UKF switches adaptively
between that of the normal UKF and that of the RTS-UKF through the FDI scheme. The
specific three steps of the ATS-UKF are given as follows:

1. Time update
This is the same as in the UKF, which also includes the sigma point calculation.
The steps are described by Equations (2.30)- (2.39).

2. Fault estimation
Before estimating the faults, the FDI, which has been introduced above, is per-
formed. If FA = 0, then f̂ o

k = 0. If FA 6= 0, then the faults are estimated using the
RTS-UKF, which is described by Equations (2.40)-(2.43). This step is the FDD.



2

34
2. ADAPTIVE THREE-STEP KALMAN FILTER FOR AIR DATA SENSOR FAULT DETECTION

AND DIAGNOSIS

3. Measurement update
As mentioned, during the initial measurement update, the measurement update
of the normal UKF is applied. When the initial measurement update is done, the
measurement update of the ATS-UKF is as follows:

(a) If FA = 0, use the the measurement update of the normal UKF.

In this situation, there are no faults detected in the system. To reduce the
computational load, the measurement update of the UKF is used. This means
that the faults are considered to be zero, so that the faults estimation and
measurement update of the RTS-UKF are not needed. The steps are described
by Equations (2.47)-(2.49).

(b) If FA 6= 0, use the measurement update of the RTS-UKF.

In this situation, faults are detected. Therefore, the measurement update of
the RTS-UKF is needed to obtain an unbiased state estimation and fault es-
timation, which can not be achieved using the normal UKF. The steps are
described by Equations (2.44)-(2.46).

2.3.4. ADS FDD USING THE ATS-UKF
In this section, the FDD as well as the state estimation performance of the proposed
ATS-UKF is demonstrated using two different fault scenarios. The initial condition is
the same as in Equation (2.52). The threshold to stop the initial measurement update is
η = [5× 10−3, 2× 10−5, 2× 10−5]T and the threshold to detect the fault is T = [0.2, 1×
10−4, 5×10−5]T .

MULTIPLE FDD
In this scenario, consecutive ADS faults are generated, which are shown in Table 2.1. The
results using the ATS-UKF are shown in Figure 2.3.

It is found that using the above thresholds, the initial measurement update is only
performed for two time steps. The estimation of V ,α andβ is shown in Figure 2.3(a). De-
spite the fact that the initial x0 significantly deviates from the true state, the estimation is
still satisfactory. This means that the sensitivity to the initial condition of the RTS-UKF is
tackled by the ATS-UKF. The estimation of φ, θ and ψ, as shown in Figure 2.3(b), is also
satisfactory. This demonstrates the state estimation performance of the ATS-UKF.

The fault detection and isolation is achieved by checking FAV , FAα and FAβ , which
is shown in Figure 2.3(c). From the figure, it can be seen that fV is detected instanta-
neously. The detection of fα takes longer than that of fV . This is because fα is a drift
fault which is a slow time-varying fault. fβ is also detected instantaneously. However,
FAβ switches from 1 to 0 nine times. This is as expected since the oscillatory fault crosses
zero nine times. When the magnitude of the fault is zero, it can be regarded as no fault.
From the figure, it is obvious that fault isolation is also achieved. For instance, when
FAV = 1, both FAα and FAβ are equal to zero, which means only fV occurs.

The estimation of fV , fα and fβ is shown in Figure 2.3(d). As can be seen, all the
faults are estimated in an unbiased sense. The weighted fault estimation, calculated
using Equation (2.67), is shown in Figure 2.3(e). The error of the estimation of fV , fα
and fβ is shown in Figure 2.3(f). It is seen that all the estimation errors are zero-mean.
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Figure 2.3: Result of state estimation and ADS FDD using the proposed ATS-UKF approach in the presence of
multiple faults

This demonstrates the fault estimation performance of the ATS-UKF. It is also noticed
that when there are no faults or the faults are not detected, the estimates of the fault are
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Figure 2.4: Result of fault detection and isolation using the proposed ATS-UKF approach in the presence of
multiple faults

zero and so are the estimation errors. This is due to the fact that when there are no faults
detected, the measurement update of the UKF is used and the faults are considered to
be zero.

The fault detection of the oscillatory faults, shown in Figure 2.3(c), shows a chattering
behavior. To detect the presence of oscillatory failures, the detection logic of oscillatory
faults in Goupil [39] is used. The basic idea is to count the crossings of the fault esti-
mate (shown in Figure 2.3(e)) through a positive and negative threshold within a sliding
time window. In this chapter, the oscillatory faults are detected if one full oscillation is
detected. The result of detecting the oscillatory fault is shown in Figure 2.4(a). In the
figure, OFC denotes oscillatory failure case (OFC). As can be seen, an oscillatory fault is
only detected in the β sensor. If we take the bigger value of FAi and OFCi (i is associated
with the sensor of V , α and β), the fault detection including the detection of the oscilla-
tory fault can be obtained, which is demonstrated in Figure 2.4(b). In the figure, the red
dashed line indicates that the detected fault is an oscillatory fault.

SIMULTANEOUS FDD
In this scenario, simultaneous faults are generated which are shown in Table 2.2. The
ATS-UKF is used to detect, isolate and estimate these faults. The results are given in
Figure 2.5.

The estimation errors of V , α, β and φ, θ and ψ using the ATS-UKF are shown in
Figure 2.5(a) and Figure 2.5(b), respectively. As can be seen, even in the presence of
simultaneous faults, the state estimation performance of the ATS-UKF is still satisfactory.

The fault detection and isolation performance is shown in Figure 2.5(c). As can be
seen, there are no false alarms, which demonstrates its good performance. For the de-
tection of fα and fβ during 10 s< t < 20 s, and fV during 30 s< t < 40 s, there are detection
delays since there are drift faults. The dashed lines in the figure indicate that the detected
faults are oscillatory faults.
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Figure 2.5: Result of state and ADS FDD using the proposed ATS-UKF approach in the presence of
simultaneous faults

Figure 2.5(d) and 2.5(e) show the estimation and weighted estimation of fV , fα and
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fβ, respectively. It can be seen that the fault estimation performance is satisfactory. All
faults are estimated in an unbiased sense including the oscillatory faults. The estimation
error of fV , fα and fβ is shown in Figure 2.5(f). It can be seen that the error is zero-mean,
which confirms the good estimation performance of the ATS-UKF.

2.4. PERFORMANCE VALIDATION USING REAL FLIGHT DATA
In the previous section, the FDD performance of the ATS-UKF is tested using simulated
aircraft data. In this section, the FDD performance of the ATS-UKF is validated using
real flight test data of the Cessna Citation II aircraft. Air data information such as α and
β are measured for post flight analysis. The real flight data contains uncertainties such
as biases and spikes. Additionally, in real flight, external disturbances, such as chang-
ing wind, can also influence the air data measurements. Therefore, the real flight data
poses challenges to the ADS FDD problem and provides a realistic validation of the per-
formance of FDD approaches such as the ATS-UKF.

The primary objective of the flight test is aerodynamic model identification where a
number of maneuvers were performed by the aircraft in order to obtain sufficient exci-
tation. Since there were no faults during the flight, sensor faults are injected into the real
flight data to validate the FDD performance of the ATS-UKF. Besides the fault scenarios
presented in Tables 2.1 and 2.2, a fault-free case is also studied.

The real flight data used in this chapter is the same as that in Lu et. al [85]. In Lu et. al,
the estimated wind turns out to be time varying. This can test the ADS FDD performance
of the ATS-UKF under the condition of winds.

The update rates of the on-board sensors are given in Table 2.3.

Table 2.3: Update frequencies of different measurements

Measurements Unit Update frequency

V [ m/s ] 100 Hz

un , vn , wn [ m/s ] 1 Hz

α, β [ rad ] 100 Hz

φ, θ [ rad ] 100 Hz

ψ [ rad ] 10 Hz

2.4.1. REAL-LIFE MEASUREMENT MODEL

For simulated aircraft data, the measurement model is given in Equations (2.19) - (2.24).
If f o = 0, the measurements are only corrupted by white Gaussian noises, as can be
seen from the equations. However, this is never the case in real life. In this flight test,
the air data information, such as α and β, is measured by multiple vanes on a boom
(shown in Figure 2.6) which is mounted on the nose of the aircraft. It is assumed that the
vanes are rigid so that the effects of vibrations can be neglected. The angle of attack and
angle of sideslip measured by the vanes are denoted by αvm and βvm , respectively. The
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measurements αvm and βvm is different from Equations (2.20) and (2.21), respectively.
The measurement model for the real-life measurements is given as follows [90–92]:

Vm =V + vV (2.68)

αm =Cα0 + (1+Cup )α+ xαq

V
+ vα (2.69)

βm =Cβ0 + (1+Csi )β−
xβr

V
+

zβp

V
+ vβ (2.70)

φm =φ+ vφ (2.71)

θm = θ+ vθ (2.72)

ψm =ψ+ vψ (2.73)

where xα, xβ and zβ are the position of the vanes in the body frame, Cα0, Cβ0, Cup and
Csi are the boom correction parameters. In this chapter, zβ is assumed to be zero. The
parameter estimation can be found in Lu et al. [92]. For the ADS FDD using real flight
data, this measurement model is used. However, it should be noted that in this real-life
measurement model, boom bending is considered to be negligible for the maneuvers
flown.

Figure 2.6: The vanes on the boom for measuring the angle of attack and angle of sideslip. Photo credits by
Daan Pool.

2.4.2. ADS FDD USING REAL FLIGHT DATA IN THE ABSENCE OF FAULTS
Using the real-life measurements, uncertainties and disturbances such as varying winds
can also have a negative influence on the FDD performance, which can result in false
alarms. Under this condition, the FDD approaches should not give false alarms. In this
section, the ATS-UKF is tested in a fault-free case to verify whether it gives false alarms.

In order to show the effectiveness of the ATS-UKF, the RTS-UKF is also applied to
estimate the ADS faults. The initial condition x0 given for the RTS-UKF is the first mea-
surement which is:

[104.8733, 0.0796, 0.0073, −0.0019, 0.0733, 4.6692]T (2.74)

The initial condition x0 given for the ATS-UKF is:

[1, 0, 0, 0, 0, 0]T (2.75)



2

40
2. ADAPTIVE THREE-STEP KALMAN FILTER FOR AIR DATA SENSOR FAULT DETECTION

AND DIAGNOSIS

In this manner, the initial condition given for the RTS-UKF is close to the true state
whereas that of the ATS-UKF significantly deviates from the true state. The threshold to
stop the initial measurement update is η= [5×10−3, 2×10−5, 2×10−5]T and the thresh-
old to detect the fault is T = [0.2, 1×10−4, 5×10−5]T , which are the same as those used
in the previous section.

The estimation of V , α and β using the RTS-UKF is given in Figure 2.7(a). The fault
estimation using the RTS-UKF is given in Figure 2.7(b). As can be seen, the estimated
faults deviate from their true magnitudes. This result shows that the RTS-UKF is not able
to be applied for real applications unless modifications are made.

The results of the ATS-UKF are shown in Figures 2.7(c) - 2.7(f). The estimation of
V , α and β, and φ, θ and ψ are shown in Figures 2.7(c) and 2.7(d) respectively. The
estimates of α and β using the ATS-UKF are different from those using the RTS-UKF.
The fault detection result, shown in Figure 2.7(e), indicates that there are no faults. This
demonstrates that the ATS-UKF does not give false alarms in the presence of no faults
even when the real flight data is used. The weighted estimates of fV , fα and fβ, shown
in Figure 2.7(f), are zero-mean. This confirms the fault estimation performance of the
ATS-UKF.

2.4.3. ADS FDD USING REAL FLIGHT DATA IN THE PRESENCE OF MULTIPLE

FAULTS

In this subsection, the ADS FDD performance of the ATS-UKF will be verified using the
real-life measurement model in the presence of multiple faults (given in Table 2.1). The
initial condition for RTS-UKF is the same as in (2.74) and that of the ATS-UKF is the same
as in (2.75).

The results using these two approaches are shown in Figure 2.8.

The estimation of V , α and β using the RTS-UKF is shown in Figure 2.8(a). The fault
estimation is shown in Figure 2.8(b). Although the initial condition of the RTS-UKF is
chosen to be the measurements, the estimation of the faults are still biased. This shows
the drawback of the RTS-UKF when it is used in practice because the initial condition
error will be estimated as a bias fault.

The estimation of V , α, β and φ, θ,ψ using the ATS-UKF is presented in Figure 2.8(c)
and 2.8(d) respectively. It can be seen that the estimates of α, β are again different from
those of the RTS-UKF shown in Figure 2.8(a).

The fault detection and isolation using the ATS-UKF is given in Figure 2.8(e). No
false alarms are generated and the isolation is also correct. It can be seen that the per-
formance is as good as that in Figure 2.4(b) where the simulation data is used. The oscil-
latory fault is also detected, which is shown by the dashed line.

The weighted estimation of fV , fα and fβ using the ATS-UKF is presented in Fig-
ure 2.8(f). Even though the initial condition of the ATS-UKF deviates from the true state
significantly, its performance is not sensitive to the initial condition. Since the faults
are estimated in an unbiased sense, the estimates of α, β using the ATS-UKF are more
reliable than those using the RTS-UKF.
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Figure 2.7: State estimation and ADS FDD of the real-life measurement model of the aircraft using the
RTS-UKF and the ATS-UKF approach in the absence of faults
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(e) Fault detection and isolation using the ATS-UKF
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Figure 2.8: State estimation and ADS FDD of the real-life measurement model of the aircraft using the
RTS-UKF and the ATS-UKF approach in the presence of multiple faults

2.4.4. ADS FDD USING REAL FLIGHT DATA IN THE PRESENCE OF SIMULTA-
NEOUS FAULTS

In this subsection, simultaneous faults (given in Table 2.2) are injected into the real flight
data to validate the performance of the ATS-UKF. The result of the RTS-UKF is also pre-
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Figure 2.9: ADS FDD of the real-life measurement model of the aircraft using the RTS-UKF approach in the
presence of simultaneous faults

sented, which is given in Figure 2.9. From this figure, it is seen the fault estimation of the
RTS-UKF is again biased although the initial x0 is chosen to be the measurements. This
highlights the limitation of the RTS-UKF when used in reality.

The results using the ATS-UKF is shown in Figure 2.10. The state estimation is pre-
sented in Figures 2.10(a) and 2.10(b) respectively.

The fault detection and isolation using the ATS-UKF is shown in Figure 2.10(c). No
false alarms are observed from the figure and the oscillatory faults are also detected. The
performance is as good as that in Figure 2.5(c) where the simulation data is used. This
confirms the FDI performance of the ATS-UKF.

Estimation and weighted estimation of fV , fα and fβ using the ATS-UKF are shown
in Figures 2.10(d) and 2.10(e), respectively. All fault estimates achieve an unbiased es-
timation. The fault estimation errors are demonstrated in Figure 2.10(f). Although the
errors are not zero-mean, they are small compared to the states.

2.5. CONCLUSIONS
This chapter deals with the ADS FDD of aircraft. First, the RTS-KF is extended to the RTS-
UKF to cope with nonlinear systems. Second, the RTS-UKF is found to be sensitive to the
initial condition. The problem is analyzed theoretically and subsequently, a novel ATS-
UKF is proposed to detect, isolate and estimate the ADS faults. The ATS-UKF contains
three steps: time update, fault estimation and measurement update. The ATS-UKF is
validated using simulated aircraft data, which shows good FDD performance.

The performance of the ATS-UKF is further validated using real flight data of the
Cessna Citation II aircraft to test its performance under real-life uncertainties. It was
found that although the measurement data contains biases which can not be removed
completely and the initial condition is far from the true state, the ATS-UKF is still able to
maintain its satisfactory FDD performance. This demonstrates that it can be applied in
practice.
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Figure 2.10: State estimation and ADS FDD of the real-life measurement model of the aircraft using the
ATS-UKF in the presence of simultaneous faults

This ATS-UKF, which deals with ADS FDD, can be incorporated into FTC systems to
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further enhance the safety of the aircraft. It can detect faults without giving false alarms.
In addition, it can provide both unbiased state estimation and fault estimation, which
are important for the recovery from sensor faults.

In the future, the ATS-UKF should be integrated into a FTC system. Finally, it is highly
recommended that a real-world flight experiment is designed and executed to detect and
estimate ADS faults in aircraft during flight.





3
SELECTIVE-REINITIALIZATION

MULTIPLE-MODEL ADAPTIVE

ESTIMATION FOR FAULT

DETECTION AND DIAGNOSIS

In the previous chapter, ADS FDD in the presence of model uncertainties was coped
with. In this chapter, both IMU and ADS FDD will be considered. The model used is
still the airspeed-based kinematic model. The approach for state and fault estimation is
Selective-Reinitialization Multiple-Model Adaptive Estimation approach. This approach
offers a faster fault detection compared to the approach used in the previous chapter. In
the first part of this chapter, the IMU FDD is considered. Then the ADS FDD is addressed.

The simulation data used in this chapter is available at: https://www.researchgate.
net/profile/Peng_Lu15/publications?pubType=dataset.

Parts of this chapter are based on:

P Lu, L Van Eykeren, E van Kampen, Q P Chu. Selective-Reinitialization Multiple Model Adaptive Estimation
for Fault Detection and Diagnosis. Journal of Guidance, Control and Dynamics, 38(8), 1409-1424, 2015. [83]
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The existing MMAE approach is able to detect faults quickly. However, there are three main
problems when it is used for Fault Detection and Diagnosis: false alarms, requirement of
designing additional models to identify the faults and slow response to detect the removal
of the faults. In this chapter, a novel SRMMAE approach is proposed. This approach in-
troduces a state augmentation strategy which can identify the faults without designing
additional models and reduce false alarms. The major contribution of this approach is
that three selective reinitialization algorithms are proposed which can improve the per-
formance of the MMAE significantly. The SRMMAE approach eliminates false alarms and
is quick to detect the removal of the faults. The performance of the propose approach
is compared with the MMAE and the IMM with an example of the fault diagnosis of the
Inertial Measurement Unit and Air Data Sensors for a Cessna Citation II aircraft. The sim-
ulation results suggest that the SRMMAE outperforms the MMAE and IMM in effectiveness
and efficiency.

3.1. INTRODUCTION

PRESENTLY, FDD has an important role of achieving fault-tolerance [11]. State-of-the-
art aircraft FDD systems mainly rely on hardware redundancy to enhance the reli-

ability and safety of the aircraft [93]. The same holds for the electronic flight control
systems or fly-by-fire systems of modern aircraft [9]. Sensor or actuator faults may cause
serious problems; hence, quick detection and isolation of these faults is required [9].
To achieve a better FDD performance (e.g. earlier detection of small and subtle faults),
a valuable solution is the model-based analytical redundancy techniques [11]. During
the last decades, many such approaches [13, 19, 66, 94–98] have been proposed to per-
form the FDD of aircraft actuators and sensors. Some recent advances and trends can
be found in Zolghadri [14]. Zolghadri et al. [70] address the actuator faults including
oscillatory, runaway and jamming faults. They also address the IMU sensor faults. Their
presented techniques have been tested on highly representative benchmarks, real flight
data or real-world aerospace systems [70]. The present chapter is concerned with the
FDD of IMU sensor and ADS faults. The fault types include bias and drift faults.

One of the most effective approaches for FDD is the multiple model-based approach
[99]. The MMAE [34, 37, 93, 100, 101] runs a bank of filters in parallel, termed “elemental
filters”. Each of these filters is based on a hypothesized parameter vector matching to a
particular fault mode. When the MMAE is used to estimate the value of faults, a number
of additional filters are required, which increases the computational load significantly.
To cope with that, Maybeck et al. proposed a moving bank MMAE algorithm [36, 102]
and a hierarchical structure [37] to reduce the number of required filters online. How-
ever, false alarms and slow detection of the removal of faults still remain. To improve the
FDD performance, Ducard et al. [103] proposed an actuator excitation method which
tests the triggered alarms to confirm the alarms or remove them. Another effective solu-
tion is the reinitialization of the elemental filters.

For the multiple-model estimation, how to reinitialize each single-model-based fil-
ter is very important [99]. As for the traditional MMAE, each elemental filter uses its
own initial state estimate and covariance of state estimate error for reinitialization [99].
All the filters are running in parallel without interactions with each other [99, 104]. The
IMM approach [35, 99, 105] is another multiple model-based approach in which all the
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Figure 3.1: Structure of the chapter

elemental filters interact with each other. Each filter is reinitialized at every time step us-
ing the mixture of the state estimates from the single-model-based filters [99]. However,
the IMM usually has a degraded FDD performance as a result of its tendency to enhance
the state estimation ability in order to track the objectives [106].

In this chapter, a novel SRMMAE approach is proposed to solve the aforementioned
problems. It uses the UKF [27, 86] as a local filter in order to improve the state estimation
performance. Input and output faults are augmented as additional states, which reduces
false alarms. The major innovation of this approach is that it proposes three SR algo-
rithms which are able to improve the FDD performance of the MMAE significantly. The
MMAE using the three SR algorithms are called SRMMAE1, 2 and 3 respectively. The SR-
MMAE1 is designed for input FDD whereas the SRMMAE2 and SRMMAE3 are designed
for output FDD. The proposed approach is able to solve the problem of false alarms and
slow response to detect that faults have been removed, without actuator excitation. The
input and output FDD performance of this novel approach is compared to the MMAE
and the IMM approach with the objective of the IMU sensor and ADS FDD of a Cessna
Citation II CE-550 aircraft model. The SRMMAE2 and SRMMAE3 are able to identify the
output faults while the fault estimation of the augmented MMAE diverges.

The structure of this chapter is shown in Figure 3.1. Section 3.2 gives the preliminar-
ies on the MMAE approach for FDD. Section 3.3 presents the concept of the SRMMAE
approach as well as the difference within the multiple model-based approaches. In Sec-
tion 3.4 the robust FDD of the aircraft sensors is described. The Unscented Multiple-
Model Adaptive Estimation (UMMAE) and the Augmented Multiple-Model Adaptive Es-
timation (AMMAE) which augments the input and output faults as additional states are
presented in Section 3.5. In Section 3.6, the SRMMAE1 is proposed for the input FDD
while in Section 3.7, the SRMMAE2 and SRMMAE3 are proposed for the output FDD.
The performance of the three algorithms is compared to the UMMAE and AMMAE. In
Section 3.8, the performance of the three algorithms is compared to the IMM approach.
Finally, the conclusions are made in Section 3.9.

3.2. MULTIPLE-MODEL ADAPTIVE ESTIMATION FOR FDD

This section presents some preliminaries related to this research.
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Figure 3.2: Block diagram for the MMAE approach

3.2.1. NONLINEAR SYSTEM MODEL WITH INPUT AND OUTPUT FAULTS
Consider the following nonlinear state-space model with input and output faults

{
ẋ(t ) = f (x(t ),u(t ), t )+G(x(t ))w (t )+G(x(t )) f i (t ) (3.1)

y(t ) = h(x(t ),u(t ), t )+v (t )+F(t ) f o(t ), t = ti , i = 1,2, ... (3.2)

where x ∈ Rn represents the system states, u ∈ Rb the input, y ∈ Rd the measurement.
The functions f i ∈ Rb and f o ∈ Rm represent input and output faults respectively. The
input noise vector w and output noise vector v are defined as follows:

E [w (t )] = 0, E [w (t )w T (τ)] = Qδ(t −τ) (3.3)

E [v (ti )] = 0, E [v (ti )v T (t j )] = Rδ′i j (3.4)

E [w (t )v T (ti )] = 0 , t = ti , i , j = 1,2, ... (3.5)

where Q and R are the covariance matrix of the input noise and output noise respectively.
δ and δ′ are the Dirac function and Kronecker delta function, respectively.

3.2.2. MULTIPLE-MODEL ADAPTIVE ESTIMATION
The MMAE [37] is composed of a bank of Kalman filters operating in parallel. All the
filters use a vector of measurements Y explained below and a vector of input u, and
are based on the same equation of motion while each hypothesizes a different fault sce-
nario. At sample step k, each of the filters produces a state estimate x̂(k) and a vector
of innovations γ(k). The basic idea is that the Kalman filter which produces the most
well-behaved innovation contains the model which matches the true faulty model best.
The block diagram for the MMAE is given in Figure 3.2.

A hypothesis test uses the vector of innovationsγ(k) and the residual covariance ma-
trices A(k) of the filters in order to assign a conditional probability to each of the filters
which matches a particular fault scenario. Let a denote the fault scenarios of the non-
linear system and K the number of the filters of the MMAE. If we define the hypoth-
esis conditional probability pi (k) as the probability that a is assigned the value ai for
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i = 1,2, ...,K , conditioned on the measurement history up to time step k:

pi (k) = Pr[a = ai |Yk ], i = 1,2, ...,K (3.6)

Then the conditional probability can be updated recursively using the following equa-
tion:

pi (k) = fyk |a,Yk−1 (yk |ai ,Yk−1)pi (k −1)
K∑

j=1
fyk |a,Yk−1 (yk |a j ,Yk−1)p j (k −1)

, i = 1,2, ...,K (3.7)

In Equation (3.7), Yk−1 is the measurement history vector which is defined as

Yk−1 = {y(0), y(1), .., y(k −1)},

fyk |a,Yk−1 (yk |ai ,Yk−1) is the density function which is defined as follows:

fyk |a,Yk−1 (yk |ai ,Yk−1) =βi (k)e−(γT (k)Ai (k)−1γ(k))/2 (3.8)

where

βi (k) = 1

(2π)d/2|Ai (k)|1/2
(3.9)

In Equation (3.9), d is the dimension of the measurement, the symbol “|...|” denotes
the determinant of the innovation covariance matrix Ai (k) which is computed by the
Kalman filter at time step k. The filter which matches the fault scenario produces the
smallest innovation which is the difference between the estimated measurement and
the true measurement. Therefore, the conditional probability of the filter which matches
the true fault scenario is the highest among all the filters. After the computation of the
conditional probability, the state estimation of the nonlinear system can be generated
by the weighted state vector of the K filters.

x̂(k) =
K∑

i=1
x̂i (k)pi (k) (3.10)

3.2.3. MMAE FOR FDD
The model probability indicates to what extent each model matches the system model;
hence, it can be used for FDD in real time. Normally, the alarm for the i th fault is trig-
gered if the associated fault model probability exceeds a certain percentage pu for a cer-
tain amount of time and is not triggered if it is below pl for a certain amount of time,
which is described as follows:

pi (k)

{
> pu ⇒ alarm for the i th fault is triggered

< pl ⇒ alarm for the i th fault is not triggered
(3.11)

where pu and pl can be chosen to be 0.9 and 0.05 respectively according to Ducard et al.
[103].

If the estimation of the fault performed by the i th corresponding filter is denoted as
f̂i (k), then its probability-weighted fault estimation can be denoted as follows:

f̄i (k) = f̂i (k)pi (k) (3.12)
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where f̄i (k) is the probability-weighted fault estimation.
In this chapter, we call the filter based on the fault-free model as “fault free filter” and

the filter based on the faulty model as “fault filter”.

3.3. SELECTIVE-REINITIALIZATION MULTIPLE MODEL ADAP-
TIVE ESTIMATION

As for the multiple model-based approaches, the gains of the filters based on the mis-
matched models decrease monotonically with time. Consequently, an abrupt fault may
not be immediately reflected in a corresponding change in the filter estimates, even if a
lower bound on the probabilities is set [99]. Therefore, reinitialization of the elemental
filters is important.

For the traditional MMAE, an elemental filter is reset to its initial condition [99] or
only restarted when there is an indication of divergence [106]. All the filters operate
independently without interaction with each other [104]. This may lead to detection
delay or missed detection for subsequent faults [99]. In contrast, the IMM approach
reinitializes all the elemental filters at every step using the mixture of the estimates from
the filters. This mixing process of the IMM approach weakens its ability to detect the
fault despite of the enhancement of its state estimation performance.

The SRMMAE approach proposes a SR scheme which results in an interaction in
between. It requires more reinitializations than the traditional MMAE. When there are
faults, the SRMMAE keeps reinitializing the fault free filter whereas the traditional MMAE
just resets or restarts its filters. The similarity between the SRMMAE and the IMM is that
the elemental filters interact with each other. The main differences between these two
approaches are as follows:

1. They use different reinitialization frequencies
The IMM performs the reinitialization at every step whereas the SRMMAE only
reinitializes for certain time steps according to different SRMMAE algorithms.

2. They use different reinitialization algorithms
The IMM reinitializes the filters using their mixed state estimates whereas the SR-
MMAE does not use the mixed estimates. Furthermore, the IMM reinitializes all
the filters whereas the SRMMAE reinitializes the filters selectively.

How to perform the SR and the advantage of performing this SR will be demonstrated
in the following sections. Furthermore, the advantages of this SRMMAE compared to the
MMAE and IMM will also be demonstrated.

3.4. ROBUST AIRCRAFT SENSOR FDD
This chapter deals with the FDD of aircraft sensors. Normally, there are three categories
of sensors on civil airplanes: IMU sensors, ADS and Global Positioning System (GPS).
The ADS provide information about e.g. the true airspeed V , angle of attack α and angle
of sideslipβ. The IMU sensors measure the specific forces Ax , Ay , Az and rotational rates
p, q,r of the aircraft. The GPS receiver provides three dimensional position x, y, z and
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ground velocity components un , vn , wn . Without losing generality, only the faults of the
IMU sensors and ADS are considered.

In order to achieve robustness to model uncertainties due to the calculation of the
aerodynamic forces and moments, kinematic model [59, 82, 90, 107] is used instead of
the aerodynamic equations. This is important since the performance of model-based
approaches is sensitive to the model uncertainties. Moreover, this approach also reduces
the computational load.

The currently used kinematic equations do not incorporate the effect of the turbu-
lence. However, this can be solved using the MMAE approach by adding an additional
filtering stage to achieve robustness in the event of the turbulence [103]. Furthermore,
this is beyond the scope of this chapter.

3.4.1. AIRCRAFT MODEL USING THE KINEMATIC EQUATIONS

The kinematic model of the aircraft including the IMU sensor and ADS faults is described
as

ẋ(t ) = f
(
x(t ),um(t ), t

)+G(x(t ))w (t )+G(x(t )) f i (t ) (3.13)

ym(t ) = h(x(t ),um(t ), t )+v (t )+F(t ) f o(t ), t = ti , i = 1,2, ... (3.14)

The system equation variables are defined as follows:

x = [V α β φ θ ψ]T (3.15)

um = u +w + f i = [Ax Ay Az p q r ]T +w + f i (3.16)

ym = [Vm αm βm φm θm ψm]T (3.17)

w = [wx wy wz wp wq wr ]T (3.18)

v = [vV vα vβ vφ vθ vψ]T (3.19)

f i = [ f Ax f Ay f Az fp fq fr ]T (3.20)

f o = [ fV fα fβ]T (3.21)

where the input fault f i is the fault of the IMU sensors. [ fV , fα, fβ]T is the fault of the
ADS. w and v are the input and output white Gaussian noise, respectively. um is the
measured input and ym is the measured output.
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The kinematic equations can be derived as follows:

V̇ = (Ax − g sinθ)cosαcosβ+ (Ay + g sinφcosθ)sinβ

+ (Az + g cosφcosθ)sinαcosβ (3.22)

α̇= 1

V cosβ
(−Ax sinα+ Az cosα+ g cosφcosθcosα

+ g sinθ sinα)+q − (p cosα+ r sinα) tanβ (3.23)

β̇= 1

V
[−(Ax − g sinθ)cosαsinβ+ (Ay + g sinφcosθ)cosβ

− (Az + g cosφcosθ)sinαsinβ]+p sinα− r cosα (3.24)

φ̇= p +q sinφ tanθ+ r cosφ tanθ (3.25)

θ̇ = q cosφ− r sinφ (3.26)

ψ̇= q
sinφ

cosθ
+ r

cosφ

cosθ
(3.27)

For detailed derivations, please refer to Appendix B. From the above equations, the noise
distribution matrix G(x(t )), which is linear in w (t ), can be derived as follows:

G(x(t )) =




−cαcβ −sβ −sαcβ 0 0 0

sα/(V cβ) 0 −cα/(V cβ) cαtβ −1 sαtβ

cαsβ/V −cβ/V sαsβ/V −sα 0 cα

0 0 0 −1 −sφtθ −cφtθ

0 0 0 0 −cφ sφ

0 0 0 0 −sφ/cθ −cφ/cθ




(3.28)

where s(•), c(•) and t(•) denote the trigonometric functions sin(•), cos(•) and tan(•) re-
spectively. The measurement model can be rewritten as follows:

ym = Hx +v +F f o , H = I6×6,F = [I3×3 O3×3]T (3.29)

Remarks:

1. It can be seen from the above-mentioned equations that the IMU sensor mea-
surements serve as the input of the system while the ADS provide the output mea-
surements. Under these conditions, the faults of the IMU sensors are the input
faults while the faults of the ADS are the output faults denoted in the model Equa-
tion (3.13) and Equation (3.14).

2. In the kinematic equations, the physical actuators such as the elevator, rudder and
aileron do not appear in the equations. This is also advantageous since the FDD of
the actuators and sensors are separated. The result of the FDD of the IMU sensors
and ADS does not affect the FDD of the actuators.
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3.4.2. SELECTION OF Q AND R
The Q and R defined in Equation (3.3) and Equation (3.4) respectively are critical to the
performance of the Kalman filter. R can be inferred from the output measurement noise.
In this chapter, it is obtained from the noise of the ADSs and the sensors which measure
the attitude angles. Q is usually used to represent modeling errors [87, 108]. As can be
seen from the kinematic equations, the only model uncertainty is in the input (i.e. the
IMU measurements). Therefore, Q can be inferred from the IMU sensor noise.

3.5. THE UMMAE AND AMMAE FOR INPUT AND OUTPUT FDD
This section introduces the UMMAE and AMMAE whose performance will be compared
to the proposed approach. They will be applied to the problem described in the last
section.

3.5.1. UMMAE FOR FDD
The MMAE approach usually uses the KF or EKF as the elemental filters. However, in this
chapter, the UKF is used in order to improve state estimation performance. As such, all
the filters in Figure 3.2 are replaced by UKF. For detailed information about the UKF, the
reader is referred to Julier et al. [27, 109] and van der Merwe et al. [86].

DISCUSSIONS ON IMPLEMENTATION

The state dynamics presented in Equation (3.1) and Equation (3.13) are modeled as
continuous-time processes. The measurement model given in Equation (3.2) and Equa-
tion (3.14) are modeled as discrete-time processes. This results in a continuous-discrete
system.

The discrete-time UKF [27] combined with Euler approximation is able to perform
the estimation of the continuous-discrete time system as done in Julier et al. [27].

Another solution is to use the Continuous-Discrete UKF [110] which is a continuous-
discrete form of the UKF designed for continuous-discrete systems.

3.5.2. AMMAE FOR FDD
The MMAE approach is able to perform state estimation and parameter estimation at the
same time and can detect and isolate the faults in the system quickly [37]. In this section,
the performance of the MMAE with respect to the fault estimation will be discussed.

MMAE FOR FAULT ESTIMATION

The MMAE approach has a satisfactory performance in state estimation. However, if the
MMAE approach is used to identify the faults, additional models are needed. Normally,
multiple model-based methods use one fault free model and at least one faulty model
to estimate the partial faults of each component such as the input and the output of the
aircraft model. For example, if there are K faults, then we need at least 2K + 1 models
(one fault free model, K total fault models and K partial fault models) to model the total
and partial faults [99]. The more models representing different fault values are used, the
more accurate the estimation of the faults will be. However, it is computationally inten-
sive. To avoid this, Maybeck and his research team proposed the Moving-Bank MMAE
[36, 102] and Hierarchical MMAE [37]. The Hierarchical MMAE divides the FDD into
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two levels: the fault detection and fault estimation. After the detection of the fault, the
MMAE method enters the next level-fault estimation. Although this method only runs
K +1 models online, K (K +1)+1 models have to be designed offline. Ru [111] used three
models (a = 0,0.5,1, a is the fault values of the model which matches the faulty model) in
the second level for each component. However, 3K +1 models are still required. Ducard
[103] proposed to augment the deflection of the actuators of the aircraft in order to elim-
inate the effect of the biased estimation when using the MMAE method to tackle the fault
scenarios that the actuators are locked at nonzero positions.

In this chapter, the augmentation strategy is introduced to both input and output
FDD. This approach is called AMMAE. For the model which matches the input faults,
the faults of the input are treated as additional states of the filter and the same for the
model which matches the output faults. There may be problems when augmenting the
output faults as additional states since the estimation of the augmented output faults
may not be unbiased. However, it can be solved by the proposed SRMMAE approach,
which will be shown in the following section.

AMMAE FOR INPUT FDD
Consider the system model described by Equation (3.1) and Equation (3.2). The dimen-
sion of the input fault is b. As for the input FDD, b +1 models are needed. b models are
the models matching the b input faults and the other model is the fault free model.

The states of the fault free model are denoted as

x f f (k) = [x f f ,1(k), x f f ,2(k), ... , x f f ,n(k)]T (3.30)

The states of the b fault models are

x j (k) = [x f f ,1(k), x f f ,2(k), ... , x f f ,n(k), f i
j (k)]T , j = 1,2, ...,b (3.31)

where f i
j (k) is the j th input fault f i at time step k. Note that we only augment the input

fault which is related to the fault model in the j th model rather than all the input faults.

AMMAE FOR OUTPUT FDD
As for the output FDD, m+1 models are needed. m models are the models matching the
output faults and the other model is the fault free model.

The states of the fault free model are the same as for the fault free model for the input
FDD, as described in Equation (3.30). The states of the m fault models are

xl (k) = [x f f ,l (k), x f f ,2(k), ... , x f f ,n(k), f o
l (k)]T , l = 1,2, ...,m (3.32)

where f o
l (k) is the l th output fault f o at time step k. Similar to the input FDD, only the

output fault related to the l th output fault model will be augmented and estimated.

3.6. THE SRMMAE1 ALGORITHM FOR INPUT FDD
Section 3.6 and Section 3.7 will present the three SR algorithms (the SRMMAE1, SRM-
MAE2 and SRMMAE3) which are the major improvement of the MMAE. The SRMMAE1
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algorithm is designed for input FDD while the SRMMAE2 algorithm and the SRMMAE3
algorithm are two approaches which can both be applied to output FDD.

The objective of this section is the input (the IMU sensors) FDD. The aircraft model
used for demonstration is the Cessna Citation II CE-550 aircraft which is owned by Delft
University of Technology and the Dutch Aerospace Laboratory.

First, the performance of the IMU sensor FDD using the UMMAE and AMMAE will
be shown. The drawbacks of these two algorithms leads to the introduction of the SRM-
MAE1 algorithm.

3.6.1. UMMAE FOR IMU SENSOR FDD
In this simulation, the UMMAE is used to tackle the IMU FDD. A consecutive sequence
of faults is generated. All the IMU sensors will be faulty for a certain amount of time. For
10 s < t < 20 s, Ax sensor fails with a bias. For 30 s < t < 40 s, there is a drift fault in the
Ay sensor. For 50 s < t < 60 s, a bias occurs in the Az sensor. For 70 s < t < 80 s, a bias
occurs in the roll rate sensor with a value of 0.5/57.3 rad/s. For 90 s < t < 100 s, and 110 s
< t < 120 s, there are drift faults in the pitch rate and yaw rate sensor with the same drift
rate of 0.002 rad/s2. The simulation time step is 0.01 s in this chapter.

There are six IMU sensor faults which are all input faults. Using the UMMAE ap-
proach, seven filters are required for the six fault models and the fault free model. The
result of using the UMMAE is shown in Figure 3.3.
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Figure 3.3: Results of the IMU sensor FDD using the UMMAE approach and the comparison with the UKF

Figure 3.3(a) shows the probability of the seven filters for different fault models while
Figure 3.3(b) compares the state estimation error of the UMMAE approach with that of
the UKF. In Figure 3.3(a), the label “FF” represents the fault free filter while the others
represent the filters matching the fault model of the accelerometers and the rate gyros.
The dashed lines represent the true probability of different models while the solid lines
show the probability derived by the UMMAE approach.

It can be seen from the figure that the detection of the faults by the UMMAE approach
is quick. To detect the fault of the Ax , Az and p sensors takes 0.3 s, 0.45 s and 0.32 s
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respectively. However, it takes longer to detect the fault of the Ay , q and r sensors which
is 1.5 s, 1.4 s and 2 s respectively. This is due to the fact that the latter faults are drift faults
with a small drift rate which can be detected when the value of the fault reaches a certain
level. The drawbacks of using this method are concluded from the figure as follows:

1. False alarms

When the q sensor is faulty during 90 s < t < 100 s, alarms are also reported by the
filter for the Az sensor fault. This may be caused by the similar effect of the two
sensors faults which may both lead to a biased estimation of the pitch angle θ and
the angle of attack α. In this case, the UMMAE approach is not able to distinguish
the fault of the Az sensor from that of the q sensor. Other false alarms are also
observed such as the false alarm for the Ax sensor during 102 s < t < 108 s when
there are no IMU faults in the system.

2. Slow response to detect the removal of the faults

The Ax sensor is faulty during 10 s < t < 20 s. However, after the fault is removed at
t = 20 s, the probability of the model for the Ax sensor fault stays at one for another
3.5 s, which means it takes 3.5 s to detect the fact that the Ax sensor fault has been
removed. The same problem exists for other fault models, especially the Ay sensor.
Its probability stays at one until the next fault (Az sensor fault) is injected to the
system. In this chapter, the detection of the removal of the faults is define as “slow
(quick)” if it takes more (less) than 1 s.

3. Difficulty to identify the faults

As mentioned, if the UMMAE is used to identify the fault, additional models to
estimate the parameter of the fault have to be designed.

Figure 3.3(b) compares the state estimation error of the UMMAE approach and that
of the normal UKF. Obviously, the state estimation error is reduced by the UMMAE ap-
proach even in the presence of the faults, which confirms its good state estimation per-
formance. However, it is noticed that the error of estimation experiences significant os-
cillations during the occurrence of the faults which are caused by the false alarms. Note
that the biased estimation of the states can be caused by different sensors. For example,
the estimation of the angle of attack can be influenced by both the Az sensor fault and
the the q sensor fault.

3.6.2. AMMAE FOR IMU SENSOR FDD
From the previous simulation, it can be seen that the UMMAE approach can not be used
to perform the FDD directly. In this section, the AMMAE is used to detect and identify
the IMU sensor faults. The faults of the IMU sensors are augmented as additional states.
By doing this, the faults can be estimated in an unbiased sense. The fault scenario is
the same with the previous simulation in order to compare with the performance of the
UMMAE approach.

Figure 3.4 shows the performance of the AMMAE approach in comparison with the
UKF and the UMMAE approach. Figure 3.4(a) shows the probability of the seven models
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Figure 3.4: Results of the IMU sensor FDD using the AMMAE approach and the comparison with UKF and
UMMAE approach
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matching seven fault scenarios. It is seen that the false alarms during the fault have been
reduced except that during 100 s < t < 110 s when there are no faults in the IMU sensors,
the fault filters for the Ax , Az and q still give false alarms. In addition, when the q sensor
fails during 90 s < t < 100 s, the filter for Az sensor fault no longer gives false alarms.

More importantly, the shape of the IMU faults can be estimated by the correspond-
ing filters as shown in Figure 3.4(b). Note that faults of one IMU sensor may influence
the fault estimation of another IMU sensor. For example, both the filter for Az and q sen-
sors will give a non-zero fault estimation when either of them fails, which can be seen
during 50 s < t < 60 s and 90 s < t < 100 s. However, that is not an issue as long as the
probability for the wrong fault estimation is close to zero. Through Equation (3.12), the
incorrect fault estimation has no influence on the fault estimation of the AMMAE. From
Figure 3.4(c) and Figure 3.4(d), the performance of the AMMAE approach is compared
to the normal UKF and the UMMAE approach. Undoubtedly, the performance of the
AMMAE is better than the other two methods. The oscillations of the estimation error,
which occur using the UMMAE approach, is reduced to a great extent, although some of
them still exist in the presence of the faults.

The problem of the slow detection of the removal of the faults, remains unsolved.
When every fault is removed, it takes some time for the fault free model to reach the
probability of one thus giving false alarms. For example, it takes the fault free model 10 s
to reach a model probability of one after the fault of the Ay sensor is removed at t = 40 s.
The solution to this problem will be given in the following subsection.

3.6.3. SRMMAE1 FOR IMU SENSOR FDD
It was found in the previous subsection that the AMMAE is not able to quickly detect the
removal of the faults after the IMU sensor faults are removed, which causes false alarms.

It can be observed from the probability plots (Figure 3.4(a)) of different models that
after each fault is removed, the fault model remains at a high probability which ap-
proaches 1 for a certain amount of time. This means that the fault model matches
the true model more than the fault free model, which actually is not true. This can be
explained by checking the state estimation error of the fault free model given in Fig-
ure 3.5(a). It can be seen that after the removal of the fault at t =20 s, 40 s, 60 s, 80 s and
100 s, the estimated state of the filter related to the fault free model can not track the real
state immediately.

The state estimation of the fault free filter and the filter matching the Ay sensor fault
are considered here without losing generality. The comparison of the results is shown
in Figure 3.5(b). Recall that the fault of the Ay sensor occurs at t = 30 s and is removed
at t = 40 s, the result for 20 s < t < 50 s is shown. The fault of the Ay sensor mainly
influences the estimation of the angle of sideslip β and the yaw angle ψ as can be seen
from the estimation of the fault free filter.

Let the subscript “ f f ” and “Ay ” denote the quantities pertaining to the fault free fil-
ter and the filter for the Ay sensor FDD, respectively. Let t f denote the time period when
there is an Ay sensor fault and tr denote the time period which is after the fault is re-
moved and before the fault free filter achieves a comparable performance with the Ay

sensor fault filter (which is roughly between t = 40 s and t = 45 s in this case). During
t f , since the fault free filter does not augment and estimate the fault, its state estima-
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Figure 3.5: State estimation error of the fault free filter using the AMMAE approach for the IMU sensor FDD

tion x̂(k + 1|k) is biased while the fault filter for Ay sensor faults achieves an unbiased
estimation. This explains the result shown in the figure during t f . However, during tr ,
when there are no faults in the system, the fault free filter still obtains a biased estima-
tion while the fault filter for Ay sensor faults maintains an unbiased estimation which is
demonstrated in the figure. The reason is that the UKF needs time to adapt to the new
situation when there are no faults. The a priori estimate error of the filter is

x̃(k +1|k) = x(k +1)− x̂(k +1|k) (3.33)

where x̂(k + 1|k) is the a priori estimate of the filter. Since h(x) = x and there are no
output faults ( f o(k +1) = 0) in this simulation, the innovation of each filter is

γ(k +1) = h(x(k +1))−h(x̂(k +1|k))+v (k +1)

= x̃(k +1)+v (k +1). (3.34)

It follows from x̃ f f (k +1) > x̃Ay (k +1) and v f f (k +1) = v Ay (k +1) that

γ f f (k +1) >γAy (k +1). (3.35)

According to Ormsby [101], γ(k +1) is the dominant factor in Equation (3.8). It follows

fyk |a,Yk−1 (yk |a f f ,Yk−1) < fyk |a,Yk−1 (yk |aAy ,Yk−1) (3.36)

where a denotes the fault scenario in the system. Thus, it can be concluded from Equa-
tion (3.7) that

p f f < p Ay . (3.37)

This explains why the probability of the fault model stays high even after the removal of
the faults.

To cope with this drawback, we propose to reinitialize the fault-free filter after the
fault is removed. However, when and how to reinitialize the fault free model has to be
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Algorithm 1 SRMMAE1 Algorithm for Input FDD

At time step k;
1. Variable assignment

pt ,i = pi , i = 1,2, ...,b
x̂t ,i = {x̂i , j | j = 1 to n +1 }, i = 1,2, ...,b
Pt ,i = {Pi , j j | j = 1 to n +1 }, i = 1,2, ...,b

2. Indexes of the filters with the maximal or minimal model probability
Find imi n,k ∈ { pt ,imi n,k = min ( pt ,i ) | i = 1,2, ...,b +1 }
Find imax,k ∈ { pt ,imax,k = max ( pt ,i ) | i = 1,2, ...,b +1 }

3. Reinitialization
if p f f < pt ,imi n,k or p f f = pt ,imi n,k then

x̂ f f ← x̂t ,imax,k

P f f ← Pt ,imax,k

end if

determined. In this section, the first SR algorithm (the SRMMAE1) is proposed which is
able to cope with the input FDD. The details are shown in Algorithm 1.

In the SRMMAE1 algorithm, b, described in the system model in Equation (3.1), de-
notes the dimension of the input faults which is also the number of fault models match-
ing each input fault scenario, n is the dimension of the state as also described in Equa-
tion (3.1). The subscript “ f f ” denotes the parameters of the fault free filter while the
subscript “i ” describes the parameters of the filter for b different fault filters, e.g., x̂ f f

and P f f denote the a posteriori state estimate and the error covariance matrix of the
fault-free filter. x̂i and Pi (i = 1,2, ...,b) are the a posteriori state estimates and the error
covariance matrices of the fault filters. The variable pt , x̂t and Pt are the sets which con-
tain the model probability, state estimate and covariance of state estimate error of the
elemental filters respectively.

The algorithm proposes to reinitialize the state estimate and the covariance matrix
of the fault free filter only when the probability of the fault free model is smaller than or
equal to the fault model with the smallest model probability. The reinitialization is done
using the a posteriori state estimate and the covariance matrix of the fault filter with the
biggest model probability. This algorithm is applied to tackle the input FDD problem.

Figure 3.6 presents the results of the proposed SRMMAE1. From Figure 3.6(a), it can
be seen that the improvement by the SRMMAE approach is significant. All the problems
mentioned above are solved thus enhancing the robustness of this approach to a great
extent. It is apparent that each fault is detected and isolated correctly and quickly. No
false alarms are observed from the probability figure. If one notices carefully, there are
some probabilities of the fault free model does not approach 1 when there are no IMU
sensor faults, such as at time t =42 s and t =111.6 s. This does not influence the FDD
result since the alarm of the fault will only be triggered when the probability falls be-
low a certain level for a certain period of time [99]. Moreover, this can be improved by
applying an additional filtering stage proposed by Ducard [103]. The result is shown in
Figure 3.6(b).

Since the SRMMAE approach preserves the fast detection ability as well as the fault
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(c) IMU sensor fault estimation of the six fault filters
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Figure 3.6: Results of the IMU sensor FDD using the SRMMAE1 approach and the comparison with the UKF
and UMMAE approach
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estimation ability of the AMMAE approach while introducing the SR algorithm, it can
identify the fault more accurately as shown in Figure 3.6(c). The probability-weighted
fault estimation of the system using Equation (3.12) is shown in Figure 3.6(d).

The performance of the SRMMAE approach compared to the normal UKF and the
UMMAE approach is given in Figure 3.6(e) and Figure 3.6(f), respectively. As can be
seen from these two figures, the state estimation of the SRMMAE is close to zero-mean
even in the presence of the IMU sensor faults whereas the estimation of the UKF and the
UMMAE approach show significant deviations or frequent oscillations.

Remarks: The proposed SRMMAE approach for input FDD does not require input
excitation or performing a maneuver to enhance the ability to quickly detect the removal
of the faults. As can be seen from the algorithm, the fault free filter is not reinitialized all
the time, which is good for the computational load.

3.7. THE SRMMAE2 AND SRMMAE3 FOR OUTPUT FDD
This section will present the other two SR algorithms (the SRMMAE2 and the SRM-
MAE3). These two algorithms can both be applied to the output FDD.

The objective of this section is the FDD of output faults which are the ADS faults.
First, the UMMAE and the AMMAE are applied to the ADS FDD. Then, the SRMMAE1
algorithm is applied which also shows flaw when identifying the output faults. Finally,
the SRMMAE2 and the SRMMAE3 are proposed, which solved the problem concerning
the estimation of the output faults.

In the simulation, consecutive ADS faults are generated. For 10 s < t < 20 s, the true
airspeed sensor V sensor fails with a bias with a value of 1 m/s. For 30 s < t < 40 s, there
is a drift fault in the angle of attack α sensor. The drift rate is 10−2 rad/s. For 50 s < t < 60
s, a bias with the value of 10−2 rad occurs in the angle of sideslip β sensor.

3.7.1. UMMAE & AMMAE FOR ADS FDD
The UMMAE and the AMMAE approach are applied to tackle the ADS FDD. Figure 3.7
shows the result of using the two approaches for the ADS FDD. From the figure, it is
apparent that the AMMAE improves the performance of the UMMAE approach. The
false alarms given by the α sensor fault filter at 0 s < t < 8 s and 67 s < t < 80 s (there
are no faults in the system) disappear. The false alarms given by the α sensor fault filter
during 53 s < t < 60 s (The β sensor is faulty) also disappear. However, the inability to
quickly detect the removal of the faults of the AMMAE shows again. It takes the AMMAE
approximately 8 s, 10 s and 9 s to detect the removal of the V , α and β sensor fault,
respectively.

3.7.2. SRMMAE1 FOR ADS FDD
In the previous section, the SRMMAE1 was proposed and solved the problems related to
the input FDD problem. In this subsection, it is applied to detect, isolate and identify
the ADS faults.

It can be seen from Figure 3.8(a) that the detection performance of the SRMMAE1
is better than that of the UMMAE and AMMAE approach. All the false alarms after the
removal of the faults are eliminated successfully, which indicates the effectiveness of the
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Figure 3.7: Results of the ADS FDD using the UMMAE and AMMAE approach

SRMMAE1 algorithm. The detection time of this SRMMAE1 algorithm is quick (less than
1 s). It takes only 0.02 s (2 time steps) and 0.03 s (3 time steps) to detect the fault of the V
and the β sensor respectively. As for the fault of theα sensor, it takes longer (0.28 s) since
the fault is a drift fault which is a slow-varying fault. The detection of the removal of the
faults is also quick, which takes 0.02 s, 0.01 s and 0.02 s respectively. It is interesting to
note that the removal of the drift fault is faster than that of the other two faults. This is
because that at the end of the drift fault, its value is big due to the accumulation over
time.

Figure 3.8(b) presents the information about the fault estimation. It can be seen that
the estimation of theα and β sensor fault is acceptable while that of the V sensor fault is
not. During 10 s < t < 20 s, when the sensor of the V is faulty, the estimation error of the
fault is not zero-mean although it converges to the true value in the end of the V sensor
fault. Furthermore, during 40 s < t < 50 s and 60 s < t < 80 s, when there are no faults
in the system, the fault estimation of the V sensor even diverges. The same problem
is observed in the fault estimation of the β sensor during 20 s < t < 30 s, when all the
sensors operate normally. This will be explained in the next subsection.

Figure 3.8(c) and Figure 3.8(d) demonstrate the state estimation performance of the
SRMMAE1 algorithm compared to the normal UKF and the AMMAE approach. Note that
the state estimation of the SRMMAE1 is computed based on the Equation (3.10), so the
incorrect fault estimation of the V sensor is not reflected in the state estimation error.
The SRMMAE1 exhibits a good state estimation performance even in the presence of the
faults. However, there are some offsets in the error of the fault estimation such as the
deviation between 30 s < t < 40 s for the estimation of the α sensor fault.

3.7.3. SRMMAE2 FOR ADS FDD
Let fV , fα and fβ denote the faults of the V , α and β sensor, respectively. As observed
from Figure 3.8(b) in the last simulation, when fα 6= 0 (30 s < t < 40 s), the fault estima-
tion of fV diverges and it can not converge to zero-mean even when there are no faults
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Figure 3.8: Result of the ADS FDD using the SRMMAE1 approach and the state estimation error compared to
the UKF and AMMAE approach
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(40 s < t < 50 s and 60 s < t < 80 s). The estimation of fβ also cannot converge to zero-
mean during 20 s < t < 30 s. The problem may be caused by the initialization of the filter.
To find a solution to the problems using the SRMMAE1 algorithm, the following theorem
is needed:

Theorem 1. Consider the system described by Equation (3.1) and Equation (3.2), where
f i = 0, f o 6= 0. An Augmented Unscented Kalman Filter (AUKF) is an UKF which aug-
ments the fault of the i th (i = 1,2, ...,m) output f o

i (k +1) as an additional state. The UKF
and AUKF are both applied for the state estimation. x̂(k +1|k) is the a priori estimate of
the states for the two filters, f̂ o

i (k +1|k) is the a priori estimate of f o
i (k +1) for the AUKF at

time step k, t f denotes the period when f o 6= 0 and tn f is the time interval when f o = 0.
During tn f , if the state estimate of the UKF is unbiased, the AUKF can achieve an unbiased
estimate for both xi (k +1|k) and f o

i (k +1|k) through reinitializations using the UKF.

Proof. Since f i = 0, although the i th measurement yi = h(xi (k+1))+ f o
i (k+1)+vi (k+1)

is a wrong measurement for h(xi (k +1)), it is a correct measurement for h(xi (k +1))+
f o

i (k + 1). Therefore, for the AUKF, since the f o
i (k + 1) is augmented as an additional

state, the estimate h(x̂i (k +1|k))+ f̂ o
i (k +1|k) is unbiased. But for the normal UKF, the

estimate h(x̂i (k +1|k)) is biased.
During tn f , unbiased state estimates of the UKF can be obtained using an approach

such as the SRMMAE1. If the state estimate of the AUKF is replaced by the that of the
UKF, then the expectation of i th state estimate of the AUKF

E {x̂i (k +1|k)} = xi (k +1)

Since for the AUKF, E {h(x̂i (k+1|k))+ f̂ o
i (k+1|k)} = h(xi (k+1))+ f o

i (k+1). It follows that

E { f̂ o
i (k +1|k)} = f o

i (k +1)

Therefore, both x̂i (k +1|k) and f̂ o
i (k +1|k) of the AUKF are unbiased during tn f .

This theorem can be applied to check the performance of the filters. More impor-
tantly, it provides a way to achieve an unbiased estimate for the fault filters. The innova-
tion of the fault free filter, using the SRMMAE1 approach for the ADS FDD, is shown in
Figure 3.9(a). The fault free filter is reinitialized using the SRMMAE1 approach.

As can be seen from Figure 3.9(a), during the time when there are no faults (0 s < t <
10 s, 20 s < t < 30 s, 40 s < t < 50 s and 60 s < t < 80 s), the fault free filter achieves an
unbiased estimate of V , α and β. This confirms that the SRMMAE1 algorithm is able
to guarantee that the fault free filter achieves an unbiased estimation when there are
no faults. From Figure 3.9(b), it can be seen that for the filter for the V sensor faults,
although the estimate of the V and the fault fV are biased, the estimate of V + fV is
unbiased.

Therefore, according to Theorem 1, the fault free filter can be used to reinitialize the
fault filters when there are no faults, which makes the estimate of V of the fault filter
unbiased. Since the estimate of V + fV of the fault filter for the V sensor is unbiased, the
estimate of V and fV are both unbiased according to the theorem.
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Figure 3.9: Results of the ADS FDD obtained using the SRMMAE1 approach

To reduce the number of reinitializations, the fault filters are reinitialized by the fault
free filter only at the end of a fault free period or at the beginning of a fault. This means
that the fault filter for the V sensor will be reinitialized by the fault free filter at t = 30 s
and t = 50 s. The problem of the V sensor fault filter at t = 40 s and t = 60 s can be solved
by reinitializations using the fault filter with the maximum model probability, which is
based on the idea in the SRMMAE1 algorithm. The problem of the fault filter for the β
sensor can be also solved in the same way.

Based on the above idea, more reinitializations are added to the SRMMAE1 algo-
rithm. This leads to the SRMMAE2 algorithm given in Algorithm 2. In this algorithm, m
is the dimension of the output fault described in Equation (3.2). x̂i and Pi (i = 1,2, ...,m)
are the a posteriori state estimates and the error covariance matrices of the m fault fil-
ters. The other variables have the same meanings as in Algorithm 1. This algorithm is
applied to the ADS FDD problem.

Figure 3.10 shows the results of using the SRMMAE2 algorithm to detect, isolate and
identify the ADS faults. The model probability and the filtered model probability of the
four filters are given in Figure 3.10(a) and Figure 3.10(b), respectively. It can be seen that
all the false alarms in Figure 3.7(a) and Figure 3.7(b) are eliminated. The detection time
of this approach is the same as the result of the SRMMAE1 algorithm.

Figure 3.10(c) presents the fault estimation of each output using the SRMMAE2 al-
gorithm. It can be seen from the figure that all the faults are estimated correctly dur-
ing 10 s < t < 20 s, 30 s < t < 40 s and 50 s < t < 60 s when the system is faulty. Fur-
thermore, when there are no faults, all the fault estimation is zero-mean, different from
the result of using the SRMMAE1 algorithm. This can be seen from Figure 3.10(d). The
fault estimation using the SRMMAE1 algorithm diverges after a fault occurs at t = 30
s while that of using the SRMMAE2 algorithm maintains an unbiased estimation. The
fault estimation problem with the β sensor during 20 s < t < 30 s also disappears. The
probability-weighted fault estimation of the algorithm using Equation (3.12) is given in
Figure 3.10(e). The state estimation performance is shown in Figure 3.10(f) compared
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Algorithm 2 SRMMAE2 Algorithm for Output FDD

At time step k;
1. Variable assignment

pt ,1 = p f f ; pt ,i+1 = pi , i = 1,2, ...,m
x̂t ,1 ← {x̂ f f , j | j = 1 to n }
Pt ,1 ← {P f f , j , j | j = 1 to n }
x̂t ,i+1 = {x̂i , j | j = 1 to n +1 }, i = 1,2, ...,m
Pt ,i+1 = {Pi , j , j | j = 1 to n +1 }, i = 1,2, ...,m

2. Indexes of the filters with the maximal or minimal model probability
Find imi n,k ∈ { pt ,imi n,k = min ( pt ,i ) | i = 1,2, ...,m +1 }
Find imax,k ∈ { pt ,imax,k = max ( pt ,i ) | i = 1,2, ...,m +1 }

3. Reinitialization
if (k = 1) or (k > 1 and imax,k−1 = 1 and imax,k 6= 1) then

for i=1 to m do
x̂i , j ← x̂ f f , j = 1 to n
Pi , j , j ← P f f , j = 1 to n

end for
end if

4. Additional reinitialization
if p f f = pt ,imi n,k then

x̂ f f ← x̂t ,imax,k

P f f ← Pt ,imax,k

for i=1 to m do
x̂i , j = x̂t ,imax,k , j = 1 to n +1
Pi , j , j = Pt ,imax,k , j = 1 to n +1

end for
end if
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(a) Model probabilities of the four elemental filters
using the SRMMAE2 approach
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ing the SRMMAE2 approach
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Figure 3.10: Result of the ADS FDD using the SRMMAE2 approach and the comparison with the SRMMAE1
approach
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Figure 3.11: Indexes of the maximum and minimum model probability among the four elemental filters using
the AMMAE for the ADS FDD

to algorithm 1. It can be seen that SRMMAE2 algorithm reduces the estimation error of
the V , α and β estimated by the SRMMAE1 algorithm during 10 s < t < 20 s, 30 s < t < 40
s and 50 s < t < 60 s, respectively. It achieves zero-mean state estimation even in the
presence of the output faults, which confirms the effectiveness of this algorithm.

3.7.4. SRMMAE3 FOR ADS FDD
In this subsection, the third SR algorithm is designed for the output FDD when the mag-
nitude of the faults is not small. The definition of “small” is different according to differ-
ent applications. In this chapter, we define the bias fault for the V sensor as small if its
value is no bigger than 1 m/s. For the α and β sensor, the bias and drifting rate of the
fault which is no bigger than 0.01 rad and 0.01 rad/s respectively is defined as small. In
this simulation, the bias fault of the V sensor is 10 m/s, the drifting rate of the α sensor
fault is 0.01 rad/s and the bias fault of the β sensor is 0.1 rad. Therefore, the faults are big
compared to the previous simulations.

Let i denote the different filters. Specifically, i = 1 refers to the fault free model while
i = 2 ,3 , ..., m+1 refer to the model matching the faults of the V , α and β sensor, respec-
tively. Let imax , imi n denote the indexes corresponding to the model with the maximum
and minimum model probability respectively. When the AMMAE is applied to detect and
identify the output faults, imax usually displays a situation as shown in Figure 3.11(a).
Figure 3.11(b) presents zoomed-in figures of imax and imi n during 19.95 s < t < 20.05 s,
39.95 s < t < 40.05 s and 59.95 s < t < 60.05 s respectively.

As Figure 3.11(b) shows, both imax and imi n drop to one once the faults are removed
at 20, 40 and 60 s. This occurs when the model probabilities of all the models are equal
to the minimum probability limited by the MMAE. This indicates that the faults have
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Figure 3.12: Model probabilities of the four filters using the SRMMAE3 algorithm for the ADS FDD

been removed. Therefore, we only need to reinitialize the fault free filter at this time step
using the filter with the maximum model probability in the last time step. By doing this,
the required reinitializations are less than those required by the SRMMAE2. The third SR
algorithm is given in Algorithm 3.

Algorithm 3 SRMMAE3 for output FDD

At time step k;
1. Variable assignment

Same as in Algorithm 2
2. Indexes of the filters with the maximal or minimal model probability

Same as in Algorithm 2
3. Reinitialization

Same as in Algorithm 2
4. Additional reinitialization

if k > 1 and imax,k = imi n,k and imax,k−1 6= imi n,k−1 and imax,k−1 6= 1 then
x̂ f f ← x̂t ,imax,k−1

P f f ← Pt ,imax,k−1

for i=1 to m do
x̂i , j = x̂t ,imax,k−1 , j = 1 to n +1
Pi , j , j = Pt ,imax,k−1 , j = 1 to n +1

end for
end if

The performance of Algorithm 3 is shown in Figure 3.12. As can be seen, the perfor-
mance is comparable to that of the SRMMAE2.

Remarks: The SRMMAE2 and SRMMAE3 are two approaches which can both be ap-
plied to output FDD. The only difference between them is in the fourth step of the algo-
rithm as can be seen from Algorithm 3. The fourth step of SRMMAE3 requires n f (the
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number of output faults) reinitializations which are much less than those required by
the fourth step of SRMMAE2. However, recall that the faults in this simulation are bigger
than the previous ones. For small faults, SRMMAE3 may not be effective. If the subtle
fault has a little influence on the innovation, the sign to trigger the SR may not appear.

3.8. COMPARISON WITH THE IMM APPROACH

3.8.1. ADS AND IMU FDD USING THE IMM APPROACH

In this section, the proposed SRMMAE approach will be compared with the IMM ap-
proach [35, 99, 105]. The IMM approach is used to detect and isolate the ADS and IMU
fault respectively. The situation is the same as in the simulations in Section 3.6 and Sec-
tion 3.7.

Figure 3.13 shows the result of the ADS FDD using the IMM approach. As can be seen
from Figure 3.13(a), the fault detection performance is good. The detection time of three
sensor faults is 0.02 s, 0.57 s and 0.02 s respectively, which is comparable with that using
the SRMMAE approach. Furthermore, there are no false alarms, which means there is no
need to filter the model probability. Figure 3.13(b) shows the error of the state estimation
by the IMM approach. The error is close to zero-mean even in the presence of the faults
which indicates the state estimation performance of the IMM approach.

Figure 3.13(c) presents the model probabilities when the IMM approach is used to
detect and isolate the IMU faults. The performance is bad. There are mainly three prob-
lems:

1. There are many false alarms. The model for the Ay fault continues to give false
alarms when there are no faults in this sensor.

2. The model probability cannot reach one when the corresponding model is the true
model. Whether for the fault free model or the fault models, the model probability
is less than one when the model is the true model.

3. The performance of detecting the drift faults (the fault occurs in the accelerometer
Ay , the gyro q and r ) is even worse. The detection time of the pitch rate sensor is
around 5 s and the model probability does not stay at one. The detection of the
yaw rate sensor fault is missed.

Similar problems have been found by others who are working on input FDD using
the IMM approach [104]. The IMM approach performs poorly when dealing with the
IMU sensor faults for several reasons:

1. Since the ADS faults are the output faults f o(k+1), the information of the ADS fault
at time step k+1 can be reflected directly in the innovationγ(k+1). In this chapter,
the IMU sensor faults are the input faults f i (k), so the faulty information of the
IMU at time step k will be integrated before it has an influence on the innovation
in the next step γ(k + 1). This can be derived from the system model described
by Equation (3.13) and Equation (3.14). If there are input and output faults in the
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(a) Model probabilities of the four elemental filters
using the IMM for ADS FDD
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Figure 3.13: IMU sensor and ADS FDD result using the IMM approach
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system, the innovation is:

γ(k +1) = y(k +1)−h(x̂(k +1))

= h
[

x(k)+
∫ k+1

k

(
f (x(t ),um(t ), t )+G(x(t ))w (t )+G(x(t )) f i (t )

)
d t

]

+v (k +1)+ f o(k +1)−h(x̂(k +1))

This property makes input faults more difficult to detect than output faults.

2. The magnitude of the IMU sensor faults are much smaller than those of the ADS
faults. This makes the IMU sensor faults more difficult to detect.

3. The most crucial reason is that the IMM approach has a tendency to enhance the
state estimation ability which weakens its performance of fault detection. All the
models in the IMM filter interact with each other at every step. The states of all the
models mix with each other which makes the differences among them smaller step
by step. Hence, the probabilities of these models will also approach each other.
This becomes more obvious when the fault of the system is small. In this case, the
innovation of the elemental filters will become more similar to each other, leading
to similar model probabilities which causes the missed detection of slow-varying
faults (such as the drift fault).

3.8.2. COMPARISON BETWEEN THE IMM AND THE SRMMAE APPROACH
This subsection will compare the IMM with the proposed SRMMAE approach and present
the advantages and disadvantages of these two approaches.

The similarity between these two approaches is that the reinitialization they perform
both lead to interaction within the elemental filters. The main differences of the reini-
tialization as well as the performance comparison are summarized as follows:

1. The IMM approach reinitializes all the filters with its mixed state estimates. This
mixing process of the IMM approach weakens its ability to detect the fault despite
of the enhancement of its state estimation performance. In contrast, the SRMMAE
approach includes three SR algorithms which mainly use the states of the fault
filters to reinitialize the fault free filters or use the states of the fault free filter to
reinitialize the fault filters. Since it does not use the mixed states and does not
reinitialize all the filters, it is still able to maintain the ability to detect and identify
small input faults while the IMM is unable to detect small input faults.

2. The IMM approach reinitializes each filter at every time step while the SRMMAE
approach only reinitializes for certain time steps according to the different algo-
rithms. In the fourth step of the SRMMAE3 algorithm, only 3 steps of reinitializa-
tion are needed. Therefore, the computational load of the IMM is higher than the
SRMMAE approach.

To sum up, the SRMMAE approach reinitializes the filter selectively using three SR al-
gorithms to maintain the state estimation performance and enhance its fault detection
ability while the IMM uses the mixed state estimates to reinitialize every filter at every
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step which enhances its state estimation ability whereas weakens its fault detection abil-
ity.

3.9. CONCLUSIONS
This chapter is concerned with improving the FDD performance of the multiple-model
based approach. There are two popular multiple-model adaptive estimation algorithms:
the MMAE and the IMM. The MMAE approach is able to detect the faults quickly. How-
ever, there are some problems with using this approach. This chapter proposed a novel
SRMMAE approach which improves the performance of the MMAE significantly. First,
a state augmentation strategy is introduced to both input and output FDD. Then, three
SR algorithms are designed in order to cope with input and output FDD. The proposed
approach is tested with the example of the IMU and ADS FDD of a Cessna Citation II
aircraft model, which demonstrates its performance in both state estimation and FDD.

The SRMMAE approach is compared to the IMM approach both in effectiveness and
efficiency. As for output FDD, the performance is comparable to each other whereas in
terms of input FDD, the SRMMAE approach outperforms the IMM.

After the diagnosis of the sensor faults using the SRMMAE approach, the correct sen-
sor measurements are fed back to the flight control computer to generate control laws.
Therefore, the proposed approach is able to enhance the safety of the aircraft in the pres-
ence of sensor faults. It can be extended to the FTC system, which is the future plan. Be-
sides, how to maintain the fault detection performance of the SRMMAE approach using
fewer reinitialization steps is also an interesting topic.

In conclusion, the proposed SRMMAE approach is a good candidate for input and
output FDD based on its excellent performance on both state estimation and fault diag-
nosis. Therefore, it can enhance the reliability and safety of the aircraft.
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In the previous chapter, the ADS FDD was solved using the Selective-Reinitialization
Multiple-Model Adaptive Estimation approach which provides fast fault detection. How-
ever, this approach is computationally intensive since it runs a number of models on-
line. When dealing with simultaneous faults, the number of models increase and lead to
more computational load. In this chapter, a novel Double-Model Adaptive Estimation
approach is proposed to solve the problem. First the novel approach is introduced in
detail. Then, it is applied to the ADS FDD and is compared to existing approaches such
as the Selective-Reinitialization Multiple-Model Adaptive Estimation approach.

The flight data used in this chapter is available at: https://www.researchgate.
net/profile/Peng_Lu15/publications?pubType=dataset.

Parts of this chapter are based on:

P Lu, L Van Eykeren, E van Kampen, C C de Visser, Q P Chu. Double-model Adaptive Fault Detection and
Diagnosis Applied to Real Flight Data. Control Engineering Practice, (36), 39-57, 2015. [92].
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The existing multiple model-based estimation algorithms for FDD require the design of a
model set, which contains a number of models matching different fault scenarios. To cope
with partial faults or simultaneous faults, the model set can be even larger. A large model
set makes the computational load intensive and can lead to performance deterioration
of the algorithms. In this chapter, a novel DMAE approach for output FDD is proposed,
which reduces the number of models to only two, even for the FDD of partial and simulta-
neous output faults. Two SR algorithms are proposed which can both guarantee the FDD
performance of the DMAE. The performance is tested using a simulated aircraft model
with the objective of ADS FDD. Another contribution is that the ADS FDD using real flight
data is addressed. Issues related to the FDD using real flight test data are identified. The
proposed approaches are validated using real flight data of the Cessna Citation II aircraft,
which verified their effectiveness in practice.

4.1. INTRODUCTION
Presently, FDD is important to achieve fault-tolerance [11]. For flight control systems,
sensor or actuator faults may cause serious problems. Thus, quick detection and isola-
tion of these faults is highly desirable [9]. During the last few decades, many approaches
have been proposed for aircraft actuator and sensor FDI[12, 13, 66]. Some recent ad-
vances and trends can be found in Zolghadri [14] and Goupil [9]. One recent Euro-
pean project, Advanced Fault Diagnosis for Sustainable Flight Guidance and Control
(ADDSAFE), aims to develop FDI methods for aircraft flight control systems [112]. Within
this project, a number of model-based FDI methods were tested and evaluated, refer to
Varga and Ossmann [113], Van Eykeren and Chu [114], Henry and Cieslak et al. [115],
Alwi and Edwards [116], Chen and Patton et al. [117], Vanek and Edelmayer et al. [118],
Hecker and Pfifer [119] and Marcos [23]. However, few of these papers [114] consider the
FDD of the ADS. The ADS measure the air data information which is critical to the pilot
and to the flight control system. They are usually mounted to the outside of the fuselage.
Therefore, they can be affected by the environment in which the aircraft is flying. Faults
of the ADS are contributing factors which have led to several aircraft accidents. For civil
aircraft, the final report of the Air France Flight 447 accident stated that erroneous air-
speed measurements from the pitot probes were a contributing factor [73]. An example
for military aircraft is the cause of the crash of a B-2 Bomber; it was found that moisture
in the port transducer units caused a large bias to the ADS [73]. These are only two ex-
amples of recent air disasters caused by failures of the ADS system. Therefore, the FDD
of the ADS is important. Recently, Freeman et al. [25] models the faults of the ADS us-
ing the physical air data relationships and experimental wind tunnel data. The present
chapter deals with the detection and diagnosis of the ADS faults.

One of the most effective approaches for the FDD is the multiple-model-based ap-
proach [99]. The basic idea of performing FDD using the multiple model (MM) approach
is: a model set must be created that contains models corresponding to different fault
conditions of the monitored system. In addition to fault models, the model set usually
includes the nominal model. There are two principal stochastic architectures based on
the MM approach [13]: the MMAE and the IMM. Both approaches require the design of
a model set which represents or covers all possible system models at any time [99].

The MMAE [34, 37, 93, 101] algorithm runs a bank of filters in parallel, termed “ele-
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mental filters”. Each filter is based on a model matching a particular fault mode of the
system. If the set of models used by the MM approach does not change, it is referred to
as a fixed model set. When coping with partial faults or simultaneous faults, one disad-
vantage of the MM approach based on a fixed model set is that the number of models
needed to cover all expected failures can be large, making implementation of a single
MM estimator impractical [104] for real time FDD. In order to cope with this situation,
Maybeck and his research team proposed a hierarchical structure [37] and a moving-
bank MMAE algorithm [36, 106] to reduce the number of required filters online. The
hierarchical MMAE is designed for the FDD of single- and dual-failure hypotheses. Al-
though this approach runs K +1 (K is the number for single fault FDD) models online,
K (K +1)+1 models have to be designed. When it is used for FDD of dual-failure scenar-
ios, it is assumed that the second fault occurs two or more seconds later which allows
enough time for the first fault to be detected before the second is inserted [93]. In addi-
tion, it can not cope with three or more simultaneous faults. The moving-bank MMAE
is also designed to avoid the potentially large number of element filters needed for an
MMAE bank. It uses less filters to identify the parameters related to the K basic element
models. However, more than K +1 models are still required only for single FDD. Ducard
et al. [103] proposed to augment the faults of the input as additional states, which re-
duces the number of the models to only K +1. More recently, Lu et al. [107] proposed to
use SR algorithms to solve the problem when the output faults are augmented to reduce
the size of the model set.

The IMM [35, 99, 105] is another type of multiple-model-based approach. Its differ-
ence from the MMAE lies in the fact that element filters in the IMM interact with each
other, which leads to a better state estimation performance. Both the MMAE and the
IMM display deteriorated performance in case where the model set does not contain
a model corresponding to the true system [120]. The model set can become very large
when dealing with multiple faults. Li et al. [105] proposed a variable structure IMM with
an adaptive model set. The expected-mode augmentation [121] is used to adaptively
change the model set. However, to cope with partial faults, an extra feature needs to be
added to the IMM. Ru et al. [104] used a maximum likelihood estimator to estimate the
extent of the faults after the detection of a fault using the IMM. In addition, to cope with
two or more simultaneous faults, the number of expected modes will increase which
makes the model set larger.

The drawbacks of a large model set are as follows: firstly, it brings a high compu-
tational load which increases with the number of models. This is also the reason why
many approaches were proposed to reduce the model set; secondly, a large model set
could lead to models being similar to one another in terms of input-output behavior,
which could lead to performance deterioration of the MM approaches [99, 120].

In this chapter, a novel approach called DMAE is proposed for the output FDD. This
approach reduces the number of the models in the model set to only two, regardless of
K and whether there are partial faults or simultaneous output faults. The two models
used in this approach are the no-fault model and the fault model. The states of the fault
model are augmented by the K output fault scenarios rather than one fault scenario.
Augmenting the output faults as states may lead to reconstructibility problems; this is
solved by using the SR scheme. Two SR algorithms are proposed to guarantee the per-
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formance of the DMAE approach. The elemental filters are designed based on an UKF
[27], which uses the direct nonlinear model without linearization and can achieve higher
order accuracy. The performance of the two proposed double-model-based approaches
are compared to the multiple-model-based approach as well as to each other. The ex-
ample is the FDD of the ADS faults of a Cessna Citation II CE-500 aircraft model. In
order to demonstrate the performance, different fault scenarios are considered, includ-
ing a single fault and simultaneous faults, small faults and big faults, bias faults and drift
faults.

A second contribution of this chapter is the application of the proposed approach to
the ADS FDD using real flight test data. It should be noted that few papers [97] dealing
with aircraft sensor FDD use real flight data. Berdjag et al. [97] used real flight data to
detect the faults in the inertial data. But they did not use it to detect the ADS faults. To
the best of the authors’ knowledge, the present chapter is one of the first few studies
concerning ADS FDD use real flight test data.

Real flight data are more difficult to deal with mainly due to the model uncertain-
ties such as the model inaccuracies and unmodelled dynamics, measurement biases and
disturbances. The important issues that arise when dealing with real flight data are iden-
tified and solutions are provided. Calibrations are performed in order to reduce the in-
fluence of model uncertainties. The proposed approaches are validated using real flight
test data of the Cessna Citation II aircraft. The IMU sensors and ADS of the aircraft con-
tains biases but are not calibrated. The command for pilots was frequency sweep input,
which was not designed for sensor calibration but for aerodynamic model identification
purposes. Under these conditions, the proposed approaches are still able to successfully
detect and reconstruct the ADS faults that are injected into this real flight data, which
verifies the effectiveness of the approach. Therefore, the proposed approaches can po-
tentially be applied to the real practice.

The structure of this chapter is as follows: Section 4.2 gives the preliminaries. Sec-
tion 4.3 introduces the DMAE approach. The performance of the proposed approach is
demonstrated using simulated data in Section 4.4. In Section 4.5, the issues related to
the FDD with application to real flight data are dealt with and the performance of the
approach is tested using real flight data. Section 4.6 concludes the chapter.

4.2. PRELIMINARIES
This section introduces the preliminaries which are the basis of the approaches used in
this chapter.

4.2.1. NONLINEAR SYSTEM MODEL WITH OUTPUT FAULTS
Consider the following nonlinear state-space model with output faults

{
ẋ(t ) = f̄ (x(t ),u(t ), t )+G(t )w (t ) (4.1)

y(t ) = h(x(t ),u(t ), t )+v (t )+ f o(t ), t = ti , i = 1,2, ... (4.2)

where x ∈Rn represents the system states, u ∈Rb the input, y ∈Rl the measurement. The
matrix G is the noise distribution matrix. The function f̄ and h are nonlinear functions.
The function f o represents output faults. w and v represent input and output noises.
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Figure 4.1: Block diagram of the MMAE approach

4.2.2. MULTIPLE-MODEL ADAPTIVE ESTIMATION
The proposed approach in this chapter is mainly based on the framework of the MMAE
approach. Therefore, the background of the MMAE approach is given.

The MMAE [37] is composed of a bank of KFs operating in parallel. All the filters use a
vector of measurements Y explained below and a vector of input u, and are based on the
same equations of motion, while each hypothesizes a different fault scenario. At sample
step k, each of the filters produces a state estimate x̂(k) and a vector of innovation γ(k).
The basic idea is that the KF which produces the most well-behaved innovation contains
the model which matches the true faulty model best [93]. The block diagram for the
MMAE is given in Figure 4.1. The “nf ” in the figure means no fault.

A hypothesis test uses the innovationγ(k) and the residual covariance matrix A(k) of
the filters in order to assign a conditional probability to each of the filters which matches
a particular fault scenario. Let a denote the fault scenarios of the nonlinear system and
K the number of the filters of the MMAE. If we define the hypothesis conditional prob-
ability pi (k) as the probability that a is assigned ai for i = 1,2, ...,K , conditioned on the
measurement history up to time step k:

pi (k) = Pr[a = ai |Y (k) = Yk ], i = 1,2, ...,K (4.3)

The conditional probability will be updated recursively using the following equation:

pi (k) = fyk |a,Yk−1 (yk |ai ,Yk−1)pi (k −1)
K∑

j=1
fyk |a,Yk−1 (yk |a j ,Yk−1)p j (k −1)

, i = 1,2, ...,K (4.4)

where Yk−1 is defined as Yk−1 = {y(0), y(1), .., y(k −1)}. fyk |a,Yk−1 (yk |ai ,Yk−1) is the prob-
ability density function which is defined as follows:

fy(k)|a,Yk−1
(y(k)|ai ,Yk−1) =βi (k) exp{−γT (k)A−1

i (k)γ(k)/2} (4.5)
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where

βi (k) = 1

(2π)l /2|Ai (k)|1/2
(4.6)

In Equation (4.6), l is the dimension of the measurement, the symbol “|...|” denotes the
determinant of the covariance matrix Ai (k) which is computed by the KF at time step
k. The filter which matches the fault scenario produces the smallest innovation which is
the difference between the estimated measurement and the true measurement. There-
fore, the conditional probability of the filter which matches the true fault scenario is the
highest among all the filters. After the computation of the conditional probability, the
state estimation of the nonlinear system x̂(k) can be generated by the weighted state
estimate x̂i (k) of the K filters:

x̂(k) =
K∑

i=1
x̂i (k)pi (k). (4.7)

4.2.3. MMAE FOR FDD
The model probability indicates to what extent each model matches the system model;
hence, it can be used for the FDD in real time. Normally, a fault alarm is triggered if the
associated fault model probability exceeds a certain percentage described as follows:

pi (k)

{
> pm ⇒ trigger the fault alarm for the i th model

< pm ⇒ No i th fault
(4.8)

where the threshold pm is 0.9 in this research. Fisher et al. [122] and Ducard et al. [103]
suggest a fault is detected if the conditional probability of the elemental filter exceeds
0.9 for a certain amount of time while Maybeck [37] claims a fault is detected if the con-
ditional probability is above 0.9 for 10 sample periods or exceeds 0.95. A lower threshold
would detect the faults faster but may also increase the false alarm rate [122]. In addition,
in order to avoid the possibility that recursive computation of the conditional probabil-
ity (Equation (4.4)) stays at zero as soon as the conditional probability reaches zero, the
conditional probability pi (k) is bounded by a lower bound of 0.001 [37, 93, 103, 122].

If the fault is estimated by the K filters, then the probability-weighted fault estima-
tion of the i th filter is:

f̄i (k) = f̂i (k)pi (k), i = 1,2, ...,K (4.9)

where f̂i (k) is the fault estimation of the i th filter and f̄i (k) is the probability-weighted
fault estimation of the i th filter.

4.3. THE DOUBLE-MODEL ADAPTIVE ESTIMATION APPROACH
This section presents the DMAE approach. As mentioned, the DMAE approach uses a
framework similar to that of the MMAE. This section will first introduce the differences
with the MMAE. Then two new SR algorithms will be proposed which are essential to the
DMAE approach.
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4.3.1. DIFFERENCES FROM THE MMAE FRAMEWORK
The biggest difference between the proposed DMAE and the MMAE is that the DMAE
reduces the number of models in the model set to two: the no-fault model and the
augmented fault model. Therefore, K = 2 for all the K in Section 4.2. The MMAE and
the IMM approach requires at least K +1 models to cope with multiple faults and more
models to deal with simultaneous faults. The MMAE approach requires 3K +1 models to
identify the partial faults. This is the biggest difference which is also the main advantage
of the proposed approach compared to other multiple-model-based approaches.

Let subscript “nf ” denote the quantities related to the no-fault model and “af ” de-
note those related to the augmented fault model. It is assumed that there are m (m ≤ l )
output faults without losing generality. As for the MMAE approaches in Ducard et al.
[103] and Lu et al. [107], considering single FDD, the states of the no-fault filter are:

xnf (k) = [x1(k), x2(k), ... , xn(k)]T (4.10)

The states of the i th fault filter are:

xafi (k) = [x1(k), x2(k), ... , xn(k), f o
i (k)]T , i = 1,2, ...,m

where f o
i (k) is the fault vector of the i th fault filter.

As for the DMAE approach, the states of the no-fault filter are the same as those of
the no-fault filter using MMAE approaches (Equation (4.10)). However, the fault filter of
the DMAE approach augments all the output faults as additional states instead of only
one fault as implemented by the MMAE approach. Then, the state vector of the fault
filter matching the fault model of the DMAE approach is as follows:

xaf (k) = [x1(k), x2(k), ... , xn(k), f o
1 (k), f o

2 (k), ... , f o
m(k)]T (4.11)

The DMAE approach is able to detect and isolate the faults in the system more ef-
ficiently than the traditional MMAE approach. This can be explained by the computa-
tional complexity analysis of the DMAE approach in the following subsection.

Another advantage of the DMAE approach compared to the MMAE approach is that
it reduces the false alarm rate. A large model set could lead to similar elemental filters,
which results in performance degradation [99, 105, 120] such as false alarms. A double-
model set could reduce performance degradation, which will also be shown in the sim-
ulation section.

4.3.2. COMPUTATIONAL COMPLEXITY COMPARISON
This subsection compares the computational complexity of the MMAE and DMAE ap-
proach, assuming there are multiple faults which do not occur simultaneously. The UKF
is used for analysis.

As for the MMAE, the most intensive computation complexity of the no-fault filter
is O (n3) while that of the fault filter is O (m(n + 1)3). In terms of DMAE approach, the
most intensive complexity of the no-fault filter is O (n3) whereas that of the fault filter is
O ((n +m)3). It is straightforward to compare the complexity of the fault filters of these
two approaches. It can be verified that as long as n > m > 2 or n ≥ m > 4, the following
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inequality holds:

(n +m)3 < m(n +1)3 (4.12)

In the simulation section, n = 6, m = 3, which satisfies the above inequality. Therefore,
the computation complexity is reduced. Note that if m > n, the complexity needs to be
further analyzed.

4.3.3. SELECTIVE REINITIALIZATION ALGORITHMS
The DMAE approach uses a modified framework of the multiple-model-based approach.
Reinitialization is important to such an approach [99]. Lu et al. [107] proposed a SRM-
MAE approach which consists of a SR scheme different from the reinitialization scheme
of the traditional MMAE and IMM approach. The SRMMAE, which is an improved ver-
sion of the MMAE, is more effective than the IMM when coping with small input FDD.
In this chapter, two SR algorithms for the DMAE are proposed.

The objective of the two SR algorithms is to achieve an unbiased estimation for both
the no-fault filter and the fault filter in the absence and presence of output faults through
certain reinitializations. The proposed SR algorithms have the same structure:

1. Determine whether there are output faults in the system.

2. If there are no output faults, perform reinitialization for the fault filter using the
state estimate of the no-fault filter.

3. If there are output faults, keep performing reinitialization for the no-fault filter
using the state estimate of the fault filter.

The details of the first SR algorithm (SR1) are given in Algorithm 4. This algorithm
keeps reinitializing one filter using the other filter. However, it is still different from the
reinitialization of the IMM approach since SR1 does not reinitialize all the filters whereas
the IMM reinitializes all the filters simultaneously.

The details of the second SR algorithm (SR2) are given in Algorithm. 5. This SR2 is an
extension of the SR used for output FDD in Lu et al. [107].

In the algorithms, x̂0
nf (x̂0

af ) and x̂nf (x̂af ) denote the state estimate of the no-fault

(augmented fault) filter before and after the reinitialization, respectively. P0
nf (P0

af ) and

Pnf (Paf ) denote the covariance of state estimate error of the no-fault (augmented fault)
filter before and after the reinitialization, respectively. x̂t , pt and Pt are the vectors which
contain the state estimate, model probability and the covariance matrix of state estima-
tion error of the no-fault filter and the fault filter respectively. imax,k is the index of the
model with the maximum model probability at time step k. x0 and P0 are parameters
which are used for the initialization of the filter.

The first two steps of the two algorithms are the same. The objective of these two
steps is to assign the two models in a set {pt , xt , Pt } and find the index of the model
with the maximum probability pt ,imax,k in the model set. It should be noted that the
dimension of the state of the no-fault filter is n while that of the fault filter is n +m.

The main similarity between the two algorithms is that they both keep reinitializing
the no-fault filter using the fault filter in the presence of output faults (the 4th step). The
reason is explained in the following paragraph.



4.3. THE DOUBLE-MODEL ADAPTIVE ESTIMATION APPROACH

4

85

Algorithm 4 SR1 for Output FDD

At time step k;
1. Variables assignment

pt ,1 = pnf ; pt ,2 = paf

x̂t ,1 = x̂0
nf , j ; x̂t ,2 = x̂0

af , j , j = 1 to n

Pt ,1 = P 0
nf , j j ; Pt ,2 = P 0

af , j j , j = 1 to n

2. Index of the filter with the maximal model probability
Find imax,k ∈ { pt ,imax,k = max ( pt ,i ) | i = 1,2 }

3. Reinitialization for the fault filter
if imax,k = 1 then

x̂af , j = x̂t ,imax,k , j = 1 to n
Paf , j j = Pt ,imax,k , j = 1 to n
x̂af , j = x0, j = n +1 to n +m
Paf , j j = P0, j = n +1 to n +m

end if
4. Reinitialization for the no-fault filter

if imax,k = 2 then
x̂nf = x̂t ,imax,k

Pnf = Pt ,imax,k

end if

Algorithm 5 SR2 for output FDD

At time step k;
1. Variables assignment

the same as in Algorithm 4
2. Indexes of the filters with the maximal model probability

the same as in Algorithm 4
3. Reinitialization for the fault filter

if k = 1 or ( k > 1 and imax,k−1 = 1 and imax,k 6= 1 ) then
x̂af , j = x̂t ,1, j = 1 to n
Paf , j j = Pt ,1, j = 1 to n
x̂af , j = x0, j = n +1 to n +m
Paf , j j = P0, j = n +1 to n +m

end if
4. Reinitialization for the no-fault filter

the same as in Algorithm 4

As demonstrated in Lu et al. [107], the fault filter is able to maintain an unbiased
state and fault estimate in the presence of output faults through a certain reinitialization
(i.e., the third step). Therefore, it can be assumed that in the presence of output faults,
the state estimate and fault estimate of the fault filter can achieve an unbiased estimate.
If the no-fault filter is not reinitialized each time step in the presence of faults, the filter
will follow the measurement which contains the faults. This means that the innovation
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γnf (k+1) of the no-fault filter is still small even though the state estimate is biased. Since
γ(k +1) is the dominant term in Equation (4.5), the probability of the no-fault filter and
the fault filter will be similar to each other especially when the output faults are small.
Therefore, false alarms may be obtained especially in the presence of small faults. This is
consistent with the simulation result shown in Figure 4.3(c). The smaller the magnitude
of the faults, the more false alarms there will be, which is also shown in Figure 4.4(c).

If the no-fault filter is reinitialized using the fault filter, then the expectation of the
state estimate of the no-fault filter is

E {x̂n f (k +1)} = x(k +1); (4.13)

According to Equation (4.2), the innovation of the no-fault filter is

E {γnf (k +1)} = E {y(k +1)}−E {h(x̂nf (k +1))}

= f o(k +1). (4.14)

Since the innovation of the fault filter is zero-mean, its expectation is E {γaf (k +1)} = 0.
Therefore, it is obvious that in the presence of output faults, the innovation of the no-
fault filter is always larger than that of the fault filter under the condition that the no-fault
filter is reinitialized by the fault filter. Therefore, it follows:

fyk |a,Yk−1 (yk |anf ,Yk−1) < fyk |a,Yk−1 (yk |aaf ,Yk−1), (4.15)

which leads to
pnf < pa f . (4.16)

As can be seen, the probability of the no-fault filter will always be smaller than that
of the fault filter. Therefore, false alarms are less likely to appear.

The two SR algorithms differ from each other in the third step, which is the reini-
tialization for the fault filter in the absence of output faults. The third step of the SR2 is
able to maintain an unbiased state and fault estimate, as demonstrated by Lu et al. [107].
The third step of the SR1 proposes to perform the reinitialization as long as there are no
output faults (imax,k = 1). This requires more reinitializations compared to the SR2. The
advantages and drawbacks of using these two different reinitialization strategies will be
shown in the later sections.

For the reinitialization of the fault filter, the first n components of the state estimate
(x̂af , j , j = 1 : n) of the fault filter are replaced by those of the no-fault filter. For the latter
m components (x̂af , j , j = n+1 : n+m), a normal reinitialization such as the initialization
of the KF can be applied.

By now, the complete block diagram of the DMAE approach can be given in Fig-
ure 4.2. The DMAE approach combined with the SR1 is termed as the DMAE1 approach
and the DMAE approach combined with the SR2 is termed as the DMAE2 approach. The
SR algorithms are vital to the DMAE approach. In this chapter, the DMAE approach is
referred to the double-model-based approach with the SR algorithms. If there is no SR,
the approach is called Double-Model Adaptive Estimation-No Selective Reinitialization
(DMAE-NSR). The performance of the DMAE-NSR will also be shown to demonstrate
the importance of the SR algorithms.
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Figure 4.2: Block diagram for the DMAE approach

4.3.4. THE DMAE FOR FDD
The fault detection using the DMAE approach is the same as using the MMAE approach
(Equation (4.8)). A fault alarm indicates a fault or faults in the system. However, which
sensor or sensors are faulty needs to be further determined.

Since the fault filter of the DMAE approach is augmented with the m output faults
f o(k + 1), the faults of each output are estimated by the DMAE. As mentioned by Ed-
wards et al. [19], fault estimation is a powerful alternative to the detection of a fault
when the location of the fault effect on the system is known. Furthermore, the fault in-
formation provided by the fault estimation approach can be directly used to isolate all
faults [19]. This chapter makes use of a probability-weighted fault estimation to achieve
fault isolation.

Let f̂ o
i denote the fault estimation of the i th output fault which is obtained by the

fault filter. The probability-weighted fault estimation of the i th output can be deter-
mined using

f̄ o
i = f̂ o

i ·pa f , i = 1,2, ...,m (4.17)

where f̄ o
i is the probability-weighted estimation of the i th output fault. This probability-

weighted fault estimation is used to isolate all faults through a threshold crossing. The
threshold for isolating the faults is denoted as To . It will be demonstrated that in the
presence of little or no uncertainties, To can be readily selected. The FDD performance
of the DMAE approaches will be presented in the following section.

4.4. PERFORMANCE OF THE DMAE
This section will compare the performance of the two proposed DMAE approaches to
multiple-model-based approach. The fault detection example concerns the detection
and estimation of consecutive and simultaneous faults of the aircraft ADS.

The structure of this section is as follow: Section 4.4.1 presents the kinematic model
and the measurement model which are used for the FDD of the aircraft ADS. Section 4.4.2
compares the performance of the two DMAE approaches with multiple-model-based
approach on the FDD of multiple faults. The performance of the two DMAE approaches
with respect to simultaneous FDD is compared in Section 4.4.3. The sensitivity analysis
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of the DMAE approaches is presented in Section 4.4.4. Finally, Section 4.4.5 summaries
the performance comparison between the two DMAE approaches.

4.4.1. AIRCRAFT ADS FDD

The kinematic model of the aircraft including ADS faults is described as

ẋ(t ) = f̄
(
x(t ),um(t ), t

)+G(x(t ))w (t ) (4.18)

y(t ) = h(x(t ),um(t ), t )+v (t )+ f o(t ), t = ti , i = 1,2, ... (4.19)

where um ∈Rb is the measured input, the other variables were defined in Equations (4.1)
and (4.2). All the variables are dependent on time t . Note that for reasons of readability,
t is omitted. The system equation variables are specifically described as follows:

x = [V α β φ θ ψ]T (4.20)

um = u +λ+w = [Ax Ay Az p q r ]T +λ+w (4.21)

y = [Vm αm βm φm θm ψm]T (4.22)

λ= [λx λy λz λp λq λr ]T (4.23)

w = [wx wy wz wp wq wr ]T (4.24)

v = [vV vα vβ vφ vθ vψ]T (4.25)

f o = [ fV fα fβ 0 0 0]T (4.26)

where [ fV fα fβ]T are the faults of the ADS, i.e. fV , fα and fβ are the faults in the velocity
sensor, angle of attack sensor and angle of sideslip sensor, respectively. The input um is
the IMU measurement which measures the specific forces (Ax , Ay and Az ) and angular
rates (roll rate p, pitch rate q and yaw rate r ) of the aircraft. y is the output measurement
which measures the air data information (true airspeed V , angle of attack α and angle of
sideslip β) and Euler angles (roll angle φ, pitch angle θ and yaw angle ψ). λ is the bias in
the IMU measurement. It is assumed that λ = 0 in this section. In reality, this may not
be true. The situation when λ 6= 0 will be dealt with in Section 4.5. The input noise w
and output noise v are assumed to be white Gaussian noise sequences. When this is not
the case, there is a little inconsistency with the application of the theory [103]. However,
it is still reasonable to assume the noises are Gaussian-distributed, especially when the
aircraft dynamics are slow [103].
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The kinematic equations are as follows:

V̇ = (Ax − g sinθ)cosαcosβ+ (Ay + g sinφcosθ)sinβ

+ (Az + g cosφcosθ)sinαcosβ (4.27)

α̇= 1

V cosβ
(−Ax sinα+ Az cosα+ g cosφcosθcosα

+ g sinθ sinα)+q − (p cosα+ r sinα) tanβ (4.28)

β̇= 1

V
[−(Ax − g sinθ)cosαsinβ+ (Ay + g sinφcosθ)cosβ

− (Az + g cosφcosθ)sinαsinβ]+p sinα− r cosα (4.29)

φ̇= p +q sinφ tanθ+ r cosφ tanθ (4.30)

θ̇ = q cosφ− r sinφ (4.31)

ψ̇= q
sinφ

cosθ
+ r

cosφ

cosθ
(4.32)

where g is the gravity constant. The measurement model is:

y = Hx +v + f o , H = I6×6 (4.33)

The objective of this chapter is to detect and identify fV , fα and fβ. The aircraft model is
a simulated aircraft model of Cessna Citation II aircraft.

SELECTION OF Q AND R
The covariance matrix of w and v are defined as Q and R respectively. These matrices
are critical to the performance of the filter. R can be inferred from the output measure-
ment noise. As can be seen from the kinematic equations, it is obtained from the noise
of the ADS and the sensors which measure the attitude angles. Q is usually used to repre-
sent modeling errors. If the influence of disturbances is assumed to be limited, then the
only model uncertainty is in the input, i.e. the IMU measurements . Therefore, Q can
be inferred from the IMU sensor noise which is defined in Equation (4.21) and Equa-
tion (4.24). The sensitivity of this Q selection in the presence of turbulence can be found
in Section 4.4.4. For more detailed information about the implementation of the Q and
R in the filter, the reader is referred to Mulder et al. [90].

4.4.2. MULTIPLE FAULT DETECTION AND DIAGNOSIS
This section will compare the performance of the proposed approaches with that of the
multiple-model-based approaches. Since the SRMMAE2 in Lu et al. [107] is an improved
version of the traditional MMAE approach, and its performance is better than the IMM
approach when coping with small input faults, it is selected to compare with the two
DMAE approaches. Furthermore, to demonstrate the importance of the SR algorithms,
the DMAE-NSR approach is also compared to the two DMAE approaches.

For multiple faults simulated in this chapter, the faults occur between 10 s < t < 20
s, 30 s < t < 40 s and 50 s < t < 60 s. The sampling rate in this chapter is 100 Hz. Two
different scenarios are designed for the performance comparison.
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SCENARIO 1

In this scenario, consecutive ADS faults are generated. For 10 s < t < 20 s, the true air-
speed V sensor fails with a bias of 10 m/s. For 30 s < t < 40 s, there is a drift fault in
the angle of attack α sensor. The drift rate is 10−1 rad/s. For 50 s < t < 60 s, a bias with
the value of 10−1 rad occurs in the angle of sideslip β sensor. Note that the drift fault
is difficult to detect and identify due to its time-varying properties. The fault type and
magnitude are shown by the solid line in Figure 4.3(b).

The SRMMAE2, DMAE-NSR and DMAE1 and DMAE2 approach are all used to detect
and identify these consecutive faults. The results are shown in Figure 4.3. In the figures,
the annotation “true” means the true model probability of elemental filters. The results
of the DMAE2 approach are not shown, which will be explained.

The model probabilities and probability-weighted fault estimation of the elemental
filters using the SRMMAE2 approach are shown in Figures 4.3(a) and 4.3(b) respectively.
Note there are four elemental filters using this approach. As can be seen, the perfor-
mance is good despite some glitches in the probabilities. E.g., during 45 s < t < 45.5 s,
the model probability plot of the β sensor fault filter displays some probabilities which
are larger than the lower probability bound (0.001). However, this does not trigger the
alarm since the magnitude is smaller than the threshold pm (0.9).

The results using the DMAE-NSR are shown in Figures 4.3(c) and 4.3(d). As can be
seen from Figure 4.3(c), there are false alarms during 20 s < t < 30 s and 40 s < t < 50
s. During 10 s < t < 20 s (there are output faults), the model probability plot of the fault
filter displays several probabilities which are smaller than pm (0.9). The reason why this
occurs is explained in Section 4.3.3 (the motivation of performing reinitialization when
there are output faults) and is explained in more detail in the following. When there
are output faults, the covariance of the innovation of the no-fault filter γnf is smaller
than the true covariance. This makes the no-fault filter trust the measurement (which
contains output faults) more. Consequently, the innovation of the no-fault filter γnf will
also be small. Therefore, according to Equations (4.4) and (4.5), the probability of the
no-fault filter pnf can be bigger than that of the fault filter paf . This explains why in
the presence of output faults, the model probability of the fault filter paf can fall below
the threshold pm (0.9) and may even be smaller than that of the no-fault filter pnf (at
t = 14.16 s and t = 15.1 s). The situation will become worse when f o is small, as can
be seen from Figure 4.4(a). During 10 s < t < 16 s, the model probability of the no-fault
filter is several times significantly larger than 0.1 (which means the corresponding model
probability of the fault filter paf is smaller than 0.9). During 16 s < t < 20 s, the model
probability of the no-fault filter pnf exceeds that of the fault filter paf during the whole
period except at t = 16.65 s and t = 17.37 s.

For the false alarms during 20 s < t < 30 s and 40 s < t < 50 s, detailed explanations
can be found in Lu et al. [107] and only brief explanations are followed. During these
two periods, the output faults are removed. The no-fault filter needs time to adapt to the
no-fault situation. This situation will become worse when the faults are smaller, which
explains why the probability of the no-fault model pn f remains zero during the whole
no-fault period (40 s < t < 50 s). The estimation of fV , fα and fβ using the DMAE-NSR
approach is shown in Figure 4.3(d). The estimation of fα and fβ is acceptable while that
of the fV deviates from the true value.
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Figure 4.3: Result of consecutive ADS FDD using the proposed DMAE1 approach and its comparison with the
SRMMAE2 and DMAE-NSR approach (Scenario 1)
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The model probability and the fault estimation of the proposed DMAE1 approach
are shown in Figures 4.3(e) and 4.3(f), respectively. The performance is satisfactory.
The model probability of the fault filter paf approaches 1 when there are output faults
and approaches the lower probability bound (0.001) when there are no output faults.
No glitches are observed from the figure. Its fault estimation performance is as good as
that of the SRMMAE2 approach. However, the DMAE1 approach only uses two mod-
els while the SRMMAE2 uses four models. The SRMMAE2 approach needs additional
filtering to remove the spikes which is not necessary for the DMAE1 approach. This con-
firms the fact that more models may lead to performance degradation [99, 120]. The
model probabilities using the DMAE2 approach are the same as those of the DMAE1
approach. The fault estimation using the DMAE2 approach is the same as that of the
probability-weighted estimation using the SRMMAE2 approach since they use the same
reinitialization scheme. Therefore, the results using the DMAE2 approach are omitted.

It has been shown that the performance of the DMAE approach is better than the SR-
MMAE2 approach. The computational load of the DMAE approach is also less intensive
than multiple-model-based approach. Therefore, the performance comparison in the
following simulations will be performed between the DMAE approaches.

SCENARIO 2
In this scenario, the magnitude of the faults are smaller than those in Scenario 1, which
can be seen from Figure 4.4(b). The drift rate of the α sensor is 2×10−2 rad/s, the bias of
the V sensor is 1 m/s whereas that of the β sensor is π/180 rad. The results are shown in
Figure 4.4.

To emphasize the importance of the SR algorithms, the result using the DMAE-NSR
is also shown in Figures 4.4(a) and 4.4(b). The amount of false alarms using the DMAE-
NSR approach increases due to smaller faults. The estimation of fV using the DMAE-
NSR shows a divergence problem in the case there is another fault in a different sensor
( fα).

The results using the DMAE approaches are shown in Figures 4.4(c)- 4.4(f). As can
be seen from the figures, the superiority of the DMAE approaches is more significant
when the faults are smaller. Even though the faults are smaller, the DMAE approaches
still maintain a satisfactory performance. The detection delay of fα is larger than that of
the fV and fβ using the two approaches. This is because the drift fault is so small that it
takes time to be detected. However, the detection response is still satisfactory. It takes
the DMAE approaches less than 0.75 s to detect and identify such a small drift fault.

The estimation of fV , fα and fβ using the two approaches is shown in Figures 4.4(d)
and 4.4(f) respectively. It can be noted that when there are no faults (0 s < t < 10 s,
20 s < t < 30 s and 40 s < t < 50 s), the variances of the fault estimate using the DMAE1
approach are bigger than those using the DMAE2 approach, while in the presence of
fault, their performance is almost the same. The reason is that they use different reini-
tialization strategies when there are no faults and the same reinitialization strategy in
the presence of faults. When there are no faults, the DMAE1 keeps reinitializing the fault
filter using the no-fault filter. It can be inferred that the variance of the fault estimate is
the same as that of the corresponding measurement noise covariance. In this case, the
variance of the V sensor fault estimate is the same as that of the V measurement noise
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Figure 4.4: Result of consecutive ADS FDD using the DMAE1 and DMAE2 approach and their comparison
with the DMAE-NSR approach (Scenario 2)
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Figure 4.5: More results of using the DMAE1 approach (Scenario 2)

covariance. The variance of the fault estimate using the DMAE2 approach is not affected
by that of the measurement noise covariance.

Using Equation (4.17), the probability-weighted estimation of fV , fα and fβ using the
DMAE1 approach is computed and shown in Figure 4.5(a). This probability-weighted
fault estimation is applied to isolate the faults, which is shown in Figure 4.5(b). The ab-
solute value of the threshold To used to isolate the faults is: [0.3,0.18π/180,0.18π/180].
Note that the probability-weighted estimate of fα during 30 s < t < 30.75 s approaches 0
due to Equation (4.17). At t = 30.75 s, when the probability of the fault filter paf exceeds
0.9 (Figure 4.4(c)), the estimate of fα has already crossed its corresponding threshold
(0.18π/180) while that of the fV and fβ still remains in the threshold bound. Therefore,
the fault detection and isolation can be achieved simultaneously. The result using the
DMAE2 approach is similar to that of the DMAE1 approach and is omitted.
Remark: The benefit of FDI using the probability-weighted fault estimation can be seen
from Figure 4.5(b). In the absence of faults (0 s < t < 10 s, 20 s < t < 30 s and 40 s < t < 50
s), the probability-weighted estimation of fV , fα and fβ approaches zero due to Equa-
tion (4.17). Therefore, the possibility of a false detection, when there are no faults, is
limited. When there are faults, due to the DMAE approaches, the fault estimate remains
unbiased and is not influenced by the measurement noise. This also facilitates the se-
lection of To . Under these circumstances, To can be designed based on fault-free simu-
lations. The selection of To using real flight data will be mentioned in Section 4.5.

4.4.3. SIMULTANEOUS FAULT DETECTION AND DIAGNOSIS

In this section, simultaneous FDD is considered. If normal MMAE or SRMMAE2 is used
for detecting simultaneous faults, it is normally assumed that there are some delays
between the two simultaneous faults [93, 103]. However, the DMAE approach in this
chapter does not require this assumption. Furthermore, since the MMAE and the IMM
require more than m + 1 models to represent different fault situations, it increases the
computational load significantly. Therefore, in this section, only the performance of the
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two proposed approaches is compared.
For the simultaneous faults considered in this chapter, the faults occur in all the ADS

during 10 s < t < 20 s and 30 s < t < 40 s. Two different scenarios are designed to demon-
strate and compare the performance of the DMAE approaches.

SCENARIO 3
In order to test the performance of detecting smaller faults, the faults in this section are
all bias faults. It should be noted that other types of faults can also be detected, which will
also be shown in later sections. The type and the magnitude of the faults can be found in
Figure 4.6(d). All the magnitudes of the faults are relatively small in this simulation. The
absolute value of the fV is 0.5 m/s while the absolute value of the fα and fβ sensor are
both 0.5π/180 rad. The results of simultaneous FDD of the DMAE approaches are shown
in Figure 4.6.

The model probabilities of the DMAE1 and DMAE2 of detecting the simultaneous
faults of the ADS are shown in Figures 4.6(a) and 4.6(b) respectively. As can be seen, both
approaches perform well. Even though the faults are small, all the faults are detected
almost instantaneously. It takes 0.03 s to detect the simultaneous faults.

The estimation of fV , fα and fβ using the two approaches is shown in Figures 4.6(c)
and 4.6(d) respectively. Note again, when there are no faults, the variances of the fault
estimate using the DMAE1 approach are bigger than those using the DMAE2 approach
while the variances of the fault estimation using the DMAE2 approach are not affected.
This is not an issue for the DMAE1 approach as long as the faults can be detected. The
probability-weighted estimation of fV , fα and fβ using the two approaches is calculated
through Equation (4.17) and the result is shown in Figures 4.6(e) and 4.6(f) respectively.
As can be seen, the performance of the two approaches is comparable. However, there
may be problems when the fault magnitude is so small that it can be comparable to the
standard deviation of the fault estimate, which will be shown in the following section.

SCENARIO 4
In the previous simulation, the performance of the two DMAE approaches with respect
to the simultaneous FDD are compared. In this section, the advantage of using the reini-
tialization strategy in the DMAE2 approach over the DMAE1 approach will be shown.
The fault scenario is similar to Scenario 3, but the fault magnitudes are smaller. The
absolute value of the V sensor faults is 0.5 m/s while the absolute value of the α and β

sensor faults are both 0.2π/180 rad. The results are shown in Figure 4.7.
The model probabilities of the two approaches are shown in Figures 4.7(a) and 4.7(b)

respectively. It can be seen that the detection of simultaneous faults using the DMAE1
approach is completely missed while the DMAE2 approach still maintains a satisfactory
performance. The reason is that the DMAE1 approach keeps reinitializing the fault fil-
ter using the no-fault filter, which makes the standard deviation of the fault estimate
comparable or even larger than the faults in this simulation. This makes the faults un-
detectable and demonstrates the advantage of using the reinitialization strategy in the
DMAE2 approach, which maintains the differences between the state estimate and the
fault estimate. The probability-weighted estimation of fV , fα and fβ using the DMAE1
and DMAE2 is shown in Figures 4.7(c) and 4.7(d) respectively. The probability-weighted
fault estimation of the DMAE1 approach is zero due to Equation (4.17) while that of the
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Figure 4.6: Results of simultaneous ADS FDD using the DMAE1 and DMAE2 approach (Scenario 3)
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Figure 4.7: Result of simultaneous ADS FDD using the DMAE1 and DMAE2 approach (Scenario 4)
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Figure 4.8: Performance of the UKF when kQ and kR varies

DMAE2 approach reconstructs the fault in an unbiased sense. The state estimation error
of the two approaches is shown in Figures 4.7(e) and 4.7(f) respectively. It can be also
seen that the state estimation error of the DMAE2 approach is unbiased as expected,
while that of the DMAE1 approach shows a large error, especially in the presence of
faults.

4.4.4. SENSITIVITY ANALYSIS
This section first analyses the sensitivity of the filter (UKF) used by the DMAE approaches.
If there are no disturbances, the model described in Equations (4.18) and (4.19) can be
considered to be exact. Under this circumstance, the sensitivity can be analyzed based
on two situations: sensitivity to Q and sensitivity to R.

Let Qr and Rr denote the true process and measurement noise covariance matrix.
The relationship between Q, R and Qr , Rr can be denoted as follows:

Q = kQ Qr , R = kR Rr (4.34)

where kQ and kR are two coefficients. For linear systems, the estimation error covariance
of the KF is minimum if kQ = 1 and kR = 1. For nonlinear systems, if the filter requires lin-
earization, the optimal performance may not be necessarily achieved when kQ = 1 and
kR = 1 due to the linearization errors. In this chapter, the UKF, which does not require
linearization, is used. The sensitivity of the UKF to Q and R can be analyzed by varying
kQ and kR respectively. The averaged root mean square error (RMSE) of the estimation
using the UKF, when 10−4 ≤ kQ ≤ 104 or 10−4 ≤ kR ≤ 104, is shown in Figures 4.8(a) and
4.8(b), respectively.

As can be seen from the figures, in both situations, the minimum error is obtained
when kQ = 1 and kR = 1. This indicates that the linearization error caused by the UKF is
limited. Furthermore, it can be seen from the figure that either kQ 6= 1 or kR 6= 1 will cause
an increase in the filter estimation error. This indicates the importance of the selection
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of Q and R.
The above analysis is based on the assumption that there are no disturbances. In the

presence of disturbances, the sensitivity of the two DMAE approaches, rather than that
of the UKF, is shown below. The simulation situation is the same as in Section 4.4.2. In
this chapter, only turbulence is considered as a disturbance, while other types of atmo-
spheric disturbances, such as wind shears, are considered to be future work. A Dryden
wind model is included in the simulation and the corresponding wind speeds are shown
in Figure 4.9. The Q and R are selected in the same manner as in Section 4.4.1. The
results of the DMAE1 and DMAE2 approach are shown in Figures 4.10(a) and 4.10(b),
respectively.
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Figure 4.9: Wind speeds. uw , vw and ww represent the wind speed in the north, east and down direction,
respectively.

As can be seen from the figures, in the presence of faults (10 s < t < 20 s, 30 s < t < 40
s and 50 s < t < 60 s), both the performance of the DMAE approaches are satisfactory.
However, in the absence of faults, the performance of the DMAE2 approach suffers from
degradation whereas the DMAE1 approach maintains its satisfactory performance. The
reason is that in the presence of faults, both the approaches keep performing reinitial-
ization which reduces the influence of disturbance. In the absence of faults, the DMAE1
still keeps reinitializing whereas the DMAE2 does not, which makes the DMAE2 sensitive
to disturbances.

4.4.5. COMPARISON BETWEEN THE DMAE1 AND DMAE2
The performance comparison between the DMAE1 and DMAE2 is summarized as fol-
lows:

1. Computational load: The DMAE1 approach is more computationally intensive
since it performs the reinitialization strategy at every time step.

2. Detection range: The DMAE2 can detect smaller faults compared to the DMAE1
approach when there are no or little uncertainties and disturbances. The DMAE2
does not perform the reinitialization strategy at every time step, which maintains
the differences between the two models.
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Figure 4.10: Performance comparison of the DMAE1 and DMAE2 approach in the presence of turbulence

3. Sensitivity to disturbances: The DMAE1 approach is less sensitive to disturbances
since it keeps performing the reinitialization while the DMAE2 is more sensitive to
disturbances.

The performance comparison of the two DMAE approaches in this section is based on
the simulated data of the aircraft. The performance of the two approaches when dealing
with real flight test data will be validated and compared in the following section.

4.5. FAULT DETECTION AND DIAGNOSIS USING REAL FLIGHT

DATA
The previous simulations are based on simulated data of an aircraft. This chapter in-
tends to narrow down the gap between the academic and the real application by apply-
ing the proposed approaches to real flight data. It should be noted that a majority of
FDD related research uses simulated data rather than real data, since the use of real data
presents a number of challenges. The reasons are given below.

4.5.1. ISSUES RELATED TO FDD USING THE REAL FLIGHT DATA

There are many differences between using real flight data and simulated data. First of
all, most studies dealing with aircraft sensor FDD usually use the aerodynamic model
of the aircraft. The aerodynamic model can contain model uncertainties due to the cal-
culation of the aerodynamic forces and moments. An accurate aerodynamic model is
difficult and expensive to obtain. Hence, the performance of the model-based FDD ap-
proaches which mainly rely on the accuracy of the model may suffer from performance
degradation.

There are also uncertainties in the measurements. Although calibrated by the manu-
facturer, there remain biases and inaccuracies in real life measurements. E.g., the biases
of the IMU sensors can be temperature dependent, and as such cannot be completely
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removed by calibration. The angle of attack α and angle of sideslip β in this chapter are
measured by vanes which are mounted on the nose boom of the aircraft. However, the
α-vane measures a combination of the true angle of attack, a fuselage-upwash induced
angle of attack, a kinematically induced angle of attack and a vertical wind component
[90, 91]. Theβ-vane also measures a combination of the true angle of sideslip, a fuselage-
induced angle of sideslip and a lateral wind component. Therefore, the measured angle
of attack and angle of sideslip also have to be calibrated in order to get the information
about true angle of attack and angle of sideslip.

The noise level of the measurement has to be determined. Normally, the manufac-
turer provides this information. However, sometimes the noise level of the sensors may
not be same with those specified by the manufacturer [91]. In this chapter, the noise lev-
els in the accelerometers are more than an order of magnitude higher than those speci-
fied by the manufacturer, which increases the uncertainty.

There are also different update rates related to different measurements. As for the
IMU sensors, the update rates are usually high whereas for the Global Positioning System
(GPS) sensors, the update rate may be low. In this chapter, the update of the IMU and
ADS sensors is 100 Hz whereas that of the GPS sensors is 1 Hz. In addition, the update
rate of the magnetic compass which measures ψ is 10 Hz. The specifications of sensors
are listed in Table 4.1 [91]. In the table, “n/a” means the information is not available.

Table 4.1: Specifications of the sensors

Variable Unit Standard Deviations Sensor

V [ m/s ] n/a Pitot-static probe

Ax , Ay , Az [ m/s2 ] 2·10−2 Q-Flex 3100 accelerometer (IMU)

α, β [ rad ] 3.5·10−3 vane

φ, θ [ rad ] 8.7 ·10−3 Sperry VG-14H vertical gyro

ψ [ rad ] n/a gyrosyn compass

p, q , r [ rad/s ] 2·10−3 LITEF µFORS rate gyro (IMU)

4.5.2. REAL FLIGHT DATA FDD WITHOUT CALIBRATION
The real flight data in this chapter is taken from flight tests performed with the Cessna
Citation II aircraft, which is owned by the Delft University of Technology and the Dutch
Aerospace Laboratory. The photo of the aircraft is given in Figure 4.11. The measure-
ments of the flight test are shown in Figure 4.13(a). The fault scenario is multiple FDD,
which means multiple faults are injected to the flight test data. It should be noted that
the FDD performance of the DMAE approaches remains the same whether the faults oc-
cur during the flight or are injected to post flight data. This is due to the fact that they
solely rely on the kinematic equations, which are independent of the actuator deflec-
tions.

The shape and magnitude of the faults can be found in the solid lines in Figure 4.12(b).
For 10 s < t < 20 s, the V sensor fails with a bias of 3 m/s. For 30 s < t < 40 s, a bias with
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Figure 4.11: Cessna Citation II aircraft, owned by Delft University of Technology and the Dutch Aerospace
Laboratory

the value of π/180 rad occurs in the α sensor. For 50 s < t < 60 s, a bias with the value of
π/180 rad occurs in the β sensor.

In this section, sensor biases are not calibrated and the raw data is used. The result
of the FDD is shown in Figure 4.12.

From Figures 4.12(a) and 4.12(b), it can be seen that the DMAE1 approach can detect
and estimate the first fault ( fV ) quickly and accurately. However, after the detection of
the first fault, it keeps giving alarms. As can also be seen from the fault estimation figure,
there are additional drift faults in the fault estimate. This is due to the biases of the
sensors. The DMAE1 approach also treats the biases as faults, which results in giving
alarms. The estimation of fV , fα and fβ using the DMAE2 approach is quite similar to
that of the DMAE1 approach except in the beginning. The fault estimate of the DMAE2
approach, as shown in Figure 4.12(d), is not zero in the first 10 seconds while that of
the DMAE1 approach is zero-mean. The non-zero-mean fault estimate of the DMAE2
approach leads to the alarms in the first ten seconds which is shown in Figure 4.12(c).
Remarks:

1. The poor FDD performance of the DMAE approaches is caused by the biases in the
sensors which are inevitable in practice. However, the biases which exist before the
start of the flight are not considered by the FDD system. A better performance can
be obtained if the sensors are calibrated, which will be shown in Section 4.5.4.

2. From the FDD point of view, the biases in the sensors can be interpreted as mea-
surement uncertainties. In this case, the DMAE1 approach is better than the DMAE2
approach. Since the DMAE1 approach keeps reinitializing at every step, it re-
duces the influence of uncertainties. Therefore, the DMAE1 approach does not
give alarms in the first ten seconds when the influence of the biases are still small.

4.5.3. CALIBRATION OF THE REAL FLIGHT DATA
In practice, the calibration is usually done during certification. Normally, different ma-
neuvers can be designed in order to calibrate the sensors [90]. The maneuvers in the
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Figure 4.12: Consecutive ADS FDD for the real flight data using the DMAE1 and DMAE2 approach

flight test data used in this chapter were not designed for sensor calibration but for aero-
dynamic model identification purposes. This limits the accuracy of sensor calibration.
For detailed methods for calibration, the reader is referred to Mulder et al. [90].

The process model used for calibration is the model given in Equation (4.18). In this
section, the bias in the IMU sensors λ 6= 0 and will be calibrated. The measurement
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model for calibration is as follows [91]:

Vm =V + vV ; (4.35)

αm =Cα0 + (1+Cup )α+ xαq

V
+ vα (4.36)

βm =Cβ0 + (1+Csi )β−
xβr

V
+ vβ (4.37)

φm =φ+ vφ (4.38)

θm = θ+ vθ (4.39)

ψm =ψ+ vψ (4.40)

where Cα0 and Cβ0 are the zero shift of the α sensor and β sensor respectively, Cup and
Csi are the upwash and sidewash coefficients. It should be noted that this is a relatively
simple model to calibrate the sensors. The objective of calibration is to estimate

[λx , λy , λz , λp , λq , λr , Cα0, Cβ0, Cup , Csi ]T . (4.41)

The calibration is performed using the same method as in Mulder et al. [90]. The pa-
rameters in Equation (4.41) are augmented as additional states and are estimated using
the UKF. The real data from the sensors are denoted by the solid lines in Figure 4.13(a).
The calibration results are shown in Figure 4.13.

The state estimation using the filter is presented in Figure 4.13(b). The parameter
estimation result related to the IMU sensor and ADS are shown in Figures 4.13(c) and
4.13(d), respectively. As can be seen from Figure 4.13(c), the biases of the rate gyros
(λp , λq and λr ) approach zero while those of the accelerometers (λx , λy and λz ) are
0.05, 0.06 and -0.055 m/s2, respectively. It can be noticed from Figure 4.13(d) that Cup

is not a constant, but is a time varying parameter. However, for simplicity, this chapter
uses a constant Cup .

4.5.4. REAL FLIGHT DATA FDD WITH CALIBRATION
In this section, the DMAE approaches will be applied to FDD of the real flight data using
the calibrated parameters from the previous subsection. It will be demonstrated that
through calibration, the performance of the approaches can be improved.

MULTIPLE FDD APPLIED TO THE REAL FLIGHT DATA

This subsection tests the performance of detecting multiple faults using the DMAE ap-
proaches. The fault scenario is the same as that of the FDD without calibration in Sec-
tion 4.5.2. It should be noted that although the sensors are calibrated, the quality of
the sensors in this chapter is not as good as those onboard commercial transport air-
craft. On the other hand, the calibration is coarse. Therefore, the threshold for isolation
To , which was used when ideal sensors are assumed in Section 4.4.2, needs to be in-
creased. The design of To is based on fault-free simulations. When using the real flight
data, To = [1,0.008,0.008]. The magnitude of To depends on the quality and calibration
of the sensors.

The results obtained using the two DMAE approaches are given in Figure 4.14. As
can be seen from Figures 4.14(a) and 4.14(b), the performance of the DMAE1 approach
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(c) IMU bias estimation using the UKF
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(d) ADS bias parameter estimation using the UKF

Figure 4.13: Flight path reconstruction using the real flight data and the sensor calibration

is satisfactory. There are no false alarms and all the faults in the ADS are estimated in
an unbiased sense despite some offsets caused by the imperfect calibration. E.g., when
there is a V sensor fault during 10 s < t < 20 s, the probability-weighted estimate of fα
and fβ is larger than 0.001, which is caused by the imperfect calibration. The fault de-
tection and isolation can be achieved simultaneously. The detection delays of fV , fα and
fβ are all 1 time step, which demonstrates its good performance. Also notice that fα and
fβ with a bias of π/180 rad can be detected and estimated, which shows its ability to be
applied in practice.

In contrast, the performance of the DMAE2 approach is not as good as that of the
DMAE1 approach. The fault estimation performance is satisfactory, as seen in Figure 4.14(d).
The model probabilities of the DMAE2 approach are given in Figure 4.14(c). As can be
seen, in the presence of faults, the detection performance is good. However, when there
are no faults (during 0 s < t < 10 s, 20 s < t < 30 s and 40 s < t < 50 s), some glitches are
present in the model probabilities although they do not trigger the alarm (their magni-
tude is smaller than 0.9). The calibration in this chapter is coarse which leads to un-
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certainties. Therefore, the performance of the DMAE2 approach is degraded. The FDD
performance of the DMAE2 approach can be improved by a better sensor calibration.
However, this is not the focus of this chapter.
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Figure 4.14: Consecutive ADS FDD of the real flight data using the DMAE1 and DMAE2 approach

SIMULTANEOUS FDD APPLIED TO THE REAL FLIGHT DATA

This section tests the FDD performance of simultaneous faults using the DMAE ap-
proaches. The absolute value of fV is 3 m/s while the absolute value of fα and fβ is
π/180 rad. The results are given in Figure 4.15.

The result using the DMAE1 approach continues to present satisfactory FDD perfor-
mance as shown in Figures 4.15(a) and 4.15(b). All the faults are detected within less
than 0.02 s. The fault estimate is also satisfactory despite some small offsets.

The probability-weighted estimation of fV , fα and fβ using the DMAE2 approach
is similar to that using the DMAE1 approach as shown in Figure 4.15(b). The model
probability of the fault filter using the DMAE2 approach also shows some glitches when
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Figure 4.15: Simultaneous ADS FDD of the real flight data using the DMAE1 approach
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there are no faults and is similar to the result shown in Figure 4.14(c). Therefore, the
results of the DMAE2 are omitted here.

To demonstrate the ability of detecting different type of faults, another type of fault,
i.e., the oscillatory fault [39] is included. This kind of fault is mainly caused by electronic
components in fault mode generating spurious sinusoidal signals [39]. For 10 s < t < 20
s, the V sensor fails with a bias with a value of 3 m/s, there is a drift fault in the α

sensor fails with a drift rate of 2 × 10−2 rad/s, the oscillatory fault of the β sensor is
0.02sin(0.01πt ) rad. For 30 s < t < 40 s, an oscillatory fault (−5sin(0.01πt ) rad) occurs
in the V sensor, another oscillatory fault (−0.02sin(0.01πt ) rad) occurs in the α sensor
while there is a drift fault in the β sensor with a drift rate of −3×10−2 rad/s.

As can be seen from Figures 4.15(c) and 4.15(d), the DMAE1 approach can also es-
timate different types of faults. There are no false alarms and the probability-weighted
fault estimation performance is good. This demonstrates its ability to detect and identify
various type of faults.

4.6. CONCLUSIONS
This chapter has proposed a practical FDD system for aircraft ADS. Two DMAE approaches
are proposed which reduce the number of models in the model set of the multiple-
model-based approach to two. This reduces the computational load significantly es-
pecially when there are simultaneous faults. The performance of the DMAE approach
is guaranteed by the two SR algorithms. It is shown by simulation that in the absence
of model uncertainties, the DMAE2 approach, which does not perform the reinitializa-
tion at every step, outperforms the DMAE1 approach. Specifically, the DMAE2 approach
can detect smaller faults and the computational load is smaller compared to the DMAE1
approach.

This chapter also addresses the aircraft sensor FDD using real flight data. Important
issues related to use of real flight data are addressed. It is shown that both approaches
can be applied to the real flight FDD by first performing sensor calibration. In the pres-
ence of model uncertainties, the DMAE1 approach outperforms the DMAE2 approach
since the DMAE1 approach performs the reinitialization at every step which reduces the
influence of model uncertainties. Recall that the sensor calibration in this chapter is
rough due to the limited source of maneuvers in the real flight data. The obtained result
is satisfactory, which verifies their feasibility for real application.

The fact that the DMAE approaches reduce the computational load of the MM-based
approach while still guaranteeing fast detection and accurate estimation of the faults,
makes them applicable and suitable for real application. In the future, the DMAE ap-
proach can be incorporated in the control system to enhance the safety of aircraft.
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5
AIRCRAFT INERTIAL

MEASUREMENT UNIT FAULT

IDENTIFICATION WITH

APPLICATION TO REAL FLIGHT

DATA

In Part I (Chapters 2, 3 and 4), IMU and ADS FDD approaches, which consider the model
uncertainties, were proposed. However, effects of external disturbances such as atmo-
spheric turbulence were not fully considered. In this chapter, a first attempt to cope
with aircraft sensor FDD in the presence of external disturbances is made. First, the
model used for IMU FDD in the presence of turbulence is introduced. The state and
fault estimation is dealt with by the Iterated Optimal Two-Stage Extended Kalman Filter.
The performance of the proposed approaches is validated using both simulated and real
flight test data.

The software of the work in this chapter is available at: https://www.researchgate.
net/profile/Peng_Lu15/publications?pubType=dataset.

Parts of this chapter are based on:

P Lu, L Van Eykeren, E van Kampen, C C de Visser, Q P Chu. Aircraft Inertial Measurement Unit Fault Identi-
fication with Application to Real Flight Data. Journal of Guidance, Control and Dynamics, 38(12), 2467-2475,
2015. [123].

111

https://www.researchgate.net/profile/Peng_Lu15/publications?pubType=dataset
https://www.researchgate.net/profile/Peng_Lu15/publications?pubType=dataset


5

112
5. AIRCRAFT INERTIAL MEASUREMENT UNIT FAULT IDENTIFICATION WITH APPLICATION

TO REAL FLIGHT DATA

5.1. INTRODUCTION
FDD is an important problem in aerospace engineering [11]. For flight control sys-
tems, sensor or actuator faults may cause serious problems. Therefore, quick detection
and isolation of these faults is highly desirable. During the last few decades, many ap-
proaches have been proposed for FDD [12, 13, 66, 67]. Some recent advances and trends
can be found in Zolghadri [14] and Goupil [9, 124]. Presently, the sensor FDD onboard
the aircraft is mainly based on hardware redundancy. Despite the hardware redundant
setup, recent airliner accidents have indicated that sensor malfunctions can result in
critical failures [73]. One recent example of an IMU failure can be found in the accident
investigation of a Qantas Airbus A330-303 Flight QF72. In this case, one of the air data in-
ertial reference units was providing erroneous data on many parameters to other aircraft
systems, which led to a flight upset and 11 occupants seriously injured [73]. Therefore,
fault detection and identification of the IMU faults is important to the safety of the air-
craft.

Aircraft IMU fault identification has been dealt with by a number of researchers [97,
116, 125]. Most research uses the aerodynamic model of the aircraft. However, the cal-
culation of the aerodynamic forces and moments may contain uncertainties. Alwi and
Edwards [125] use Linear Parametric Varying models which may explicitly contain infor-
mation about the aerodynamic coefficient variations over the flight envelope. They use
the same approach to cope with yaw rate sensor faults in the ADDSAFE [124] benchmark
problem [116]. There are also studies using robust FDD approach [95, 113] to detect ac-
tuator faults which can cope with the model uncertainties. Alternatively, the kinematic
model (KM) of the aircraft can be used instead of the aerodynamic model. It should be
noted that few researchers [83, 92, 114, 126] use the KM to cope with aircraft sensor fault
detection. These studies show that using the KM can reduce the influence of model un-
certainties caused by the calculation of the aerodynamic forces and moments. Van Eyk-
eren and Chu [114] use a Sliding Mode Differentiator [127] to estimate the IMU faults.
However, it requires the selection of a Lipschitz constant [114, 127]. Lu et al. [83] use
a Selective-Reinitialization Multiple-Model Adaptive Estimation approach to estimate
the faults in the IMU. However, the computational load is intensive when dealing with
simultaneous faults. Furthermore, both of them [83, 114] assume the absence of dis-
turbances. More recently, Lu et al. [92] used the KM to detect the air data sensor faults
of real flight test data. In [92], the air data measurements are the output of the KM. In
the present chapter, the IMU measurements are the input, which leads to an input fault
identification problem.

In this study, an IOTSEKF, which improves the performance of the OTSEKF [33, 128,
129] when dealing with nonlinear systems, is applied to estimate both the system states
and the IMU faults. The simulation data is taken from the ADMIRE benchmark model
[130]. The computational complexity of the IOTSEKF is compared to an Augmented Ex-
tended Kalman Filter (AEKF).

The second contribution is that the influence of disturbances such as turbulence is
considered. The original KM (KM1) is modified by proposing a novel KM (KM2) with
different state and measurement vectors. It is shown that KM2 is less affected by varying
wind such as turbulence. The performance of the IMU sensor fault identification using
KM1 and KM2 is compared. Simulation results demonstrate the effectiveness of using
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KM2 even in the presence of turbulence.

The third contribution of this chapter lies in the fact that it uses real flight data to
validate the proposed approaches for IMU fault identification. Few researchers [97, 131]
identify the IMU sensor faults using real flight data. Berdjag et al. [70, 97] detect oscil-
latory faults [39] using three inertial aircraft sensors. Their approach is validated on a
normalized real flight data set. Hu and Seiler [131] assess the false alarm probability of a
simple, model-based UAV fault detection system. Freeman et al. [132] use the same UAV
for the detection of aileron faults. The present chapter uses real flight test data to val-
idate the performance of the proposed approaches on identifying the faults which are
injected into the IMU sensor data. The fault types not only include bias and drift, but
oscillatory faults as well. The real flight data is taken from a Cessna Citation II aircraft.
The results show that the proposed approaches are able to identify the faults in the IMU
sensors, which verifies that they can be applied in practice.

The structure of this chapter is as follows: Section 5.2 presents the novel KM which
includes the influence of the IMU sensor faults. In Section 5.3, the IMU fault identifica-
tion using KM2 is dealt with by the IOTSEKF. The performance is also compared to that
using KM1 in the absence and presence of turbulence. The performance of the IOTSEKF
using KM1 and KM2 is further validated using real flight test data in Section 5.4. Finally,
the conclusions are presented in Section 5.5.

5.2. NOVEL AIRCRAFT KINEMATIC MODEL WITH IMU SENSOR

FAULTS

The original KM [73, 90], which is called “KM1” in this chapter, is used for flight path
reconstruction. Van Eykeren and Chu [126], and Lu et al. [83] used KM1 to detect and
identify aircraft sensor faults. However, KM1 does not incorporate the influence of tur-
bulence. In order to cope with that, a new KM, called “KM2”, is proposed in this section.

5.2.1. KM2 WITH IMU SENSOR FAULTS

The general model of the aircraft using KM2 including IMU sensor faults is described as
follows:

ẋ(t ) = f (x(t ),um(t ), f i (t ), t )+G(x(t ))w (t ) (5.1)

y(t ) = h(x(t ),um(t ), t ) (5.2)

ym(t ) = y(t )+v (t ), t = ti , i = 1,2, ... (5.3)

where x ∈ Rn represents the system states, um ∈ Rb the measured input, ym ∈ Rm the
measured output. w and v are assumed to be white Gaussian noise sequences. The
function f i represents the input faults. The system equation variables are defined as
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follows:

x = [uB
GS vB

GS wB
GS φ θ ψ]T (5.4)

um = [Axm Aym Azm pm qm rm] = [Ax Ay Az p q r ]T +w + f i (5.5)

ym = [uGSm vGSm wGSm φm θm ψm]T (5.6)

w = [wx wy wz wp wq wr ]T (5.7)

f i = [ f Ax f Ay f Az fp fq fr ]T (5.8)

v = [vuGS vvGS vwGS vφ vθ vψ]T (5.9)

where the uB
GS , vB

GS and wB
GS are the ground speed components in the body reference

frame. Ax , Ay , Az are the specific forces, φ, θ and ψ are the Euler angles and p, q,r are
the rotational rates of the aircraft. It can be noticed that um is the measurement of the
IMU and f i are the faults in the IMU sensors. f Ax , f Ay and f Az represent the faults in the
accelerometers while fp , fq and fr represent the faults in the rate gyros.

The process model of KM2 is given as follows:

u̇B
GS = (Axm − fx )+ vB

GS(rm − fr )−wB
GS(qm − fq )− g sinθ (5.10)

v̇B
GS = (Aym − fy )−uB

GS(rm − fr )+wB
GS(pm − fp )+ g cosθ sinφ (5.11)

ẇB
GS = (Azm − fz )+uB

GS(qm − fq )− vB
GS(pm − fp )+ g cosθcosφ (5.12)

φ̇= (pm − fp )+ (qm − fq )sinφ tanθ+ (rm − fr )cosφ tanθ (5.13)

θ̇ = (qm − fq )cosφ− (rm − fr )sinφ (5.14)

ψ̇= (qm − fq )
sinφ

cosθ
+ (rm − fr )

cosφ

cosθ
(5.15)

The measurement model of KM2 is

uGSm = Teb[uB
GS, vB

GS, wB
GS]T + vuGS (5.16)

vGSm = Teb[uB
GS, vB

GS, wB
GS]T + vvGS (5.17)

wGSm = Teb[uB
GS, vB

GS, wB
GS]T + vwGS (5.18)

φm =φ+ vφ (5.19)

θm = θ+ vθ (5.20)

ψm =ψ+ vψ (5.21)

where uGSm , vGSm and wGSm are the measurements for the ground velocity expressed in
the earth reference frame. Teb , which can be found in Appendix A, is the transformation
matrix from the body frame to the earth frame.

If KM1 is used, then the system variables are defined as follows [85]:

x ′ = [ua va wa φ θ ψ]T (5.22)

y ′
m = [Vm αm βm φm θm ψm]T (5.23)

v ′ = [vV vα vβ vφ vθ vψ]T (5.24)
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where ua , va , wa are the airspeed components defined in the body-fixed reference frame.
Vm , αm and βm are the measurements of the true airspeed, angle of attack and angle of
sideslip. The detailed equations can be found in Appendix B.

The advantages of using KM2 over KM1 for IMU fault identification is explained in
the following. Let V B

g , V B
a and V B

w denote the ground speed, air speed and wind speed
components expressed in the body frame respectively. ω and A denote the angular rates
and specific forces respectively. g is the gravitational acceleration. The derivative of V B

g
is as follows:

V̇ B
g = V̇ B

a + V̇ B
w = A +Tbe g −ω×V B

g (5.25)

where Tbe = TT
eb . Since V B

g =V B
a +V B

w , the derivative of V B
a is as follows:

V̇ B
a = A +Tbe g −ω×V B

a − (V̇ B
w +ω×V B

w ) (5.26)

If the wind is constant, i.e.
dV I

w
d tI

= 0, then
dV B

w
d tI

= 0. The subscript I means the inertial

reference frame. Since
dV B

w
d tI

= V̇ B
w +ω×V B

w = 0, Equation (5.26) reduces to

V̇ B
a = A +Tbe g −ω×V B

a (5.27)

KM1 is based on Equation (5.27) while KM2 is based on Equation (5.25). Apparently,
when the wind is not constant, Equation (5.27) is no longer exact. Therefore, KM1 is
influenced by non-constant wind such as turbulence while KM2 is not.

Remarks: Another advantage using this KM2 is that the fault identification of the
IMU sensors and ADS is separated. In this situation, the assumption that there are no
faults in the ADS, which is made when using KM1, can be removed if KM2 is used since
the ADS measurements are not required by the IMU fault identification.

5.3. IMU SENSOR FI USING KM2
This section uses the proposed KM2 to identify the faults in the IMU sensors ( f i ). First,
the fault scenario of the IMU sensors is shown. Then, the IOTSEKF, which is an improved
version of the OTSEKF [33], is introduced to estimate f i . The performance of the IOT-
SEKF using KM2 is compared to that using the KM1 to demonstrate the advantages of
using KM2.

5.3.1. FAULT SCENARIO USING THE SIMULATED DATA
The simulated measurement data is taken from the ADMIRE aircraft benchmark model.
This simulation data is used in this section to validate the performance of the proposed
approaches while the real flight test data is used in Section 5.4. The noise variances and
the update rates of the sensors are given in Table 5.1. The update rate of the GPS receivers
was slow a decade ago. However, recently, rates of 10, 20, 50 or even 100 Hz have been
used for various purposes [133]. In addition, the GPS receiver is only used to measure
the speed in this research. In this section, the update rate of the GPS measurements is
10 Hz.
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Table 5.1: Update rates and standard deviations of the noises in the sensors

Measurement Update rate Standard deviation Unit

Vm 100 Hz 0.01 [ m/s ]

uGSm , vGSm , wGSm 10 Hz 0.01 [ m/s ]

αm , βm 100 Hz 0.01π/180 [ rad ]

φm , θm , ψm 100 Hz 0.01π/180 [ rad ]

Axm , Aym , Azm 100 Hz 0.01 [ m/s2 ]

pm , qm , rm 100 Hz 0.01π/180 [ rad/s ]

In this chapter, all the IMU sensors fail simultaneously during certain a period. Fur-
thermore, different types of faults are considered, including bias faults and drift faults,
as well as oscillatory faults. The detailed fault scenario in this section, including the fault
type and magnitude, is presented in Table 5.2. The fault scenario is arbitrarily chosen to
test the performance of the proposed approach.

5.3.2. ITERATED OPTIMAL TWO-STAGE KALMAN FILTER

This section first presents the equations of the IOTSEKF for the estimation of f i . Then,
the computational complexity comparison between the IOTSEKF and an AEKF is pre-
sented.

THE IOTSEKF
The OTSEKF can estimate the bias of the system in an optimal minimum variance error
sense [33]. It is composed of a modified bias-free filter and a bias filter [33]. However,
its performance may be degraded when dealing with nonlinear systems [85]. In order to
cope with that, an IOTSEKF is proposed. The state estimate and its covariance matrix
using the IOTSEKF are given as follows:

x̂k|k = x̄k|k +Vk f i
k|k (5.28)

Px
k|k = Px̄

k|k +Vk P f i

k|k VT
k (5.29)

The bias-free filter of the IOTSEKF is as follows:

η1 = x̄k|k−1 =Φk−1x̄k−1|k−1 + ūk−1 (5.30)

Px̄
k|k−1 =Φk−1Px̄

k−1|k−1Φ
T
k−1 + Q̄k−1 (5.31)

whereΦk−1 is calculated as follows:

Φk−1 = eFk−1∆t =
∞∑
n

Fn
k−1(∆t )n

n!
, Γk−1 =

∫ tk

tk−1

Φk−1G( ¯xk−1|k−1)d t , (5.32)

Fk−1 =
∂ f (x(t ),um(t ), f i (t ), t )

∂x

∣∣∣
x=x̂k−1|k−1

, Hk = ∂h(x(t ),um(t ), t )

∂x
|x=η1 . (5.33)
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Table 5.2: Fault Scenario

Time interval Sensor Fault type Fault magnitude Fault unit

10 s < t < 30 s

Axm bias 1 [m/s2]

Aym drift 0.1t [m/s2]

Azm oscillatory 2πsin(0.5πt ) [m/s2]

pm bias 0.5π/180 [rad/s]

qm oscillatory πsin(0.5πt )/180 [rad/s]

rm bias π/180 [rad/s]

40 s < t < 60 s

Axm oscillatory −πsin(0.5πt )/180 [m/s2]

Aym drift −0.1t [m/s2]

Azm bias −2 [m/s2]

pm bias −0.5π/180 [rad/s]

qm bias −0.5π/180 [rad/s]

rm oscillatory −πsin(0.5πt )/180 [rad/s]

and

Q̃k−1 =
∫ tk

tk−1

Φk−1G(x̄k−1|k−1)QGT (x̄k−1|k−1)ΦT
k−1dτ

Q = E {w (t )T w (τ)}, R = E {v (ti )T v (t j )} (5.34)

The iteration part of the bias-free filter is as follows:

1. Kalman gain calculation:

R̃k = Hk Px̄
k|k−1HT

k +R (5.35)

Kx̄
k = Px̄

k|k−1HT
k R̃−1

k (5.36)

2. Measurement update

η2 = x̄k|k−1 +Kx̄
k

(
yk −h(η1)−Hk (x̄k|k−1 −η1)

)
(5.37)

Define ε := ||η2−η1||
||η2|| and ε0 the desired parameter to stop the iteration, if ε > ε0,

repeat step 1 and step 2. After each iteration, η1 :=η2.

3. New time update

After the iteration, the time update is obtained as follows:

x̄k|k =η2 (5.38)

Px̄
k|k = (I−Kx̄

k Hk )Px̄
k|k−1(I−Kx̄

k Hk )T +Kx̄
k R(Kx̄

k )T (5.39)
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The bias filter of the IOTSEKF, which is used to estimate the faults, is as follows:

f i
k|k−1 = f i

k−1|k−1 (5.40)

f i
k|k = f i

k|k−1 +K f i

k (yk −Hk x̄k|k−1 −Sk f i
k|k−1) (5.41)

P f i

k|k−1 = P f i

k−1|k−1 +Q f i

k−1 (5.42)

K f i

k = P f i

k|k−1ST
k (Hk Px̄

k|k−1HT
k +R+Sk P f i

k|k−1ST
k )−1 (5.43)

P f i

k|k = (I−K f i

k Sk )P f i

k|k−1 (5.44)

and

ūk = (Ūk+1 −Uk+1) f i
k|k (5.45)

Q̄k = Γk QΓT
k −Qx f i

k ŪT
k+1 −Uk+1(Qx f i

k − Ūk+1Q f i

k )T (5.46)

Ūk =Φk−1Vk−1 +Γk−1 (5.47)

Sk = Hk Uk (5.48)

where Uk and Vk are the two-stage blending matrices which are given by

Uk = Ūk + (Qx f i

k−1 − Ūk Q f i

k−1)(P f i

k|k−1)−1 (5.49)

Vk = Uk −Kx̄
k Sk (5.50)

It can be noticed that Equations (5.35)-(5.39) are different from those of the OTSEKF
[33]. The computational load of the IOTSEKF is more intensive than the OTSEKF due to
the iteration of Equations (5.35)-(5.37). However, application of this iteration is only used
in the first ten time steps [73]. Therefore, the increased computational load is limited.
The advantage of the IOTSEKF and performance comparison of the IOTSEKF and the
OTSEKF can be found in Lu and van Kampen [85].

COMPUTATIONAL COMPLEXITY COMPARISON

The AEKF [134] can also estimate f i by augmenting f i as states. The state vector of the
AEKF is

xa = [uB
GS vB

GS wB
GS φ θ ψ f Ax f Ay f Az fp fq fr ]T (5.51)

The dimension of the state vector using the AEKF is (n +b). The dimension of the bias-
free filter is n and that of the bias filter is b using the IOTSEKF.

Since the computational load of the KF is approximately related with the cube of
the state dimension [129], the most intensive computationally complexity of the AEKF
is O ((n + b)3) while that of the IOTSEKF is O (n3 + b3). It is straightforward to see that
the IOTSEKF is less computational complex than the AEKF. For the case in this chapter,
n = b. The most intensive complexity of the AEKF is O (8n3) while that of the IOTSEKF is
O (2n3).
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(a) True and estimated f Ax , f Ay and f Az using KM2
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(b) True and estimated fp , fq and fr using KM2

Figure 5.1: IMU sensor FI of simulated aircraft model using KM2 in the absence of turbulence
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Figure 5.2: Speed of the turbulence in the north, east and down directions

5.3.3. IMU SENSOR FI USING KM2 AND IOTSEKF IN THE ABSENCE OF

TURBULENCE

In this subsection, the performance of using KM2 in the absence of turbulence is tested.
The results of using KM2 are shown in Figure 5.1. It can be seen from the figure that the
estimation of f i is satisfactory. The fault estimation can follow the dynamics of the faults
including the oscillatory faults. The results using KM1 are similar to those using KM2 in
this case and are omitted here.

5.3.4. IMU SENSOR FI USING KM2 AND IOTSEKF IN THE PRESENCE OF

TURBULENCE

In this subsection, the performance using KM2 is demonstrated in the presence of tur-
bulence. A Dryden wind model is used to generate the turbulence whose speed is shown
in Figure 5.2.

The results using KM1 and KM2 are shown in Figure 5.3. The estimation of f Ax , f Ay
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(a) True and estimated f Ax , f Ay and f Az using KM1
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(b) True and estimated fp , fq and fr using KM1
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(c) True and estimated f Ax , f Ay and f Az using KM2
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(d) True and estimated fp , fq and fr using KM2

Figure 5.3: IMU sensor FI of simulated aircraft model using KM1 and KM2 in the presence of turbulence
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and f Az using KM1, shown in Figure 5.3(a), is corrupted with turbulence whereas that
of fp , fq and fr using KM1 (shown in Figure 5.3(b)) is satisfactory. The reason is that
in the presence of turbulence, Equation (5.27) is not equal to Equation (5.26) and is no
longer correct. Consequently, the estimated f Ax , f Ay and f Az using Equation (5.27) are
also biased.

The estimation of f Ax , f Ay and f Az using KM2 is shown in Figure 5.3(c). It can be seen
that the performance is not influenced by the turbulence. The estimation of fp , fq and
fr using KM2 is shown in Figure 5.3(d), which is also comparable to the performance
in the absence of turbulence shown in Fig 5.1(b). This demonstrates the superiority of
using KM2 over KM1 for IMU sensor fault identification.

5.4. IMU SENSOR FI WITH APPLICATION TO REAL FLIGHT DATA
In the previous section, the performance of the IOTSEKF using KM1 and KM2 is tested
and compared using simulated aircraft data. In this section, they are validated by making
use of the recorded real flight data of the Cessna Citation II aircraft. It is a fixed-wing,
business jet aircraft which is owned by Delft University of Technology and the Dutch
Aerospace Laboratory.

The real flight data is taken from flight tests which were designed for the objective of
aerodynamic model identification [91]. As stated in de Visser [91], sensor measurements
contain biases. These biases can influence the FI performance of the IOTSEKF.

It should be noted that the IMU fault identification using KM1 requires the assump-
tion of constant wind or no wind, which may not be satisfied in real flight, its perfor-
mance may be degraded in the presence of changing wind. The IMU fault identification
using KM2 does not assume this.

5.4.1. MEASUREMENTS OF THE REAL FLIGHT DATA

In reality, different sensors may have different update rates. Our GPS receiver for the
ground speed measurements was manufactured before 2000 and its update rate is 1 Hz.
It should be noted that GPS receivers with higher rates are available recently [133]. Also
note that the GPS receiver is only required to measure the speed. The specific update
rates of the on-board sensors are given in Table 5.3 [91].

Simultaneous faults are injected into the real flight data, which is the same as in Ta-
ble 5.2.

5.4.2. REAL-LIFE MEASUREMENT MODEL

The sensors of the aircraft may contain biases and drifts. If KM1 is used, the measure-
ments of α and β are required. In the flight test, α and β are measured by multiple vanes
mounted on the nose boom of the aircraft. However, α and β measured by the vanes are
not the true angle of attack and sideslip [90–92]. Since the vanes are not located in the
center-of-gravity of the aircraft, the measurement model should incorporate the angu-
lar velocity induced flow at the vane location. Besides, the fuselage induced upwash and
sidewash also have to be taken into account. The specific measurement model for αm

and βm can be found in Lu et al [92].
However, if KM2 is used, the corresponding measurement model (Equations (5.16)-
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Table 5.3: Specifications of the sensors using the real flight data

Variable Unit Std Deviation Frequency Sensor

Vm [ m/s ] n/a 100 Hz Pitot-static probe

Axm , Aym , Azm [ m/s2 ] 2·10−2 100 Hz Q-Flex 3100 accelerometer (IMU)

αm , βm [ rad ] 3.5·10−3 100 Hz vanes

φm , θm [ rad ] 8.7 ·10−3 100 Hz Sperry VG-14H vertical gyro

ψm [ rad ] n/a 10 Hz gyrosyn compass

pm , qm , rm [ rad/s ] 2·10−3 100 Hz LITEF µFORS rate gyro (IMU)

uGSm , vGSm , wGSm [ m/s ] n/a 1 Hz TANS III

(5.21)) remains since it does not use the air data information.

5.4.3. IMU SENSOR FI OF REAL FLIGHT DATA USING KM1
In this subsection, KM1 is used to identify f i that are injected to the real flight data. The
results are given in Figure 5.4. The estimation of the air speed components (ua , va and
wa) and the Euler angles (φ, θ andψ) are given in Figures 5.4(a) and 5.4(b), respectively.
As can be seen, the state estimation is influenced by the faults. During 40 s < t < 60 s,
there are some oscillations in the estimation of ua , va and ψ. However, the influence is
small compared to the magnitude of the corresponding states. The estimation of f Ax , f Ay

and f Az is shown in Figure 5.4(c). All the faults are estimated in the optimal minimum
variance sense. The estimation can also follow the dynamics of the faults including the
oscillatory faults. The estimation of fp , fq and fr , shown in Figure 5.4(d), maintains
satisfactory performance.

5.4.4. IMU SENSOR FI OF REAL FLIGHT DATA USING KM2
This subsection use KM2 to identify f i . The results are shown in Figure 5.5.

The estimation of the ground speed components (uB
GS , vB

GS and wB
GS ) and the Euler

angles (φ, θ and ψ) are given in Figures 5.5(a) and 5.5(b), respectively. Some influence
caused by the faults can be observed (e.g., there are some oscillations in the estimation
of uB

GS during 40 s < t < 60 s), which is small compared to the magnitude of the faults
and their corresponding states. The estimation of fp , fq and fr , shown in Figure 5.5(d),
is satisfactory, which is also comparable to the result using KM1. However, the estima-
tion of f Ax , f Ay and f Az , shown in Figure 5.5(c), is degraded even though the estimation
follows the dynamics of the faults. It is caused by the low sampling rate of the ground
speed measurements (uGSm , vGSm and wGSm).

5.4.5. COMPARISON AND DISCUSSION

The fault estimation performance using KM1 and KM2 is compared using the RMSE of
the fault estimation. The results are shown in Figure 5.6. The RMSE of the estimation
of fp , fq and fr using the two approaches, shown in Figure 5.6(b), are comparable. This
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Figure 5.4: IMU sensor FI using the IOTSEKF and KM1 with application to real flight data
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Figure 5.5: IMU sensor FI using the IOTSEKF and KM2 with application to real flight data
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Figure 5.6: RMSE of the estimation of the IMU sensor faults using KM1 and KM2

is reasonable, since the measurements used for estimation of these faults using the two
approaches are the same.

The RMSE of the estimation of f Ax , f Ay and f Az using KM2, shown in Figure 5.6(a),
are slightly larger than those using KM1. However, recall that the sampling rate of the
air data sensors used by KM1 is 100 Hz whereas that of the ground speed sensors used
by KM2 is only 1 Hz. As can be seen from Figure 5.5(a), the vertical speed wB

GS varies
continually. Consequently, the estimation of wB

GS will be influenced more by the low
update rate. This is the reason why the RMSE of the estimation of f Az using KM2 are
approximately twice as much as those using KM1. On the contrary, vB

GS does not change
significantly, making the RMSE of the f Ay using KM2 comparable to that using KM1.

The wind speed can be roughly estimated using the air speed and the ground speed
in the body axis which are shown in Figures 5.4(a) and 5.5(a), respectively. The estimate
of the wind speed in the body axis is shown in Figure 5.7.

As can be seen, the wind speed is time-varying. However, the variation of the wind
speed is not significant. The wind speeds are approximately -16, 10, 1 m/s respectively.
That explains why the performance of the IMU fault identification using KM1 is is still
satisfactory. If the variation of the wind speeds is significant, e.g. when the aircraft is
subjected to turbulence, the fault estimation performance using KM1 will be degraded.

Although the update rate of the air data sensors is 100 times that of the ground speed
sensors, the performance of using KM1 and KM2 is comparable. Compared to the re-
sults from Section 5.3, it highlights that for real applications, GPS receivers with a higher
update rate should be selected to guarantee the performance using KM2.

5.5. CONCLUSIONS
This chapter mainly addresses three problems. First, KM2 is proposed for the fault iden-
tification of the IMU sensor faults. It takes the wind into account, which makes it less
sensitive to turbulence compared to KM1. Secondly, the fault identification using KM2 is
tackled by proposing a novel IOTSEKF which improves the performance of the OTSEKF
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Figure 5.7: Estimation of the wind speed along the body axis

when dealing with nonlinear systems. Finally, the IMU sensor fault identification per-
formance of the IOTSEKF using KM1 and KM2 is further validated by using the recorded
real flight test data. Results demonstrate the effectiveness of the approaches. The pro-
posed approach using KM1 and KM2 can be further extended to FTC systems, which can
provide more accurate information to enhance the safety of the aircraft when there are
malfunctions in the IMU sensors.



6
NONLINEAR AIRCRAFT SENSOR

FAULT RECONSTRUCTION IN THE

PRESENCE OF DISTURBANCES

VALIDATED BY REAL FLIGHT DATA

In the previous chapter, an IMU FDD approach, which can deal with model uncertainties
and external disturbances, was proposed. The filter used for state and fault estimation
was the Iterated Optimal Two-Stage Extended Kalman Filter. The performance of this
filter can be degraded due to a bad choice of the covariance matrices. Furthermore,
although the approach was proposed to deal with turbulence. Its performance was not
validated by real flight test data recorded during the presence of turbulence. To deal
with those limitations, first an Adaptive Two-Stage Extended Kalman Filter, which can
improve the performance of the Iterated Optimal Two-Stage Extended Kalman Filter, is
proposed. Then, more flight tests were performed to collect aircraft response data in the
presence of turbulence. The performance of the proposed approach is validated using
the new recorded flight test data.

Parts of this chapter are based on:

P Lu, E van Kampen, C C de Visser, Q P Chu. Nonlinear Aircraft Sensor Fault Reconstruction In the Presence of
Disturbances Validated by Real Flight data. Control Engineering Practice, (49), 112-128, 2016. [135].

127



6

128
6. NONLINEAR AIRCRAFT SENSOR FAULT RECONSTRUCTION IN THE PRESENCE OF

DISTURBANCES VALIDATED BY REAL FLIGHT DATA

This chapter proposes an approach for Inertial Measurement Unit sensor fault reconstruc-
tion by exploiting a ground speed-based kinematic model of the aircraft flying in a rotat-
ing earth reference system. Two strategies for the validation of sensor fault reconstruction
are presented: closed-loop validation and open-loop validation. Both strategies use the
same kinematic model and a newly-developed Adaptive Two-Stage Extended Kalman Fil-
ter to estimate the states and faults of the aircraft. Simulation results demonstrate the
effectiveness of the proposed approach compared to an approach using an airspeed-based
kinematic model. Furthermore, the major contribution is that the proposed approach is
validated using real flight test data including the presence of external disturbances such as
turbulence. Three flight scenarios are selected to test the performance of the proposed ap-
proach. It is shown that the proposed approach is robust to model uncertainties, unmod-
elled dynamics and disturbances such as time-varying wind and turbulence. Therefore,
the proposed approach can be incorporated into aircraft Fault Detection and Isolation
systems to enhance the performance of the aircraft.

6.1. INTRODUCTION
Sensor FDI is important to enhance the performance of the aircraft. For future aircraft,
structural optimization is important [124]. Model-based sensor FDI can substantially
decrease the weight of the aircraft, which in turn increases the performance of the air-
craft and leads to fuel and noise reduction [124]. During the last few decades, many ap-
proaches are proposed to detect and estimate sensor faults by making use of the model
information [12, 13, 66, 67]. Projects related to FDI in aerospace engineering, the RE-
configuration of CONtrol in Flight for Integral Global Upset REcovery (RECONFIGURE)
[136] and ADDSAFE project [124], also consider sensor faults. Recently, various model-
based approaches have been proposed to deal with aircraft sensor faults. Marcos et
al.[95] and Freeman et al. [25] use H∞ to detect and isolate the sensor faults. Unknown
input observers [16] are also applied to detect and isolate the sensor faults. Castaldi
et al. [137, 138] propose a geometric approach for the FDI of aircraft sensors. SMOs
[116, 139] are used to reconstruct the sensor faults. Control-based FDI method, which
makes use of the control information, is also proposed [140]. Multiple-Model Adaptive
Estimation approach is proposed in [83] to detect and estimate the aircraft sensor faults.
For one thing, the performance of model-based approaches depends on the accuracy of
the model used. Due to complexity, models of real-life systems are normally simplifica-
tions with limited accuracy. For aircraft dynamic models, exact aerodynamic forces and
moments are difficult to obtain which leads to model uncertainties. For another, most
systems are subject to external disturbances which will further affect the performance
of model-based approaches. In civil aviation, wind and even time-varying wind is un-
avoidable during flight. One of the biggest challenges for aircraft FDI is the presence
of disturbances such as time-varying wind and turbulence. Wind and turbulence can be
present in various circumstances during the flight. As such, FDI approaches more robust
to model uncertainties and disturbances are favored in aerospace engineering.

This chapter considers the fault reconstruction of the IMU sensors. The IMU con-
tains accelerometers which measure the specific forces (Ax , Ay and Az ) and rate gyros
which measure the angular rates (p, q and r ) of the aircraft. The ADDSAFE project also
considers faults in the yaw rate (r ) sensor [114, 116]. Alwi and Edwards [116] use a Linear
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Parameter Varying sliding mode scheme to reduce the influence of linearization errors.
Van Eykeren and Chu [114] use an AS-KM of the aircraft which does not require lineariza-
tion. Another advantage of using the AS-KM is that it does not require the calculation of
the aerodynamic forces and moments. Since exact aerodynamic forces and moments
are difficult to obtain, using the kinematic model reduces the effect of model uncertain-
ties for FDI. Many approaches are proposed for the aircraft sensor FDI using this AS-KM,
such as Double-Model Adaptive Estimation [92], Sliding Mode Differentiator [114] and
Adaptive Three-Step Unscented Kalman Filter [65]. Van Eykeren and Chu [114] and Lu
et al. [83] use the same KM for the fault estimation of the IMU sensors. The limitation of
their approach is that the influence of disturbances such as turbulence is not considered.
In Lu et al. [123], the turbulence influence is considered by a ground speed-based KM.
The approach is validated by only simulation which demonstrates that the proposed FDI
approach is less sensitive to turbulence.

Regarding the validation of aircraft sensor FDI approaches, the validation using real
flight data is important. The performance of sensor FDI approaches is more reliable
if they are validated by real flight tests or real flight test data. For real flights, sensors
may not behave as in the simulations. More importantly, during real flight tests, var-
ious realistic wind and turbulence conditions can be experienced. Although in some
circumstances the wind can be approximately constant, the wind is normally time vary-
ing. Moreover, turbulence can be encountered in various situations during the flight.
These flight conditions can test the performance of the FDI approaches in the presence
of external disturbances. Therefore, use of real flight test data containing different flight
conditions, especially wind and turbulent conditions, is necessary to validate the perfor-
mance of model-based FDI approaches.

Few researchers [97, 123, 131] validate the IMU sensor fault detectors using real flight
data. Berdjag et al. [70, 97] detect oscillatory faults [39] of three inertial sensors. Their
approach is validated on a real flight data set. Hu and Seiler [131] assess the false alarm
probability of a model-based Unmanned Aerial Vehicle fault detection system. Lu et al.
[123] also used real flight test data to validate the performance of model-based fault re-
construction for the IMU sensors. However, there are two limitations in [123]. Firstly,
it assumes a flat and non-rotating earth which may introduce errors when long-range
flights are considered. Furthermore, the real flight test in [123] contains no turbulence
since the objective of the flight test was data acquisition for aerodynamic model iden-
tification [123, 141]. Therefore, the performance of the FDI approach in [123], in the
presence of various disturbances such as time-varying wind and turbulence, is not vali-
dated.

In the present chapter, an IMU sensor fault reconstruction approach using a general
GS-KM is proposed. This KM, which is a model of the aircraft flying over a spherical
and rotating earth, is proposed as the model for the IMU sensor fault reconstruction.
Two validation strategies (open-loop and closed-loop validations) are implemented and
compared for the IMU sensor fault reconstruction. Another contribution of this chapter
is that a new ATSEKF is proposed to reconstruct the states and faults. This ATSEKF is
an improved version of the IOTSEKF [123] with covariance matrix adaption. The perfor-
mance of the ATSEKF for the sensor fault reconstruction is validated by simulation. The
fault scenarios include not only biases, but also drift and oscillatory faults. All the IMU
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sensor faults are estimated in an unbiased sense. The performance using the GS-KM is
compared with that using the AS-KM. The performance of the ATSEKF is also compared
with existing approaches such as the SMO.

The major contribution of this chapter is that the performance of the proposed IMU
sensor fault reconstruction approach is validated using real flight test data in the pres-
ence of disturbances such as time-varying wind and turbulence. Several flight tests are
performed in order to gather data in different flight conditions. Zero-g flight is also per-
formed in order to test the performance of the approach over a wide range of the flight
envelope. Flight data in turbulent conditions is also collected which will test the perfor-
mance in the presence of strong external disturbances. The validation is performed us-
ing three different flight conditions: level flight, zero-g and turbulence. The performance
of using the GS-KM is compared to the approach using the AS-KM in order to demon-
strate the superiority of the proposed approach. Furthermore, the results sufficiently
demonstrate that the proposed approach is suitable for IMU sensor fault reconstruction
in practice.

The structure of this chapter is as follows: Section 6.2 proposes an approach which
uses a new KM for the IMU sensor fault reconstruction. Section 6.3 introduces the newly-
developed ATSEKF for sensor fault reconstruction. Besides, two validation strategies are
proposed which use the ATSEKF and the proposed KM. The performance of the pro-
posed approach is demonstrated using simulated data. In Section 6.4, the three flight
scenarios are introduced. Section 6.5 presents the real flight data validation results us-
ing the proposed approach in various flight and wind conditions. Section 6.6 concludes
the chapter.

6.2. NOVEL APPROACH FOR IMU SENSOR FAULT RECONSTRUC-
TION

This section proposes an approach for IMU fault reconstruction based on a GS-KM. For
comparison, the previously used KM, the AS-KM [82, 85], is also presented.

6.2.1. AIRCRAFT KMS INCLUDING IMU SENSOR FAULTS

The proposed GS-KM is a KM of the aircraft flying in a rotating earth reference frame [90].
It should be noted that this model has not been used for aircraft fault reconstruction.

The GS-KM including IMU sensor faults can be described as follows:

ẋ(t ) = f (x(t ),um(t ), f i (t ), t )+G(x(t ))w (t ) (6.1)

y(t ) = h(x(t )) (6.2)

ym(t ) = y(t )+v (t ), t = ti , i = 1,2, ... (6.3)

where x ∈ Rn represents the system states, um ∈ Rb the measured input, ym ∈ Rm the
measured output. The subscript ‘m’ indicates that the corresponding variable is mea-
sured. G ∈ Rn×b is the noise distribution matrix. The function f i ∈ Rb represents the
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input faults. The system equation variables are defined as follows:

x = [UN UE UD φ θ ψ]T (6.4)

um = [Axm Aym Azm pm qm rm]T = u0 +w + f i (6.5)

u0 = [Ax Ay Az p q r ]T (6.6)

w = [w Ax w Ay w Az wp wq wr ]T (6.7)

f i = [ f Ax f Ay f Az fp fq fr ]T (6.8)

ym = [UN m UEm UDm φm θm ψm]T (6.9)

v = [vUN vUE vUD vφ vθ vψ]T (6.10)

where the UN , UE and UD are the ground speed velocity components in the local navi-
gation frame. Ax , Ay and Az are the specific forces, φ, θ and ψ are the Euler angles and
p, q , r are the rotational rates. It should be noticed that um is the measurement of the
IMU which contains faults f i . f Ax , f Ay and f Az represent the faults in the accelerometers
while fp , fq and fr represent the faults in the rate gyros. w is the process noise sequence
and v is the noise sequence in the output measurements denoted by ym .

For the GS-KM proposed in this chapter, f (x(t ),um(t ), f i (t ), t ) is given as follows:





(Axm − f Ax )cθcψ+ (Aym − f Ay )(sφsθcψ−cφsψ)+ (Azm − f Az )(cφsθcψ+ sφsψ)

+ UNUD

Re +h
−

U 2
E tδ

Re +h
−2ΩUE sδ

(Axm − f Ax )cθsψ+ (Aym − f Ay )(sφsθsψ+cφcψ)+ (Azm − f Az )(cφsθsψ− sφcψ)

+ UNUE tδ

Re +h
+ UEUD

Re +h
+2Ω(UN sδ+UD cδ)

− (Axm − f Ax )sθ+ (Aym − f Ay )sφcθ+ (Azm − f Az )cφcθ

−
U 2

N

Re +h
−

U 2
E

Re +h
−2ΩUE cδ+ g

(pm − fp )+ (qm − fq )sφtθ+ (rm − fr )cφtθ− (
UE

Re +h
+Ωcδ)

cψ

cθ
+ UN sψ

(Re +h)cθ

(qm − fq )cφ− (rm − fr )sφ+ (
UE

Re +h
+Ωcδ)sψ+ UN cψ

Re +h

(qm − fq )
sφ

cθ
+ (rm − fr )

cφ

cθ
+ (

UE

Re +h
+Ωcδ)tθcψ+ UN tθsψ

Re +h
+ UE tδ

Re +h
+Ωsδ

(6.11)

where s(•), c(•) and t(•) denote the trigonometric functions sin(•), cos(•) and tan(•) re-
spectively. Re = 6367 km, Ω = 7.2921×10−5 rad/s, δ is the latitude and h is the altitude.
The gravity acceleration g is calculated as follow [90]:

g = 9.780318(
Re

Re +h
)2(1+5.3024×10−3s2δ−5.9×10−6s22δ) (6.12)
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In Equation (6.1), G(x(t )) is defined as follows:

G(x(t )) =




−cθcψ −(sφsθcψ−cφsψ) −(cφsθcψ+ sφsψ) 0 0 0

−cθsψ −(sφsθsψ+cφcψ) −(cφsθsψ− sφcψ) 0 0 0

sθ −sφcθ −cφcθ 0 0 0

0 0 0 −1 −sφtθ −cφtθ

0 0 0 0 −cφ sφ

0 0 0 0 −sφ/cθ −cφ/cθ




(6.13)

For the GS-KM, h(x) = x . Therefore, the measurement model of the GS-KM reduces to

ym(t ) = x(t )+v (t ) (6.14)

This concludes the definition of the GS-KM (given by Equations (6.11)-(6.14)). To
demonstrate the performance of the proposed approach, the AS-KM, used in [82, 83, 85]
and given by Equations (6.18) and (6.20), is also given for comparison. For the sake of ex-
planation, the process model of the AS-KM is briefly shown below. The system variables
of the AS-KM are defined as follows [123]:

x ′ = [ua va wa φ θ ψ]T (6.15)

y ′
m = [Vm αm βm φm θm ψm]T (6.16)

v ′ = [vV vα vβ vφ vθ vψ]T (6.17)

where ua , va , wa are the airspeed components expressed in the body-fixed reference
frame. Vm , αm and βm are the measurements of the true airspeed, angle of attack and
angle of sideslip. Other variables, such as um and u0, are the same as for the GS-KM.

The AS-KM is given as follows [85]:





u̇a = (Axm − f Ax −w Ax )+ va(rm − fr −wr )−wa(qm − fq −wq )− g sinθ

v̇a = (Aym − f Ay −w Ay )−ua(rm − fr −wr )+wa(pm − fp −wp )+ g cosθ sinφ

ẇa = (Azm − f Az −w Az )+ua(qm − fq −wq )− va(pm − fp −wp )+ g cosθcosφ

φ̇= (pm − fp −wp )+ (qm − fq −wq )sinφ tanθ+ (rm − fr −wr )cosφ tanθ

θ̇ = (qm − fq −wq )cosφ− (rm − fr −wr )sinφ

ψ̇= (qm − fq −wq )
sinφ

cosθ
+ (rm − fr −wr )

cosφ

cosθ

(6.18)

By extracting the noise w from the above equations, one can readily obtain
f (x ′(t ),um(t ), f i (t ), t ) and G(x ′(t )) and write the equations in the form of Equations(6.1)-
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(6.3). The matrix G(x ′(t )) is defined as follows:

G(x ′(t )) =




−1 0 0 0 wa −va

0 −1 0 −wa 0 ua

0 0 −1 va −ua 0

0 0 0 −1 −sinφ tanθ −cosφ tanθ

0 0 0 0 −cosφ sinφ

0 0 0 0 −sinφ/cosθ −cosφ/cosθ




(6.19)

The measurement model is:

y ′(t ) = h(x ′(t ))+v ′(t ), t = ti , i = 1,2, ... (6.20)

where h(x ′(t )) is the nonlinear output function which can be found in [85].

Remarks: The model used in [123] is a simplified model of the GS-KM used in the
present chapter. The model used in [123] assumes that the earth is flat and non-rotating,
which could introduce errors for long-range flights [90]. In contrast, the GS-KM used in
the present chapter does not have to assume that the earth is flat and non-rotating.

The advantage of the GS-KM compared to the AS-KM is that the GS-KM can deal
with various flight situations and is more robust in the presence of disturbances such as
time-varying wind and turbulence, which will be demonstrated in the following sections.

For the GS-KM, the ground speed measurements are assumed to be fault-free while
for the AS-KM, the air data measurements are assumed to be fault-free.

6.2.2. DISTURBANCES AND THEIR INFLUENCE ON FAULT RECONSTRUCTION

This chapter deals with IMU sensor fault reconstruction in the presence of external dis-
turbances. Section 6.3 considers simulated disturbances while Section 6.5 deals with
real-life disturbances. In this section, the simulated disturbances are presented first.
Specifically, two main types of external disturbances are presented: wind shear and tur-
bulence. The speed components of the disturbances in the earth axis and the body axis
are denoted by uw , vw , ww and uB

w , vB
w , wB

w respectively. Then, the influence of distur-
bances on fault reconstruction is analyzed.

WIND SHEAR AND TURBULENCE

Wind shear is a rapid change in the wind vector which could be hazardous to aircraft
especially when the aircraft is flying at a low altitude [64]. The wind shear model used in
this chapter is derived from [64] and the wind speed components in the earth frame uw ,
vw and ww are shown in Figure 6.1(a). vw is assumed to be zero.

Turbulence is a random process which can occur in various flight situations such as
in the clouds as well as near mountains [64]. In this chapter, the simulated turbulence is
generated using the Dryden model. The power spectral density functions of the Dryden
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(b) Wind speed components of the simulated turbu-
lence using the Dryden Model

Figure 6.1: Two main types of external disturbances: wind shear and turbulence

turbulence model are given as follows [64]:

Φu(ωo) = 2σ2
uLu

πV

1

1+ (Luωo/V )2 (6.21)

Φv (ωo) = σ2
v Lv

πV

1+3(Lvωo/V )2

1+ (Lvωo/V )2 (6.22)

Φw (ωo) = σ2
w Lw

πV

1+3(Lwωo/V )2

1+ (Lwωo/V )2 (6.23)

where V is the true airspeed, ωo is the observed angular frequency. In this chapter, the
scale lengths Lu = Lv = Lw = 530 m, the intensities σu =σv =σw = 3.54 m/s. The result-
ing speed components of the generated turbulence are shown in Figure 6.1(b).

INFLUENCE OF DISTURBANCES ON FAULT RECONSTRUCTION

The influence of the disturbances on fault reconstruction is explained below. It should
be noted that the disturbances are included in the modeling of the aircraft response but
they are considered unknown when designing fault reconstruction approaches.

Define the following:

V B
a = [ua va wa]T , V B

w = [uB
w vB

w wB
w ]T (6.24)

A = [Ax Ay Az ]T , ω= [p q r ]T (6.25)

f A = [ f Ax f Ay f Az ]T , fω = [ fp fq fr ]T (6.26)

w A = [w Ax w Ay w Az ]T , wω = [wp wq wr ]T (6.27)

According to [123], the dynamics of the airspeed can be expressed as

V̇ B
a = A +Tbe g −ω×V B

a − (V̇ B
w +ω×V B

w ) (6.28)
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where Tbe is the transformation matrix from earth axis to body axis, which can be found
in Appendix A. g = [0 0 g ]T . Rewrite Equation (6.5) and substitute it into Equation (6.28),
resulting in:

V̇ B
a = (Am − f A −w A)+Tbe g − (ωm − fω−wω)×V B

a − (V̇ B
w + (ωm − fω−wω)×V B

w )
(6.29)

Define dw = V̇ B
w + (ωm − fω−wω)×V B

w . When the wind is constant, dw = 0, the above
equation reduces to

V̇ B
a = (Am − f A −wω)+Tbe g − (ωm − fω−wω)×V B

a (6.30)

which is the vector form of the first three equations of Equation (6.18). When the wind is
not constant, dw 6= 0. It is seen from Equation (6.29) that f A and dw have the same dis-
tribution matrix (I) and it is difficult to distinguish between them. Consequently, when
the AS-KM is used to reconstruct the faults in the presence of external disturbances, the
faults and the disturbances are coupled, which could lead to incorrect fault reconstruc-
tion.

6.2.3. MEASUREMENTS AND SENSOR FAULTS

The aircraft model used in the simulation is the ADMIRE benchmark model [142]. To
make the validation more realistic, noise is added to the measurements of the model.
This simulation data is used in Section 6.3 to validate the performance of the proposed
approaches while the real flight test data is used in Section 6.5. The standard deviations
of the noises added to the sensors are given in Table 6.1. In the table, σ(•) denotes the
standard deviations of the noise in the corresponding sensors.

Table 6.1: Standard deviations of the noises added in the sensors

Standard deviations Magnitudes Units

σV 0.1 [ m/s ]

σUN , σUE , σUD 0.01 [ m/s ]

σα, σβ 0.1π/180 [ rad ]

σφ, σθ, σψ 0.01π/180 [ rad ]

σAx , σAy , σAz 0.01 [ m/s2 ]

σp , σq , σr 0.01π/180 [ rad/s ]

In this chapter, all the IMU sensors fail simultaneously during 10 s < t < 30 s. This
means f i = 0 when t ≤ 10 s or t ≥ 30 s. During 10 s < t < 30 s, the faults f i are pre-
sented in Table 6.2. As can be seen from the table, different types of faults are consid-
ered, including bias faults and drift faults, as well as oscillatory faults. The fault scenario
is arbitrarily chosen to test the performance of the proposed approach.
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Table 6.2: Fault information

Time interval Faults Fault type Fault magnitude Fault unit

10 s < t < 30 s

f Ax bias 3 [m/s2]

f Ay drift 0.1(t −10) [m/s2]

f Az oscillatory 4sin(0.5πt ) [m/s2]

fp bias 1.5π/180 [rad/s]

fq oscillatory πsin
(
0.5π(t −10)

)
/180 [rad/s]

fr bias 3π/180 [rad/s]

6.3. IMU SENSOR FAULT RECONSTRUCTION
This section deals with the IMU sensor fault reconstruction problem. First, the newly-
developed ATSEKF is introduced in Section 6.3.1. Then, in Section 6.3.2, two different
strategies are proposed to validate the proposed approach for IMU sensor fault recon-
struction. The validation results of the proposed approach in the absence of distur-
bances are shown in Section 6.3.3. The validation results in the presence of wind shear
and turbulence are given in Sections 6.3.4 and 6.3.5 respectively.

6.3.1. ADAPTIVE TWO-STAGE EXTENDED KALMAN FILTER

In this chapter, the ATSEKF is proposed to estimate the states and the faults. The ATSEKF
is an improved version of the IOTSEKF [123]. First, the IOTSEKF is introduced. Then, the
adaption scheme for the covariance matrix is introduced.

The IOTSEKF is composed of a modified bias-free filter and a bias filter [33, 123].

The bias filter, which estimates the faults, models the faults as: f i
k = f i

k−1 + w f i

k−1 with

covariances: E {w f i

k (w f i

l )T } = Q f i

k δkl and E {wk (w f i

l )T } = Qx f i

k δkl . wk is the defined in
Equation (6.1) and δkl the Kronecker function. The IOTSEKF, slightly modified from
[123] for clarity, is presented below.

1. The bias-free filter of the IOTSEKF is as follows:

(a) Predicted state and error covariance matrix:

η1 = x̄k|k−1 = x̄k−1|k−1 +
∫ tk

tk−1

f (x̄(t ),um(t ),0, t )d t + ūk−1 (6.31)

Px̄
k|k−1 =Φk−1Px̄

k−1|k−1Φ
T
k−1 + Q̄k−1 (6.32)

where f (x̄(t ),um(t ),0, t ) means the fault vector is set to 0. This is because the
IOTSEKF decouples the state and fault estimation. ūk−1 and Q̄k−1 are defined
by Equations (6.45) and (6.46) respectively. Discrete-time matricesΦk−1 and
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Γk−1 are calculated by:

Φk−1 = eFk−1∆t =
∞∑
n

Fn
k−1(∆t )n

n!
, ∆t = tk − tk−1, (6.33)

Fk−1 =
∂ f (x(t ),u(t ), f i (t ))

∂x

∣∣∣
x=x̄k−1|k−1

, Γk−1 =
∫ tk

tk−1

Φk−1G(x̄k−1|k−1)d t

(6.34)

(b) Kalman gain calculation:

Hk = ∂h(x(t ))

∂x
|x=η1 (6.35)

Kx̄
k = Px̄

k|k−1HT
k (Hk Px̄

k|k−1HT
k +Rk )−1 (6.36)

where Rk is the covariance matrix defined by E {vk v T
l } = Rkδkl .

(c) Measurement update:

η2 = x̄k|k−1 +Kx̄
k

(
yk −h(η1)−Hk (x̄k|k−1 −η1)

)
(6.37)

Define ε := ‖η2−η1‖
‖η2‖ and ε0 the desired parameter to stop the iteration. If ε>

ε0, repeat step (b) and step (c). In this chapter, ε0 is chosen to be 10−8 and
this iteration is only performed in the first ten time steps. After each iteration,
η1 :=η2.

(d) Update the state estimation error covariance matrix, if ε≤ ε0:

x̄k|k =η2 (6.38)

Px̄
k|k = (I−Kx̄

k Hk )Px̄
k|k−1(I−Kx̄

k Hk )T +Kx̄
k Rk (Kx̄

k )T (6.39)

2. The bias filter of the IOTSEKF, which is used to estimate the faults, is as follows:

f̂ i
k|k−1 = f̂ i

k−1|k−1 (6.40)

P f i

k|k−1 = P f i

k−1|k−1 +Q f i

k−1 (6.41)

K f i

k = P f i

k|k−1ST
k (Hk Px̄

k|k−1HT
k +Rk +Sk P f i

k|k−1ST
k )−1 (6.42)

f̂ i
k|k = f̂ i

k|k−1 +K f i

k (yk −h(x̄k|k−1)−Sk f̂ i
k|k−1) (6.43)

P f i

k|k = (I−K f i

k Sk )P f i

k|k−1 (6.44)

3. The coupling equations of the IOTSEKF are:

ūk−1 = (Ūk −Uk ) f̂ i
k−1|k−1 (6.45)

Q̄k−1 =Γk−1Qk−1Γ
T
k−1 −Qx f i

k−1ŪT
k −Uk (Qx f i

k−1 − Ūk Q f i

k−1)T (6.46)

Ūk =Φk−1Vk−1 +Γk−1 (6.47)

Sk = Hk Uk (6.48)
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where Qk−1 the covariance matrix defined by E {wk w T
l } = Qkδkl . Uk and Vk are

the two-stage blending matrices given by

Uk = Ūk + (Qx f i

k−1 − Ūk Q f i

k−1)(P f i

k|k−1)−1 (6.49)

Vk = Uk −Kx̄
k Sk (6.50)

4. The final state estimate and its covariance matrix using the IOTSEKF are given as
follows:

x̂k|k = x̄k|k +Vk f̂ i
k|k (6.51)

Px
k|k = Px̄

k|k +Vk P f i

k|k VT
k (6.52)

The final fault estimation is given in Equation (6.43). This concludes the introduction of
the IOTSEKF. For the benefit of using the IOTSEKF, please refer to [123] and the reference
therein.

Although this IOTSEKF can estimate both the states and faults, its performance can

be degraded by bad choices of Q f i

k and Qx f i

k . According to [33], Qx f i

k can be chosen to

be zero. The present chapter proposes an adaptive update scheme for Q f i

k .

Define Q̂k as

Q̂k := Cr,k −HkΓk−1Qk−1Γ
T
k−1HT

k /∆t −Rk (6.53)

where Cr,k = 1
N

k∑
j=k−N+1

γ jγ
T
j . N is the size of a moving window. In this chapter, N = 10.

γ j is the innovation at time step j which can be calculated by

γ j = y j −h(Φ j−1x̂ j−1| j−1 +Γ j−1 f̂ i
j−1| j−1) (6.54)

In Equation (6.53), Qk and Rk are the process noise and measurement noise covariance
matrices, which are defined in Equations (6.46) and (6.36) respectively. Take the GS-KM
as an example, Rk can be readily determined by the following

Rk = diag(σ2
UN

,σ2
UE

,σ2
UD

,σ2
φ,σ2

θ ,σ2
ψ) (6.55)

where σ(•) is given in Table 6.1. Regarding the process noise covariance matrix Qk , it
should be noted that the input of the KM used by the IOTSEKF is um . As can be seen
from Equation (6.1), the only process noise is w which is given in Equation (6.7). This is
the noise in the IMU sensor measurements. Therefore, Qk can be determined by

Qk = diag(σ2
Ax ,σ2

Ay ,σ2
Az ,σ2

p ,σ2
q ,σ2

r ) (6.56)

This is also an advantage when using the GS-KM as the model for fault reconstruction
since both the process noise and output noise covariance matrices are defined explicitly.

According to covariance matching techniques [88], Q f i

k can be updated based on the
main diagonal of the following matrix

Γ−1
k−1H−1

k Q̃k (HT
k )−1(ΓT

k−1)−1(∆t )2 (6.57)
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where Q̃k is determined

Q̃k = diag(max{0,Q̂11}, ...,max{0,Q̂mm}) (6.58)

with Q̂ j j , j = 1,2, ...,m the j th diagonal element of Q̂k which is defined in Equation (6.53).

The IOTSEKF with this adaption of Q f i

k is called ATSEKF. In the following of this chap-
ter, this ATSEKF is used as the filter for both state and fault reconstruction.

6.3.2. CLOSED-LOOP VALIDATION VS OPEN-LOOP VALIDATION
In this section, two different validation strategies are presented. The aircraft model used
in this section is the ADMIRE benchmark model [142]. The controller is the baseline
controller of the benchmark model. It contains a longitudinal controller which controls
the airspeed, pitch rate and load factor, and a lateral controller which controls the roll
rate and angle of sideslip [142]. The controller design is based on the PID control law.
More detailed information can be found in [142].

The first validation strategy is the closed-loop validation which is shown in Figure 6.2(a).
This is the strategy to achieve FTC in the presence of sensor faults. As can be seen from
the figure, after the occurrence of the sensor faults, a fault reconstruction block is imple-
mented to compensate for the sensor faults.

Let u0
m denote the IMU sensor measurements without faults, then

u0
m = u0 +w = um − f i (6.59)

where um , u0, w and f i are defined in Equations (6.5), (6.6), (6.7) and (6.8) respectively.
Let subscript ‘C L’ denote the corresponding variables in the closed-loop validation. The
fault reconstruction block receives the measurements ym,C L and um,C L , and output un-
biased estimates of the state xC L and the faults f i

C L online by making use of the ATSEKF.
Without this fault reconstruction block, the estimate of xC L will be biased due to the
faults in the sensors.

Since f i
C L are also estimated in an unbiased sense by using the ATSEKF, a more reli-

able IMU measurement can be obtained by

ûm,C L = um,C L − f̂ i
C L (6.60)

where ûm,C L denotes the estimated IMU measurements. Due to this fault reconstruc-
tion, FTC can be achieved in the presence of faults by making use of x̂C L and ûm,C L . The
estimated faults f̂ i

C L can also be used for fault detection.
Although the sensor FTC (closed-loop validation) can be validated in simulation, it

is difficult to be validated in real-life especially for fixed-wing manned aircraft. For these
aircraft, validation with fault injection during the flight is risky. Consequently, this pre-
vents researchers from validating fault reconstruction approaches under real-life uncer-
tainties and disturbances.

In this research, an alternative validation strategy (open-loop validation strategy) is
implemented and compared to the closed-loop validation. The open-loop validation
strategy is shown in Figure 6.2(b) where the subscript ‘OL’ denotes the corresponding
variables in the open-loop validation. It is seen from the figure that only the blocks
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(a) Closed-loop validation strategy (Sensor FTC strategy). The states which are irrelevant to the fault
reconstruction are not shown in the figure. All the blocks are run online including the fault injection and
fault reconstruction. The subscript ‘C L’ denotes closed-loop validation.
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(b) Open-loop validation strategy. The states which are irrelevant to the fault reconstruction are not
shown in the figure. The blocks within the blue dashed line are run online while the fault injection and
reconstruction are run off-line and are not in the feedback loop. The subscript ‘OL’ denotes open-loop
validation.

Figure 6.2: Block diagram of two different validation strategies

within the blue dashed line are run online or on-board, and they are free from the influ-
ence of the sensor faults. The fault injection and reconstruction are not in the feedback
loop. Specifically, the faults are injected into the recorded measurements and are esti-
mated by the fault reconstruction block off-line. In the figure, x̂ a

OL and ûa
m,OL , which are

the estimated xOL and um,OL by the Filter block on-board the aircraft, are assumed to be
unbiased.

Comparing these two validation strategies, it can be inferred that if the estimates x̂
and f̂ i in the closed-loop and the open-loop are unbiased, then the differences between
these two strategies are limited. Note that unbiased f̂ i indicates unbiased ûm . In the
following section, the comparison between these two strategies will be shown.
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6.3.3. SIMULATION VALIDATION IN THE ABSENCE OF SIMULATED DISTUR-
BANCES

In this section, the results of the above-mentioned two validation strategies are shown.
The fault scenario is shown in Table 6.2. No disturbance is present. The model used is
the GS-KM.

The differences of the true states (x = [UN ,UE ,UD ,φ,θ,ψ]T ) between the open-loop
(xOL) and closed-loop (xC L) validations are shown in Figures 6.3(a) and Figure 6.3(b). It
should be noted that for the closed-loop validation, the faults are generated online in
the feedback loop. As can be seen from the figure, although the faults are in the feedback
loop of closed-loop validation, the differences between xOL and xC L are limited even in
the presence of faults. The maximum difference of UN , UE and UD is smaller than 0.2
m/s and that of φ, θ and ψ is smaller than 5×10−3 rad.

The fault reconstruction results of the two validations are shown in Figures 6.3(c) and
6.3(d). As can be seen, the fault estimates f̂ i ( f̂ Ax , f̂ Ay , f̂ Az and f̂p , f̂q , f̂r ) of the two vali-

dation strategies, denoted by f̂ i
OL and f̂ i

C L in the open-loop and closed-loop validations
respectively, closely match each other. This indicates that reconstructed faults are simi-
lar no matter whether it is the open-loop or closed-loop validation. The state estimates
of the open-loop and closed-loop validations, denoted by x̂OL and x̂C L respectively, are
both unbiased. The differences between x̂OL and x̂C L are similar to those shown in Fig-
ure 6.3(a) and Figure 6.3(b) and are not shown.

Let us further check the differences between f̂ i
OL and f̂ i

C L which are shown in Fig-
ures 6.3(e) and 6.3(f). It can be seen that the differences mainly occur in the beginning
or the end of the fault period (except for f̂ Az and f̂q which are oscillatory faults). During
10 s< t < 30 s, although the true states of the two validations (xOL and xC L) are different
(as shown in Figure 6.3(a) and Figure 6.3(b)), the differences between f̂ i

OL and f̂ i
C L are

limited. This becomes more obvious when the faults are removed after t > 30 s. xOL and
xC L are different (see Figure 6.3(a) and Figure 6.3(b)), but f̂ i

OL and f̂ i
C L are all zero-mean.

The above results demonstrate that if the fault reconstruction block can provide un-
biased estimates of x and f i , the differences between the two validation strategies are
limited. Under this condition, the open-loop validation, which injects and estimates
the faults offline, is also valid. Therefore, open-loop validation can be used to test the
performance of fault reconstruction approaches under real-life disturbances and uncer-
tainties, as will be shown in Section 6.5.

In the following sections, the subscript ‘OL’ and ‘C L’ will be dropped for readability.
In the remainder of this section, all the results are obtained using the closed-loop vali-
dation while in Section 6.5, all the results are obtained using the open-loop validation.

6.3.4. SIMULATION VALIDATION IN THE PRESENCE OF SIMULATED WIND

SHEAR
In this section, the simulated wind shear, as shown in Figure 6.1(a), is included in the
simulation model but is assumed unknown for the design of the fault reconstruction
approaches. The GS-KM together with the ATSEKF are used for the fault reconstruction.
The AS-KM together with the ATSEKF are also used for comparison.

The fault reconstructions of f Ax , f Ay and f Az using the AS-KM and the GS-KM are
compared in Figure 6.4(a). It is seen that the fault estimates using the GS-KM can follow
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Figure 6.3: Comparisons between the open-loop and closed-loop validations in the absence of disturbances
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(a) True and estimated f Ax , f Ay and f Az using the AS-
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(b) True and estimated fp , fq and fr using the AS-KM
and GS-KM
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AS-KM and GS-KM
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(d) Estimation errors of fp , fq and fr using the AS-KM
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Figure 6.4: State estimation and fault estimation results in the presence of simulated wind shear
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the true faults well. The fault estimation using the AS-KM is not satisfactory. Estimation
of f Az significantly deviates from the true faults around t = 5 s. This is caused by the
fact the ww > 0 after t = 5 s. The vertical wind is interpreted into a fault in the sensor
which measures az . The reason can be explained using Equation (6.29). When ww is not
constant, f Az is coupled with the influence of the wind which leads to the wrong fault
reconstruction. Similarly, the estimation of f Ax using the AS-KM between 18 s < t < 20
s is wrong due to uw which significantly decreases during 18 s < t < 20 s, as shown in
Figure 6.1(a). Since vw is assumed to be zero, estimation of f Ay is not influenced. The
estimates of fp , fq and fr using the AS-KM and GS-KM are similar and are shown in
Figure 6.4(b).

The corresponding estimation errors of f Ax , f Ay and f Az using the AS-KM and the
GS-KM are shown in Figure 6.4(c). As can be seen, the errors using the GS-KM maintain
zero-mean while those using the AS-KM deviate from zero. The estimation errors of fp ,
fq and fr using the two KMs are similar and zero-mean, as shown in Figure 6.4(d).

To demonstrate the performance of the ATSEKF, a SMO [19, 143] is implemented us-
ing the GS-KM. The estimation of f Ax , f Ay , f Az and fp , fq , fr using the SMO are shown in
Figures 6.4(e) and 6.4(f) respectively. As can be seen from the figure, although the faults
are reconstructed, the standard deviations of the estimation are significantly larger than
those of the ATSEKF. This is caused by the noise in the measurements. The influence of
the noise on the fault reconstruction can be reduced by using a low-pass filter, which will
be discussed in the following section.

6.3.5. SIMULATION VALIDATION IN THE PRESENCE OF SIMULATED TURBU-
LENCE

In this section, the simulated turbulence, as shown in Figure 6.1(b), is included in the
simulation but is considered unknown for the design of the fault reconstruction ap-
proaches. The GS-KM is again compared with the AS-KM.

If the AS-KM is used when the turbulence is present, as can be seen from Equa-
tion (6.29), f Ax , f Ay and f Az are coupled with the influence of the turbulence, denoted
by dw . This explains why the estimates of f Ax , f Ay and f Az using the AS-KM are cor-
rupted by the turbulence, as shown in Figure 6.5(a). Using the GS-KM, satisfactory fault
estimation results are achieved, as shown in Figure 6.5(a).

The estimates of fp , fq and fr using the two KMs are satisfactory and are the same as
in Figure 6.4(b). The estimation errors of fp , fq and fr using the two KMs are the same
as in Figure 6.4(d) and are not shown.

To show the performance of the ATSEKF, the SMO is implemented again to estimate
the faults using the GS-KM. Since the standard deviations of the fault estimation are
large, a low-pass filter is implemented to filter the estimated faults and the results are
shown in Figures 6.5(c) and 6.5(d) respectively. Although the estimates of the SMO are
filtered, the standard deviations are still larger than those of the ATSEKF. Therefore, in
the following sections, only the results using the ATSEKF are presented.
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Figure 6.5: State estimation and fault estimation results in the presence of simulated turbulence

Figure 6.6: Cessna Citation II aircraft, owned by Delft University of Technology and the Dutch Aerospace
Laboratory
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6.4. REAL FLIGHT TEST SCENARIOS
The above results are obtained using a simulated aircraft model. However, to fully demon-
strate the performance of the proposed approach, it should be validated using real flight
data where realistic uncertainties and disturbances are included. The robustness of the
approach should be validated using different flight conditions and wind conditions. In
Lu et al. [123], real flight data is also used to validate the performance. However, no
turbulence is present in the flight data. Consequently, the robustness of the proposed
approach in the presence of disturbances such as time-varying wind and turbulence is
not validated.

In order to validate the performance of the proposed approach in the presence of
disturbances, more flight tests were performed in 2015. The aircraft used is the Cessna
Citation II aircraft which is shown in Figure 6.6. Aircraft response data are recorded in
various flight conditions and wind conditions. Parabolic flights or so called zero-g flights,
during which the aircraft follows a parabolic trajectory to achieve a temporary sensation
of weightlessness, are performed in order to test the performance of the approach over
a wide range of the flight envelope with varying uncertainties. The measurement data
were recorded for post-flight analysis.

The air data are measured with a frequency of 100 Hz and the angle of attack is mea-
sured by a mechanical vane on the fuselage used for stall warning. This is different from
the measurements used in the flight tests in [123] where the angle of attack is measured
by the vanes mounted on an air data boom. The ground speed components are mea-
sured by a Global Positioning System receiver at 1 Hz and are linearly interpolated to
obtain data with a frequency of 100 Hz. Aircraft response data in the presence of turbu-
lence are also recorded and the crew recorded the time when the turbulence occurred.

In this chapter, three representative flight scenarios are chosen to validate the perfor-
mance of the proposed approach and to show the advantage of the proposed approach
over other methods. The three flight scenarios are shown in Figure 6.7 and the descrip-
tions are as follows:

1. Scenario 1 is a level flight which is shown in Figure 6.7(a). As can be seen, the
altitude of the aircraft h is nearly constant and so are other parameters such as the
true airspeed V , angle of attack α and specific force Az . In this flight scenario, no
manoeuvre is performed which means that there is no controlled excitation.

2. Scenario 2 is a parabolic flight which is shown in Figure 6.7(b). As can be seen from
the figure, Az of the aircraft decreases to almost -20 m/s2 at around t = 16 s and
increases to almost 0 m/s2 at around t = 27 s. This clearly shows the motion of the
aircraft. During this period, the altitude h, true airspeed V and angle of attackα of
the aircraft change significantly. At around t = 28 s, α even decreases below 0 rad.
This scenario is to test the performance over a wide range of the flight envelope.

3. Scenario 3 is a flight in the presence of turbulence which is shown in Figure 6.7(c).
In the first 60 s, Az is smooth while after t = 60 s, it oscillates significantly. The
oscillations are also observable inα. This scenario is to test the performance of the
fault reconstruction approaches in the presence of turbulence. In the validation,
only the data between 50 s < t < 100 s are used.
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(a) Aircraft response data during the level flight
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(b) Aircraft response data during the parabolic flight
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(c) Aircraft response data in the presence of turbu-
lence, only the data between 50 s < t < 100 s are used
in the sensor fault reconstruction validation

Figure 6.7: Real flight test data in different flight scenarios
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In the following section, the performance of the GS-KM will be compared to the AS-
KM using these three flight scenarios.

6.5. VALIDATION USING REAL FLIGHT DATA UNDER VARIOUS FLIGHT

SCENARIOS
In this section, the performance of the proposed approach is validated using the flight
scenarios in the previous section. Since injecting faults during flight is unfeasible due to
safety concerns, this section uses the open-loop validation strategy to validate the fault
reconstruction approaches. As shown in Section 6.3, this is also an effective validation
strategy if the states and faults are estimated in an unbiased sense. All the faults are
injected into the recorded data and the fault scenario is the same as in Table 6.2. The
filter used for the estimation of the states and faults is the ATSEKF. The performance of
the proposed approach as well as the comparison with the approach using the AS-KM
are presented in the following.

6.5.1. VALIDATION OF REAL FLIGHT TEST SCENARIO 1
In this section, the performance of the fault reconstruction of flight scenario 1 is pre-
sented. The state estimation performance of the GS-KM is shown in Figure 6.8(a) and
6.8(b). In the figure, the measured states are plotted since real states are not available.
As can be seen, the estimated states closely match the measured states. The differences
between the measured and estimated states are shown in Figures 6.8(c) and 6.8(d). It
can be seen that even during the period when there are faults, the differences between
the measured and estimated states are small. This demonstrates that the ATSEKF can
provide unbiased state estimates even in the presence of faults.

The fault estimates using the AS-KM and GS-KM are compared in Figures 6.9(a) and
6.9(b). The true injected faults are also plotted to show the performance of the fault
reconstruction. It can be seen from the figure that the performances of using the GS-KM
and the AS-KM are comparable. Both of the estimates follow the true faults well.

The estimation errors of f Ax , f Ay and f Az using the two KMs are shown in Figure 6.9(c)
while those of fp , fq and fr are given in Figure 6.9(d). It is seen that the estimation errors
using the two KMs are both zero-mean. The estimation error of f Az using the AS-KM is
slightly larger than that using the GS-KM in the presence of faults, as can be seen from
Figure 6.9(c).

The RMSEs of the fault estimates using the two KMs are compared in Figures 6.9(e)
and 6.9(f). The RMSEs of the estimates using the two approaches are comparable except
for f Az . For the RMSE of the estimate of f Az , the result using the AS-KM is almost twice
the result using the GS-KM.

In this flight scenario, the performance using the two KMs is similar. According to
Equation (6.28), it can be inferred that the wind during this level flight is close to con-
stant.

6.5.2. VALIDATION OF REAL FLIGHT TEST SCENARIO 2
In this flight scenario, the aircraft is performing a parabolic flight. As can be seen from
the measured states shown in Figure 6.7(b). All the states change significantly especially
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Figure 6.8: State estimation results of real flight test scenario 1
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Figure 6.9: Fault estimation results of real flight test scenario 1 (level flight)
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Figure 6.10: Fault estimation results of real flight test scenario 2 (parabolic flight)
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during 16 s < t < 26 s and 40 s < t < 50 s. Therefore, it can test the performance over a
wide range of the flight envelope.

The estimates of f Ax , f Ay and f Az using the AS-KM and GS-KM are compared in Fig-
ure 6.10(a). The results using the AS-KM are worse than those using the GS-KM. It is
noticed that during 16 s < t < 26 s and 40 s < t < 50 s, the performances using the two
KMs both degrade. This is caused by the fact that the system states are changing signifi-
cantly. However, the performance using the GS-KM is better than that using the AS-KM.
The estimates of f Ax using the AS-KM deviate from the true fault condition even at the
beginning of the simulation. In contrast, the estimates using the GS-KM maintain zero-
mean before the injection of the faults. The estimation errors of f Ax , f Ay and f Az using
the AS-KM and GS-KM are compared in Figure 6.10(c)

The estimates of fp , fq and fr using the two KMs are similar, as shown in Figure 6.10(b).
The corresponding errors of the estimation are shown in Figure 6.10(d). It is seen that the
estimation performance is satisfactory. The maximum error is less than 0.05 rad/s even
when the faults are injected.

The RMSEs of the fault estimates using the two KMs are shown in Figures 6.10(e) and
6.10(f), which confirms the better performance of using the GS-KM over the AS-KM.

6.5.3. VALIDATION OF REAL FLIGHT TEST SCENARIO 3
In this flight scenario, the aircraft is flying in turbulence. The estimates of f Ax , f Ay and
f Az using the two KMs are compared in Figure 6.11(a). The influence of turbulence on
fault reconstruction when using the AS-KM is noticeably seen in the figure after t = 10
s. The estimates of the ATSEKF using the AS-KM are corrupted by the turbulence, which
is similar to those shown in Figure 6.5(a). In contrast, the ATSEKF using the GS-KM still
maintains satisfactory performance and is significantly better than that using the AS-
KM. The fault estimates using the GS-KM can follow the true faults well without being
influenced by the turbulence. This clearly demonstrates the superiority of the GS-KM.

The estimates of fp , fq and fr using the two approaches are still comparable, as
shown in Figure 6.11(b). It shows that although the turbulence can influence the esti-
mation of the accelerometer faults ( f Ax , f Ay and f Az ), its influence on the estimation of
rate gyro faults ( fp , fq and fr ) is limited.

The fault estimation errors using the two KMs are compared in Figure 6.11(c) and
6.11(d). It is seen that the estimation errors using the GS-KM remain small despite the
presence of the turbulence.

The RMSEs of the estimation of f Ax , f Ay and f Az using the two approaches are shown
in Figure 6.11(e). The RMSEs using the GS-KM are prominently smaller than those us-
ing the AS-KM. However, the RMSEs of the estimates of fp , fq and fr using the two ap-
proaches are comparable, as shown in Figure 6.11(f).

6.5.4. DISCUSSION ON ROBUSTNESS AGAINST TURBULENCE
In this section, the robustness of the proposed approach (GS-KM) and the approach us-
ing the AS-KM is compared and summarized. Without loss of generality, the RMSE of the
estimation of f Ax is taken as an example.

The RMSEs of the estimation of f Ax using the AS-KM and the GS-KM in the three
flight scenarios are plotted in Figure 6.12. It is evident that the approach using the AS-
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Figure 6.11: Fault estimation results of real flight test scenario 3 (during turbulence)
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Figure 6.12: RMSEs of the estimates of f Ax using the AS-KM and GS-KM in the three different flight scenarios

KM is not robust. The performance changes when the flight scenarios varies. The worst
performance occurs when the turbulence is present, which demonstrates that it is sen-
sitive to disturbances. This implies the necessity of considering external disturbances
such as turbulence when dealing with aircraft sensor reconstruction.

In contrast, the performance of the proposed approach which uses the GS-KM is
more robust to disturbances. The performance does not change significantly even in the
presence of turbulence. The performance is notably better than that of using the AS-KM.

Finally, the ground speed measurements are obtained at 1 Hz and are linearly inter-
polated to obtain data at 100 Hz. To obtain a better performance, ground speed mea-
surements with a high update rate should be applied.

6.6. CONCLUSIONS
This chapter proposes a new approach for Inertial Measurement Unit sensor fault re-
construction by making use of the ground-speed-based kinematic model of the aircraft
flying in a rotating earth reference frame. Two strategies are proposed for the validation
of sensor fault reconstruction approaches: closed-loop and open-loop strategy. Both
validation strategies use a newly-developed Adaptive Two-Stage Extended Kalman Filter
to estimate the states and faults. The Adaptive Two-Stage Extended Kalman Filter can
adaptively update the covariance matrix for fault estimation. The fault reconstruction
performance using the ground-speed-based kinematic model is compared to the ap-
proach which uses the airspeed-based kinematic model, which shows the performance
of the proposed approach.

More importantly, the proposed approach is validated using real flight test data. The
performance is tested in various flight conditions and wind conditions including tur-
bulence. The proposed approach is found to be robust in various flight conditions and
disturbances such as turbulence, which demonstrates the advantage of the proposed
approach.

It is suggested that the proposed approach be incorporated in the aircraft Fault De-
tection and Isolation and Fault-Tolerant Control systems to enhance the performance of
the aircraft.
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DATA SENSOR FAULT DIAGNOSIS IN

THE PRESENCE OF TURBULENCE

In the previous chapter, the IMU FDD in the presence of model uncertainties and ex-
ternal disturbances is resolved. In this chapter, the ADS FDD in the presence of external
disturbances is considered. First, the DMAE, which was proposed in Chapter 5, is further
extended such that it can deal with the case when the effects of the faults and external
disturbances are coupled. To demonstrate the performance of the extended DMAE, two
simple examples are given. The extended DMAE is also compared to existing approaches
to demonstrate its superior performance. Then, the extended DMAE is applied to the
ADS FDD in the presence of turbulence. Finally, the performance of the extended DMAE
for ADS FDD in the presence of turbulence using real flight data is presented.

The software of the work in this chapter is available at: https://www.researchgate.
net/profile/Peng_Lu15/publications?pubType=dataset.

Parts of this chapter are based on:

P Lu, E van Kampen, C C de Visser, Q P Chu. Novel Framework to State and Unknown Input Estimation of Lin-
ear Time-varying Systems. Automatica, (2016), http://dx.doi.org/10.1016/j.automatica.2016.07.
009. [144]
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The design of unknown-input decoupled observers and filters requires the assumption of
an existence condition in the literature. This chapter addresses an unknown input filter-
ing problem where the existence condition is not satisfied. Instead of designing a tradi-
tional unknown input decoupled filter, a Double-Model Adaptive Estimation approach is
extended to solve the unknown input filtering problem. It is proved that the state and the
unknown inputs can be estimated and decoupled using the extended Double-Model Adap-
tive Estimation approach without satisfying the existence condition. Finally, the proposed
approach is applied to air data sensor fault diagnosis in the presence of turbulence.

7.1. INTRODUCTION
Faults and model uncertainties such as disturbances can be represented as unknown in-
puts. The problem of filtering in the presence of unknown inputs has received intensive
attention in the past three decades.

It is common to treat the unknown inputs as part of the system state and then es-
timate the unknown inputs as well as the system state [145]. This is an augmented
Kalman filter, whose computational load may become excessive when the number of
the unknown inputs is comparable to the states of the original system [32]. Friedland
[32] derived a two-stage Kalman filter which decomposes the augmented filter into two
reduced-order filters. However, Friedland’s approach is only optimal in the presence of
a constant bias [145]. Hsieh and Chen derived an optimal two-stage Kalman filter which
performance is also optimal for the case of a random bias [145].

On the other hand, unknown input filtering can be achieved by making use of un-
biased minimum-variance estimation [146–151]. Kitanidis [147] first developed an un-
biased recursive filter based on the assumption that no prior information about the un-
known input is available [84]. Hou and Patton [149] used an unknown-input decoupling
technique and the innovation filtering technique to derive a general form of unknown-
input decoupled filters [149, 150]. Darouach, Zasadzinski and Boutayeb [152] extended
Kitanidis’ method using a parameterizing technique to derive an optimal estimator fil-
ter. The problem of joint input and state estimation, when the unknown inputs only
appear in the system equation, was addressed by Hsieh [150] and Gillijns and De Moor
[153]. Gillijns and De Moor [84] further proposed a recursive three-step filter for the case
when the unknown inputs also appear in the measurement equation. However, their
approach requires the assumption that the distribution matrix of the unknown inputs
in the measurement equation is of full rank. Cheng et al. [154] proposed a global op-
timal filter which removed this assumption, but this filter is limited to state estimation
[155]. Later, Hsieh [156] presented a unified approach to design a specific globally opti-
mal state estimator which is based on the desired form of the distribution matrix of the
unknown input in the measurement equation [156].

However, all the above-mentioned filters require the assumption that an existence
condition is satisfied. This necessary condition is given by Hou and Patton [149] and
Darouach, Zasadzinski and Boutayeb [152], in the form of rank condition (7.5). Hsieh
[156] presents different decoupling approaches for different special cases. However,
these approaches also have to satisfy the existence condition (7.5). In some applications,
such as that presented in the current chapter, the existence condition is not satisfied.
Therefore, a traditional unknown input decoupled filter can not be designed.
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Recently, particle filters are also applied to unknown input estimation [28, 157, 158].
These filters can cope with systems with non-Gaussian noise and have a number of ap-
plications such as for robot fault detection [159–161]. In this chapter, the performance
of particle filters will be compared with that of our approach.

This chapter proposes an extended DMAE approach, which can cope with the un-
known input filtering problem when a traditional unknown input filter can not be de-
signed. The original DMAE approach, which was proposed by Lu et al. [92] for the es-
timation of unknown inputs in the measurement equation, is extended to allow estima-
tion of the unknown inputs which appear both in the system equation and the measure-
ment equation. The unknown inputs are augmented as system states and are modeled
as random walk processes. The unknown inputs in the system equation are assumed to
be Gaussian random processes of which covariances are estimated on-line. It is proved
that the state and unknown inputs can be estimated and decoupled while not requiring
the existence condition. Two illustrative examples are given to demonstrate the effec-
tiveness of the proposed approach with comparison to other methods from literature
such as the RTS-KF [84] and Optimal Two-Stage Kalman Filter (OTSKF) [145].

The problem of ADS FDD in the presence of turbulence is challenging because the
existence condition is not satisfied. In this chapter, first the model used for ADS FDD in
the presence of turbulence, which shows that the effects of the turbulence and faults are
coupled, is introduced. Then the proposed approach is validated using both simulated
and real turbulence data.

The structure of the chapter is as follows: the preliminaries of the chapter are given
in Section 7.2, formulating the filtering problem when the existence condition is not sat-
isfied and generalizing the DMAE approach. In Section 7.3, the extension of the DMAE
approach to the filtering problem when the unknown inputs appear both in the system
equation and the measurement equation is presented. It is proved that the state and the
unknown inputs can still be estimated and decoupled in Section 7.4. In Section 7.5, two
illustrative examples are given to show the performance of the proposed approach with
comparison to some existing unknown-input decoupled filters. The proposed approach
is applied to ADS FDD in the presence of turbulence in Section 7.6. Finally, Section 7.7
concludes the chapter.

7.2. THE DMAE APPROACH
This section presents the problem formulation and the DMAE approach.

7.2.1. PROBLEM FORMULATION
Consider the following linear time-varying system:

xk+1 = Ak xk +Bk uk +Ek dk +wk (7.1)

yk = Hk xk +Fk fk +vk (7.2)

where xk ∈ Rn represents the system states, yk ∈ Rm the measurements, dk and fk are
the unknown inputs. Specifically, dk ∈ Rnd the disturbances, fk ∈ Rn f are the output
faults. wk and vk are assumed to be uncorrelated zero-mean white noise sequences
with covariance Qk and Rk respectively. uk , the known inputs, is omitted in the following
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discussion because it does not affect the filter design [149]. Without loss of generality, we
consider the case: n = m = nd = n f and rank Hk = rank Ek = rank Fk = m, which implies
all the states are influenced by dk and fk . It should be noted that the approach proposed
in this chapter can be readily extended to the case when n 6= m or rank Hk 6= rank Ek .

The unknown inputs are denoted as d ′
k , i.e., d ′

k =

dk

fk


 ∈Rnd ′ . Then, model (7.1) and

(7.2) can be reformulated into the general form as given in Hou and Patton [149] and
Darouach, Zasadzinski and Boutayeb [152]:

xk+1 = Ak xk +E′
k d ′

k +wk (7.3)

yk = Hk xk +F′
k d ′

k +vk (7.4)

In this chapter, E′
k = [Ek 0], F′

k = [0 Fk ]. The existence of an unknown-input decoupled
filter must satisfy the following existence condition [149, 152]:

rank


F′

k Hk E′
k

0 F′
k


= rank [F′

k ]+ rank


E′

k

F′
k


 (7.5)

In our case, since rank Hk = m, the left-hand side of condition (7.5) is 2m while the
right-hand side is 3m. Therefore, the above existence condition does not hold, which
means that all the unknown-input filters mentioned in the introduction can not be di-
rectly implemented.

In this chapter, we consider the consecutive bias fault estimation of a system sub-
jected to disturbances, as described in Equations (7.1) and (7.2). Although the existence
condition of designing a traditional unknown input decoupled filter is not satisfied, it
will be shown that the unknown inputs can still be decoupled using an extended DMAE
approach.

Remark 1. The model described by Equations (7.1) and (7.2) is useful for applica-
tions where the disturbances appear in the system equation and the faults appear in the
measurement equation, such as bias fault estimation in aircraft air data sensors [92].

7.2.2. THE DMAE APPROACH
The DMAE1 approach proposed in Lu et al. [92] considers the model (7.1) and (7.2) for
dk = 0. It is referred to as the DMAE approach in this chapter, which is generalized in the
following.

The DMAE [92], which is a modified approach of multiple-model-based approach
[34, 37], is composed of two KFs operating in parallel: a no-fault (or fault-free) filter and
an augmented fault filter. These two filters are based on two modes of the system: fault-
free ( fk = 0) and faulty ( fk 6= 0). The two filters use the same vector of measurements
Y and vector of input u, and are based on the same equations of motion, while each
hypothesizes a different fault scenario. The state vector of the no-fault filter xnf and that
of the augmented fault filter xaf are as follows:

xnf ,k = xk , xaf ,k =

xnf ,k

fk


 (7.6)
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Y
u

x̂0
nfx̂nf (k) x̂nf (k + 1)

γnf

γaf

x̂0
af

x̂af (k)

x̂af (k + 1)

pnf

paf

Filter based on

no fault

Filter based on

fault

Hypothesis Conditional

Probability evaluator

Selective

Reinitialization

•
Figure 7.1: Block diagram for the DMAE approach

where “nf ” means no fault and “af ” means augmented fault. It can be noted that the
state vector of the augmented fault filter is the state vector of the no-fault filter with
augmentation of the fault vector fk .

At time step k, each of the filters produces a state estimate x̂0
i (k) and a vector of

innovations γi (k). The principle is that the KF which produces the most well-behaved
innovations, contains the model which matches the true faulty model best [34, 37]. The
block diagram of the DMAE is given in Figure 7.1.

A hypothesis test uses the innovation γi (k) and the innovation covariance matrix
Ci (k) of the filters in order to assign a conditional probability to each of the filters. Let a
denote the fault scenarios of the system. If we define the hypothesis conditional proba-
bility pi (k) as the probability that a is assigned ai for i = 1,2 (a1 = nf , a2 = af ), condi-
tioned on the measurement history up to time step k:

pi (k) = Pr[a = ai |Y (k) = Yk ], i = 1,2 (7.7)

then the conditional probability of the two filters can be updated recursively using the
following equation:

pi (k) = fyk |a,Yk−1 (yk |ai ,Yk−1)pi (k −1)
2∑

j=1
fyk |a,Yk−1 (yk |a j ,Yk−1)p j (k −1)

, i = 1,2 (7.8)

where Yk−1 is the measurement history vector which is defined as Yk−1 = {y(1), y(2), .., y(k−
1)}.
fyk |a,Yk−1 (yk |ai ,Yk−1) is the probability density function which is given by the following
Gaussian form [37]:

fy(k)|a,Yk−1
(y(k)|ai ,Yk−1)

=βi (k) exp{−γT
i (k)C−1

i (k)γi (k)/2} (7.9)

where

βi (k) = 1

(2π)m/2|Ci (k)|1/2
(7.10)
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pt ,1 = pnf ; pt ,2 = paf

x̂t ,1 = x̂0
nf , j ; x̂t ,2 = x̂0

af , j , j = 1 : n

Pt ,1 = P 0
nf , j j ; Pt ,2 = P 0

af , j j , j = 1 : n

Find imax,k with
pt ,imax,k = max (pt )

imax,k = 1?

x̂af =
[

x̂t ,imax,k

x f
0

]
, Paf =

[
Pt ,imax,k 0

0 P f
0

]
x̂nf = x̂t ,imax,k

Pnf = Pt ,imax,k

Yes No

Figure 7.2: Flow chart of the Selective Reinitialization algorithm. Note n refers to the dimension of x̂nf .

In Equation (7.10), | • | denotes the determinant of the covariance matrix Ci (k) which is
computed by the KF at time step k. The filter which matches the fault scenario produces
the smallest innovation which is the difference between the estimated measurement and
the true measurement. Therefore, the conditional probability of the filter which matches
the true fault scenario is the highest between the two filters. After the computation of the
conditional probability, the state estimate of the nonlinear system x̂(k) can be generated
by the weighted state estimate x̂i (k) of the two filters:

x̂(k) =
2∑

i=1
x̂i (k)pi (k)

= x̂nf (k)pnf (k)+ x̂af (k)paf (k). (7.11)

The fault is only estimated by the augmented fault filter and the estimate is denoted as
f̂ (k). The probability-weighted fault estimate of the DMAE approach f̄ (k) is calculated
as follows:

f̄ (k) = f̂ (k)paf (k) (7.12)

The core of the DMAE approach is selective reinitialization. The flow chart of the selec-
tive reinitialization algorithm is presented in Figure 7.2.

In the algorithm, x̂0
nf (x̂0

af ) and x̂nf (x̂af ) denote the state estimate of the no-fault
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(augmented fault) filter before and after the reinitialization, respectively. P0
nf (P0

af ) and

Pnf (Paf ) denote the covariance of state estimate error of the no-fault (augmented fault)
filter before and after the reinitialization, respectively. x̂t , pt and Pt are the vectors which
contain the state estimate, model probability and the covariance matrix of state estima-
tion error of the no-fault filter and the fault filter respectively. imax,k is the index of the

model with the maximum model probability at time step k. x f
0 and P f

0 are the parame-
ters which are used for the initialization of the fault filter.

7.3. EXTENSION OF THE DMAE APPROACH
The DMAE approach can achieve an unbiased estimation of xk and fk when dk = 0 [92].
However, when dk 6= 0, the unknown-input filtering problem becomes more challeng-
ing. Since the existence condition (7.5) is no longer satisfied, traditional unknown-input
decoupled filters can not be designed.

In this section, the DMAE is extended to the case when dk 6= 0. In order to achieve
this, the state vectors of the no-fault filter and augmented fault filter are changed to:

x̄nf ,k =

xk

dk


 , x̄af ,k =


x̄nf ,k

fk


 (7.13)

where x̄nf ,k ∈ Rn+nd and x̄af ,k ∈ Rn+nd+n f . The state vector of the augmented fault filter
is that of the no-fault filter augmented with the fault vector. Therefore, the state vector of
the no-fault filter can be inferred from that of the augmented fault filter and vice versa.

The random walk process provides a useful and general tool for the modeling of un-
known time-varying processes [32, 150, 162]. dk can be modeled by a random walk pro-
cess [150, 162] as:

dk+1 = dk +wd ,k , (7.14)

where wd ,k is a white noise sequence with covariance: E {wd ,k (wd ,l )T } = Qd
kδkl . fk is also

modeled as a random walk process as:

fk+1 = fk +w f ,k , (7.15)

where w f ,k is a white noise sequence with covariance: E {wf ,k (wf ,l )T } = Q f
kδkl . Then, the

system model and measurement model of the no-fault filter can be described as follows:

x̄nf ,k+1 = Ānf ,k x̄nf ,k + w̄nf ,k (7.16)

yk = H̄nf ,k x̄nf ,k +vk (7.17)

where

Ānf ,k =

Ak Ek

0 I


 ,H̄nf ,k = [Hk 0], w̄nf ,k =


 wk

wd ,k


 (7.18)
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The model of the augmented fault filter is as follows:

x̄af ,k+1 = Āaf ,k x̄af ,k + w̄af ,k (7.19)

yk = H̄af ,k x̄af ,k +vk (7.20)

where

Āaf ,k =

Ānf ,k 0

0 I


 ,H̄af ,k = [H̄nf ,k Fk ], w̄af ,k =


w̄nf ,k

wf ,k


 (7.21)

Since the difference from the DMAE in Lu et al. [92] is the augmentation of dk , only
the covariance related to wd ,k , i.e., Qd

k is discussed below. It should be noted that Qd
k is

usually unknown, the optimality of the filter can be compromised by a poor choice of Qd
k

[147, 150]. If Qd
k is not properly chosen, it can influence the estimation of dk as well as

xk .

This chapter proposes a method to adapt Qd
k by making use of the augmented fault

filter of the DMAE approach. To compensate the influence of a bad choice of Qd
k on the

estimation of xk , the system noise vector w̄nf ,k in Equations(7.16), (7.18) and (7.21) is
modified to:

w̄nf ,k =

wk +Ek wd ,k

wd ,k


 (7.22)

It should be noted that this is only an approximation. However, the simulation results in
Section 7.5 demonstrate that this choice is satisfactory.

Let ˆ̄xaf ,k−1|k−1 denote the unbiased estimate of x̄af ,k−1 given measurements up to

time k −1. x̂k−1|k−1, d̂k−1|k−1 and f̂k−1|k−1 denote the estimates of xk−1, dk−1 and fk−1,
respectively. The innovation of the augmented fault filter is:

γaf ,k = yk − H̄af ,k ˆ̄xaf ,k|k−1

= Hk Ak−1x̃k−1|k−1 +Hk Ek−1d̃k−1|k−1 +Fk f̃k−1|k−1

+Hk wk−1 +Hk Ek−1wd ,k−1 +Fk w f ,k−1 +vk (7.23)

with

x̃k−1|k−1 := xk−1 − x̂k−1|k−1 (7.24)

d̃k−1|k−1 := dk−1 − d̂k−1|k−1 (7.25)

f̃k−1|k−1 := fk−1 − f̂k−1|k−1 (7.26)
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Therefore, the innovation covariance of the augmented fault filter is:

Caf ,k = E {γaf ,kγ
T
af ,k }

= Hk Ak−1Px
k−1|k−1AT

k−1HT
k

+Hk Ek−1Pd
k−1|k−1E T

k−1HT
k +Fk P f

k−1|k−1FT
k

+Hk Ak−1Pxd
k−1|k−1ET

k−1HT
k +Hk Ak−1Px f

k−1|k−1FT
k

+Hk Ek−1Pd x
k−1|k−1AT

k−1HT
k +Hk Ek−1Pd f

k−1|k−1FT
k−1

+Fk−1P f x
k−1|k−1AT

k−1HT
k +Fk P f d

k−1|k−1ET
k−1HT

k +Rk

+Hk Qk−1HT
k +Hk Ek−1Qd

k−1ET
k−1HT

k +FkQ f
k FT

k (7.27)

where the covariance matrices are defined as follows:

Px
k|k := E [x̃k|k x̃T

k|k ], Pd
k|k := E [d̃k|k d̃ T

k|k ]

P f
k|k := E [ f̃k|k f̃ T

k|k ], Pxd
k|k := E [x̃k|k d̃ T

k|k ]

Pd x
k|k := E [d̃k|k x̃T

k|k ], Px f
k|k := E [x̃k|k f̃ T

k|k ]

P f x
k|k := E [ f̃k|k x̃T

k|k ], Pd f
k|k := E [d̃k|k f̃ T

k|k ]

P f d
k|k := E [ f̃k|k d̃ T

k|k ].

The actual Caf ,k is approximated as follows [30, 31]:

Ĉaf ,k = 1

N

k∑

j=k−N+1
γaf , jγ

T
af , j (7.28)

Qd
k can be approximated by the main diagonal of

E−1
k H−1

k Q̃k (HT
k )−1(ET

k )−1 (7.29)

with Q̃k is a diagonal matrix defined as:

Q̃k := diag(max{0,Q̂k,11}, ...,max{0,Q̂k,mm}) (7.30)

where Q̂k, j j , j = 1,2, ...,m is the j th diagonal element of Q̂k which is denoted as:

Q̂k = (Ĉaf ,k −Hk Qk−1HT
k −Fk Q f

k FT
k −Rk ) (7.31)

The restriction Q̃k, j j ≥ 0, j = 1,2, ...,m in Equation (7.30) is to preserve the properties of
a variance [163].

7.4. UNKNOWN INPUT DECOUPLED FILTERING
This section proves that the unknown input decoupled filtering can be achieved using
the extended DMAE approach which does not need to satisfy the existence condition
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(7.5). Let l (l ≥ 1) denote the time step when the first fault occurs and le denote the time
step when the first fault is removed, which means fk = 0 when k < l and fk 6= 0 when
l ≤ k ≤ le . Without loss of generality, it will be proven that fk can be estimated when
k ≤ le .

7.4.1. UNKNOWN INPUT ESTIMATION DURING k < l
Theorem 2. During k < l , an unbiased estimation of dk can be achieved using the fault-
free filter of the extended DMAE approach.

Proof. When k < l , fk = 0. The fault-free model matches the true fault scenario while the
augmented fault filter does not. Therefore, according to the DMAE approach, imax,k = 1
during this time period.

The system model during this period is as follows:

xk+1 = Ak xk +Ek dk +wk (7.32)

yk = Hk xk +vk (7.33)

Under this situation, dk can be estimated using the fault-free filter whose convergence
condition will be discussed later. �

The estimation of dk and fk when l ≤ k ≤ le will be discussed in the following.

7.4.2. UNKNOWN INPUT ESTIMATION AT k = l
For the sake of readability, the subscript af will be discarded for the remainder of the
section. All the variables with a bar on top in the remainder of this section refer to the
augmented fault filter.

Using the DMAE approach, the Kalman gain K̄l can be partitioned as follows:

K̄l =




Kx
l

Kd
l

K f
l


 (7.34)

where Kx
l , Kd

l and K f
l are the Kalman gains associated with xk , dk and fk , respectively.

Lemma 1. Let x̂l−1|l−1 and d̂l−1|l−1 be unbiased, if x f
0 is chosen to be 0 or sufficiently

small, then fl can be estimated using the augmented fault filter if and only if K f
l satisfies

K f
l Fl = I. (7.35)

Proof. The innovation of the augmented filter is

γ̄l = el +Fl fl (7.36)

where el is defined as

el := Hl Al−1x̃l−1|l−1 +Hl El−1d̃l−1|l−1

+Hl wl−1 +Hl El−1wd ,l−1 +vl (7.37)
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Since x̂l−1|l−1 and d̂l−1|l−1 are unbiased (this can be achieved by the DMAE1 in Lu et. al
[92] since fk = 0 when k < l ), E [el ] = 0.

Consequently, the expectation of γ̄l is:

E [γ̄l ] = Fl fl . (7.38)

The estimation of the fault can be given by

f̂l |l = f̂l |l−1 +K f
l γ̄l

= f̂l−1|l−1 +K f
l γ̄l (7.39)

Since imax,k = 1 when k < l , according to the flow chart of the selective reinitialization
algorithm given in Figure 7.2, Equation (7.39) can be further written into

f̂l |l = x f
0 +K f

l γ̄l (7.40)

Substituting (7.36) into (7.40), yields

f̂l |l = K f
l Fl fl +K f

l el (7.41)

Consequently, the expectation of f̂l |l

E [ f̂l |l ] = E [K f
l Fl fl ]. (7.42)

Therefore, it can concluded that fl can be estimated if and only if K f
l satisfies

K f
l Fl = I. � (7.43)

Theorem 3. Let x̂l−1|l−1 and d̂l−1|l−1 be unbiased, then fl can be estimated using the

augmented fault filter of the DMAE approach by choosing a sufficiently large P f
0 and a

sufficiently small x f
0 .

Proof. Define the following covariance matrix:

P̄l−1|l−1 := E [ ˜̄xl−1|l−1 ˜̄xT
l−1|l−1]

where ˜̄xl−1|l−1 = x̄l−1 − ˆ̄xl−1|l−1.

Due to the selective reinitialization algorithm given in Figure 7.2, P f
l−1|l−1 = P f

0 . There-

fore, the covariance of the state prediction error P̄l |l−1 can be computed and partitioned
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as follows:

P̄l |l−1 = Āl−1




Px
l−1|l−1 Pxd

l−1|l−1 0

Pd x
l−1|l−1 Pd

l−1|l−1 0

0 0 P f
0


 ĀT

l−1

+




Ql−1 +El−1Qd
l−1ET

l−1 El−1Qd
l−1 0

Qd
l−1ET

l−1 Qd
l−1 0

0 0 Q f
l−1


 (7.44)

=




Px
l |l−1 Pxd

l |l−1 0

Pd x
l |l−1 Pd

l |l−1 0

0 0 P f
l |l−1


 (7.45)

where

Px
l |l−1 := Al−1Px

l−1|l−1AT
l−1 +El−1Pd

l−1|l−1ET
l−1

+Al−1Pxd
l−1|l−1ET

l−1 +El−1Pd x
l−1|l−1AT

l−1

+Ql−1 +El−1Qd
l−1ET

l−1

Pd
l |l−1 := Pd

l−1|l−1 +Qd
l−1

Pxd
l |l−1 := Al−1Pxd

l−1|l−1 +El−1Pd
l−1|l−1 +El−1Qd

l−1

Pd x
l |l−1 := Pd x

l−1|l−1AT
l−1 +Pd

l−1|l−1ET
l−1 +Qd

l−1ET
l−1

P f
l |l−1 := P f

0 +Q f
l−1

Define

C̄l := H̄l P̄l |l−1H̄T
l +Rl . (7.46)

Substituting Equation (7.45) into the above equation, it follows that

C̄l = Hl Px
l |l−1HT

l +Fl P f
l |l−1FT

l +Rl (7.47)

Consequently, the Kalman gain of the augmented filter can be calculated and partitioned
as follows:

K̄l = P̄l |l−1H̄T
l C̄−1

l

=




Px
l |l−1HT

l

Pd x
l |l−1HT

l

P f
l |l−1FT

l


 C̄−1

l (7.48)
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If P f
0 is chosen sufficiently large, then C̄l ≈ Fl P f

0 FT
l . It follows that

K̄l =




Px
l |l−1HT

l C̄−1
l

Pd x
l |l−1HT

l C̄−1
l

F−1
l


 (7.49)

Therefore, K f
l = F−1

l . It follows from Lemma 1 that fl can be estimated. �

7.4.3. UNKNOWN INPUT ESTIMATION DURING l < k ≤ le
Theorem 4. Provided that fk has been estimated at k = l , dk can be estimated using the
augmented fault filter of the extended DMAE approach.

Proof. During this period, the augmented fault model matches the true fault scenario.
Therefore, imax,k = 2, which means that the fault-free filter is reinitialized by the fault
filter during this period. Since this chapter considers bias fault, fk is constant for l < k ≤
le . Therefore, during this period, we can set:

ˆ̄xk|k−1 =

x̂∗

k|k−1

f̂l |l


 , P̄k|k−1 =


P∗

k|k−1 0

0 P f
l |l




ˆ̄xk|k =

x̂∗

k|k
f̂l |l


 , P̄k|k =


P∗

k|k 0

0 P f
l |l


 , K̄k =


K∗

k

0


 , (7.50)

where

x̂∗
k|k−1 :=


x̂k|k−1

d̂k|k−1


 ,P∗

k|k−1 :=

Px

k|k−1 Pxd
k|k−1

Pd x
k|k−1 Pd

k|k−1


 ,

x̂∗
k|k :=


x̂k|k

d̂k|k


 ,P∗

k|k :=

Px

k|k Pxd
k|k

Pd x
k|k Pd

k|k


 ,K∗

k :=

Kx

k

Kd
k


 (7.51)

are updated by the normal Kalman filtering procedure. It can be seen that during this
period, the estimation of the fault and the covariance are:

f̂k|k = f̂l |l , P f
k|k = P f

l |l , l < k ≤ le (7.52)

It can be inferred that the model of the fault filter is equivalent to:

xk+1 = Ak xk +Ek dk +wk (7.53)

yk = Hk xk +Fk f̂l |l +vk (7.54)

As can be seen, the only unknown input is dk since the fault filter treats fk as a known
input during this period. Since a known input does not affect the design of a filter [149],
the convergence condition of this fault filter is the same as that of the fault-free filter
based on Equations (7.32) and (7.33).

Therefore, dk can be estimated using the augmented fault filter under the same con-
dition as for the model described by Equations (7.32) and (7.33). �
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7.4.4. ERROR ANALYSIS

In the previous sections, it is assumed that x̂l−1|l−1 and d̂l−1|l−1 are unbiased. We analyze
the estimation error of fl when x̂l−1|l−1 and d̂l−1|l−1 are biased.

Through Equation (7.43), Equation (7.41) can be further rewritten into

f̂l |l = fl +F−1
l el (7.55)

Substitute Equation (7.37) into Equation (7.55), it follows

f̂l |l = fl +F−1
l (Hl Al−1x̃l−1|l−1 +Hl El−1d̃l−1|l−1

+Hl wl−1 +Hl El−1wd ,l−1 +vl ) (7.56)

The estimation error of fl as a function of x̃l−1|l−1 and d̃l−1|l−1 can be obtained as
follows:

f̃l |l = fl − f̂l |l (7.57)

= F−1
l (Hl Al−1x̃l−1|l−1 +Hl El−1d̃l−1|l−1

+Hl wl−1 +Hl El−1wd ,l−1 +vl ) (7.58)

If x̃l−1|l−1 and d̃l−1|l−1 are unbiased, the expectation of f̃l |l is zero, which means the fault
estimate is unbiased. If x̃l−1|l−1 and d̃l−1|l−1 are biased, assume

¯
aI ≤ Al−1 ≤ āI,

¯
f I ≤ Fl−1 ≤ f̄ I (7.59)

¯
hI ≤ Hl−1 ≤ h̄I,

¯
eI ≤ El−1 ≤ ēI (7.60)

¯
ex I ≤ x̃l−1|l−1 ≤ ēx I,

¯
ed I ≤ d̃l−1|l−1 ≤ ēd I (7.61)

¯
wI ≤ wl−1 ≤ w̄I,

¯
wd I ≤ wd ,l−1 ≤ w̄d I , (7.62)

¯
vI ≤ vl−1 ≤ v̄I. (7.63)

Then it follows that the fault estimation error is bounded by the following:

[
¯
h(

¯
a

¯
ex +

¯
e

¯
ed +

¯
w +

¯
e

¯
wd )+

¯
v

f̄
,

h̄(āēx + ē ēd + w̄ + ē w̄d )+ v̄

¯
f

]
(7.64)

7.4.5. DISCUSSION
The approach proposed in this section uses a double-model framework, instead of the
traditional unknown input filtering framework, to decouple the unknown inputs. There-
fore, the existence condition given in Equation (7.5) is not required.

For the model given in Equations (7.32) and (7.33), the convergence condition for
time-invariant case has been given by Darouach et al. [164], which is given as follows:

rank


zI−A −E

H 0


= n +nd ,∀z ∈C , |z| ≥ 1 (7.65)

This convergence condition is also required by traditional unknown input decoupled
filters such as those in Darouach, Zasadzinski and Boutayeb [152] and Cheng et al. [154].
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The system considered up until now in this chapter is linear and the noise is assumed
to be Gaussian. If the system is nonlinear, the DMAE can be extended using Unscented
Kalman Filters [27, 92]. If the system noise is non-Gaussian, then it should be extended
by making use of particle filters [28, 157, 158]. However, this is out of the scope of the
present chapter.

7.5. ILLUSTRATIVE EXAMPLES WITH COMPARISON TO EXISTING

METHODS

In this section, two examples similar to that in [162], [152] and [146] are provided to
demonstrate the performance of the extended DMAE approach.

The system is described by model (7.1) and (7.2) where

A =

−0.0005 −0.0084

0.0517 0.8069


 ,B =


0.1815

1.7902


 , (7.66)

E =

0.629 0

0 −0.52504


 ,H =


1 0

0 1


 ,F =


1 0

0 1


 , (7.67)

Q =

0.0022 0

0 0.0022


 ,R =


0.012 0

0 0.012


 (7.68)

The input uk is: uk =−0.5 when 200 < k ≤ 300, otherwise uk = 0.5. fk is given by the red
solid lines in Figure 7.3(c). It can be noted that the number of unknown inputs in [162],
[152] and [146] is nd (nd = 2) while this chapter deals with 2nd unknown inputs.

In both examples, since E′
k = [Ek 0], F′

k = [0 Fk ], condition (7.5) is not satisfied. In
addition, rank yk < rank d ′

k . Consequently, all the unknown input decoupled filters in
the introduction are not applicable to solve the problem, except for special cases when

dk = 0 or fk = 0. N in Equation (7.28) is set to be 10. In both examples, Q f
k = 0, Qd

k is

updated by the main diagonal of the matrix given in (7.29), x f
0 = [10−3,10−3]T ,P f

0 = 102I.

Example 1. In this example, dk is a constant bias vector, which is shown by the red
solid lines in Figure 7.3(b). The condition (7.5) is not satisfied. Therefore, traditional
unknown input filters, which require the satisfaction of condition (7.5), can not be im-
plemented.

The extended DMAE approach is implemented. The true and estimated pnf and paf

using the extended DMAE approach are well matched. The probability-weighted esti-
mates of xk , dk , which are calculated using Equation (7.11), are shown in Figures 7.3(a)
and 7.3(b), respectively. The probability-weighted estimate of fk (calculated using Equa-
tion (7.12)) is shown in Figure 7.3(c). As can be seen, xk , dk and fk can all be estimated.

Example 2. In this example, the disturbances, which are taken from [64], are stochas-
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(b) True and estimated disturbances, example 1
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Figure 7.3: Results of the DMAE approach, example 1

Table 7.1: RMSEs of the fault and disturbance estimation for Example 2

Methods d1 d2 f1 f2

Case 1
RTSKF [84] - - 0.0103 0.0102

PF [28, 157] - - 0.1549 0.1496

DMAE - - 0.0060 0.0047

Case 2
OTSKF [145] 0.0697 0.1442 - -

PF [28, 157] 0.1088 0.2035 - -

DMAE 0.0709 0.1459 - -

Case 3
[28, 84, 145, 150, 153, 157] N/A N/A N/A N/A

DMAE 0.0845 0.1655 0.0230 0.0283
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Figure 7.4: Errors of estimation of f1 and f2 using the RTS-KF and the DMAE approach, case 1, example 2

tic. dk =

d1,k

d2,k


 is generated using the following model [64]:


di ,k

d
′
i ,k


=




0 1

− V 2

L2
g i

−2 V
Lg i





di ,k−1

d
′
i ,k−1




+

 σi

√
3V
Lg i

(1−2
p

3)σi

√
( V

Lg i
)3


w ′

d ,k , i = 1,2 (7.69)

where V = 35, σ1 = 0.5, σ2 = 0.8, Lg 1 = 2500, Lg 2 = 1500 and w ′
d ,k ∼ N (0,1). The gener-

ated dk is shown by the red solid lines in Figure 7.5(b). It should be noted that the DMAE
approach still models dk as a random walk process since dk is treated as an unknown
input.

Three cases are considered for this example. The first two cases are special cases.
In these two cases, the existence condition (7.5) is satisfied. Therefore, some of the ap-
proaches mentioned in the introduction can still be used.

Case 1. dk = 0, fk 6= 0

In this case, Ek is a zero matrix. Therefore, condition (7.5) is satisfied. The probability-
weighted estimate of fk using the extended DMAE is the same as in Figure 7.3(c). The
RTS-KF in Gillijns and De Moor [84] is also applied and the errors of estimation of fk

compared to the DMAE are shown in Figure 7.4. In addition, particle filters [28, 157] are
also applied. The model used for estimation of fk is also the random walk. 100 parti-
cles are used. The RMSEs of estimation of f1 and f2 using the RTS-KF, the particle filter
[28, 157] and the extended DMAE are shown in Table 7.1.

Case 2. dk 6= 0, fk = 0

In this case, Fk is a zero matrix. Therefore, condition (7.5) is also satisfied. The
true and estimated pnf and paf using the extended DMAE approach are shown in Fig-
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Figure 7.5: Results of the DMAE approach, case 2, example 2
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Figure 7.6: True and estimated states, case 3, example 2

ure 7.5(a). The probability-weighted estimate of dk is presented in Figure 7.5(b). The re-
sults using the methods in Heish [150], Heish and Chen [145], and Gillijns and De Moor
[153], are similar to that of the DMAE. Particle filter is also applied. The model used for
estimation of dk is the random walk. The RMSEs of estimation of d1 and d2 using the
OTSKF in Heish [145], the particle filter [28, 157] and the extended DMAE are shown in
Table 7.1.

Case 3. dk 6= 0, fk 6= 0

In this case, condition (7.5) is not satisfied. Thus, all the conventional filters men-
tioned in the introduction are not applicable.

The true and estimated pnf and paf using the extended DMAE approach are also
well matches. The probability-weighted estimates of xk , is shown in Figure 7.6. The
probability-weighted estimates of dk and fk are the same as in Figures 7.5(b) and 7.3(c)
respectively. It can be seen that despite the fact that the existence condition for tradi-
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Figure 7.7: Sensitivity of the fault estimation using the DMAE approach with respect to Qk and Rk errors, case
3, example 2

tional unknown-input decoupled filters is not satisfied, xk , dk and fk can all be esti-
mated using the extended DMAE approach. The RMSEs of the estimation of dk and fk

using the extended DMAE approach are shown in Table 7.1.

Finally, the sensitivity of the DMAE with respect to errors in Qk and Rk is discussed.
To demonstrate the sensitivity with respect to errors in Qk , Rk is fixed and Qk is multi-
plied with a coefficient kQ . The sensitivity result of the RMSE of fault estimation with kQ

ranging from 10−3 to 103 is shown in Figure 7.7(a). To show the sensitivity with respect to
Rk errors, Qk is fixed and Rk is multiplied with a coefficient kR . The sensitivity result of
the RMSE of fault estimation with kR ranging from 10−3 to 103 is shown in Figure 7.7(b).

It can be seen from Figures 7.7(a) and 7.7(b) that the minimum RMSEs are obtained
when kQ = 1 or kR = 1. However, it is also noted that the extended DMAE approach is
more sensitive to Rk errors. The RMSE of the fault estimation increases to 0.063 when
Qk is multiplied with 103 and increases to 1.79 when Rk is multiplied with 103. This is
expected since in section 7.3, the process noise w̄nf ,k is adapted while the output noise
vk is not adapted. Therefore, selection of Rk should be performed with more caution.

7.6. APPLICATION TO THE ADS FDD USING SIMULATED AT-
MOSPHERIC TURBULENCE

In this section, the extended DMAE is applied to the ADS bias FDD in the presence of
atmospheric turbulence. The process model for the ADS FDD, which can be derived
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using Appendix B, is as follows:

V̇ = (Ax − g sinθ)cosαcosβ+ (Ay + g cosθ sinφ)sinβ (7.70)

+ (Az + g cosθcosφ)sinαcosβ+ (r vw −qww − u̇w )cosαcosβ

+ (pww − r uw − v̇w )sinβ+ (quw −pvw − ẇw )sinαcosβ

α̇= 1

V cosβ
(−Ax sinα+ Az cosα+ g cosφcosθcosα+ g sinθ sinα) (7.71)

+q − (p cosα+ r sinα) tanβ

+ 1

V cosβ
[(quw −pvw − ẇw )cosα− (r vw −qww − u̇w )sinα]

β̇= 1

V
[−(Ax − g sinθ)cosαsinβ+ (Ay + g sinφcosθ)cosβ (7.72)

− (Az + g cosφcosθ)sinαsinβ]+p sinα− r cosα

+ 1

V
[−(r vw −qww − u̇w )cosαsinβ+ (pww − r uw − v̇w )cosβ

− (quw −pvw − ẇw )sinαsinβ]

φ̇= p +q sinφ tanθ+ r cosφ tanθ (7.73)

θ̇ = q cosφ− r sinφ (7.74)

ψ̇= q
sinφ

cosθ
+ r

cosφ

cosθ
(7.75)

The measurement model including the ADS faults is:

Vm =V + fV + vV (7.76)

αm =α+ fα+ vα (7.77)

βm =β+ fβ+ vβ (7.78)

φm =φ+ vφ (7.79)

θm = θ+ vθ (7.80)

ψm =ψ+ vψ (7.81)

The simulated turbulence is generated using the Dryden model. For readability, the
power spectral density functions of the Dryden turbulence model are repeated as follows
[64]:

Φu(ωo) = 2σ2
uLu

πV

1

1+ (Luωo/V )2 (7.82)

Φv (ωo) = σ2
v Lv

πV

1+3(Lvωo/V )2

1+ (Lvωo/V )2 (7.83)

Φw (ωo) = σ2
w Lw

πV

1+3(Lwωo/V )2

1+ (Lwωo/V )2 (7.84)

where V is the true airspeed, ωo is the observed angular frequency. Lu , Lv , Lw are the
scale lengths and σu , σv , σw are the intensities of the turbulence. To demonstrate the
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Table 7.2: Scenarios with different

Variables Scenario 1 Scenario 2 Scenario 3 Scenario 4 Units

Lu , Lv , Lw 150 530 530 530 [m]

σu , σv , σw 0.25 0.25 2 6.4 [m/s]

Table 7.3: Fault scenario of simultaneous faults

Time interval Fault Fault magnitude Fault unit

10 s < t < 20 s

fV 3 [m/s]

fα 2π/180 [rad]

fβ 2π/180 [rad]

30 s < t < 40 s

fV -3 [m/s]

fα −2π/180 [rad]

fβ −2π/180 [rad]

performance of the proposed approach, the approach is validated using difference sce-
narios with different Lu , Lv , Lw and σu , σv , σw . The values are listed in Table 7.2. The
difference between scenarios 1 and 2 is that the scale lengths of scenario 2 is larger. The
difference between scenarios 2, 3 and 4 is that the intensity increases. In scenario 4, the
scale lengths and intensities are selected based on the thunderstorm given in [64].

The corresponding speed of the turbulence of different scenarios are shown in Fig-
ure 7.8. The influence of scale lengths can be observed from Figures 7.8(a) and 7.8(b).
The influence of intensities can be observed from Figures 7.8(b), 7.8(c) and 7.8(d). The
maximum magnitude of uw in scenario 4 is more than 20 times that in scenario 2.

The considered fault scenario is simultaneous fault given in Table 7.3.

7.6.1. RESULTS USING THE DMAE WITHOUT EXTENSION

For comparison, in this section, the results of the DMAE without extension are shown
first.

True and estimated model probabilities using the DMAE without extension in the
first two scenarios are shown in Figures 7.9(a) and 7.9(b). It is seen that there are some
false alarms at around t = 27 s. The model probabilities using the DMAE without exten-
sion for scenario 3 are shown in Figures 7.9(c). It is seen that the probabilities are correct
when there are faults (10 s < t < 20 s and 30 s < t < 40 s). However, when there are no
faults, many false alarms are observed. In scenario 4, when the turbulence intensities
are increased, the model probabilities are completely wrong, as seen from Figure 7.9(d).

True and estimated fV , fα and fβ using the DMAE without extension for scenarios 1
and 2 are shown in Figures 7.10(a) and 7.10(b). It is seen that the fault estimation perfor-
mance is acceptable. However, when the intensities are increased, the results are much
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(a) Speed components uw , vw and ww of the turbu-
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lence in scenario 3.
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Figure 7.8: Speed components uw , vw and ww of the turbulence in different scenarios.
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Figure 7.9: True and estimated model probabilities using the DMAE without extension.
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(a) True and estimated fV , fα and fβ in scenario 1.
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(b) True and estimated fV , fα and fβ in scenario 2.
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(c) True and estimated fV , fα and fβ in scenario 3.
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(d) True and estimated fV , fα and fβ in scenario 4.

Figure 7.10: True and estimated fV , fα and fβ using the DMAE without extension
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Figure 7.11: True and estimated model probabilities using the DMAE with extension.

worse. As seen from Figures 7.10(c) and 7.10(d), the fault estimation for scenarios 3 and
4 is significantly influenced by the turbulence.

7.6.2. RESULTS USING THE DMAE WITH EXTENSION

In contrast, true and estimated model probabilities in four scenarios using the DMAE
with extension are shown in Figure 7.11. The performance is still performance despite
the intensities and scale lengths are different. No false alarms are observed even in sce-
nario 4. This demonstrates the improvement of using the DMAE with extension.

True and estimated fV , fα and fβ in four scenarios using the DMAE with extension
are shown Figure 7.12. All the faults are estimated in four scenarios. It is also noticed
that the variances of the fault estimation, when there are no faults, increase when the
intensities increase.

The weighted fault estimates in scenarios 3 and 4 using the DMAE with extension are
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(a) True and estimated fV , fα and fβ in scenario 1.

0 10 20 30 40 50 60
−5

0

5

f V
 (

m
/s

)

0 10 20 30 40 50 60
−0.05

0

0.05

f α
 (

ra
d

)

0 10 20 30 40 50 60
−0.05

0

0.05

f β
 (

ra
d

)

 

 

True

DMAE

time (s)

(b) True and estimated fV , fα and fβ in scenario 2.
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(c) True and estimated fV , fα and fβ in scenario 3.

0 10 20 30 40 50 60
−5

0

5

f V
 (

m
/s

)

0 10 20 30 40 50 60
−0.05

0

0.05

f α
 (

ra
d

)

0 10 20 30 40 50 60
−0.05

0

0.05

f β
 (

ra
d

)

 

 

True

DMAE

time (s)

(d) True and estimated fV , fα and fβ in scenario 4.
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(e) True fV , fα and fβ and weighted estimates in sce-
nario 3.
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(f) True fV , fα and fβ and weighted estimates in sce-
nario 4.

Figure 7.12: True and estimated fV , fα and fβ using the DMAE with extension
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(b) True and estimated fV , fα and fβ using real flight
data.
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(c) True fV , fα and fβ and weighted estimates using real
flight data.

Figure 7.13: Results of using the DMAE with extension applied to real flight data recorded during the presence
of turbulence.

shown in Figures 7.12(e) and 7.12(f), respectively. Comparing Figure 7.10(c) with Fig-
ure 7.12(e), it is found weighted fault estimates approach zero when there are no faults.
This is due to the multiplication with the model probabilities shown in Figure 7.9(c). It
is noticed in Figure 7.12(f) that the fault estimates are not zero. This is acceptable based
on the fact that the turbulence intensities are selected based on the those of the thun-
derstorm.

7.6.3. APPLICATION TO ADS BIAS FDD USING REAL FLIGHT TEST DATA

In this section, the performance of the proposed DMAE with extension is further vali-
dated by real flight data recorded in the presence of turbulence. The flight test data are
the same as used in [135]. The fault scenario is the same as in Table 7.3.

The model probabilities using the DMAE with extension in the presence of turbu-
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lence are shown in Figure 7.13(a). The performance is similar to those shown in Fig-
ure 7.11. No false alarms are observed. This demonstrates that the DMAE with extension
will not give false alarms even in the presence of turbulence.

The fault estimates and weighted fault estimates are shown in Figures 7.13(b) and
7.13(c), respectively. All the faults are estimated in an unbiased sense. Therefore, its
satisfactory fault detection and diagnosis performance in the presence of turbulence is
also validated using real flight data.

7.7. CONCLUSION
In this chapter, the unknown input decoupling problem is extended to the case when
the existence condition of traditional unknown input filters is not satisfied. It is proved
that the states, disturbances and faults can be estimated using an extended DMAE ap-
proach which does not require the existence condition. Therefore, it can be applied to
a wider class of systems and applications. Two illustrative examples demonstrate the
effectiveness of the extended DMAE approach.

The proposed approach is applied to the ADS FDD in the presence of turbulence.
The performance is validated using both aircraft response data in the presence of sim-
ulated and real turbulence. The results are satisfactory even when the scale length and
intensities of the turbulence change.
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8
AIRCRAFT FAULT-TOLERANT

TRAJECTORY CONTROL USING

INCREMENTAL NONLINEAR

DYNAMIC INVERSION

Part I and Part II mainly deal with sensor FDD and FTC. In this part, the flight control in
the presence of actuator faults is considered. Aircraft trajectory control in the presence
of actuator faults is first addressed in this chapter. The main difficulties of the controller
design lie in the design of the flight path and angular rate loop since there are model
uncertainties in these two loops. First, the detailed design procedure for the trajectory
control is presented. Then, the performance is validated using three scenarios and is
compared to other existing approaches such as the Nonlinear Dynamic Inversion with
online model identification.

Parts of this chapter are based on:

P Lu, E van Kampen, C C de Visser, Q P Chu. Nonlinear Aircraft Fault-Tolerant Trajectory Control Using Incre-
mental Nonlinear Dynamic Inversion. Journal of Guidance, Control and Dynamics, (under review).
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DYNAMIC INVERSION

This chapter deals with aircraft trajectory control in the presence of model uncertainties
and actuator faults. Existing approaches, such as adaptive backstepping and nonlinear
dynamic inversion with online model identification, can be applied. However, since there
are a number of unknown aerodynamic derivatives, the tuning of parameter update law
gains is time-consuming. Methods with online model identification require excitation
and the selection of a threshold. Furthermore, to deal with highly nonlinear aircraft dy-
namics, the aerodynamic model structure needs to be designed. In this chapter, a novel
aircraft trajectory controller, which uses the incremental nonlinear dynamic inversion, is
proposed to achieve fault-tolerant trajectory control. The design of four control loops is
given. The idea is to design the loops with uncertainties using the incremental approach.
By doing this, the tuning of the approach is straightforward and there is no requirement
for excitation and selection of a threshold. The performance of the proposed trajectory
controller using the Incremental Nonlinear Dynamic Inversion (INDI) is compared with
existing approaches using three scenarios. The results show that the proposed trajectory
controller can follow the reference even when there are model uncertainties and actuator
faults.

8.1. INTRODUCTION
Civil aircraft are usually required to follow trajectories in three-dimensional space, such
as those imposed by air traffic control [165]. In the design phase of civil aircraft, safety
is of critical concern. Many techniques [11, 14, 40, 43, 46, 48, 57, 70, 138, 166] have been
proposed to improve the safety level and reduce critical risks. Conventionally, since the
aircraft model is nonlinear, flight control systems are designed based on a number of
linearized models around certain operating points [40]. Next, a gain scheduling method
has to be used to blend the gains in different operating points into one controller.

Using nonlinear control approaches, design of different operating points can be avoided.
Linearization-based methods, such as NDI and BS, are nonlinear control methods which
can handle nonlinearities in the model. This chapter also makes use of nonlinear con-
trol methods to design a trajectory controller. Aircraft trajectory control has been con-
sidered by several researchers [165, 167–172]. To design the trajectory controller, the un-
certainties of aerodynamic derivatives have to be considered since they can degrade the
performance of the nonlinear control approaches. [167] uses a sliding mode adaptive
controller to reduce the influence of uncertainties. In [168], a control Lyapunov func-
tion approach is applied. In [169], a Command Filtered Backstepping approach which
uses adaptive function approximation is applied to design the trajectory controller. [172]
deals with model uncertainties using the NDI method. The influence of model uncer-
tainties is decreased by making use of a concurrent learning approach [172]. [170] ap-
plies ABS [60, 173] with parameter update laws. However, the computational load of the
ABS is intensive and the tuning of the parameter update law gains is time-consuming
[63]. In [171, 174], NDI is used to deal with the nonlinearities and the model uncertain-
ties influence is reduced by identifying the unknown parameters online. The method
is validated on the SIMONA (SImulation, MOtion and NAvigation) research simulator
[171]. However, this method is based on parameter identification and it requires excita-
tion [171] which could limit its performance when there is no excitation. Furthermore,
to deal with highly nonlinear aircraft dynamics, an aerodynamic model structure needs
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to be designed [175].

The present chapter proposes a novel nonlinear controller for aircraft trajectory con-
trol. The NDI-based approach is used to deal with nonlinearities in the model. The so-
lution to cope with uncertain aerodynamic derivatives is to make use of INDI [176, 177].
A control structure with four loops are designed: position control, flight path control,
attitude and angular rate control. Through analysis, it is found that there are only model
uncertainties in the flight path and angular rate control loops. Therefore, these two con-
trol loops are designed based on the INDI control law while the remaining two control
loops are designed based on the NDI control law. An additional benefit of using the
proposed approach is that there is no need to design the aerodynamic model structure.
The overall control architecture of the trajectory controller and the detailed design are
presented in the chapter.

The performance of our approach is compared to the approach proposed in [171].
The model-based approach in [171] requires sufficient excitation, which may be diffi-
cult to obtain during failure situations. The performance comparison is perform using
three scenarios: no fault, model uncertainties, and actuator faults. All three scenarios
demonstrate the performance of the proposed trajectory controller.

The faults considered in this chapter only include actuator faults. For FTC in the
presence of sensor faults, the reader is referred to [13, 25, 92, 135, 137].

The structure of this chapter is as follows: Section 8.2 presents the aircraft model
which is used for designing the trajectory controller. In Section 8.3, the four control loops
and the distribution of model uncertainties are introduced. The detailed control law de-
sign is given in Section 8.4. The position control and attitude control loops are designed
based on the NDI control approach while the flight path control and angular rate con-
trol loops are designed based on the INDI control approach. In Section 8.5, the aircraft
model and fault scenario are presented. The baseline controller, Nonlinear Dynamic
Inversion with online Model Identification (NDI-MI), is also presented. In Section 8.6,
the performance of the proposed trajectory controller is compared to existing method
which is the NDI with online model identification. Their performances are compared
under three scenarios. Finally, the conclusions are given in Section 8.7.

8.2. AIRCRAFT EQUATIONS OF MOTION

In this section, the aircraft model used for designing the control law is described. It is
assumed that the Earth is flat and non-rotating. Under this condition, the Earth-center
Earth-fixed reference frame is equal to the Earth-fixed inertial reference frame. The body
reference frame (OxB yB zB ), Earth-center Earth-fixed reference frame (OE xE yE zE ), sta-
bility reference frame (OxS yS zS ) and velocity reference frame (OxV yV zV ) are shown in
Fig. 8.1.

Define the inertial position vector of the aircraft as follows:

x0 = [x, y, z]T (8.1)

where x, y and z denote the position of the aircraft in the North, East and down direc-
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Figure 8.1: Aircraft reference frames. Picture by courtesy of J. A. Pascoe.

tions. The derivatives of the position vector are:

ẋ0 =




Vg cosχcosγ

Vg sinχcosγ

−Vg sinγ


 (8.2)

Define:

x1 = [Vg ,χ,γ]T (8.3)

where Vg is the inertial velocity of the aircraft, χ is the kinematic azimuth angle and γ is
the flight path angle. The dynamics of x1 are [178]:

ẋ1 =




1 0 0

0 1
Vg cosγ 0

0 0 −1/Vg


TVB

FB

m
(8.4)

=




1
m 0 0

0 1
mVg cosγ 0

0 0 −1
mVg




(
TVB




X

Y

Z


+TVE




0

0

mg




)
(8.5)

where FB represent the total forces (including aerodynamic, propulsion and gravita-
tional forces) acting on the aircraft expressed in the body reference frame. X , Y and
Z denote the sum of aerodynamic and propulsion forces expressed in the body axes.
TVB is the transformation matrix from the body frame to the velocity frame and TVE is
the transformation matrix from the Earth frame to the velocity frame. These matrices
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are given as:

TVB =




cosαcosβ sinβ sinαcosβ

−cosαsinβcosµ+ sinαsinµ cosβcosµ −sinαsinβcosµ−cosαsinµ

−cosαsinβsinµ− sinαcosµ cosβsinµ −sinαsinβsinµ+cosαcosµ




(8.6)

TVE =




cosχcosγ sinχcosγ −sinγ

−sinχ cosχ 0

cosχsinγ sinχsinγ cosγ


 (8.7)

The attitude angles are defined as:

x2 = [µ,α,β]T (8.8)

where µ is the kinematic bank angle. α and β are the aerodynamic angle of attack and
angle of sideslip, respectively. Their kinematics are given as follows [178]:

ẋ2 =




cosαcosβ 0 sinα

sinβ 1 0

sinαcosβ 0 −cosα




−1

(−TBV




−χ̇sinγ

γ̇

χ̇cosγ


+




p

q

r




)
(8.9)

where TBV = TVB
T . It should be noted that µ is not directly measured onboard. It is

integrated from Equation (8.9).
Further define

x3 =ω= [p, q,r ]T (8.10)

The dynamics of the angular rates of the aircraft are presented as follows [178]:

ω̇= J−1(M−ω× Jω) (8.11)

where J is the inertia matrix defined as

J =




Ixx −Ix y −Ixz

−Ix y Iy y −Iy z

−Ixz −Iy z Izz


 (8.12)

M are the total moments acting on the aircraft which can be split into two parts:

M = Ma +Mu = Ma +CMu u (8.13)

where Mu are the moments generated by the control surface deflections and Ma are all
moments except for Mu . CMu are the coefficients related to Mu , which are denoted as

CMu = q̄SC1




Clδa
0 Clδr

0 Cmδe 0

Cnδa 0 Cnδr


 ,C1 = diag(b, c̄,b) (8.14)
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where q̄ is the dynamic pressure, S is the wing area, b the wing span and c̄ is the mean
aerodynamic chord. The control surface deflections are u = [δa δe δr ]T , which are also
the input to the system.

Equation (8.11) can be rewritten into the following affine-in-control form:

ẋ3 = f3 +G3u (8.15)

where f3 = J−1(Ma −ω× Jω), G3 = J−1CMu .

8.3. CONTROL LOOPS AND UNCERTAINTY SOURCES
In this section, the control loops and the relationships among them are given. Then, the
uncertainty sources are presented.

For the ease of explanation, define the following variables:

xr e f
0 = [xr e f , y r e f , zr e f ]T , xdes

1 = [V r e f
g ,χdes ,γdes ]T (8.16)

x
′des
2 = [PL Ades ,µdes ,αdes ]T , xdes

2 = [µdes ,αdes ,βr e f ]T (8.17)

xdes
3 = [pdes , qdes ,r des ]T , udes = [δdes

a ,δdes
e ,δdes

r ]T (8.18)

where superscript r e f and des both denote the reference commands for corresponding
variables. The difference between them is that r e f denotes the reference commands
which are given for the controller to follow and des denotes the desired reference com-
mands generated by the controller.

The control law design is based on the following four loops:

1. Position control loop

The objective of this control loop is to follow the trajectory reference xr e f
0 . The

desired references χdes and γdes are generated in this loop.

2. Flight path control loop
The objective of this loop is to steer x1 to the given references xdes

1 . It generates
the desired commands µdes and αdes for the attitude control loop. In addition,
to follow the velocity reference V des , it generates the desired power level angle
PL Ades for the engine.

3. Attitude control loop
The objective of this control loop is to follow xdes

2 given by the flight path control
loop. To control the attitude, it provides the desired command xdes

3 for the angular
rate control loop.

4. Angular rate control loop
This loop follows xdes

3 given by the attitude control loop. To achieve the objective,

it provides the desired command udes to the actuators such that the control goal
can be achieved.

To compute the control law, the aerodynamic forces and moments need to be calcu-
lated. The aerodynamic forces acting on the aircraft expressed in the body axis, denoted
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by FB , change the flight path, as described in Equation (8.4). The aerodynamic moments
generated by the control surfaces (ailerons, elevators and rudders), modify the angular
rates, as described in Equation (8.11). The attitude control loop contains no model un-
certainties, as seen in Equation (8.9).

The aerodynamic forces can be expressed by Taylor series [64]. For instance, X can
be expanded as follows (higher-order terms are neglected for simplicity of explanation):

X = q̄SCX = q̄S(CX0 +CXαα+CXq

qc̄

V
+CXδe

δe +CXPL A PL A) (8.19)

where δe is the deflection angle of the elevator and PL A represents power level angle.
CXα and CXq are stability derivatives. CXδe

and CXPL A are control derivatives. These
derivatives can vary according to various flight conditions and are therefore not con-
stant. To obtain these parameters, computer fluid dynamics or wind tunnel tests are
usually performed. However, accurate parameters in various flight situations are diffi-
cult to obtain, which leads to model uncertainties. Likewise, the aerodynamic moments
can also be expressed in Taylor series. M can be expressed as

M = q̄SCM = q̄S(CM0 +CMαα+CMq

qc̄

V
+CMδe

δe +CMPL A PL A) (8.20)

where CMα and CMq are stability derivatives. CMδe
and CMPL A are the control derivatives.

Inaccurate CMα , CMq , CMδe
and CMPL A bring model uncertainties in the control law de-

sign and can result in performance degradation.

The uncertainties in these parameters must be taken into account when designing
the control laws. Researchers have proposed many adaptive controllers [61–63, 173]
which consider model uncertainties. For instance, ABS [61, 173] approaches are pro-
posed which estimate the unknown aerodynamic forces and moments by updating the
parameter estimate through a specific update law. However, since there are many pa-
rameters to be estimated, the tuning of the update law gains is time-consuming [63]
and the adaptive controller is computationally intensive [63]. In this chapter, the idea is
to design the control loop which has model uncertainties using an incremental control
approach. Since model uncertainties only exist in the flight path control loop and the
angular rate control loop, the incremental approach design is only applied to these two
control loops. This can be seen in Figure 8.2. The other two loops, position control loop
and attitude control loop, are designed based on standard NDI approach.

8.4. TRAJECTORY CONTROL LAW DESIGN

In this section, the design of the control law for the four loops is presented. Finally, the
overall control architecture is presented.

8.4.1. POSITION CONTROL LOOP

The position control contains no model uncertainties and is designed based on the NDI
control law (see Appendix C). It is assumed that the reference trajectory is generated
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Figure 8.2: Distributions of the model uncertainties and controllers
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ẋr e f

ẏ r e f

żr e f


=




V r e f cosχr e f cosγr e f

V r e f sinχr e f cosγr e f

−V r e f sinγr e f


 (8.21)

In this chapter, we also try to follow the reference V r e f . Through the last two equations
of Eq. (8.2), the desired reference commands for χ and γ can be calculated based on the
standard NDI approach [179] as follows (see Appendix C for more details):


χ

des

γdes


=


arcsin(νy /(V r e f cosγ))

−arcsin(νz /(V r e f ))


 (8.22)

where νy and νz are virtual controls which can be designed using classical linear control
such as a Proportional-Integral-Derivative control as follows:

νy (t ) = K p
P ey (t )+K p

I

∫ t

0
ey (τ)dτ+K p

D

dey (t )

d t
(8.23)

νz (t ) = K p
P ez (t )+K p

I

∫ t

0
ez (τ)dτ+K p

D

dez (t )

d t
(8.24)

where

ey (t ) = y r e f (t )− y(t ) (8.25)

ez (t ) = zr e f (t )− z(t ). (8.26)

and K p
P , K p

I and K p
D are the gains for the position control loop.

8.4.2. FLIGHT PATH CONTROL LOOP
The flight path control loop requires the calculation of the aerodynamic forces which
contains model uncertainties. Therefore, it needs to be designed based on the incre-
mental approach.
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DESIGN OF µdes

In the flight path control loop, the objective is to steer Vg , χ and γ to their references

denoted as V r e f
g , χdes and γdes . The virtual control variables areµ,α and PL A. However,

µ, α and PL A do not appear affine in Equation (8.5). Therefore, the equation needs to
be rewritten to be in the affine-in-control form.

Express the forces X and Z as follows:

X = q̄SCX = q̄S(CX0 +CXαα+CXq

qc̄

V
+CXδe

δe +CXPL A PL A) (8.27)

Z = q̄SCZ = q̄S(CZ0 +CZαα+CZq

qc̄

V
+CZδe

δe +CZPL A PL A) (8.28)

Since the virtual control variables are µ, α and PL A, Equations (8.27) and (8.28) can
be rewritten into the following:

X = q̄SCX = q̄S(C̄X0 +CXαα+CXPL A PL A) (8.29)

Z = q̄SCZ = q̄S(C̄Z0 +CZαα+CZPL A PL A) (8.30)

where

C̄X0 =CX −CXαα−CXPL A PL A (8.31)

C̄Z0 =CZ −CZαα−CZPL A PL A (8.32)

Express Y as Y = m Ay and substitute it with Equations (8.29) and (8.30) into Equa-
tion (8.4), it follows

ẋ1 =




1
m 0 0

0 1
mVg cosγ 0

0 0 −1
mVg




(
TVB




q̄S(C̄X0 +CXPL A PL A+CXαα

m Ay

q̄S(C̄Z0 +CZPL A PL A+CZαα


+TVE




0

0

mg




)
(8.33)

In the attitude control loop, β should be kept at zero. Therefore, it is reasonable
to assume that β is close to zero. Under this condition, Equation (8.33) can be further
simplified into

ẋ1 =




1
m 0 0

0 1
mVg cosγ 0

0 0 − 1
mVg




(



cosα 0 sinα

sinαsinµ cosµ −cosαsinµ

−sinαcosµ sinµ cosαcosµ







q̄S(C̄X0 +CXPL A PL A+CXαα)

m Ay

q̄S(C̄Z0 +CZPL A PL A+CZαα)


+




−mg sinγ

0

mg cosγ




)

(8.34)
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First, let us derive µdes . Due to X = m Ax and Z = m Az , the last two equations of
Equation (8.34) can be written as:

χ̇= 1

Vg cosγ
(Ax sinαsinµ+ Ay cosµ− Az cosαsinµ) (8.35)

γ̇= 1

Vg
(Ax sinαcosµ− Ay sinµ− Az cosαcosµ− g cosγ) (8.36)

Rewrite Equations (8.35) and (8.36) into the following form:

(Ax sinα− Az cosα)sinµ=Vg cosγχ̇− Ay cosµ (8.37)

(Ax sinα− Az cosα)cosµ=Vg γ̇+ Ay sinµ+ g cosγ (8.38)

The desired command µdes can be designed as follows:

µdes = arctan
νχVg cosγ− Ay cosµ

νγVg + Ay sinµ+ g cosγ
(8.39)

where νχ and νγ are the virtual controls which are designed in the same way as νy and
νz which are given in Equations (8.23) and (8.24). If further assume that Ay is small, the
control law can be further simplified as follows:

µdes = arctan
νχVg cosγ

νγVg + g cosγ
(8.40)

DESIGN OF PL Ades AND αdes

Next, the design of the desired commands PL Ades and αdes is presented. The design
of PL Ades and αdes is different from that of µdes . This is because there are model un-
certainties in the first and third equations of Equation (8.34). Therefore, they should be
designed using the incremental approach.

In order to design the incremental control law, the system dynamics need to be writ-
ten into the incremental control form. First, write the first and third equations of Equa-
tion (8.34) into:

˙̄x1 = f̄1(x1,x2)+ ḡ1x̄2 (8.41)

where

x̄1 = [Vg ,γ]T , x̄2 = [PL A,α]T (8.42)

f̄1 =

 −g sinγ+ q̄S

m (C̄X0 cosα+ C̄Z0 sinα)

− Ay sinµ
Vg

− g cosγ
Vg

− q̄S
mVg

(−C̄X0 sinαcosµ+ C̄Z0 cosαcosµ)


 (8.43)

ḡ1 =
q̄S

mVg


 Vg (CXPL A cosα+CZPL A sinα) Vg (CXα cosα+CZα sinα)

CXPL A sinαcosµ−CZPL A cosαcosµ CXα sinαcosµ−CZα cosαcosµ




(8.44)
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According to [176, 177, 180], Equation (8.41) can be written into the following incremen-
tal control form:

˙̄x1 = ˙̄x1,0 + ḡ1∆x̄2 (8.45)

where

˙̄x1,0 = f̄1(x̄1,0, x̄2,0)+ ḡ1x̄2,0 (8.46)

where x̄1,0 and x̄2,0 denote x̄1 and x̄2 at the last time step. ˙̄x1,0 denotes the derivative of x̄1

at the last time step.
Then the desired virtual incremental input ∆x̄2 can be designed by

∆x̄2 = ḡ−1
1 (νx̄1 − ˙̄x1,0) (8.47)

where νx̄1 = [νVg ,νγ]T is designed based on the errors between Vg , γ and V r e f
g , γdes .

The final desired command for x̄2 can be given by

x̄des
2 = x̄2,0 +∆x̄2 (8.48)

There are two engines, of which the desired references PL Ades
1 and PL Ades

2 are both
equal to PL Ades .

CALCULATION OF THE DERIVATIVES ˙̄x1,0
˙̄x1,0 can be calculated using different approaches. It can be calculated using the sliding
mode differentiator [127]. Alternatively, it can also be obtained using a second-order
low-pass filter. According to [176], ˙̄x1,0 can be computed by passing x̄1,0 through the
following washout filter:

sω2
n

s2 +2ζnωn s +ω2
n

(8.49)

with ζn = 0.8, ωn = 25 rad/s. These are selected by trial and error to reduce the influence
of noise [176].

The overall block diagram of the flight path control loop is shown in Figure 8.3. It can
be noted in the figure that to calculate x̄2,0, a second-order filter is used to counteract
the influence of phase delay [181].

8.4.3. ATTITUDE CONTROL LOOP

In this control loop, the objective is to follow µdes ,αdes and βr e f . µdes ,αdes have already
been given in the flight path control loop. βr e f is set to zero to enable coordinated turns.
The virtual control variables are the angular rates ω. In this control loop, there is no
model uncertainty. Therefore, there is no need to design an incremental control law.

The desired virtual control law, based on the standard NDI approach [179] (see Ap-
pendix C for more details), is given as follows:




pdes

qdes

r des


=




cosαcosβ 0 sinα

sinβ 1 0

sinαcosβ 0 −cosα







νµ

να

νβ


+TBV




−χ̇sinγ

γ̇

χ̇cosγ


 (8.50)
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Figure 8.3: Block diagram of the flight path control loop

whereνµ, να andνβ are virtual controls designed based on the errors betweenµdes ,αdes ,

βr e f and µ, α, β. It is seen from Eq. (8.50) that in order to calculate the virtual control
law, χ̇ and γ̇ are required. This can be calculated using Eqs. (8.35) and (8.36). In these
equations, Ax , Ay and Az are directly measured by the accelerometers of the aircraft.

8.4.4. ANGULAR RATE CONTROL LOOP
In this control loop, the control objective is to follow the angular rate references gener-
ated by the attitude control loop denoted as pdes , qdes and r des . The control variables
are the control surface deflections denoted as udes (δdes

a , δdes
e and δdes

r ). As mentioned,
there are also model uncertainties in this control loop. Therefore, this loop also has to
be designed based on the incremental control approach.

As done in the flight path control loop, Equation (8.15) can be rewritten into the fol-
lowing incremental form:

ẋ3 = ẋ3,0 +G3∆u (8.51)

with

ẋ3,0 = f3,0 +G3u0 (8.52)

where

ẋ3,0 =




ṗ0

q̇0

ṙ0


 ,u0 =




δa,0

δe,0

δr,0


 (8.53)

ẋ3,0 denotes the derivatives of x3 in the previous time step. f3,0 and u0 denotes f3 and u
in the previous time step. The calculation of ẋ3,0 can be done in the same way as that of
˙̄x1,0 through the use of (8.49).
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Figure 8.4: Block diagram of the angular rate control loop

Now the desired incremental control law can be presented as follows:

∆udes =




∆δdes
a

∆δdes
e

∆δdes
r


= G−1

3

(



νp

νq

νr


−




ṗ0

q̇0

ṙ0




)
(8.54)

whereνp , νq andνr are virtual controls designed based on the errors between pdes , qdes ,
r des and p, q , r .

The final desired control law udes is computed as follows:




δdes
a

δdes
e

δdes
r


=




δa,0

δe,0

δr,0


+




∆δdes
a

∆δdes
e

∆δdes
r


 (8.55)

The block diagram of the angular rate control loop is shown in Figure 8.4. In the
figure, uexp are the expected control surface deflections and will be discussed in more
details in Section 8.5.

8.4.5. CONTROL STRUCTURE
The block diagram of the control loops is given in Figure 8.5. In the figure, the refer-
ence commands and the desired reference commands generated by each control loop
are shown. The performance of this trajectory controller will be demonstrated in the
following sections.

8.5. AIRCRAFT MODEL AND BASELINE CONTROLLER
In this section, the aircraft model, the actuators and the control allocation scheme are in-
troduced first in Section 8.5.1. In Section 8.5.2, the baseline controller, which is propose
in [171], is briefly introduced.
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Figure 8.5: Block diagram of the proposed trajectory controller

8.5.1. AIRCRAFT MODEL AND CONTROL ALLOCATION

The aircraft model used is the Cessna Citation aircraft [182] shown in Fig. 8.1. The actu-
ator dynamics are modeled as first-order low-pass filters 1/(τs+1). The parameter τ and
the position limits of the actuators are given in Table 8.1.

There are two engines onboard the aircraft. The thrust is controlled by the throttle
(power level angle). The power level angle is within [0.2356,1.0820] rad.

Table 8.1: Time constants and position limits of the actuators

Actuator 1/τ Minimum position limit Maximum position limit Unit

elevator 13 -0.35 0.26 [ rad ]

aileron (left/right) 13 -0.65 0.65 [ rad ]

rudder (upper/lower) 13 -0.38 0.38 [ rad ]

For reconfiguring the controller, the left and right ailerons are assumed to be actu-
ated by independent actuation systems such that they can deflect independently. Fur-
thermore, the rudder is split into an upper part and a lower part in a way such that the
effectiveness of these two parts are the same. Such a configuration is also considered in
other papers such as [183, 184].

The positive deflections are defined in the conventional way. For example, positive
δa means the left aileron deflects upwards and the right aileron deflects downwards.

Although there are two independent rudders and two independent ailerons, the con-
troller design does not consider them as independent. Since the control surface com-
mands computed by the INDI controller are [δdes

a ,δdes
e ,δdes

r ]T , the desired commands
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of the two rudders and two ailerons are as follows:

δdes
al = δdes

ar = δdes
a (8.56)

δdes
r u = δdes

r l = δdes
r (8.57)

where δdes
al , δdes

ar , δdes
r u and δdes

r l denote the commands for the left aileron, right aileron,
upper rudder and lower rudder, respectively. Take the upper rudder for example, even
if it is stuck, the command generated for its deflection is still δdes

r . The effectiveness of
the control surface pairs are assumed to be the same such that the parameters in Equa-
tion (8.14) can be denoted as:

Clδa =Clδal
+Clδar = 2Clδal

(8.58)

Clδr =Clδr u +Clδr l
= 2Clδr u (8.59)

Cnδa =Cnδal
+Cnδar = 2Cnδal

(8.60)

Cnδr =Cnδr u +Cnδr l
= 2Cnδr u (8.61)

8.5.2. BASELINE CONTROL APPROACH: NDI-MI
In this section, a baseline control approach used for comparison, NDI-MI [171], is briefly
introduced. The NDI-MI uses Eq. (8.5) for flight path control and Eq. (8.15) for angular
rate control while the INDI uses Eq. (8.45) for flight path control and Eq. (8.51) for angular
rate control. The core of the method is to identify the unknown parameters online to
reduce the model uncertainty. Take the lateral motion for example, the lateral force and
moments are assumed to be expressed as follows:

Y = q̄SCy = q̄S(Cy0 +Cyββ+Cyp

pb

2V
+Cyr

r b

2V
+Cyδa

δ
exp
a +Cyδr

δ
exp
r ) (8.62)

L = q̄SCl = q̄S(Cl0 +Clββ+Clp

pb

2V
+Clr

r b

2V
+Clδa

δ
exp
a +Clδr

δ
exp
r ) (8.63)

N = q̄SCn = q̄S(Cn0 +Cnββ+Cnp

pb

2V
+Cnr

r b

2V
+Cnδa

δ
exp
a +Cnδr

δ
exp
r ) (8.64)

where δexp
a and δexp

r , which can be obtained using the actuator model as shown in Fig-
ure 8.6, denote the expected actuator deflections. The NDI-MI also treats the control
surface pairs as one control surface. For instance, it does not identify Clδal

and Clδar ,
but only identifies Clδa . The aerodynamic model structure in Equations (8.62)-(8.64) is
a simplified structure. To deal with aircraft dynamics with significant nonlinearities, a
more complex structure should be designed [169, 175]. However, this is not required if
the proposed approach, which uses the INDI, is used. The difference between δexp

a , δexp
e ,

δ
exp
r and δa , δe , δr is shown in Figure 8.6. It is seen that the expected deflections δexp

a ,
δ

exp
e , δexp

r are free from the influence of faults.

First, the lateral force coefficient Cy and lateral moment coefficients Cl and Cn are
calculated [171]. Then the parameters can be identified using parameter estimation
methods such as the recursive least squares method [171]. The identified parameters
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are denoted as:

Ĉy0 ,Ĉyβ ,Ĉyp ,Ĉyr ,Ĉyδa
,Ĉyδr

(8.65)

Ĉl0 ,Ĉlβ ,Ĉlp ,Ĉlr ,Ĉlδa
,Ĉlδr

(8.66)

Ĉn0 ,Ĉnβ ,Ĉnp ,Ĉnr ,Ĉnδa
,Ĉnδr

(8.67)

When an actuator fault occurs, the above parameters can change due to the differ-
ence between the true and expected actuator deflections. In this case, the parameter
estimation process needs to be re-initialized in order to identify the change of the pa-
rameters. The re-initialization is triggered by statistics monitoring [171]. Define

Ml at =
1

Nw

Nw∑

i=0
(∆C 2

y,i +∆C 2
l ,i +∆C 2

n,i ) (8.68)

where Nw is a pre-selected size of a moving window and

∆Cy,i =Cy − (Ĉy0 + Ĉyββ+ Ĉyp

pb

2V
+ Ĉyr

r b

2V
+ Ĉyδa

δ
exp
a + Ĉyδr

δ
exp
r ) (8.69)

∆Cl ,i =Cl − (Ĉl0 + Ĉlββ+ Ĉlp

pb

2V
+ Ĉlr

r b

2V
+ Ĉlδa

δ
exp
a + Ĉlδr

δ
exp
r ) (8.70)

∆Cn,i =Cn − (Ĉn0 + Ĉnββ+ Ĉnp

pb

2V
+ Ĉnr

r b

2V
+ Ĉnδa

δ
exp
a + Ĉnδr

δ
exp
r ) (8.71)

The parameter estimation needs to be re-initialized when the following is satisfied:

Ml at > TMl at (8.72)

where TMl at is the threshold to trigger the re-initialization of the parameter identifica-
tion. Furthermore, define the following difference between the real values of Cy , Cl , Cn



8.6. PERFORMANCE VALIDATION RESULTS

8

201

and the estimated ones using the NDI-MI as follows:

∆Cy =Cy,r eal − (Ĉy0 + Ĉyββ+ Ĉyp

pb

2V
+ Ĉyr

r b

2V
+ Ĉyδa

δ
exp
a + Ĉyδr

δ
exp
r ) (8.73)

∆Cl =Cl ,r eal − (Ĉl0 + Ĉlββ+ Ĉlp

pb

2V
+ Ĉlr

r b

2V
+ Ĉlδa

δ
exp
a + Ĉlδr

δ
exp
r ) (8.74)

∆Cn =Cn,r eal − (Ĉn0 + Ĉnββ+ Ĉnp

pb

2V
+ Ĉnr

r b

2V
+ Ĉnδa

δ
exp
a + Ĉnδr

δ
exp
r ) (8.75)

where Cy,r eal , Cl ,r eal , Cn,r eal are the real values of Cy , Cl and Cn , which is obtained from
the Citation model [182]. ∆Cy , ∆Cl and ∆Cn can be used to evaluate the identification
performance of the NDI-MI [174].

Similarly, the re-initialization of the parameter identification for the longitudinal mo-
tion is triggered when

Mlong > TMlong (8.76)

where Ml ong and TMlong are defined the same way as Ml at and TMl at . TMlong is the thresh-
old to trigger the re-initialization of the parameter identification. ∆Cx ,∆Cz and∆Cm are
defined to denote the differences between the real values of Cx , Cz , Cm and the estimated
values using the NDI-MI.

A comparison of NDI-MI with the proposed approach will be demonstrated in the
following section.
Remark: Since the NDI-MI uses Eqs. (8.5) and (8.15), it requires the aerodynamic model
structure (described by Eqs. (8.62), (8.63) and (8.64)). This aerodynamic model structure
can change during the whole flight envelope [170]. It also changes when there are ac-
tuator faults. Consequently, the performance of the NDI-MI degrades when the aerody-
namic model structure is not accurate. However, the proposed method using the INDI is
less sensitive to the the aerodynamic model structure since it does not require the com-
plete aerodynamic model as can be seen in Eq. (8.45) and (8.51).

8.6. PERFORMANCE VALIDATION RESULTS
In this section, the performance of the trajectory controller using the INDI will be demon-
strated. The trajectory reference in three-dimensional space is given in Fig 8.7(a). xr e f ,
y r e f and zr e f are given in Figure 8.7(b). Besides, V r e f = 90 m/s and βr e f = 0 rad. This
means that the aircraft should fly at a constant speed and perform coordinated turns.

To demonstrate the performance of the proposed trajectory controller, the NDI-MI
is also applied to control the trajectory of the aircraft. The control gains of the four loops
used for both controllers are given in Table 8.2. In the table, KP , K I and KD are the PID
gains for each loop.

The initial states of the aircraft is:

z =−2000 m, γ=−3π/180 rad,

Vg = 90 m/s, α= 3.2π/180 rad

Other states are close to zero and are not shown.
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Table 8.2: Control gains for four loops

Gains Position Flight path Attitude Angular rate

KP 1 1.5 2.5 5

K I 0.01 0.01 0.5 0.5

KD 0.05 0.05 0.5 0.5
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(a) Trajectory reference in three-dimensional space.
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Figure 8.7: Results of aircraft trajectory control without faults

In Section 8.6.1, the actuator fault scenario is introduced. The performance of the
proposed trajectory controller with the one using the NDI-MI is compared under three
scenarios which is presented in Sections 8.6.2, 8.6.3 and 8.6.4.

8.6.1. ACTUATOR FAULT SCENARIO AND MODELING OF THE FAULTS
In this section, the modeling of the actuator faults are presented.

The actuator faults considered in this chapter are jamming faults where the control
surfaces are stuck at a certain position. The specific fault occurrence time and stuck
position is given in Table 8.3.

It can be seen that during 25 s < t < 100 s, the left aileron is stuck. During 50 s < t <
100 s, the left aileron and the upper rudder both fail. Therefore, simultaneous actuator
faults are taken into account in this chapter.

Table 8.3: Actuator faults

Time interval Actuator Fault type Stuck position Fault unit

t > 25 s left aileron Jamming 0.56 [rad]

t > 50 s upper rudder Jamming 0.2 [rad]
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8.6.2. VALIDATION IN THE ABSENCE OF FAULTS

In this section, the performance of trajectory control using the NDI-MI and the INDI is
compared. In this section, there are no actuator faults.

Both controller require initial values for the aerodynamic parameters (control and
stability derivatives). For the INDI, once the initial parameters are given, it is considered
fixed during the whole flight. For the NDI-MI, although it requires initial parameters, the
initial parameters will be changed due to the on-line model identification. This scenario
is to test the performance of the controllers in a nominal situation when there are no
model uncertainties and faults. Therefore, the initial parameters given to the controllers
are both the real parameters of the aircraft at the initial condition.

RESULTS OF USING THE NDI-MI

The trajectory control results using the NDI-MI are shown in Figure 8.8. As can be seen
from Figure 8.8(a), the trajectory can follow the reference. The true and desired Vg , χ and
γ are shown in Figure 8.8(b). As can be seen, the response is satisfactory. The velocity
is kept within 85-95 m/s. This is acceptable since the engine of the aircraft is not as
powerful as a fighter. The engine power level angles are shown in Figure 8.8(c). It is seen
that saturations are observed. The fluctuations in the beginning of γ response is caused
by the fact that the initial γ is not zero and the aircraft needs to reach a new equilibrium
to hold the altitude.

The control inputs are presented. Figure 8.8(c) shows PL A1 and PL A2. The con-
trol surface deflections δar , δe and δr l are shown in Figure 8.8(d). The control surface
deflections δal and δr u are the same as δar and δr l respectively and are therefore not
shown.

The differences between the real Cx , Cy , Cz , Cl , Cm , Cn and their estimates using
the NDI-MI are shown in Figures 8.8(e) and 8.8(f) respectively. It is seen that all the
differences are close to zero-mean, which indicates that the performance of the on-line
model identification is satisfactory. This performance can be further improved by the
re-identification, which is introduced in the following section.

RESULTS OF USING THE INDI

The trajectory control results using the INDI are shown in Figure 8.9. It is seen from
Figure 8.9(a) that the trajectory can follow the reference. The tracking performance is
satisfactory. Vg , χ and γ can follow the desired reference generated by the position con-
trol loop, as shown in Figure 8.9(b).

The attitude response using the INDI is shown in Figure 8.9(c). µ, α can follow their
desired references andβ is smaller than 0.2 deg. The desired references for p, q and r are
shown in Figure 8.9(d). It is seen that the references are tracked well and no oscillations
are observed.

Finally, the control inputs using the INDI are shown in Figures 8.9(e) and 8.9(f). It is
seen from Figure 8.9(e) that PL A1 and PL A2 also reach their limits. The deflections δar ,
δe and δr l are shown in Figure 8.9(f). It is seen that no oscillations are present. Control
surface deflections δal and δr u are the same as δar and δr l respectively and are therefore
not shown.
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Figure 8.8: Results of aircraft trajectory control using the NDI-MI without faults.
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Figure 8.9: Results of aircraft trajectory control using the INDI without faults
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Figure 8.10: RMSE of x, y and z using the INDI and the NDI-MI

COMPARISON IN THE ABSENCE OF FAULTS

In this scenario, the performance of both the INDI and NDI-MI is satisfactory. The RM-
SEs of the tracking errors of x, y , z are shown in Figure 8.10. It is seen that the RMSEs of
both controllers are close, especially the RMSEs of y and z.

8.6.3. VALIDATION IN THE PRESENCE OF UNCERTAINTIES
In this scenario, the initial parameters given to the two controllers are modified to gener-
ate model uncertainties. Then these parameters with model uncertainties will be given
to the controllers to test the performance of the controllers in the presence of model un-
certainties. It should be noted that the model uncertainties can also be viewed as the
results of structural faults.

Persistent excitation is important in system identification. Although the require-
ment of persistent excitation is weaker using the NDI-MI [171], excitation is still needed
in order to identify the derivatives. To ensure proper identification, a trigger for re-
identification is required. To trigger the re-identification, thresholds (TMlong and TMl at )
have to be chosen.

RESULTS OF USING THE NDI-MI
First of all, all the parameters are multiplied by 80%. The result using the NDI-MI are
shown in Figure 8.11.

The trajectory of the aircraft is shown in Figure 8.11(a). It is seen that the aircraft
trajectory can follow the reference well despite the model uncertainties. The control
inputs are shown in Figure 8.11(b). No saturations are observed from the figure.

The reason why the NDI-MI worked in the presence of model uncertainties is due to
the triggered re-identification. To trigger the re-identification, choosing the thresholds
is critical. If the threshold is “large”, it could lead to failure of the model identification
(this will be demonstrated later on). In this case, the following thresholds are chosen:

TMlong = 0.003, TMl at = 9×10−4 (8.77)

Mlong and Ml at together with the thresholds using the NDI-MI are shown in Fig-
ure 8.11(c). It is seen that both Mlong and Ml at exceed their thresholds and triggered the
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re-identification. The re-identified parameters are shown in Figure 8.11(d).
To further evaluate the performance of the NDI-MI, the differences between the real

Cx , Cy , Cz , Cl , Cm , Cn and their estimation using the NDI-MI are shown in Figures 8.11(e)
and 8.11(f) respectively. It is seen that all the differences are zero-mean, which indicates
that the performance of the on-line model identification is satisfactory.

In the following, the performance of the NDI-MI, when different thresholds are cho-
sen, is demonstrated. The thresholds are slightly increased as follows:

TMl ong = 0.004, TMl at = 1.25×10−3 (8.78)

The results of using the NDI-MI are shown in Figure 8.12. In this case, Mlong and Ml at

together with the thresholds using the NDI-MI are shown in Figure 8.12(c). It is seen that
the thresholds are not exceeded until after t = 62 s. In the first 60 s, the aircraft can still
follow the trajectory reference, as shown in Figure 8.12(a). However, it can be seen from
the control surface deflections (Figure 8.12(b)) that after t = 10 s, significant oscillations
are observed. This is caused by the model uncertainties. After t = 10 s, there are longi-
tudinal and lateral maneuvers and the aerodynamic parameters can further change due
to the change of the flight condition. Although the parameters are identified on-line,
without the re-identification, convergence of parameter estimation is not guaranteed.
Consequently, incorrect estimated parameters (shown in Figure 8.12(d)) lead to the os-
cillations of the control surfaces.

The differences between the real Cx , Cy , Cz , Cl , Cm , Cn and their estimated values
using the NDI-MI, when there are no re-identification, are shown in Figures 8.12(e) and
8.12(f). As can be seen from the figures, the differences are no longer zero-mean, which
confirms that the estimated parameters are not correct.

The results when different thresholds are chosen demonstrate the importance of
choosing a reasonable threshold. Further simulations indicate that when the parameters
are multiplied with different constants, different thresholds should be chosen in order to
trigger the re-identification. However, there are no rules for choosing the thresholds.

In the next, the model uncertainties are increased. All the parameters are multiplied
with 50%. In this case, the aircraft is no longer able to follow the trajectory even when the
parameter re-identification is triggered and the simulation is terminated around t = 5.7
s, as shown in Figure 8.13(a). The control surface deflections are shown in Figure 8.13(b).
It is seen from the figure that the elevator reaches its position limit.

RESULTS OF USING THE INDI
In contrast, the performances of using the INDI, when all the parameters are multiplied
with 80% and 50% respectively, remain the same as the case when there is no model
uncertainty and the results are not shown. This also demonstrates the benefits of the
INDI. Its performance is still satisfactory when there are model uncertainties.

COMPARISON IN THE PRESENCE OF MODEL UNCERTAINTIES

In this section, the performance of both controllers when there are model uncertain-
ties is compared. It is shown that the performance of the controller using the NDI-MI
depends on the chosen thresholds. The controller using the INDI does not require a
threshold. When the initial parameters are multiplied with 80%, the performances of
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Figure 8.11: Results of aircraft trajectory control using the NDI-MI with thresholds (8.77) in the presence of
model uncertainties.
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Figure 8.12: Results of aircraft trajectory control using the NDI-MI with thresholds (8.78) in the presence of
model uncertainties.
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Figure 8.13: Results of aircraft trajectory control using the NDI-MI in the presence of model uncertainties
(parameters multiplied with 50%).

both controllers are similar. When the parameters are multiplied with 50%, the con-
troller using the NDI-MI can no longer follow the reference whereas that using the INDI
can still follow the reference well. This demonstrates one benefit of using the INDI: it
does not require choosing a threshold.

8.6.4. VALIDATION IN THE PRESENCE OF ACTUATOR FAULTS

In this final scenario, a more challenging problem is considered. The model uncertain-
ties are included in the parameters by multiplying each parameter with 50%. In addition,
the actuators faults, which are given in Table 8.3, are also considered. Since the NDI-MI
does not work when the parameters are all multiplied with 50%, its performance is not
shown in this section.

The results using the INDI are shown in Figure 8.14. No significant difference be-
tween the trajectory and its reference is found in Figure 8.14(a). Its performance is com-
parable with the scenario when there are no faults or model uncertainties. However,
slight differences and performance degradation can still be observed. At t = 25 s and
t = 50 s, χ, µ are influenced by the faults, as can be seen from Figures 8.14(b) and 8.14(c).
Especially, β is influenced. Two peaks are generated due to the faults. β, which is around
0.1 deg when there are no faults, reaches 0.6 deg in this scenario. p and r are also influ-
enced and cannot follow their references well when the faults occur, as observed from
Figure 8.14(d).

The control surface deflections δal and δr u are shown in Figure 8.14(e). It is seen
that they are stuck at t = 25 s and t = 50 s respectively. The control surface deflections
δar , δe and δr l , which provide the remaining control authority for reconfiguration, are
shown in Figure 8.14(f). In order to compensate the influence of the faults, δar and δr l

are controlled to deflect opposite angles of which δal and δr u are stuck at.
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Figure 8.14: Results of aircraft trajectory control using the INDI in the presence of model uncertainties and
actuator faults.



8

212
8. AIRCRAFT FAULT-TOLERANT TRAJECTORY CONTROL USING INCREMENTAL NONLINEAR

DYNAMIC INVERSION

8.7. CONCLUSIONS
This chapter proposes an aircraft fault-tolerant trajectory controller. The nonlineari-
ties in the aircraft model are dealt with using a NDI approach. The uncertainties in the
aircraft model are treated by the INDI approach. The trajectory controller is split into
four control loops: position control, flight path control, attitude control and angular rate
control. The detailed control law of the flight path control and the angular rate control
loop, which use the INDI approach, are presented in the chapter. The other two loops,
position control and attitude control loops are designed based on the standard NDI ap-
proach.

The performance of the proposed trajectory controller is compared to an existing
control approach which is NDI-MI. Their performances are compared using three sce-
narios. The drawback of the NDI-MI is that it requires excitation and a selection of
thresholds. The results of the comparison demonstrate the superior performance of the
proposed controller which does not require sufficient excitation and choosing thresh-
olds. Therefore, the proposed controller is more robust to model uncertainties in in-
creasing the safety of the aircraft in the presence of actuator faults.

In the future, an experiment of the proposed approach on a fixed-wing unmanned
aerial vehicle is highly recommended. Through doing this, the performance of the pro-
posed approach can be validated under real-life model uncertainties and fault scenarios.
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A FRAMEWORK FOR

SIMULTANEOUS SENSOR AND

ACTUATOR FAULT-TOLERANT

FLIGHT CONTROL

In previous chapters, sensor and actuator FTC is considered. However, simultaneous
sensor and FTC is not dealt with. Existing research only considers simultaneous sensor
and actuator FDD. In this chapter, a framework is proposed to deal with simultaneous
sensor and actuator FTC. The structure of the proposed controller is presented first, fol-
lowed by the simulation validation.

Parts of this chapter are based on:

P Lu, E van Kampen, C C de Visser, Q P Chu. Nonlinear Simultaneous Aircraft Sensor and Actuator Fault-
Tolerant Flight Control. Journal of Guidance, Control and Dynamics, (under review).
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9.1. INTRODUCTION
Safety is of paramount importance in aviation, especially for civil aircraft. In civil avia-
tion, many developments focus on improving of safety levels and reducing the risks that
critical faults occur [171]. According to the report of the International Civil Aviation Or-
ganization, loss of control in-flight is one of the three high-risk accident categories [185].
Some recent accidents caused by actuator faults include [4] and [5]. To avoid these ac-
cidents, the flight control systems should be reconfigurable in the presence of actuator
faults. This motivates the development of actuator FTC systems.

Apart from the actuator faults, recent airliner accidents indicate that sensor faults
can result in critical failures despite the fact that most aircraft contain sensor redun-
dancy [73]. The ADSs, which measure the airspeed, angle of attack and angle of sideslip,
are exposed outside of the fuselage. This makes it prone to fail due to the external en-
vironment. Some recent accidents caused by sensor failures include [1] and [2]. These
examples highlight the importance of sensor FDD systems. In the past few decades,
many promising sensor FDD approaches have been proposed [11, 13, 14, 25, 65, 83].

Most sensor FDD approaches make use of the aerodynamic model of the aircraft,
which makes their performance sensitive to model uncertainties. Furthermore, these
FDD approaches are usually designed based on linear time invariant systems [186]. How-
ever, the aerodynamic forces and moments acting on the aircraft can change signifi-
cantly under different flight conditions, which results in uncertainty in the model. In
order to reduce the influence of model uncertainty during the whole flight, one solution
is to design the LPV system. LPV models may explicitly contain information about the
aerodynamic coefficient variations over the flight envelope [113]. However, the mod-
eling of this LPV system can be time-consuming. Alternatively, the aircraft kinematic
model [65, 83, 92, 114], which does not require the modeling of an LPV system, can be
applied. The core of the kinematic model is that it uses measured aerodynamic forces to
reduce model uncertainties. This model has been used for sensor FDD and shows great
potential.

The FDD system provides more reliable state information for the FTC system. For
actuator FTC systems, various reconfigurable control methods are also proposed for
aerospace applications [11, 40]. [41] use model predictive control which can handle sys-
tem input and output constraints. Sliding mode control [18] is also applied to FTC due to
its fast convergence property [18]. H∞ control approach has also been proposed to de-
sign FTC controllers [187]. Additionally, BS is one of the most popular Lyapunov-based
control approaches which can be used for designing FTC systems. However, standard
BS is sensitive to model uncertainties. To cope with model uncertainties, Adaptive Back-
stepping [60, 173] and Command Filtering Backstepping [61, 62] were proposed. More
recently, Incremental Backstepping (IBS) [180, 188, 189], which can cope with model un-
certainties, is proposed.

Although several sensor FDD systems and actuator FTC systems are proposed, re-
search on simultaneous sensor and actuator FTC system is limited. One reason is that
state-of-the-art sensor FDD systems make use of the actuator information such as com-
manded control surface deflections. This can be problematic when the actuator fails
resulting in incorrect information of the actuator. Recently, Zhang and li [99], Marzat et.
al [140] and Alwi et. al [186] consider simultaneous sensor and actuator FDD. However,
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simultaneous sensor and actuator FTC is not dealt with. Furthermore, performance of
existing sensor FDD systems is only shown in off-line simulation. In this chapter, simul-
taneous sensor and actuator FTC are considered. To the best of the authors’ knowledge,
the present chapter is one of the first few studies which consider simultaneous aircraft
sensor and actuator FTC.

The present chapter aims at proposing a framework of design FTC systems which
are able to deal with simultaneous sensor and actuator faults. The FTC system is com-
posed of a sensor FDD system and a reconfigurable controller. The sensor FDD system
is designed by making use of aircraft kinematic model which does not require the infor-
mation of the actuator. The detection and estimation of the sensor faults are resolved
using an ATS-UKF [65] which can estimate the state and fault in an unbiased sense. The
unbiased state estimation is provided to the reconfigurable controller such that FTC in
the presence of sensor faults is achieved. Regarding actuator and process faults, the IBS
approach is applied to reconfigure the controller. By doing this, simultaneous sensor
and actuator FTC is achieved.

The performance of the proposed FTC system is validated using simulation. The
control objective is to control the attitude of the aircraft. An attitude controller and an
angular rate controller are designed based on the IBS approach. The command filters
are implemented to take the actuator physical limits into consideration. The aircraft
sensor faults contain ADS and Attitude Heading and Reference System (AHRS) faults.
The sensor fault types include bias, drift as well as oscillatory faults. The stuck actuator
faults considered in this chapter. The FTC system is applied to address the sensor and
actuator FTC simultaneously and maintain controlled flight.

9.2. SENSOR FAULT RECONSTRUCTION SYSTEM DESIGN

In this section, first the model used for sensor fault reconstruction is introduced in sec-
tion 9.2.1. Then the detailed sensor fault reconstruction system design is presented in
section 9.2.2.

9.2.1. NONLINEAR AIRCRAFT KINEMATIC MODEL INCLUDING ADS AND AHRS
FAULTS

The model used for sensor fault reconstruction is the aircraft kinematic model. It should
be noted that this model does not require the information of the actuator. The process
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model including ADS and AHRS faults is presented as follows [65]:

V̇ = (Axm −w Ax − g sinθ
)

cosαcosβ+ (Aym −w Ay + g sinφcosθ)sinβ

+ (Azm −w Az + g cosφcosθ)sinαcosβ (9.1)

α̇= 1

V cosβ

[− (Axm −w Ax )sinα+ (Azm −w Az )cosα+ g cosφcosθcosα

+ g sinθ sinα
]+qm −wq − [(pm −wp )cosα+ (rm −wr )sinα] tanβ (9.2)

β̇= 1

V

[− (Axm −w Ax − g sinθ)cosαsinβ+ (Aym −w Ay + g sinφcosθ)cosβ

− (Azm −w Az + g cosφcosθ)sinαsinβ
]+ (pm −wp )sinα− (rm −wr )cosα (9.3)

φ̇= (pm −wp )+ (qm −wq )sinφ tanθ+ (rm −wr )cosφ tanθ (9.4)

θ̇ = (qm −wq )cosφ− (rm −wr )sinφ (9.5)

ψ̇= (qm −wq )
sinφ

cosθ
+ (rm −wr )

cosφ

cosθ
(9.6)

Define:

x = [V α β φ θ ψ]T , w = [w Ax w Ay w Az wp wq wr ]T (9.7)

um = [Axm Aym Azm pm qm rm]T = [Ax Ay Az p q r ]T +w (9.8)

where x ∈ Rn is the state vector, um ∈ Rl is the measured input vector. V is the true air-
speed,α is the angle of attack,β is the angle of sideslip. φ, θ andψ are the roll angle, pitch
angle and yaw angle, respectively. The input vector, denoted as um , is the measurement
of IMU sensors. The subscript “m” means that it is measured. Ax , Ay , Az are the specific
forces, p, q , and r are the roll rate, pitch rate and yaw rate, respectively. w is the noise in
the IMU sensor with covariance matrix defined as: E [w (t )w T (tτ)] = Qδ(t −τ).

The above process model can be rewritten into the following vector form:

ẋ(t ) = f̄ (x(t ),um(t ), t )+G(x(t ))w (t ) (9.9)

Further define the following:

ym = [Vm αm βm φm θm ψm]T , v = [vV vα vβ vφ vθ vψ]T (9.10)

f o = [ fV fα fβ fφ fθ fψ]T (9.11)

where ym ∈Rm is the measurement vector, f o ∈Rp is the fault vector. [ fV fα fβ]T denote
the faults in the ADSs and [ fφ fθ fψ]T denote the faults in the AHRS. v is the output noise
vector with E [v (ti )v T (t j )] = Rδ(ti − t j ).

The measurement model including the ADS and AHRS faults is:

ym(t ) = h(x(t ))+F(t ) f o(t )+v (t ) (9.12)

= H(t )x(t )+F(t ) f o(t )+v (t ), t = ti , i = 1,2, ... (9.13)

where H = F = I6×6.
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9.2.2. DESIGN OF THE SENSOR FAULT RECONSTRUCTION SYSTEM
The ATS-UKF differs from the UKF [27, 86] in that the measurement update is different.
Furthermore, the ATS-UKF contains a fault detection and identification step.

To design the ATS-UKF, first the condition for fault reconstruction is checked. In this
study, m = 6, p = 6 and rank Fk = 6. According to [65, 84], the condition is satisfied and
an ATS-UKF can be designed. The detailed steps of estimating the states and ADS and
AHRS faults using the ATS-UKF [65] is presented as follows:

Step1 Sigma points calculation and time update
At time step k, the following sigma points are generated [27]:

X 0,k−1 = x̂k−1|k−1 (9.14a)

X i ,k−1 = x̂k−1|k−1 −
(√

(n +γ0)Pk−1|k−1

)
i
, i = 1,2, ...,n (9.14b)

X i ,k−1 = x̂k−1|k−1 +
(√

(n +γ0)Pk−1|k−1

)
i−n

, i = n +1,n +2, ...,2n (9.14c)

with X i ,k−1 the sigma points of the state (dimension n). x̂k−1|k−1 and Pk−1|k−1 are
the state estimation and covariance of estimation error at time step k −1. γ0 is a
scaling factor [86].

The predicted mean and covariance are computed as follows

X i ,k|k−1 =X i ,k−1 +
∫ k

k−1
f̄ (X i ,k−1,u(t ), t )d t (9.15)

x̂k|k−1 =
2n∑

i=0
w (m)

i Xi ,k|k−1 (9.16)

Pk|k−1 =
2n∑

i=0
w (c)

i [Xi ,k|k−1 − x̂k|k−1][Xi ,k|k−1 − x̂k|k−1]T +Qd (9.17)

Yi ,k|k−1 = h(Xi ,k|k−1) (9.18)

ŷk =
2n∑

i=0
w (m)

i Yi ,k|k−1 (9.19)

Px y,k =
2n∑

i=0
w (c)

i [Xi ,k|k−1 − x̂k|k−1][Yi ,k|k−1 − ŷk ]T (9.20)

Py y,k =
2n∑

i=0
w (c)

i [Yi ,k|k−1 − ŷk ][Yi ,k|k−1 − ŷk ]T +R (9.21)

where w (m)
i and w (c)

i are the weights which can be found in [65, 86]. ŷk is the

estimate of the measurements. Qd is approximated by G(x̂k|k−1)QG(x̂k|k−1)T∆t
and ∆t is the time step.

Step2 Detection, isolation and estimation of the faults
Define Ck as follows:

Ck := 1

N

k∑

j=k−N+1
γ jγ

T
j (9.22)
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where γ j = (y j − ŷ j ), denotes the innovation at time step j .

Let Ci i ,k , i = 1,2, ...,m denote the i th diagonal elements of Ck at time step k. The
fault detection and isolation is performed through the following:

If Ci i ,k > Ti , FAi = 1. otherwise FAi = 0, i = 1,2,...,m.

where FA = [FAV FAα FAβ FAφ FAθ FAψ ]T are the binary alarm indicators. Ti are the
thresholds which are designed to detect the faults in the ADS and AHRS respec-
tively. These thresholds are designed based on fault-free cases.

To cope with initial condition errors, we need to calculate the change of the inno-
vation covariance ∆Ci i ,k as follow:[65]

∆Ci i ,k :=Ci i ,k −Ci i ,k−1, i = 1,2, ...,m. (9.23)

When the following inequality holds, the initial measurement update can be re-
garded as sufficient. The inequality is

∆Ci i ,k < ηi , i = 1,2, ...,m. (9.24)

where ηi , i = 1,2, ...,m are pre-defined constants which can be tuned to stop the
initial measurement update. It should be noted that this initial measurement up-
date is only performed in the first few time steps denoted by k∗. In this chapter,
k∗ = 20.

If either of the following two conditions is satisfied:

(a) There are no faults detected (i.e., ‖FA‖ = 0)

(b) k < k∗ and ∆Ci i ,k > ηi for any i

the estimates of the fault and its error covariance matrix are:

f̂ o
k = 0, P f

k = 0 (9.25)

Kk = Px y,k P−1
y y,k (9.26)

If neither of conditions (a) and (b) is satisfied, the estimates of the fault and its
error covariance matrix are calculated as follows:

Nk = (FT
k P−1

y y,k Fk )−1FT
k P−1

y y,k (9.27)

f̂ o
k = Nkγk , P f

k = (FT
k P−1

y y,k Fk )−1 (9.28)

Kk = Px y,k P−1
y y,k (I6×6 −Fk Nk ) (9.29)

where γk is the innovation at time step k, f̂ o
k is the estimation of f o

k and P f
k is

its error covariance matrix. Nk is the gain matrix which can achieve an unbiased
estimation of f o

k .
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Step3 Measurement update

Kk = Px y,k P−1
y y,k (9.30)

x̂k|k = x̂k|k−1 +Kk (yk − ŷk −Fk f̂ o
k ) (9.31)

Pk|k = Pk|k−1 −Kk (Py y,k −Fk P f
k FT

k )KT
k (9.32)

By substituting the functions f̄ and h given in Equations (9.9) and (9.12) into Equa-
tions (9.15) and (9.18) respectively, the fault estimation and state estimation can be achieved
which are given in Equations (9.28) (or (9.25)) and (9.31) respectively. The state and fault
estimation results are used by the controller which is designed in the following section.

9.3. RECONFIGURABLE CONTROL: INCREMENTAL BACKSTEP-
PING

This section will introduce the reconfigurable control approach for the actuator FTC sys-
tem. First, in section 9.3.1, the dynamics of the aircraft attitude and angular rates are
presented. Then, the design of the IBS controller for actuator FTC is presented in sec-
tion 9.3.2.

9.3.1. AIRCRAFT ATTITUDE AND ANGULAR RATE DYNAMICS

In this section, the attitude dynamics and angular rate dynamics of the aircraft is pre-
sented, which is the model used for designing the IBS controller.

The kinematics of the Euler angles are:


φ̇
θ̇


=


1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ


ω (9.33)

where ω = [p q r ]T are the rotational rates of the aircraft in the body reference frame.
Furthermore, the sideslip angle β has to be kept at zero. The dynamics of the sideslip
angle are given in Equation (9.3).

Ignore the noise in the accelerometers, Equations (9.33) and (9.3) can be rewritten
into the following affine-in-control form:

ẋ1 = f1(x1)+g1(x1)x2 (9.34)
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where

x1 = [φ,θ,β]T , x2 =ω,

f1 =




0

0
1
V

[− (Axm − g sθ)cαsβ+ (Aym + g sφcθ)cβ− (Azm + g cφcθ)sαsβ
]




g1 =




1 sφtθ cφtθ

0 cφ −sφ

sα 0 −cα


 (9.35)

where s(•), c(•) and t(•) denote the trigonometric functions sin(•), cos(•) and tan(•) re-
spectively.

The angular rate dynamics of the aircraft are:

ω̇= J−1(M −ω× Jω) (9.36)

where J is the inertia tensor. M are the moments acting on the aircraft which can be
described as:

M = Ma +Mu = Ma +CMu u (9.37)

where Ma are the moments except for the moments generated by the control surface
deflections. Mu are the moments generated by the control surface deflections. CMu are
the coefficients related to Mu , which are denoted as

Ma = q̄SC1




Cl (β, p,r, Ma)

Cm(α, α̇, q, Ma)

Cn(β, p,r, Ma)


 ,CMu = q̄SC1




Clδa
0 Clδr

0 Cmδe 0

Cnδa 0 Cnδr


 ,C1 = diag(b, c̄,b)

(9.38)

where q̄ is the dynamic pressure, Ma is the Mach number, S is the wing area, b the wing
span and c̄ is the mean aerodynamic chord. The control surface deflections are u =
[δa ,δe ,δr ]T , which are also the input to the system.

We can rewrite Equation (9.36) into the following affine-in-control form:

ẋ2 = f2(x1, x2)+g2u (9.39)

where f2 = J−1(Ma −ω× Jω), g2 = J−1CMu .

9.3.2. INCREMENTAL BACKSTEPPING CONTROLLER DESIGN
In order to design the IBS controller, we need to rewrite Equation (9.34) into an incre-
mental form. Denote the actuator deflections in the previous time step as u0 and the
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incremental deflections in the current step as ∆u, then the actuator deflections in the
current step are:

u = u0 +∆u (9.40)

where u0 = [δa0,δe0,δr 0]T and ∆u = [∆δa ,∆δe ,∆δr ]T . u0 can be obtained using the ac-
tuator model [189]. According to [176, 180], Equation (9.39) can be rewritten into the
following:

ẋ2 = ẋ2,0 +g2∆u (9.41)

where ẋ2,0, the derivative of the angular rates in the previous time step, is defined as:

ẋ2,0 := f2(x10, x20)+g2u0 (9.42)

According to [176], ẋ2,0 can be computed by passing ωm ([pm , qm ,rm]T ) through the
following filter:

sω2
n

s2 +2ζnωn s +ω2
n

(9.43)

with ζn = 0.8, ωn = 25 rad/s which are chosen by trial and error to reduce the influence
of noise [176].

Now the complete model used for the controller design can be given as follows:
{ ẋ1 = f1(x1)+g1(x1)x2 (9.44)

ẋ2 = ẋ2,0 +g2∆u (9.45)

Now we can present the design of the controller based on the model Equations (9.44)
and (9.45). The control task is to steer x1 towards a given reference yr = [φr e f ,θr e f ,βr e f ]T

with bounded and known derivatives (ẏr , ÿr , ...). Define the following tracking errors:

z1 = x1 − yr (9.46)

z2 = x2 −α1 (9.47)

where α1 is the virtual control for the state x2. The derivatives of Equations (9.46) and
(9.47) are:

ż1 = ẋ1 − ẏr (9.48)

ż2 = ẋ2 − α̇1 (9.49)

Substituting Equations (9.44) and (9.45) into Equations(9.48) and (9.49), it follows that

ż1 = f1(x1)+g1(x1)x2 − ẏr (9.50)

ż2 = ẋ2,0 +g2∆u − α̇1 (9.51)

Define z̄1 = z1−χ1 and z̄2 = z2−χ2. By using the control Lyapunov function V = 1
2 z̄T

1 z̄1+
1
2 z̄T

2 z̄2, the desired control laws are defined as:

α1 = g−1
1 (−c1z1 − f1(x1)+ ẏr ) (9.52)

∆udes,0 = g−1
2 (−g1(x1)z̄1 − c2z2 + ẋdes

2 − ẋ2,0) (9.53)
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where c1 and c2 are the controller gains. ẋdes
2 is the filtered derivative of xdes,0

2 which is
defined as:

xdes,0
2 = [pdes,0, qdes,0,r des,0]T =α1 −χ2 (9.54)

χ1 and χ2 are computed as:

χ̇1 =−c1χ1 +g1(xdes
2 −xdes,0

2 ) (9.55)

χ̇2 =−c2χ2 +g2(∆udes −∆udes,0) (9.56)

Define the following variables:

xdes,0
2 = [pdes,0, qdes,0,r des,0]T , xdes

2 = [pdes , qdes ,r des ]T (9.57)

∆udes,0 = [∆δdes,0
a ,∆δdes,0

e ,∆δdes,0
r ]T , ∆udes = [∆δdes

a ,∆δdes
e ,∆δdes

r ]T (9.58)

xdes,0
2 is filtered through second-order command filters [61, 63, 180] to compute xdes

2 and

ẋdes
2 . ∆udes,0 is filtered through second-order command filters to compute ∆udes . Take

xdes,0
2 for example, the command filter is as follows [61–63]:


q̇1

q̇2


=


 q2

2ζcωc
[
SR (

ω2
c

2ζcωc
[SP (xdes,0

2 )−q1])−q2
]


 (9.59)

where SP and SR are position and rate limit functions which can be defined as in Equa-
tion (9.60) [61–63]:

SP (z) =





P, if z ≤ P

z, if |z| < P

−P, if z ≥−P

(9.60)

Then xdes
2 = q1 and ẋdes

2 = q2.
The final desired control input udes is given by:

udes = [δdes
a ,δdes

e ,δdes
r ]T = u0 +∆udes (9.61)

This concludes the design for the IBS for the feedback system. Note that there are only
two loops in this design. More outer loops can be added outside the outer loop.

The IBS approach is robust to the uncertainties in the plant dynamics term since it
does not require the information of the plant dynamics. The robustness with respect to
the uncertainties in the control effectiveness is analyzed in [180].

9.4. FAULT-TOLERANT CONTROL SYSTEM FOR DEALING WITH

SIMULTANEOUS SENSOR AND ACTUATOR FAULTS
The proposed FTC system for dealing with simultaneous sensor and actuator faults is
presented in Figure 9.1. As can be seen from the figure, there are two control loops: at-
titude control loop and rate control loop. The attitude controller follows the commands



9.5. SIMULATION EXAMPLES

9

223

Attitude
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Rate
Control



φr e f

θr e f

βr e f






φ̂

θ̂

β̂
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pm

qm

rm




[
V̂
α̂

]



δdes

a

δdes
e

δdes
r






δa

δe

δr







Axm

Aym

Azm




Vm ,αm ,βm

φm ,θm ,ψm

Actuator Aircraft

Sensor

Actuator
Faults

Process
Faults

Sensor
Faults

Sensor FDD
using

kinematic model

Figure 9.1: Block diagram of the FTC system in the presence of sensor and actuator faults

φr e f , θr e f and βr e f and is designed based on the BS control law. The attitude control
loop generates the reference commands pdes , qdes and r des for the angular rate control
loop. The rate control loop is designed based on the IBS approach and it generates the
command for the control surface deflections denoted as δdes

a , δdes
e and δdes

r . The actual
control surface deflections are denoted as δa , δe and δr .

The key point of this simultaneous sensor and actuator FTC system is that the sensor
FDD makes use of the kinematic model. In Figure 9.1, it is seen that the sensor FDD sys-
tem does not require any information about the actuators such as commanded actuator
deflections. In most aircraft sensor FDD system designs, sensor FDD is achieved using
the commanded or measured control surface deflections. In some cases, measurements
of control surfaces are not available and are derived from the actuator rod positions [39].
Wrong actuator deflections can be obtained when the control surface is disconnected
from the actuator rod. Consequently, it can lead to performance degradation of the sen-
sor FDD system.

Reconfigurable controllers can deal with actuator faults. However, it is difficult for
these controllers to deal with sensor faults. Therefore, the sensor FDD plays a critical role
in this FTC system. The sensor FDD system not only provides unbiased fault estimation
( f̂V , f̂α, f̂β, and f̂φ, f̂θ, f̂ψ) but also unbiased state estimation (V̂ , α̂, β̂, and φ̂, θ̂, ψ̂) such
that the performance of the actuator FTC system is not influenced by sensor faults.

9.5. SIMULATION EXAMPLES
In this section, the proposed FTC system against sensor and actuator faults will be val-
idated. In Section 9.5.1, the aircraft model and the fault scenarios are presented. The
design parameters used in the simulation are presented in Section 9.5.2. The perfor-
mance of the sensor FDD system compared to that without the sensor FDD system in
the presence of sensor faults is shown in Section 9.5.3. The performance of the FTC sys-
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tem in the presence of simultaneous sensor and actuator faults is shown in Section 9.5.4.
Some discussions are presented in Section 9.5.5.

9.5.1. AIRCRAFT MODEL AND FAULT SCENARIO

The aircraft model used in this chapter is a generic aircraft [65]. The actuators are mod-
eled as first-order low-pass filters. The control surfaces are left aileron, right aileron,
upper rudder, lower rudder and elevator and the deflections are denoted as δal , δar ,
δr u , δr l and δe respectively. The desired commands of the ailerons and rudders are as
follows:

δdes
al = δdes

ar = δdes
a (9.62)

δdes
r u = δdes

r l = δdes
r (9.63)

This chapter considers both sensor faults and actuator faults. The sensor measure-
ments contain noise. The noise covariances of the sensors in the aircraft can be found
in [65]. Sensor faults include ADS sensor faults and AHRS faults. All the sensor faults
occur simultaneously. The fault scenario of the ADS and AHRS faults is given in Table 9.1
respectively. The actuator faults considered in this chapter are stuck at a position fault.
The specific fault occurrence time and stuck position is given in Table 9.2.

Table 9.1: Simultaneous ADS and AHRS faults

Time interval Sensor fault Fault type Fault magnitude Fault unit

20 s < t < 40 s

fV oscillatory 10sin(0.5πt ) m/s

fα drift 0.01t [rad]

fβ oscillatory 5πsin(0.5πt )/180 [rad]

fφ oscillatory 2πsin(πt )/180 [rad]

fθ bias 0.2 [rad]

fψ drift 0.005t [rad]

60 s < t < 80 s

fV drift −0.5t [m/s]

fα drift −0.01t [rad]

fβ oscillatory 5πsin(πt )/180 [rad]

fφ bias −2π/180 [rad]

fθ drift −0.005t [rad]

fψ oscillatory 2πsin(πt )/180 [rad]

It can be seen that during 25 s < t < 40 s, the left aileron and the ADS and the AHRS
fail. During 75 s < t < 80 s, the left aileron, the upper rudder and the ADS and AHRS all
fail. Therefore, simultaneous sensor and actuator faults are considered in this chapter.
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Table 9.2: Actuator faults

Time interval Actuator Fault type Stuck position Fault unit

t > 25 s left aileron Jamming 0.56 [rad]

t > 75 s upper rudder Jamming 0.2 [rad]

9.5.2. FTC SYSTEM DESIGN PARAMETERS
In this section, the parameters used for the design of the FTC system is presented. For
the sensor FDD, η, which is used in Equation (9.24) to terminate the initial measurement
update, is chosen as:

η= [2×10−2,1×10−4,1×10−5,1×10−5,1×10−5,1×10−5]T (9.64)

The threshold T used for fault detection is chosen as:

T = [8×10−1,1×10−4,1×10−4,5×10−4,1×10−4,2×10−4]T (9.65)

For the IBS controller, the control gains are chosen as:

c1 = diag(5,5,5), c2 = diag(2,2,2) (9.66)

9.5.3. VALIDATION OF THE FTC SYSTEM IN THE PRESENCE OF SENSOR FAULTS
In this section, the performance of the FTC system in the presence of sensor faults is
validated. The sensor faults are given in Table 9.1. It is seen that during 20 s < t < 40 s
and 60 s < t < 80 s, all the ADS and AHRS fail simultaneously. The sensor FDD system of
the FTC system will be used to reconstruct the sensor faults in order to provide unbiased
state estimation for the feedback.

For comparison, the IBS controller without the sensor FDD system is also applied.
For this controller, the measurements are directly used by the controller. In this case, the
state feedback used by the controller is biased due to the sensor faults.

The results of the IBS controller with and without using the sensor FDD system are
given in Figures 9.2(a) and 9.2(b) respectively. As can be seen from Figure 9.2(a), even
in the presence of sensor faults, φ, θ and β of the aircraft can still follow the reference
commands well. In contrast, when the sensor FDD is not used, φ, θ and β of the air-
craft can not follow the reference commands when there are sensor faults, as shown in
Figure 9.2(b). The response of the aircraft is obviously influenced by the wrong sensor
measurements. For example, during 20 s < t < 30 s, the reference command for θ is zero.
But the aircraft pitches down to -10 deg. This is caused by the θ sensor fault, which is
a bias fault. Furthermore, during 60 s < t < 80 s, β reaches 5 deg even when there are
no lateral maneuvers. This is not desirable for civil aircraft. The results demonstrate the
importance of a sensor FDD system.

The state estimation performance of the sensor FDD system is shown in Figure 9.2(a).
It is seen that the solid lines can still follow the dashed lines closely. This demonstrates
that the sensor FDD system can provide unbiased state estimation even in the presence
of sensor faults.
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Figure 9.2: Results of the IBS control with and without the sensor FDD system in the presence of sensor faults

The actuator control surface deflections δar , δe and δr l of the FTC system with the
sensor FDD system are given in Figure 9.2(c). It is seen that all the control surface deflec-
tions are within the actuator position limits. The control surface deflections δar , δe and
δr l of the FTC system without using the sensor FDD system is shown in Figure 9.2(d).
As can be seen from the figure, the control surfaces oscillate in the presence of sensor
faults. During 70 s < t < 80 s, the elevator oscillates frequently, which can even damage
the elevator itself.

For the FTC system with sensor FDD, sensor FTC is achieved. The fault reconstruc-
tion results using the sensor FDD system are given in Figures 9.3(a) and 9.3(b). It is seen
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Figure 9.3: Fault reconstruction of the sensor FDD system in the presence of sensor faults

from the figure, although the fault types are different, all faults are reconstructed in an
unbiased sense. The oscillatory frequency of the oscillatory faults are also different. This
demonstrates the performance of the sensor FDD system which makes use of the ATS-
UKF.

9.5.4. VALIDATION OF THE FTC SYSTEM IN THE PRESENCE OF SIMULTANE-
OUS SENSOR AND ACTUATOR FAULTS

In this section, the performance of the FTC system in the presence of simultaneous sen-
sor and actuator faults is validated. The sensor faults are given in Table 9.1 and the ac-
tuator faults are given in Table 9.2. The sensor faults are coped with by the sensor FDD
system. The actuator faults are dealt with by the IBS approach. The results of the FTC
system are given in Figure 9.4.

The response of φ, θ and β of the aircraft using the FTC system is shown in Fig-
ure 9.4(a). As can be seen from the figure, when the actuators are stuck, φ and β will be
influenced and deviate from zero. However, φ and β are controlled back to zero thanks
to the IBS controller.

The state estimation performance remains satisfactory. Estimated and true φ, θ and
β are shown in Figure 9.4(a) while those of V , α and ψ are shown in Figure 9.4(b). It can
be seen that the state estimation is unbiased despite the sensor and actuator faults.

The incremental control surface deflections generated by the IBS controller are shown
in Figure 9.4(c). The actual control surface deflections δar , δe and δr l are shown in Fig-
ure 9.4(d). It is seen from the figure that the control surface deflections change after the
occurrence of the faults. Take the ailerons for example, after the left aileron is stuck at a
positive position at t = 50 s, the IBS controller takes effect. The desired command δdes

a
generated by the IBS decreases immediately. Then the right aileron deflects to a negative
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(c) Incremental actuator deflections in the presence of
simultaneous sensor and actuator faults
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(d) Actuator deflections in the presence of simultane-
ous sensor and actuator faults. Dashed lines denote
position limits. Arrows denote the occurrence of the
faults.

Figure 9.4: Results of the FTC system in the presence of simultaneous sensor and actuator faults

position. By doing this, the moments generated by the stuck left aileron is counteracted
by the right aileron which deflects to a negative position.

It is also obvious that the remaining control authority will decrease due to the stuck
aileron. Since the left aileron is stuck at a positive position, it generates a negative rolling
moment all the time. Therefore, the control authority of rolling to the right is decreased.
Therefore, extreme maneuvers should be performed with caution after the actuator faults.

The fault reconstruction using the sensor FDD system is still satisfactory even in the
presence of simultaneous sensor and actuator faults. They are the same as those in Fig-
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ures 9.3(a) and 9.3(b). Therefore, they are not shown again.

9.5.5. DISCUSSION
Through the validations in the previous sections, the following conclusions can be made:

1. The sensor FDD system is critical to maintain the performance in the presence of
sensor faults.
In Section 9.5.3, the reconfigurable controller (IBS) has no ability to recover the
control in the presence of sensor faults if the sensor FDD is not included. This is
expected since the controller relies on these measurements to calculate the error
between the reference command and the controlled states. The control objective
is to minimize the tracking errors such as those in Equation (9.46). Let zθ denote
the tracking error of θ and assume the wrong measurement is directly used by the
controller, then

zθ = θm −θr e f = θ+ fθ+ vθ−θr e f (9.67)

Assume zθ is minimized to zero by the controller, it can be readily inferred that the
true state θ deviates from the command θr e f by fθ+ vθ .

2. Simultaneous sensor and actuator FTC can be achieved by decoupling the sensor
FTC from the actuator information. Through the validation in Section 9.5.4, si-
multaneous sensor and actuator FTC is achieved by the sensor FDD system and
the reconfigurable controller. Since the sensor FDD system does not require the
actuator information, it can perform state and fault estimation without being in-
fluenced by the actuator faults. The sensor FDD system provides unbiased state
and fault estimation such that the reconfigurable controller can perform the re-
configuration without being influenced by sensor faults.

9.6. CONCLUSIONS
This chapter proposes an aircraft FTC system, which can maintain the controlled flight in
the presence of simultaneous sensor and actuator faults. The proposed system contains
a sensor FDD system and a reconfigurable controller. The sensor FDD system makes use
of the aircraft kinematic model and does not require any information from the actuator.
The ATS-UKF is used to reconstruct the state and fault in an unbiased sense. The state
estimation is used by the controller to achieve sensor FTC. The actuator faults are dealt
with by the reconfigurable controller which is the IBS in this chapter.

The proposed FTC system is validated by simulation examples. The simulated air-
craft contains ADS and AHRS faults as well as stuck actuator faults. The simulation re-
sults demonstrate that the proposed FTC system is able to deal with the sensor faults as
well as actuator faults and maintain the controlled flight.

The simulation results show that sensor and actuator FTC can be achieved simulta-
neously using model-based analytical redundancy. This FTC system has a potential to
be applied to the aircraft to enhance the safety of the aircraft.





10
CONCLUSIONS AND

RECOMMENDATIONS

This chapter summarises the main achievements of the research in Section 10.1, fol-
lowed by a discussion in Section 10.2. In Section 10.3 the limitations of this dissertation,
as well as recommendations for future work are presented.

10.1. CONCLUSIONS
This dissertation has been dedicated to increase aircraft safety through improving the
robustness of FDD and FTC approaches. Both sensor and actuator faults, which have
caused a number of airliner accidents, were considered. The following main research
question was proposed at the start of this dissertation:

Research question

How to increase the robustness of the sensor and actuator FDD and FTC ap-
proaches with respect to real-life model uncertainties and internal and external
disturbances?

To answer the main research question, three sub-questions or research goals were
defined. The answers to the research sub-questions are presented in the following:

SENSOR FDD
The goal was to increase the robustness of sensor FDD with respect to model uncertain-
ties and disturbances.

The considered sensors include IMU (accelerometers and rate gyros) and ADS (air-
speed, AOA and angle of sideslip sensors). The fault types include bias and drift faults
since these are common in sensors like the IMU. Furthermore, oscillatory faults [39] are
also considered in this thesis. First, the airspeed-based kinematic model is taken as the
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mathematical model that drives the FDD algorithm. The kinematic model uses the mea-
sured specific forces to compute the aerodynamic forces, thus reducing the influence of
model uncertainties. To estimate the states and faults, which are important to realize
fault-tolerance, advanced filtering techniques are proposed.

• Regarding IMU FDD, since the IMU faults are the input faults (faults in the input),
an IOTSEKF, which is a modified version of the OTSEKF, was proposed for the
state and fault estimation. By iteratively performing the measurement update in
the first few time steps [73, 123], the IOTSEKF is less sensitive to initial condition
errors than the OTSEKF [123]. Various types of faults, such as biases and drifts in
the rate gyros, were implemented to validate the fault reconstruction performance
using the IOTSEKF. Results demonstrate that all the bias and drift faults in the
accelerometers and rate gyros are estimated in an unbiased sense [123].

• Regarding ADS FDD, since the ADS faults are the output faults (faults in the out-
put), an ATS-UKF was proposed for the state and fault estimation. The RTS-UKF
was applied and found to be sensitive to initial condition errors. It was analyzed
that the sensitivity is caused by the fact that the estimates of the states measured
by faulty measurements are not updated by the measurements [65]. Therefore,
the ATS-UKF was proposed and overcomes the drawbacks of the RTS-UKF by per-
forming an initial measurement update. [65]. Real flight data, in which bias and
drift as well as oscillatory faults were injected, were used to test the performance of
the ATS-UKF. All the faults in the ADSs can be estimated including the oscillatory
faults which have faster dynamics.

• Furthermore, for fast fault detection speed, several MMAE approaches have been
considered. There are several drawbacks related to existing MMAE approaches,
such as their slow response to detect whether faults have been removed or not.
To cope with these drawbacks, an SRMMAE approach was proposed. It signifi-
cantly reduces the false alarms of existing MMAE approaches by developing three
selective reinitialization algorithms [83]. The selective reinitialization algorithms
perform reinitialization for different filters based on their model probabilities.

• Although the false alarms using the proposed SRMMAE are reduced, the compu-
tational load of MMAE and SRMMAE approaches is still intensive since they run
a number of models online. To resolve the high computational load, a DMAE ap-
proach is developed which reduces the number of models to two even when deal-
ing with simultaneous faults. Computational load is reduced and the detection
speed is still satisfactory as compared to the conventional MMAE methods. The
performance (false alarm rate, detection speed and computational load) of all pro-
posed algorithms was validated using real flight test data, which contain unknown
and realistic model uncertainties. A comparison among the MMAE, SRMMAE and
DMAE is presented in Table 10.1.

Disturbances, especially external disturbances such as time-varying wind and atmo-
spheric turbulence, are difficult to cope with within the field of sensor FDD. In this dis-
sertation, the IMU FDD in the presence of external disturbances is solved in two steps.
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MMAE SRMMAE DMAE

False alarm rate

Detection speed

Computational load

Table 10.1: Comparison among the MMAE, SRMMAE and DMAE. Green color indicates that the performance
is best, yellow color denotes the second and orange color denotes the worst. Red color indicates that the

performance is unacceptable.

OTSEKF IOTSEKF ATSEKF

Sensitivity to initial condition errors

Sensitivity to the choice of covariance matrices

Table 10.2: Comparison among the OTSEKF, IOTSEKF and ATSEKF. Green color indicates that the
performance is better and red color indicates that the performance is worse.

First, a different kinematic model, the ground speed-based kinematic model, was pro-
posed as the mathematical model. Then, an ATSEKF was proposed, which improves the
estimation performance of the IOTSEKF, for state and fault estimation. The estimation
performance of the IOTSEKF degrades when the covariance matrices for fault estimate
are not chosen wisely. The proposed ATSEKF can adaptively update the covariance ma-
trices based on the innovation information [135] and can thus improve the performance
of the IOTSEKF. A comparison among the OTSEKF, IOTSEKF and ATSEKF is presented in
Table 10.2. To validate the proposed approach, more flight tests were performed in order
to collect the aircraft response data recorded during the presence of atmospheric turbu-
lence. IMU faults (bias, drift and oscillatory faults in the accelerometers and rate gyros)
were injected into the recorded real flight data. Results show that the ATSEKF together
with the GS-KM can indeed effectively estimate the sensor faults despite the presence of
external disturbances such as turbulence. The aircraft can maintain the controlled flight
since the estimated states are unbiased even in the presence of faults in the accelerome-
ters and rate gyros.

Dealing with ADS FDD in the presence of turbulence is more difficult. One reason is
that the airspeed-based kinematic model still has to be used. However, it cannot decou-
ple the influence of the faults from the disturbances. To cope with that, the proposed
DMAE approach is further extended to deal with the situation when the influence of dis-
turbances and faults cannot be decoupled. It is theoretically proven that the faults and
disturbances can be decoupled by using the selective-reinitialization algorithms in the
DMAE. The FDD of the proposed ADS FDD is also validated using the recorded aircraft
response data during the presence of atmospheric turbulence.

ACTUATOR FTC
The goal was to increase the robustness of the actuator FTC approaches in the presence
of model uncertainties.
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The considered FTC approaches, INDI and IBS, are model inversion-based approaches,
which can handle nonlinearities. The control objective is to follow a reference trajectory
in three-dimensional space which is usually required by air traffic control. Aircraft non-
linear trajectory control is challenging mainly due to the model uncertainties in the flight
path and angular rate control loops. In this dissertation, the analysis of the uncertainties
is presented. The flight path control and angular rate control loops are designed using
the INDI which can deal with the model uncertainties. Furthermore, the actuator faults
were also considered. The jammed actuator faults (one of the rudders and ailerons are
both jammed) are implemented as an example. Simulation validation results demon-
strate the aircraft can track the reference trajectory in the presence of model uncertain-
ties and actuator faults by using the proposed trajectory controller. The advantages of
the proposed approach are that it does not require a parameter update law design or
online model identification.

SIMULTANEOUS SENSOR AND ACTUATOR FTC
The goal was to achieve simultaneous sensor and actuator FTC in the presence of model
uncertainties.

To achieve simultaneous sensor and actuator FTC is challenging when using existing
model-based FDD approaches. The reason is that existing sensor FDD approaches rely
on the information of the actuators, which makes it difficult to cope with cases when
the actuators themselves fail. This dissertation proposes a framework which can deal
with simultaneous sensor and actuator FTC, through conducting sensor FDD without
using any actuator information. The actuator faults are handled by reconfigurable con-
trol approaches. In this work, the IBS is applied as an example. ADS faults and actuator
faults were implemented to validate the proposed fault-tolerant controller. Simulation
results show that the proposed FTC system can maintain the controlled flight even in the
presence of simultaneous sensor and actuator faults.

10.2. DISCUSSIONS
The contributions demonstrate that combining the aircraft kinematic model with ad-
vanced filtering techniques is a very promising approach to achieve sensor FTC. This
approach can deal with real-life model uncertainties as well as external and internal dis-
turbances. Different from existing approaches, which are usually only validated using
simulated data and only deal with internal disturbances (such as noise), the approaches
proposed in this dissertation are validated by real aircraft response data including the
presence of turbulence. The proposed approaches brings analytical redundancy closer
to real implementation. The validation in this dissertation suggests that real flight test
data should be more widely used to validate sensor FTC, since this allows us to test the
FTC performance in the presence of real-life, unknown, model uncertainties and distur-
bances.

The proposed aircraft trajectory controller significantly simplifies controller design
compared to existing controllers, such as adaptive Backstepping and Nonlinear Dynamic
Inversion with online model identification. One advantage is that it does not need addi-
tional effort to select the aerodynamic model structure. This controller structure can be
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applied to other mechanical systems such as robots, automotive and spacecraft.
Although fixed-wing aircraft are studied in this dissertation, many proposed approaches

can be readily applied to rotary-wing aircraft such as quadrotors, see [190, 191]. The pro-
posed FTC techniques for quadrotors increase their safety and reliability levels and can
thus speed up the integration process of, e.g., quadrotor UAVs into the civil and com-
mercial aerospace.

Furthermore, the advanced filters proposed can cope with state estimation with un-
known disturbances. Therefore, they can be applied to many other areas related to state
estimation such as object tracking. In reality, unknown disturbances are always present
and the proposed filters provide significant benefits to deal with real-life unknown dis-
turbances.

10.3. RECOMMENDATIONS
Based on the results presented in this dissertation, the following future research direc-
tions are presented:

• ADS FDD in the presence of atmospheric turbulence is challenging since the ef-
fects of faults and turbulence are coupled. It was theoretically proven that the
faults can be estimated in the presence of turbulence if the extended DMAE is
applied. However, the only ADS fault considered in this proof is the bias fault.
Future research will need to investigate the potential of the DMAE approach for
other types of faults.

• Although the incremental approach can cope with model uncertainties as well as
faults, its robustness with respect to external disturbances is not fully investigated.
One future topic is to investigate the incremental control approaches for dealing
with external disturbances. Furthermore, in the dissertation, only limited actuator
fault scenarios (jamming faults) are considered. It would also be interesting to val-
idate the performance of the incremental control approaches under various other
fault scenarios such as “floating” actuator faults.

• Computational load is an issue when designing the FDD and FTC approaches due
to the limited onboard computational power. Although this dissertation does take
the computational load into account as a secondary objective (for instance, the
DMAE was proposed to reduce the computational load of the MMAE approaches
in Chapter 4), the computational load of other developed algorithms is still in-
tensive. Several solutions can be investigated in this respect. First, one can re-
place the Unscented Kalman Filter with the Extended Kalman Filter or other fil-
ters with lower computational load. Secondly, algorithms with intensive compu-
tational load can be run at a lower frequency, at the cost of performance.

• The goal of fault detection approaches is to have low missed and false detection
rates [8]. However, for most threshold-based detection approaches (detecting faults
by monitoring the threshold), reducing missed detection rates means increasing
false detection rates. How to achieve a “good” balance between missed and false
detection rates is an interesting topic, which would make the approaches more
practical.
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• FTC is also important for micro aerial vehicles such as flapping-wing aircraft. Faults
can bring detrimental effects to these vehicles and can even terminate its flight.
Therefore, research on FTC for these vehicles is also highly recommended.

• In this thesis, it is stated that the kinematic models can reduce the effects of model
uncertainties compared to the aerodynamic model. However, the FDD of using
the aerodynamic model is not shown. Performance using both models should be
compared in future studies. The comparison should be performed under scenar-
ios in the presence of model uncertainties and internal and external disturbances.

• The real application of the proposed FDD and FTC approaches is important. The
approaches proposed in this dissertation, which have a potential to be imple-
mented on-board, were not validated in real flight tests. Future work would inves-
tigate the performance of the proposed approaches when they are implemented
on aircraft.

• Finally, the FDD and FTC approaches proposed in this dissertation mainly aim for
increasing the aircraft safety. Apparently, most of the techniques proposed can
be applied to other systems to increase safety. For instance, the FDD approaches
can be used to monitor various industrial processes such as chemical and power
industries.
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A
REFERENCE FRAME DEFINITIONS

In this appendix, some of the reference frames used in this thesis are introduced. The
Earth-fixed reference frame FE and body-fixed reference frame FB are given in Figure A.1.
The origin of FB is fixed to the aircraft.

In the figure, p, q and r represent the rotational rates of the body-fixed reference
frame FB with respect to the Earth-fixed reference frame FE . The aircraft photo with
more reference frames can be found in Figure 8.1.
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Figure A.1: The Earth-fixed reference frame FE and body-fixed reference frame FB . Picture by courtesy of J. A.
Pascoe.

251



A

252 A. REFERENCE FRAME DEFINITIONS

The transformation matrix from body-fixed reference frame to Earth-fixed reference
frame Teb , which is used in Chapter 5, is as follows:

Teb =




cosθcosψ sinφsinθcosψ−cosφsinψ cosφsinθcosψ+ sinφsinψ

cosθsinψ sinφsinθsinψ+cosφcosψ cosφsinθsinψ− sinφcosψ

−sinθ sinφcosθ cosφcosθ




where φ, θ and ψ are the roll, pitch and yaw angles of the aircraft.
The transformation matrix from Earth-fixed reference frame to body-fixed reference

frame Tbe = TT
eb .



B
AIRCRAFT AIRSPEED-BASED

KINEMATIC MODEL

B.1. AIRSPEED-BASED KINEMATIC MODEL WITHOUT CONSID-
ERING THE EFFECTS OF FAULTS

In this section, the airspeed-based kinematic model without incorporating the faults are
presented. It should be noted that in this appendix, the effects of time-varying wind are
not included.

The process model of an airspeed-based kinematic model, which uses ua , va , wa , φ,
θ and ψ as the states, is given as follows [90]:

u̇a = var −wa q − g sinθ+ Ax (B.1)

v̇a =−uar +wa p + g cosθ sinφ+ Ay (B.2)

ẇa = ua q − va p + g cosθcosφ+ Az (B.3)

φ̇= p +q sinφ tanθ+ r cosφ tanθ (B.4)

θ̇ = q cosφ− r sinφ (B.5)

ψ̇= q
sinφ

cosθ
+ r

cosφ

cosθ
(B.6)

where ua , va , wa are the air velocity components defined in the body-fixed reference
frame. Ax , Ay , Az are the specific forces (the difference between the inertial acceleration
and the gravitational acceleration) along the body axis, φ, θ and ψ are the Euler angles
and p, q,r are the rotational rates of the aircraft.
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Substitute Equations (B.1)-(B.3) into the following equations:

V̇ = u̇a cosαcosβ+ v̇a sinβ+ ẇa sinαcosβ (B.7)

α̇= ẇa cosα− u̇a sinα

V cosβ
(B.8)

β̇= 1

V
(−u̇a cosαsinβ+ v̇a cosβ− ẇa sinαsinβ) (B.9)

One then obtains the following airspeed-based kinematic model which uses V , α, β, φ,
θ and ψ as the states [126]:

V̇ = (Ax − g sinθ)cosαcosβ+ (Ay + g sinφcosθ)sinβ

+ (Az + g cosφcosθ)sinαcosβ (B.10)

α̇= 1

V cosβ
(−Ax sinα+ Az cosα+ g cosφcosθcosα

+ g sinθ sinα)+q − (p cosα+ r sinα) tanβ (B.11)

β̇= 1

V
[−(Ax − g sinθ)cosαsinβ+ (Ay + g sinφcosθ)cosβ

− (Az + g cosφcosθ)sinαsinβ]+p sinα− r cosα (B.12)

φ̇= p +q sinφ tanθ+ r cosφ tanθ (B.13)

θ̇ = q cosφ− r sinφ (B.14)

ψ̇= q
sinφ

cosθ
+ r

cosφ

cosθ
(B.15)

where V ,α andβ are the true airspeed, angle of attack and angle of sideslip of the aircraft.
It should be noted that these equations can also be used to design flight control laws to
reduce the influence of model uncertainties.

B.2. AIRSPEED-BASED KINEMATIC MODEL INCORPORATING THE

EFFECTS OF IMU FAULTS
In this section, the airspeed-based kinematic model including the influence of IMU faults
is presented.

The measurements of the IMU including faults are given as follows:

Axm = Ax +νAx + f Ax (B.16)

Aym = Ay +νAy + f Ay (B.17)

Azm = Az +νAz + f Az (B.18)

pm = p +νp + fp (B.19)

qm = q +νq + fq (B.20)

rm = r +νr + fr (B.21)

where the subscript m denotes the measured variables, ν[•] denotes the noise in the cor-
responding sensors. f Ax , f Ay and f Az represent the faults in the accelerometers. fp , fq

and fr represent the faults in the rate gyros.
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These equations can be rewritten as follows:

Ax = Axm −νAx − f Ax (B.22)

Ay = Aym −νAy − f Ay (B.23)

Az = Azm −νAz − f Az (B.24)

p = pm −νp − fp (B.25)

q = qm −νq − fq (B.26)

r = rm −νr − fr (B.27)

Substitute Equations (B.22)-(B.27) into Equations (B.1)-(B.6), we then obtain the airspeed-
based kinematic model including IMU faults, which uses ua , va , wa , φ, θ and ψ as the
states, as follows:

u̇a = va(rm − fr −νr )−wa(qm − fq −νq )− g sinθ+ (Axm − f Ax −νAx ) (B.28)

v̇a =−ua(rm − fr −νr )+wa(pm − fp −νp )+ g cosθ sinφ+ (Aym − f Ay −νAy ) (B.29)

ẇa = ua(qm − fq −νq )− va(pm − fp −νp )+ g cosθcosφ+ (Azm − f Az −νAz ) (B.30)

φ̇= (pm − fp −νp )+ (qm − fq −νq )sinφ tanθ+ (rm − fr −νr )cosφ tanθ (B.31)

θ̇ = (qm − fq −νq )cosφ− (rm − fr −νr )sinφ (B.32)

ψ̇= (qm − fq −νq )
sinφ

cosθ
+ (rm − fr −νr )

cosφ

cosθ
(B.33)

The noise distribution matrix G can be readily extracted from these equations. The cor-
responding measurement model can be given as follows:

Vm =
√

u2
a + v2

a +w2
a +νV (B.34)

αm = atan

(
wa

ua

)
+να (B.35)

βm = atan




va√
u2

a +w2
a


+νβ (B.36)

φm =φ+νφ (B.37)

θm = θ+νθ (B.38)

ψm =ψ+νψ (B.39)

where the subscript m denotes the measured variables, ν[•] denotes the noise in the cor-
responding sensors.

Similarly, the airspeed-based kinematic model including the IMU faults, which uses
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V , α, β, φ, θ and ψ as the states, can be presented as follows:

V̇ = (Axm −w Ax − f Ax − g sinθ
)

cosαcosβ+ (Aym −w Ay − f Ay + g sinφcosθ)sinβ

+ (Azm −w Az − f Az + g cosφcosθ)sinαcosβ (B.40)

α̇= 1

V cosβ

[− (Axm −w Ax − f Ax )sinα+ (Azm −w Az − f Az )cosα+ g cosφcosθcosα

+ g sinθ sinα
]− [(pm −wp − fp )cosα+ (rm −wr − fr )sinα] tanβ

+qm −wq − fq (B.41)

β̇= 1

V

[− (Axm −w Ax − f Ax − g sinθ)cosαsinβ+ (Aym −w Ay − f Ay + g sinφcosθ)cosβ

− (Azm −w Az − f Az + g cosφcosθ)sinαsinβ
]+ (pm −wp − fp )sinα

− (rm −wr − fr )cosα (B.42)

φ̇= (pm −wp − fp )+ (qm −wq − fq )sinφ tanθ+ (rm −wr − fr )cosφ tanθ (B.43)

θ̇ = (qm −wq − fq )cosφ− (rm −wr − fr )sinφ (B.44)

ψ̇= (qm −wq − fq )
sinφ

cosθ
+ (rm −wr − fr )

cosφ

cosθ
(B.45)

The noise distribution matrix can be readily extracted and can be found in Chapter 2.
The corresponding measurement model can be given as follows:

Vm =V +νV (B.46)

αm =α+να (B.47)

βm =β+νβ (B.48)

φm =φ+νφ (B.49)

θm = θ+νθ (B.50)

ψm =ψ+νψ (B.51)

B.3. AIRSPEED-BASED KINEMATIC MODEL INCORPORATING THE

EFFECTS OF ADS FAULTS

In this section, the airspeed-based kinematic model including the influence of ADS faults
is presented. The IMU sensors are assumed to be fault-free, which leads to the following
condition:

f Ax = f Ay = f Az = fp = fq = fr = 0. (B.52)

First, if ua , va , wa , φ, θ and ψ are used as the states, the process model can be ob-
tained by inserting Equation (B.52) into Equations (B.28)-(B.33).
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The corresponding measurement model can be given as follows:

Vm =
√

u2
a + v2

a +w2
a + fV +νV (B.53)

αm = atan

(
wa

ua

)
+ fα+να (B.54)

βm = atan




va√
u2

a +w2
a


+ fβ+νβ (B.55)

φm =φ+νφ (B.56)

θm = θ+νθ (B.57)

ψm =ψ+νψ (B.58)

Secondly, if V , α, β, φ, θ and ψ are used as the states, the process model can be
obtained by inserting Equation (B.52) into Equations (B.40)-(B.45).

The corresponding measurement model can be given as follows:

Vm =V + fV +νV (B.59)

αm =α+ fα+να (B.60)

βm =β+ fβ+νβ (B.61)

φm =φ+νφ (B.62)

θm = θ+νθ (B.63)

ψm =ψ+νψ (B.64)





C
BASICS OF NONLINEAR DYNAMIC

INVERSION AND INCREMENTAL

NONLINEAR DYNAMIC INVERSION

In this appendix, the basics of NDI [179] and INDI, which were mentioned in Chapter 8,
are introduced.

C.1. BASICS OF NDI
Consider the following nonlinear system:

ẋ = f̄ +Gu (C.1)

y = x (C.2)

where x ∈ Rn , u ∈ Rn and y ∈ Rn are the state, input and measurement vectors respec-
tively. Note that in this thesis, we consider full state feedback. The function f̄ is a non-
linear function and G is assumed to be an invertible matrix. By inverting the system
dynamics, we can obtain the following equation:

u =G−1(ẋ − f̄ ) (C.3)

If we design the control input as follows:

u =G−1(ν− f̄ ) (C.4)

Then the dynamics of the system are:

ẋ =ν (C.5)

As can be seen, the system behaves like a pure integrator. Therefore, the dynamics of
x can be controlled by a suitable choice of ν which is usually designed using a linear
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controller [177], based on the error e defined by

e = x −xd (C.6)

where xd is the vector of desired states.

C.2. BASICS OF INDI
Assuming that u can change much faster than x [176], the dynamics of system Equa-
tion (C.1) can be rewritten into the following incremental form:

ẋ = ẋ0 +G∆u (C.7)

with

ẋ0 = f̄0 +Gu0 (C.8)

∆u = u −u0 (C.9)

where ẋ0, u0, f̄0 denote ẋ , u, f̄ in the previous time step respectively. ∆u is the incre-
mental input.

Rewrite Equation (C.7), we can obtain the following equation:

∆u =G−1(ẋ − ẋ0) (C.10)

Therefore, we can design the incremental control input as follows:

∆u =G−1(ν− ẋ0) (C.11)

Then dynamics of x can be controlled by a suitable choice of ν, which is mentioned in
the Section C.1. The final control input is:

u = u0 +∆u (C.12)
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