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A B S T R A C T

ReLU neural networks have been modelled as constraints in mixed integer linear programming (MILP), enabling
surrogate-based optimisation in various domains and efficient solution of machine learning certification
problems. However, previous works are mostly limited to MLPs. Graph neural networks (GNNs) can learn
from non-euclidean data structures such as molecular structures efficiently and are thus highly relevant to
computer-aided molecular design (CAMD). We propose a bilinear formulation for ReLU Graph Convolutional
Neural Networks and a MILP formulation for ReLU GraphSAGE models. These formulations enable solving
optimisation problems with trained GNNs embedded to global optimality. We apply our optimisation approach
to an illustrative CAMD case study where the formulations of the trained GNNs are used to design molecules
with optimal boiling points.
1. Introduction

The modelling and designing of molecules have long been an in-
terest to researchers. The domains where these methods can be applied
range anywhere from fuel design, resulting in molecules with decreased
emissions, to designing molecules for drug discovery, possibly saving
human lives. Whereas these methods mostly relied on human expertise
and experimentation, Computer Aided Molecular Design (CAMD) has
become the de facto state of the art (Achenie et al., 2002). CAMD
methods for instance pre-screen a large number of molecules, such that
the most promising candidates can be investigated for further testing,
saving time and resources.

An early and still established method used for CAMD is the Quan-
titative Structure Property Relationship (QSPR). With QSPR, chemical
descriptors are designed and then used to predict chemical proper-
ties (de Lima Ribeiro and Ferreira, 2003; Katritzky et al., 1995). Note
that QSPR is used for the formulation of CAMD problems: it is a
property prediction model, rather than a solution method. Many exam-
ples exist in which QSPR regressions include constitutional (Katritzky
et al., 1995; Ha et al., 2005), topological (Begam and Kumar, 2016;
de Lima Ribeiro and Ferreira, 2003), electrostatic (Wessel and Jurs,
1995; Egolf et al., 1994), geometrical (Ivanciuc et al., 2002) and
quantum-chemical (de Lima Ribeiro and Ferreira, 2003; Hilal et al.,
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2003) descriptors or combinations of these descriptors. A drawback of
QSPR methods is that they are heavily dependent on the knowledge
of researchers to select which chemical descriptors are important. In
addition, these methods design a molecule in the descriptor space and
thus also give a solution in the descriptor space; mapping this vector
back to (existing) molecules is highly problematic. Group contribu-
tion (Gani et al., 1991; Zhang et al., 2015) presents an alternative
family of modelling methodologies (note again, modelling, not solving),
where compounds are represented as a collection of functional groups.
We note that group contribution methods are sometimes classified as a
special case of QSPR regression (Alshehri et al., 2020; Gani, 2019).

In many applications, it is desired to not only predict molecular
properties but also perform an inverse design where molecules with de-
sired or optimal properties are identified. This optimisation could also
be in the context of additional constraints or even joint process/product
optimisation. In a two-step approach, the QSPR regression model is first
optimised (e.g., using deterministic or stochastic solvers). In the second
step, the (optimal) descriptor vector is mapped back to a molecular
structure (e.g., based on enumeration to minimise a distance in the
encoding space or other decoding strategies). However, the decoding is
often challenging. On the other hand, physically motivated descriptors
such as group contribution can enable optimisation of the molecule and
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098-1354/© 2024 Published by Elsevier Ltd.

https://doi.org/10.1016/j.compchemeng.2024.108660
Received 30 November 2023; Received in revised form 9 March 2024; Accepted 11
 March 2024

https://www.elsevier.com/locate/cace
https://www.elsevier.com/locate/cace
mailto:thjn.mcdonald@gmail.com
mailto:c.tsay@imperial.ac.uk
mailto:A.Schweidtmann@tudelft.nl
mailto:n.yorke-smith@tudelft.nl
https://doi.org/10.1016/j.compchemeng.2024.108660
https://doi.org/10.1016/j.compchemeng.2024.108660


Computers and Chemical Engineering 185 (2024) 108660T. McDonald et al.
properties together (Folić et al., 2007; Zhang et al., 2015), removing the
need for the decoding step.

The advent of machine learning (ML) models and the increased
availability of large data sets, resulted in an increased interest in using
ML for property prediction tasks (Alshehri et al., 2020). There have
been various applications of machine learning in CAMD. Most instances
use multi-layer perceptrons (MLPs) in the QSPR methods, where linear
or polynomial regression methods are replaced by MLPs to perform
regression (Austin et al., 2016). More recently, graph neural networks
(GNNs) have been developed for non-euclidean input data types such as
molecular graphs. GNNs are neural networks that learn using a graph as
input. Accompanying the spatial graph information, every node in the
graph also has an associated feature vector, storing information about
that particular node. The information of a node gets passed through
an MLP for every node in the network. However, the information that
gets passed through the MLP for a node is not only the feature vector of
that node but also the feature vectors of the neighbouring nodes in the
graph (Wu et al., 2020). This allows GNNs to take spatial information
into consideration when learning non-euclidean data.

The attraction of using GNN in CAMD is that molecules can natu-
rally be represented as graphs. Every atom in a molecule is represented
by a node, and the properties of this molecule are stored in the feature
vectors associated with the atom-representing nodes. Moreover, GNNs
preserve invariance of the graph structure, e.g., rotating a molecule
does not affect the prediction. There have been multiple studies where
GNNs have been used to predict properties of molecules (see Wieder
et al. (2020) for an overview). To use these methods in CAMD, just as
with the previously-mentioned QSPR methods, one wants to optimise
the modelled properties and see which molecule corresponds to this
optimised value. Rittig et al. (2022b) have done exactly that, using
Bayesian optimisation and a genetic algorithm to optimise the trained
GNNs. However, these methods are not deterministic optimisation
methods. This means that the found solution might be the local maxi-
mum of the trained GNN and not the global maximum. In many cases,
it is favourable to know with certainty that the found solution is the
global optimum.

GNNs in chemistry can be categorised into three subgroups (Wieder
et al., 2020): (1) Recurrent GNNs (Rec-GNN), (2) Convolutional GNNs
(Conv-GNN) and (3) Distinct Graph Neural Network Architectures
(Dist-GNN). We will consider the first two subcategories as they are
relevant to this paper. All of the previously mentioned graph structures
have been applied to learning chemical properties. This includes basic
Rec-GNNs (Lusci et al., 2013; Scarselli et al., 2008) and gated vari-
ants (Mansimov et al., 2019; Withnall et al., 2020; Altae-Tran et al.,
2017; Bouritsas et al., 2022). Several Conv-GNNs have also found
applications in chemistry, such as spectral Conv-GNNs (Liao et al.,
2019; Henaff et al., 2015) and basic (Duvenaud et al., 2015; Errica
et al., 2019), attention (Hu et al., 2019) and general (Gilmer et al.,
2017) spatial conv-GNNs. For a comprehensive overview of molecular
property prediction with graph neural networks, see Wieder et al.
(2020).

Recently, various MILP formulations have been introduced for Rec-
tified Linear Unit (ReLU) MLPs (Anderson et al., 2020; Fischetti and Jo,
2018; Huchette et al., 2023; Tsay et al., 2021). ReLU MLPs are MLPs
where each activation function is a piece-wise linear function called
the ReLU function. Due to its piece-wise linear nature, the activation
function can be expressed with linear programming constraints using
big-M constraints. The other functions in a MLP are affine and thus
the whole network can be linearised. Besides MLP formulations, NNs
have also been solved using deterministic global solvers in a reduced
space formulation (Schweidtmann and Mitsos, 2019). The class of
MILP problems can be solved to global optimality using commercial
solvers. This young research area has been applied to a wide variety of
topics like MLP verification (Fischetti and Jo, 2018; Tjeng et al., 2017;
Bunel et al., 2018; Dutta et al., 2018), compression of MLPs (Kumar
2

et al., 2019; Serra et al., 2020) and using MLPs as surrogate models
in linear programming problems (Grimstad and Andersson, 2019; Di
Martino et al., 2022; Kody et al., 2022; Yang et al., 2021). We refer
the interested reader to Huchette et al. (2023) for an overview of
methodologies and applications.

The current work, first reported in the master thesis of McDonald
(2022), is to our knowledge the first MILP formulation of a trained
GNN presented in the literature. The importance of such a model is that
MILP formulations for GNNs can be used in CAMD, where properties
of molecules can be modelled using GNNs and then optimised using
MILP formulations of these trained GNNs. More recent work by Zhang
et al. (2023) develops symmetry-breaking constraints that can reduce
the search space for MILP or other optimisation strategies. Furthermore,
there are broader applications, namely the use of MILP formulations
of GNNs for similar applications as MLPs (Huchette et al., 2023),
e.g., verification of GNNs, lossless compression of GNNs, and using
GNNs as surrogate models in optimisation problems. The latter may be
of particular interest for applications such as integrated molecule and
process design (Bardow et al., 2010).

In particular, this current paper considers two GNN architectures.
The first is the Graph Convolutional Neural Network by Kipf and
Welling (2017). This neural network is one of the earliest GNN and is
used often in GNN applications. The second is the GraphSAGE network
by Hamilton et al. (2017), which learns properties of large graph data
by sampling the neighbourhood of nodes instead of using information
of all neighbouring nodes. In line with much of the literature, the
formulations proposed are for fixed 𝑁 , i.e., number of nodes in the
graph or number of atoms in the molecule.

Contributions. Summarised, this paper adds to the state-of-the-art in the
literature as follows:

• We propose a mixed integer quadratically constrained program-
ming formulation of the frequently used Graph Convolutional
Network model by Kipf and Welling (2017).

• We propose a mixed integer linear programming formulation of
the GraphSAGE model by Hamilton et al. (2017).

• We demonstrate the computational performance of our approach
on a case study of optimising the boiling points of molecules
modelled with the GraphSAGE and GCN models.

Organisation. Following this introduction, Section 2 provides technical
background, leading to our main contribution of the MI(N)LP formu-
lations of GNNs in Section 3. Section 4 reports empirical results on a
case study. Section 5 discusses the models and results, and Section 6
concludes.

2. Background

This section introduces the terminology for neural networks needed
in the remainder of the paper. We assume the reader has familiarity
with mixed integer (linear) programming, referring to Wolsey (2020)
for an introduction.

2.1. Multilayer perceptrons

A feedfoward multilayer perceptron (MLP) consists of consecutive
layers of neurons connected through a directed acyclic graph. A neuron
in a particular layer receives a weighted signal from the neurons of the
previous layer expressed as a real number. Like synapses in the brain,
these neurons get activated when the sum of these signals reaches a
particular threshold. The result of this system is a neural network that
has the ability to emulate complex non-linear relationships.

In mathematical terms this translates to a neural network 𝑓 (𝑥) ∶
R𝑚 ↦ R𝑛 built of multiple layers 𝑘 ∈ {1,… , 𝐾}, including the input
layer 𝑘 = 1, the hidden layers 𝑘 = {2,… , 𝐾 − 1} and the output layer
𝑘 = 𝐾. Each layer contains 𝑛𝑘 neurons. Naturally, the input layer has 𝑛1

𝑛1
neurons and receives the input vector 𝑥1 ∈ R of the function. Every
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𝑏

layer 𝑘 has an associated weight matrix 𝑤𝑘 ∈ R𝑛𝑘×𝑛𝑘−1 and a bias vector
𝑘 ∈ R𝑛𝑘 (Goodfellow et al., 2016).

The values associated with neurons in consecutive layers 𝑥𝑘 ∈ R𝑛𝑘

are calculated with a propagation function which is a composition
of a set of affine functions and non-linear activation functions. This
propagation function takes the inputs from real values of the neurons
of the previous layer 𝑥𝑘−1 ∈ R𝑛𝑘−1 . Thus, for the hidden layers 𝑘 =
{2,… , 𝐾 − 1} we have

𝑔𝑘(𝑥𝑘−1) = 𝑥𝑘 = 𝜎(𝑤𝑘𝑥𝑘−1 + 𝑏𝑘), (1)

where 𝜎(⋅) is the activation function. Normally, in the last layer 𝐾 the
activation function is absent. Completely composed, the neural network
𝑓 (𝑥) ∶ R𝑛1 ↦ R𝑛𝐾 is defined by (Goodfellow et al., 2016):

𝑓 (𝑥1) = 𝑥𝐾 = (𝑔𝐾◦𝑔𝐾−1◦… ◦𝑔2◦𝑔1)(𝑥1). (2)

The activation function, indicated by 𝜎 in Eq. (1), is a non-linear
function, which allows the neural network to find a non-linear rela-
tionship between input and output data. Commonly used activation
functions include the sigmoid, tanh, and ReLU functions. The latter will
be the main focus for this contribution. It is defined as 𝜎(𝑧) = max{0, 𝑧}.

Supervised learning uses paired data, where each data point con-
sists of an input vector 𝑥, and a desired output 𝑦. The goal of the
learning task is to tune the weights and biases to minimise a loss
function, e.g., mean squared error (MSE), for the predictions and target
values (Goodfellow et al., 2016).

2.2. MILP formulations of multilayer perceptrons

Exact MILP formulations of NNs with ReLU activation functions
have been proposed. These exact formulations emulate the ReLU oper-
ator using binary activation variables and big-M formulations. We refer
to Huchette et al. (2023) for a survey of methods and applications and
defer some details to Appendix A.

Consider, for each hidden layer 𝑘 ∈ {1,… , 𝐾 − 1}, the following
MLP layer:

𝑥𝑘 = 𝜎(𝑊 𝑘𝑥𝑘−1 + 𝑏𝑘) (3)

where 𝜎(⋅) = max {0, ⋅} is the ReLU function, 𝑥𝑘 ∈ R𝑛𝑘 is the output
of layer 𝑘, 𝑊 𝑘 and 𝑏𝑘 are respectively the found weights and bias of
layer 𝑘. This paper considers the linearisation of (3) by Fischetti and Jo
(2018). The output of the affine equations are decoupled in a positive
part 𝑥 ≥ 0 and negative part 𝑠 ≥ 0, and a binary activation variable
𝑧 and big-M activation constraints are introduced. It is assumed that
bounds can be found such that 𝑙 ≤ 𝑤𝑇 𝑦 + 𝑏 ≤ 𝑢. For every neuron 𝑗
layer 𝑘 of any neural network where the ReLU function is applied the
following set of constraints is introduced:

𝑥𝑘𝑗 ≤ 𝑢𝑘𝑗 𝑧
𝑘
𝑗 (4a)

𝑠𝑘𝑗 ≤ −𝑙𝑘𝑗 (1 − 𝑧𝑘𝑗 ) (4b)

𝑧𝑘𝑗 ∈ {0, 1}. (4c)

The big-M constraints are applied to every node in the network.

2.3. Graph neural networks

We now turn from MLPs and ‘regular’ neural networks to GNNs.

2.3.1. General graph neural network architecture
When using GNNs for property prediction, each data point consists

of the structure of a graph 𝐺 = (𝑉 ,𝐸) represented by the adjacency
matrix 𝐴 ∈ R𝑁×𝑁 , and properties of the graphs. The properties of these
graphs are stored in node feature vectors 𝑋 ∈ R𝑁×𝐹 , and can sometimes
include edge feature vectors. For our purposes of CAMD, node features
will suffice. Every node 𝑖 ∈ 𝑉 has an accompanying feature vector
𝑋𝑖 ∈ R𝐹 . These feature vectors store information about the node in
3

question. In a supervised setting, the data is thus of the form ((𝑋,𝐴), 𝑦).
Graph convolutional neural networks are divided in spectral and
spatial based methods. Spectral based methods are graph neural net-
works based on graph signal filters. Spatial based methods are generally
GNNs consisting of a function which aggregates neighbourhood infor-
mation and some sort of propagation function, similar to those found
in MLPs. The aggregation function sums the feature vectors of neigh-
bouring nodes of a node 𝑖, which is used as input of an affine function.
Thereafter, the affine combination of the aggregated feature vectors is
passed through an activation function, similar to the feedfoward neural
network architecture. Doing this for every node in the graph constitutes
one convolutional layer. After one convolutional layer, every node has
a new feature vector.

Stacking multiple convolutional layers consecutively allows a node 𝑖
to not only process node feature vector information of its neighbouring
nodes  (𝑖), but also of the neighbours  (𝑠) of these neighbours
∀𝑠 ∈  (𝑖). This works as follows: in the first convolutional layer, for
every node 𝑖, all neighbourhood information is aggregated. In the next
layer this is repeated; however, all neighbours of node 𝑖 have already
processed the information of their respective neighbours. This means
𝑖 also internalises the information of all neighbours removed with a
2-length path. After 𝑘 convolutions, node 𝑖 processes information from
all nodes 𝑘-length paths removed.

In the following subsections we will discuss the graph aggregation
functions of two GNNs, for they define the architectures of the GNNs
we consider (see Fig. 1).

2.3.2. Graph Convolutional Neural network (GCN)
We focus on spatial Conv-GNN methods, which are conceptually

similar to non-graph based convolutional neural nets (CNN), as
‘‘spatial-based graph convolutions convolve the central node’s repre-
sentation with its neighbours’ representations to derive the updated
representation for the central node’’ (Wu et al., 2020). Micheli (2009)
introduced these spatial graph Neural Networks. Thereafter, many
varieties of spatial Graph Neural networks have been introduced. Basic
models include PATCHY-SAN, LGCN and GraphSAGE (Niepert et al.,
2016; Gao et al., 2018; Hamilton et al., 2017). All use a combination of
convolutional operators, combined with different neighbour selection
systems and different aggregators. There is also a set of attention-
based spatial approaches which assign different weights for different
neighbours to minimise noise (Velickovic et al., 2018; Zhang et al.,
2018). Finally, there are more general frameworks which try to unify
multiple models in a single formulation as an abstraction over multiple
GNNs (Monti et al., 2017; Gilmer et al., 2017; Battaglia et al., 2018).

The first GNN we consider is the Graph Convolutional Neural Net-
work (GCN) (Kipf and Welling, 2016, 2017). It is one of the earlier
models which can be considered as a spatial GNN method. The GCN has
its roots in spectral graph GNNs as it is a first order Chebychev approx-
imation of the ChebNet (Defferrard et al., 2016) architecture, which
is a spectral based method. However, this first order approximation is
basically a spatial based method.

Kipf and Welling (2017) introduce the 𝑘th convolutional layer in
the GCN can be expressed as follows:

𝐻 (𝑘+1) = 𝜎(�̃�− 1
2 �̃��̃�− 1

2 𝐻𝑘𝑊 𝑘) (5)

Here, �̃� = 𝐴+𝐼𝑁 is the adjacency matrix of the undirected graph  with
added self-connections. 𝐼𝑁 is the identity matrix, �̃�𝑖𝑖 =

∑

𝑗 �̃�𝑖𝑗 and 𝑊 𝑘

is a layer-specific trainable weight matrix. 𝜎(⋅) denotes an activation
function, such as the ReLU(⋅) = max(0, ⋅). 𝐻𝑘 ∈ R𝑁×𝑛𝑘 is the outputs
from the activation functions in the 𝑘th layer; 𝐻 (0) = 𝑋, where 𝑋 is a
matrix of node feature vectors 𝑋𝑖 belonging to node 𝑖 in the graph.

The formula to find feature 𝑗 for a node 𝑖 in layer 𝑘 + 1 shows the
spatial nature of the GCN network:

𝐻 (𝑘+1)
𝑖𝑗 = 𝜎

(

(

𝑊 𝑘
𝑗

)𝑇 ∑ 1
√

+
√

+

(

𝐻𝑘
𝑙
)

)

(6)

𝑙∈𝑁+(𝑖) 𝑑 (𝑖) 𝑑 (𝑙)
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Fig. 1. A graph (left) with a feature vector on every node. Neighbourhoods of a node with multiple convolutional layers in a spatial GNN (right).
Here, +(𝑖) is the neighbourhood of 𝑖 including 𝑖 itself, and 𝑑+(𝑖) is
the degree of node 𝑖. The aggregation function is a normalised sum of
all the feature vectors of 𝑙 ∈ +(𝑖) in layer 𝑘. Thereafter, just as in
MLP models, an affine combination is taken of the aggregated feature
vectors and passed through an activation function 𝜎.

2.3.3. GraphSAGE network
The GraphSAGE network is another spatial convolutional neural

network, developed to learn large graph networks. Its input is merely
one large graph 𝐺 = (𝑉 ,𝐸) on which it performs the learning task.
When trained, the GraphSAGE network can classify nodes, without
having seen all nodes of the network. This means that it can generalise
to unseen nodes in the network.

GraphSAGE also uses an aggregation scheme, for instance the 𝚖𝚎𝚊𝚗,
𝚖𝚊𝚡, 𝚕𝚝𝚜𝚖 or 𝚊𝚍𝚍 aggregation scheme. However, for node 𝑖, GraphSAGE
does not aggregate over all feature vector of its neighbours  (𝑖), but
over a randomised subset of the neighbourhood. This allows it to learn
large graphs. The aggregated subset of the neighbourhood vectors gets
concatenated with the vector of the root node 𝑖. The concatenated vec-
tors are then multiplied with a learned weight matrix 𝑊 𝑘 ∈ R(𝑛𝑘+1×2𝑛𝑘)

which consecutively passes through an activation function 𝜎. Finally,
the vector gets normalised. As usual, all previously described steps are
performed for all nodes 𝑖 ∈ 𝑉 .

For this paper we are interested in the GraphSAGE network as it is
linearisable, when specific choices for the hyper-parameters are made.
We set the sampling to select all neighbours with a probability of 1.
This can be interpreted such that we do not have a sampling function.
The chosen activation function is the ReLU function. We choose the
aggregate scheme to be 𝚊𝚍𝚍, which means that we add all feature
vectors of the neighbouring nodes. The propagation function becomes:

𝐻 (𝑘+1)
𝑖 = 𝜎

(

𝐻𝑘
𝑖 ⋅𝑊 𝑘

1 +
∑

𝑙∈ (𝑖)
𝐻𝑘

𝑙 ⋅𝑊 𝑘
2

)

(7)

The matrices 𝑊 𝑘
1 ,𝑊

𝑘
2 ∈ R(𝑛𝑘+1×𝑛𝑘) are a split representation of

the matrix 𝑊 𝑘 ∈ R(𝑛𝑘+1×2𝑛𝑘), introduced for legibility. Using the add
function is also more natural when predicting the boiling points for
chemical compounds, which we will discuss in the next subsection.

3. Methods

This section provides the main contribution of the paper, by present-
ing the novel formulations of graph neural networks as MI(N)LPs, start-
ing from the multilayer perceptron MILP formulation of Section 2.2.
Section 3.1 describes a formulation of the Graph Convolutional Net-
work, which is linear (MILP) for a fixed graph structure and bi-linear
(MINLP, specifically, MIQCP) for a variable graph structure. Then, Sec-
tion 3.2 describes a MILP formulation of the GraphSAGE architecture.
Section 3.3 shows how to add domain-specific background knowl-
edge (inductive bias). Finally, Section 3.4 applies bound tightening
techniques to the formulations.
4

3.1. MI(N)LP formulation for GCN models

We wish to train a graph neural network that finds the function
𝑓 ∶ {0, 1}|𝑁|×|𝑁|×R|𝑁|×|𝐹 | ↦ R. Note we make the common assumption
of fixed 𝑁 , i.e., number of nodes in the graph or number of atoms in
the molecule. The function 𝑓 maps an adjacency matrix 𝐴 and a feature
vector 𝑋, with |𝐹 | features, to a singular output. The function is a
composition of GNN layers, a pooling layer, and MLP layers, where the
latter takes a fingerprint of the graph and maps it to a singular output.
Mathematically this constitutes:

𝑓 (𝐴,𝑋) = 𝖬𝖫𝖯(𝖯𝖮𝖮𝖫(𝖦𝖭𝖭(𝐴,𝑋))) (8)

where POOL is the pooling layer. This subsection states the linear MILP
formulations for graph neural networks in case the graph structure
is predetermined. Note that the predetermined graph structure is not
directly relevant for molecular design but rather for other applications
and domains where the topology is fixed and other parameters may
be optimised (e.g., optimisation of chemical process operation where
the flowsheet topology is represented as graph Stops et al., 2023).
Further, this MILP formulation is a development step towards the
MIQCP formulation the subsequent section.

3.1.1. Predetermined graph structure
In the following subsection the Graph Convolutional Network layers

as described in Section 2.3 are formulated as an MILP. We first con-
sider the GCN, which has the layer-wise propagation rule defined by
Eq. (5). To linearise Eq. (5) we employ the big-M formulation stated
in Eqs. (A.5). As described in Section 2.2, the ReLU constraints are
the same for every node, with altering big-M values (lower and upper
bounds). For the MLP structure, there were 𝐾 layers with 𝑛𝑘 neurons in
each 𝑘th layer. For the GCN structure we have the same but for every
node 𝑖 ∈ {1,… , 𝑁}. In the first layer these input nodes are the feature
vectors for those nodes.

Since the ReLU constraints stay the same, merely the left hand side
of Eqs. (A.5b) and (A.5c) need to be altered to represent the linear
part of the GCN layer as described between the brackets in Eq. (5).
To simplify the formulation we write �̄� = �̃�− 1

2 �̃��̃�− 1
2 . The entries of

this matrix are the following:

�̄�𝑖𝑙 =

⎧

⎪

⎨

⎪

⎩

0, if �̃�𝑖𝑙 = 0
1

√

𝑑+(𝑖)
√

𝑑+(𝑙)
, if �̃�𝑖𝑙 = 1

(9)

where 𝑑+(𝑖) is the cardinality of the adjacent set 𝑁+(𝑖) for node 𝑖, where
the + indicates that it also includes self loops.

Kipf and Welling (2016, 2017) note the following, with 𝑁 nodes in
our graph

𝑌 0 = 𝑋 =
⎡

⎢

⎢

𝑋1
⋮

⎤

⎥

⎥

(10)

⎣𝑋𝑁⎦
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where 𝑋𝑖 is a row vector containing the features of node 𝑖. 𝐻𝑘
𝑖𝑗 is

considered, which is the 𝑗th neuron of node 𝑖, after 𝑘 GCN layers. The
alue of this neuron is found as follows (the activation function 𝜎 is

omitted from every line for clarity):

𝐻𝑘
𝑖𝑗 =

(

�̄�𝐻 (𝑘−1)𝑊 𝑘)
𝑖𝑗 (11a)

= �̄�𝑖

⎡

⎢

⎢

⎢

⎣

𝐻 (𝑘−1)
1 𝑊 𝑘

𝑗
…

𝐻 (𝑘−1)
𝑁 𝑊 𝑘

𝑗

⎤

⎥

⎥

⎥

⎦

(11b)

=
∑

𝑙∈𝑁+(𝑖)

1
√

𝑑+(𝑖)
√

𝑑+(𝑙)

(

𝑊 𝑘
𝑗

)𝑇 (

𝐻 (𝑘−1)
𝑙

)𝑇
(11c)

It is commonplace to write vectors in column notation for linear pro-
ramming, so we will deviate from Kipf and Welling (2017), replacing
𝐻 (𝑘−1)

𝑙

)𝑇
by

(

𝐻 (𝑘−1)
𝑙

)

. The MILP formulation becomes:

∑

𝑙|�̃�𝑖𝑙=1

1
√

𝑑+𝑖 𝑑
+
𝑙

𝑊 𝑘
𝑗
𝑇𝐻 (𝑘−1)

𝑙 = 𝐻𝑘
𝑖𝑗 − 𝑆𝑘

𝑖𝑗

∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘} (12a)

𝐻𝑘
𝑖𝑗 ≤ 𝑈𝑘

𝑖𝑗𝑍
𝑘
𝑖𝑗 ∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(12b)
𝑆𝑘
𝑖𝑗 ≤ −𝐿𝑘

𝑖𝑗 (1 −𝑍𝑘
𝑖𝑗 ) ∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(12c)
0 ≤ 𝐻𝑘

𝑖𝑗 , 𝑆
𝑘
𝑖𝑗 ∈ R ∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(12d)
𝑍𝑘

𝑖𝑗 ∈ {0, 1} ∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(12e)

𝐴,𝐻0 ∈ 𝛺 (12f)

where 𝑖 indicates node 𝑖, 𝑗 feature 𝑗, and 𝑘 the corresponding GCN layer.
𝑑+𝑖 represents the degree +1 of node 𝑖. The summation over �̃�𝑖𝑙 = 1 in
(12a) becomes a conditional sum if the graph structure is not fixed (and
the entries of �̃� become decision variables); this is discussed in the next
subsection.

In the above, 𝐻0 ∈ 𝛺 indicates a restriction of the input space
(see Section 3.3). For a molecule we can view these as constraints
which provide domain knowledge: the knowledge that only physically
possible molecules are considered in the input space. In this regard they
lead simply to a form of physics-informed neural networks (Razakh
et al., 2021). One example could be that node 𝑖, has a feature 𝑥𝑖𝑗 = 1
indicating that it is a carbon atom. In that case ∑

𝑗 𝐴𝑖𝑗 < 5, meaning
the number of bonds should be exactly four (counting a double bond
as 2 and a triple bond as 3.

Combining all constraints of (12) with (4) almost finalises our
formulation of function (8) in case the graph structure 𝐴 is known. We
still need to include a pooling layer. The pooling layer is a function
which operates over all neuron outputs of the nodes of the graph
to combine them into a single vector. There are multiple options for
pooling layers but we utilise a sum pooling layer to maintain a linear
model:

𝑥0𝑗 =
𝑁
∑

𝑖=1
𝐻𝐾

𝑖𝑗 ∀𝑗 ∈ {1,… , 𝑛𝐾} (13)

Naturally, the number of entries of the input vector 𝑥0 of the MLP
layer, must match the number of neurons in the final layer 𝐾 of the
GCN layers.

3.1.2. Variable graph structure
The formulation of the previous subsection is linear in case the

structure of the graph is known. If 𝐴 is unknown, this formulation is
non-linear. There are many examples where we wish to find the graph
5

c

structure accompanying an optimal solution. The non-linear terms in
the above formulation, in case the structure is unknown, are ∑

𝑙|�̃�𝑖𝑙=1
and 1

√

𝑑+𝑖 𝑑
+
𝑙

, where 𝑙 in the latter is dependent on the former non-

inear term. We describe a bi-linear formulation for these terms, which
IQP/MIQCP solvers such as Gurobi can accommodate.

linear conditional sum. The sum in the formulation is conditional
nd thus non-linear. To linearise the sum a support variable 𝑏𝑘𝑖𝑙 is
ntroduced. This new support variable follows the following logic for
wo nodes 𝑖 and 𝑗:

𝑏𝑘𝑖𝑙 =

{

0 if �̃�𝑖𝑙 = 0
𝐻𝑘

𝑙 if �̃�𝑖𝑙 = 1
(14)

f this logic is implemented the sum over all 𝑏𝑘𝑖𝑙 results in the same
utcome as the conditional sum. For every node 𝑖, 𝑏𝑘𝑖𝑙 are only equal to
he output of ReLU layer if they are connected to node 𝑖.

The logic as described in (14) can be implemented in the same way
s was done in Eq. (A.3) by using big-M constraints, because the entries
f �̃� are binary. Replacing Eq. (12a) by the following constraints for
∈ {1,… , 𝐾}, 𝑖 ∈ {1,… , 𝑁}, 𝑗 ∈ {1,… , 𝑛𝑘} we have removed the

conditional sum:
𝑁
∑

𝑙=1

1
√

𝑑+𝑖 𝑑
+
𝑙

𝑊 𝑘
𝑗
𝑇 𝑏(𝑘−1)𝑖𝑙 = 𝐻𝑘

𝑖𝑗 − 𝑆𝑘
𝑖𝑗 (15a)

(𝑘−1)
𝑙 −𝑀(1 − �̃�𝑖𝑙) ≤ 𝑏(𝑘−1)𝑖𝑙 ≤ 𝐻 (𝑘−1)

𝑙 +𝑀(1 − �̃�𝑖𝑙) (15b)

−𝑀(�̃�𝑖𝑙) ≤ 𝑏(𝑘−1)𝑖𝑙 ≤ 𝑀(�̃�𝑖𝑙) (15c)

n case node 𝑖 is not connected to node 𝑙, then �̃�𝑖𝑙 = 0. In that case
onstraint (15c) forces 𝑏(𝑘−1)𝑖𝑙 = 0. In case both nodes are connected,
̃𝑖𝑙 = 1 and 𝑏(𝑘−1)𝑖𝑙 is constrained by (15b) such that it is equal to 𝐻 (𝑘−1)

𝑙 .

linear normalisation term. We are still left with 1
√

𝑑+𝑖 𝑑
+
𝑙

, which is

also non-linear. The term is also multiplied with the variable vector
𝑏𝑘𝑖𝑙, which makes the entire constraint non-linear. While an auxiliary
variable formulation could be employed (Vielma, 2015a), this would
result in many extra variables. We note that the cardinality of the
co-domain of the function 𝑔(𝑖, 𝑙) = 1

√

𝑑+𝑖 𝑑
+
𝑙

, is bounded above by the

aximum degree of the graph 𝑑𝑚𝑎𝑥, adding 1 for the self loops. In case
f molecules, the maximum covalence and thus the maximum degree, is
for instance. This means that the function 𝑔 has a maximum of (4+1)2

outcomes. We can index these outcomes in a (𝑑𝑚𝑎𝑥 + 1)2 long vector 𝑔,
where at index 𝑝 = 𝑑+𝑖 (𝑑𝑚𝑎𝑥 + 1) + 𝑑+𝑙 , 𝑔𝑝 = 1

√

𝑑+𝑖 𝑑
+
𝑙

. The function 𝑔(𝑖, 𝑙)

s undefined in case 𝑑+𝑖 = 0 or 𝑑+𝑙 = 0. In these cases 𝑔𝑝 = 0.
Using linear constraints, we can linearise the fractional term in

q. (15) by the following set of equations
𝑁

𝑙=1
𝑠𝑖𝑙𝑊

𝑘
𝑗
𝑇 𝑏(𝑘−1)𝑖𝑙 = 𝐻𝑘

𝑖𝑗 − 𝑆𝑘
𝑖𝑗

∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘} (16a)

𝑑+𝑖 =
∑

𝑗
�̃�𝑖𝑗 ∀𝑖 ∈ {1,… , 𝑁} (16b)

𝑝𝑖𝑙 = 𝑑+𝑖 (𝑑𝑚𝑎𝑥 + 1) + 𝑑+𝑙 ∀𝑖, 𝑙 ∈ {1,… , 𝑁} (16c)

0 = 𝑝𝑖𝑙 − 1𝑐𝑖𝑙1 − 2𝑐𝑖𝑙2 −⋯ (16d)

− (𝑑𝑚𝑎𝑥 + 1)2𝑐𝑖𝑙
(𝑑𝑚𝑎𝑥+1)2

∀𝑖, 𝑙 ∈ {1,… , 𝑁} (16e)

1 = 𝑐𝑖𝑙1 +⋯ + 𝑐𝑖𝑙
(𝑑𝑚𝑎𝑥+1)2

∀𝑖, 𝑙 ∈ {1,… , 𝑁} (16f)

𝑐𝑖𝑙 ∈ {0, 1}(𝑑𝑚𝑎𝑥+1)
2

∀𝑖, 𝑙 ∈ {1,… , 𝑁} (16g)

𝑠𝑖𝑙 = 𝑐𝑖𝑙1 𝑔1 +⋯ + 𝑐𝑖𝑙
(𝑑𝑚𝑎𝑥+1)2

𝑔(𝑑𝑚𝑎𝑥+1)2 ∀𝑖, 𝑙 ∈ {1,… , 𝑁} (16h)

With this set of equations, we are mapping the index 𝑝𝑖𝑙 to its

orresponding value in vector 𝑔, which is a set of predetermined
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parameters. Since the structure of graph stays the same over all GCN
layers, we only have to add these constraints once and not for every
layer 𝑘. The resulting model is bi-linear as it involves multiplication of
decision variables 𝑠𝑖𝑙 and 𝑏𝑖𝑙.

3.1.3. Full MIQCP formulation of the GCN GNN
Section 3.1.2 presents a reformulation for the non-linear terms of

Eq. (12a). Specifically, the conditional sum is reformulated as Eq. (15)
and the normalisation term as Eq. (16), resulting in an overall bi-linear
formulation. For GCN models, we can combine the binary variables in-
troduced by Eqs. (15) and (16) Notice how for every layer 𝑘, Eqs. (15b)
and (15c) constrain whether or not the feature vector of the neighbours
of node 𝑖 are included in the conditional sum. We can simplify this
by incorporating it in the variable which encompasses the linearised
normalisation term 𝑠𝑖𝑙. Once again we incorporate the following logic
with big-M constraints for 𝑖, 𝑙 ∈ {1,… , 𝑁} :

̂𝑖𝑙 =

{

0 if �̃�𝑖𝑙 = 0
𝑠𝑖𝑙 if �̃�𝑖𝑙 = 1

(17)

This enforces that the feature vector of a neighbouring node of 𝑖 is
only included if �̃�𝑖𝑙 = 1, which is the same as ∑𝑙|�̃�𝑖𝑙=1. The resulting bi-
linear mixed-integer quadratically constrained programming (MIQCP)
formulation becomes:
𝑁
∑

𝑙=1
�̂�𝑖𝑙𝑊

𝑘
𝑗
𝑇𝐻 (𝑘−1)

𝑙 = 𝐻𝑘
𝑖𝑗 − 𝑆𝑘

𝑖𝑗

∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘} (18a)

+
𝑖 =

𝑛𝑘
∑

𝑗=1
�̃�𝑖𝑗 ∀𝑖 ∈ {1,… , 𝑁} (18b)

𝑖𝑙 = 𝑑+𝑖 (𝑑𝑚𝑎𝑥 + 1) + 𝑑+𝑙 ∀𝑖, 𝑙 ∈ {1,… , 𝑁} (18c)

= 𝑝𝑖𝑙 − 1𝑐𝑖𝑙1 − 2𝑐𝑖𝑙2 −⋯ (18d)

− (𝑑𝑚𝑎𝑥 + 1)2𝑐𝑖𝑙
(𝑑𝑚𝑎𝑥+1)2

∀𝑖, 𝑙 ∈ {1,… , 𝑁} (18e)

= 𝑐𝑖𝑙1 +⋯ + 𝑐𝑖𝑙
(𝑑𝑚𝑎𝑥+1)2

∀𝑖, 𝑙 ∈ {1,… , 𝑁} (18f)

𝑖𝑙 ∈ {0, 1}(𝑑𝑚𝑎𝑥+1)
2

∀𝑖, 𝑙 ∈ {1,… , 𝑁} (18g)

𝑖𝑙 = 𝑐𝑖𝑙1 𝑔1 +⋯ + 𝑐𝑖𝑙
(𝑑𝑚𝑎𝑥+1)2

𝑔(𝑑𝑚𝑎𝑥+1)2 ∀𝑖, 𝑙 ∈ {1,… , 𝑁} (18h)

𝑖𝑙 −𝑀(1 − 𝐴𝑖𝑙) ≤ �̂�𝑖𝑙 ≤ 𝑀(1 − 𝐴𝑖𝑙) + 𝑠𝑖𝑙 ∀𝑖, 𝑙 ∈ {1,… , 𝑁} (18i)

−𝑀𝐴𝑖𝑙 ≤ �̂�𝑖𝑙 ≤ 𝑀𝐴𝑖𝑙 ∀𝑖, 𝑙 ∈ {1,… , 𝑁} (18j)

In this formulation, constraints (18b)–(18h) describe the lineari-
ation of the normalisation term as described in Section 3.1.2 and
onstraints (18i) and (18j) incorporate the conditional-sum logic from
q. (17). Note that we only have to find �̂�𝑖𝑙 once for every layer, since
he structure of the molecule is constant per layer.

Once again we incorporate the logical connectives with big-M con-
traints. One can in principle use something like interval arithmetic to
et reasonable M values. Later, one can tighten them further through
ptimisation-based bound tightening.

A reader might note that when the degree of either node 𝑖 or node 𝑗
s zero, this means that 𝑠𝑖𝑙 will automatically be equal to zero, and thus
he introduction of Eqs. (18i) and (18j) might be superfluous. However,
here could be an instance when both 𝑖 and 𝑙 have a degree higher than
, but still not be connected. In that case 𝑠𝑖𝑙 is not zero, and thus the
xtra constraints need to be introduced.

.2. GraphSAGE

So far we have successfully formulated an exact MIQCP (bi-linear)
epresentation of a GCN. This section describes an MILP formulation
or a more recent and popular GNN architecture, the GraphSAGE model
y Hamilton et al. (2017).
6

(

In this paper the activation function and affine layer are described
y the following equation:

(𝑡)(𝑣) = 𝜎

(

𝑓 (𝑡−1)(𝑣) ⋅𝑊 (𝑡)
1 +

∑

𝑤∈𝑁(𝑣)
𝑓 (𝑡−1)(𝑤) ⋅𝑊 (𝑡)

2

)

(19)

here 𝑓 (𝑡)(𝑣) describes the feature vector of node 𝑣 after 𝑡 GraphSAGE
ayers and 𝜎 describes an activation function, which for this paper will
nce again be the ReLU activation function.

As can be seen from Eq. (19), after training a neural net with 𝐾
raphSAGE layers, it finds two weight matrices for every layer 𝑡. The

irst weight matrix 𝑊 (𝑡)
1 , which we will refer to as the root weight, is

ultiplied with the feature vector of the previous layer 𝑓 (𝑡−1)(𝑣). The
econd weight matrix 𝑊 (𝑡)

2 is multiplied with the neighbouring feature
ectors of node 𝑣. In case the adjacency matrix of the graph is unknown,
his neighbourhood of 𝑣 is a non-linear relation. The rest of the model
s linear.

For consistency, we rewrite Eq. (19) in a notation similar to the pre-
entation in Section 3.1. We find the following for node 𝑖 ∈ {1,… , 𝑁},
eature 𝑗 ∈

{

1,… , 𝑛𝑘
}

and layer 𝑘 ∈ {1,… , 𝐾}:

𝑘
𝑖𝑗 = 𝜎

(

(�̂� 𝑘
𝑗 )

𝑇𝐻 (𝑘−1)
𝑖 + (�̄� 𝑘

𝑗 )
𝑇

∑

𝑙|𝐴𝑖𝑙=1
𝐻 (𝑘−1)

𝑙

)

(20)

here 𝐻𝑘
𝑖𝑗 ∈ R is the feature 𝑗 of node 𝑖 after 𝑘 layers, and 𝐴𝑖𝑙 is the

djacency matrix without self loops.
To remove the conditional sum we again introduce big-M con-

traints and support variables to encode the following logic:

𝑘
𝑖𝑙 =

{

0 if 𝐴𝑖𝑙 = 0
𝐻𝑘

𝑙 if 𝐴𝑖𝑙 = 1
(21)

The full MILP formulation including the pooling layer becomes:

�̂� 𝑘
𝑗 )

𝑇𝐻 (𝑘−1)
𝑖 + (�̄� 𝑘

𝑗 )
𝑇
∑

𝑙
𝑏(𝑘−1)𝑖𝑙 = 𝐻𝑘

𝑖𝑗 − 𝑆𝑘
𝑖𝑗

∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘} (22a)

𝑘
𝑖𝑗 ≤ 𝑈𝑘

𝑖𝑗𝑍
𝑘
𝑖𝑗 ∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(22b)
𝑘
𝑖𝑗 ≤ −𝐿𝑘

𝑖𝑗 (1 −𝑍𝑘
𝑖𝑗 ) ∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘} (22c)

𝑘
𝑙 −𝑀(1 − 𝐴𝑖𝑙) ≤ 𝑏𝑘𝑖𝑙 ∀𝑘 ∈ {0,… , 𝐾 − 1},∀𝑖, 𝑙 ∈ {1,… , 𝑁}

(22d)
𝑘
𝑖𝑙 ≤ 𝐻𝑘

𝑙 +𝑀(1 − 𝐴𝑖𝑙) ∀𝑘 ∈ {0,… , 𝐾 − 1},∀𝑖, 𝑙 ∈ {1,… , 𝑁} (22e)

−𝑀(𝐴𝑖𝑙) ≤ 𝑏𝑘𝑖𝑙 ≤ 𝑀(𝐴𝑖𝑙) ∀𝑘 ∈ {0,… , 𝐾 − 1},∀𝑖, 𝑙 ∈ {1,… , 𝑁} (22f)
0
𝑖 = 𝑥𝑖 ∀𝑖 ∈ {1,… , 𝑁} (22g)
∗𝐾
𝑗 =

∑

𝑖
𝐻𝐾

𝑖𝑗 ∀𝑗 ∈ {1,… , 𝑛𝐾}

(22h)

≤ 𝐻𝑘
𝑖𝑗 , 𝑆

𝑘
𝑖𝑗 ∈ R ∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘} (22i)

𝑘
𝑖𝑗 ∈ {0, 1} ∀𝑘 ∈ {1,… , 𝐾},∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘} (22j)

, 𝐴 ∈ 𝛺 (22k)

Intuitively, Eqs. (22a)–(22c) reformulate the ReLU function in Eq.
20), Eqs. (22d)–(22f) are the big-M constraints to enforce the logic
n Eq. (21). The values of these big-M constraints are the same as the
pper bounds 𝑈𝑘

𝑖𝑗 (as explained in Section 3.4.3). Eq. (22g) defines the
nput feature vector 𝑥𝑖 of node 𝑖 and Eq. (22h) is the sum pooling
ayer in layer 𝐾. Finally, Eq. (22k) represent the input constraints as
escribed in Section 3.3.

Note that a drawback of this method compared to the MIQCP
ormulation is that constraints (22d), (22e) and (22f) are calculated
or every layer 𝑘. This increases the number of constraints significantly

2
by (𝑛 𝑛𝑘) constraints per layer 𝑘). For the GCN network this is only
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Table 1
Background knowledge about molecule properties.
𝑋𝑖𝑓 Type Descriptor

1 Atom C
2 Atom O
3 Atom F
4 Atom Cl
5 Neighbours 0
6 Neighbours 1
7 Neighbours 2
8 Neighbours 3
9 Neighbours 4
10 Hydrogen 0
11 Hydrogen 1
12 Hydrogen 2
13 Hydrogen 3
14 Hydrogen 4

(𝑛2). For networks where there are a lot of nodes per hidden layer,
the GraphSAGE network will have significantly more constraints than
the GCN network.

3.3. Constraining the input space for molecular design

With the purpose of CAMD in mind, we next describe the input
space constraints, 𝐴, 𝑥 ∈ 𝛺. These constraints limit the search space to
include structures which try to emulate physically-feasible molecular
structures.

3.3.1. Basic MILP formulation of molecules
QSPR methods used for property prediction in previous works are

mostly based on group contribution methods (Zhang et al., 2015). As
a result MILP formulations of molecules used in CAMD are also often
based on group contribution methods. Modelling chemical properties
with GNNs means that molecules are described in terms of an adjacency
matrix 𝐴 ∈ {0, 1}𝑁×𝑁 and feature vectors 𝑋 ∈ {0, 1}𝑁×𝐹 . We therefore
introduce an MILP formulation for molecules based on topological
structure similar to the input of GNNs. This is similar in spirit to
topological indexing methods for QSPR (Austin et al., 2016), which are
in turn based on chemical graph theory.

The structure of a solution is described by the adjacency matrix
𝐴, where 𝐴𝑖𝑗 = 1 indicates that node 𝑖 is connected to node 𝑗. The
entries of a feature vector of a node 𝑖 are indicated by 𝑥𝑖𝑓 , where
𝑓 is the position of a feature in that vector. The simplest machine
learning model we consider comprises 14 features, which represent the
knowledge summarised in Table 1. The first 4 entries of the vector
𝑥𝑖𝑓 indicate the atom type of atom 𝑖. Positions 5 to 9 indicate the
number of neighbours atom 𝑖 has. Finally, the last entries show how
many hydrogen atoms are connected to atom 𝑖. For example, a solution
can be found where node 𝑖 is an oxygen atom, with one neighbour
and one hydrogen atom attached. In this case, for atom 𝑖, 𝑥𝑖𝑓 = 1 for
𝑓 ∈ {2, 6, 11} and 0 for the other values of 𝑓 .

With the adjacency matrix and the feature vectors for all the nodes,
we introduce constraints to avoid trivially infeasible molecules. These
constraints are summarised here and detailed in Appendix C:

(a) Molecules should be connected and of at least length 2.
(b) Nodes are active if and only if they are connected to others.
(c) To avoid redundancies, no gaps should exist between activated

atoms (a molecule of length 3 should be 𝐴11 = 𝐴22 = 𝐴33 = 1
and not 𝐴11 = 𝐴22 = 𝐴55 = 1).

(d) Each node should only have one atom type.
(e) The covalence of each atom must equal the number of active

neighbours.

The formulation is not a tight formulation, and molecules can be
found in the search space that might not be able to be synthesised
7

or stable in a natural setting. For instance, the formulation does not
consider steric constraints on the bonds. There are also molecules which
are excluded from the search space. An example of these are molecules
with double or triple bonds. Therefore we next describe how to extend
this model.

3.3.2. Additional properties
The formulation in the previous subsection is seen as a basis which

can be extended or modified for a particular CAMD setting. To simplify
the model, we limit the search space to molecules with no loops. We
can achieve this with the following constraint:
𝑛−1
∑

𝑖

𝑛
∑

𝑗|𝑗>𝑖
𝐴𝑖𝑗 = 𝑛 − 1 (23)

The constraint guarantees that the number of edges (LHS) is equal to
the number of nodes minus one. When added to the set of constraints
(C.1), no loops will be present in the molecules in the search space.
Before adding the extra constraint, the search space only includes
connected graphs due to constraint (C.1l). This fact, combined with
basic graph properties and the result of constraint (23), guarantees the
graph to be acyclic.

Next, we consider constraints to have the search space include
double bonded molecules. These are molecules for which there are two
bonds between two connected atoms in the molecule. To find solutions
with double bonds in our formulation, an extra feature is included in
the feature vectors 𝑋 ∈ R𝑁×𝐹 . This feature 𝑥𝑖,15 indicates whether node
𝑖 is included in at least one double bond. This is a learnable parameter
for the GNN. Outside the context of MILP formulations for GNNs, this
feature would be included in a GNN which also includes edge features.
However, we leave such network architectures for subsequent work.

We introduce a binary variable 𝑑𝑏𝑖𝑙 that tracks whether a double
bond is present between nodes 𝑖 and 𝑙.

3 ⋅ 𝑑𝑏𝑖𝑙 ≤ 𝑥𝑖,15 + 𝑥𝑙,15 + 𝐴𝑖𝑙 ∀𝑖, 𝑙 ∈ {1,… , 𝑛} (24a)

2 ⋅ 𝑥𝑖,1 + 1 ⋅ 𝑥𝑖,2 ≥
𝑛
∑

𝑙
𝑑𝑏𝑖𝑙 ∀𝑖 ∈ {1,… , 𝑛} (24b)

4 ⋅ 𝑥𝑖,1 + 2 ⋅ 𝑥𝑖,2 + 1 ⋅ 𝑥𝑖,3 + 1 ⋅ 𝑥𝑖,4 = (24c)
4
∑

𝑠=0
𝑠 ⋅ 𝑥𝑖,(5+𝑠) +

4
∑

𝑠=0
𝑠 ⋅ 𝑥𝑖,(10+𝑠) +

𝑛
∑

𝑙
𝑑𝑏𝑖𝑙 ∀𝑖 ∈ {1,… , 𝑛} (24d)

𝑥𝑖,15 ≤
𝑛
∑

𝑙
𝑑𝑏𝑖𝑙 ∀𝑖 ∈ {1,… , 𝑛} (24e)

𝑑𝑏𝑖𝑙 = 𝑑𝑏𝑙,𝑖 ∀𝑖, 𝑙 ∈ {1,… , 𝑛} (24f)

𝑑𝑏𝑖,𝑖 = 0 ∀𝑖 ∈ {1,… , 𝑛} (24g)

Constraint (24a) enforces that double bonds are only possible if
nodes 𝑖 and 𝑙 are connected and 𝑥𝑖,15 = 𝑥𝑙,15 = 1. Constraint (24b)
limits the number of double bonds based on the covalence of the atom.
For instance, 𝑥𝑖,1 indicates a carbon atom, meaning that there can be a
maximum of 2 double bonds. Constraint (24c) limits the total number
of bonds (including double bonds). Constraint (24e) forces 𝑥𝑖,15 to be
zero if there are no double bonds connected to node 𝑖. The final two
constraints are a symmetry constraint and a constraint indicating that
a node cannot have a double bond with itself.

For triple bonds, the above formulation would be nearly identical.
Instead, the variable 𝑑𝑏𝑖𝑙 would be replaced by 𝑡𝑏𝑖𝑙 in all constraints
to indicate a triple bond between node 𝑖 and node 𝑙. Constraint (24b)
would have 1 ∗ 𝑥𝑖,1 on the left-hand side because generally, only a
carbon atom can have a triple bond. Finally, in constraint (24c), ∑𝑛

𝑙 𝑡𝑏𝑖𝑙
would include a scalar multiple of 2, because every triple bond removes
two binding opportunities.

Including both triple and double bonds in the search space can be
achieved with the following set of constraints.

3 ⋅ 𝑑𝑏 ≤ 𝑥 + 𝑥 + 𝐴 ∀𝑖, 𝑙 ∈ {1,… , 𝑛} (25a)
𝑖𝑙 𝑖,15 𝑙,15 𝑖𝑙
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3 ⋅ 𝑡𝑏𝑖𝑙 ≤ 𝑥𝑖,16 + 𝑥𝑙,16 + 𝐴𝑖𝑙 ∀𝑖, 𝑙 ∈ {1,… , 𝑛} (25b)

⋅ 𝑥𝑖,1 + 1 ⋅ 𝑥𝑖,2 ≥
𝑛
∑

𝑙
𝑑𝑏𝑖𝑙 ∀𝑖 ∈ {1,… , 𝑛} (25c)

⋅ 𝑥𝑖,1 ≥
𝑛
∑

𝑙
𝑡𝑏𝑖𝑙 ∀𝑖 ∈ {1,… , 𝑛} (25d)

4 ⋅ 𝑥𝑖,1 + 2 ⋅ 𝑥𝑖,2 + 1 ⋅ 𝑥𝑖,3 + 1 ⋅ 𝑥𝑖,4 =
4
∑

𝑠=0
𝑠 ⋅ 𝑥𝑖,(5+𝑠) +

4
∑

𝑠=0
𝑠 ⋅ 𝑥𝑖,(10+𝑠)

+
𝑛
∑

𝑙
𝑑𝑏𝑖𝑙 +

𝑛
∑

𝑙
2 ⋅ 𝑡𝑏𝑖𝑙

∀𝑖 ∈ {1,… , 𝑛} (25e)

𝑖,15 ≤
𝑛
∑

𝑙
𝑑𝑏𝑖𝑙 ∀𝑖 ∈ {1,… , 𝑛} (25f)

𝑖,16 ≤
𝑛
∑

𝑙
𝑡𝑏𝑖𝑙 ∀𝑖 ∈ {1,… , 𝑛} (25g)

𝑏𝑖𝑙 = 𝑑𝑏𝑙𝑖 ∀𝑖, 𝑙 ∈ {1,… , 𝑛} (25h)

𝑏𝑖𝑙 = 𝑡𝑏𝑙𝑖 ∀𝑖, 𝑙 ∈ {1,… , 𝑛} (25i)

𝑑𝑏𝑖𝑖 = 𝑡𝑏𝑖𝑖 = 0 ∀𝑖 ∈ {1,… , 𝑛} (25j)

𝑑𝑏𝑙𝑖 + 𝑡𝑏𝑙𝑖 ≤ 1 ∀𝑖, 𝑙 ∈ {1,… , 𝑛} (25k)

where 𝑥𝑖,15 and 𝑥𝑖,16 indicate that an atom 𝑖 is part of a double or triple
bond respectively.

Once again we note that the introduction of these constraints does
not span the entire space of possible molecules, nor does it include only
naturally feasible molecules. For instance, introducing the triple bonds
constraints would not find the molecule carbon monoxide.

3.4. Bound tightening techniques

Solving times of linear programming solvers are influenced by the
tightness of the big-M constraints. It is therefore important to find tight
constraints of the big-M values associated with a neuron. We first take a
look at the computationally efficient method of feasibility based bound
tightening (FBBT). We first consider this for regular MLPs and then we
continue adapting these methods for the GCN and GraphSAGE.

3.4.1. Big-M coefficients for MLPs
Feasibility based bound tightening techniques are bound tightening

techniques which limit the feasible solution space by propagating the
domain of the input space through the non-linear expression. This
technique relies on interval arithmetic to compute the bounds on
constraint activations over the variable domains (Gleixner et al., 2017).
For the formulation of MLPs in Eq. (4), recall we require bounds such
that 𝑙 ≤ 𝑤𝑇 𝑦 + 𝑏 ≤ 𝑢. We now denote these as 𝑙𝑘𝑗 and 𝑢𝑘𝑗 for a node 𝑗
in layer 𝑘. Using interval arithmetic we can find bounds for the nodes
for 𝑘 ≥ 2 in two ways, which result in the same bounds. For the first
method, for layers 𝑘 ≥ 2 we find the upper bound 𝑢𝑘𝑗 and lower bound
𝑙𝑘𝑗 as follows:

𝑢𝑘𝑗 =
𝑛𝑘−1
∑

𝑖=1
max

{

𝑤𝑘
𝑗𝑖 max

{

0, 𝑢𝑘−1𝑖
}

, 𝑤𝑘
𝑗𝑖 max

{

0, 𝑙𝑘−1𝑖
}

}

+ 𝑏𝑘𝑗 , (26a)

𝑙𝑘𝑗 =
𝑛𝑘−1
∑

𝑖=1
min

{

𝑤𝑘
𝑗𝑖 max

{

0, 𝑢𝑘−1𝑖
}

, 𝑤𝑘
𝑗𝑖 max

{

0, 𝑙𝑘−1𝑖
}

}

+ 𝑏𝑘𝑗 . (26b)

Note that the inner max operators capture the ReLU activation
function, i.e., model how ReLU works here, but in the form of linear
constraints. The outer max function is necessary since the weight matrix
entries can also be negative. For 𝑘 = 1 we remove the inner max
functions as the input is not necessarily positive since there is no ReLU
operator. The same bounds can be found by solving the LP problems:

𝑢𝑘𝑗 = max
{

𝑡𝑘𝑗 ∶ 𝑡𝑘𝑗 ∈ 𝐶𝑘
𝑗

}

𝑙𝑘 = min
{

𝑡𝑘 ∶ 𝑡𝑘 ∈ 𝐶𝑘
} (27)
8

𝑗 𝑗 𝑗 𝑗
or the constraint set
𝑘
𝑗 =

{

𝑡𝑘𝑗 ∶ 𝑡𝑘𝑗 = 𝑤𝑘
𝑗 𝑥

𝑘−1 + 𝑏𝑘, 𝑥𝑘−1 ∈
[

max
{

0, 𝐿𝑘−1} ,

max
{

0, 𝑈𝑘−1}] ⊂ R𝑛𝑘−1
} (28)

To speed up the solving time, some activation variables 𝑧 can be
etermined based on the value of the lower and upper bound. When
he lower bound 𝑙𝑘𝑗 of a particular node is above 0, 𝑧𝑘𝑗 can be set to
. In this case, it is known that 𝑥𝑘𝑗 will always be positive and thus 𝑧𝑘𝑗
ust be 1. The same goes for a positive lower bound 𝑙𝑘𝑗 > 0: in this case
𝑘
𝑗 = 0.

.4.2. Big-M coefficients for GCNs
The following subsection explains how to find the upper and lower

ounds associated with the ReLU constraints for a GCN model. Specifi-
ally, we require the upper and lower bounds, 𝑈𝑘

𝑖𝑗 and 𝐿𝑘
𝑖𝑗 in Eqs. (12a)–

12c).
It is assumed that the lower and upper bounds of all the input

eature vectors are the same. This is because the input feature vectors
f all nodes describe the same features of those nodes, and the feature
ectors must be equal in length. This makes the bound propagation
ymmetric over all nodes, which in turn allows us to only calculate the
ounds of all nodes once per layer 𝑘. Before the optimisation, for node
, the number of neighbouring nodes and the number of their respective
eighbours are unknown. In the case of maximisation, we have to
ind a scalar which upper bounds 𝐻𝑘

𝑖𝑗 for all possible neighbourhood
tructures of node 𝑖. Specifically, we compute 𝑑+𝑖 and 𝑑+𝑙 such that the
ollowing is maximised (remember that 𝑑+𝑖 = 𝑑𝑖 + 1, where 𝑑𝑖 is the
egree of node 𝑖 if self loops are not possible):

max
+
𝑖 ,𝑑

+
𝑙

𝑑+𝑖
1

√

𝑑+𝑖 𝑑
+
𝑙

𝑊 𝑘
𝑗
𝑇𝐻 (𝑘−1)

𝑙 (29)

The upper bound of 𝑊 𝑘
𝑗
𝑇𝐻 (𝑘−1)

𝑙 is determined as in Eq. (26a) with
zero bias. If this upper bound is positive, we want to add as much as
possible to account for all possible neighbourhood structures, i.e., 𝑑+𝑖

𝑑+𝑙
should be maximised. The degree of node 𝑖, 𝑑+𝑖 , can maximally be
𝑑𝑚𝑎𝑥 + 1, and the minimum degree of the neighbours of 𝑖 needs to be
𝑑+𝑙 = 1 + 1. One of other hand, if the upper bound from Eq. (26a) is
egative, 𝑑+𝑖

𝑑+𝑙
should be minimised following the same logic. This results

in

𝑈𝑘
𝑖𝑗 = max

{

√

𝑑𝑚𝑎𝑥+1
2

𝑛𝑘−1
∑

𝑠=1
max

{

𝑤𝑘
𝑗𝑠 max

{

0, 𝑈𝑘−1
𝑠𝑗

}

, 𝑤𝑘
𝑗𝑠 max

{

0, 𝐿𝑘−1
𝑠𝑗

}}

,

√

2
𝑑𝑚𝑎𝑥+1

𝑛𝑘−1
∑

𝑠=1
max

{

𝑤𝑘
𝑗𝑠 max

{

0, 𝑈𝑘−1
𝑠𝑗

}

, 𝑤𝑘
𝑗𝑠 max

{

0, 𝐿𝑘−1
𝑠𝑗

}}

}

(30a)

𝐿𝑘
𝑖𝑗 = min

{

√

𝑑𝑚𝑎𝑥+1
2

𝑛𝑘−1
∑

𝑠=1
min

{

𝑤𝑘
𝑗𝑠 max

{

0, 𝑈𝑘−1
𝑠𝑗

}

, 𝑤𝑘
𝑗𝑠 max

{

0, 𝐿𝑘−1
𝑠𝑗

}}

,

√

2
𝑑𝑚𝑎𝑥+1

𝑛𝑘−1
∑

𝑠=1
min

{

𝑤𝑘
𝑗𝑠 max

{

0, 𝑈𝑘−1
𝑠𝑗

}

, 𝑤𝑘
𝑗𝑠 max

{

0, 𝐿𝑘−1
𝑠𝑗

}}

} (30b)

In practice, we only need the first term of each bound, as in the case
hat max

{

𝑤𝑘
𝑗𝑖 max

{

0, 𝑢𝑘−1𝑖
}

, 𝑤𝑘
𝑗𝑖 max

{

0, 𝑙𝑘−1𝑖
}

}

is negative, the node is

urned off and on for the upper bound and lower bound respectively
as described in Section 3.4.1).

For a similar formulation as Eqs. (27) and (28), the following set of
quations can be considered:

𝑈𝑘
𝑖𝑗 = max

{

𝑡𝑘𝑖𝑗 ∶ 𝑡𝑘𝑖𝑗 ∈ 𝐶𝑘
𝑖𝑗

}

(31a)

𝑘
𝑖𝑗 = min

{

𝑡𝑘𝑖𝑗 ∶ 𝑡𝑘𝑖𝑗 ∈ 𝐶𝑘
𝑖𝑗

}

(31b)

𝐶𝑘
𝑖𝑗 =

{

𝑡𝑘𝑖𝑗 ∶ 𝑡𝑘𝑖𝑗 =

√

𝑑𝑚𝑎𝑥 + 1
2

𝑤𝑘
𝑗 𝑥

𝑘−1, (31c)

𝑥𝑘−1 ∈
[

max
{

0, 𝐿𝑘−1} ,max
{

0, 𝑈𝑘−1}] ⊂ R𝑛𝑘−1
}

(31d)
𝑖 𝑖
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3.4.3. GraphSAGE
For GraphSAGE, FBBT is very similar to the FBBT proposed for the

GCN. We now require the upper and lower bounds, 𝑈𝑘
𝑖𝑗 and 𝐿𝑘

𝑖𝑗 in
Eqs. (22a)–(22c).

There are two parts that contribute to the total bound. The first,
which is associated with the root node 𝑖, is calculated similarly as the
MLP FBBT. The second part is calculated in the same way as the GCN,
but with the root node 𝑖 omitted. This results in the following bound
ropagation equations:

𝑘
𝑖𝑗=

𝑛𝑘−1
∑

𝑠=1
max

{

�̂�𝑘
𝑗𝑠 max

{

0, 𝑈𝑘−1
𝑠𝑗

}

, �̂�𝑘
𝑗𝑠 max

{

0, 𝐿𝑘−1
𝑠𝑗

}}

+
√

𝑑𝑚𝑎𝑥
2

𝑛𝑘−1
∑

𝑠=1
max

{

�̄�𝑘
𝑗𝑠 max

{

0, 𝑈𝑘−1
𝑠𝑗

}

, �̄�𝑘
𝑗𝑠 max

{

0, 𝐿𝑘−1
𝑠𝑗

}}

,
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𝐿𝑘
𝑖𝑗=

𝑛𝑘−1
∑

𝑠=1
min

{

�̂�𝑘
𝑗𝑠 max

{

0, 𝑈𝑘−1
𝑠𝑗

}

, �̂�𝑘
𝑗𝑠 max

{

0, 𝐿𝑘−1
𝑠𝑗

}}

+
√

𝑑𝑚𝑎𝑥
2

𝑛𝑘−1
∑

𝑠=1
min

{

�̄�𝑘
𝑗𝑠 max

{

0, 𝑈𝑘−1
𝑠𝑗

}

, �̄�𝑘
𝑗𝑠 max

{

0, 𝐿𝑘−1
𝑠𝑗

}}

.

(32b)

otice that
√

𝑑𝑚𝑎𝑥
2 replaces

√

𝑑𝑚𝑎𝑥
2 because the root node is omitted.

For a similar formulation as Eqs. (27) and (28), the following set of
quations can be considered:

𝑈𝑘
𝑖𝑗 = max

{

𝑡𝑘𝑖𝑗 ∶ 𝑡𝑘𝑖𝑗 ∈ 𝐶𝑘
𝑖𝑗

}

(33a)

𝑘
𝑖𝑗 = min

{

𝑡𝑘𝑖𝑗 ∶ 𝑡𝑘𝑖𝑗 ∈ 𝐶𝑘
𝑖𝑗

}

(33b)

𝐶𝑘
𝑖𝑗 =

{

𝑡𝑘𝑖𝑗 ∶ 𝑡𝑘𝑖𝑗 = �̂�𝑘
𝑗 𝑦

𝑘−1 +
√

𝑑𝑚𝑎𝑥
2

�̄�𝑘
𝑗 𝑥

𝑘−1, (33c)

𝑥𝑘−1, 𝑦𝑘−1 ∈
[

max
{

0, 𝐿𝑘−1
𝑖

}

,max
{

0, 𝑈𝑘−1
𝑖

}]

⊂ R𝑛𝑘−1
}

(33d)

where �̂� is the weight matrix associated with the root node, and �̄� is
the weight matrix multiplied with the aggregated nodes.

The upper bounds calculated in this subsection also serve as the
values for the big-M constraints in (22d), (22e) and (22f). For instance,
consider constraint (22d) and let there be no connection between node
𝑖 and node 𝑙. In that case 𝑏𝑘𝑖𝑙 needs to be able to be equal to 0. Enough
𝑀 needs to be subtracted such that the left hand side of the equation
is lower than 0. To achieve this 𝑀 needs to be larger than 𝐻𝑘

𝑙 , which
can be achieved if 𝑀 is equal to the upper bound of 𝐻𝑘

𝑙 .

3.5. Benchmark genetic algorithm

As a benchmark, we implement a straightforward genetic algorithm
(GA) to optimise over trained GNNs. This GA does not depend on
a latent space architecture, as proposed by Rittig et al. (2022a). It
uses a string representation of the symmetric adjacency matrix of the
molecules and of the feature vectors of the molecules such that single-
point crossovers and string mutations can be applied. A description is
given in Appendix D.

4. Numerical results

Recall that the goal of this work is to formulate graph neural
networks such that they can be used as surrogate models in optimisa-
tion problems. To validate the MI(N)LP formulations, we turn to the
case study of in-silico chemical property prediction, specifically the
maximisation of boiling points. Note that the goal here is not to test
the quality of the predictions.

4.1. Experimental setup

The workflow of the computer experiments is as follows. First a
data set is chosen, which will be used to train a GNN. Thereafter, this
9

trained GNN is represented using the methods described in Section 3.
The resulting formulations are optimised using a deterministic solver,
namely Gurobi version 9.5.1 (Gurobi Optimization, 2022).

The experiments were ran on two different machines, a laptop, and a
virtual machine. The laptop was used for quick, low-resource-intensive
experiments in which we were only interested in the MI(N)LP solutions.
The virtual machine was used for experiments where solving times
were compared. These experiments took longer and required constant
CPU availability. The laptop was equipped with a 1.4 GHz Quad-Core
Intel Core i5 processor, and 8 GB memory. The virtual machine was
equipped with eight 2.5 GHz Intel Xeon Gold 6248 CPUs, and 16 GB
memory. The machine learning models were trained using PyTorch
1.11.0 (Paszke et al., 2019), and implemented using PyTorchGeometric
2.0.4 (Fey and Lenssen, 2019).

4.1.1. Case study
In order to examine the output results of the proposed methods,

we consider a representative test case where a chemist models a
chemical property and tries to optimise it. This is a common use case
of CAMD (Frühbeis et al., 1987). The chemist can then use the found
solutions and test the predicted properties instead of having to search
over the entire search space of feasible molecules. Specifically, as an
exemplar, we maximise the (normalised) boiling point of the (feasible)
molecules. The boiling point 𝑇𝑏(𝐾) is calculated by 𝑇𝑏(𝐾) = mean+std×
obj_val. Note that our interest is to test the potential of the GNN
modelling developed in Section 3, not to solve a physically-meaningful
design problem. Models and training hyper-parameters were selected
heuristically following some preliminary computer experiments dis-
cussed in Appendix E. Note also that accurately training GNNs is not
the focus of this work.

The input space constraints were extended by including the pos-
sibility to find double and triple bonds, implemented using the input
constraints described by Eqs. (25). Initial testing of the computer
experiments found problems with steric constraints on the model, and
to circumvent this, molecules with loops were excluded from the search
space. We use the normal boiling point, i.e., at 1 atm).

The case study included the optimisation of the simplest GraphSAGE
configuration with at least one hidden layer, which was the 𝟷 × 𝟷𝟼

configuration. A total of three different formulations were tested: (i)
only single and double bonds allowed, (ii) only single and triple bonds
allowed, and (iii) single, double, and triple bonds allowed. As double
and triple bonds are handled using extra features, three different neural
network configurations were trained. The GNNs are trained using the
best hyperparameters found in our preliminary computer experiments,
and the model with the lowest validation error was selected as input
for the MILP formulation. The formulation was solved to optimality
on the laptop. Multiple solutions (max 8) were recorded for molecule
lengths 4 and 5. All solutions were analysed, checking whether they are
known molecules in public databases and chemical suppliers including
PubChem (Kim et al., 2016), ChemSpider, synquestlabs, alfa aesar,
matrix scientific.

The original data set that was used was one consisting of 192
molecular components, mostly refrigerants. Every compound in the
data set was labelled with a boiling point Tb. The boiling points in
the dataset ranged from 145.15 to 482.05 K. The atom types in the
original data set are carbon (C), oxygen (O), fluorine (F), chlorine (Cl),
bromine (Br), nitrogen (N) and sulphur (S). Early testing indicated that
solving times of the MILP formulation increased with more features in
the feature vectors. Therefore, the data set was analysed and atom types
which were not frequently represented in the dataset (<11 times) were
removed. The resulting data set has 177 molecules, with a Tb range of
145.15 482.05. The atom types that were included in the model are

carbon (C), oxygen (O), fluorine (F) and chlorine (Cl).
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Fig. 2. Box-plots of the MSE of the validation data, for the GCN and GraphSAGE models for different layer depths and node width, after independently running the models 20
times for each configuration. The box-plots indicate the median, the lower and upper quartile and the lowest and largest MSE, when outliers, which are indicated by the dots, are
excluded.
Table 2
Solving times (up to 36 000 s; smaller is better) and remaining optimality gaps (smaller is better) for the GCN MIQCP formulation for different molecule lengths.

Num. layers 0 1 2

Nodes/layer 0 16 32 64 16 32 64

Molecule length 4 Time (s) 45 536 6426 13 404 9428 – –
MIP Gap 0.00 0.00 0.00 0.00 0.00 3.59 30.19

Molecule length 6 Time (s) 2309 – – – – – –
MIP Gap 0.00 2.92 8.61 8.20 31.61 47.10 93.86

Molecule length 8 Time (s) – – – – – – –
MIP Gap 0.54 7.79 14.21 12.11 39.32 63.47 104.51
4.2. Results

The following section describes the results that were found in the
computer experiments. First, the results are discussed for the GCN and
GraphSAGE models individually. The results per model differ in node
depth, layer width and molecule length. Thereafter, a comparison is
described between models with the same parameters. Lastly, the CAMD
case study is described, showing which molecules were found using the
proposed methods.

4.2.1. Initial computer experiments
For both GCN and GraphSAGE models, we trained seven configura-

tions (differing in the number of hidden layers and nodes per hidden
layer) using the MSE as a loss function. A comparison of the box plots of
the MSE of the models can be found in Fig. 2. Recall that temperatures
are in normalised Kelvin.

For the GCN model, the minimum MSE values range from 0.0213 to
0.0278 and the median MSE values range from 0.0360 to 0.0495. For
the GraphSAGE model the minimum MSE values range from 0.0171
to 0.0277 and the median from 0.0308 to 0.0438. In case of the
GraphSAGE we can see that median MSE values decrease as the number
of nodes per layer increase. For GCN no such pattern can be detected.
Comparing the model accuracy of both GNN models shows that the
GraphSAGE model has a better median MSE validation value for 4
out of the 7 configurations. The minimum MSE values also show the
GraphSAGE model to be better for 4 out of the 7 configurations. The
best overall minimum MSE is found in the 1 x 64 configuration of the
GraphSAGE model, with an MSE of 0.0171. However, the 1 x 16 is a
close second with an MSE of 0.0181.

We then optimised the MILP and MIQCP formulations of the trained
GNNs with a maximum time limit of 10 h. Table 2 compares the
results for the optimisation of the MIQCP formulation for the different
10
configurations. Only six out of the 21 experiments were solved within
10 h. All configurations were solved for molecule length 𝑛 = 4 apart
from 2 x 32 and 2 x 64, with solution times increasing with the
number of nodes. For 𝑛 = 6 only the formulation with 0 hidden
layers was solved to optimality. The optimality gaps are non-zero for
the configurations where an optimum is not found. Recall that the
optimality gap indicates how far the upper bound is removed from
the lower bound, expressed in multiples of the lower bound. As the
node depth increases, the remaining optimality gap after 10 h increases,
apart from increasing the node depth from 32 to 64 with 1 hidden layer
for 𝑛 = 6 and 𝑛 = 8. As the layer depth increases, the optimality gap
also increases for all non-solved configurations. Finally, we note that
all optimality gaps increase as the molecule length increases.

Table 3 shows the results of optimising the MILP formulations of the
trained GraphSAGE neural networks. Only 5 configurations were solved
to optimality. All the others terminated after a time limit of 10 h. Of
the solved cases, four optima were found when the search space was
limited to atoms of length 4 (𝑛 = 4), the other one was found when
𝑛 = 6. Once again, the solution times increase with both the size of
the GNN and the length of the molecules. We see that for 𝑛 = 4, 6, as
the node depth increases, the remaining optimality gaps become larger.
For 𝑛 = 8, this is not the case. When increasing the node depth for
one hidden layer from 16 to 32, the optimality gap decreases. When
increasing the number of layers, the optimality gap always gets larger
when the node depth stays the same, for all molecule lengths. Finally
as the molecule length increases, the optimality gap also increases.

We can also compare between the GCN and GraphSAGE models. As
mentioned previously, six of the GCN formulations were solved within
10 h, while only five of the GraphSAGE formulations were solved. For
the solved problems, the GraphSAGE model is generally faster, apart
from the configurations 1 $x$ 64 and 2 $x$ 16 for 𝑛 = 4, where in
the latter case GCN solves to optimality and GraphSAGE does not. We
also observe that GraphSAGE has a better optimality gap than the GCN
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Table 3
Solving times (up to 36 000 s; smaller is better) and remaining optimality gaps (smaller is better) for the GraphSAGE MIQCP formulation for different molecule lengths.

Num. layers 0 1 2

Nodes/layer 0 16 32 64 16 32 64

Molecule length 4 Time (s) 3 384 1045 30 248 – – –
MIP Gap 0.00 0.00 0.00 0.00 0.91 4.93 13.99

Molecule length 6 Time (s) 1108 – – – – – –
MIP Gap 0.00 0.57 2.29 8.49 5.57 11.39 17.26

Molecule length 8 Time (s) – – – – – – –
MIP Gap 0.33 5.19 3.63 11.18 7.11 13.60 26.54
Fig. 3. Comparison of the GA and GNN. The solving time in seconds for the GA indicates after how many seconds the GA found an objective value of equal quality or better,
than the MILP formulation of the GNN.
formulation for most configurations and molecule lengths. There are a
few exceptions however. For 𝑛 = 4, 2 $x$ 16 and 2 $x$ 32, GCN has
a smaller optimality gap than the GraphSAGE formulation. The same
goes for 𝑛 = 6 with 1 hidden layer and 64 nodes in that layer.

Finally we compare the solving times of the GNNs with a baseline.
Fig. 3 shows this comparison. For 35 out of 42 instances (83%), the
GA found an equally good solution as the deterministic optimiser in
less than 2 min. For 3 instances, the GA did not find an equally good
11
objective value and terminated because it reached the time limit of 10
hours.

4.2.2. Case study
For the case study, we selected the GraphSAGE GNN with 1 hidden

layer and 16 nodes. The reason for choosing this model is explained
in Appendix F.1. Recall from Section 4.1.1 there were three different
search spaces for the molecules. These were the search space of single
and double bonded molecules, single and triple bonded molecules, and
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Fig. 4. The molecules associated with the best found lower bounds during the branch and bound optimisation process of the GraphSAGE formulation with 1 hidden layer and 16
nodes.
Table 4
MILP size for the 1 × 16 configuration of the GraphSAGE model.

Length Search space Constraints Variables

Continuous Integer Total

4 Double bonds 4800 1345 540 1885
4 Triple bonds 4800 1345 540 1885
4 Double and triple bonds 4919 1345 576 1921
5 Double bonds 7254 1905 756 2661
5 Triple bonds 7254 1905 756 2661
5 Double and triple bonds 7438 1905 811 2716

single, double, and triple bonded molecules. Graphical representations
of the found solutions for 𝑛 = 4 and 𝑛 = 5 are shown in Fig. 4. The size
of the MILP is reported in Table 4.

There are multiple molecules obtained from the outcomes of the
MILP solver. This was achieved using Gurobi’s Solution Pool tool.
Specifically, while the goal of a MILP solver is to find the globally
optimal solution, other feasible solutions can be found as an algorithm
progresses as an indirect output. We note that MILP can in this way
produce a candidate pool similar to how GA can.

There are repeated molecules in the solution set. These are solutions
that have different adjacency matrices but constitute to the same
12
molecule. In total, there were 20 unique molecule-like structures found
during the optimisation of the different search spaces. The analysis
of these molecules can be found in Table 5. Zhang et al. (2023)
develop symmetry-breaking constraints, which is a route to prevent
generation of repeat molecules; their work applies to MILP and also to
GA approaches, and could be added to our formulations in the future.

For 12 of the 20 molecules, we found literature sources indicating
that the molecules were experimentally observed through a manual
search of SMILES strings on public databases and chemical suppliers
including PubChem (Kim et al., 2016), ChemSpider, synquestlabs, alfa
aesar, matrix scientific. For the 12 observed molecules, 9 were synthe-
sised, and their boiling points were recorded. Two of the molecules
were not experimentally observed but were mentioned in papers as
hypothetically possible under large pressure. Two of the molecules
found during the optimisation process were also present in the training
data set; all the others were not.

The absolute difference between the experimentally observed boil-
ing points and the predicted boiling points from the optimisation
ranged from 282.59 K to 345.39 K. The relative difference, calculated by
the difference divided by the experimental boiling point, ranged from
2.7%–24.2%.
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Table 5
Table with all computer experimental results and interpretation of the case study. Experimentally observed instances (in the literature) indicated with a star come from a database
of a chemical supplier. The predicted 𝑇𝑏 (K) is calculated by 𝑇𝑏 (K) = mean + std× obj_val, mean = 312.64, std = 62.98, where the mean and std are from the training data set.

Bonds Molecule
length

Formula Experimentally
observed

Experimental
𝑇𝑏 (K)

Molecular name In training
dataset?

Objective
value

Predicted
𝑇𝑏 (K)

Difference

Double bonded 4 C3FH5 TRUEa 253.15 Allyl fluoride FALSE 0.02 313.17 60.02
C2H4O2 TRUE

(Mardyukov
et al., 2020)

1,1-Dihydroxyethene FALSE 0.78 361.61

5 C4FH7 FALSE n/a FALSE 0.27 329.79
C4H8O TRUEb 343.15 Butanone TRUE 0.63 352.59 9.44
C4H6O FALSE n/a FALSE 0.72 357.90
C2H4O3 TRUEb 375.15 Glycolic acid FALSE 1.35 397.92 22.77

Triple bonded 4 C3H4O TRUEb 377.15 Propargyl alcohol FALSE 0.57 348.49 −28.66
5 C4H2O TRUE (Araki

and Kuze,
2008)

Butadiynol FALSE 0.19 324.31

C4H6O TRUEa 329.15 (±)-3-Butyn-2-ol FALSE 0.82 364.57 35.42
C3H4O2 FALSE 2-Propyne-1,1-diol FALSE 1.12 383.40

Double & triple bonded 4 C2FH3O TRUEc 283.15 Acetyl fluoride FALSE 0.20 324.94 41.79
C2F2H4 TRUEa 293.85 1,2-Difluorethane TRUE 0.71 357.30 63.45
C2FH5O TRUEb 366.15 2-Fluoroethanol FALSE 1.15 385.06 18.91
CH4O3 FALSE Hydroperoxymethanol FALSE 1.63 415.34
H2O4 TRUE (Levanov

et al., 2011)
Tetraoxidane FALSE 1.80 425.95

5 C4FH5 FALSE 2-Fluoro-1,3-butadiene FALSE 0.01 313.17
C3FH5O TRUEc 298.15 2-Fluoro-2-propen-1-ol FALSE 0.92 370.39 72.24
C2H4O3 FALSE Dihydroxyacetaldehyde FALSE 1.49 406.47
CH4O4 FALSE (Böhm

et al., 1997)d
Orthocarbonic acid FALSE 2.33 459.23

H2O5 FALSE
(Levanov
et al., 2011)d

Pentaoxidane FALSE 2.39 463.40

a Matrix Scientific.
b Alfa Aesar.
c Synquest.
d Hypothetical molecule in cited paper.
5. Discussion

5.1. Model complexity

When comparing the MILP formulation of the GCN and the MIQCP
formulation of the GraphSAGE network, the MIQCP formulation is
bi-linear, whereas the MILP formulation is linear. Linear solvers are
known to be faster than non-linear solvers in general. Another draw-
back for the GCN formulation is that initially, a vast number of con-
straints and variable are introduced to linearise the normalisation term.
This is not the case for the GraphSAGE model.

However, the number of constraints and variables introduced in the
GraphSAGE formulation is far greater than for the GCN model for deep
and wide networks. This is because for every layer 𝑘 the number of
constraints for the GraphSAGE model grows by (𝑛2𝑛𝑘) whereas the
GCN model only grows by (𝑛2). For the variables we also find that
the increase is of the order (𝑛2𝑛𝑘) for GraphSAGE and (𝑛2) for the
GCN.

While theoretical comparisons between the models has value, we
also consider our empirical findings.

5.2. Individual Computer experiments

First we note that for very few instances the solver actually solves
to optimality, for both the GCN model and the GraphSAGE model.
This means that, in its current configuration, the proposed formulations
can only be used to find small graphs of size 4 in a time span of
10 hours. Some improvements can be made to improve solving times,
which will be discussed later. However, even with improvements we
do not expect the search space to be able to include graphs that are
multiple orders of magnitude larger than the graphs that we currently
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find. This means that the proposed optimisation formulations cannot be
used in other contexts where large graph neural networks are used, like
road network modelling, or recommender systems. This implies that
the proposed techniques, in its current formulation, should be used for
small graph optimisations only, like molecule optimisation. At the same
time, the encountered computational complexity also motivates the use
of inexact solvers, such as the genetic algorithm.

Second, we note that the use of a deterministic optimiser (i.e.,
Gurobi for MILPs) has the advantage of knowing how close one is to
the actual solution, while running the algorithm, expressed by the op-
timality gap. However, the computer experiments show that optimality
gaps rapidly increase as the model becomes more complex, or as the
search space includes larger graphs. When modelling some instances,
this optimality gap might not be as useful anymore. For instance, in
the case that 𝑛 = 8, the optimality gap was 26.54 after running the
𝟸× 𝟼𝟺 instance of the GraphSAGE model for 10 h. The range of boiling
points in the training set ranged from 145.15–482.05 K. With the found
objective lower bound, the optimality gap of 26.54 implies that the
solution lies in a range of approximately 675–2045 K. For the set of
refrigerants we could assume beforehand that the temperatures were
in this boiling point range for molecules of length 8.

Third, we discuss the simple fact that when the number of nodes
per layer increases, the solving time goes up for both the GCN and
GraphSAGE. The same pattern can be seen when increasing the hidden
layers per model. These results are as expected for general mixed
integer linear programming formulations. As the number of layers
and nodes increases, the number of decision variables and constraints
increases, making the problem more difficult to solve. The optimality
gap shows similar results apart from a few exceptions as laid out in
the result description section. The cases where unexpected results were
seen were rerun, but resulted in similar optimality gaps, implying that
the problem lay somewhere with the learned parameters of the GNN.
We further explore this in the next section.
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Finally, a general remark on the bounds for the GNNs. The input
bound size for the MLP which comes after the pooling layer increases
linearly with the number of nodes that are in the graphs in the search
space. This is because the output bounds of the feature vectors of the
GNNs get summed in the pooling layer. In some cases this makes sense.
Larger structures sometimes result in higher objective values, as is the
case with boiling points of molecules. However, when bound are loose
to start with, it amplifies this error, resulting in even larger bounds.
This has a negative impact on the solving times.

5.3. Comparison of the computer experiments

As discussed above, the GraphSAGE model is generally better than
the GCN model in terms of solving times; and when not solved to
optimality, better also in terms of an optimality gap. There are instances
where the GCN is better than the GraphSAGE model empirically. First
we note that the bounds of the GCN models are smaller than those of
the GraphSAGE model, for equal node depth and layer width. As men-
tioned before, smaller bounds result in faster solving times. However,
that the bound difference is generally present for all instances when
comparing the GCN and GraphSAGE, suggests there must be another
reason for these exceptions.

Second, since training a neural network is a stochastic process, that
training different neural networks with the same hyper-parameters does
not result in the same weights and biases. We hypothesise that optimis-
ing different trained GNNs with the same configurations can result in
different solving times. This is because having different weights and
biases has an impact on the bounds. In turn, we know that larger
bounds have a negative impact on the solving time. We tested this
hypothesis as can be seen in Appendix F.2. The same experiment for
the instance 𝟸 × 𝟷𝟼 was repeated 5 times. The results shows that
different trained neural network parameters result in different solving
times when optimised using a deterministic solver. This confirms our
hypothesis. Despite this, we find no correlation between the bounds
and the solving time. We expected larger bounds to result in slower
solving times, but this small test in the appendix does not confirm this
hypothesis.

A final point pertaining to the initial computer experiments is the
genetic algorithm baseline comparisons. It is clear from the results that
in most cases the GA is superior to the deterministic solvers in terms
of finding a solution of equal quality while taking less time. There are
three instances where the GA does not find a solution of equal quality.
In these cases, the GA gets stuck in a local maximum. These instances
also illustrate the main shortcoming of the GA: having no guarantee of
convergence to the global optimum.

5.4. Discussion of the case study

The goal of the case study was to emulate an instance where a
researcher is looking for molecules with a maximal boiling point. First
recall that 12 of the molecules that were found were experimentally
observed. Of the other 8 molecules, we were able to find two which
were mentioned in research as hypothetical molecules. These were able
to be synthesised under very high pressure or were unstable. Of the
remaining 6, we were unable to find any mentions in literature.

It is noteworthy that only two of the 20 molecules found were in the
original data set. We believe that this shows that a model can be trained
on a particular data set and that other molecules can be found outside
of that data set, of which some can be synthesised. This generalisation
ability points to a real-life use case for the proposed formulation in
this article. However, this extrapolation over the training data domain
can also contribute towards larger prediction errors (as observed in
Table 5). In future works, we recommend modelling a validity domain
and adding this as a constraint during optimisation (Schweidtmann
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et al., 2022).
There are two final remarks we would like to make on the found
solutions, recognising that the modelling of the chemical properties was
not the main focus of this work. First, on the one hand, we do see
that when experimental results (in the literature) exist of molecules
with similar input constraints and molecule length, the experimental
boiling points increase as the modelled boiling points increase. This
shows some validation for the modelling quality. Second, on the other
hand, we note that the mean absolute error of the trained GNN is about
6.65. For the found molecules, of which experimental boiling point
data is available, we see that our mean absolute error is around 17.75.
Without further exploration, we cannot draw immediate conclusions
from this. However, one hypothesis is that this might suggest is that
when modelled molecules are at the higher end of the boiling point
spectrum, then the errors of the GNNs become larger.

We end the discussion by remarking that the focus of this work
is on the formulation of GNNs as optimisation models. In terms of
the number of atoms used to build molecules, the scale of case study
problems studied remains very small in the context of CAMD.

6. Conclusion and outlook

The success of computer aided molecular design and the ubiquity of
neural networks lead to the question whether one can optimally search
for molecular designs, constrained by certain properties, by making
use of graph neural networks. A key barrier to using ‘traditional’,
non-graph structured networks is that they struggle to learn from non-
euclidean data, whereas molecules are naturally modelled as graph-like
structures, motivating the use of GNNs.

Recognising recent progress on exact formulations of non-graph
neural networks as mixed integer (non-)linear programs, this work
therefore formulated trained GNNs as MILP programming formula-
tions. These formulations can be used as surrogate models in optimi-
sation problems. In particular, we treated two classes of GNNs: the
frequently-used GCN and the contemporary GraphSAGE. We developed
a formulation of GCN as a MIQCP, and of GraphSAGE as a MILP.

In terms of accuracy, we hypothesised that the GCN would reach
better model accuracy with fewer hidden layers and nodes per layer
than GraphSAGE, due to the GCN model’s more complex architecture.
The results (Fig. 2), do not support this hypothesis. For four of the
seven configurations (hidden layers × nodes) the GraphSAGE model
has a better median validation MSE while running for 20 iterations,
and for four of the seven configurations, the GraphSAGE model has a
lower minimum validation error than the GCN model. Overall, with the
hyper-parameters tested, we achieved similar model accuracy for both
the GCN and GraphSAGE model, even with the same number of hidden
layers and nodes per layer.

In terms of solving speed, we hypothesised was that the GraphSAGE
MILP formulations would be faster than the GCN MIQCP formulations
because linear solvers are faster than non-linear solvers (in this case,
bi-linear). The results (Tables 2 and 3) find that the GraphSAGE model
was generally faster (four of the six solved instances). The optimality
gaps also seem to suggest that if the experiments were ran for longer the
GraphSAGE would generally solve to optimality first. This is because
for all but three configurations (12 out of 15 early terminated cases)
the GraphSAGE model had a smaller optimality gap than the GCN
model. Overall, there is evidence to suggest the MILP formulation
of the GraphSAGE model solves to optimality faster than the MIQCP
formulation of the GCN model, with similar model accuracy. This is
because our trained model accuracy is about the same and sometimes
better for the GraphSAGE model compared to the GCN model, for
models with similar hidden layers and number of nodes, combined with
the fact that the GraphSAGE model often solves to optimality faster
with similar configurations.

Our final contribution was to apply the MI(N)LP formulations to
a case study of optimising the boiling points of molecules. The case

study successfully derived a set of optimal molecules, given constraints
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on the design space. Of the 20 molecules derived, 12 were found were
experimentally observed. Of the other eight, the literature notes two as
hypothetical molecules. These were able to be synthesised under very
high pressure or were an unstable molecule of molecular reaction. The
remaining six molecules appear to be novel; their chemical feasibility
in practice would be tested in vitro studies.

Our work opens up several prominent research directions. First,
the models themselves have potential for improvement with stronger
bound tightening techniques, and we think techniques for tightening
MLP MILP formulations can be applied to GNN MILPs also. Going
beyond feasibility-based bound tightening, optimisation-based bound
tightening techniques (OBBT), and the combined technique of Wang
et al. (2021). It will also be relevant to investigate comparing formula-
tions using integer versus binary MILP formulations.

Second, using GNNs in CAMD, there is opportunity in increasing
the training set size and using more of the learnable features, and
reconsidering linearise structures and the input constraints. We under-
line that training of the GNNs was not the main focus of the current
work, and that we applied our novel formulations to GNN as a case
study. Third, when deterministic optimisation is not the main priority
for researchers, our straightforward GA for optimising trained GNNs
already shows promise.
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ppendix A. Linear formulations of ReLU neural networks

The first exact MILP formulations emulate the ReLU operator us-
ng binary activation variables and big-M formulations. Later works
ntroduce tighter alternatives to big-M (Anderson et al., 2020; Tsay
t al., 2021) or formulations that consider multiple nodes simulta-
eously (Singh et al., 2019). There have been various applications
ike neural network verification (Fischetti and Jo, 2018; Tjeng et al.,
017; Bunel et al., 2018; Dutta et al., 2018), counting linear regions
n NNs (Serra et al., 2018), and lossless compression of NNs (Kumar
t al., 2019; Serra et al., 2020). NNs can also be used as surrogate
odels of a complex relationship. MILP formulations of NNs allow NNs

o be used as surrogate models in optimisation problems. The advantage
eing that non-linear relationships modelled by neural networks can be
15
xpressed in linear optimisation problems (Grimstad and Andersson,
019; Di Martino et al., 2022; Kody et al., 2022; Yang et al., 2021).
urther, we note that (MILP formulations of) NNs as surrogate could be
mplemented in a larger model, such as integrated process and material
esign.

From the literature it is apparent that the bounds used in the
ig-M constraints have an impact on the solving time of the linear
olvers (Vielma, 2015b). As a result, multiple research papers have
ections dedicated on how to tighten said bounds (Cheng et al., 2017;
utta et al., 2018; Tjeng et al., 2017; Fischetti and Jo, 2018; Grimstad
nd Andersson, 2019). The most basic and weakest among those is
nterval arithmetic, where the input bounds are propagated through the
eural network (Cheng et al., 2017; Tjeng et al., 2017; Anderson et al.,
020). Other bound tightening techniques (BTTs) generate two Linear
rogramming (LP) problems for each neuron in which the bounds
f these neurons are minimised and maximised. Tjeng et al. (2017)
o this with a relaxation of the binary activation variables, which
inds better bounds than interval arithmetic but is computationally
ore expensive. Fischetti and Jo (2018) find even tighter bounds by
ot relaxing the activation variable for a neuron, but this is even
ore computationally expensive. Wang et al. (2021) suggest a method

ombining the previously mentioned methods. It is a pre-processing
pproach which comprises of identifying nodes which would benefit
ost from applying an computationally expensive bound tightening

pproach.
Training a neural network results in a function which emulates

complex non-linear function. It does so by an architecture of con-
ecutive layers alternating between a set of affine functions and a
on-linear activation function. The following subsection describes how
o linearise, for each hidden layer 𝑘 ∈ {1,… , 𝐾 − 1}, the following MLP
ayer:
𝑘 = 𝜎(𝑊 𝑘𝑥𝑘−1 + 𝑏𝑘) (A.1)

here 𝜎(⋅) = max {0, ⋅} is the ReLU function, 𝑥𝑘 ∈ R𝑛𝑘 is the output of
ayer 𝑘, 𝑊 𝑘 and 𝑏𝑘 are respectively the found weights and bias of layer
.

There are different methods to linearise Eq. (A.1). This paper consid-
rs the linearisation by Fischetti and Jo (2018); this suffices for us to go
n to linearise GNNs. The output of the affine equations are decoupled
n a positive part 𝑥 ≥ 0 and negative part 𝑠 ≥ 0, resulting in the linear
quation
𝑇 𝑦 + 𝑏 = 𝑥 − 𝑠. (A.2)

y doing this, the ReLU function can be emulated by forcing either 𝑥
r 𝑠 to be zero. This can be achieved with the introduction of a binary
ctivation variable 𝑧 and big-M activation constraints. The following

logic needs to apply:

⎧

⎪

⎨

⎪

⎩

𝑧 = 0 then 𝑠 ≤ 0
𝑧 = 1 then 𝑥 ≤ 0
𝑧 ∈ {0, 1}

(A.3)

The linear inequalities that force this logic are big-M constraints. These
inequalities are of the type 𝑥 ≤ 𝑀+(𝑧) and 𝑠 ≤ 𝑀−(1 − 𝑧). The
arameters 𝑀+ and 𝑀− are an upper bound and lower bound on the
ossible values of 𝑥 and 𝑠 respectively. If the left hand side of Eq. (A.2)
s positive, 𝑥 is forced to positive too. As a result 𝑧 must be 1 due to its

binary property, consecutively forcing 𝑠 = 0. When the left hand side
of Eq. (A.2) is negative the same logic applies, forcing 𝑧 = 0.

It is assumed that bounds can be found such that 𝑙 ≤ 𝑤𝑇 𝑦+𝑏 ≤ 𝑢. For
every neuron 𝑗 layer 𝑘 of any neural network where the ReLU function
is applied the following set of constraints are introduced:

𝑥𝑘𝑗 ≤ 𝑢𝑘𝑗 𝑧
𝑘
𝑗 (A.4a)

𝑠𝑘𝑗 ≤ −𝑙𝑘𝑗 (1 − 𝑧𝑘𝑗 ) (A.4b)

𝑧𝑘 ∈ {0, 1}. (A.4c)
𝑗
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The following states the formulation for a multilayer perceptron
with 𝐾 layers and 𝑛𝑘 nodes 𝑗 per layer. It assumes the final output layer

to be singular and there not to be a ReLU function on that layer.
𝐾𝑥𝐾−1 + 𝑏𝐾 = 𝑥𝐾1 (A.5a)

𝑊 𝑘
𝑗 𝑥

𝑘−1 + 𝑏𝑘𝑗 = 𝑥𝑘𝑗 − 𝑠𝑘𝑗 ∀𝑘 ∈ {1,… , 𝐾 − 1},∀𝑗 ∈ {1,… , 𝑛𝑘} (A.5b)

𝑥𝑘𝑗 ≤ 𝑢𝑘𝑗 𝑧
𝑘
𝑗 ∀𝑘 ∈ {1,… , 𝐾 − 1},∀𝑗 ∈ {1,… , 𝑛𝑘} (A.5c)

𝑘
𝑗 ≤ −𝑙𝑘𝑗 (1 − 𝑧𝑘𝑗 ) ∀𝑘 ∈ {1,… , 𝐾 − 1},∀𝑗 ∈ {1,… , 𝑛𝑘} (A.5d)
𝑘
𝑗 , 𝑠

𝑘
𝑗 ≥ 0 ∀𝑘 ∈ {1,… , 𝐾 − 1},∀𝑗 ∈ {1,… , 𝑛𝑘} (A.5e)

𝑘
𝑗 ∈ {0, 1} ∀𝑘 ∈ {1,… , 𝐾 − 1},∀𝑗 ∈ {1,… , 𝑛𝑘} (A.5f)
0 ∈ 𝛺 (A.5g)

In this formulation, 𝑊 𝑘
𝑗 is row 𝑗 of the weight matrix of layer

, which naturally has the same dimension as the output 𝑥𝑘−1 of
he previous layer. The first input vector is constrained by the input
onstraints 𝛺. These are additional input constraints, containing the
nput bounds, but also other properties which can constrain the input
ector, when used in surrogate models for example.

As noted by Grimstad and Andersson (2019), this is an exact for-
ulation of the ReLU neural network. This means that the above

ormulation exactly emulates the trained neural network from which
he weight matrices 𝑊 𝑘 and biases 𝑏 are extracted. For any given
nput 𝑥0 the output of the MILP formulation and the neural net should
ave the same outcome. The solution which the MILP solver finds also
inds consistent solution variables, with the exception of differing 𝑧𝑘𝑗
ariables in case the input node 𝑥𝑘𝑗 is 0. Note this has no effect on the
utput, however.

ppendix B. MI(N)LP formulations of the GNNs

.1. GCN

𝐾𝑀𝐿𝑃 𝑥(𝐾𝑀𝐿𝑃 −1) + 𝑏𝐾 = 𝑥𝐾1 (B.1a)
𝑘
𝑗 𝑥

𝑘−1 + 𝑏𝑘𝑗 = 𝑥𝑘𝑗 − 𝑠𝑘𝑗 ∀𝑘 ∈ {1,… , 𝐾𝑀𝐿𝑃 − 1},

(B.1b)
∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.1c)
𝑘
𝑗 ≤ 𝑈𝑘

𝑗 𝑧
𝑘
𝑗 ∀𝑘 ∈ {1,… , 𝐾𝑀𝐿𝑃 − 1},

(B.1d)
∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.1e)
𝑘
𝑗 ≤ −𝐿𝑘

𝑗 (1 − 𝑧𝑘𝑗 ) ∀𝑘 ∈ {1,… , 𝐾𝑀𝐿𝑃 − 1},

(B.1f)
∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.1g)
0
𝑗 =

∑

𝑖
𝐻𝐾

𝑖𝑗 𝑗 ∈ {1,… , 𝑛𝐾}

(B.1h)
∑

𝑙
�̂�𝑖𝑙𝑊

𝑘
𝑗
𝑇𝐻 (𝑘−1)

𝑙 = 𝐻𝑘
𝑖𝑗 − 𝑆𝑘

𝑖𝑗 ∀𝑘 ∈ {1,… , 𝐾},

(B.1i)
∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.1j)
𝑘
𝑖𝑗 ≤ 𝑈𝑘

𝑖𝑗𝑍
𝑘
𝑖𝑗 ∀𝑘 ∈ {1,… , 𝐾},

(B.1k)
∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}
16

(B.1l)
𝑘
𝑖𝑗 ≤ −𝐿𝑘

𝑖𝑗 (1 −𝑍𝑘
𝑖𝑗 ) ∀𝑘 ∈ {1,… , 𝐾},

(B.1m)
∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.1n)
+
𝑖 =

∑

𝑗
�̃�𝑖𝑗 ∀𝑖 ∈ {1,… , 𝑁}

(B.1o)

𝑖𝑙 = 𝑑+
𝑖 (𝑑𝑚𝑎𝑥 + 1) + 𝑑+

𝑙 ∀𝑖, 𝑙 ∈ {1,… , 𝑁}

(B.1p)
= 𝑝𝑖𝑙 − 1𝑐𝑖𝑙1 − 2𝑐𝑖𝑙2

−⋯ − (𝑑𝑚𝑎𝑥 + 1)2𝑐𝑖𝑙(𝑑𝑚𝑎𝑥+1)2 ∀𝑖, 𝑙 ∈ {1,… , 𝑁}

(B.1q)
= 𝑐𝑖𝑙1 +⋯ + 𝑐𝑖𝑙(𝑑𝑚𝑎𝑥+1)2 ∀𝑖, 𝑙 ∈ {1,… , 𝑁}

(B.1r)

𝑖𝑙 = 𝑐𝑖𝑙1 𝑔1 +⋯ + 𝑐𝑖𝑙(𝑑𝑚𝑎𝑥+1)2𝑔(𝑑𝑚𝑎𝑥+1)2 ∀𝑖, 𝑙 ∈ {1,… , 𝑁}

(B.1s)
𝑠𝑖𝑙 −𝑀(1 − 𝐴𝑖𝑙) ≤ �̂�𝑖𝑙 ≤ 𝑀(1 − 𝐴𝑖𝑙) + 𝑠𝑖𝑙 ∀𝑖, 𝑙 ∈ {1,… , 𝑁}

(B.1t)
− 𝑀𝐴𝑖𝑙 ≤ �̂�𝑖𝑙 ≤ 𝑀𝐴𝑖𝑙 ∀𝑖, 𝑙 ∈ {1,… , 𝑁}

(B.1u)
0 ≤ 𝑥𝑘𝑗 , 𝑠

𝑘
𝑗 ∈ R ∀𝑘 ∈ {1,… , 𝐾𝑀𝐿𝑃 },

(B.1v)
∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.1w)
𝑘
𝑗 ∈ {0, 1} ∀𝑘 ∈ {1,… , 𝐾𝑀𝐿𝑃 − 1},∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.1x)
≤ 𝐻𝑘

𝑖𝑗 , 𝑆
𝑘
𝑖𝑗 ∈ R ∀𝑘 ∈ {1,… , 𝐾},

(B.1y)
∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.1z)
𝑍𝑘

𝑖𝑗 ∈ {0, 1} ∀𝑘 ∈ {1,… , 𝐾},

(B.1aa)
∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.1ab)
�̂�𝑖𝑙 , 𝑠𝑖𝑙 ∈ R ∀𝑖, 𝑙 ∈ {1,… , 𝑁}

(B.1ac)
𝑝𝑖𝑙 , 𝑐𝑖𝑙 ∈ {0, 1} ∀𝑖, 𝑙 ∈ {1,… , 𝑑𝑚𝑎𝑥 + 1}

(B.1ad)
𝑑+
𝑖 ∈ {0, 1} ∀𝑖 ∈ {1,… , 𝑑𝑚𝑎𝑥 + 1}

(B.1ae)
𝐴𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ {1,… , 𝑁}

(B.1af)

𝐻0, 𝐴 ∈ 𝛺 (B.1ag)

B.2. Graphsage

𝑊 𝐾𝑀𝐿𝑃 𝑥(𝐾𝑀𝐿𝑃 −1) + 𝑏𝐾 = 𝑥𝐾𝑀𝐿𝑃
1 (B.2a)

𝑊 𝑘
𝑗 𝑥

𝑘−1 + 𝑏𝑘𝑗 = 𝑥𝑘𝑗 − 𝑠𝑘𝑗 ∀𝑘 ∈ {1,… , 𝐾𝑀𝐿𝑃 − 1},

(B.2b)
∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.2c)
𝑥𝑘𝑗 ≤ 𝑈𝑘

𝑗 𝑧
𝑘
𝑗 ∀𝑘 ∈ {1,… , 𝐾𝑀𝐿𝑃 − 1},
(B.2d)
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∀𝑗 ∈ {1,… , 𝑛𝑘}
(B.2e)

𝑘
𝑗 ≤ −𝐿𝑘

𝑗 (1 − 𝑧𝑘𝑗 ) ∀𝑘 ∈ {1,… , 𝐾𝑀𝐿𝑃 − 1},

(B.2f)
∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.2g)
0
𝑗 =

∑

𝑖
𝐻𝐾

𝑖𝑗 𝑗 ∈ {1,… , 𝑛𝐾}

(B.2h)

�̂� 𝑘
𝑗 )

𝑇𝐻 (𝑘−1)
𝑖 + (�̄� 𝑘

𝑗 )
𝑇

×
∑

𝑙
𝑏(𝑘−1)𝑖𝑙 = 𝐻𝑘

𝑖𝑗 − 𝑆𝑘
𝑖𝑗 ∀𝑘 ∈ {1,… , 𝐾},

(B.2i)
∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.2j)
𝑘
𝑖𝑗 ≤ 𝑈𝑘

𝑖𝑗𝑍
𝑘
𝑖𝑗 ∀𝑘 ∈ {1,… , 𝐾},

(B.2k)
∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.2l)
𝑘
𝑖𝑗 ≤ −𝐿𝑘

𝑖𝑗 (1 −𝑍𝑘
𝑖𝑗 ) ∀𝑘 ∈ {1,… , 𝐾},

(B.2m)
∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.2n)
𝐻𝑘

𝑙 −𝑀(1 − 𝐴𝑖𝑙) ≤ 𝑏𝑘𝑖𝑙 ∀𝑘 ∈ {0,… , 𝐾 − 1},
(B.2o)

∀𝑖, 𝑙 ∈ {1,… , 𝑁}
(B.2p)

𝑘
𝑖𝑙 ≤ 𝐻𝑘

𝑙 +𝑀(1 − 𝐴𝑖𝑙) ∀𝑘 ∈ {0,… , 𝐾 − 1},
(B.2q)

∀𝑖, 𝑙 ∈ {1,… , 𝑁}
(B.2r)

− 𝑀(𝐴𝑖𝑙) ≤ 𝑏𝑘𝑖𝑙 ≤ 𝑀(𝐴𝑖𝑙) ∀𝑘 ∈ {0,… , 𝐾 − 1},
(B.2s)

∀𝑖, 𝑙 ∈ {1,… , 𝑁}
(B.2t)

0 ≤ 𝑥𝑘𝑗 , 𝑠
𝑘
𝑗 ∈ R ∀𝑘 ∈ {1,… , 𝐾𝑀𝐿𝑃 },

(B.2u)
∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.2v)
𝑧𝑘𝑗 ∈ {0, 1} ∀𝑘 ∈ {1,… , 𝐾𝑀𝐿𝑃 − 1},

(B.2w)
∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.2x)
0 ≤ 𝐻𝑘

𝑖𝑗 , 𝑆
𝑘
𝑖𝑗 ∈ R ∀𝑘 ∈ {1,… , 𝐾},

(B.2y)
∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.2z)
𝑍𝑘

𝑖𝑗 ∈ {0, 1} ∀𝑘 ∈ {1,… , 𝐾},

(B.2aa)
∀𝑖 ∈ {1,… , 𝑁},∀𝑗 ∈ {1,… , 𝑛𝑘}

(B.2ab)
𝑏𝑘𝑖𝑙 ∈ R𝑛𝑘 ∀𝑘 ∈ {1,… , 𝐾},

(B.2ac)
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∀𝑖, 𝑙 ∈ {1,… , 𝑁}
(B.2ad)

𝐴𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈ {1,… , 𝑁}
(B.2ae)

𝐻0, 𝐴 ∈ 𝛺 (B.2af)

Appendix C. Molecule properties background knowledge

Recall from Section 3.3 that modelling chemical properties with
GNNs means that molecules are described in terms of an adjacency
matrix 𝐴 ∈ {0, 1}𝑁×𝑁 and feature vectors 𝑋 ∈ {0, 1}𝑁×𝐹 . We therefore
ntroduce an MILP formulation for molecules based on the structure
imilar to the input of GNNs.

The structure of a solution is described by the adjacency matrix
, where 𝐴𝑖𝑗 = 1 indicates that node 𝑖 is connected to node 𝑗. The
ntries of a feature vector of a node 𝑖 are indicated by 𝑥𝑖𝑓 , where

is the position of a feature in that vector. The simplest machine
earning model that was considered consists of 14 features. These
eatures represent the knowledge summarised in Table 1.

With the adjacency matrix and the feature vectors for all the nodes,
e introduce the following set of constraints:

11 = 𝐴22 = 𝐴12 = 1 (C.1a)

𝑖𝑖 ≥ 𝐴(𝑖+1),(𝑖+𝑖) ∀𝑖 ∈ {1,… , 𝑛 − 1} (C.1b)

𝑖𝑖 = 𝑥𝑖,1 +⋯ + 𝑥𝑖,4 ∀𝑖 ∈ {1,… , 𝑛} (C.1c)

𝑖𝑖 = 𝑥𝑖,5 +⋯ + 𝑥𝑖,9 ∀𝑖 ∈ {1,… , 𝑛} (C.1d)

𝑖𝑖 = 𝑥𝑖,10 +⋯ + 𝑥𝑖,14 ∀𝑖 ∈ {1,… , 𝑛} (C.1e)
4𝑥𝑖,1 + 2𝑥𝑖,2 + 1𝑥𝑖,3 + 1𝑥𝑖,4 =

0𝑥𝑖,5 + 1𝑥𝑖,6 + 2𝑥𝑖,7 + 3𝑥𝑖,8 + 4𝑥𝑖,9
+0𝑥𝑖,10 + 1𝑥𝑖,11 + 2𝑥𝑖,12 + 3𝑥𝑖,13 + 4𝑥𝑖,14

∀𝑖 ∈ {1,… , 𝑛} (C.1f)

∑

𝑗,𝑖≠𝑗
𝐴𝑖𝑗 = 0𝑥𝑖,5 + 1𝑥𝑖,6 + 2𝑥𝑖,7 + 3𝑥𝑖,8 + 4𝑥𝑖,9 ∀𝑖 ∈ {1,… , 𝑛} (C.1g)

𝑖𝑗 = 𝐴𝑗𝑖 ∀𝑖, 𝑗 ∈ {1,… , 𝑛} (C.1h)

4𝐴𝑖𝑖 ≥
∑

𝑗,𝑖≠𝑗
𝐴𝑖𝑗 ∀𝑖 ∈ {1,… , 𝑛} (C.1i)

𝑖𝑖 ≤
∑

𝑗,𝑖≠𝑗
𝐴𝑖𝑗 ∀𝑖 ∈ {1,… , 𝑛} (C.1j)

5𝐴𝑖𝑖 ≥
14
∑

𝑓=1
𝑥𝑖𝑓 ∀𝑖 ∈ {1,… , 𝑛} (C.1k)

𝑖𝑖 ≤
∑

𝑗<𝑖
𝐴𝑖𝑗 ∀𝑖 ∈ {3,… , 𝑛} (C.1l)

here 𝑛 is the number of atoms in the molecule, the big-M values are
efined as 𝑀4 = 𝑛+ 1 and 𝑀5 = |𝐹 | = 14. Intuitively, the atom 𝑖 is ‘on’
hen 𝐴𝑖𝑖 = 1.

The intuition of the above constraints is as follows:

(a) Molecules must be at least length 2 and connected (see also
constraint (𝑙)).

(b) This is a symmetry braking constraint to enforce no gaps be-
tween activated atoms.

(c) Only one atom type.
(d) Only one number of neighbours to be indicated.
(e) Only one number of hydrogen neighbours to be indicated.
(f) The covalence of the atom must equal the sum of number of

neighbours and the number of hydrogen neighbours.
(g) The number of neighbours in the feature vector must equal the

out degree in the adjacency matrix.
(h) The adjacency matrix is non directed, and thus symmetric.
(i) An atom is active if it is connected to others.
(j) An atom not connected to any others is deactivated.
(k) Feature vectors of atom 𝑖 are 0 if 𝐴𝑖𝑖 = 0.

(l) No disconnected sub-graphs.
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Appendix D. Genetic algorithm design

The purpose of the GA is to comprise a baseline non-exact method,
in comparison to MI(N)LP, for optimising over trained GNN models. In
this section we explain the operation of the GA.

D.1. Initialisation, fitness and selection

To initialise an initial population, 𝑛𝑔 graphs are generated all con-
aining 𝑛 nodes. To generate these graphs, first a random degree
equence 𝑆 of length 𝑛 is generated, where every entry 𝑆𝑖 is a number
andomly selected from the set {1,… , 𝑑max}. This degree sequence is
hen used define the edges between the nodes, such that the degree of
he nodes matches the degree in the degree sequence. From here we
an extract the adjacency matrix 𝐴.

Next the feature vectors must be initialised. The search space of
molecules is given by constraints (C.1). This means there are only single
bonds and there are 14 features. The 𝑛𝑔 matrices 𝐴, already contain
information about the number of neighbours, thus defining 𝑥𝑖,5,… 𝑥𝑖,9.
Features 𝑥𝑖,1,… 𝑥𝑖,4 and 𝑥𝑖,10,… 𝑥𝑖,14 still need to be generated. Note
that there is an interaction between features 𝑥𝑖,1,… 𝑥𝑖,4 and 𝑥𝑖,10,… 𝑥𝑖,14,
when the number of neighbours is known. If the atom type is known,
the covalence is known, and when the number of neighbours is ex-
tracted we automatically know the number of hydrogen neighbours
defined in 𝑥𝑖,10,… 𝑥𝑖,14. Therefore, only the atom types need to be
generated.

The generation of the atom types for a graph is based on the degree
sequence 𝑆. The degree limits the possible atoms types of a node 𝑖.
If the degree of a node is higher than the covalence associated with
the atom type, this atom type cannot be assigned to a node. So for the
generation of the atom type of a node 𝑖, first the degree 𝑆𝑖 is assessed,
and thereafter an atom type is chosen of which the covalence is higher
than this degree 𝑆𝑖. This results in a atom type sequence 𝑇 .

The fitness function is defined by the GNNs, in the case of this
paper, this is either the GCN model and the GraphSAGE model. The
only exception is that there is a heavy penalty for unconnected graphs.
Lastly, the selection procedure is a combination of roulette wheel
selection procedure and elitism. The group which is not part of the
molecules selected in the elites, will undergo the crossover and mu-
tation procedure.

D.2. Crossover for GNNs for chemical property modelling

The crossover procedure in GAs is commonly performed on a chro-
mosome. We therefore convert the adjacency matrix of the generated
graphs to a chromosome. The considered adjacency matrices are all
symmetric, and are thus defined by the upper triangle of the matrix
minus the diagonal. The entries of this upper diagonal, defined by
𝐶𝑟 = (𝐴(𝑟,𝑟+1),…𝐴(𝑟,𝑛))𝑇 for 𝑟 ∈ {1,… , 𝑛 − 1}, are concatenated into
a binary vector 𝐶.

The position of the single point crossover in 𝐶 also defines the
position of the crossover in the atom type sequence 𝑇 . Let 𝑘 be the
position of the crossover in 𝐶1 and 𝐶2. The point 𝑘 falls in one of
the concatenated rows 𝑟 of the vectors 𝐶1 and 𝐶2. That 𝑟 defines the
position in the crossover for 𝑇 .

The crossover for the two atom sequences 𝑇 1 and 𝑇 2 associated with
the binary vectors 𝑂1 and 𝑂2 result in the atom type offspring 𝑂𝑇 1 and
𝑂𝑇 2. The offspring are thus two new adjacency matrix representing
vectors 𝑂1 and 𝑂2 and two atom vectors 𝑇𝑂1 and 𝑇𝑂2. These matrix
vectors and atom vectors get converted to feature vectors as before.

There might be instances of an instance of offspring (𝑂1, 𝑂𝑇 1)
which is not a feasible molecule. To make the molecule feasible, we
undertake the following steps:
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1. While the amount of connected components is more than 1,
we add edges from one connected component to nodes outside
of that connected component. Then we check whether there
are nodes with a degree higher than 𝑑max and remove edges
connected to that node.

2. It can also be that the string results in an adjacency matrix which
is connected, but still some nodes have a degree higher than
𝑑max. In this case we also remove edges from that node until the
degree is lower or equal than 𝑑max. There is a small possibility
that this causes an undirected graph; however, unconnected
graphs are heavily penalised in the fitness function.

3. After step 1 and 2, there is a high possibility that the graphs
that are found are connected, and they certainly have a degree
of maximum 𝑑max. We check what the allowed degree is based on
atom type sequence 𝑂𝑇 1 and associated covalence of the atoms
in that sequence. We compare this with the degree of the nodes
in the graph. If the degree is higher than the allowed degree,
we mutate the molecules into a random molecule which has the
covalence which allows for the degree of the node.

After these steps the resulting molecule is congruent with the con-
straints of (C.1).

D.3. Mutation and terminating the algorithm

For the mutation step, with a probability 𝑃𝑚, a random entry of
the offspring 𝑂, representing the new adjacency matrix, gets selected,
and is flipped. The resulting molecule might be infeasible. In that case
the same procedure is applied as in the crossover procedure until the
molecule is feasible. After the string is mutated, the atom types are
also mutated. With a probability of 𝑃𝑚𝑎 an atom in the sequence 𝑂𝑇 is
switched to another molecule.

Finally, the intrinsic termination condition of the algorithm is after
𝜏 seconds.

Appendix E. Initial experiments

In this section we explain how the initial experiments were per-
formed. The purpose of these initial experiments is to understand
how the optimisation software performs in terms of solving time for
different GNN configurations. With these experiments we would like to
understand how the solving times (and optimality gaps) are impacted
when the node width and layer depth are altered for both the GCN
and GraphSAGE model. As a result, we obtain a better understanding
of how the models perform and we can perform a comparative study
between the GCN and GraphSAGE models.

The original data set that was used was one consisting of 192
molecular components, mostly refrigerants. Every compound in the
data set was labelled with a boiling point 𝑇𝑏. The boiling points in
the dataset ranged from 145.15 to 482.05 K. The atom types in the
original data set are carbon (C), oxygen (O), fluorine (F), chlorine (Cl),
bromine (Br), nitrogen (N) and sulphur (S). Early testing indicated that
solving times of the MILP formulation increased with more features in
the feature vectors. Therefore, the data set was analysed and atom types
which were not frequently represented in the dataset (<11 times) were
removed. The resulting data set has 177 molecules, with a 𝑇𝑏 range of
145.15–482.05. The atom types that were included in the model are
carbon (C), oxygen (O), fluorine (F) and chlorine (Cl).

The machine learning model was trained on the data set described
above. The two graph neural networks that were trained are the Graph
Convolutional Network by Kipf and Welling (2017) and the GraphSAGE
model by Hamilton et al. (2017). All molecules were converted to
a spatial representation, represented by a graph. Every atom in the
graph is represented by a node, and the bonds between the atoms are
represented by edges. Every node in the graph also had an associated
feature vector, including descriptors, which represented information
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Fig. F.5. Model selection: trade-off between MSE versus solving time and optimality gap.
about that particular atom. The descriptors that were used in both
configurations were 4 different atom types (carbon (C), oxygen (O),
fluorine (F), chlorine (Cl)), the number of neighbours of an atom (0−4
neighbours) and how many hydrogen atoms were connected (0 − 4)
atoms. All these descriptors were converted to a one-hot encoding,
resulting in 14 features to each feature vector.

The hyper-parameters for both the GCN and GraphSAGE models
were the same, and set following Schweidtmann et al. (2020). We used
the same hyper-parameters since the training of the GNNs in this paper
was a simplified version of Schweidtmann et al.’s GNN model. The
model quality was measured with the MSE. For training, all molecule
boiling points were normalised. The number of epochs were 300, with
an early stopping patience of 50. The learning rate was set to 0.001,
where after 3 consecutive epochs without model improvement, the
learning rate was decreased by 0.8.

There were seven different configurations for the two GNNs. All
GNNs had an input layer of 14 features per node, hidden layers and
32 two neurons for the output layer. The hidden layers differed in the
number of layers and the node width, in the following configurations:

Node width
16 32 64

Hidden layers
0 0
1 1 × 16 1 × 32 1 × 64
2 2 × 16 2 × 32 2 × 64

All seven GNN configurations were followed by an add pooling
layer, forming a graph fingerprint. This fingerprint of 32 nodes was
fed through a 3 layer MLP (32 → 16 → 1). All GNN configurations were
trained 20 times with the above hyper-parameter settings on the laptop.
The 20 trained networks were compared based on the validation data.
The models with the lowest validation MSE were selected and used as
parameters for the MILP formulation in the solver.

The complete formulations as described in Appendices B.1 and B.2
were implemented in Gurobi. The weights and biases were imported
from the trained GNNs with the lowest validation MSE. The only
parameter that still needed to be defined in the MILP input space
constraints was the molecule length. The MILP formulations were
solved to optimality with a molecule length of 4,6 and 8, resulting in 21
experiments for both GNNs. The experiments were ran for 10 h on the
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virtual machine. The experiments were compared on the solving time
and optimality gap; the objective values and the best found solutions
were recorded.

All configurations, for both GNNs, were compared with a baseline.
In this baseline, all formulations were optimised using a GA instead
of the (non-)linear solver. The GA was implemented as described in
Appendix D. The GA was initialised with 50 molecules. The GA was
terminated after 36000 seconds, or if the GA found the best known
objective value which was found using the deterministic optimiser.
In the latter case the amount of seconds to find this solution was
noted. The number of elites in each iterations was set to 0, because
having a higher number of elites resulted in premature convergence.
The crossover position was randomised for each pair in the formulation.
The mutation probability of flipping the string bits was set to 𝑃𝑚 = 4

|𝑇 | ,
where 𝑇 is the bit string. The mutation probability of changing the atom
types 𝑃𝑚𝑎 was set to 1

𝑛 , where 𝑛 is the length of the molecule.

Appendix F. Additional results

F.1. Deciding on the model for the case study

Fig. F.5 was used to decide which formulation to use for the case
study. Since from our other results we noted that the GraphSAGE model
generally solves faster while having a similar model accuracy, we chose
to use the GraphSAGE configuration. In Fig. F.5 we can see the plots
comparing the mean MSE with the solving time and optimality gaps.
For the case study we are only interested to see which molecules could
come out of the model. We figured that the 𝟷× 𝟷𝟼 configuration find a
decent trade off between solving time and model accuracy. While the
solving time for the 0 configuration is better for GraphSAGE, its model
accuracy is far worse.

F.2. GNN parameters and MILP solving time

A hypothesis is that the parameters found from training the GNN
could be influential to the solving time of the MILP formulation. To test
this hypothesis we ran one of the configurations 5 times and plotted
their solving times. We chose the configuration with 2 hidden layers
and 16 nodes. This is because this was one of the configurations where
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Fig. F.6. Bar graphs of the solving time of 5 randomly chosen trained models for both the GCN and GraphSAGE models, with node depth 16 and 2 hidden layers.
Fig. F.7. Scatter plots comparing the solving time and absolute average bound of 5 randomly chosen trained models for both the GCN and GraphSAGE models, with node depth
16 and 2 hidden layers.
the GCN model solved to optimality faster than the GraphSAGE model,
which is unexpected. The five trained GNNs per model where randomly
trained GNNs.

As can be seen in Fig. F.6, results are very different depending
on which trained GNN is used, for both the GCN model and the
GraphSAGE model. We can conclude that the parameters extracted
from the trained GNN influence the solving time significantly.

To check whether there was a correlation between the bounds and
the solving time we made a scatter plot comparing the bounds and the
solving time. The bounds are the mean absolute bound of the GNN
neurons. The results can be found in Fig. F.7.

We find no correlation between the bounds and solving time for
both models. Further investigation is thus warranted to see what factors
are impactful on the solving time.
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