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Scaling Methodology for Buckling of Composite 

Conical Shells in Axial Compression 
 

KAAT PAREYNS1, CHIARA BISAGNI1, MICHELLE T. RUDD2 
and MARC R. SCHULTZ3 

 
 

ABSTRACT 

 

Conical shells are commonly used as structural components for launch vehicles. 

The axial compression experienced during launch is one of the sizing load cases, 

because it can lead to loss of structural stability. Because experimentally testing these 

full-scale structures is cumbersome and expensive, it is expedient to understand how 

reduced-scale shells can be designed such that their buckling behavior is 

representative of the full-scale shell behavior. An analytical, sequential scaling 

methodology is developed based on the nondimensional governing equations for 

composite conical shells with a symmetric, balanced layup and negligible flexural 

anisotropy. Linear and nonlinear finite element analyses characterizing the buckling 

behavior of the different size shells yielded comparable results in terms of buckling 

load, meridional displacement, and buckling mode. The inclusion of geometric 

imperfections affects the prediction accuracy, but not to the extent that the 

methodology is no longer valid. 

 

 

NOMENCLATURE 

 

𝐴𝑖𝑗   =  membrane stiffness matrix, N/m 

𝑎𝑖𝑗   =  membrane compliance matrix, m/N 

𝐵𝑖𝑗   =  coupling stiffness matrix, N 

𝐷𝑖𝑗   =  bending stiffness matrix, Nm 

𝐹   =  nondimensional stress function, - 

𝐾1  =  nondimensional loading parameter, - 

𝐿   =  conical shell length, m 

𝐿1, 𝐿2   =  in-plane characteristic shell dimensions, m 

𝑚   = number of meridional half-waves, - 

_____________ 
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𝑁1, 𝑁2, 𝑁12  =  membrane stress resultants, N/m 

𝑛   =  number of circumferential full waves, - 

𝑃   =  applied axial load, N 

𝑃𝑐𝑟  =  critical buckling load, N 

𝑞1, 𝑞2   =  applied tangential surface tractions, Pa 

𝑅1, 𝑅2   =  radii of curvature in meridional and circumferential direction,  

    respectively, m 

𝑅𝑡   =  radius at conical shell top side, m 

𝑅𝑏   =  radius at conical shell bottom side, m 

𝑟(𝑥)   =  conical shell radius, m 

𝑟(𝑧1)   =  conical shell radius in terms of nondimensional coordinates, - 

𝑈   =  nondimensional meridional displacement, - 

𝑢   =  meridional displacement, m 

𝑉   =  nondimensional circumferential displacement, - 

𝑣   =  circumferential displacement, m 

𝑊   =  nondimensional out-of-plane displacement, - 

𝑤   =  out-of-plane displacement, m 

𝑥   =  meridional coordinate, m 

𝑦   =  circumferential coordinate, m 

𝑍2   =  nondimensional equivalent Batdorf-Stein parameter, - 

𝑧   =  out-of-plane coordinate, m 

𝑧1   =  nondimensional meridional coordinate, - 

𝑧2   =  nondimensional circumferential coordinate, - 

𝑧3   =  nondimensional out-of-plane coordinate, - 

𝛼   =  cone angle, deg 

𝛼𝑏   =  nondimensional bending parameter, - 

𝛼𝑚   =  nondimensional membrane parameter, - 

𝛽   =  nondimensional bending orthotropy parameter, - 

𝜇   =  nondimensional membrane orthotropy parameter, - 

𝜃   =  ply angle, deg 

 

 

INTRODUCTION 

 

Typical launch vehicle structures are largely composed of cylindrical and conical 

shells. The shells are designed to withstand the primarily axial compressive loads 

caused by the weight of the structure and the trajectory, which can lead to buckling. 

As-built geometric imperfections can significantly change the load at which buckling 

initiates, making experimental testing imperative in characterizing the implications of 

these imperfections on shell stability. Launch vehicle structures can measure several 

meters in diameter and length, hence testing these shells often is cumbersome and 

expensive. Therefore, it is more feasible to test reduced-scale shells that are 

representative of the full-scale shells. The design of these reduced-scale shells can be 

obtained through a scaling methodology.  

Several successful scaling methodologies have been developed for cylindrical 

shells. Uriol Balbin, et al. [1] set up a sequential scaling procedure for the axial 

buckling of sandwich cylindrical shells using nondimensional governing equations 
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derived by Schultz and Nemeth [2]. Rezaeepazhand and Simitses [3] studied a scaling 

methodology for symmetric, cross-ply laminated cylindrical shells based on the 

dimensional governing equations. This work was later extended by Ungbhakorn and 

Wattanasakulpong [4] for antisymmetric cross-ply laminated cylindrical shells. The 

scaling of conical shells has been investigated as well. Penning [5] reports on the 

scaling of the vibration characteristics of a conical stage adapter of the Saturn V. The 

conical shell is approximated as an equivalent cylindrical shell and is consequently 

scaled using a dimensional analysis. No agreement is found between the experimental 

results of conical shells and the equivalent cylindrical shell and it is concluded that the 

conical shell undergoes complex vibrations. Jiang, et al. [6] investigated the scaling of 

isotropic conical shells subject to impact loading with a dimensional analysis. Due to 

damage and plasticity, deviations from the behavior predicted by the applied scaling 

laws is observed. Sleight, et al. [7] compared the imperfection sensitivity of axially 

compressed full-height and half-height sandwich conical shells. The buckling load and 

imperfection sensitivity is similar for the two cases. As the circumferential size and the 

load magnitude are identical for the full-height and half-height shells, the complexity 

of testing is not reduced in this approach.  

In the research presented herein, a scaling methodology for the axial buckling 

behavior of composite conical shells is developed using nondimensional governing 

equations. The use of nondimensional equations is preferred because the coefficients 

of the equations can be used directly as scaling parameters, and the nondimensional 

framework allows shells of different size to be directly compared to each other. In this 

paper, the setup of the scaling methodology using the governing equations is described 

first. Discussed next is the scaling methodology applied to a full-scale conical shell, 

after which the prediction is evaluated.  

 

 

SCALING METHODOLOGY 

 

The scaling methodology is developed for composite conical shells. A curvilinear 

coordinate system (𝑥, 𝑦, 𝑧) is adopted, as shown in Figure 1, coincident with the 

surface coordinates. The corresponding displacements are 𝑢, 𝑣, and 𝑤, respectively. 

The conical shell has a cone angle, 𝛼, meridional length, 𝐿, and radius, 𝑟(𝑥), varying 

from 𝑅𝑡 at the top side to 𝑅𝑏 at the bottom side according to  

 

𝑟(𝑥) = 𝑅𝑡 + 𝑥 sin 𝛼              (1) 

 

The scaling methodology is based on nondimensional equations governing the 

buckling behavior of conical shells. Nemeth [8,9] developed a nondimensional 

framework for the buckling of laminated general shells using the Donnell-Mushtari-

Vlasov theory [10]. The Kirchhoff hypothesis is imposed and it is assumed that the 

shell is thin-walled, meaning the thickness is small compared to the in-plane 

dimensions (i.e., the radius and the length). In the equations, the presence of 

imperfections is not presented. The nondimensionalization procedure makes each 

variable dimensionless, aims to minimize the number of independent parameters 

describing the behavior, and avoids the introduction of a direction of preference in the 

equations [8].  
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Figure 1. Geometry and coordinate system of composite conical shell. 

 

 

In this study, the equations are made specific for an axially loaded conical shell 

with a symmetric, balanced layup and negligible flexural anisotropy. This 

simplification is achieved through the following substitutions in the equations of 

reference [8]. In accordance with the laminate assumptions, 𝐴16 = 𝐴26 = 𝐷16 =
𝐷26 = 𝐵𝑖𝑗 = 0, where 𝐴𝑖𝑗 , 𝐷𝑖𝑗 , and 𝐵𝑖𝑗 are the laminate stiffnesses. The characteristic 

dimensions are given by 𝐿1 = 𝐿 and 𝐿2 = 𝑟(𝑥), such that the in-plane coordinates can 

be made nondimensional as 𝑥 = 𝐿 𝑧1 and 𝑦 = 𝑟(𝑥) 𝑧2. Substitution of these 

coordinates in Eq. 1 allows expression of the radius in terms of the nondimensional 

coordinate 𝑧1. The corresponding radii of curvature are given by 𝑅1 → ∞ and 

𝑅2 =
𝑟(𝑥)

cos 𝛼
. Only axial compression is considered, such that, in combination with the 

assumed membrane  prebuckling state, 𝑁2 = 𝑁12 = 𝑞1 = 𝑞2 = 0, where 𝑁2 and 𝑁12 

are the prebuckling membrane stress resultants and 𝑞1 and 𝑞2 are the applied 

tangential surface tractions. The linearized nondimensional governing equations are 

consequently given as the equilibrium equation,  

 

𝛼𝑏
2 𝜕4𝑊

𝜕𝑧1
4 + 2𝛽

𝜕4𝑊

𝜕𝑧1
2𝜕𝑧2

2 +
1

𝛼𝑏
2

𝜕4𝑊

𝜕𝑧2
4 + √12𝑍2

𝜕2𝐹

𝜕𝑧1
2 − 𝐾1

𝜕2𝑊

𝜕𝑧1
2 = 0            (2) 

 

and the compatibility equation, 

 

𝛼𝑚
2 𝜕4𝐹

𝜕𝑧1
4 + 2𝜇

𝜕4𝐹

𝜕𝑧1
2𝜕𝑧2

2 +
1

𝛼𝑚
2

𝜕4𝐹

𝜕𝑧2
4 = √12𝑍2

𝜕2𝑊

𝜕𝑧1
2              (3) 

 

where 𝜇, 𝛽, 𝛼𝑚, 𝛼𝑏 , 𝑍2, and 𝐾1 are nondimensional parameters defined by Eq. (4) to 

Eq. (9), 𝑊 is the nondimensional out-of-plane displacement, and 𝐹 the 

nondimensional stress function. Nondimensional coefficients 𝜇 and 𝛽 are the 

membrane and bending orthotropy parameters, respectively, and depend on the 

membrane compliances 𝑎𝑖𝑗 and the bending stiffnesses 𝐷𝑖𝑗. They are given by 

 

𝜇 =
2𝑎12+𝑎66

2√𝑎11𝑎22
               (4) 

 

𝛽 =
𝐷12+2𝐷66

√𝐷11𝐷22
              (5) 
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The membrane parameter 𝛼𝑚 and the bending parameter 𝛼𝑏 depend on the radius-to-

length ratio and the membrane compliance and bending stiffness. More specifically,  

 

𝛼𝑚 =
𝑟(𝑧1)

𝐿
(

𝑎22

𝑎11
)

0.25

             (6) 

 

𝛼𝑏 =
𝑟(𝑧1)

𝐿
(

𝐷11

𝐷22
)

0.25

             (7) 

 

The equivalent Batdorf-Stein parameter 𝑍2 is a curvature parameter given by 

 

𝑍2 =
𝑟(𝑧1) cos 𝛼

√12(𝑎11𝑎22𝐷11𝐷22)0.25              (8) 

 

Finally, the loading parameter 𝐾1 is given by 

 

𝐾1 =
𝑁1 𝑟2(𝑧1)

√𝐷11𝐷22
=

𝑃 𝑟(𝑧1)

2𝜋 cos 𝛼√𝐷11𝐷22
            (9) 

 

where 𝑁1 is the meridional load per unit length and 𝑃 is the applied axial load. 

If the governing equations (Eq. (2) and Eq. (3)) are identical for two or more 

conical shells, then it is expected that their buckling behavior is also identical. This 

logically requires that the nondimensional coefficients, given in Eq. (4) to Eq. (9), 

should be identical for the conical shells. Therefore, these coefficients are used as 

scaling parameters to determine representative reduced-scale conical shells for a given 

full-scale conical shell. Note that some coefficients are a function of the radius 𝑟(𝑧1), 

such that they vary along the conical shell length. In order to have the parameters 

equal to the full-scale values for all meridional positions, they should be matched at 

two locations due to the linear dependency. These parameters are consequently made 

identical to the full-scale values at the top and bottom of the shell, namely at 𝑧1 = 0 

and at 𝑧1 = 1. As a result, each of these coefficients that are a function of the radius 

give rise to two scaling parameters. 

A sequential scaling methodology is set up to design reduced-scale conical shells 

as follows. First, the reduced-scale shell is chosen to be made of the same material as 

the full-scale shell and the stacking sequence of the reduced-scale shell is determined 

using 𝜇 and 𝛽 (Eq. (4) and Eq. (5)), as these parameters only depend on material and 

stacking sequence. Second, the small-radius-to-length ratio 𝑅1/𝐿 is determined by 

matching 𝛼𝑚 and 𝛼𝑏 (Eq. (6) and Eq. (7)) for 𝑧1 = 0. These two parameters only 

depend on this ratio and on the previously determined material and stacking sequence. 

Third, the cone angle is found also using the 𝛼𝑚 and 𝛼𝑏 parameters, but at 𝑧1 = 1. 

Again, these scaling parameters only depend on previously determined properties and 

the cone angle. Fourth, the radius is determined using 𝑍2 (Eq. (8)) for 𝑧1 = 0 and, 

similarly, the length is found using 𝑍2 for 𝑧1 = 1. Nondimensional load 𝐾1 (Eq. (9)) is 

the objective parameter: if it is equal for full-scale and reduced-scale shells, the 

buckling load of the full-scale shell is appropriately predicted by the reduced-scale 

shell. Therefore, 𝐾1 is not used to design the reduced-scale shell, but to evaluate the 

prediction capability of the methodology. Note that in the first three steps of the 

methodology, two scaling parameters are used to determine one reduced-scale design 

variable. For example, in the second step, the radius-to-length ratio is determined 

392



  

using 𝛼𝑚 and 𝛼𝑏 at 𝑧1 = 0. If these two scaling parameters require a different radius-

to-length ratio in order to be identical to the full-scale value, it is chosen to take the 

average of the two required ratios, such that the error caused by the discrepancy is 

spread between the two parameters. This is exemplified in the application discussed 

hereafter. 
 

 

APPLICATION 
 

The scaling methodology is applied to the geometry of the Universal Stage 

Adapter of the Space Launch System, discussed by Sleight, et al. [7]. This component 

has a sandwich structure, but it is here considered as a monolithic equivalent with the 

same theoretical buckling load as the original sandwich shell. In this example, the full-

scale shell is made of IM7/8552 carbon fiber, whose properties are reported in Table I. 

The stacking sequence of the full-scale conical shell is [45/90/−45/0]7𝑆. The 

geometry is described in Table II.  

The reduced-scale shell is designed using the methodology described above. First, 

a layup is found. To restrict the number of stacking sequences to be analyzed, only one 

variable ply angle 𝜃 is considered. In addition, the layup should be symmetric and 

balanced, and have negligible flexural anisotropy. Two layup types are considered, 

namely [𝜃/ −𝜃/ 0̅]𝑆 and [𝜃/−𝜃]𝑆3 . The variation of parameters 𝜇 and 𝛽 with ply 

angle 𝜃 is visualized in Figure 2 for the two layups. For the [𝜃/ −𝜃/ 0̅]𝑆 layup, the 

orthotropy parameters are equal to the ones of the full-scale shell for 𝜃 = 16°. For the 

[𝜃/−𝜃]𝑆3  layup, this is the case for 𝜃 = 15° and for 𝜃 = 75°. As a result, there are 

three potential layups for reduced-scale designs. The consequent design steps are here 

explained for the first reduced-scale layup (i.e., with 𝜃 = 16° for the [𝜃/ −𝜃/ 0̅]𝑆 

layup). The radius-to-length ratio is determined next. In order to match 𝛼𝑚 to the full-

scale value, 𝑅1/𝐿 should be 0.308. For matching 𝛼𝑏, the ratio should be 0.304. The 

average of 0.306 is consequently used. Third, a cone angle of 8° is found using 𝛼𝑚 

and 𝛼𝑏 at 𝑧1 = 1. This value is the rounded average of the cone angle required to 

satisfy the two parameters. Finally, the radius and length are determined using 𝑍2 at 

𝑧1 = 0 and 𝑧1 = 1, respectively. A radius 𝑅𝑡 of 0.253 m and a length 𝐿 of 0.808 m are 

found. The corresponding radius-to-length ratio measures 0.313, which is slightly 

larger than the value determined with 𝛼𝑚 and 𝛼𝑏.  

The three reduced-scale designs are summarized in Table II. The first reduced-

scale shell is small and complies with typical test equipment constraints, given by a 

maximum radius of 0.4 m and a maximum height of 1.0 m [1]. The other two designs 

are larger. The radius-to-length ratio of the third reduced-scale shell is large, which 

raises concerns about possible stiffening effects in the proximity of the boundary. 

Table III summarizes the nondimensional coefficients of the full-scale and reduced-

scale shells. The discrepancies with the full-scale values are caused by rounding of 

dimensions and the conflicting requirements the scaling parameters pose on the 

reduced-scale design variables. The largest discrepancies occur for membrane 

orthotropy parameter 𝜇 and measure 7.6%, 5.7%, and 5.7% for the three reduced-scale 

shells, respectively. This is caused by using the average value of the ply angle 𝜃 

satisfying parameters 𝜇 and 𝛽 and rounding that average angle to an integer value.  
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TABLE I. MATERIAL PROPERTIES OF IM7/8552 CARBON FIBER [11]. 

𝑬𝟏𝟏 [MPa] 𝑬𝟐𝟐 [MPa] 𝝂 [-] 𝑮𝟏𝟐 [MPa] 𝑮𝟏𝟑 [MPa] 𝑮𝟐𝟑 [MPa] 𝒕𝒑𝒍𝒚 [mm] 

149916 9370 0.36 5310 5310 2655 0.18 

 

 

TABLE II. DIMENSIONS OF THE CONICAL SHELLS. 

 Full-scale Reduced-scale 

Layup  [45/90/−45/0]7𝑆 [16/−16/0̅]𝑆 [15/−15]𝑆3  [75/−75]𝑆3  

Cone angle 𝛼 15° 8° 8° 29° 

Radius 𝑅𝑡 [m] 2.91 0.253 0.816 0.924 

Length 𝐿 [m] 5.00 0.808 2.61 0.847 

 

 

 

 

Figure 2. Ply angle vs orthotropy parameters 𝜇 and 𝛽 for a) [𝜃/−𝜃/0̅]𝑆 and b) [𝜃/−𝜃]𝑆3 . 
 

 

TABLE III. NONDIMENSIONAL COEFFICIENTS OF THE CONICAL SHELLS. 

 Full-scale Reduced-scale 

[45/90/−45/0]7𝑆 [16/−16/0̅]𝑆 [15/−15]𝑆3  [75/−75]𝑆3  

𝜇 𝑧1𝜖[0,1] 1.000 1.076 0.9432 0.9432 

𝛽 𝑧1𝜖[0,1] 1.058 1.103 1.031 1.031 

𝛼𝑚 
𝑧1 = 0 0.5825 0.5914 0.5887 0.5800 

𝑧1 = 1 0.8413 0.8543 0.8505 0.8377 

𝛼𝑏 
𝑧1 = 0 0.5657 0.5833 0.5887 0.5800 

𝑧1 = 1 0.8171 0.8426 0.8505 0.8377 

𝑍2 
𝑧1 = 0 266.9 266.9 266.8 266.8 

𝑧1 = 1 385.5 385.5 385.4 385.3 

 

 

BUCKLING BEHAVIOR 
 

The buckling behavior of the full-scale and reduced-scale conical shells is 

analyzed to evaluate the prediction accuracy and limitations of the methodology. The 

analyses are performed using a semi-analytical solution and linear and nonlinear finite 

element analyses. 
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Semi-analytical Buckling Analysis 

 

The buckling load and corresponding mode of the full-scale and reduced-scale 

shells are calculated using the semi-analytical solution developed by Schiffner [12] 

and Zhang [13] for classical orthotropic conical shells. The solution assumes a skewed 

buckling pattern which satisfies the boundary condition given by zero out-of-plane 

displacement at the edges. The results are reported in Table IV. The predicted 

buckling mode for all four cases has 15 meridional half-waves 𝑚 and zero 

circumferential waves 𝑛. The nondimensional buckling load of the full-scale shell is 

overestimated with 1.5%, 2.9%, and 2.9% by the three reduced-scale shells, 

respectively. The discrepancies are caused by not satisfying all scaling parameters 

simultaneously due to the conflicting requirements they pose on the reduced-scale 

designs.  

 

Flexural Anisotropy Effects 

 

The governing equations for the scaling methodology are formulated for conical 

shells with negligible flexural anisotropy. This assumption is now verified by 

comparing the value of stiffness parameters 𝐷16 and 𝐷26 to the smallest of the other 

𝐷𝑖𝑗 parameters. The results are given in Table V. For the first reduced-scale shell, 𝐷26 

is larger than 𝐷11, such that the flexural anisotropy cannot be considered negligible. 

This shell is therefore excluded from further analyses. For the full-scale shell and the 

other two reduced-scale shells, the values are all less than 15% so that it is reasonable 

to neglect the flexural anisotropy. It is observed that the flexural anisotropy 

assumption generally becomes better as the number of plies is increased, which results 

in a larger thickness. The analytically derived dimensions are also larger, such that the 

resulting design might not comply with typical test equipment constraints. The 

flexural anisotropy assumption and typical lab equipment sizes impose contradicting 

requirements on the reduced-scale design. The effect of the non-zero, yet negligible 

flexural anisotropy is analyzed further for the third reduced-scale shell using finite 

element analyses. The second reduced-scale shell is excluded, because it exceeds both 

the maximum radius and height constraints from typical lab equipment. 

 

Finite Element Buckling Analyses 
 

The full-scale conical shell and the third reduced-scale conical shell (i.e., with 

𝜃 = 75°) are analyzed with a linear eigenvalue analysis and an implicit dynamic 

analysis in commercial finite element software, Abaqus [14]. The shells are modelled 

with SC8R elements with one element through the thickness. Mesh convergence 

studies are carried out resulting in mesh sizes of 50 mm and 12 mm for the full-scale 

and the reduced-scale shell, respectively. All degrees of freedom at the shell edges are 

constrained, except for 
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TABLE IV. BUCKLING LOAD AND MODE ACCORDING TO THE SEMI-ANALYTICAL 

SOLUTION. 

 
Full-scale Reduced-scale 

[45/90/−45/0]7𝑆 [16/−16/0̅]𝑆 [15/−15]𝑆3  [75/−75]𝑆3  

𝑃𝑐𝑟  [kN] 20173 103.6 1064 829.4 

𝐾1 at 𝑧1 = 0 [-] 1807 1834 1859 1859 

Buckling mode (𝑚, 𝑛) (15,0) (15,0) (15,0) (15,0) 

TABLE V. BENDING-TWISTING COUPLING COMPARED TO OTHER FLEXURAL STIFFNESS 

VALUES, NOTE THAT (𝑖, 𝑗) = 1,2. 

 
Full-scale Reduced-scale 

[45/90/−45/0]7𝑆 [16/−16/0̅]𝑆 [15/−15]𝑆3  [75/−75]𝑆3  
𝐷16

min(𝐷𝑖𝑗)
 9.4% 38% 14% 1.5% 

𝐷26

min(𝐷𝑖𝑗)
  9.4% 153% 1.5% 14% 

 

 

the axial translation direction at the top edge. The axial compression is applied to a 

reference point tied to the top shell edge nodes using rigid body tie constraints. For the 

nonlinear analysis, the compression is displacement-controlled and an eigenmode 

imperfection with an amplitude of 1% of the thickness is applied. The dimensional and 

nondimensional buckling load and displacement are reported in Table VI. The 

nonlinear load-displacement curve is shown in Figure 3. The nondimensional 

meridional displacement [9] is calculated as 

 

𝑈 =
𝑢𝐿

√𝑎11𝑎22𝐷11𝐷22
           (10) 

 

The linear buckling load and displacement of the full-scale shell are predicted by the 

reduced-scale shell with errors of +2.3% and +2.4%, respectively. Additionally, the 

differences in the reduced-scale prediction with respect to the full-scale buckling load 

and displacement predictions measure -0.9% and -1.2% for the nonlinear analysis. As 

a result, the nondimensional nonlinear stiffness, calculated as the ratio of the 

nondimensional load to nondimensional displacement, is predicted within +0.3%. 

The finite element analyses take into account the flexural anisotropy, in contrast 

to the semi-analytical solution. That the effect of the non-zero bending-twisting 

coupling is small is supported by observing the similarly small errors between the full-

scale and reduced-scale shells predicted from both analysis types. The nonlinear 

analysis considers a small imperfection, to which the full-scale and reduced-scale shell 

have a different sensitivity. The ratio of nonlinear to linear buckling load measures 

0.90 for the full-scale shell and 0.87 for the reduced-scale shell. This difference in 

imperfection sensitivity explains why the nonlinear analysis underestimates the 

buckling load and displacement slightly, while the linear analysis overestimates it. The 

linear buckling modes, as visualized in Figure 4 are similar as well. 
 

 

 

 

 

 

396



  

TABLE VI. LINEAR AND NONLINEAR FINITE ELEMENT RESULTS. 

 

Dimensional 

Full-scale: [45/90/−45/0]7𝑆 Reduced-scale: [75/−75]𝑆3  

Load 𝑃 [kN] Displacement 𝑢 [mm] Load 𝑃 [kN] Displacement 𝑢 [mm] 

Linear 20289 8.43 829.7 4.65 

Non-linear 18265 7.67 723.8 4.08 

 

Nondimensional 

Full-scale: [45/90/−45/0]7𝑆 Reduced-scale: [75/−75]𝑆3  

Load 𝐾1 [-] Displacement 𝑈 [-] Load 𝐾1 [-] Displacement 𝑈 [-] 

Linear 1817 4399 1859 4505 

Non-linear 1636 4006 1622 3957 

 
 

Figure 3. Nonlinear nondimensional load-displacement curves of full-scale and reduced-scale shells. 

 

 

 
 

Figure 4. Linear buckling mode of a) full-scale shell and b) reduced-scale shell. The reduced-scale shell 

is 3x enlarged with respect to the full-scale shell for visibility purposes. 

 

 

CONCLUSIONS 
 

An analytical scaling methodology for the buckling of composite conical shells 

in axial compression has been developed. This methodology enables the design of 

representative reduced-scale shells in a specific sequential manner and the study of the 

buckling behavior of the full-scale shell through the behavior of a reduced-scale shell. 

The methodology is based on the nondimensional Donnell-Mushtari-Vlasov equations 

for conical shells with a symmetric, balanced layup, and negligible flexural 

anisotropy. The applicability of the methodology has been exemplified by the scaling 
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of a monolithic composite conical shell with the geometry of the Universal Stage 

Adapter of the Space Launch System. Three reduced-scale shells were designed, from 

which it was observed that the flexural anisotropy assumption and the constraints 

given by typical lab equipment pose conflicting requirements on the reduced-scale 

design. It was also observed that the inclusion of imperfections and the difference in 

imperfection sensitivity of the full-scale and reduced-scale shells influence the 

prediction. Despite this, the results obtained across all analyses for all evaluated 

buckling parameters showed good correlation. The applicability of the scaling 

methodology can be improved by including scaling parameters for the flexural 

anisotropy and by further investigation of the effect of imperfections. Finally, the 

methodology still has to be validated with experimental testing.  
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