

Plant Skeleton Extraction and Stem-leaf Segmentation

October 30th, 2024

Qiwei Shen

1st supervisor: Liangliang Nan
2nd supervisor: Jantien Stoter
Co-reader: Roderik Lindenbergh
Delegate: Daniëlle Groetelaers

CONTENT

01 Introduction

02 Related Work

03 Methodology

04 Results & Discussion

05 Conclusion & Future Work

Food Shortage & Security

Global population growth

TUDelft

Li et al., 2020; Liu et al., 2019; Panjvani et al., 2019; Xu et al., 2019.

➤ Traditional phenotyping

➤ Traditional phenotyping

- Labor-intensive
- Time-consuming
- Invasive

➤ Traditional phenotyping

- Labor-intensive
- Time-consuming
- Invasive

Delft

➤ Traditional phenotyping

- Labor-intensive
- Time-consuming
- Invasive

Delft

2

Introduction - Plant Organ Segmentation

- ➤ Plant organ segmentation
 - Skeleton-based approach

- $_{\circ}$ Skeleton \rightarrow Geometry and topology structure
- $_{\circ}$ Plant skeleton \rightarrow Plant organ instance segmentation

Cao et al., 2010; Ma et al., 2023.

\succ Slice clustering

Sliced point cloud

Skeleton

Xiang et al., 2019.

➤ Slice clustering

• Simple and intuitive;

• Horizontal parts of the plant are not well processed

Xiang et al., 2019.

$> L_1$ -medial skeleton algorithm

Recall: 92.23%

Silique instances

Oilseed rape skeleton

$> L_1$ -medial skeleton algorithm

Oilseed rape skeleton

Recall: 92.23%

Silique instances

• Can handle complex cylindrical structures;

- Maintain the centeredness of skeleton.
- Not suitable for flat or planar structures, such as wide leaves.

Ma et al., 2023.

Wu et al., 2019.

- Can contract plant stems and leaves into skeletal objects;
- Contain zigzag structures, abnormal branches often appear;
- Geometric constraints need to be incorporated.

Wu et al., 2019.

≻ AdTree

≻ WoodSKE

TUDelft

► AdTree

• Can efficiently extract the skeletons of tree branches;

≻ WoodSKE

Delft

 Do not adequately address the skeleton extraction of plant leaves.

Du et al., 2019; Wu et al., 2021.

- ➤ Limitations of previous studies
 - Often struggle with plant leaves;
 - Poorly in mitigating zigzag structures, preserving fine details, and maintaining centrality.
- ➤ Target plants are simple
 - With a single main stem, few or no lateral stems, and minimal or no leaves.
- ➤ A framework that integrates plant skeletonization and stem-leaf segmentation
 - Extracting curve skeletons from leafy plant (herbaceous plant) point clouds
 - Establishing stem-leaf segmentation based on extracted curve skeleton

TUDelf

Methodology - Overview

Methodology - Skeleton Graph Generation

Methodology - Stem-Leaf Segmentation

Skeleton

➤ Overview of LBC algorithm

- Moving the vertices along their approximate mean curvature normal directions (approximated by cotangent-weighted Laplacian operator *L*);
- Solving the linear system iteratively: $\begin{bmatrix} \mathbf{W}_L L \\ \mathbf{W}_H \end{bmatrix} \mathbf{P}^{t+1} = \begin{bmatrix} 0 \\ \mathbf{W}_H \mathbf{P}^t \end{bmatrix}$

➤ Overview of LBC algorithm

Discrete skeleton points

➤ Overview of LBC algorithm

TUDelft

Discrete skeleton points

Skeleton

➤ Overview of LBC algorithm

• Drawbacks of the contracted discrete skeleton points

➤ Constraint Laplacian Operator

• Abnormal contract direction; Zigzag structures; Ignore local structures can be addressed.

- ➤ Constraint Laplacian Operator
 - Laplacian Operator

- ➤ Constraint Laplacian Operator
 - Laplacian Operator

- ➤ Constraint Laplacian Operator
 - Tufted Laplacian Operator (Sharp, N. and Crane, K., 2020.)

➤ Constraint Laplacian Operator

- Tufted Laplacian Operator
- Dynamic Neighbors Searching

TUDelft
➤ Constraint Laplacian Operator

- Tufted Laplacian Operator
- Dynamic Neighbors Searching

Constrain the contraction range by manipulating k-nearest neighbors

- ➤ Constraint Laplacian Operator
 - Tufted Laplacian Operator
 - Dynamic Neighbors Searching

➤ Constraint Laplacian Operator

- Tufted Laplacian Operator
- Dynamic Neighbors Searching
- Edge Collapse (Collapse long edges ($\geq 3 \cdot SD$) among the Union local triangles)

➤ Adaptive Contraction

• Under-contraction; Some refinements.

- ➤ Adaptive Contraction
 - Directionality-based Weighting

$$\mathbf{cov}_{i} = \sum_{i' \in I \setminus \{i\}} \theta \left(\|p_{i} - p_{i'}\| \right) \left(p_{i} - p_{i'}\right)^{\mathsf{T}} \left(p_{i} - p_{i'}\right)$$
$$\theta(x) = e^{\frac{-x^{2}}{(h/2)^{2}}}$$

$$\sigma_i = \frac{\lambda_i^2}{\lambda_i^0 + \lambda_i^1 + \lambda_i^2}, \quad \text{where } \lambda_i^0 \le \lambda_i^1 \le \lambda_i^2$$

➤ Adaptive Contraction

• Directionality-based Weighting

➤ Adaptive Contraction

• Directionality-based Weighting

Iteration 1

 $i' \in I \setminus \{i\}$

Iteration 2

Iteration 3

Iteration 4

$$\mathbf{W}_{L,i}^{t+1} = \begin{cases} 0 & \operatorname{smooth}_{\sigma_i^t} \ge \epsilon \\ \mathbf{W}_{L,i}^t & \epsilon > \operatorname{smooth}_{\sigma_i^t} \ge \epsilon - 0.1 \\ s_L \mathbf{W}_{L,i}^t & \operatorname{otherwise} \end{cases} \quad \mathbf{W}_{H,i}^{t+1} = \begin{cases} \phi & \operatorname{smooth}_{\sigma_i^t} \ge \epsilon \\ \mathbf{W}_{H,i}^t & \operatorname{otherwise} \end{cases}$$

Huang et al., 2013; Wang et al., 2017.

➤ Adaptive Contraction

- Directionality-based Weighting
- Distance Constraint

Delft

 $(i,j) \in \overline{\mathrm{Edge}}_{\mathcal{T}}$

➤ Adaptive Contraction

- Directionality-based Weighting
- Distance Constraint

Spring only with attraction force

2

Delft

$$\left\| (p_{i} - p_{j}) - e(p_{i}, p_{j}) \right\|^{2}$$

$$e(p_{i}, p_{j}) = \begin{cases} (p_{i} - p_{j}) & \|p_{i} - p_{j}\|^{2} \le d_{\max} \\ \frac{d_{\max}}{\|p_{i} - p_{j}\|^{2}} (p_{i} - p_{j}) & \|p_{i} - p_{j}\|^{2} > d_{\max} \end{cases}$$

Weng et al., 2006.

- ➤ Adaptive Contraction
 - Directionality-based Weighting
 - Distance Constraint

Delft

$$\begin{bmatrix} \mathbf{W}_L L \\ \mathbf{W}_H \end{bmatrix} \mathbf{P}^{t+1} = \begin{bmatrix} 0 \\ \mathbf{W}_H \mathbf{P}^t \end{bmatrix} \Longrightarrow \begin{bmatrix} \mathbf{W}_L L \\ \mathbf{W}_H \\ \mathbf{W}_D \mathbf{H}^t \end{bmatrix} \mathbf{P}^{t+1} = \begin{bmatrix} 0 \\ \mathbf{W}_H \mathbf{P}^t \\ \mathbf{W}_D e(\mathbf{P}^t) \end{bmatrix}$$

Weng et al., 2006.

Spring only with attraction force

$$\sum_{(i,j)\in \mathsf{Edge}_{\mathcal{T}}} \left\| (p_i - p_j) - e(p_i, p_j) \right\|^2$$

$$e(p_i, p_j) = \begin{cases} (p_i - p_j) & \|p_i - p_j\|^2 \le d_{\max} \\ \frac{d_{\max}}{\|p_i - p_j\|^2} (p_i - p_j) & \|p_i - p_j\|^2 > d_{\max} \end{cases}$$

- ➤ Tip points preservation
 - Offset at leaf tip region

- \succ Tip points preservation
- Offset at leaf tip region • Tip points Source point Identify tip points Set soft constraint Geodesic distance (Heat method) Delft

➤ LOP-based Calibration

• Lack of centrality.

➤ LOP-based Calibration

• Farthest point downsampling

➤ LOP-based Calibration

• Farthest point downsampling \Rightarrow Modified LOP (Locally Optimal Projection) operator

″UDelft

Lipman et al., 2007; Huang et al., 2013; Li and Wang, 2018.

- ➤ Connectivity building
 - Build initial graph
 - Compute MST (Minimum Spanning Tree)
 - Pruning noisy branches

Initial Graph

Computed MST

Methodology - Stem-Leaf Segmentation

Methodology - Stem-Leaf Segmentation

➤ Skeleton Segmentation

Methodology - Stem-Leaf Segmentation

➤ Stem-leaf detection

• Utilizing the nearest neighbor projection strategy

Delft

Skeleton

Skeleton Segmentation

Stem-Leaf Segmentation

Methodology - Photogrammetric Dataset

- \succ 56 leafy plants
 - with several later stems and multiple leaves;
 - with various shapes (existing cylindric and planar shapes);
 - with tiny structures.

Polygonum plants in wild environments

Methodology - Photogrammetric Dataset

> Image data acquisition (>100 for each plant)

Captured multi-view image sequence

Results & Discussion

➤ Skeleton extraction results (default parameter settings)

Left: Discrete skeleton points; Right: Skeleton

Semantic segmentation results (default parameter settings)

Left: Ground truth; Right: Predicted results

Instance segmentation results (default parameter settings)

Left: Ground truth; Right: Predicted results

> Quantitative metrics for segmentation results

Table 1. The quantitative metrics of stem-leaf semantic segmentation results

Metric	Stem	Leaf	Mean	
Prec _{sem} (%)	68.83	99.77	84.30	
Rec _{sem} (%)	97.40	96.25	96.83	> 95%
F_1 -score (%)	80.66	97.98	89.32	
IoU (%)	67.59	96.04	81.81	

Table 2. The quantitative metrics of leaf instance segmentation results

	Prec _{ins} (%)	Rec _{ins} (%)	mCov (%)	mWCov (%)
Leaf	96.13	93.13	85.00	94.66

≥ 85%

- ➤ Skeleton quality comparison
 - Other skeletonization algorithms
 - LBC (Cao et al., 2010)
 - L₁-medial (Huang et al., 2013)
 - AdTree (Du et al., 2019)
 - WoodSKE (Wu et al., 2021)

- ➤ Skeleton quality comparison
 - Other skeletonization algorithms
 - LBC (Cao et al., 2010)
 - L₁-medial (Huang et al., 2013)
 - AdTree (Du et al., 2019)
 - WoodSKE (Wu et al., 2021)

Cao et al., 2010; Huang et al., 2013; Du et al., 2019; Wu et al., 2021.

TUDelft

➤ Skeleton quality comparison (Plant-A)

Table 3a. The quantitative metric of skeleton extraction results (a lower is better)

Ours	LBC	L_1 -medial	AdTree	WoodSKE
0.021065	0.026008	0.032905	0.006505	0.037584

TUDelft

➤ Skeleton quality comparison (Plant-A)

Table 3a. The quantitative metric of skeleton extraction results (a lower is better)

Ours	LBC	L ₁ -medial	AdTree	WoodSKE
0.021065	0.026008	0.032905	0.006505	0.037584

TUDelft

➤ Skeleton quality comparison (Plant-A)

Table 3a. The quantitative metric of skeleton extraction results (a lower is better)

Ours	LBC	L ₁ -medial	AdTree	WoodSKE
0.021065	0.026008	0.032905	0.006505	0.037584

➤ Skeleton quality comparison (Plant-B)

Table 3b. The quantitative metric of skeleton extraction results

Ours	LBC	L_1 -medial	AdTree	WoodSKE
0.031357	0.037931	0.042576	0.007704	0.041590

TUDelft

➤ Skeleton quality comparison (Plant-C)

Table 3c. The quantitative metric of skeleton extraction results

Ours	LBC	L ₁ -medial	AdTree	WoodSKE
0.03133	0.035297	0.042870	0.009241	0.049664

TUDelft

➤ Skeleton quality comparison (Plant-D)

Table 3d. The quantitative metric of skeleton extraction results

Ours	LBC	L ₁ -medial	AdTree	WoodSKE
0.029281	0.031664	0.033632	0.008823	0.035311

TUDelft

- > Skeleton extraction on other plant species
 - Four leafy plants (Pheno4D and PLANest-3D datasets)

Schunck et al., 2021; Mertoğlu et al., 2024.
➤ Skeleton extraction on other plant species

- Four leafy plants
- Parameter settings
 - Small structures
 - Point cloud density

KNN strategy

$$k^{t+1} = \begin{cases} k^t & k^t + \Delta k > k_{\max} \\ k^t + \Delta k & \text{otherwise} \end{cases}$$

Constraint Laplacian Operator

> Skeleton extraction on other plant species

- Four leafy plants
- Parameter settings
 - Small structures
 - Point cloud density

• More robust across diverse species;

> Skeleton extraction on other plant species

• Four leafy plants (Ball query strategy; Input #vertex=20480)

TUDelft

- > Skeleton extraction on other plant species
 - Four different trees (TreeML-Data dataset; KNN strategy; Input #vertex=204800)

- ➤ Skeleton extraction on other plant species
 - Four different trees (TreeML-Data dataset; KNN strategy; Input #vertex=204800)

Delft

Computation complexity (default parameter settings)

Delft

Computation complexity (default parameter settings)

Limitations

➤ Data-driven, sensitive to the quality of point cloud;

➤ The approach to identify root vertex is not robust;

➤ Can only establish stem-leaf, two classes, segmentation.

Potential applications

Conclusion & Future Work

Conclusion

- ➤ Can extract precise skeletons from leafy plants, which with complex later stems and multiple leaves, performing well on both leaves and stems, and then establish stem-leaf segmentation.
- \succ Can robustly process various shapes and sizes of plants.

∦ TUDelft

```
Image from www.clipstudio.net
```

≻A robust approach to identifying root vertex (e.g., user interaction);

Impose biological prior knowledge to avoid potential incorrect branch connections;

► Regard the curve skeleton as a type of data argument, to boost the deep learningbased plant organ segmentation development.

Thanks for your attention!

October 30th, 2024

Qiwei Shen

1st supervisor: Liangliang Nan
2nd supervisor: Jantien Stoter
Co-reader: Roderik Lindenbergh
Delegate: Daniëlle Groetelaers