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Representer Theorem for Learning
Koopman Operators

Mohammad Khosravi , Member, IEEE

Abstract—In this work, we consider the problem
of learning the Koopman operator for discrete-time
autonomous systems. The learning problem is formulated
as a generic constrained regularized empirical loss
minimization in the infinite-dimensional space of linear
operators. We show that a representer theorem holds
for the introduced learning problem under certain but
general conditions, which allows convex reformulation
of the problem in a specific finite-dimensional space
without any approximation and loss of precision. We
discuss the inclusion of various forms of regularization
and constraints in the learning problem, such as
the operator norm, the Frobenius norm, the operator rank,
the nuclear norm, and the stability. Subsequently, we derive
the corresponding equivalent finite-dimensional problem.
Furthermore, we demonstrate the connection between the
proposed formulation and the extended dynamic mode
decomposition. We present several numerical examples to
illustrate the theoretical results and verify the performance
of regularized learning of the Koopman operators.

Index Terms—Koopman operators, learning, representer
theorem.

I. INTRODUCTION

L EARNING-BASED and data-driven approaches for anal-
ysis, modeling, and control of nonlinear dynamics have

received considerable attention in the recent years [1], [2], [3],
[4]. In these approaches, various tools are developed to sys-
tematically analyze nonlinear dynamical systems based on the
collected data and exploit valuable information and features such
as stability. The main root of these techniques is in the classical
point of view of the dynamical systems in which the system
is described based on its state-space model. Considering that
the evolution in nonlinear systems is defined through nonlinear
maps characterizing the difference or differential equation of
the system, learning methods are employed for obtaining these
governing rules from the available measurement or synthetic
data. These methodologies include regression techniques in the
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reproducing kernel Hilbert spaces (RKHS), polynomial opti-
mization methods, Gaussian process regression, training neural
networks, and many other ones [5], [6], [7], [8], [9], [10]. Work-
ing directly with the time-series data generated by the system has
the leverage of dealing with finite-dimensional objects; however,
the nonlinearity of the dynamics and incomplete information
about the state trajectories can be challenging issues.

In addition to the approaches mentioned above, recent efforts
in learning-based analysis of nonlinear dynamics have focused
on the data-driven operator-theoretic methods, which lift the
dynamics to an infinite-dimensional space via linear embed-
dings. More precisely, along with each dynamical system, a
so-called Koopman operator is introduced that translates the
dynamics of the system to a linear dynamical system on an
infinite-dimensional space of functions called observables [11],
[12]. While this framework leads to working in an infinite-
dimensional space, we only need to deal with linear maps, and
thus, one can leverage the linearity of resulting objects and
employ well-developed tools of functional analysis and operator
theory. The main feature of this lifting is the potential for full
representation and global characterization of the underlying
dynamical system [12], [13], [14]. This alternative formalism
offers applicability in data-driven settings for the analysis of
large classes of nonlinear and high-dimensional systems [11],
[15], e.g., the framework has been applied to systems with
different features, such as hyperbolic fixed points, limit cycles,
and, attractors [16]. Besides the analysis of nonlinear dynamical
systems, Koopman linear representation is also used for control,
whereby not only the problem simplifies but also, in certain
cases, it can outperform feedback policies designed based on the
underlying nonlinear dynamics [17], [18], [19]. In data-driven
settings, Koopman operators are already utilized in many appli-
cations, such as robotics [20], [21], human locomotion [22], neu-
roscience [23], fluid mechanics [24], and climate forecast [25].
Moreover, inspired by the physics of these applications or the
expected behavior of the underlying system, different features,
constraints, and forms of a priori information about the original
system have been included in learning Koopman operators [26],
[27], [28], [29]. For example, the stability constraints are im-
posed on the data-driven approximations of Koopman operators
in [28] to address the long-term accuracy issue. In [29], the
dissipativity constraint, which is a physics-based property of the
system, is imposed in the approximation of the corresponding
Koopman operator.

While the mentioned operator-theoretic approach has vari-
ous potentials and benefits, its underlying infinite-dimensional
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nature hinders its practical applicability unless one can obtain
a suitable finite-dimensional approximation for the Koopman
operator [17], [27], [30], [31]. To address this issue, various
methods are developed, including dynamic mode decomposition
(DMD) [32], Hankel-DMD [33], extended DMD (EDMD) [26],
[34], generator EDMD (gEDMD) [35], to name a few. These
linearization methods are either locally accurate or depend
strongly on the choice of observable functions to provide suitable
accuracy. Moreover, in all of the abovementioned approaches,
rather than direct learning the infinite-dimensional Koopman op-
erator, they initially enforce a restriction to a finite-dimensional
subspace, and then, the data are employed to learn the cor-
responding finite-dimensional matrix representation. Accord-
ingly, they suffer from a systematic loss of precision and in-
efficient utilization and exploitation of data. On the other hand,
problem formulations for learning infinite-dimensional objects
are generally ill-posed and intractable. Similar concerns arise
in the most existing nonparametric learning problems. In those
contexts, the issue is addressed using well-known representer
theorems [36], [37], [38], [39], which provide conditions for
characterizing the solution of learning problems as a finite linear
combination of known objects. This highlights the necessity of
developing analogous mathematical results for learning infinite-
dimensional Koopman operators.

Motivated by the above discussion, we propose an operator-
theoretic approach for learning the Koopman operator, formu-
lated directly in the infinite-dimensional space of linear op-
erators. The learning problem, in its most general form, is
introduced as a constrained regularized empirical loss minimiza-
tion, where the constraints enforce attributes of interests and
potentially available side-information about the unknown Koop-
man operator, and the regularization is considered to penalize
undesired features and avoid overfitting. We address the main
concerns of data efficiency and tractability by introducing a set of
representer theorems that provide equivalent finite-dimensional
optimization problems. We first consider the case where the
operator norm is employed for the regularization. We extend
the results to the formulation in which linear constraints are ad-
ditionally imposed enforcing features of interest. Subsequently,
we demonstrate the connection between the proposed Koopman
learning formulation and the well-known EDMD method. Then,
we generalize the developed representer theorem and provide
conditions under which the results hold. Following this, we
consider different cases of regularization and constraints, e.g.,
Frobenius norm, nuclear norm, rank, and stability. For each of
the resulting Koopman learning problems, we derive the equiv-
alent finite-dimensional version that can be solved in a com-
putationally tractable way using standard convex optimization
techniques and singular value decomposition (SVD). Finally, we
provide several illustrative numerical examples.

II. NOTATION AND PRELIMINARIES

The set of natural numbers, the set of nonnegative integers,
the set of real scalars, the set of nonnegative real numbers,
the n-dimensional Euclidean space, and the space of n by m
real matrices are denoted by N, Z+, R, R+, Rn, and Rn×m,
respectively. For each n ∈ N, {1, . . . , n} is denoted by [n]. For

Fig. 1. Lifting of the dynamics from finite-dimensional state space to
the infinite-dimensional Hilbert space of observables.

matrix A ∈ Rn×m, the entry at the ith row and the jth column is
denoted by [A](i,j). Given Hilbert spaces H and W , the space of
bounded linear operators T : H → W is denoted by L(H,W),
and when W is the same as H, we simply use L(H). Given vec-
torsu, v ∈ H, one can define a rank-one bounded linear operator,
denoted by v ⊗ u, such that (v ⊗ u)w = v〈u,w〉, for any w ∈
H. For vectors v1, . . . , vn ∈ H, the Gram matrix V ∈ Rn×n

is defined as [V](i,j) = 〈vi, vj〉, for i, j = 1, . . . , n. For matrix
or operator A, the Frobenius or the Hilbert–Schmidt norm, the
trace, the nuclear norm, and the adjoint are, respectively, denoted
by ‖A‖F, tr(A), ‖A‖∗, and A∗. We have (u⊗ v)∗ = v ⊗ u.
Let H contain V -valued functions defined on X , where X is
a given set and V is a normed space. Then, for each x ∈ X ,
the evaluation operator at x, denoted by ex, is a linear map
ex : H → V such that ex(g) = g(x), for any g ∈ H. The RKHS
with kernelk : X × X → R is denoted byHk. Givenx ∈ X , the
section of kernel at x is defined as functionk(x, ·) : X → R. The
domain of function f : X → R ∪ {+∞}, denoted by dom(f), is
defined as dom(f) := {x ∈ X |f(x) < ∞}. Given sets B and C
such that C ⊂ B, the indicator function δC : B → R ∪ {+∞} is
defined as δC(a) = 0, when a ∈ C, and δC(a) = +∞, if a /∈ C.

III. DYNAMICAL SYSTEMS AND KOOPMAN OPERATORS

Let f : X → X be a map defined over X ⊆ Rnx . Consider
the following autonomous dynamical system:

xk+1 = f(xk), k ∈ Z+ (1)

characterizing a discrete-time flow on the state spaceX . LetH be
a Hilbert space of real-valued functions defined overX . Suppose
H is closed under composition with map f , i.e., we know that
g ◦ f ∈ H, for each g ∈ H. Given a trajectory of the system,
with respect to each g ∈ H, we have a sequence of real numbers
transferring information about system (1) through the lens of g.
Accordingly, each element of H is called an observable.

Definition 1 (Koopman operator): With respect to dynamical
system (1), the Koopman operator is defined as a linear map
K : H → H such that Kg = g ◦ f , for each g ∈ H.

The Koopman operator induces a lifting of the finite-
dimensional nonlinear dynamics (1) to the infinite-dimensional
linear dynamics g+ = Kg, which is in the Hilbert space of
observables H (see Fig. 1). Accordingly, the dynamical system
(1) can be completely described based on the corresponding
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Koopman operator K [11]. Motivated by this fact, when a set
of data about the dynamical system (1) is provided through
several observables, we can pose the problem of learning the
Koopman operator using the given data and potentially available
side-information. To this end, we propose an operator-theoretic
framework in Section IV, formulating the Koopman operator
learning problem as a generic infinite-dimensional constrained
regularized empirical loss minimization. Theorem 1 in Sec-
tion V provides a representer theorem for the case of Tikhonov
regularization, which also shows that the learning problem is
well-posed and tractable. In Section VI, Theorem 3 extends this
result to the case where we have additional linear constraints,
and following this, the connection to the EDMD method is
elaborated in Section VII. The most general case is studied
by Theorem 8, and subsequently, various cases of interest are
discussed in Section VIII.

IV. LEARNING KOOPMAN OPERATOR

Let x0, x1, . . . , xns
be a trajectory of dynamical system (1)

and g1, g2, . . . , gng
∈ H be a set of observable maps. Accord-

ingly, set of data D is provided as

D :=
{
ykl := gl(xk)

∣∣∣k = 0, . . . , ns, l = 1, . . . , ng

}
. (2)

Note that one may define ykl as ykl = gl(xk) + εkl, for k = 0,
. . . , ns and l = 1, . . . , ng, where εkl is introduced for consid-
ering the possible uncertainties in the value of observable gl
at xk that can be potentially due to imperfect measurements
or evaluations. We can also apply similar considerations to
the trajectory data. In order to learn the Koopman operator of
dynamical system (1), we need a suitable learning objective
function to be minimized over the hypothesis space of candidate
operators L(H). To this end, we define regularized empirical
loss function, J : L(H) → R+ ∪ {+∞}, as

J (K) := E(K) + λR(K) (3)

where R : L(H) → R+ ∪ {+∞} is a regularization function,
λ > 0 is the weight of regularization, and E : L(H) → R+ is
the empirical loss function characterized as

E(K) :=

ns∑
k=1

ng∑
l=1

(ykl − (Kgl)(xk−1))
2 . (4)

Furthermore, we may also consider a constraint set C ⊆ L(H)
in the learning problem for the inclusion of some possibly
available side-information on the Koopman operator. This side-
information can be about different aspects of the local or global
behavior of the dynamical system (1), e.g., the stability of an
equilibrium point. Accordingly, the optimization problem for
learning the Koopman operator is defined as

min
K∈L(H)

J (K) = E(K) + λR(K)

s.t. K ∈ C.
(5)

Note that (5) is an optimization problem over an infinite-
dimensional set. Hence, the main concern is whether this prob-
lem admits a solution, and if such solution exists, how one
can obtain it in a computationally tractable way. These issues
depend on the choice of the regularization function and the
constraint set. In the following, we study various settings and

provide conditions under which a representer theorem holds for
the learning problem (3) and also for its generalized form.

V. LEARNING KOOPMAN OPERATOR WITH TIKHONOV

REGULARIZATION

In the statistical learning theory, Tikhonov regularization is
the most common choice, i.e., R is defined as the quadratic
function R(K) := ‖K‖2. If there is no additional constraint on
the Koopman operator, we have the following learning problem:

min
K∈L(H)

ns∑
k=1

ng∑
l=1

(ykl − (Kgl)(xk−1))
2 + λ‖K‖2 (6)

which is a special case of (5). To study this problem, we need a
technical assumption given below.

Assumption 1: For k = 0, . . . , ns − 1, the evaluation opera-
tor exk

is continuous (bounded), i.e., exk
∈ L(H,R).

This assumption says that, for each k ∈ {0, . . . , ns − 1},
the value of g(xk) depends continuously on g. More pre-
cisely, there exists a nonnegative constant C such that we have
|g(xk)| ≤ C‖g‖, for each g ∈ H. Roughly speaking, by a small
perturbation of g, we expect that the value of g(xk) does not
change significantly. Namely, when g, h ∈ H are almost similar
observables, i.e., ‖g − h‖ is small, g(xk) andh(xk) are expected
to have almost similar values. Accordingly, one can see that As-
sumption 1 is quite natural, otherwise, the observable functions
inH do not provide reliable and useful information on dynamics
(1).

Remark 1: A special case where Assumption 1 holds is when
H is an RKHS [40], [41]. More precisely, if H is endowed with
reproducing kernel k : X × X → R, we know that

|g(xk)| = |〈k(xk, ·), g〉| ≤ ‖k(xk, ·)‖‖g‖, ∀g ∈ H (7)

which is due to the reproducing property of the kernel and the
Cauchy–Schwartz inequality. Accordingly, if C is defined as

C := max
{
‖k(xk, ·)‖

∣∣∣k = 0, . . . , ns − 1
}

(8)

then, for any g ∈ H, we have |g(xk)| ≤ C‖g‖.
The next theorem characterizes the solution of (6). More

precisely, we derive an equivalent finite-dimensional convex
program to solve infinite-dimensional optimization problem (6)
without any approximation error.

Theorem 1: Let Assumption 1 hold and λ > 0. Then, the
optimization problem (6) admits a unique solution denoted by
K̂. Moreover, there exist vectors v1, . . . , vns

∈ H such that

K̂ =

ns∑
k=1

ng∑
l=1

akl vk ⊗ gl (9)

where A = [akl]
ns, ng

k=1,l=1 ∈ Rns×ng is the solution of the follow-
ing optimization problem:

min
A∈Rns×ng

‖VAG−Y‖2F + λ‖V 1
2AG

1
2 ‖2 (10)

given that V and G are, respectively, the Gramian matrix of
{v1, . . . , vns

} and {g1, . . . , gng
}, and Y ∈ Rns×ng is the matrix

defined as Y := [ykl]
ns, ng

k=1,l=1.
Proof: Since operators ex0

, . . . , exns−1
are bounded, due to

the Riesz representation theorem [42], we know that there exists
vk ∈ H such that exk−1

(·) = 〈vk, ·〉, for k ∈ [ns]. Therefore, we
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have (Kgl)(xk−1) = 〈vk,Kgl〉, for each k ∈ [ns] and each l ∈
[ng]. Thus, one can write the objective function in (6) as

J (K) :=

ns∑
k=1

ng∑
l=1

(ykl − 〈vk,Kgl〉)2 + λ‖K‖2. (11)

Since 〈vk,Kgl〉 is linear and continuous with respect to K, we
have that J : L(H) → R is a continuous map. Also, as λ > 0,
one can see that J is a strongly convex function. Therefore,
the optimization problem minK∈L(H) J (K) admits a unique

solution [43] denoted by K̂.
Let the linear subspaces V and G be defined, respectively, as

V := span{v1, . . . , vns
} and G := span{g1, . . . , gng

}. Also, let
ΠV : H → H and ΠG : H → H denote the projection operator
on V and G, respectively. Since the dimension of V and G are
finite, they are closed subspaces of H, and hence, the projection
operators ΠV and ΠG are well-defined. Let operator S be defined
as S := ΠVK̂ΠG . Due to the definition of ΠG , we know that
ΠGgl = gl, for l ∈ [ng]. Accordingly, for each k and l, we have

〈vk, Sgl〉=
〈
vk,ΠVK̂ΠGgl

〉
=
〈
vk,ΠVK̂gl

〉
=
〈
Π∗

Vvk, K̂gl

〉 (12)

where Π∗
V is the adjoint of ΠV . Since V is a closed subspace, the

projection operatorΠV is self-adjoint, i.e.,Π∗
V = ΠV . Hence, for

each k ∈ [ns], we have Π∗
Vvk = ΠVvk = vk, where the second

equality is due to the definition of operator ΠV . Accordingly,
from (12), we know that 〈vk, Sgl〉 = 〈ΠVvk, K̂gl〉 = 〈vk, K̂gl〉,
for each k ∈ [ns] and l ∈ [ng]. Consequently, it follows that

ns∑
k=1

ng∑
l=1

(ykl − 〈vk, Sgl〉)2 =

ns∑
k=1

ng∑
l=1

(
ykl − 〈vk, K̂gl〉

)2
.

(13)

Since ΠV and ΠG are projection operators, we know that
‖ΠV‖, ‖ΠG‖ ≤ 1. Therefore, we have ‖S‖2 ≤ ‖K̂‖2. Conse-
quently, from (13), one can see that J (S) ≤ J (K̂). Since, the
operator K̂ is the unique solution of minK∈L(H) J (K), we need

to have K̂ = S = ΠV K̂ΠG . Due to the linearity of operator K̂,
it follows that there exist akl ∈ R, for k ∈ [ns] and l ∈ [ng],
such that K̂ =

∑ns

k=1

∑ng

l=1 aklvk ⊗ gl. To find these values, we
replace K in minK∈L(H) J (K) with K̂ considering the given
parametric form. To this end, we need to calculate the value of
empirical loss and the regularization term for K̂. Note that, for
each k ∈ [ns] and l, j ∈ [ng], we have (vk ⊗ gl)gj = vk〈gl, gj〉.
Accordingly, due to the linearity of inner product, for K̂ =∑ns

k=1

∑ng

l=1 akl vk ⊗ gl, we have

(K̂gj)(xi−1) =

ns∑
k=1

ng∑
l=1

akl 〈vi, (vk ⊗ gl)gj〉

=

ns∑
k=1

ng∑
l=1

akl 〈vi, vk〈gl, gj〉〉 =
ns∑
k=1

ng∑
l=1

〈vi, vk〉 akl 〈gl, gj〉

for each i ∈ [ns] and j ∈ [ng]. Subsequently, due to the defini-
tion of Gramian matrices V and G, it follows that(

K̂gj

)
(xi−1) = [VAG](i,j). (14)

Therefore, given the definition of matrix Y, we have∑ns

k=1

∑ng

l=1

(
ykl − (K̂gl)(xk−1)

)2
=
∑ns

k=1

∑ng

l=1

(
[Y](k,l) − [VAG](k,l)

)2
= ‖Y − VAG‖2F

(15)

whereA is the matrix defined asA = [akl]
ns, ng

k=1,l=1. We also need

to derive the value of ‖K̂‖2. For each h ∈ H, we have

K̂h =

( ns∑
k=1

ng∑
l=1

aklvk ⊗ gl

)
h =

ns∑
k=1

ng∑
l=1

aklvk〈gl, h〉.

We know that 〈gl, h〉 = 〈gl,ΠGh〉, for each l ∈ [ng]. Accord-
ingly, since ΠGh ∈ G = span{gl}ng

l=1 and due to the definition
of operator norm, one has

‖K̂‖2 = sup
h∈H

‖∑ns

k=1

∑ng

l=1 akl vk〈gl,ΠG h〉‖2
‖ΠG h‖2 + ‖ΠG⊥ h‖2

= sup
c∈Rng

‖∑ns

k=1

∑ng

l=1 akl vk〈gl,
∑ng

j=1 cjgj〉‖2
‖∑ng

j=1 cjgj‖2
where c = [c1, . . . , cng

]T ∈ Rng is the vector of coefficients in
the expansion of ΠGh as in ΠGh =

∑ng

j=1 cjgj . Note that we
have ∥∥∥ ng∑

j=1

cjgj

∥∥∥2 =

ns∑
j1=1

ns∑
j2=1

cj1〈gj1 , gj2〉cj2 = cTGc.

Also, due to the linearity of inner product, one can see that
ns∑
k=1

ng∑
l=1

akl vk〈gl,
ng∑
j=1

cjgj〉 =
ns∑
k=1

ng∑
l=1

ng∑
j=1

aklvkcj〈gl, gj〉

=

ns∑
k=1

vkdk

where dk is defined as dk :=
∑ng

l=1

∑ng

j=1 akl〈gl, gj〉cj , for each
k ∈ [ns]. Accordingly, we have∥∥∥ ns∑

k=1

ng∑
l=1

akl vk〈gl,
ng∑
j=1

cjgj〉
∥∥∥2 = dTVd

where V is the matrix defined as V = [〈vk1
, vk2

〉]ns,ns

k1,k2=1, and d
is the vector defined asd := [dk]

ns

k=1. One can see thatd = AGc.
Subsequently, we have

‖K̂‖2= supc∈Rng
cTGATVAGc

cTGc

= supc∈Rng
‖V 1

2 AG
1
2 G

1
2 c‖2

‖G 1
2 c‖2

= ‖V 1
2AG

1
2 ‖2

(16)

where the last equality is implied from the definition of matrix
norm and also using the change-of-variable b = G

1
2 c. There-

fore, due to (15) and (16), one can see that

J (K̂) = ‖Y −VAG‖2F + λ‖V 1
2AG

1
2 ‖2. (17)

This concludes the proof. �
Remark 2: Let the Hilbert space of observables be the RKHS

Hk. From the reproducing property of k [41], we have

exk−1
(g) = g(xk−1) = 〈k(xk−1, ·), g〉 (18)

and subsequently, we have vk = k(xk−1, ·), for k ∈ [ns]. Fol-
lowing this, we can derive the Gramian matrix V as

[V](i,j)= 〈vi, vj〉
= 〈k(xi−1, ·),k(xj−1, ·)〉 = k(xi−1, xj−1)

(19)
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for each i, j ∈ [ns], where the last equality is due to the re-
producing property. Since the linear span of {kx|x ∈ X} is
dense in H, one may take observables as the sections of
kernel at points of a given set P := {p1, . . . ,png

} ⊂ X , i.e.,
gl(·) := k(pl, ·), for l ∈ [ng]. Then, similar to (19), one can
see that [G](l,j) = k(pl, pj), for any l, j ∈ [ng]. Moreover, we
have gl(xk−1) = k(pl, xk−1), for any k ∈ [ns + 1] and l ∈ [ng].
One can also obtain similar expressions when observables are
finite linear combinations of the sections of kernel.

Remark 3: The results introduced in Theorem 1 and the equiv-
alent finite-dimensional optimization problem can be extended
to the case where we have multiple trajectories of the system.
More details are provided in [44, Appendix A].

VI. LEARNING KOOPMAN OPERATOR WITH IMAGE IN A

SUBSPACE OF INTEREST

Let W be a closed linear subspace of H, and define LW as the
set of bounded linear operators mapping G = span{gl}ng

l=1 into
W , i.e.,

LW := {S ∈ L(H) | S(G) ⊆ W}. (20)

Since we may encode some specific form of prior knowledge
through employing W , it might be of particular interest to learn
the Koopman operator as an element of LW . For example,
when g1, . . . , gng

and f are polynomials, respectively, with
maximum degree of dg and df , we know that Kgl = gl ◦ f is
a polynomial with degree maximally equal to dgdf , for each
l = 1, . . . , ng. Accordingly, one may introduce W as the set of
polynomials with degree less than or equal to dgdf . The next
theorem provides the closest approximation of learned operator
K̂, introduced in (9), in the closed subspace LW .

Theorem 2: Define operator K̃W as

K̃W :=

ns∑
k=1

ng∑
l=1

akl (ΠWvk)⊗ gl (21)

where A = [akl]
ns, ng

k=1,l=1 ∈ Rns×ng is the solution of (10) and
v1, . . . , vns

∈ H are the vectors defined in Theorem 1. Then,
we have K̃W ∈ LW and K̃W ∈ argminS∈LW ‖K̂− S‖.

Proof: BeingW a closed linear subspace ofH, the projection
operator ΠW is well-defined. One can see that ΠW(v ⊗ g) =

(ΠWv)⊗ g, for any v, g ∈ H. Accordingly, we have K̃W =

ΠWK̂, from which it follows that K̃W ∈ LW . Since ΠG is a
projection operator, we know that ‖ΠG‖ = 1. Accordingly, for
any S ∈ LW , we have

‖K̂− SΠG‖ = ‖(K̂− S)ΠG‖ ≤ ‖K̂− S‖‖ΠG‖ = ‖K̂− S‖
(22)

where the first equality is a result of K̂ΠG = K̂, which is ac-
cording to the definition of K̂ in (9). Also, due to the definition
of LW , we know that S(G) ⊆ W , and consequently, one has
ΠW⊥SΠG = 0. Accordingly, it follows that

‖ΠW⊥K̂‖= ‖ΠW⊥K̂−ΠW⊥SΠG‖
≤ ‖ΠW⊥‖‖K̂− SΠG‖ = ‖K̂− SΠG‖

(23)

where the last equality is concluded from ‖ΠW⊥‖ = 1 that is
due to the fact that ΠW⊥ is a projection operator. Furthermore,
we know that ΠW⊥ = I −ΠW , where I is the identity operator

on H. Hence, due to K̃W = ΠWK̂, we have ΠW⊥K̂ = K̂− K̃W .
Therefore, from (22) and (23), it follows that

‖K̂− K̃W‖ ≤ ‖K̂− S‖, ∀S ∈ LW (24)

which concludes the proof. �
According to Theorem 2, to obtain the closest approximation

of operator K̂ in LW , i.e., K̃W , we need to solve (10) and
also derive ΠWvk = argminw∈W‖vk − w‖, for k = 1, . . . , ns.
On the other hand, one may propose to learn the Koopman
operator in LW via a direct approach by finding the solution
of the following learning problem:

min
K∈LW

E(K) + λ‖K‖2 (25)

where E : H → R is the empirical loss defined in (4).
The following theorem characterizes the solution of infinite-
dimensional program (25) through obtaining an exact equivalent
finite-dimensional convex reformulation.

Theorem 3: Let Assumption 1 hold, λ > 0, and v1, . . . , vns
∈

H be the vectors defined in Theorem 1. Then, the optimization
problem (25) has a unique solution denoted by K̂W . Also,
there exists A = [akl]

ns, ng

k=1,l=1 ∈ Rns×ng , which characterizes

K̂W as

K̂W =

ns∑
k=1

ng∑
l=1

akl (ΠWvk)⊗ gl. (26)

Define matrices G and Y as in Theorem 1, and WV as
the Gramian matrix of vectors ΠWv1, . . . ,ΠWvns

. Then, ma-
trix A in (26) is the solution of the following optimization
problem:

min
A∈Rns×ng

‖WVAG−Y‖2F + λ‖W 1
2

V AG
1
2 ‖2. (27)

Proof: See Appendix A. �
In the next theorem, we discuss the situation where the di-

mension of W is finite. This result is employed in Section VII
to provide the connection between the introduced Koopman
learning problem and the EDMD method [34].

Theorem 4: Let the hypotheses of Theorem 3 hold,
w1, . . . , wnw

∈ H be linear independent vectors such
that W = span{w1, . . . , wnw

}, matrix PW be defined as
PW = [wl(xk−1)]

ns, nw

k=1,l=1, and, W be the Gramian matrix of
vectors w1, . . . , wnw

. Then, one can represent the unique
solution of (25) as

K̂W =

nw∑
j=1

ng∑
l=1

cjlwj ⊗ gl (28)

whereC = [cjl]
nw, ng

j=1,l=1 is the solution of the following optimiza-
tion problem:

min
C∈Rnw×ng

‖PWCG−Y‖2F + λ‖W 1
2CG

1
2 ‖2. (29)

Proof: See Appendix B. �
Remark 4: From the proof of Theorem 4, one can see that

C = W−1PWA and WV = PWW−1PT
W . These identities can

be used as change-of-variable tricks for obtaining more tractable
optimization problems.

Corollary 5: If V := span{v1, . . . , vns
} ⊆ W , then we have

K̃W = K̂W = K̂. (30)
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The approach discussed in Theorem 1 for learning the Koop-
man operator K̂ demands the knowledge of v1, . . . , vns

. This
issue can be addressed by Theorem 3 when ΠWv1, . . . ,ΠWvns

are known. Note that this knowledge is not sufficient for the
scheme proposed in Theorem 2 that approximates K̂ in LW ,
where indeed, the knowledge of v1, . . . , vns

is again required
to first solve problem (6), and then derive the approximation.
On the other hand, in the case of finite dimensional space
W , when vectors w1, . . . , wnw

∈ H are given such that W =
span{w1, . . . , wnw

}, for solving the learning problem (25), it
is enough to know {wm(xk−1)}ns,ng

k=1,m=1. In this situation, the
knowledge ofv1, . . . , vns

is not required. Also, from Corollary 5,
we can see that if the set of vectors w1, . . . , wnw

is rich enough
in the sense that V ⊆ W = span{w1, . . . , wnw

}, then the
learning problems (6), (25), and (29) admit same solution.
Hence, under the condition V ⊆ W = span{w1, . . . , wnw

},
when {wm(xk−1)}ns,ng

k=1,m=1 is given, we can solve each of the
above-mentioned learning problems without the knowledge of
v1, . . . , vns

.

VII. CONNECTION TO THE EDMD

In this section, we consider the case where G :=
span{g1, . . . , gng

} is an invariant subspace of the learned Koop-
man operator, i.e., based on the notations introduced in Sec-
tion IV, we need to have K̂ ∈ LG . Without loss of generality, we
assume g1, . . . , gng

are linearly independent.
In the EDMD method, the Koopman operator is approximated

by a finite-dimensional linear map U : G → G, and then, the
observation data D is employed to estimate this map [34].
Since the dimension of G is finite, the map U admits a matrix
representation in the basis {g1, . . . , gng

}. More precisely, there
exists matrixM ∈ Rng×ng such thatUgl =

∑ng

j=1[M](j,l)gj , for
l = 1, . . . , ng. The matrix M is estimated by minimizing the
empirical loss EU defined as

EU(M) := ‖PGM−Y‖2F =

ns∑
k=1

ng∑
l=1

((Ugl)(xk−1)− gl(xk))
2

where PG := [gl(xk−1)]
ns, ng

k=1,l=1, which is assumed to be full
column rank, i.e., rank(PG) = ng. Accordingly, the empirical
loss EU has a unique minimizer M�= P†

GY, where P†
G :=

(PT
GPG)−1PT

G is the Moore–Penrose pseudoinverse of PG .
Theorem 6: Define matrix CM� as CM� := M�G−1, and, let

operator K̂U ∈ L(H) be defined as

K̂U =

ng∑
j=1

ng∑
l=1

[CM�](j,l)gj ⊗ gl. (31)

Then, K̂U belongs to argminK∈LGE(K), and, the EDMD map U

coincides with the restriction of K̂U to G, i.e., U = K̂U

∣∣
G .

Proof: Similar to the proof of Theorem 3, one can show
that E(K) = E(ΠGKΠG), for each K ∈ LG . Accordingly, if
minK∈LG E(K) admits a solution, it has also a solution in the
set of operators L(G), which can be characterized as {KC :=∑ng

j=1

∑ng

l=1 cjl gj ⊗ gl |C ∈ Rng×ng}. Therefore, it is enough
to consider the problem minK∈L(G) E(K). Given C ∈ Rng×ng ,
we define M = CG, where, based on same steps as in the proof

of Theorem 4, we can show that E(KC) = EU(M). Hence, there
is a bijection between the value and solutions ofminK∈L(G) E(K)
and minM∈Rng×ng EU(M). Since M� is a solution for the latter
problem, then KCM�, which coincides with K̂U, is a solution of
minK∈L(G) E(K), which concludes the proof of first part. Due
to (31), we have

K̂Ugi=
∑ng

j=1

∑ng

l=1[CM�](j,l)gj〈gl, gi〉
=
∑ng

j=1[CM�G](j,l)gj =
∑ng

j=1[M
�](j,l)gj

(32)

for each i ∈ [ng], where the last equality is due to M�=
CM�G. �

The following theorem demonstrates the connection between
EDMD and the introduced learning problems.

Theorem 7: For λ > 0, let K̂G,λ be the unique solution of

min
K∈LG

Jλ(K) := E(K) + λ‖K‖2. (33)

Then, limλ↓0 K̂G,λ = K̂U and limλ→∞ K̂G,λ = 0, both in opera-
tor norm topology.

Proof: From Theorems 3 and 4, we know that, for each λ > 0,
(33) admits a unique solution K̂G,λ =

∑ng

j=1

∑ng

l=1[Cλ](j,l)gj ⊗
gl, where Cλ is defined as

Cλ = argmin
C∈Rnw×ng

‖PGCG−Y‖2F + λ‖G 1
2CG

1
2 ‖2. (34)

By the definition of Cλ, we have

‖PGCλG−Y‖2F≤‖PGCλG−Y‖2F+λ‖G 1
2CλG

1
2 ‖2≤‖Y‖2F

which implies that ‖PGCλG‖F ≤ 2‖Y‖F. Using Lemma 15 in
Appendix H, we have

‖Cλ‖F= ‖(PT
GPG)−1PT

G (PGCλG)G−1‖F
≤ ‖P†

G‖‖PGCλG‖F‖G−1‖ ≤ 2‖P†
G‖‖Y‖F‖G−1‖. (35)

Accordingly, (34) in equivalent to the following program:

argmin
C∈M

Jλ(C) := ‖PGCG−Y‖2F + λ‖G 1
2CG

1
2 ‖2 (36)

where M := {C ∈ Rnw×ng
∣∣ ‖Cλ‖ ≤ 2‖P†

G‖‖Y‖F‖G−1‖},
which is a convex and compact set. Let Cλ be the solution set of
(36) for λ ≥ 0, which is a singleton due to the strong convexity
of the objective function. Moreover, we know that function
Jλ is continuous with respect (C, λ). Hence, from Maximum
Theorem [45], it follows that set-valued map λ �→ Cλ is upper
hemicontinuous with nonempty and compact values, which im-
plies that limλ↓0 Cλ = C0, i.e., limλ↓0 Cλ = CM�. Accordingly,
due to the structure of K̂λ and K̂U, we have limλ↓0 K̂G,λ = K̂U

in operator norm topology. On the other hand, since 0 ∈ LG is
feasible for the problem and due to the definition of K̂G,λ, we
know that

λ‖K̂G,λ‖2 ≤ Jλ(K̂G,λ) ≤ Jλ(0) = ‖Y‖2F
which implies ‖K̂G,λ‖ ≤ 1√

λ
‖Y‖F. Therefore, we have

limλ→∞ ‖K̂G,λ‖ = 0, and subsequently, it follows that
limλ→+∞ K̂G,λ = 0, in operator norm topology. �

Remark 5: For problem (6), one can see asλ → ∞, the unique
solution introduced in Theorem 1 converges to zero, in operator
norm topology. The same claim holds for the unique solution of
(25).
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VIII. GENERALIZED REPRESENTER THEOREM AND CASES

OF INTEREST

Considering the set of indices I ⊆ {1, . . . , ns} ×
{1, . . . , ng} and function � : R|I| × R|I| → R+, the empirical
loss can be generally defined as

E�(K) = �
(
[(Kgl)(xk−1)](k,l)∈I , [ykl](k,l)∈I

)
(37)

which is a convex function when �(·,YI) : R|I| → R is convex
for YI := [ykl](k,l)∈I ∈ R|I|. Note that (37) generalizes various
forms of empirical loss functions including the ones introduced
in robust learning and statistics. Given a generic regularization
function R : L(H) → R+ ∪ {+∞} and λ ∈ R+, the learning
problem for the Koopman operator can be defined in the most
general form as

min
K∈F

J�(K) := E�(K) + λR(K)

s.t. K ∈ C (38)

where F either denotes L(H), or LW , for a closed subspace
W ⊆ H, and C is a subset of H. In the following, we determine
when learning problem (38) is tractable, i.e., we provide suitable
conditions under which a representer theorem holds for (38).

Notational conventions: Define R : L(H) → R ∪ {+∞} as
R := λR+ δC , and let ΠG be the projection operator on G =
span{g1, . . . , gng

}. For brevity, we unify the notations for
both cases of F . Indeed, when F is LW , we set nz as ns,
zk as zk = ΠWvk, for k = 1, . . . , nz, and Z as the subspace
Z = span{z1, . . . , znz

}. Moreover, we denote by ΠZ and Z,
respectively, as the projection operator on Z and the Gramian
matrix of vectors z1, . . . , znz

. By abuse of notation, we use the
same letters for ns, v1, . . . , vns

, V , ΠV , and, V, for the case
F = L(H). Also, in order to provide arguments analogous to the
case of finite dimensional subspace W = span{w1, . . . , wnw

}
as in Theorem 4, we adopt the same notational convention for
nw, w1, . . . , wnw

, W , ΠW , and, W. To provide a generalized
representer theorem for (38), we need the following assumption.

Assumption 2: For any S ∈ L(H), we have

R(ΠZ SΠG) ≤ R(S). (39)

Based on the discussions in Section IV for learning the Koop-
man operator with Tikhonov regularization, one can see that the
property (39) holds for (6) and plays a crucial role in deriving the
presented results. The following theorem provides analogous re-
sult for (38). More precisely, we show that the learning problem
formulated as the infinite-dimensional program (38) admits an
exact finite-dimensional convex reformulation.

Theorem 8 (Generalized Representer Theorem): Let As-
sumptions 1 and 2 hold, and v1, . . . , vns

∈ H be the vectors
defined in Theorem 1.

i) Suppose that the optimization problem (38) admits a
solution. Then, (38) has a solution in the following form

K̂ =

nz∑
k=1

ng∑
l=1

akl zk ⊗ gl (40)

where akl ∈ R, for k ∈ [nz] and l ∈ [ng].
ii) When D := F ∩ dom(R) ∩ C is a nonempty, closed, and

convex set, �(·,YI) : R|I| → R is a convex function for
each YI := [ykl](k,l)∈I ∈ R|I|, R is convex and lower

semicontinuous, and R is coercive, then, (38) admits at
least one solution with parametric representation (40).
Additionally, if R is strictly convex on D, then the so-
lution of (38) is unique and admits parametric form in
(40).

Proof: Define function J� : L(H) → R ∪ {+∞} as

J�(K) := E�(K) + λR(K) + δC(K) + δF (K) (41)

for each K ∈ L(H). One can see that the learning problem (38)
is equivalent to minK∈L(H) J�(K). Let S be a solution of (38),
which is clearly a solution for this optimization problem as well.
Consider the case F is L(H) and let operator K̂ be defined
as K̂ = ΠVSΠG . In this case, the last term in (41) is zero for
S and K̂. Moreover, similar to the proof of Theorem 1, one
can show (K̂gl)(xk−1) = (Sgl)(xk−1), for each k ∈ [ns] and l ∈
[ng]. Hence, by the definition of E� in (37), we see that E�(K̂) =
E�(S). Due to Assumption 2, we have

J�(K̂) = E�(K̂) +R(K̂) ≤ E�(S) +R(S) = J�(S). (42)

Thus, K̂ is a solution of (38) as well, and, we have J�(K̂) =
J�(S). From linearity of K̂, it follows that K̂ admits the para-
metric form in (40). For the case F = LW , define operator K̂W
as K̂W = ΠWSΠG . By similar arguments, we can show that K̂W
is a solution of (38) for which we have the given parametric
representation. This concludes the proof for part i).

Due to the convexity property of �, we know that �(·,YI) :
R|I| → R is a continuous function, forYI = [ykl](k,l)∈I ∈ R|I|.
Furthermore, we know that

E�(K) = �
(
[〈Kgl, vk〉](k,l)∈I , [ykl](k,l)∈I

)
(43)

which implies that E� : H → R+ is a proper, convex and con-
tinuous function. Moreover, R is convex and lower semicon-
tinuous. Note that we have dom(J�) = F ∩ dom(R) ∩ C = D,
which is a nonempty, closed and convex set. Thus,J� is a proper
function, and also δD is proper, convex, and lower semicon-
tinuous. One can see that J�(K) = E�(K) +R(K) + δD(K),
for each K ∈ H. Therefore, J� is proper, convex, and lower
semicontinuous. Moreover, it is strictly convex, when R is a
strictly convex function. From nonnegativity of E� and δD, and,
due to J�(K) = E�(K) +R(K) + δD(K), for each K ∈ H, it
follows that J� is coercive. Therefore, (38) admits at least one
solution, which is unique when R is strictly convex [43]. This
concludes the proof for part ii). �

Remark 6: LetD := F ∩ dom(R) ∩ C, and, defineJ� : D →
R as the restriction of function J� introduced (41) to D, i.e.,
J� = J�|D. Due to variational principle [42], ifD is a nonempty
weakly sequentially closed set, and J� : D → R is weakly se-
quentially lower semicontinuous and coercive, then there exists
K ∈ D such thatJ�(K) = infS∈D J�(S), i.e., (38) has a solution.
Note that here no convexity assumption is required, and hence,
these conditions are more general.

Theorem 9:
i) Let λ ∈ R+, R : L(H) → R+ ∪ {+∞} be a regulariza-

tion function, and, Cα be a given subset of H, for each
α ∈ A, where A is the corresponding set of indices.
Define C := ∩α∈ACα and Rα := λR+ δCα , for α ∈ A.
If Assumption 2 is satisfied by Rα, for each α ∈ A, then
R := λR+ δC also satisfies Assumption 2.
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ii) Let R1, . . . ,Rm : L(H) → R+ ∪ {+∞} be given regu-
larization functions, λ1, . . . , λm ∈ R+ and C be a subset
of H. If Ri = λiRi + δC satisfies Assumption 2, for
i ∈ [m], then R :=

∑m
i=1 λiRi + δC also satisfies As-

sumption 2.
Proof:

i) Let S be an arbitrary element in L(H). If S /∈ C or
λR(S) = +∞, then (39) holds trivially. Hence, we as-
sume that λR(S) is finite and S ∈ C. Therefore, for each
α, we know that S ∈ Cα, and subsequently, δCα(S) = 0.
Since Assumption 2 holds for Rα, we have

λR(ΠZSΠG)+δCα(ΠZSΠG)≤λR(S)+δCα(S)=λR(S)

which implies that ΠZSΠG ∈ Cα and λR(ΠZSΠG) ≤
λR(ΠZSΠG). Therefore, we have ΠZSΠG ∈ C,
and δC(ΠZSΠG) = 0. Subsequently, it follows that
R(ΠZSΠG) ≤ R(S). Hence, Assumption 2 is satisfied
by R.

ii) It is easy to check that

R(S)=

m∑
i=1

λiRi(S)+δC(S)=
m∑
i=1

(λiRi(S)+δC(S))

for any S ∈ L(H). Thus, the proof is implied directly. �
Remark 7: Theorem 9 allows utilizing the result of Theorem 8

for a wide range of interest case, where different combinations
of constraints and regularization terms are considered together
in the Koopman learning problem (38).

In the following, we provide applications of the theorems
above.

A. Learning Koopman Operator With Frobenius Norm
Regularization

In Section IV, the introduced regularization function is based
on the operator norm. On the other hand, one may propose
employing Hilbert–Schmidt or Frobenius norm of the Koopman
operator to define the regularization term, i.e., R : L(H) →
R+ ∪ {+∞} is defined as R(K) := ‖K‖2F, for K ∈ L(H).
Thus, the learning problem is formulated as

min
K∈F

E(K) + λ‖K‖2F (44)

where E(K) is the empirical loss defined in (4). Before proceed-
ing further, we recall that ‖S‖2F = tr(S∗S), for each S ∈ L(H).
Moreover, given an orthonormal basis {bk}∞k=1 for H, the trace
of operator S ∈ LW is defined as

tr(S) :=
∞∑

k=1

〈bk, Sbk〉 (45)

when the summation converges [42]. Based on (45), we have

R(K) = ‖K‖2F =

∞∑
k=1

〈bk,K∗Kbk〉 =
∞∑

k=1

‖Kbk‖2. (46)

Note that the left-hand sides of (45) and (46) are independent of
the choice of orthonormal basis {bk}∞k=1.

The following theorem characterizes the solution of the
infinite-dimensional learning problem (44) through obtaining
an exact finite-dimensional quadratic program reformulation.

Theorem 10: Let Assumption 1 hold and λ > 0. Then, the
optimization problem (44) has a unique solution with parametric
representation as in (40), where A = [akl]

nz, ng

k=1,l=1 ∈ Rnz×ng is
the solution of the following quadratic program

min
A∈Rnz×ng

‖ZAG−Y‖2F + λ‖Z 1
2AG

1
2 ‖2F. (47)

Proof: See Appendix C. �
Define JF : Rnz×ng → R+ as the objective function in (47),

i.e., for any A ∈ Rnz×ng , we have

JF(A) = ‖ZAG−Y‖2F + λ‖Z 1
2AG

1
2 ‖2F. (48)

For the first derivative of JF, one can easily see that
1

2
∇AJF(A) = Z2AG2 + λZAG− ZYG. (49)

To solve (47), we can use the first order necessary condition
∇AJF(A) = 0, which is a linear system of equation with respect
toA. Indeed, ∇AJF(A) = 0 is a generalized Sylvester equation,
which can be solved efficiently. More precisely, ∇AJF(A) = 0
has a closed form solution in terms of λ, matrix Y, and the SVD
of matrices G and Z.

Remark 8: According to the discussion above, one can see
that employing Frobenius norm for the regularization leads to
less computationally demanding problem compared to the case
of regularization with operator norm. Hence, one may prefer
learning Koopman operator based on (44) rather than (6).

Remark 9: For λ > 0 andF = LG , let K̂G,λ denote the unique
solution of learning problem (44). Similar to Theorem 7, one
can show that limλ↓0 K̂G,λ = K̂U and limλ→∞ K̂G,λ = 0, in the
Frobenius norm and the operator norm topologies.

B. Learning Koopman Operator With Rank Constraint

Learning a low-rank operator can be of interest when a
reduced version of the Koopman operator is desired, e.g., for
the model reduction of the system [35], [46]. Thus, one may
introduce a rank constraint in the learning problem as

C :=
{
S ∈ L(H)

∣∣∣rank(S) := dim(S(H)) ≤ r
}

(50)

where r ∈ Z+ is a given bound on the rank of Koopman operator.
Accordingly, the resulting learning problem is

min
K∈F

E(K)

s.t. K ∈ C (51)

where E(K) is the empirical loss defined in (4). The following
theorem says that for the infinite-dimensional program (51),
there exists an exact equivalent finite-dimensional convex re-
formulation that can be solved efficiently to obtain the solution
of (51).

Theorem 11: Under Assumption 1, if the optimization prob-
lem (51) admits a solution, it has a solution with parametric form
given in (40), where A = [akl]

nz, ng

k=1,l=1 ∈ Rnz×ng is the solution
of the following problem:

min
A∈Rnz×ng

‖ZAG−Y‖2F
s.t. rank(ZAG) ≤ r.

(52)
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Proof: See Appendix D. �
Remark 10: The conditions in Theorem 8 or Remark 6

provided for guaranteeing the existence or uniqueness of the
solution are not satisfied for the learning problem (51). More
precisely, function R is not coercive here.

Using change-of-variable B = ZAG, the optimization prob-
lem (52) can be modified to

min
B∈Rnz×ng

‖B−Y‖2F
s.t. rank(B) ≤ r̃

(53)

where r̃ is defined as r̃ = min{r, rank(G), rank(Z)}. Following
this, one can use Eckart–Young–Mirsky theorem [47] to solve

(53). More precisely, let Y = UΣU
T

be the SVD of matrix Y,
Σ1 = diag(σ1, . . . , σr̃) be the diagonal matrix containing first
r̃ largest singular values of Y, and, U1 and U1 be, respectively,
the matrices containing first r̃ columns of U and U. Then,

B = UΣ1U
T

solves (53), and subsequently, we can obtain A

by solving ZAG = UΣ1U
T

for A.

C. Learning Koopman Operator With Nuclear Norm
Regularization

In various learning problems, like collaborative filtering, nu-
clear norm regularization is employed to penalize the complexity
of the model [48]. Indeed, the nuclear norm is interpreted as
a convex relaxation of rank [49]. Similar to the matrices, the
nuclear norm of operator S ∈ L(H) is defined as ‖S‖∗ = tr(|S|),
where |S| denotes the square root of S, i.e., |S| is a nonnegative
operator such that |S|2 = S∗S [42]. Thus, due to (45), given an
orthonormal basis {bk}∞k=1, we have

‖S‖∗ :=
∞∑

k=1

〈bk, |S|bk〉 (54)

when the summation converges [42]. Also, it is known that

‖K‖∗ = sup
{|tr(CK)| ∣∣C ∈ K(H), ‖C‖ ≤ 1

}
(55)

where K(H) denotes the set of compact operators on H [42].
Considering nuclear norm of the Koopman operator as the
regularization term, we have the following learning problem:

min
K∈F

E(K) + λ‖K‖∗ (56)

where λ > 0 and E(K) is the empirical loss defined in (4). It can
be shown that the infinite-dimensional learning problem (56)
can be reformulated precisely to a finite-dimensional convex
optimization.

Theorem 12: Under Assumption 1, the optimization prob-
lem (56) admits a solution K̂ with parametric form (40),
where A = [akl]

nz, ng

k=1,l=1 is the solution of following convex
program:

min
A∈Rnz×ng

‖ZAG−Y‖2F + λ‖Z 1
2AG

1
2 ‖∗ . (57)

Proof: See Appendix E. �
Remark 11: The regularization function R(·) := ‖ · ‖∗, em-

ployed in (56), is not strictly convex. Therefore, Theorem 8
cannot guarantee the uniqueness of the solution. However, if

we only consider the minimum norm solution of (56), then it is
unique and attains the parametric form (40).

Remark 12: Let K̂G,λ be the unique minimum norm solu-
tion of the learning problem (56) with λ > 0 and F = LG .
Similar to Theorem 7, we can show that limλ↓0 K̂G,λ = K̂U,
and limλ→∞ K̂G,λ = 0, in nuclear norm topology, which implies
convergence in Frobenius norm and operator norm as well.

D. Learning Stable Koopman Operator

Let xeq = [xeq,1, . . . , xeq,n]
T ∈ X be an equilibrium point for

dynamics (1). In this section, we assume the Hilbert space of
observables is an RKHSHk endowed with kernelk : X × X →
R for which we have

k(x, xeq) = k(xeq, x) = 0, ∀x ∈ X . (58)

Indeed, given kernel h : X × X → R, we can define k as

k(x, y) = h(x, y)− h(x, xeq)− h(xeq, y) + h(xeq, xeq)

for each x, y ∈ X . Then, one can see that k is a positive definite
kernel satisfying (58). Note that when k has this property, for
each observable g ∈ Hk, we have

g(xeq) = 〈k(xeq, ·), g〉 = 0. (59)

Assumption 3: There exist h1, . . . , hnx
∈ Hk and posi-

tive scalars L1, . . . , Lnx
, α1, . . . , αnx

such that, for each x =
[x1, . . . , xnx

]T ∈ X , we have

|hj(x)| ≥ Lj |xj − xeq,j |αj , ∀j ∈ {1, . . . , nx}. (60)

For example, if quadratic function h(x) = ‖x− xeq‖2 be-
longs to Hk, then Assumption 3 is satisfied. More precisely,
(60) holds for hj = h, Lj = 1, and αj = 2, for j ∈ [nx].

Theorem 13: Let Assumption 3 hold for Hk,
supx∈X k(x, x) < ∞, and there exist ε > 0 such that
‖K‖ ≤ 1− ε. Then, xeq is a globally stable equilibrium
point.

Proof: See Appendix F. �
Motivated by Theorem 13, we can include in the learning

problem the side-information on the stability of equilibrium
point (38) as

min
K∈F

E�(K) + λR(K)

s.t. K ∈ C
‖K‖ ≤ 1− ε

(61)

with ε > 0. Similar to before, we have the following theorem.
Theorem 14: Under the hypotheses of Theorem 8, the exis-

tence, the uniqueness, and the parametric representation (40) are
implied for the solution of learning problem (61).

Proof: See Appendix G. �

IX. NUMERICAL EXPERIMENTS AND EXAMPLES

In this section, we provide numerical examples elaborating the
presented results. Throughout this section, the Hilbert space of
observables is specified as RKHS Hk with kernel k : X × X →
R, and observables{gl}l∈[ng] are defined according to Remark 2,
i.e., gl(·) := k(pl, ·), for l ∈ [ng], whereP := {pl}ng

l=1 is a finite
set of points in X . Furthermore, for tuning hyperparameters
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Fig. 2. Magnitude of eigenvalues derived from the proposed scheme
converge to the ones obtained from EDMD as the weight of regulariza-
tion, λ, goes to 0. We can see that convergence has different behavior
depending on the choice of regularization.

such as the regularization weight, we employ a cross-validation
scheme implemented using a Bayesian optimization heuristic.

Example 1: The connection between EDMD and learning
problems (6), (44), and, (56) is discussed respectively in Theo-
rem 7, Remark 9, and Remark 12. To illustrates this feature, we
consider the following stable nonlinear dynamics

x1,k+1= μ1x1,k

x2,k+1= μ2x2,k +
(
μ2
1 − μ2

)
x2
1,k

(62)

where μ1 = 0.95 and μ2 = 0.75 [30].
Consider Gaussian kernel k defined as

k(x, y) = e
− 1
2�2

k

‖x−y‖2 ∀, x, y ∈ R2 (63)

where �k = 1. The system is initialized at x0 = [1, 0]T, and then
generated a trajectory of length ns = 60. Let g1, g2, and g3 be
three observables defined, respectively, as section of kernel k
at p1 = [1, 0]T, p2 = [1, 1]T, and p3 = [0, 1]T. Suppose that we
have the values of these observables along the trajectory of the
system. Given this data, we can apply the EDMD method, and
also, the scheme introduced in Theorem 4, for different values of
λ and, wl := gl, for l = 1, 2, 3. Each of these methods provides
an estimation of the eigenvalues of the Koopman operator. From
Theorem 7, we expect that as the weight of regularization,λ, goes
to 0, the magnitudes of eigenvalues derived from the proposed
scheme, denoted here by γ1, γ2, and γ3, converge to the ones
obtained from EDMD. Moreover, we know that as λ → +∞, the
solution of (33) goes to 0. Accordingly, we expect that γ1, γ2,
and γ3 converge to 0. Based on Remarks 9 and 12, we expect
to observe similar results for the case of R(K) = ‖K‖2F and
R(K) = ‖K‖∗. Fig. 2 demonstrates these asymptotic phenom-
ena. One can see that depending on the choice of regularization
functions, we have different forms of convergence for γ1, γ2,
and γ3. Furthermore, comparing the cases R(K) = ‖K‖2 and
R(K) = ‖K‖2F, when the regularization term is based on the
Frobenius norm, we observe that as λ → ∞, the convergence of
γ1, γ2, γ3 to 0 is with higher rate. Moreover, when nuclear norm
is employed for the regularization term, γ1, γ2, and γ3 converge
to 0 faster than the two previous cases. These phenomena can be
explained based on the inequality between the operator norm,
Frobenius norm, and nuclear norm, i.e., ‖S‖ ≤ ‖S‖F ≤ ‖S‖∗ ≤
∞, which holds for all S ∈ L(Hk). Additionally, we can see

that when R(K) = ‖K‖∗, the rank of operator K̂ drops as λ

increases. The is due to the nature of nuclear norm, which leads
to promoting low-rank solutions. �

Example 2: The Van der Pol oscillator is described as

ẋ1= x2

ẋ2= μ
(
1− x2

1

)
x2 − x1 + u

(64)

where μ > 0 is the damping coefficient and u is the input. To
obtain a discrete-time system as in (1), we set μ = 0.5 and
u = 0 in (64), and employ forward Euler method with step
size Δt = 0.2 s. We consider trajectories starting from initial
points x(1)

0 = [−2, 2]T and x(2)
0 = [0,−1]T, respectively, with

length n(1)
s = 50 and n(2)

s = 50 (see Fig. 3 ). We employ Matern
kernel k with parameter νk = 5

2 and length scale �k = 1 [50],
and define observables g1, . . . , gng

as the sections of kernel
k at points P = {(0.5i, 0.5j)|i, j = −5, . . ., 5}. To perform a
Monte Carlo experiment, we corrupt the trajectories data points
with zero mean white Gaussian additive noise. More precisely,
we consider different values for noise variance to include low,
medium, and high signal-to-noise ratio (SNR) levels, namely
with 10, 20, and 30 dB. With respect to each of these SNR
levels, 120 sequences of noise realization are generated for
being added to the trajectories. Given observables data, we can
estimate the Koopman operator using the EDMD approach and
the regularized learning methods mentioned in the previous sec-
tions by solving their equivalent finite-dimensional optimization
problems. To compare the performance of these methods, we
employ test observables g1, . . . , gng

specified as the sections

of kernel k at points P = {(0.1i, 0.1j)|i, j = −5, . . ., 5}, and
the mean squared error for the estimated Koopman operator K̂
defined as

MSE(K̂) =
1

ng

ng∑
l=1

∫
R

(
(K̂ ◦ gl)(x)− gl(F (x))

)2
dx (65)

where F is the vector field resulting from time discretization
of Van der Pol dynamics (64), R = [−2.5, 2.5]× [−2.5, 2.5],
and the integral is calculated numerically using a grid with
Δx = (0.025, 0.025). Fig. 3 illustrates and compares estimation
performance outcomes. One can observe that the introduced
learning schemes outperform the EDMD method, i.e., the in-
corporation of regularization terms and constraints results in
a more accurate estimation of the Koopman operator. Further-
more, learning techniques with regularization terms defined
based on operator and Frobenius norms exhibit superior es-
timation performances compared to those with nuclear norm
regularization. The observed outperformance can be due to
the fact that nuclear norm dominates operator and Frobenius
norms, and consequently, they have more effective impacts.
The same arguments hold when the impact of rank constraint
is compared with nuclear norm regularization. Moreover, we
observe that the estimation performances generally improve as
the SNR level increases, which is an expected phenomenon. The
minor exception is the case of including rank constraint, which is
possibly due to its nonconvexity. Finally, we can see that nuclear
norm regularization and rank constraint are not as effective as the
regularization terms specified by operator and Frobenius norm,
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Fig. 3. Left: two trajectories of Van der Pol dynamics (64). Right: the box-plots for the mean squared error of different Koopman learning methods.

indicating that the original Koopman operator is probably not
low-rank here. �

Example 3: The incorporation of potentially available side-
information about the Koopman operator can improve the learn-
ing accuracy by shrinking the hypothesis space and rejecting
spurious solution candidates. To demonstrate this feature, we
employ a scaled version of the Nicholson–Bailey model for
host-parasitoid dynamics [51] described as

x1,k+1= R0 x1,k (1 + 2x2,k)
− 1

2

x2,k+1= c x1,k

(
1− (1 + 2x2,k)

− 1
2

) (66)

where R0 = 1.1 and c = 3. We consider the trajectory starting
from the initial pointx0 = [0.5, 0.05]T and with lengthns = 100
(see Fig. 4 ). We employ Gaussian kernel (63) with �k = 0.1
[50]. The observables g1, . . . , gng

are defined as the sections
of kernel k at points P = {(0.3, 0.05) + (0.025i, 0.025j)|i,
j = 0, . . ., 8}. According to the behavior of the system shown in
Fig. 4, one can conclude that the system is stable. Meanwhile, as
we estimate the Koopman operator using the observables data
through the EDMD approach and also the learning method with
Frobenius norm regularization (44) where λ = 10−6, we observe
that the magnitude of dominant eigenvalues of the estimated
Koopman operators is less than one. This observation confirms
the discussed stability side-information. Following this, we per-
form a Monte Carlo experiment by corrupting the trajectory data
with realizations of zero mean white Gaussian additive noise.
The variance of noise is chosen such that the resulting SNR is
30 dB. We generate 450 sequence of noise realizations for being
added to the trajectory data, and subsequently, the observables
are evaluated on the noisy trajectory. Given the observables
data, we repeat previous Koopman operator estimation schemes.
Furthermore, to integrate the stability side-information, we mod-
ify the learning method with Frobenius norm regularization by
including the stability-inducing constraint ‖K‖ ≤ 1− ε where
ε = 10−5. Fig. 4 (bottom) demonstrates the dominant eigenval-
ues of the estimated Koopman operators. We can see from Fig. 4
that when the stability-inducing constraint is used, the domi-
nating eigenvalues are inside the unit circle, whereas they are
mainly located outside the unit circle when the other techniques
are implemented. Comparing the EDMD results, it can be seen
that the dominant eigenvalues have a smaller magnitude when
Frobenius norm regularization is used, which is potentially due
to the inequality ‖S‖ ≤ ‖S‖F. Indeed, the Frobenius norm reg-
ularization partially incorporates the stability side-information.

Fig. 4. Top-left: a trajectory of dynamics (66) and its noisy measure-
ment with 30 dB SNR. Top-right: performance comparison for Koopman
operator estimate using the EDMD approach, the learning scheme with
Frobenius norm regularization, and its modified version with the stability-
inducing constraint. Bottom: the dominant eigenvalues of estimated
Koopman operators.

Similar to the previous example, we quantitatively com-
pare the Koopman operator estimation results using test
observables g1, . . . , gng

defined as the sections of kernel

k at points P = {(0.3, 0.05) + (0.01i, 0.01j)|i, j = 0, . . ., 20}
and the mean squared error (65) calculated on region R =
[0.3, 0.5]× [0.05, 0.25]. Fig. 4 (top-right) compares the perfor-
mance of discussed Koopman operator estimation schemes. One
can see that the inclusion of stability side-information improves
learning and estimation accuracy. �

Example 4: Consider the following convection-diffusion
PDE:

∂u

∂t
(ξ, t) = a

∂u

∂ξ
(ξ, t) + b

∂2 u

∂ξ2
(ξ, t) (67)

where (ξ, t) ∈ [0, 1]× [0,∞),a = 1, and b = 0.1. We discretize
domains of ξ and t, respectively, with Δξ = 10−2 and Δt =
10−4 to obtain discrete-time dynamics x+ = F (x) with state
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Fig. 5. Exact solution (left) of PDE (67) with initial condition u(ξ, 0) =

1− e−ξ, and the approximate solutions derived from Koopman estima-
tions, one obtained by the EDMD approach (middle) and the other via
the learning method with Frobenius norm regularization (right).

dimension nx = 101. From the definition of Koopman oper-
ator, we know that g(xn) = Kn(x0), for each n ∈ N. Thus,
when x can be derived using the value of observables at x,
one can employ the estimation of Koopman operator to obtain
the solution of system for any arbitrarily initial condition. The
precision of this solution indicates the accuracy of estimated
Koopman operator. Accordingly, we consider the solution of
discrete-time system that corresponds to the initial condition
u(ξ, 0) = sin(πξ). Also, we employ kernel k(x, y) = 1 + xTy,
and specify ng = 2nx observables g1, . . . , gng

as the sections
of kernel k at points P = {p1, . . . ,png

}, which are randomly
chosen from the standard normal distribution in Rnx . We esti-
mate the Koopman operator using data of the observables, and
subsequently, we obtain the solution corresponding to the ini-
tial condition u(ξ, 0) = 1− e−ξ following the abovementioned
discussion. To estimate the Koopman operator, we employ the
EDMD approach and the learning method with Frobenius norm
regularization, and denote the resulting approximated solutions
respectively by ũ and û. To quantitatively compare these ap-
proximate solutions, we define solution mismatches as Δũ :=
ũ− u and Δû := û− u, and subsequently, their L 2-norm is
calculated on the region [0, 1]× [0, 1.25]. The resulting val-
ues are ‖Δũ‖2 = 2.543× 10−1 and ‖Δû‖2 = 1.004× 10−2.
In Fig. 5 , the approximate solutions are compared to the ex-
act solution u. Fig. 5 shows that û is nearly identical to the
exact solution, whereas ũ appears to be considerably different.
The quantitative evaluation and graphical comparison indicate
that the Koopman operator estimation obtained by the learn-
ing method with Frobenius norm regularization is significantly
more accurate compared to the one derived from the EDMD
approach. �

X. CONCLUSION

In this article, we investigated the problem of learning Koop-
man operators for discrete-time autonomous systems. The learn-
ing problem was formulated as a constrained regularized opti-
mization over the infinite-dimensional space of linear operators.
We showed that a representer theorem holds for the Koopman
learning problem, which allows a finite-dimension problem
reformulation without any approximation and precision loss.

Moreover, we investigated the incorporation of various forms of
regularization and constraint in the Koopman operator learning
problem, including the operator norm, the Frobenius norm, and
rank. For each of these cases, we derived the corresponding
finite-dimensional problem. We have also elaborated on the
connection between these learning problems and the EDMD
method. Finally, we have demonstrated the impact of regu-
larizations, constraints, and side-information through several
numerical examples.

APPENDIX

A. Proof of Theorem 3

The existence and uniqueness of the solution K̂W follows from
the same lines of arguments as in the proof of Theorem 1. Define
the linear subspace W̃ as W̃ := span{ΠWv1, . . . ,ΠWvns

}, and,
let Π

˜W be the projection operator on W̃ . For k ∈ [ns], we know

that ΠWvk ∈ W , and therefore, W̃ is a subspace of W . Define
operatorS asS := Π

˜WK̂WΠG . Since W̃ ⊆ W , we haveS ∈ LW .
From the definition ofΠG , we know thatΠGgl = gl, for l ∈ [ng].
Thus, for any k and l, we have

〈vk, Sgl〉 =
〈
vk,Π ˜WK̂WΠGgl

〉
=
〈
vk,Π ˜WK̂Wgl

〉
=
〈
Π∗

˜Wvk, K̂Wgl

〉 (68)

where Π∗
˜W is the adjoint of Π

˜W . Since W̃ is a finite dimen-
sional subspace, it is closed and the projection operator Π

˜W
is self-adjoint, i.e., Π∗

˜W = Π
˜W . Also, from W̃ ⊆ W , we know

that W⊥ ⊆ W̃⊥, and subsequently, we have Π
˜WΠW⊥ = 0. Ac-

cordingly, one can see that Π
˜W −Π

˜WΠW = Π
˜W(I −ΠW) =

Π
˜WΠW⊥ = 0. Thus, for each k ∈ [ns], we have

Π∗
˜Wvk = Π

˜Wvk = Π
˜WΠWvk = ΠWvk (69)

where the last equality is due to ΠWvk ∈ W̃ . Note that W is a
closed subspace, and subsequently,ΠW is a self-adjoint operator,
i.e.,Π∗

W = ΠW . Accordingly, from (68) and (69), we can see that

〈vk, Sgl〉=
〈
ΠWvk, K̂Wgl

〉
=
〈
vk,Π

∗
WK̂Wgl

〉
=
〈
vk,ΠWK̂Wgl

〉 (70)

for each k and l. Due to the definition of LW in (20) and
since K̂W ∈ LW , we know that K̂Wgl ∈ W , and subsequently,
ΠWK̂Wgl = K̂Wgl, for l ∈ [ng]. Hence, from (70), we have

E(S) =
ns∑
k=1

ng∑
l=1

(ykl − 〈vk, Sgl〉)2

=

ns∑
k=1

ng∑
l=1

(ykl − 〈vk, K̂Wgl〉)2 = E(K̂W).

Similar to the proof of Theorem 1, one can show that ‖S‖2 ≤
‖K̂W‖2, and subsequently, one can see that E(S) + λ‖S‖2 ≤
E(K̂W) + λ‖K̂W‖2. From the uniqueness of the solution of
(25), we have K̂W = S = ΠV K̂W ΠG . Due to the linearity of
operator K̂W , it follows that there exist akl ∈ R, for k ∈ [ns] and
l ∈ [ng], such that K̂W =

∑ns

k=1

∑ng

l=1 akl(ΠWvk)⊗ gl, i.e., we
have (26). Considering K̂W in this parametric form and due to
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the linearity of inner product, for each i ∈ [ns] and j ∈ [ng], it
follows that

(K̂gj)(xi−1) =
∑ns

k=1

∑ng

l=1 akl 〈vi, ((ΠWvk)⊗ gl) gj〉
=
∑ns

k=1

∑ng

l=1 akl 〈vi,ΠWvk〈gl, gj〉〉
=
∑ns

k=1

∑ng

l=1 〈ΠWvi,ΠWvk〉akl 〈gl, gj〉
where the last equality is due to the fact that 〈u,ΠWv〉 =
〈ΠWu,ΠWv〉, for any v, u ∈ H. Accordingly, we have
[(K̂gj)(xi−1)]

ns, ng

i=1,j=1 = WVAG. Thus, following the calcula-
tion steps similar to those in the proof of Theorem 1, we can
show that A can be obtained by solving convex program (27).�

B. Proof of Theorem 4

For each k ∈ [ns], there exist qk1, . . . , qknw
such that

ΠWvk =

nw∑
j=1

qkjwj = argmin
w∈W

1

2
‖vk − w‖2. (71)

Define matrix Q as Q = [qkj ]
ns, nw

k=1,j=1, and let the row vectors
qk and pk be, respectively, defined as qk = [qkj ]

nw
j=1 and pk =

[〈vk, wj〉]nw
j=1. From (71), we can easily see that qk = pkW

−1.
Also, due to the definition of vectors v1, . . . , vns

, we know that
PW = [pT1 , . . . , p

T
ns

]T, which implies that Q = PWW−1. From
(71), which says that ΠWvk =

∑nw

j=1 qkjwj , one can see that

K̂W in (26) has a representation as in (28). Moreover, we have

K̂W =

nw∑
j=1

ng∑
l=1

(
ns∑
k=1

qkjakl

)
wj ⊗ gl

=

nw∑
j=1

ng∑
l=1

[QTA](j,l)wj ⊗ gl

which yields C = QTA. Also, for each k, i ∈ [ns], one has

[WV ](k,i)=〈ΠWvk,ΠWvi〉=
〈∑nw

j=1 qkjwj ,
∑nw

l=1 qilwl

〉
=
∑nw

j=1

∑nw

l=1 qkj〈wj , wl〉qil=[QWQT](k,i)
(72)

and, consequently, we haveWV = QWQT. We, thus, getWV =
PWW−1PT

W . Subsequently, it follows that

PWC = PWQTA = PWW−1PT
W A = WVA (73)

which gives ‖PWCG−Y‖2F = ‖WVAG−Y‖2F. Furthermore,
from ATWVA = ATQWQTA = CTWC, we know that

‖W 1
2CG

1
2 ‖2 = sup

z∈Rng ,‖z‖≤1

zTG
1
2CTWCG

1
2 z

= sup
z∈Rng ,‖z‖≤1

zTG
1
2ATWVAG

1
2 z = ‖W 1

2

V AG
1
2 ‖2.

Thus, using the mentioned change-of-variable in (27), we get
the convex program (29). �

C. Proof of Theorem 10

We know that K = 0 is a feasible point for (44). Therefore,
for the optimal solution of (44), we need to have

λ‖K̂‖2F ≤ E(K̂) + λ‖K̂‖2F ≤ E(0) + λ‖0‖2F = ‖Y‖2F. (74)

Accordingly, (44) is equivalent to the following problem:

min
K∈F

E(K) + λ‖K‖2F
s.t. K ∈ C (75)

where C is defined as C := {S ∈ L(H) | ‖S‖F ≤ 1√
λ
‖Y‖F}. Let

S ∈ L(H), and {bk}∞k=1 be an orthonormal basis for H such
that G = span{b1, . . . , bng

}, where ng ≤ ng. If k ≤ ng, we
have ‖ΠZSΠGbk‖ = ‖ΠZSbk‖, and since ‖ΠZ‖ ≤ 1, it follows
that ‖ΠZSΠGbk‖ ≤ ‖Sbk‖. If k > ng, then ‖ΠZSΠGbk‖ = 0.
Therefore, due to the definition of Frobenius norm, we have

‖ΠZ SΠG‖2F =

∞∑
k=1

‖ΠZ SΠG bk‖2 ≤
∞∑

k=1

‖Sbk‖2 = ‖S‖2F.

Thus, for any S ∈ L(H), we haveR(ΠZSΠG) = ‖ΠZSΠG‖2F ≤
‖S‖2F = R(S). Moreover, for each S ∈ C, one can see that
‖ΠZSΠG‖F ≤ ‖S‖F ≤ 1√

λ
‖Y‖F, which implies that ΠZSΠG ∈

C. Therefore, δC(ΠZSΠG) ≤ δC(S), and hence, Assumption 2
holds. By definition, we know that C ⊂ dom(R) and 0 ∈
D := F ∩ dom(R) ∩ C = F ∩ C. Since ‖ · ‖F is a norm on
dom(R) and C ⊂ dom(R), it follows that C is a convex set.
Let {Sn}n∈N ⊂ L(H) be a sequence such that limn→∞ Sn =
S ∈ L(H) in norm topology. For any k ∈ N, we know that
limn→∞ ‖Snbk‖2 = ‖Sbk‖2. From Fatou’s lemma, it follows
that

‖S‖2F =
∑∞

k=1 ‖Sbk‖2 =
∑∞

k=1 lim infn ‖Snbk‖2
≤ lim infn

∑∞
k=1 ‖Snbk‖2 = lim infn ‖Sn‖2F. (76)

Therefore, we have R(S) ≤ lim infn R(Sn), and R is lower
semicontinuous. Moreover, if {Sn}n∈N ⊂ C, then ‖Sn‖F ≤
1√
λ
‖Y‖F, for eachn. Subsequently, due to (76), we have ‖S‖F ≤

1√
λ
‖Y‖F, which implies that S ∈ C. Hence, C and D = F ∩ C

are nonempty, closed, and convex sets. Due to ‖S‖ ≤ ‖S‖F, we
know that R is coercive, which implies that R is coercive as
well. Furthermore, it follows from Lemma 16 that R is strictly
convex. Therefore, due to Theorem 8, (75) admits a unique
solution with the parametric form in (40). This solution coincides
with the unique solution of (44) due to the equivalency of the
corresponding programs. Since for any h1, h2 ∈ H, we have
(h1 ⊗ h2)

∗ = h2 ⊗ h1, for K̂ in the given parametric form, we
know that K̂∗ =

∑nz

k=1

∑ng

l=1 akl gl ⊗ zk. One can easily see
that

(h1 ⊗ h2)(h3 ⊗ h4) = 〈h2, h3〉(h1 ⊗ h4) (77)

for any h1, h2, h3, h4 ∈ H. Accordingly, we have

K̂∗K̂ =
∑nz

k=1

∑ng

j=1

∑ng

l=1

∑nz

i=1 aklaij(gl ⊗ zk)(zi ⊗ gj)

=
∑ng

j=1

∑ng

l=1(gl ⊗ gj)
∑nz

k=1

∑nz

i=1 akl〈zk, zi〉aij
=
∑ng

j=1

∑ng

l=1(gl ⊗ gj)[A
TZA](l,j).

(78)

Since tr(gl ⊗ gj) = 〈gl, gj〉, for each j, l ∈ [ng], it follows from
(78) and ‖K̂‖2F = tr(K̂∗K̂) that

‖K̂‖2F =
∑ng

j=1

∑ng

l=1 〈gl, gj〉[ATZA](l,j)
= tr(GATZA) = tr(G

1
2ATZ

1
2Z

1
2AG

1
2 ) = ‖Z 1

2AG
1
2 ‖2F.

(79)

Using calculation steps similar to those in the proof of The-
orem 1, one can see E(K̂) = ‖ZAG−Y‖2F. Replacing these
terms, optimization (47) results. �

D. Proof of Theorem 11

We know that (51) is a special case of (38) where R ≡ 0,
and C is given in (50). Accordingly, we have R = δC . For any
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operator S ∈ H, we know that

rank(ΠZSΠG) ≤ min {rank(ΠZ), rank(S), rank(ΠG)}
≤ rank(S).

Hence, S ∈ C implies that ΠZSΠG ∈ C, and, we have

R(ΠZSΠG) = δC(ΠZSΠG) ≤ δC(S) = R(S). (80)

Therefore, the Assumption 2 holds for (51). Accordingly, due to
Theorem 8, if (5) admits a solution, it has also a solution K̂ with
parametric form given in (40). By taking orthonormal bases for
Z andG, one can easily show that rank(K̂) = rank(ZAG). More
precisely, let {b1, . . . , bng

} and {p1, . . . , pnz
} be two sets of

orthonormal vectors such that G = span{b1, . . . , bng
} and Z =

span{p1, . . . , pnz
}. Then, for each l ∈ [ng] and k ∈ [nz], there

exist real numbers el1, . . . , elng
and qk1, . . . , qknz

such that gl =∑ng

j=1 eljbj and zk =
∑ng

i=1 qkipi. Accordingly, one can see that

K̂=
∑nz

i=1

∑ng

j=1

(∑nz

k=1

∑ng

l=1 qkiaklelj
)
(pi ⊗ bj)

=
∑nz

i=1

∑ng

j=1[Q
TAE](i,j)(pi ⊗ bj)

(81)

where matrices E and Q are defined, respectively, as E =

[elj ]
ng,ng

l=1,j=1 and Q = [qki]
nz,nz

k=1,i=1. From (81), we know that

rank(K̂) = rank(QTAE). Also, we can obtain the Gramian ma-
trices G and Z, respectively, as G = EET and Z = QQT. Thus,
from Lemma 18 in Appendix H, we have

rank(K̂)= rank
(
QTAE

)
= rank

(
QTAEET

)
= rank

(
QQTAEET

)
= rank(ZAG).

(82)

Using calculation steps similar to those in the proof of Theo-
rem 1, we have E(K̂) = ‖ZAG−Y‖2F. Replacing these terms,
we obtain optimization (52). �

E. Proof of Theorem 12

For program (56), K = 0 is a feasible solution. Therefore, for
the optimal solution of (56), the following inequality holds:

λ‖K̂‖∗ ≤ E(K̂) + λ‖K̂‖∗ ≤ E(0) + λ‖0‖∗ = ‖Y‖2F. (83)

By virtue of (83), we define C as C := {S ∈ L(H)
∣∣ ‖S‖∗ ≤

λ−1‖Y‖F}, and, consider constrained optimization problem

min
K∈F∩C

E(K) + λ‖K‖∗ (84)

which is equivalent to (56). Let S ∈ L(H), and {bk}∞k=1 be
an orthonormal basis for H such that G = span{b1, . . . , bng

}.
Note that ΠGbk = bk, if k ≤ ng, and, ΠGbk = 0, otherwise.
Accordingly, from (55), (45), and Π∗

G = ΠG , we have

‖ΠZSΠG‖∗ = sup‖C‖≤1,C∈K(H)

∣∣tr(CΠZSΠG)
∣∣

= sup‖C‖≤1,C∈K(H)

∣∣∑∞
k=1 〈CΠZSΠGbk, bk〉

∣∣
= sup‖C‖≤1,C∈K(H)

∣∣∑ng

k=1 〈CΠZSΠGbk, bk〉
∣∣

= sup‖C‖≤1,C∈K(H)

∣∣∑ng

k=1 〈CΠZSbk, bk〉
∣∣

= sup‖C‖≤1,C∈K(H)

∣∣∑ng

k=1 〈CΠZSbk,ΠGbk〉
∣∣

= sup‖C‖≤1,C∈K(H)

∣∣∑∞
k=1 〈CΠZSbk,ΠGbk〉

∣∣
= sup‖C‖≤1,C∈K(H)

∣∣∑∞
k=1 〈ΠGCΠZSbk, bk〉

∣∣
≤ sup‖C‖≤1,C∈K(H)

∣∣∑∞
k=1 〈CSbk, bk〉

∣∣
= sup‖C‖≤1,C∈K(H)

∣∣tr(CS)∣∣ = ‖S‖∗
where the inequality is due to the fact thatΠGCΠZ ∈ K(H)with
‖ΠGCΠZ‖ ≤ 1, when C ∈ K(H) with ‖C‖ ≤ 1. Therefore, for
any S ∈ L(H), one can see that R(ΠZSΠG) = ‖ΠZSΠG‖∗ ≤

‖S‖∗ = R(S). Moreover, for S ∈ C, we have ‖ΠZSΠG‖∗ ≤
‖S‖∗ ≤ λ−1‖Y‖F, and, subsequently, it follows that ΠZSΠG ∈
C. Therefore, δC(ΠZSΠG) ≤ δC(S), and hence, Assumption 2
holds for R = λR+ δC . From the definition of C and R,
it follows that dom(R) ∩ C = C, and subsequently, we have
D := F ∩ dom(R) ∩ C = F ∩ C. One can easily see that 0 ∈
D. Since ‖ · ‖∗ is a norm on dom(R) and C ⊂ dom(R), we
know that C is a convex set, and also, R is a convex func-
tion. For S ∈ L(H), we have the inequality ‖S‖ ≤ ‖S‖∗, which
implies the coercivity of R. Hence, R = λR+ δC is a coer-
cive function. Let {Sn}n∈N ⊂ L(H) be a sequence such that
limn→∞ Sn = S ∈ L(H) in norm topology. Subsequently, we
know that limn→∞ |Sn| = |S| in norm topology. Hence, for
any k ∈ N, we have that limn→∞ 〈bk, |Sn|bk〉 = 〈bk, |S|bk〉.
Moreover, since {|Sn|}n∈N and |S| are nonnegative operators,
we know that 〈bk, |Sn|bk〉 ≥ 0 and 〈bk, |S|bk〉 ≥ 0, for any
n, k ∈ N. Hence, from Fatou’s lemma [45], it follows that

‖S‖∗ =
∑∞

k=1 〈bk, |S|bk〉 =
∑∞

k=1 lim infn 〈bk, |Sn|bk〉
≤ lim infn

∑∞
k=1 〈bk, |Sn|bk〉 = lim infn ‖Sn‖∗. (85)

Accordingly, we know that R(S) ≤ lim infn R(Sn), and R is
lower semicontinuous. Also, if {Sn}n∈N ⊂ C, then ‖Sn‖∗ ≤
1
λ
‖Y‖F, for each n. Therefore, due to (85), we know that

‖S‖∗ ≤ 1
λ
‖Y‖F, and, subsequently, we have S ∈ C. Hence, C

and D = F ∩ C are non-empty, closed and convex sets. Accord-
ingly, Theorem 8 implies that (84) admits solution K̂ with the
parametric form in (40), which is also a solution for (56) due
to the equivalency of the corresponding programs. Let {bn}n∈N

be an orthonormal basis such that G = span{bj |j ∈ [ng]}. Thus,
for each l ∈ [ng], there exist real numbers el1, . . . , elng

such that

gl =
∑ng

j=1 eljbj . From (78), it follows that

K̂∗K̂=
∑ng

j=1

∑ng

l=1

(∑ng

i=1 elibi

)
⊗
(∑ng

k=1 ejkbk

)
[ATZA](l,j)

=
∑ng

i=1

∑ng

k=1

(∑ng

j=1

∑ng

l=1 eli[A
TZA](l,j)ejk

)
(bi ⊗ bk)

=
∑ng

i=1

∑ng

k=1[E
TATZAE](i,k)(bi ⊗ bk)

where E is the matrix defined as E = [elj ]
ng,ng

l=1,j=1. One can
easily see that G = EET. Due to the equality above, we
know that there exist rik, for i, k ∈ [ng], such that |K̂∗K̂| =∑ng

i=1

∑ng

k=1 rik(bi ⊗ bk). From (77), we have

|K̂∗K̂|2 =
∑ng

i=1

∑ng

j=1 rij(bi ⊗ bj)
∑ng

l=1

∑ng

k=1 rlk(bl ⊗ bk)

=
∑ng

i=1

∑ng

k=1

∑ng

j=1

∑ng

l=1 rijrlk〈bj , bl〉(bi ⊗ bk)

=
∑ng

i=1

∑ng

k=1[R
2](i,k)(bi ⊗ bk)

where R is the matrix defined as R = [rik]
ng,ng

i=1,k=1. From the

abovementioned calculations for K̂∗K̂ and |K̂∗K̂|2, it follows
that

R2 = ETATZAE =
(
Z

1
2AE

)T (
Z

1
2AE

)
. (86)

Note that we have 〈h1, (h2 ⊗ h3)h1〉 = 〈h1, h2〉〈h1, h3〉, for
any h1, h2, h3, h4 ∈ H. Therefore, we have

‖K̂‖∗ = tr(|K̂∗K̂|) =∑∞
j=1 〈bj ,

∑ng

i=1

∑ng

k=1 rik(bi ⊗ bk)bj〉
=
∑∞

j=1

∑ng

i=1

∑ng

k=1 rik〈bj , bi〉〈bj , bk〉=
∑ng

i=1 rii= tr(R).

Accordingly, from (86), we know that ‖K̂‖∗ = ‖Z 1
2AE‖∗.

Note that, for any matrix M, we have ‖M‖∗ = ‖MT‖∗ =

Authorized licensed use limited to: TU Delft Library. Downloaded on May 11,2023 at 08:53:59 UTC from IEEE Xplore.  Restrictions apply. 



KHOSRAVI: REPRESENTER THEOREM FOR LEARNING KOOPMAN OPERATORS 3009

tr((MTM)
1
2 ) = tr((MMT)

1
2 ). From this fact and G

1
2G

1
2 =

G = EET, it follows that

‖K̂‖∗ = tr
((

Z
1
2AE

)(
ETATZ

1
2

))
= tr

((
Z

1
2AG

1
2

)(
G

1
2ATZ

1
2

))
= ‖G 1

2ATZ
1
2 ‖∗

= ‖Z 1
2AG

1
2 ‖∗.

Similar to the proof of Theorem 1, one can also show E(K̂) =
‖ZAG−Y‖2F. Substituting these terms in (56), we obtain the
optimization problem (52). �

F. Proof of Theorem 13

Consider a trajectory of system (1) as {xn}n∈N , and let
g ∈ Hk. From the reproducing property of kernel and Cauchy–
Schwartz inequality, it follows that

|g(xn)|= |(Kng)(x0)|= |〈k(x0, ·),Kng〉|≤‖k(x0, ·)‖‖Kng‖.
Since ‖k(x0, ·)‖ = k(x0, x0)

1
2 and ‖K‖ ≤ 1− ε, we have

|g(xn)| ≤ (1− ε)nk(x0, x0)
1
2 ‖g‖. Due to (60) and by replacing

g with hj , it follows that

Lj |xn,j − xeq,j |αj ≤ |hj(xn)| ≤ (1− ε)nk(x0, x0)
1
2 ‖hj‖

where xn,j is the jth coordinate of xn, for j ∈ [nx]. Accordingly,
for each j, we have

|xn,j − xeq,j | ≤ (1− ε)
n
α max

j∈[nx]

[
1

Lj
sup
x∈X

k(x, x)
1
2 ‖hj‖

] 1
αj

where α = max{αj |j ∈ [nx]}. Hence, we have limn→∞ xn =
xeq, where the convergence is uniform and with exponential
rate. �

G. Proof of Theorem 14

We know that ‖ΠZSΠG‖ ≤ ‖S‖, for all S ∈ L(Hk). Hence,
‖S‖ ≤ 1− ε implies that ‖ΠZSΠG‖ ≤ 1− ε. Subsequently, we
have δCε(ΠZSΠG) ≤ δCε(S), where Cε is the nonempty, closed,
and convex set defined as Cε := {S ∈ L(Hk)|‖S‖ ≤ 1− ε}.
Thus, Rε := δCε satisfies Assumption 2, and claims are implied
directly from Theorems 9 and 8. �

H. Supporting Lemmas

Lemma 15: For matrices A and B, we have ‖AB‖F ≤
‖A‖‖B‖F. Also, if B is invertible, then ‖AB‖F ≤ ‖A‖F‖B‖.

Lemma 16: The function f : L(H) → R+, defined as
f(T) = ‖T‖2F, is strictly convex.

Proof: Let {bk}∞k=1 be an orthonormal basis for H, t ∈ (0, 1)
and T1,T2 ∈ L(H) such that T1 �= T2. Then, for each k, we
have ‖T1bk‖2 + ‖T2bk‖2 ≥ 2〈T1bk,T2bk〉. The equality holds
if and only if T1bk = T2bk. Since T1 �= T2, there exists k such
that this inequality is strict. Now, multiplying both sides with
t(1− t) and rearranging the terms, we have

t‖T1bk‖2 + (1− t)‖T2bk‖2 ≥ t2‖T1bk‖2 + (1− t)2‖T2bk‖2

+ 2t(1− t)〈T1bk,T2bk〉 = ‖(tT1 + (1− t)T2)bk‖2.
By taking summation and due to the definition of Frobe-
nius norm, we have t‖T1‖2F + (1− t)‖T2‖2F > ‖tT1 + (1−

t)T2‖2F. Thus, it follows that tf(T1) + (1− t)f(T2) >
f(tT1 + (1− t)T2), which concludes the proof. �

Lemma 17: For matrices A ∈ Rn×m, B ∈ Rm×k, and
C ∈ Rk×p, we have rank(AB) + rank(BC) ≤ rank(B) +
rank(ABC).

Lemma 18: For matrices A ∈ Rn×m, B ∈ Rm×k, and C ∈
Rk×p, we have rank(AB) = rank(ATAB) and rank(BC) =
rank(BCCT).

Proof: We know that rank(ATAB) ≤ rank(AB). Therefore,
from Lemma 18, it follows that rank(ATA) + rank(AB) ≤
rank(A) + rank(ATAB) ≤ rank(A) + rank(AB). Hence, from
rank(ATA) = rank(A), we have rank(AB) = rank(ATAB).
Similarly, we can show the other equality. �

REFERENCES

[1] J. Schoukens and L. Ljung, “Nonlinear system identification: A user-
oriented road map,” IEEE Control Syst. Mag., vol. 39, no. 6, pp. 28–99,
Dec. 2019.

[2] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and
C. J. Tomlin, “A general safety framework for learning-based control in
uncertain robotic systems,” IEEE Trans. Autom. Control, vol. 64, no. 7,
pp. 2737–2752, Jul. 2019.

[3] H. Mania, M. I. Jordan, and B. Recht, “Active learning for nonlinear system
identification with guarantees,” J. Mach. Learn. Res., vol. 23, pp. 1–32,
2022.

[4] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse identification of nonlinear
dynamics for model predictive control in the low-data limit,” Proc. Roy.
Soc. A, vol. 474, no. 2219, 2018, Art. no. 20180335.

[5] J. Umlauft and S. Hirche, “Feedback linearization based on Gaussian pro-
cesses with event-triggered online learning,” IEEE Trans. Autom. Control,
vol. 65, no. 10, pp. 4154–4169, Oct. 2019.

[6] S. M. Khansari-Zadeh and O. Khatib, “Learning potential functions from
human demonstrations with encapsulated dynamic and compliant behav-
iors,” Auton. Robots, vol. 41, no. 1, pp. 45–69, 2017.

[7] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynam-
ical movement primitives: Learning attractor models for motor behaviors,”
Neural Comput., vol. 25, no. 2, pp. 328–373, 2013.

[8] M. Khosravi and R. S. Smith, “Nonlinear system identification with prior
knowledge on the region of attraction,” IEEE Control Syst. Lett., vol. 5,
no. 3, pp. 1091–1096, Jul. 2021.

[9] A. A. Ahmadi and B. El Khadir, “Learning dynamical systems with
side information (short version),” Proc. Mach. Learn. Res., vol. 120,
pp. 718–727, 2020.

[10] M. Khosravi and R. S. Smith, “Convex nonparametric formulation for
identification of gradient flows,” IEEE Control Syst. Lett., vol. 5, no. 3,
pp. 1097–1102, Jul. 2021.

[11] Y. S. Mauroy and I. Mezic, Koopman Operator in Systems and Control.
Berlin, Germany: Springer, 2020.

[12] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert
space,” Proc. Nat. Acad. Sci. United States Amer., vol. 17, no. 5,
pp. 315–318, 1931.

[13] R. K. Singh and J. S. Manhas, Composition Operators on Function Spaces.
Amsterdam, The Netherlands: Elsevier, 1993.
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