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We analyze nonparametric estimators for the distribu-
tion function of the incubation time in the singly and
doubly interval censoring model. The classical approach
is to use parametric families like Weibull, log-normal or
gamma distributions in the estimation procedure. We
propose nonparametric estimates for functions of the
observations, which stay closer to the data than the clas-
sical parametric methods. We also give explicit limit
distributions for discrete versions of the models and
apply this to compute confidence intervals. The meth-
ods complement the analysis of the continuous model in
Groeneboom (2021, 2023). R scripts for computation of
the estimates are provided in Groeneboom (2020).

K E Y W O R D S

confidence intervals, deconvolution, double interval censoring,
Fisher information, incubation time, single interval censoring,
support reduction

M O S S U B J E C T C L A S S I F I C A T I O N

62G05; 62N01; 62-04

1 INTRODUCTION

In the statistical analysis of the behavior of an infectious disease, one usually has to deal with
events that are not directly observable. As an example, at the start of the Covid-19 pandemic, the
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2 GROENEBOOM

so-called effective reproductive number Re played an important role (“Is it bigger or smaller than
1?”). The estimation of Re faces the difficulty that infection events can usually not be observed
and that therefore a deconvolution step is necessary, see, for example, Huisman et al. (2022).

For the estimation of the distribution of the incubation time one also faces the difficulty just
mentioned. In this case one has an observation interval [EL,ER] which is known to contain the
time of infection I and a time S where the person becomes symptomatic. The incubation time is
then given by S − I.

Following Britton and Scalia Tomba (2019) we set the left endpoint of the exposure interval
[EL,ER] equal to zero (“looking back”). Our observations then consist of the pair of the (lengths
of the) exposure time E and the time of getting symptomatic S

(E, S),

where S = I + U, I is the infection time (also shifted for taking EL = 0) and U the (length of the)
incubation time (which does not have to be shifted). The times I and U are assumed independent,
given E, and are not observable.

To make the distribution function F of the incubation time U identifiable, one has to make
an assumption on the distribution function of the infection time. It is usually assumed that
that the time till infection is uniformly distributed on the interval [0,E], conditionally on the
length of the exposure time E. The model is for example considered in Reich, Lessler, Cum-
mings, and Brookmeyer (2009), Britton and Scalia Tomba (2019), Backer, Klinkenberg, and
Wallinga (2020), and Groeneboom (2021). It is also possible to let the infection time have another
distribution on [0,E], but we have to make an assumption on this to make the distribution
of the infection time identifiable. In the present paper we will assume that the distribution is
uniform on [0,E].

We define the (convolution) density qF of (E, S) by

qF(e, s) = e−1{F(s) − F(s − e)} = e−1∫
s

u=(s−e)+
dF(u), e > 0, s ≥ 0. (1)

w.r.t. 𝜇, which is the product of the measure dFE of the exposure time E and Lebesgue measure.
The distribution function F satisfies F(x) = 0 for x ≤ 0. So the underlying measure QF for (E, S)
is defined by

dQF(e, s) = qF(e, s) ds dFE(e), e ∈ (0,M2], s ≥ 0, (2)

where M2 < ∞ is the upper bound of the support of E.
It seems reasonable to assume that the underlying distribution function F0 of the incubation

time is absolutely continuous, with density f0, and that E has no mass on an interval [0, 𝜀), for
some 𝜀 > 0. Observations of this type are shown schematically in Figure 1. Note that if S < E, one
usually puts S = E, since then E is no longer relevant for the estimation.

In practice, the variables S = I + U are usually rounded, taking the ceil of S, to integers (days),
in which case the log likelihood for one observation becomes, conditionally on the values of E,

log∫
⌈S⌉

s=⌊S⌋
qF(E, s) ds = log

{

E−1∫
⌈S⌉

s=⌊S⌋
{F(s) − F(s − E)} ds

}

, (3)

 14679574, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12335 by T

u D
elft, W

iley O
nline L

ibrary on [14/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GROENEBOOM 3

F I G U R E 1 Singly interval censored data. E is the end of the exposure time, S the time of becoming
symptomatic, I infection time and U the (length of the) incubation time. We only can observe E and S.

where ⌊S⌋ and ⌈S⌉ are the floor and ceil of S, respectively. Note that S itself is assumed to have a
continuous distribution and that S therefore lies with probability one strictly between two con-
secutive integers, so we integrate over an interval of length 1. In this case, where we do not have
more precise information on the values of the time of getting symptomatic, we call the model
doubly censored: we only have an interval for the beginning of the incubation time (time of get-
ting infected) and an interval (the 24 hr of a day) for the time of getting symptomatic. If we would
have more precise information about the time of getting symptomatic, so that we can trat S as
a continuous (observable) random variable, we would call the model singly censored. Theory for
nonparametric analysis of this model is developed in Groeneboom (2023).

Usually the exposure times E are also only known as number of days, so represented by inte-
gers, as we will do in the sequel. In principle we can also consider a continuous exposure time E,
but we will not do this to avoid an overcomplicated model. So instead of the parameters F0(S) and
F0(S − E), we consider estimating the parameters

F0(⌈S⌉) = ∫
⌈S⌉

s=⌊S⌋
F0(s) ds, and F0(⌈S⌉ − E) = ∫

⌈S⌉

s=⌊S⌋
F0(s − E) ds, (4)

where E ∈ N, and where we use the notation F0 to denote the underlying distribution function.
For a sample (E1, S1), … , (En, Sn), where the Si are integers, and represent the ceils in (4), we

get the log likelihood

𝓁(F) =
n∑

i=1
log{F(Si) − F(Si − Ei)}, (5)

for distribution functions F, where we assume that the Ei are also integers.
To give a specific example, we consider the following parametric model. The incubation time

U has a truncated exponential distribution function Fa, defined by

Fa(x) =
1 − exp(−x∕a)

1 − exp(−M1∕a)
1[0,M1](x) + 1(M1,∞)(x), x ∈ R,

for some constants M1, a > 0. There is no reason to use this distribution as a model for the incuba-
tion time, but neither is there a reason for using the Weibull, log-normal or gamma distributions,
which are mostly used. The advantage of taking the exponential distribution in our example is
that the integral in (3) has a simple form, in contrast with the integrals of the latter distribution
functions.
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4 GROENEBOOM

Now, once we have fixed the upper bound for the incubation time M1 (something that is
needed in the nonparametric approach, but it also does not sound unrealistic to assume that
such an upper bound exists), for example M1 = 15, the parametric estimation of the distribution
function of the incubation time boils down to the maximization of the function

𝓁(Fa) =
n∑

i=1
log∫

⌈Si⌉

s=⌊Si⌋

{Fa(s) − Fa(s − Ei)} ds, (6)

over a > 0, where

Fa(x) =
⎧
⎪
⎨
⎪
⎩

0 , x < 0,
(
1 − e−x∕a)∕

(
1 − e−M1∕a)

, x ∈ [0,M1],
1 , x > M1.

(7)

If Ei < Si, the integrals ∫ ⌈Si⌉

s=⌊Si⌋
{Fa(s) − Fa(s − Ei)} ds are of the form

∫
k

s=k−1
{Fa(s) − Fa(s − Ei)} ds

= (1 − a exp(−k∕a)(exp(1∕a) − 1))∕(1 − exp(−M1∕a)))
− (1 − a exp(−(k − j)∕a)(exp(1∕a) − 1))∕(1 − exp(−M1∕a)),

(8)

(note that the Ei are assumed to be integers). If Ei ≥ Si we get:

∫
k

s=k−1
{Fa(s) − Fa(s − Ei)} ds = ∫

k

s=k−1
Fa(s) ds

= (1 − a exp(−k∕a)(exp(1∕a) − 1))∕(1 − exp(−M1∕a))).
(9)

So maximization of 𝓁(Fa) in (6) boils down to maximization of sums of logarithms of expres-
sions of the form (8) and (9) as a function of the parameter a. We used the R package nloptr
for this maximization, which is an interface to the nonlinear optimization package (John-
son, 2007) (written in C); the R script for our particular optimization problem can be found in
Groeneboom (2020).

On the other hand, the nonparametric maximum likelihood estimator maximizes

𝓁2(F) =
n∑

i=1
log∫

⌈Si⌉

s=⌊Si⌋

{F(s) − F(s − Ei)} ds

=
n∑

i=1
log

{
F(⌈Si⌉) − F(⌈Si⌉ − Ei)

}
,

(10)

over all distribution functions F, or, alternatively, all discrete distribution functions F, only having
jumps at the integers i. Since this is a maximization over a much wider class of functions, we
cannot expect it to be as good as the parametric estimate for its own parametric model.

To get a feel for their relative performances, we show the box plots of the nonparamet-
ric and parametric estimates of the distribution function at the point 6 (“6 days”) for this
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GROENEBOOM 5

particular parametric model. It is seen in Figure 2a that both estimates are well on target, but that
the nonparametric estimate has a bigger variance. This is to be expected, since the nonparamet-
ric estimate does not presuppose this particular parametric model, as the parametric estimate in
fact does. Figure 2b shows what happens if we take for the parametric estimate the value of Fâ(6)
instead of the integral ∫ 6

5 Fâ(x) dx, where â is the parametric estimate of the parameter a, resulting
from the application of nloptr.

The doubly interval censored model, for which the intervals, containing the time of getting
symptomatic, are longer than one day, is considered in Lauer et al. (2020). In this case there is
again an interval [EL,ER] for the infection time and an interval [SL, SR] for the time of becoming
symptomatic. One can, just as in Groeneboom (2021), shift the data in such a way that EL = 0,
which leaves us with three numbers: the time E (“length of Exposure time”) and the times SL
and SR, adapted for the shifting of EL to zero. Denoting the (real) time of becoming symptomatic
by S, we have that S is the sum of the the infection time I and the incubation time U. We also
assume, conditionally on the exposure time E, that I and U are independent and that the time of
becoming infected is uniformly distributed on the interval [0,E] Typical schematic pictures of the
doubly interval censored model are shown in Figure 3 for two different situations for the interval
[SL, SR], containing S.

F I G U R E 2 (a) Box plot of 1,000 nonparametric and parametric estimates of ∫ 6
5 Fa(x) dx, where Fa is the

truncated exponential distribution function, defined by (7), with a = 6, and where the time variables of the
sample are rounded to the nearest upper integer. (b) Box plot of 1,000 nonparametric estimates of ∫ 6

5 Fa(x) dx and
1,000 parametric estimates of Fa(6), where the time variables are rounded in the same way in the samples. In
both cases, the red line segment shows the value of the real ∫ 6

5 Fa(x) dx.

F I G U R E 3 Doubly interval censored data. S the time of becoming symptomatic, I infection time and U the
(length of the) incubation time. We can only observe E and the interval [SL, SR], containing S.
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6 GROENEBOOM

In this case the log likelihood for one observation is of the form

log
[
F(SR) − F(SL) − F(SR − E) + F(SL − E)

]
, (11)

neglecting parts not affecting the maximization problem, where F(u) = ∫ u
0 F(x) dx, u > 0. Such

an analysis if given in Lauer et al. (2020). The analysis in Lauer et al. (2020) is parametric, con-
sidering the log-normal, gamma, Weibull, and Erlang distributions as options for the incubation
time distribution.

1.1 Outline of the paper

One can restrict consideration to the estimation of parameters F0(i) of type (4). We discusss this
nonparametric model in Section 2. If one only considers a finite number of parameters of this type,
one can specify the asymptotic (normal) distribution, using the Fisher information matrix The
rate of convergence of the estimates is

√
n. The results are given in Theorems 1 and 2 of Section 2.

Computation of the nonparametric MLE is nontrivial. We discuss this in Section 3, where the
support reduction is introduced for computing the MLE in both models. In Section 4 we discuss
the construction of confidence intervals for both models. Proofs are given in the Appendix.

2 THE NONPARAMETRIC MODEL

We consider the estimation the parameters F0(i), defined by (4). The first question is whether the
MLE is consistent for these parameters. The answer is affirmative, under some conditions on the
distribution function FE and F0, as the following lemma shows. Here and the rest of the paper,
we assume that the Si and Ei are integers.

Lemma 1 (Consistency of ̂Fn for F0). Let F0 have strictly positive mass at all points
1, 2, … ,M1, where M1 is a integer such that F0(i) = 1, for i > M1. Moreover, let FE
have positive mass on all points 1, 2, … ,M2, where M2 > M1∕2. Then ̂Fn is a consistent
estimate of F0.

Proof. The proof parallels the proof for the continuous model in Groeneboom (2023).
The first observation is that ̂Fn(i) = 1 if i > M1, since then i > Sj − Ej for all pairs

Ej, Sj for which Ej > 0, so the log likelihood becomes largest by putting F(i) = 1 (there
is no compensating −F(Sj − Ej), such that i ≤ Sj − Ej).

Let 𝓁(F) be defined by

𝓁(F) = ∫ log{F(s) − F(s − e)} dQn(e, s),

for distribution functions F on R, which satisfy F(x) = 0, x ≤ 0, where Qn is the
empirical distribution of the pairs (Ei, Si). Then we get:

lim
𝜀↓0

𝜀

−1{𝓁
(
(1 − 𝜀) ̂Fn + 𝜀F0

)
− 𝓁

(
̂Fn
)} ≤ 0,

since ̂Fn is the MLE. The limit exists because of the concavity of 𝓁. Evaluating this
limit, we get:
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GROENEBOOM 7

∫
F0(s) − F0(s − e)
̂Fn(s) − ̂Fn(s − e)

dQn(e, s) ≤ 1.

This gives for a limit point F of a subsequence ̂Fnk , using Helly’s compactness
theorem,

∫
M1+e∑

i=1
e−1 {F0(i) − F0(i − e)}2

F(i) − F(i − e)
dFE(e) ≤ 1,

where FE is the (discrete) distribution function of E.
We also have:

∫
M1+e∑

i=1
e−1{F(i) − F(i − e)} dFE(e) = 1,

since F(i) = 1, i > M1. Hence we get:

∫
M1+e∑

i=1
e−1

{
{F0(i) − F0(i − e)}2

F(i) − F(i − e)
+ {F(i) − F(i − e)}

}

dFE(e) ≤ 2. (12)

Let j ∈ {1, … ,M1}. Then, if 0 < j ≤ M1∕2, there is an e with positive
dFE-measure, such that j − e < 0, and then

{F0(j) − F0(j − e)}2

F(j) − F(j − e)
+ F(j) − F(j − e) =

{F0(j)}2

F(j)
+ F(j) > 2F0(j),

unless F(j) = F0(j).
On the other hand, if M1∕2 < j ≤ M1, there is an e with positive dFE-measure, such

that j + e > M1, and then

{F0(j + e) − F0(j)}2

F(j + e) − F(j)
+ F(j + e) − F(j) =

{1 − F0(j)}2

1 − F(j)
+ 1 − F(j) > 2{1 − F0(j)},

unless F(j) = F0(j). This means that

∫
M1+e∑

i=1
e−1

{
{F0(i) − F0(i − e)}2

F(i) − F(i − e)
+ {F(i) − F(i − e)}

}

dFE(e)

> 2∫
M1+e∑

i=1
e−1{F0(i) − F0(i − e)} dFE(e) = 2,

unless F = F0. The assertion now follows from (12). ▪

We now get the following result where the intervals, containing the time of becoming
symptomatic, consist of just one day.
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8 GROENEBOOM

Theorem 1. Let FE have support {1, 2, … ,M2}, with positive mass at each i in this set.
Let, given E, the infection time I have a (continuous) uniform distribution on [0,E], and
let the time of getting symptomatic S be the sum of the infection time I and the incubation
time U, where I and U are independent, given E. Let U have an absolutely continuous
distribution function F0 on R, such that F0(0) = 0 and F0(M1) = 1, where M2 > M1∕2,
and let F0(i) be defined by

F0(i) = ∫
i

i−1
F0(x) dx, i = 1, 2, … . (13)

Moreover, suppose  = {0, 1, … ,m}, where m = M1 + 1, and p0(i)
def
= F0(i) − F0(i −

1) > 0, for each i = 1, … ,m, where the p0(i) satisfy

m∑

i=1
p0(i) = 1. (14)

Furthermore, let  be the set of right-continuous discrete distribution functions only
having jumps at the positive integers and let ̂Fn ∈  maximize the log likelihood

𝓁(F) =
n∑

i=1
log{F(Si) − F(Si − Ei)}, (15)

over F ∈  . Finally, let p̂n(i) = ̂Fn(i) − ̂Fn(i−) be the corresponding point masses. Then:

(i)

n1∕2{(p̂n(1), … , p̂n(m − 1)
)
− (p0(1), … , p0(m − 1))

} 
−−→N

(
0,𝚺−1)

,
(16)

where 𝚺 = (𝜎ij)i,j,=1,… ,m−1 is the Fisher information matrix with elements

𝜎ij = E

(
1(S−E,S](i) − 1(S−E,S](m)

) (
1(S−E,S](j) − 1(S−E,S](m)

)

{F0(S) − F0(S − E)}2
, (17)

for i, j = 1, … ,m − 1, and where we assume that 𝚺 is nonsingular.
(ii) Let the covariance matrix 𝚺 be defined by (17) be nonsingular and let ̂Fn maximize

(15). Then:

n1∕2
{(

̂Fn(1), … ,
̂Fn(m − 1)

)
−
(

F0(1), … ,F0(m − 1)
)} 

−−→N
(
0,A𝚺−1AT)

,

(18)
where the matrix A has rows

∑i
j=1eT

j , i = 1, … ,m − 1, for the unit vectors
ej ∈ Rm−1.

Remark 1. Note that p0(m) = 1 −
∑m−1

i=1 p0(i) and F0(m) = 1 and that we therefore
have m − 1 free parameters, as in the case of the multinomial distribution.
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GROENEBOOM 9

Remark 2. The major difference with the conditions of theorem 4.1 in Groene-
boom (2023) is that the maximum likelihood estimators have mass at points of a a
fixed finite set. Also note that the estimation of only a fixed finite number of parameters
pulls the rate of convergence from cube root n to square root n.

We can prove a similar result for the more general doubly interval censored case. This time
the Fisher information matrix consists of the elements

𝜎ij = E
{𝜓(E, SL, SR, i) − 𝜓(E, SL, SR,m)}{𝜓(E, SL, SR, j) − 𝜓(E, SL, SR,m)}

{∫ 𝜓(E, SL, SR, t) dF0(t)
}2 ,

for i, j = 1, … ,m − 1, and where

𝜓(e, sL, sE, t) = (sR − t)1{t∈(0,sR]} − (sL − t)1{t∈(0,sL]}

− (sR − e − t)1{t∈(0,sR−e]} + (sL − e − t)1{t∈(0,sL−e]},
(19)

Note that

∫t∈(sL,sR]
{F(t) − F(t − E)} dt = ∫ 𝜓(e, sL, sE, t) dF(t),

As noticed in Section 3, exactly the same support reduction algorithm can be used, with
the weights wi(j) = 𝜓(Ei, SL,i, SR,i, j) where 𝜓 is defined by (19), instead of the weights wi(j) =
1(Si−Ei,Si](j) for the singly interval censored model (see (24)).

It is harder to formulate conditions under which the nonparametric MLE is consistent in this
model. In the singly interval censored model we can use that we can identify values of Si − Ei for
which ̂Fn(Si − Ei) = 0 and values of Si for which ̂Fn(Si) = 1. But if we have and interval [Si,L, Si,R]
(with length larger than 1), containing the time point for getting symptomatic, this becomes more
problematic. We therefore include the condition that ̂Fn is consistent for F in our assumptions.

We get the following analogue of Theorem 1 for the doubly interval censored model.

Theorem 2. Let F0 and FE be distributions with the properties defined in Theorem 1,
and let the time of getting symptomatic S satisfy S ∈ [SL, SR]. Moreover, let F0 and p0
satisfy the same conditions as in Theorem 1. Finally, let ̂Fn maximize the log likelihood

𝓁(F) =
n∑

i=1
log∫ 𝜓(E, SL,i, SR,i, t) dF(t), (20)

where 𝜓 is defined by (19), over the set of discrete distribution functions  , defined in
Theorem 1, and let p̂n(i) = ̂Fn(i) − ̂Fn(i−) be the corresponding point masses. Suppose
̂Fn is consistent for F0. Then:

(i)

n1∕2{(p̂n(1), … , p̂n(m − 1)
)
− (p0(1), … , p0(m − 1))

} 
−−→N

(
0,𝚺−1)

,
(21)

where 𝚺 = (𝜎ij)i,j,=1,… ,m−1 is the Fisher information matrix, assumed nonsingular,
with elements
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10 GROENEBOOM

𝜎ij = E
{𝜓(E, SL, SE, i) − 𝜓(E, SL, SE,m)}{𝜓(E, SL, SE, j) − 𝜓(E, SL, SE,m)}

{∫ 𝜓(E, SL, SR, t) dF0(t)
}2 ,

(22)
for i, j = 1, … ,m − 1 = M1, where 𝜓 is defined by (19).

(ii) Let the covariance matrix 𝚺 be defined by (17). Then:

n1∕2
{(

̂Fn(1), … ,
̂Fn(m − 1)

)
−
(

F0(1), … ,F0(m − 1)
)} 

−−→N
(
0,A𝚺−1AT)

,

(23)
where the matrix A has rows

∑i
j=1eT

j , i = 1, … ,m − 1, for the unit vectors
ej ∈ Rm−1.

3 COMPUTATION OF THE NONPARAMETRIC MAXIMUM
LIKELIHOOD ESTIMATORS

In Groeneboom (2021) two methods were discussed to compute the nonparametric MLE in the
singly interval censored model: the EM algorithm and the iterative convex minorant algorithm.
The EM algorithm is excruciatingly slow for this model and for this reason the iterative convex
minorant algorithm was used in the simulations. But in the case of doubly interval censored data
it is less clear how the iterative convex minorant algorithm should be used, although we could
think of ways to apply it in this situation too. However, we will turn to a third method of comput-
ing the nonparametric MLE, the support reduction algorithm, see Groeneboom, Jongbloed, and
Wellner (2008). This method can be applied with equal ease to the two models.

We first discuss the support reduction algorithm for the singly interval censored model. The
support reduction algorithm starts by specifying a grid of points  = {1, … ,M1 +M2} which
could be points of mass of the MLE. As an example, for the data set analyzed in Groene-
boom (2021), one could take set of points  = {1, 2, … , 30}. We can also take the points Si and
(Si − Ei)1{Si−Ei>0} because these are the points appearing in the log likelihood.

The log likelihood, divided by n, for this set of points can be written

𝓁(p1, … , pM) = n−1
n∑

i=1
log

{ M∑

j=1
pj1{j∈(Si−Ei,Si]}

}

,

where M = M1 +M2 + 1, pj ≥ 0, and
∑M

j=1pj = 1, and where the subset of locations j of strictly
positive mass pj have to be estimated. Introducing the notation

wi(j) = 1{j∈(Si−Ei,Si]}, (24)

we can write the log likelihood, divided by n, for {p1, … , pM} at {1, … ,M}

𝓁(p1, … , pM) = n−1
n∑

i=1
log

{ M∑

j=1
pjwi(j)

}

. (25)

Turning the maximization problem into a minimization problem on the cone RM
+ , with a Lagrange

term to ensure that the solution satisfies
∑M

i=1pi = 1, we get as our criterion function
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GROENEBOOM 11

𝜙(p1, … , pM) = −n−1
n∑

i=1
log

{ M∑

j=1
pjwi(j)

}

+
M∑

i=1
pi − 1. (26)

For this function have the following lemma.

Lemma 2 (Fenchel duality conditions for minimization on a cone). The function 𝜙

in (26) is minimized on RM
+ if and only if

(i)

𝜕

𝜕pj
𝜙(p1, … , pM) ≥ 0, j = 0, … ,M, (27)

and
(ii)

M∑

j=1
pj

𝜕

𝜕pj
𝜙(p1, … , pm) = 0. (28)

The algorithms mentioned (EM, convex minorant algorithm and support reduction
algorithm) run until the conditions of Lemma 1 are satisfied up to a certain tolerance, for which
we take 10−10. The EM algorithm tries to do this by simple iteration:

p′j = pj

{

1 − 𝜕

𝜕pj
𝜙(p1, … , pM)

}

, j = 1, … ,M,

(see (7) in Groeneboom, 2021), the iterative convex minorant algorithm by introducing a quadratic
approximation, parametrizing with the values of the distribution function instead of the point
masses (see Groeneboom, 2021).

As in the iterative convex minorant algorithm, the support reduction algorithm employs
quadratic approximation, but the parametrization uses the point masses. Expanding the first two
terms of the log likelihood at a fixed vector p(0) = (p(0)1 , … , p(0)M ), we get:

n−1
n∑

i=1
log

{ M∑

j=1
pjwi(j)

}

− n−1
n∑

i=1
log

{ M∑

j=1
p(0)j wi(j)

}

≈ n−1
M∑

i=1

∑M
j=1

(
pj − p(0)j

)
wi(j)

∑M
j=1p(0)j wi(j)

− 1
2

n−1
n∑

i=1

{∑M
j=1

(
pj − p(0)j

)
wi(j)

}2

{∑M
j=1p(0)j wi(j)

}2 .

We now use iterative minimization. For fixed m0 < M and a subset {j1, … , jm0} ⊂ {1, … ,M},
we minimize

1
2n

n∑

i=1

∑m0
k=1p2

jk
wi(jk)2 + 2

∑
k<𝓁≤m0

pjk pj𝓁wi(jk)wi(j𝓁)
{∑M

j=1p(0)j wi(j)
}2 − 2

n

n∑

i=1

∑m0
k=1pjk wi(jk)

∑M
j=1p(0)j wi(j)

+
m0∑

k=1
pjk . (29)
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12 GROENEBOOM

as a function of p1, … , pm0 , where, at the start of the iterations

m0 = 1 and p(0)j = 1
M

, j = 1, … ,M,

and where the double sum in the first numerator vanishes if m0 = 1.
Then we investigate if adding a point jm0+1 not in the set {j1, … , jm0} and minimizing (29)

over {pj1 , … , pjm0+1}, with m0 replaced by m0 + 1, leads to a smaller value of (2.1) with the extra
point. This may lead to a solution with negative pi’s. In that case we remove the point k with the
smallest value of pk < 0 and solve the least squares minimization problem for (29) again. It can
be proved that this procedure does not remove the point just added again (see, e.g., Groeneboom
et al., 2008; Meyer, 2013). If this solution gives again values pi < 0, we reduce the set further to a
subset of m0 − 1 points and solve the least squares minimization problem for (29) again with m0
replaced by m0 − 1, continuing until we find a solution with only positive pi’s.

Then we repeat the whole procedure, starting by investigating whether adding a point jm′
0+1

not in the set j1, … , jm′
0
} leads to a smaller value of the criterion for the new subset {j1, … , jm′

0
} ⊂

{1, … ,M}. Continuing in this way we find a subset {j1, … , jm0} and corresponding pj1 , … , pjm0

which solves the least squares problem for all possible subsets {j1, … , jm0} ⊂ {1, … ,M}.
Next we change the values p(0)j in the denominators of (29). Let

p = (p1, … , pM), p(0) =
(

p(0)1 , … , p(0)M

)
,

where p consists of the values pjk found in the iterative least squares minimization procedure and
zeroes for indices jk not corresponding to indices of the subset {j1, … , jm0}. Using a line search
procedure, for which we use Armijo’s rule, we look for a convex combination

p′ = 𝛼p + (1 − 𝛼)p(0), 𝛼 ∈ (0, 1),

such that 𝜙(p′) < 𝜙(p(0)), where 𝜙 is defined by (26). Then we set p(0) ∶= p′, and repeat the
iterative least squares minimization procedure, described above.

We repeat these inner and outer iterations until conditions (i) and (ii) of Lemma 2 are satisfied
up to a certain tolerance, for which we took 10−10.

As an example, the algorithm is applied to the data set, given in Groeneboom (2021), starting
with p(0)i = 1∕M at the points {1, … ,M}, M = 31, and p1 = 1 at t1 = 10.

iteration criterion min
j∶pj>0

𝜕

𝜕pj
𝜙(p) |⟨p, 𝜙′(p)⟩| #{j ∶ pj > 0}

1 1.5042265478 −0.1222076701 0.0650411285 7
2 1.4607858577 −0.0245250080 0.0650411285 7
3 1.4528857033 −0.0016619636 0.0008604701 7
4 1.4523204985 −0.0000347676 0.0000174294 7
5 1.4522988585 −0.0000003963 0.0000001969 7
6 1.4522974627 −0.0000000040 0.0000000020 7
7 1.4522973319 −0.0000000000 0.0000000000 7
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GROENEBOOM 13

It is seen that after the first least squares iteration run, the algorithm has found 7 points of
strictly positive mass (the points 3–9) and that this number does not change in the following
outer iterations. It is also clear that the outer iteration are of (quadratic) Newton type. The end
solution coincides in all 10 decimals with the result of the iterative convex minorant algorithm
in Groeneboom (2021). It can be reproduced by running the R script for the support reduction
algorithm in Groeneboom (2020).

The support reduction algorithm can be run in exactly the same way for the doubly interval
censored data with more general intervals. The only change concerns the wj(1). This time wj(i)
is defined by (19). The log likelihood is again given by (25), but with the new definition of the
wj(i). The solution of the maximization problem on the set of points  = {1, … ,M} is again
characterized by Lemma 2.

4 CONFIDENCE INTERVALS

To construct confidence intervals for the distribution function of the incubation time F0, dis-
cretized on the integers as in (4), based on the nonparametric MLE for the singly and doubly
interval censoring models, we can use Theorems 1 and 2. Because the Weibull distribution
is a popular tool for modeling the incubation time distribution in medical statistics, we use
simulations from this distribution as our examples.

Since we have square root n convergence and asymptotic normality, we can also use
bootstrap confidence intervals. We do not run into the inconsistency difficulties from
which the classical nonparametric bootstrap suffers in the continuous model (see Groene-
boom, 2021, 2023). Bootstrapping has the advantage that we do not have to estimate the
asymptotic variances.

We start by considering asymptotic confidence intervals, using Theorems 1 and 2 for estimat-
ing the variance. If we want a 95% confidence intervals for the distribution function at a fixed
point t, we can use the interval

[ ̂Fn(t) − 1.96 �̂�n(t)∕
√

n, ̂Fn(t) + 1.96 �̂�n(t)∕
√

n], (30)

where ̂Fn is the nonparametric MLE and �̂�n(t) is the square root of a diagonal element of the
inverse observed Fisher information matrix, corresponding to the Fisher information matrix of
Theorems 1 and 2.

The observed Fisher information matrix is defined by F = (fjk), where

fjk = n−1
n∑

i=1

(
1(Si−Ei,Si](j) − 1(Si−Ei,Si](m)

) (
1(Si−Ei,Si](k) − 1(Si−Ei,Si](m)

)

{ ̂Fn(Si) − ̂Fn(Si − Ei)}2
, (31)

and the j and k are points of mass of the MLE ̂Fn. If 11, … , i𝓁 are the indices of the points of mass,
the (𝓁 − 1) × (𝓁 − 1) matrix F−1 is the inverse of the corresponding observed Fisher information
matrix with elements fjk, j, k = i1, … , i𝓁−1. The matrix AF−1AT , where the matrix A has rows
∑i

j=1eT
j , i = 1, … ,𝓁 − 1, for the unit vectors ej ∈ R𝓁−1, is an estimator of the covariance matrix

of ( ̂Fn(i1), … ,
̂Fn(i𝓁−1)). So the diagonal elements of this matrix are the estimates of the variances

of ̂Fn(ij), j = 1, … ,𝓁 − 1.
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14 GROENEBOOM

We use these diagonal elements Dij as estimates of all variances, by defining

Dk =
⎧
⎪
⎨
⎪
⎩

0, , k < i1,

Dij , ij ≤ k < ij+1 , 1 ≤ j < 𝓁,
0, , k ≥ i𝓁 .

(32)

The diagonal elements Di in the extended definition (32), are used as estimates of the variances
of ̂Fn(1), … ,

̂Fn(M1). The fit of the estimates with n times the actual variances of the ̂Fn(i) over
1,000 samples is remarkably good for our simulation model, see Figure 4.

The resulting confidence intervals for a sample of size n = 1,000 is shown in Figure 5 at
the points 3–10, where the MLE puts most of its mass. The coverage of these intervals is also
shown. Here we generated 1,000 samples of size n = 1,000, and computed the fraction of times
the parameters F0(i) = ∫ i

i−1F0(t) dt were inside the intervals (30) at the points 3–10.
We can run a bootstrap experiment to generate confidence intervals of this type in the fol-

lowing way. We resample with replacement from the data (Ei, Si) 1,000 samples of the same size
n and compute for each of these bootstrap samples the MLE. This gives 1,000 bootstrap values
̂F∗n(t) − ̂Fn(t). For these bootstrap values of ̂F∗n(t) − ̂Fn(t)we compute the 0.025 and 0.975 quantiles
Q∗

0.025(t) and Q∗
0.975(t), respectively. This gives the bootstrap 95% confidence intervals

[ ̂Fn(t) − Q∗
0.975(t), ̂Fn(t) − Q∗

0.025(t)]. (33)

The results are shown in Figure 6. It is seen that the results are similar to the results of the method,
using the inverse observed Fisher information matrix for generating the confidence intervals.

We also simulated data for the doubly censored model. Here we took SR discretely uniform
on {⌈S⌉, … , ⌈S⌉ + 3} and SL discretely uniform on {⌊S⌋, … , ⌊S⌋ − 3} (replacing ⌊S⌋ − i by 0 if
⌊S⌋ − i < 0). This time the observed Fisher information matrix is defined by

fjk = n−1
n∑

i=1

�̃�(Ei, SL,i, SR,i, j)�̃�(Ei, SL,i, SR,i, k)
{∫ 𝜓(Ei, SL,i, SR,i, t) d ̂Fn(t)

}2 , (34)

F I G U R E 4 Estimates of the variances of the ̂Fn(i) by n times the actual variances of 1,000 samples (blue,
solid) and by means of the inverses of the observed Fisher information matrices over the 1,000 samples (dashed,
red), (a) for sample size n = 1,000 and (b) for sample size n = 10,000. We used linear interpolation between the
values at the points 1, 2, … .
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GROENEBOOM 15

F I G U R E 5 (a) 95% confidence intervals in the singly interval censored model, using (30), for the values of
F0(i) = ∫ i

i−1F0(x) dx (red dots and linearly interpolated dashed red curve) at the points 3, 4, … , 10 for a sample of
size n = 1,000, where F0 is the Weibull distribution function, with parameters a = 3.035 and b = 0.0026,
truncated at M1 = 15. The black dots are the values of ̂Fn at these points. (b) Coverage percentages of the 95%
confidence intervals at the points 3, 4, … , 10, using (30), for sample size n = 1,000.

F I G U R E 6 (a) 95% bootstrap confidence intervals in the singly interval censored model, using (33), for the
values of F0(i) = ∫ i

i−1F0(x) dx at the points 3, 4, … , 10 (red dots and linearly interpolated dashed red curve) for a
sample of size n = 1,000, where F0 is the Weibull distribution function, truncated at M1 = 15. The black dots are
the values of ̂Fn at these points. (b) Coverage percentages of the bootstrap 95% confidence intervals at the points
3, 4, … , 10, using (33), for sample size n = 1,000.

where

�̃�(Ei, SL,i, SR,i, t) = 𝜓(Ei, SL,i, SR,i, t) − 𝜓(Ei, SL,i, SR,i,m),

and where the j and k are points of mass of the MLE ̂Fn and 𝜓 is defined by (19). The diagonal
elements Dij of the matrix AF−1AT are extended as in (32) and used as estimates of the variances
of the ̂Fn(i).
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16 GROENEBOOM

F I G U R E 7 95% confidence intervals for a doubly interval censored simulation sample at the points
3, … , 10, using (30), with the variances estimated by the means of the diagonal of the inverse observed Fisher
information matrices over 1,000 samples. (b) Coverage percentages for the same example over 1,000 samples,
using the same estimates of the variances. Sample size is n = 1,000.

The coverages, based on the Fisher information matrix from one sample were not very good
this time, but were rather satisfactory if we estimate the Fisher information matrix by the mean
of these matrices over 1000 samples. See Figure 7. In practice we can take the mean over 1,000
bootstrap samples.

5 CONCLUSION

We studied the nonparametric maximum likelihood estimator of the incubation time, which is
such an important parameter in the Covid-19 pandemic. The incubation time in our model is
part of the sum of the infection time I and the incubation time U. Usually the only really (partly)
observable quantity is the time of becoming symptomatic, which is given by S = I + U. So our
variable of interest U has to be pulled out of this sum by deconvolution. If S is observable, one
speaks of the singly interval censored model (the beginning of the incubation time lies in an inter-
val which represents the exposure time and this is the singly interval censored part). It seems
most reasonable to assume that the time till infection and the incubation time have continuous
distributions, and one can analyze this model under the assumption that S is exactly observable.
In that case the MLE of the distribution function of the incubation time converges, under some
conditions, at cube root n rate to Chernoff’s distribution, see Groeneboom (2023).

However, most of the time S is not directly observable, but only an interval [SL, SR] is available,
which we know to contain S. Taking into account that the observations are usually rounded to
days, one can restrict oneself to estimating the means over one day, represented by

F0(i) = ∫
i

i−1
F0(t) dt, (35)

if F0 is the distribution function of the incubation time. Since this gives us a fixed bounded num-
ber of parameters, we can use classical theory, connecting maximum likelihood with the Fisher
information, to derive asymptotic distribution theory for the maximum likelihood estimators of
these parameters.
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GROENEBOOM 17

We applied the theory, developed in Section 2 to construct confidence intervals, either by using
Theorems 1 and 2 directly, or by using a bootstrap method. In a sense, this purely nonparametric
method lies at the other extreme of the parametric methods. If one wants to estimate the density,
one will have to use some kind of smoothing, as was done in Groeneboom (2021), which is an
intermediate method that is still nonparametric and avoids the need to choose between several
parametric models.

The support reduction algorithm seems at present to be the most stable method to estimate the
parameters. The computing of the MLE and the confidence intervals is implemented in Groene-
boom (2020) and discussed in Section 3. R scripts for running the algorithms discussed in this
paper are available at Groeneboom (2020).
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APPENDIX A. PROOFS

In contrast with the difficulties of the continuous model in Groeneboom (2023), the estimation of
the parameters ∫ i

i−1F0(t) dt seems rather standard, once we have figured out the relation between
the continuous model and the discrete observations of the times of becoming symptomatic. We
still have to deal with a deconvolution problem, which we do by using nonparametric maximum
likelihood.

Proof of Lemma 2. The key step is to reduce the maximization on the simplex {p =
(p1, … , pm) ∈ R

m
+ ∶

∑m
i=1pi = 1} to maximization on the cone R

m
+ . One can check

that minimizing minus the log likelihood (25) under the restriction
∑m

i=1pi = 1 is
equivalent to minimizing (26), which is the criterion function + a Lagrange term
with Lagrange multiplier 𝜆 = 1, on R

m
+ . Then the necessary and sufficient condi-

tions for the minimum follow from Fenchel’s duality theorem, see Rockafellar (1970),
theorem 31.4. ▪

Proof of Theorem 1. The log likelihood is of the form

𝓁(p1, … , pm) =
n∑

i=1
log

m∑

j=1
pj1((Si−Ei)+,Si](j),

so we count the number of times the point of mass j belongs to an interval
(Si − Ei)+, Si], where Si and Ei are integers, and multiply this with the probability pj.
We have

𝜕

𝜕pj
𝓁

(

p1, … , 1 −
m−1∑

k=1
pk

)

=
n∑

i=1

1((Si−Ei)+,Si](j) − 1((Si−Ei)+,Si](m)
∑m

k=1pj1((Si−Ei)+,Si](k)
, j = 1, … ,m − 1,

(A1)

and

𝜕

2

𝜕pj𝜕pl
𝓁

(

p1, … , 1 −
m−1∑

k=1
pk

)

= −
n∑

i=1

{
1((Si−Ei)+,Si](j) − 1((Si−Ei)+,Si](m)

}{
1((Si−Ei)+,Si](l) − 1((Si−Ei)+,Si](m)

}

{∑m
k=1pj1((Si−Ei)+,Si](k)

}2 ,

for j, l = 1, … ,m − 1, using the convention 0∕0 = 0.
By the assumptions on F0 and FE, the variables Si and (Si − Ei)+ will be such that

for large n, the score functions (A1) will be zero for pj = p̂j, where p̂ = (p̂1, … , p̂m)
is the MLE of p0 = (p0(1), … , p0(m)) (i.e., no isotonization is needed), and the result
now follows from standard theory. ▪

Proof of Theorem 2. The proof is entirely similar to the proof of Theorem 1, but this
time the score functions are given by
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𝜕

𝜕pj
𝓁

(

p1, … , 1 −
m−1∑

k=1
pk

)

=
n∑

i=1

𝜓(Ei, SL,i, SR,i, j) − 𝜓(Ei, SL,i, SR,i,m)
∑m

k=1𝜓(Ei, SL,i, SR,i, t) pk
, j = 1, … ,m − 1,

(A2)

where 𝜓 is defined by (19).
A key part of the treatment of the doubly censored case is the rewrite of the log

likelihood for one observation, using the integration by parts

∫t∈(sL,sR]
{F(t) − F(t − E)} dt = ∫ 𝜓(e, sL, sE, t) dF(t),

where 𝜓 is defined by (19). ▪

 14679574, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/stan.12335 by T

u D
elft, W

iley O
nline L

ibrary on [14/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Estimation of the incubation time distribution in the singly and doubly interval censored model 
	1 INTRODUCTION
	1.1 Outline of the paper

	2 THE NONPARAMETRIC MODEL
	3 COMPUTATION OF THE NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATORS
	4 CONFIDENCE INTERVALS
	5 CONCLUSION

	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES
	APPENDIX A. PROOFS

