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Abstract: We investigate the asymptotic behavior of the Lp-distance be-
tween a monotone function on a compact interval and a smooth estimator
of this function. Our main result is a central limit theorem for the Lp-error
of smooth isotonic estimators obtained by smoothing a Grenander-type
estimator or isotonizing the ordinary kernel estimator. As a preliminary re-
sult we establish a similar result for ordinary kernel estimators. Our results
are obtained in a general setting, which includes estimation of a monotone
density, regression function and hazard rate. We also perform a simulation
study for testing monotonicity on the basis of the L2-distance between the
kernel estimator and the smoothed Grenander-type estimator.
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1. Introduction

The property of monotonicity plays an important role when dealing with survival
data or regression relationships. For example, it is often natural to assume that
increasing a factor X has a positive (negative) effect on a response Y or that the
risk for an event to happen is increasing (decreasing) over time. In situations
like these, incorporating monotonicity constraints in the estimation procedure
leads to more accurate results. The first non-parametric monotone estimators
were introduced in [20], [6], and [41], concerning the estimation of a monotone
probability density, regression function, and failure rate. These estimators are
all piecewise constant functions that exhibit a non-normal limit distribution at
rate n1/3.

On the other hand, under some more regularity assumptions on the function
of interest, smooth non-parametric estimators can be used to achieve a faster
rate of convergence to a Gaussian distributional law. Typically, these estimators
are constructed by combining an isotonization step with a smoothing step. Es-
timators constructed by smoothing followed by an isotonization step have been
considered in [7], [47], [18], and [44], for the regression setting, in [46] for estimat-
ing a monotone density, and in [17], who consider maximum smoothed likelihood
estimators for monotone densities. Methods that interchange the smoothing step
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and the isotonization step, can be found in [42], [14], and [36], who study kernel
smoothed isotonic estimators. Comparisons between isotonized smooth estima-
tors and smoothed isotonic estimators are made in [40], [26] and [25].

A lot of attention has been given in the literature to the pointwise asymptotic
behavior of smooth estimators and monotone estimators, separately. However,
for example for goodness of fit tests, global errors of estimates are needed in-
stead of pointwise results. For the Grenander estimator of a monotone density,
a central limit theorem for the L1-error was formulated in [21] and proven rigor-
ously in [22]. A similar result was established in [12] for the regression context.
Extensions to general Lp-errors can be found in [31] and in [13], where the latter
provides a unified approach that applies to a variety of statistical models. On
the other hand, central limit theorems for regular kernel density estimators have
been obtained in [10] and [9].

In this paper we investigate the Lp-error of smooth isotonic estimators ob-
tained by kernel smoothing the Grenander-type estimator or by isotonizing the
ordinary kernel estimator. We consider the same general setup as in [13], which
includes estimation of a probability density, a regression function, or a failure
rate under monotonicity constraints (see Section 3 in [13] for more details on
these models). An essential assumption in this setup is that the observed process
of interest can be approximated by a Brownian motion or a Brownian bridge.
Our main results are central limit theorems for the Lp-error of smooth isotonic
estimators for a monotone function on a compact interval. However, since the
behavior of these estimators is closely related to the behavior of ordinary kernel
estimators, we first establish a central limit theorem for the Lp-error of ordinary
kernel estimators for a monotone function on a compact interval. This extends
the work by [10] on the Lp-error of densities that are smooth on the whole
real line, but is also of interest by itself. The fact that we no longer have a
smooth function on the whole real line, leads to boundary effects. Unexpect-
edly, different from [10], we find that the limit variance of the Lp-error changes,
depending on whether the approximating process is a Brownian motion or a
Brownian bridge. Such a phenomenon has also not been observed in other iso-
tonic problems, where a similar embedding assumption was made. Usually, both
approximations lead to the same asymptotic results (e.g., see [13] and [31]).

After establishing a central limit theorem for the Lp-error of ordinary kernel
estimators, we transfer this result to the smoothed Grenander estimator (SG).
The key ingredient here is the behavior of the process obtained as the difference
between a naive estimator and its least concave majorant. For this we use re-
sults from [38]. As an intermediate result, we show that the Lp-distance between
the smoothed Grenander-type estimator and the ordinary kernel estimator con-
verges at rate n2/3 to some functional of two-sided Brownian motion minus a
parabolic drift.

The situation for the isotonized kernel estimator (GS) is much easier, because
it can be shown that this estimator coincides with the ordinary kernel estimator
on large intervals in the interior of the support, with probability tending to
one. However, since the isotonization step is performed last, the estimator is
inconsistent at the boundaries. For this reason, we can only obtain a central
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limit theorem for the Lp-error on a sub-interval that approaches the whole
support, as n diverges to infinity. Finally, the results on the Lp-error can be
applied immediately to obtain a central limit theorem for the Hellinger loss.

The paper is organized as follows. In Section 2 we describe the model, the
assumptions and fix some notation that will be used throughout the paper. A
central limit theorem for the Lp-error of the kernel estimator is obtained in Sec-
tion 3. This result is used in Section 4 and 5 to obtain the limit distribution of
the Lp-error of the SG and GS estimators. Section 6 is dedicated to correspond-
ing asymptotics for the Hellinger distance. In Section 7 we provide a possible
application of our results by considering a test for monotonicity. Details of some
of the proofs are delayed to Section 8 and to additional technicalities have been
put in the Appendix.

2. Assumptions and notations

Consider estimating a function λ : [0, 1] → R subject to the constraint that it
is non-increasing. Suppose that on the basis of n observations we have at hand
a cadlag step estimator Λn of

Λ(t) =

∫ t

0

λ(u) du, t ∈ [0, 1].

A typical example is the estimation of a monotone density λ on a compact
interval. In this case, Λn is the empirical distribution function. Hereafter Mn

denotes the process Mn = Λn − Λ, μ is a measure on the Borel sets of R, and

k is a twice differentiable symmetric probability density with support
[−1, 1].

(1)

The rescaled kernel is defined as kb(u) = b−1k (u/b), where the bandwidth b =
bn → 0, as n → ∞. In the sequel we will make use of the following assumptions.

(A1) λ is decreasing and twice continuously differentiable on [0, 1] and such that
inft |λ′(t)| > 0.

(A2) Let Bn be either a Brownian motion or a Brownian bridge. There exists
q > 5/2, Cq > 0, L : [0, 1] → R and versions of Mn and Bn such that

P

(
n1−1/q sup

t∈[0,1]

∣∣∣Mn(t)− n−1/2Bn ◦ L(t)
∣∣∣ > x

)
≤ Cqx

−q

for all x ∈ (0, n]. Moreover, L is increasing and twice differentiable on [0, 1]
with supt |L′′(t)| < ∞ and inft |L′(t)| > 0.

(A3) dμ(t) = w(t) dt, where w(t) ≥ 0 is continuous on [0, 1].

In particular, the approximation of the process Mn by a Gaussian process, as
in assumption (A2), is required also in [13]. It corresponds to a general setting
which includes estimation of a probability density, regression function or a failure
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rate under monotonicity constraints (see Section 3 in [13] for more details on
these models).

First we introduce some notation. We partly adopt the one used in [10] and
briefly explain their appearance. Let λ̃s

n be the standard kernel estimator of λ,
i.e.

λ̃s
n(t) =

∫ t+b

t−b

kb(t− u) dΛn(u), for t ∈ [b, 1− b]. (2)

As usual we decompose into a random term and a bias term:

(nb)1/2
(
λ̃s
n(t)− λ(t)

)
= (nb)1/2

∫
kb(t− u) d(Λn − Λ)(u) + g(n)(t) (3)

where

g(n)(t) = (nb)1/2
(
λ(n)(t)− λ(t)

)
, λ(n)(t) =

∫
kb(t− u)λ(u) du. (4)

When nb5 → C0 > 0, then g(n)(t) converges to

g(t) =
1

2
C0λ

′′(t)

∫
k(y)y2 dy. (5)

After separating the bias term, the first term on the right hand side of (3)
involves an integral of kb(t − u) with respect to the process Mn. Due to (A2),
this integral will be approximated by an integral with respect to a Gaussian
process. For this reason, the limiting moments of the Lp-error involve integrals
with respect to Gaussian densities, such as

φ(x) = (2π)−1/2 exp(−x2/2),

ψ(u, x, y) =
1

2π
√
1− u2

exp

(
−x2 − 2uxy + y2

2(1− u2)

)
=

1√
1− u2

φ

(
x− uy√
1− u2

)
φ(y),

(6)

and a Taylor expansion of kb(t− u) yields the following constants involving the
kernel function:

D2 =

∫
k(y)2 dy, r(s) =

∫
k(z)k(s+ z) dz∫

k2(z) dz
. (7)

For example, the limiting means of the Lp-error and a truncated version are
given by:

mn(p) =

∫
R

∫ 1

0

∣∣∣√L′(t)Dx+ g(n)(t)
∣∣∣p w(t)φ(x) dt dx,

mc
n(p) =

∫
R

∫ 1−b

b

∣∣∣√L′(t)Dx+ g(n)(t)
∣∣∣p w(t)φ(x) dt dx, (8)
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where D and g(n) are defined in (7) and (4). Depending on the rate at which
b → 0, the limiting variance of the Lp-error has a different form. When nb5 → 0,
the limiting variance turns out to be

σ2(p) = σ1D
2p

∫ 1

0

|L′(u)|p w(u)2 du, (9)

where

σ1 =

∫
R

{∫
R

∫
R

|xy|pψ(r(s), x, y) dxdy −
∫
R

∫
R

|xy|pφ(x)φ(y) dxdy
}

ds, (10)

with σ1 representing p-th moments of bivariate Gaussian vectors, where D, ψ,
and φ are defined in (7) and (6). When nb5 → C0 > 0 and Bn in (A2) is a
Brownian motion, the limiting variance of the Lp-error is

θ2(p) =

∫ 1

0

∫
R3

∣∣∣g(u)2 + g(u)(x+ y)
√

L′(u)D +D2L′(u)xy
∣∣∣p

w2(u)
(
ψ(r(s), x, y)− φ(x)φ(y)

)
dsdy dxdu,

(11)

where g, D, ψ, and φ are defined in (5), (7) and (6), whereas, if Bn in (A2) is
a Brownian bridge, the limiting variance is slightly different,

θ̃2(p) = θ2(p)− θ21(p)

D2L(1)
, (12)

with

θ1(p) =

∫ 1

0

∫
R

∣∣∣√L′(t)Dx+ g(t)
∣∣∣p xφ(x) dx√L′(t)w(t)dt. (13)

Finally, the following inequality will be used throughout this paper:∫ B

A

||q(t)|p − |h(t)|p| dμ(t) ≤ p2p−1

∫ B

A

|q(t)− h(t)|p dμ(t)

+ p2p−1

(∫ B

A

|h(t)|p dμ(t)

)1−1/p(∫ B

A

|q(t)− h(t)|p dμ(t)

)1/p

,

(14)

where p ∈ [1,∞), −∞ ≤ A < B ≤ ∞ and q, h ∈ Lp(A,B).

3. Kernel estimator of a decreasing function

We extend the results of [10] and [9] to the case of a kernel estimator of a de-
creasing function with compact support. Note that, since the function of interest
cannot be twice differentiable on R (not even continuous), the kernel estimator
is inconsistent at zero and one. Moreover we show that the contribution of the
boundaries to the Lp-error is not negligible, so in order to avoid the Lp-distance
to explode we have to restrict ourselves to the interval [b, 1 − b] or apply some
boundary correction.
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3.1. A modified Lp-distance of the standard kernel estimator

Let λ̃s
n be the standard kernel estimator of λ defined in (2). In order to avoid

boundary problems, we start by finding the asymptotic distribution of a modi-
fication of the Lp-distance

Jc
n(p) =

∫ 1−b

b

∣∣∣λ̃s
n(t)− λ(t)

∣∣∣p dμ(t), (15)

instead of

Jn(p) =

∫ 1

0

∣∣∣λ̃s
n(t)− λ(t)

∣∣∣p dμ(t). (16)

Theorem 3.1. Assume that (A1)-(A3) hold. Let k satisfy (1) and let Jc
n be

defined in (15). Suppose p ≥ 1 and nb → ∞.

i) If nb5 → 0, then

(bσ2(p))−1/2
{
(nb)p/2Jc

n(p)−mc
n(p)
}

d−→ N(0, 1);

ii) If nb5 → C2
0 > 0, and Bn in Assumption (A2) is a Brownian motion, then

(bθ2(p))−1/2
{
(nb)p/2Jc

n(p)−mc
n(p)
}

d−→ N(0, 1);

iii) If nb5 → C2
0 > 0, and Bn in Assumption (A2) is a Brownian bridge, then

(bθ̃2(p))−1/2
{
(nb)p/2Jc

n(p)−mc
n(p)
}

d−→ N(0, 1),

where mc
n(p), σ

2(p), θ2(p), θ̃2(p) are defined in (8), (9), (11), and (12), respec-
tively.

The proof goes along the same lines as in the one for the case of the Lp-
norms for kernel density estimators on the whole real line (see [10] and [9]).
The main idea is that by means of assumption (A2), it is sufficient to prove
the central limit theorem for the approximating process. When Bn in (A2) is a
Brownian motion, the latter one can be obtained by a big-blocks-small-blocks
procedure using the independence of the increments of the Brownian motion.
When Bn in (A2) is a Brownian bridge, we can still obtain a central limit
theorem, but the limiting variance turns out to be different. The latter result
differs from what is stated in [10]. In [10], the complete proof for both Brownian
motion and Brownian bridge, is only given for the case nb5 → 0, and it is
shown that the random variables obtained by using the Brownian motion and
the Brownian bridge as approximating processes are asymptotically equivalent
(see their Lemma 6). In fact, when dealing with a Brownian bridge, the rescaled
Lp-error is asymptotically equivalent to the Lp-error that corresponds to the
Brownian motion process plus an additional term which is equal to CW (L(1)),
for a constant C proportional on θ1(p) defined in (13). When the bandwidth
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is small, i.e., nb5 → 0, the bias term g(t) in the definition of θ1(p) disappears.
Hence, by the symmetry property of the standard normal density, θ1(p) = 0 and
as a consequence C = 0. This means that the additional term resulting from the
fact that we are dealing with a Brownian bridge converges to zero. For details,
see the proof of Lemma 8.1. When nb5 → C2

0 > 0, only a sketch of the proof is
given in [10] for Bn being a Brownian motion and it is claimed that again the
limit distribution would be the same for Bn being a Brownian bridge. However,
in our setting we find that the limit variances are different.

Various settings in which Brownian motion or Brownian bridge approxima-
tions arise are described in Section 3 of [13]. In particular, for the density model,
which is also considered in [10], the approximating process is a Brownian bridge.
Hence, the difference in the limiting variances is an important issue. In other
models, such as random censorship, Poisson process model, or regression model
with fixed design points, the approximating process is a Brownian motion.

Proof of Theorem 3.1. From the definition of Jc
n(p) we have

(nb)p/2Jc
n(p) =

∫ 1−b

b

∣∣∣∣(nb)1/2 ∫ kb(t− u) d(Λn − Λ)(u) + g(n)(t)

∣∣∣∣p dμ(t).

Let {W (t) : t ∈ R} be a Wiener process and define

Γ(1)
n (t) =

∫
k

(
t− u

b

)
dW (L(u)), (17)

Hence, if Bn in assumption (A2) is a Brownian motion, then according to (14),∣∣∣∣∣(nb)p/2Jc
n(p)−

∫ 1−b

b

∣∣∣b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)

∣∣∣∣∣
≤ p2p−1b−p/2

∫ 1−b

b

∣∣∣∣∫ k

(
t− u

b

)
d(Bn ◦ L(u)− n1/2Mn(u))

∣∣∣∣p dμ(t)

+ p2p−1

(
b−p/2

∫ 1−b

b

∣∣∣∣∫ k

(
t− u

b

)
d(Bn ◦ L− n1/2Mn)(u)

∣∣∣∣p dμ(t)

)1/p

·

·
(∫ 1−b

b

∣∣∣b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)

)1−1/p

We can write∣∣∣∣∫ k

(
t− u

b

)
d(Bn ◦ L− n1/2Mn)(u)

∣∣∣∣= ∣∣∣∣∫ 1

−1

k(y) d(Bn ◦ L− n1/2Mn)(t− by)

∣∣∣∣
=

∣∣∣∣∫ 1

−1

(Bn ◦ L− n1/2Mn)(t− by) dk(y)

∣∣∣∣
≤C sup

t∈[0,1]

∣∣∣Bn ◦ L(t)− n1/2Mn(t)
∣∣∣ .

(18)
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According to assumption (A2), the right hand side of (18) is of the order
OP (n

−1/2+1/q), and because

b−1/2OP (n
−1/2+1/q)= (nb5)3/10OP (n

−2/5+1/q) = oP (1)

we derive that∣∣∣∣∣(nb)p/2Jc
n(p)−

∫ 1−b

b

∣∣∣b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)

∣∣∣∣∣ = oP (1).

As a result, the statement follows from the fact that

(bσ2(p))−1/2

{∫ 1−b

b

∣∣∣b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)−mc
n(p)

}
d−→ N(0, 1),

where g(n) and mc
n(p) are defined in (4) and (8), respectively. This result is a

generalization of Lemmas 1-5 in [10] and the proof goes in the same way. How-
ever, for completeness we give all the details in the Appendix. See Lemma A.1.

Finally, if Bn is a Brownian bridge on [0, L(1)], we use the representation

Bn(t) = W (t)− tW (L(1))/L(1). By replacing Γ
(1)
n with

Γ(2)
n (t) =

∫
k

(
t− u

b

)
d

(
W (L(u))− L(u)

L(1)
W (L(1))

)
(19)

in the previous reasoning, the statement follows from Lemma 8.1.

When nb4 → 0, the centering constant mn(p) can be replaced by a quantity
that does not depend on n.

Theorem 3.2. Assume that (A1)-(A3) hold. Let k satisfy (1) and let Jc
n be

defined in (15). Suppose p ≥ 1 and nb → ∞, such that nb4 → 0. Then

(bσ2(p))−1/2
{
(nb)p/2Jc

n(p)−m(p)
}

d−→ N(0, 1),

where σ2(p) is defined in (9) and

m(p) =

∫
R

|x|pφ(x) dx
(∫

k2(t) dt

)p/2 ∫ 1

0

|L′(t)|p/2 dμ(t).

Proof. The statement follows from Theorem 3.1, if |mc
n(p) − m(p)| = o(b1/2).

First we note that
∫ b
0
|L′(t)|p/2 dμ(t) = o(b1/2) and

∫ 1
1−b

|L′(t)|p/2 dμ(t) = o(b1/2).
Moreover, according to (14), for each x ∈ R, we have∫ 1−b

b

∣∣∣∣∣∣√L′(t)Dx+ g(n)(t)
∣∣∣p − ∣∣∣√L′(t)Dx

∣∣∣p∣∣∣ dμ(t)
≤ p2p−1

∫ 1−b

b

∣∣g(n)(t)∣∣p dμ(t)

+ p2p−1

(∫ 1−b

b

∣∣∣√L′(t)Dx
∣∣∣p dμ(t)

)1−1/p(∫ 1−b

b

∣∣g(n)(t)∣∣p dμ(t)

)1/p

,
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where g(n)(t) is defined in (4). Hence, it suffices to prove

b−p/2

∫ 1−b

b

∣∣g(n)(t)∣∣p dμ(t) = o(1).

This follows, since supt∈[0,1]

∣∣g(n)(t)∣∣ = O((nb)1/2b2) and b−p/2(nb)p/2b2p =

(nb4)p/2 → 0.

3.2. Boundary problems of the standard kernel estimator

We show that, actually, we cannot extend the results of Theorem 3.1 to the
whole interval [0, 1], because then the inconsistency at the boundaries domi-
nates the Lp-error. A similar phenomenon was also observed in the case of the
Grenander-type estimator (see [13] and [31]), but only for p ≥ 2.5. In our case
the contribution of the boundaries to the Lp-error is not negligible for all p ≥ 1.
This mainly has to do with the fact that the functions g(n), defined in (4), di-
verge to infinity. As a result, all the previous theory, which relies on the fact
that g(n) = O(1) does not hold. For example, for t ∈ [0, b), we have

g(n)(t) = (nb)1/2
∫ t+b

0

kb(t− u) dΛ(u)− λ(t)

= (nb)1/2
∫ t/b

−1

k(y)[λ(t− by)− λ(t)] dy − (nb)1/2λ(t)

∫ 1

t/b

k(y) dy

= (nb)1/2

{∫ t/b

−1

k(y)[λ(t− by)− λ(t)] dy − λ(t)

∫ 1

t/b

k(y) dy

}
.

(20)

For the first term within the brackets, we have∣∣∣∣∣
∫ t/b

−1

k(y)[λ(t− by)− λ(t)] dy

∣∣∣∣∣ ≤ b sup
t∈[0,1]

|λ′(t)|
∣∣∣∣∣
∫ t/b

−1

k(y)y dy

∣∣∣∣∣ = O(b), (21)

whereas for any 0 < c < 1 and t ∈ [0, cb],

0 < inf
t∈[0,1]

λ(t)

∫ 1

c

k(y) dy ≤ λ(t)

∫ 1

t/b

k(y) dy ≤ λ(0). (22)

Because nb → ∞, this would mean that

sup
t∈[0,cb]

g(n)(t) → −∞. (23)

What would solve the problem is to assume that λ is twice differentiable as a
function defined on R (see [10] and [9]). This is not the case, because here we are
considering a function which is positive and decreasing on [0, 1] and usually is
zero outside this interval. This means that as a function on R, λ is not monotone
anymore and has at least one discontinuity point.
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The following results indicate that inconsistency at the boundaries domi-
nates the Lp-error, i.e., the expectation and the variance of the integral close
to the end points of the support diverge to infinity. We cannot even approach
the boundaries at a rate faster than b (as in the case of the Grenander-type
estimator), because the kernel estimator is inconsistent on the whole interval
[0, b) (and (1− b, 1]).

Proposition 3.3. Assume that (A1)-(A3) hold and let λ̃s
n be defined in (2).

Let k satisfy (1). Suppose that p ≥ 1 and nb → ∞.

i) When nb3 → ∞, then for each p ≥ 1,

(nb)p/2E

[∫ b

0

∣∣∣λ̃s
n(t)− λ(t)

∣∣∣p dμ(t)

]
→ ∞;

ii) If bn1−1/p → 0, then

b−1/2

{∫ b

0

(nb)p/2
∣∣∣λ̃s

n(t)− λ(t)
∣∣∣p dμ(t)−

∫ b

0

∣∣g(n)(t)∣∣p dμ(t)

}
→ 0,

where g(n) is defined in (4);
iii) Let

Yn(t) = b1/2
∫ t+b

0

kb(t− u) dBn(L(u)), t ∈ [0, b]. (24)

If b−1n−1+1/q = O(1) and bp−1np−2+2/q → 0, then

b−1/2

∣∣∣∣∣
∫ b

0

(nb)p/2
∣∣∣λ̃s

n(t)− λ(t)
∣∣∣p dμ(t)−

∫ b

0

∣∣Yn(t) + g(n)(t)
∣∣p dμ(t)

∣∣∣∣∣→ 0,

(25)
in probability and when bn1−1/p → ∞, then for all 0 < c < 1,

b−1Var

(∫ cb

0

∣∣Yn(t) + g(n)(t)
∣∣p dμ(t)

)
→ ∞,

where g(n) is defined in (4).

The previous results also hold if we consider the integral on (1− b, 1] instead of
[0, b).

The proof can be found in Appendix A.

Remark 3.4. Note that, if b ∼ n−α, for some 0 < α < 1, then for α < 1/3,
Proposition 3.3(i) shows that for all p ≥ 1, the expectation of the boundary
regions in the Lp-error tends to infinity. This holds in particular for the optimal
choice α = 1/5. For p < 1/(1 − α), Proposition 3.3(ii) allows us to include the
boundary regions in the central limit theorem for the Lp-error of the kernel
estimator,

(bσ2(p))−1/2
{
(nb)p/2Jn(p)− m̄n(p)

}
d−→ N(0, 1),
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with Jn(p) defined in (16) and m̄n(p) =
∫ 1
0

∣∣g(n)(t)∣∣p dμ(t). However, the bias
term m̄n(p) is not bounded anymore. On the other hand, if p > 1/(1 − α),
Proposition 3.3(iii) shows that the boundary regions in the Lp-error behave
asymptotically as random variables whose variance tends to infinity.

Remark 3.5. The choice of the measure μ instead of the Lebesgue measure,
in [10] and [9], is motivated by the fact that, for a particular μ(t) = w(t)dt,
the normalizing constants m(p) and σ(p) in the CLT will not depend on the
unknown function. In our case, a proper choice for μ can also be used to get rid
of the boundary problems. This happens when μ puts less mass on the boundary
regions in order to compensate the inconsistency of the kernel estimator. For
example, if μ(t) = t2p(1− t)2pdt, then∫ b

0

|g(n)(t)|p dμ(t) +
∫ 1

1−b

|g(n)(t)|p dμ(t) → 0

and, as a result, Theorem 3.1 also holds if we replace Jc
n(p) with Jn(p), defined

in (16).

3.3. Kernel estimator with boundary correction

One way to overcome the inconsistency problems of the standard kernel estima-
tor is to apply some boundary correction. Let now λ̂s

n be the ‘corrected’ kernel
estimator of λ, i.e.

λ̂s
n(x) =

∫ x+b

x−b

k
(x)
b (x− u) dΛn(u), for x ∈ [0, 1], (26)

where k
(x)
b (u) denotes the rescaled kernel b−1k(x)(u/b), with

k(x)(u) =

⎧⎪⎨⎪⎩
ψ1

(
x
b

)
k(u) + ψ2

(
x
b

)
uk(u) x ∈ [0, b)

k(u) x ∈ [b, 1− b]

ψ1

(
1−x
b

)
k(u)− ψ2

(
1−x
b

)
uk(u) x ∈ (1− b, 1].

(27)

For s ∈ [−1, 1], the coefficients ψ1(s), ψ2(s) are determined by

ψ1(s)

∫ s

−1

k(u) du+ ψ2(s)

∫ s

−1

uk(u) du = 1

ψ1(s)

∫ s

−1

uk(u) du+ ψ2(s)

∫ s

−1

u2k(u) du = 0.

As a result, the boundary corrected kernel satisfies∫ x/b

−1

k(x)(u) du = 1 and

∫ x/b

−1

uk(x)(u) du = 0. (28)
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Moreover, ψ1 and ψ2 are continuously differentiable (in particular they are
bounded). We aim at showing that in this case, Theorem 3.1 holds for the
Lp-error on the whole support, i.e., with Jn(p) instead of Jc

n(p).
Note that boundary corrected kernel estimator coincides with the standard

kernel estimator on [b, 1− b]. Hence the behavior of the Lp-error on [b, 1− b] will
be the same. We just have to deal with the boundary regions [0, b] and [1− b, 1].

Proposition 3.6. Assume that (A1)-(A3) hold and let λ̂s
n be defined in (26).

Let k satisfy (1) and suppose p ≥ 1 and nb → ∞. Then

b−1/2(nb)p/2
∫ b

0

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t) P−→ 0.

The previous result also holds if we consider the integral on (1− b, 1] instead of
[0, b).

The proof can be found in Appendix A.

Corollary 3.7. Assume that (A1)-(A3) hold and let Jn(p) be defined in (16).
Let k satisfy (1) and suppose p ≥ 1 and nb → ∞. Then

i) if nb5 → 0, then it holds

(bσ2(p))−1/2
{
(nb)p/2Jn(p)−mn(p)

}
d−→ N(0, 1);

ii) If nb5 → C2
0 > 0 and Bn in Assumption (A2) is a Brownian motion, then

it holds
(bθ2(p))−1/2

{
(nb)p/2Jn(p)−mn(p)

}
d−→ N(0, 1);

iii) If nb5 → C2
0 > 0 and Bn in Assumption (A2) is a Brownian bridge, then

it holds
(bθ̃2(p))−1/2

{
(nb)p/2Jn(p)−mn(p)

}
d−→ N(0, 1),

where σ2, θ2, θ̃2 and mn are defined respectively in (9), (11), (12) and (8).

Proof. It follows from combining Theorem 3.1 and Proposition 3.6, together
with the fact that

b−1/2

∫
R

∫ b

0

∣∣∣√L′(t)Dx+ g(n)(t)
∣∣∣p w(t)φ(x) dt dx → 0,

where D and g(n) are defined in (7) and (4).

4. Smoothed Grenander-type estimator

The smoothed Grenander-type estimator is defined by

λ̃SG
n (t) =

∫ 1∧(t+b)

0∨(t−b)

k
(t)
b (t− u) dΛ̃n(u), for t ∈ [0, 1], (29)
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where Λ̃n is the least concave majorant of Λn. We are interested in the asymp-
totic distribution of the Lp-error of this estimator:

ISG
n (p) =

∫ 1

0

∣∣∣λ̃SG
n (t)− λ(t)

∣∣∣p dμ(t). (30)

We will compare the behavior of the Lp-error of λ̃SG
n with that of the regular

kernel estimator λ̂s
n from (26). Because

λ̃SG
n (t)− λ̂s

n(t) =

∫
k
(t)
b (t− u) d(Λ̃n − Λn)(u),

we will make use of the behavior of Λ̃n−Λn, which has been investigated in [38],
extending similar results from [16] and [33]. The idea is to represent Λ̃n − Λn

in terms of the mapping CMI that maps a function h : R → R into the least
concave majorant of h on the interval I ⊂ R, or equivalently by the mapping
Dh = CMIh− h.

Let Bn be as in assumption (A2) and ξn aN(0, 1) distributed r.v. independent
of Bn. Define versions Wn of Brownian motion by

Wn(t) =

{
Bn(t) + ξnt if Bn is a Brownian bridge

Bn(t) if Bn is a Brownian motion.
(31)

Define

AE
n = n2/3

(
CM[0,1]Λn − Λn

)
= n2/3D[0,1]Λn,

AW
n = n2/3

(
CM[0,1]Λ

W
n − ΛW

n

)
= n2/3D[0,1]Λ

W
n .

(32)

where

ΛW
n (t) = Λ(t) + n−1/2Wn(L(t)), (33)

with L as in Assumption (A2). We start with the following result on the Lp-

distance between λ̃SG
n and λ̂s

n. In order to use results from [38], we need that
1 ≤ p < min(q, 2q − 7), where q is from Assumption (A2). Moreover, in order
to obtain suitable approximations in combination with results from [38], we
require additional conditions on the rate at which 1/b tends to infinity. Also see
Remark 4.2. For the optimal rate b ∼ n−1/5, the result in Theorem 4.1 is valid,
as long as p < 5 and q > 9.

Theorem 4.1. Assume that (A1) − (A2) hold and let μ be a finite measure

on (0, 1). Let k satisfy (1) and let λ̃SG
n and λ̂s

n be defined in (29) and (26), re-
spectively. If 1 ≤ p < min(q, 2q− 7) and nb → ∞, such that 1/b = o

(
n1/3−1/q

)
,

1/b = o
(
n(q−3)/(6p)

)
, and 1/b = o

(
n1/6+1/(6p)(log n)−(1/2+1/(2p))

)
, then

n2/3

(∫ 1−b

b

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣p dμ(t)

)1/p

d−→ α0[DRZ](0),
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where Z(t) = W (t)− t2, with W being a two-sided Brownian motion originating
from zero, and

α0 =

(∫ 1

0

∣∣∣∣ c′1(t)c1(t)2

∣∣∣∣p dμ(t))1/p

, c1(t) =

∣∣∣∣ λ′(t)

2L′(t)2

∣∣∣∣1/3 .
Proof. We write

n2/3

(∫ 1−b

b

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣p dμ(t)

)1/p

= b−1

(∫ 1−b

b

|Yn(t)|p dμ(t)

)1/p

,

where

Yn(t) = bn2/3

(∫ t+b

t−b

kb(t− u) d(Λ̃n − Λn)(u)

)
, t ∈ (b, 1− b). (34)

We first show that

b−p

∫ 1−b

b

|Yn(t)|p dμ(t)
d−→ αp

0[DRZ](0)p, (35)

and then the result would follow from the continuous mapping theorem. Note
that integration by parts yields

Yn(t) =
1

b

∫ 1

−1

k′
(
t− v

b

)
AE

n (v) dv.

The proof consists of several succeeding approximations of AE
n . For details, see

Lemmas 8.2 to 8.6. First we replace AE
n in the previous integral by AW

n . The
approximation of Yn(t) by

Y (1)
n (t) =

1

b

∫ 1

−1

k′
(
t− v

b

)
AW

n (v) dv. (36)

where AW
n is defined in (32), is possible thanks to Assumption (A2). According

to (14),∣∣∣∣∣
∫ 1−b

b

|Yn(t)|p dμ(t)−
∫ 1−b

b

|Y (1)
n (t)|p dμ(t)

∣∣∣∣∣
≤ p2p−1

∫ 1−b

b

|Yn(t)− Y (1)
n (t)|p dμ(t)

+ p2p−1

(∫ 1−b

b

|Yn(t)− Y (1)
n (t)|p dμ(t)

)1/p(∫ 1−b

b

|Y (1)
n (t)|p dμ(t)

)1−1/p

.

(37)
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According to Lemma 8.2, b−p
∫ 1−b

b
|Yn(t) − Y

(1)
n (t)|p dμ(t) = oP (1). Conse-

quently, in view of (37), if we show that

b−p

∫ 1−b

b

|Y (1)
n (t)|p dμ(t) d−→ α0

p[DRZ](0)p, (38)

then we obtain

b−p

∫ 1−b

b

|Yn(t)|p dμ(t) = b−p

∫ 1−b

b

|Y (1)
n (t)|p dμ(t) + oP (1), (39)

and (35) follows.
In order to prove (38), we replace AW

n by n2/3DInvΛ
W
n , i.e., we approxi-

mate Y
(1)
n by

Y (2)
n (t) =

1

b

∫ t+b

t−b

k′
(
t− v

b

)
n2/3[DInvΛ

W
n ](v) dv. (40)

where Inv = [0, 1] ∩ [v − n−1/3 logn, v + n−1/3 log n] and ΛW is defined in (33).

From Lemma 8.3, we have that b−p
∫ 1−b

b
|Y (1)

n (t) − Y
(2)
n (t)|p dμ(t) = oP (1).

Hence, similar to the argument that leads to (39), if we show that

b−p

∫ 1−b

b

|Y (2)
n (t)|p dμ(t) d−→ α0

p[DRZ](0)p, (41)

then, together with (14), it follows that

b−p

∫ 1−b

b

|Y (1)
n (t)|p dμ(t) = b−p

∫ 1−b

b

|Y (2)
n (t)|p dμ(t) + oP (1).

Consequently, (38) is equivalent to (41).
In order to prove (41), let

Ynv(s) = n1/6
[
Wn(L(v + n−1/3s))−Wn(L(v))

]
+

1

2
λ′(v)s2. (42)

Let Hnv = [−n1/3v, n1/3(1− v)] ∩ [− log n, logn] and

Δnv = n2/3[DInvΛ
W
n ](v)− [DHnvYnv](0).

We approximate Y
(2)
n by

Y (3)
n (t) =

1

b

∫ t+b

t−b

k′
(
t− v

b

)
[DHnvYnv](0) dv. (43)

From Lemma 8.4, we have that b−p
∫ 1−b

b
|Y (2)

n (t) − Y
(3)
n (t)|p dμ(t) = oP (1).

Again, similar to the argument that leads to (39), if we show that

b−p

∫ 1−b

b

|Y (3)
n (t)|p dμ(t) d−→ α0

p[DRZ](0)p. (44)
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then, together with (14), it follows that

b−p

∫ 1−b

b

|Y (2)
n (t)|p dμ(t) = b−p

∫ 1−b

b

|Y (3)
n (t)|p dμ(t) + oP (1),

which would prove (41).
We proceed with proving (44). Let W be a two sided Brownian motion orig-

inating from zero. We have that

n1/6
[
Wn(L(v + n−1/3s))−Wn(L(v))

]
d
= W

(
n1/3(L(v + n−1/3s)− L(v))

)
as a process in s. Consequently,

Y (3)
n (t)

d
=

1

b

∫ t+b

t−b

k′
(
t− v

b

)
[DHnv Ỹnv](0) dv

where

Ỹnv(s) = W (n1/3(L(v + n−1/3s)− L(v))) +
1

2
λ′(v)s2. (45)

Now define

Znv(s) = W (L′(v)s) +
1

2
λ′(v)s2. (46)

and Jnv = [n1/3(L(anv)−L(v))/L′(v), n1/3(L(bnv)−L(v))/L′(v)], where anv =
max(0, v − n−1/3 logn) and bnv = min(1, v + n−1/3 logn). We approximate Ỹnv

by Znv, i.e., we approximate Y
(3)
n by

Y (4)
n (t) =

1

b

∫ t+b

t−b

k′
(
t− v

b

)
[DJnvZnv](0) dv, (47)

Lemma 8.5 yields b−p
∫ 1−b

b
|Y (3)

n (t)−Y
(4)
n (t)|p dμ(t) = oP (1). Once more, similar

to the argument that leads to (39), if we show that

b−p

∫ 1−b

b

|Y (4)
n (t)|p dμ(t) d−→ α0

p[DRZ](0)p, (48)

then, together with (14), it follows that

b−p

∫ 1−b

b

|Y (3)
n (t)|p dμ(t) = b−p

∫ 1−b

b

|Y (4)
n (t)|p dμ(t) + oP (1),

and as a result, also (44) holds.

As a final step, we prove (48). Since c1(v)W (L′(v)c2(v)s)
d
= W (s) as a process

in s, where

c1(v) =

(
|λ′(v)|
2L′(v)2

)1/3

, c2(v) =

(
4L′(v)

|λ′(v)|2
)1/3

(49)



CLT for the Lp-error of smooth isotonic estimators 1047

we obtain that

Y (4)
n (t)

d
=

1

b

∫ t+b

t−b

k′
(
t− v

b

)
1

c1(v)
[DInvZ](0) dv

where Inv = c2(v)
−1Jnv and Z(t) = W (t) − t2. We approximate DInv by DR,

i.e., we approximate Y
(4)
n by

Y (5)
n (t) = [DRZ](0)

1

b

∫ t+b

t−b

k′
(
t− v

b

)
1

c1(v)
dv. (50)

It remains to show that

b−p

∫ 1−b

b

|Y (5)
n (t)|p dμ(t) d−→ αp

0[DRZ](0)p, (51)

because then, it follows that

b−p

∫ 1−b

b

|Y (4)
n (t)|p dμ(t) = b−p

∫ 1−b

b

|Y (5)
n (t)|p dμ(t) + oP (1)

so that (48) holds. Since

1

b

∫ t+b

t−b

k′
(
t− v

b

)
1

c1(t)
dv =

1

c1(t)

∫ 1

−1

k′ (y) dy = 0.

we can write

1

b

∫ t+b

t−b

k′
(
t− v

b

)
1

c1(v)
dv =

1

b

∫ t+b

t−b

k′
(
t− v

b

)(
1

c1(v)
− 1

c1(t)

)
dv

=

∫ 1

−1

k′ (y)

(
1

c1(t− by)
− 1

c1(t)

)
dy.

Assumptions (A1) and (A2) imply that t �→ c1(t) is strictly positive and con-
tinuously differentiable with bounded derivative, so by a Taylor expansion we
get ∫ 1

−1

k′ (y)

(
1

c1(t− by)
− 1

c1(t)

)
dy =

c′1(t)

c1(t)2
b

∫ 1

−1

k′ (y) y dy + o(b).

Hence,

b−p

∫ 1−b

b

|Y (5)
n (t)|p dμ(t) = [DRZ](0)pb−p

∫ 1−b

b

∣∣∣∣ c′1(t)bc1(t)2

∣∣∣∣p dμ(t) + oP (1)

= [DRZ](0)p
∫ 1

0

∣∣∣∣ c′1(t)c1(t)2

∣∣∣∣p dμ(t) + oP (1)

(52)

which concludes the proof of (51) and finishes the proof of the theorem.
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Remark 4.2. Note that the assumption 1/b = o
(
n1/6+1/(6p)(log n)−(1+1/p)

)
of

the previous theorem puts a restriction on p, when b has the optimal rate n−1/5.

This is due to the approximation of Y
(4)
n (t) by Y

(5)
n (t) for t ∈ (b, 1 − b). This

restriction on p can be avoided if we consider the Lp-error on the smaller interval
(b+ n−1/3 logn, 1− b− n−1/3 logn).

Remark 4.3. For p > 1, the boundary regions cannot be included in the CLT
of Theorem 4.1. For example, for t ∈ (0, b), it can be shown that there exists a
universal constant K > 0, such that

n2p/3

∫ b

0

∣∣∣λ̃SG
n (t)− λ̃s

n(t)
∣∣∣p dμ(t) > Kb−p+1[DRZ](0)p + oP (b

−p+1),

which is not bounded in probability for p > 1. The same result also holds for
t ∈ (1− b, 1).

In the special case p = 1, for t ∈ (0, b) we have

n2/3

∫ b

0

∣∣∣λ̃SG
n (t)− λ̃s

n(t)
∣∣∣ dμ(t)

= [DRZ](0)
1

b

∫ b

0

∣∣∣∣∣ 1

c1(t)

∫ t/b

−1

d

dy
k(t) (y) dy

∣∣∣∣∣ dμ(t) + oP (1).

If (A3) holds, then

1

b

∫ b

0

∣∣∣∣∣ 1

c1(t)

∫ t/b

−1

d

dy
k(t) (y) dy

∣∣∣∣∣ dμ(t)→ w(0)

c1(0)

∫ 1

0

|ψ1 (y) k (y)+ψ2 (y) yk (y)| dy.

Similarly, we can deal with the case t ∈ (1− b, 1). It follows that

n2/3

∫ 1

0

∣∣∣λ̃SG
n (t)− λ̃s

n(t)
∣∣∣ dμ(t) d−→ α̃0[DRZ](0)

with

α̃0 = α0 +

(
w(0)

c1(0)
+

w(1)

c1(1)

)∫ 1

0

|ψ1 (y) k (y) + ψ2 (y) yk (y)| dy.

We are now ready to formulate the CLT for the smoothed Grenander-type
estimator. The result will follow from combining Corollary 3.7 with Theorem 4.1.
Because we now deal with the Lp-error between λ̃SG

n and λ, the contribution of
the integrals over the boundary regions (0, 2b) and (1−2b, 1) can be shown to be
negligible. This means we no longer need the third requirement in Theorem 4.1
on the rate of 1/b.

Theorem 4.4. Assume that (A1) − (A3) hold and let k satisfy (1). Let ISG
n

be defined in (30). If 1 ≤ p < min(q, 2q − 7) and nb → ∞, such that 1/b =
o
(
n1/3−1/q

)
and 1/b = o

(
n(q−3)/(6p)

)
.
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i) If nb5 → 0, then

(bσ2(p))−1/2
{
(nb)p/2ISG

n (p)−mn(p)
}

d−→ N(0, 1);

ii) If nb5 → C2
0 > 0, and Bn in assumption (A2) is a Brownian motion, then

(bθ2(p))−1/2
{
(nb)p/2ISG

n (p)−mn(p)
}

d−→ N(0, 1);

iii) If nb5 → C2
0 > 0, and Bn in assumption (A2) is a Brownian bridge, then

(bθ̃2(p))−1/2
{
(nb)p/2ISG

n (p)−mn(p)
}

d−→ N(0, 1),

where ISG
n , mn, σ2, θ2, and θ̃2 are defined in (30), (8), (9), (11), and (12),

respectively.

Proof. Define

γ2(p) =

{
σ2(p) if nb5 → 0

θ2(p) if nb5 → C2
0 .

(53)

By Corollary 3.7, we already have that

(bγ2(p))−1/2

{
(nb)p/2

∫ 1

0

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t)−mn(p)

}
d−→ N(0, 1),

for λ̂s
n defined in (26). Hence it is sufficient to show that

b−1/2(nb)p/2
∣∣∣∣∫ 1

0

∣∣∣λ̃SG
n (t)− λ(t)

∣∣∣p dμ(t)−
∫ 1

0

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t)

∣∣∣∣ P−→ 0,

in all three cases (i)-(iii). First we show that

b−1/2(nb)p/2

∣∣∣∣∣
∫ 2b

0

∣∣∣λ̃SG
n (t)− λ(t)

∣∣∣p dμ(t)−
∫ 2b

0

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t)

∣∣∣∣∣ P−→ 0.

(54)
Indeed, by (14), we get∣∣∣∣∣
∫ 2b

0

∣∣∣λ̃SG
n (t)− λ(t)

∣∣∣p dμ(t)−
∫ 2b

0

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t)

∣∣∣∣∣
≤ p2p−1

∫ 2b

0

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣p dμ(t)

+ p2p−1

(∫ 2b

0

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣p dμ(t))1/p(∫ 2b

0

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t))1−1/p

.

(55)



1050 H. P. Lopuhaä and E. Musta

Moreover, by integration by parts and the Kiefer-Wolfowitz type of result in
Corollary 3.1 in [15], it follows that

sup
t∈[0,1]

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣ = sup

t∈[0,1]

∣∣∣∣∫ k
(t)
b (t− u) d(Λ̃n − Λn)(u)

∣∣∣∣
≤ Cb−1 sup

t∈[0,1]

|Λ̃n(t)− Λn(t)| = OP

(
b−1

(
log n

n

)2/3
)
.

(56)

Hence ∫ 2b

0

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣p dμ(t) = OP

(
b1−p

(
logn

n

)2p/3
)
. (57)

Together with Proposition 3.6 this implies (54). Similarly, we also have

b−1/2(nb)p/2
∣∣∣∣∫ 1

1−2b

∣∣∣λ̃SG
n (t)− λ(t)

∣∣∣p dμ(t)−
∫ 1

1−2b

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t)

∣∣∣∣ P−→ 0.

Thus, it remains to prove

b−1/2(nb)p/2

∣∣∣∣∣
∫ 1−2b

2b

∣∣∣λ̃SG
n (t)− λ(t)

∣∣∣p dμ(t)−
∫ 1−2b

2b

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t)

∣∣∣∣∣ P−→ 0.

(58)
Again, from (14), we have∣∣∣∣∣
∫ 1−2b

2b

∣∣∣λ̃SG
n (t)− λ(t)

∣∣∣p dμ(t)−
∫ 1−2b

2b

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t)

∣∣∣∣∣
≤ p2p−1

{∫ 1−2b

2b

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣p dμ(t)

+

(∫ 1−2b

2b

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣p dμ(t))1/p(∫ 1−2b

2b

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t))1−1/p
⎫⎬⎭.

(59)

Because b−1 = o(n1/3−1/q) implies that

(2b, 1− 2b) ⊂ (b+ n−1/3 logn, 1− b− n−1/3 log n),

from Theorem 4.1, in particular Remark 4.2, we have∫ 1−2b

2b

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣p dμ(t) = OP (n

−2p/3) = oP (n
−p/2). (60)

Then, (58) follows immediately from (59) and the fact that, according to The-
orem 3.1, ∫ 1−2b

2b

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t) = OP ((nb)
−p/2).

This proves the theorem.
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Remark 4.5. Note that, if b = cn−α, for some 0 < α < 1, the proof is simple
and short in case α < p/(3(1 + p)) because the Kiefer-Wolfowitz type of result
in Corollary 3.1 in [15] is sufficient to prove (60). Indeed, from (56), it follows
that∫ 1−2b

2b

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣p dμ(t) = OP

(
b−p

(
log n

n

)2p/3
)

= oP

(
b1/2 (nb)

−p/2
)
.

However, this assumption on α is quite restrictive because for example if α = 1/5
then the theorem holds only for p > 3/2 (not for the L1-loss) and if α = 1/4
then the theorem holds only for p > 3.

5. Isotonized kernel estimator

The isotonized kernel estimator is defined as follows. First, we smooth the piece-
wise constant estimator Λn by means of a boundary corrected kernel function,
i.e., let

Λs
n(t) =

∫ (t+b)∧1

(t−b)∨0

k
(t)
b (t− u)Λn(u) du, for t ∈ [0, 1], (61)

where k
(t)
b (u) defined as in (27). Next, we define a continuous monotone estima-

tor λ̃GS
n of λ as the left-hand slope of the least concave majorant Λ̂s

n of Λs
n on

[0, 1]. In this way we define a sort of Grenander estimator based on a smoothed
naive estimator for Λ. For this reason we use the superscript GS.

We are interested in the asymptotic distribution of the Lp-error of this esti-
mator:

IGS
n (p) =

∫ 1

0

∣∣∣λ̃GS
n (t)− λ(t)

∣∣∣p dμ(t).

It follows from Lemma 1 in [23] (in the case of a decreasing function), that λ̃GS
n

is continuous and is the unique minimizer of

ψ(λ) =
1

2

∫ 1

0

(
λ(t)− λ̃s

n(t)
)2

dt

over all nonincreasing functions λ, where λ̃s
n(t) = dΛs

n(t)/dt. This suggests λ̃
s
n(t)

as a naive estimator for λ0(t). Note that, for t ∈ [b, 1 − b], from integration by
parts we get

λ̃s
n(t) =

1

b2

∫ t+b

t−b

k′
(
t− u

b

)
Λn(u) du =

∫ t+b

t−b

kb(t− u) dΛn(u), (62)

i.e., λ̃s
n coincides with the usual kernel estimator of λ on the interval [b, 1− b].

Let 0 < γ < 1. It can be shown that

P(λ̃s
n(t) = λ̃GS

n (t) for all t ∈ [bγ , 1− bγ ]) → 1. (63)
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See Corollary B.2 in the Appendix. Hence, their Lp-error between λ̃GS
n and

λ̃s
n will exhibit the same behavior in the limit. Note that this holds for every

γ < 1, which means that the interval we are considering is approaching (b, 1−b).
Consider a modified Lp-error of the isotonized kernel estimator defined by

IGS,c
n,γ (p) =

∫ 1−bγ

bγ

∣∣∣λ̃GS
n (t)− λ(t)

∣∣∣p dμ(t). (64)

We then have the following result.

Theorem 5.1. Assume that (A1)-(A3) hold and let IGS,c
n,γ (p) be defined in (64).

Let k satisfy (1) and let L be as in Assumption (A2). Assume b → 0 and
1/b = o(n1/4) and let 1/2 < γ < 1.

i) If nb5 → 0, then

(bσ2(p))−1/2
{
(nb)p/2IGS,c

n,γ (p)−mn(p)
}

d−→ N(0, 1);

ii) If nb5 → C2
0 > 0 and Bn in assumption (A2) is a Brownian motion, then

(bθ2(p))−1/2
{
(nb)p/2IGS,c

n,γ (p)−mn(p)
}

d−→ N(0, 1);

iii) If nb5 → C2
0 > 0 and Bn in assumption (A2) is a Brownian bridge, then

(bθ̃2(p))−1/2
{
(nb)p/2IGS,c

n,γ (p)−mn(p)
}

d−→ N(0, 1),

where σ2, θ2, θ̃2 and mn are defined respectively in (9), (11), (12) and (8).

Proof. It follows from Theorem 3.1 and (63). Note that the results of Theo-
rem 3.1 do not change if we consider the interval [bγ , 1− bγ ] instead of [b, 1− b]
and that b−1/2|mc

n(p)−mn(p)| → 0.

6. Hellinger error

In this section we investigate the global behavior of estimators by means of a
weighted Hellinger distance

H(λ̂n, λ) =

(
1

2

∫ 1

0

(√
λ̂n(t)−

√
λ(t)

)2

dμ(t)

)1/2

, (65)

where λ̂n is the estimator at hand. This metric is convenient in maximum like-
lihood problems, which goes back to [34, 35, 3]. Consistency in Hellinger dis-
tance of shape constrained maximum likelihood estimators has been investigated
in [43], [45], and [11], whereas rates on Hellinger risk measures have been ob-
tained in [45], [29], and [28]. The first central limit theorem type of result for
the Hellinger distance was presented in [39] for Grenander type estimators of
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a monotone function. We deal with the smooth (isotonic) estimators following
the same approach.

Note that, for the Hellinger distance to be well defined we need to assume
that λ takes only positive values. We follow the same line of argument as in [39].
We first establish that∫ 1

0

(√
λ̂s
n(t)−

√
λ(t)

)2

dμ(t) =

∫ 1

0

(
λ̂s
n(t)− λ(t)

)2
(4λ(t))−1 dμ(t)

+OP

(
(nb)−3/2

)
,

which shows that the squared Hellinger loss can be approximated by a weighted
squared L2-distance. For details, see Lemma C.1 in the Appendix, which is the
corresponding version of Lemma 2.1 in [39]. Hence, a central limit theorem for
squared the Hellinger loss follows directly from the central limit theorem for the
weighted L2-distance (see Theorem C.2 in the Appendix, which corresponds to
Theorem 3.1 in [39]). An application of the delta method will then lead to the
following result.

Theorem 6.1. Assume (A1)-(A3) hold. Let λ̃s
n be defined in (2), with k sat-

isfying (1), and let H be defined in (65). Suppose that nb → ∞ and that λ is
strictly positive.

i) If nb5 → 0, then(
b
τ2(2)

8μn(2)

)−1/2 {
(nb)1/2H(λ̂s

n, λ)− 2−1/2μn(2)
1/2
}

d−→ N(0, 1).

ii) If nb5 → C2
0 > 0 and Bn in Assumption (A2) is a Brownian motion, then(

b
κ2(2)

8μn(2)

)−1/2 {
(nb)1/2H(λ̂s

n, λ)− 2−1/2μn(2)
1/2
}

d−→ N(0, 1),

iii) If nb5 → C2
0 > 0 and Bn in Assumption (A2) is a Brownian bridge, then(

b
κ̃2(2)

8μn(2)

)−1/2 {
(nb)1/2H(λ̂s

n, λ)− 2−1/2μn(2)
1/2
}

d−→ N(0, 1),

where τ2, κ2, κ̃2 and μn are defined as in (9), (11), (12) and (8), respectively,
by replacing w(t) with w(t)(4λ(t))−1.

(iv) Under the conditions of Theorem 4.4, results (i)-(iii) also hold when re-

placing λ̂s
n by the smoothed Grenander-type estimator λ̃SG

n , defined in (29).

Proof. The proof consists of an application of the delta-method in combination
with Theorem C.2 in the Appendix. According to part (i) of Theorem C.2,

b−1/2
(
2nbH(λ̂s

n, λ)− μn(2)
)

d−→ Z
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where Z is a mean zero normal random variable with variance τ2(2). Therefore,
in order to obtain part (i) of Theorem 6.1, we apply the delta method with the
mapping φ(x) = 2−1/2x1/2. Parts (ii)-(iv) are obtained in the same way.

To be complete, note that from Corollary B.2, the previous central limit
theorems also hold for the isotonized kernel estimator λ̃GS

n , defined in Section 5,
when considering a Hellinger distance corresponding to the interval (bγ , 1− bγ)
instead of (0, 1) in (65).

7. Testing

In this section we investigate a possible application of the results obtained in
Section 4 for testing monotonicity. For example, Theorem 4.4 could be used to
construct a test for the single null hypothesis H0 : λ = λ0, for some known
monotone function λ0. Instead, we investigate a nonparametric test for mono-
tonicity on the basis of the Lp-distance between the smoothed Grenander-type
estimator and the kernel estimator, see Theorem 4.1.

The problem of testing a nonparametric null hypothesis of monotonicity has
gained a lot of interest in the literature (see for example [30] for the density
setting, [27], [24] for the hazard rate, [1], [4], [5],[19] for the regression func-
tion).

We consider a regression model with deterministic design points

Yi = λ

(
i

n

)
+ εi, i ∈ {1, . . . , n}, (66)

where the εi’s are independent normal random variables with mean zero and
variance σ2. Such a model satisfies Assumption (A2) with q = +∞,

Λn(t) = n−1
∑
i≤nt

Yi

and L(t) = σ2t, for t ∈ [0, 1] (see Theorem 5 in [13]).

Assume we have a sample of n observations Y1, . . . , Yn. Let D be the space
of decreasing functions on [0, 1] that satisfy (A1). We want to test H0 : λ ∈
D against H1 : λ /∈ D. Under the null hypothesis we can estimate λ by the
smoothed Grenander-type estimator λ̃SG

n defined as in (29). On the other hand,
under the alternative hypothesis we can estimate λ by the kernel estimator
with boundary corrections λ̂s

n defined in (26). Then, as a test statistic we
take

Tn = n2/3

(∫ 1−b

b

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣2 dt

)1/2

,

and at level α, we reject the null hypothesis if Tn > cn,α for some critical value
cn,α > 0.
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In order to use the asymptotic quantiles of the limit distribution in Theorem
4.1, we need to estimate the constant C0 which depends on the derivatives of λ.
To avoid this, we choose to determine the critical value by a bootstrap procedure.
We generate B = 1000 samples of size n from the model (66) with λ replaced by
its estimator λ̃SG

n under the null hypothesis and independent Gaussian errors
with mean zero and variance σ̂2

n. As an estimator of σ2, we take the same as
in [1]

σ̂2
n =

1

n

n/2∑
i=1

(Y2i − Y2i−1)
2
,

where for simplicity of notation we are assuming that n is even. The bootstrap
regression model considers

Y ∗
i = λ̃SG

n

(
i

n

)
+ ε∗i

where εi’s are independent mean zero normal random variables with variance
σ̂2
n.

For each of these samples we compute the estimators λ̃SG,∗
n , λ̂s,∗

n and the test
statistic

T ∗
n,j = n2/3

(∫ 1−b

b

∣∣∣λ̃SG,∗
n (t)− λ̂s,∗

n (t)
∣∣∣2 dt

)1/2

, j = 1, . . . , B.

Then as a critical value, we take the 100α-th upper-percentile of the values
T ∗
n,1, . . . , T

∗
n,B . Consistency of the bootstrap method follows from the next theo-

rem. A sketch of the proof is given in Appendix D. In order to keep the notation
simple, we formulate the result only for the case considered in the simulation
study. However, it also holds in the general setting considered in Section 4, under
appropriate conditions on p, b and q.

Theorem 7.1. Consider observations Y1, . . . , Yn from the regression model (66)
with regression function λ that satisfies (A1) and is three times differentiable
with bounded third derivative. Let k satisfy (1) and b = cn−γ for γ ∈ (1/6, 1/5).

Let λ̃SG,∗
n and λ̂s,∗

n be the smoothed Grenander estimator and the kernel estima-
tor constructed from the bootstrap sample Y ∗

1 , . . . , Y
∗
n . Then

sup
x∈R

∣∣∣∣∣∣P∗

⎛⎝n2/3

(∫ 1−b

b

∣∣∣λ̃SG,∗
n (t)− λ̂s,∗

n (t)
∣∣∣2 dt

)1/2

≤ x

⎞⎠−Ψ(x)

∣∣∣∣∣∣→ 0,

in probability, as n → ∞, where P
∗ is the conditional probability given the

observations and Ψ is the distribution function of α0[DRZ](0), with Z and α0

defined as in Theorem 4.1 with μ(t) = t, p = 2 and L′(t) = σ2.

Remark 7.2. If b = cn−1/5 then the previous theorem holds with Ψ replaced by
Ψ∗, which is the distribution function of α∗

0[DRZ](0), for a different constant α∗
0,
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depending on λ̃SG
n and (λ̃SG

n )′ instead of λ and λ′. This is because the bound
on |α∗

0 − α0| (see (119)) will not be sufficient to make the transition from α∗
0 to

α0. The problem could be solved by using a rescaled test statistic

α−1
0 n2/3

(∫ 1−b

b

∣∣∣λ̃SG
n (t)− λ̂s

n(t)
∣∣∣2 dt

)1/2

,

whose limit distribution is [DRZ](0) for both the original and bootstrap version.
However, we do not choose this approach because we want to avoid estimation
of α0 which, in practice, is problematic.

To investigate the performance of the test in practice, we repeat this proce-
dure N = 1000 times and we count the percentage of rejections. This gives an
approximation of the level (or the power) of the test if we start with a sample
for which the true λ is decreasing (or non-decreasing). We investigate the per-
formance of the test by comparing it to tests proposed in [1], [2] and in [19]. For
a power comparison, [1] and [2] consider the following functions

λ1(x) = −15(x− 0.5)31{x≤0.5} − 0.3(x− 0.5) + exp
(
−250(x− 0.25)2

)
,

λ2(x) = 16σx, λ3(x) = 0.2 exp
(
−50(x− 0.5)2

)
, λ4(x) = −0.1 cos(6πx),

λ5(x) = −0.2x+ λ3(x), λ6(x) = −0.2x+ λ4(x),

λ7(x) = −(1 + x) + 0.45 exp
(
−50(x− 0.5)2

)
,

We denote by TB the local mean test of [2] and Sreg
n the test proposed in [1] on

the basis of the distance between the least concave majorant of Λn and Λn. The
result of the simulations for n = 100, α = 0.05, b = 0.1, are given in Table 1.
We see that, apart from the last case, all the three tests perform very well and
they are comparable. However, our test behaves much better for the function
λ7, which is more difficult to detect than the others.

Table 1

Simulated power of Tn, TB and Sreg
n for n = 100.

Function λ1 λ2 λ3 λ4 λ5 λ6 λ7

σ2 0.01 0.01 0.01 0.01 0.004 0.006 0.01

Tn 1 1 1 1 1 1 0.99
TB 0.99 0.99 1 0.99 0.99 0.98 0.76
Sreg
n 0.99 1 0.98 0.99 0.99 0.99 0.68

The second model that we consider is taken from [1] and [19], which is a
regression function given by

λa(x) = −(1 + x) + a exp
(
−50(x− 0.5)2

)
, x ∈ [0, 1].

The results of the simulation, again for n = 100, α = 0.05, b = 0.1 and various
values of a and σ2 are given in Table 2. We denote by Sreg

n the test of [1] and by



CLT for the Lp-error of smooth isotonic estimators 1057

Trun the test of [19]. Note that when a = 0, the regression function is decreasing
so H0 is satisfied. We observe that our test rejects the null hypothesis more often
than Trun and Sreg

n so the price we pay for getting higher power is higher level.
As the value of a increases, the monotonicity of λa is perturbed. For a = 0.25
our test performs significantly better than the other two and, as expected, the
power decreases as the variance of the errors increases. When a = 0.45 and
σ2 not too large, the three test have power one but, when σ2 increases, Tn

outperforms Trun and Sreg
n . We took b = 0.1, which seems to be a reasonable

one considering that the whole interval has length one.

Table 2

Simulated power of Tn, Trun and Sreg
n for n = 100.

a = 0 a = 0.25 a = 0.45

σ 0.025 0.05 0.1 0.025 0.05 0.1 0.025 0.05 0.1

Tn 0.012 0.025 0.022 0.927 0.497 0.219 1 1 0.992
Trun 0 0 0 0.106 0.037 0.014 1 1 0.805
Sreg
n 0 0.002 0.013 0.404 0.053 0.007 1 1 0.683

In what follows, we investigate how the behavior of the test depends on
the choice of the bandwidth and of the Lp-distance. We perform simulation
studies with true level 0.05, for p ∈ {1, 2, 5, 10} and b ∈ {0.05, 0.1, 0.2}. To
check the level of the test in practice we consider a constant function λ(x) =
1, x ∈ (0, 1), which is the limiting case of monotonicity (the least favorable
assumption). In terms of power we consider the regression function λa with
a = 0.25. Results, for N = 10000 iterations, are shown in Tables 3 and 4. We
note that the various Lp-distances behave similarly and none of them is strictly
better than the others. With these choices of the bandwidth the practical level of
the test is higher than 0.05, while the tests Trun, S

reg
n , TB have guaranteed level

since they are calibrated against the most difficult null hypothesis (constant
function). However, we gain a lot in terms of power, as illustrated before in
Table 2.

Table 3

Simulated level of Tn for n = 100 and λ(x) = 1.

σ = 0.025 σ = 0.1

b p = 1 p = 2 p = 5 p = 10 p = 1 p = 2 p = 5 p = 10

0.05 0.126 0.124 0.105 0.097 0.123 0.123 0.109 0.099
0.1 0.103 0.103 0.095 0.092 0.107 0.107 0.099 0.096
0.2 0.089 0.089 0.093 0.093 0.092 0.094 0.097 0.098

It is not the purpose of this paper to investigate methods of bandwidth se-
lection. However, one possibility is to use a cross validation procedure. In each
of the N iterations we select the optimal bandwidth by a leave-1-out cross
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Table 4

Simulated power of Tn for n = 100 and λa(x), with a = 0.25.

σ = 0.025 σ = 0.1

b p = 1 p = 2 p = 5 p = 10 p = 1 p = 2 p = 5 p = 10

0.05 0.771 0.756 0.719 0.690 0.101 0.123 0.131 0.129
0.1 0.925 0.929 0.910 0.867 0.198 0.204 0.202 0.196
0.2 0.989 0.998 1 1 0.418 0.423 0.429 0.424

validation procedure by means of the kernel estimator ([8]). Afterwards, this
bandwidth is used for estimation in the B bootstrap samples. We report the
results of the simulations for the two settings considered previously (λ(x) = 1
and λa(x), a = 0.25) and various sample sizes in Tables 5 and 6 respectively. We
observe that, even with this bandwidth selection method, the simulated level of
the test is higher than the nominal level but again also the power is high (com-
pared to the other tests considered previously). The bad performance in terms
of level might be due to the fact that the constant function does not satisfy the
assumptions of Theorems 4.1 and 7.1.

Table 5

Simulated level of Tn using cross-validation bandwidth selection and λ(x) = 1.

σ = 0.025 σ = 0.1

n p = 1 p = 2 p = 5 p = 10 p = 1 p = 2 p = 5 p = 10

50 0.154 0.157 0.155 0.150 0.158 0.163 0.156 0.154
100 0.136 0.140 0.141 0.138 0.136 0.139 0.139 0.138
200 0.116 0.121 0.121 0.120 0.126 0.130 0.126 0.123

Table 6

Simulated power of Tn using cross-validation bandwidth selection and λa(x), with a = 0.25.

σ = 0.025 σ = 0.1

n p = 1 p = 2 p = 5 p = 10 p = 1 p = 2 p = 5 p = 10

50 0.534 0.523 0.366 0.229 0.239 0.252 0.240 0.228
100 0.895 0.895 0.869 0.828 0.324 0.331 0.317 0.307
200 0.993 0.992 0.989 0.986 0.410 0.412 0.396 0.390

Actually the percentage of rejections of the null hypothesis is close to 0.05
for a regression function λ(x) = −0.1x + 1 which has a small slope but is not
constant (see Table 7). This means that the test manages to recognize quite well
a true null hypothesis as long as the regression function is not flat (or with a
very small slope).
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Table 7

Percentage of rejections for Tn using cross-validation bandwidth selection when
λ(x) = −0.1x+ 1.

σ = 0.025 σ = 0.1

n p = 1 p = 2 p = 5 p = 10 p = 1 p = 2 p = 5 p = 10

50 0.071 0.072 0.066 0.061 0.105 0.109 0.104 0.097
100 0.064 0.065 0.058 0.055 0.078 0.079 0.075 0.072
200 0.045 0.042 0.039 0.037 0.056 0.069 0.060 0.057

8. Auxiliary results and proofs

8.1. Proofs for Section 3

Lemma 8.1. Let L : [0, 1] → R be strictly positive and twice differentiable, such

that inft∈[0,1] L
′(t) > 0 and supt∈[0,1] |L′′(t)| < ∞. Let Γ

(2)
n , g(n), and mc

n(p) be
defined in (19), (4), and (8), respectively. Assume that (A1) and (A3) hold.

1. If nb5 → 0, then

(bσ2(p))−1/2

{∫ 1−b

b

∣∣∣b−1/2Γ(2)
n (t) + g(n)(t)

∣∣∣p dμ(t)−mc
n(p)

}
d−→ N(0, 1),

where σ2(p) is defined in (9).
2. If nb5 → C2

0 , then

(bθ̃2(p))−1/2

{∫ 1−b

b

∣∣∣b−1/2Γ(2)
n (t) + g(n)(t)

∣∣∣p dμ(t)−mc
n(p)

}
d−→ N(0, 1),

where θ̃2(p) is defined in (12).

Proof. From the properties of the kernel function and L we have

Γ(2)
n (t) =

∫
k

(
t− u

b

)
dW (L(u))− W (L(1))

L(1)

∫
k

(
t− u

b

)
L′(u) du

=

∫
k

(
t− u

b

)
dW (L(u))− b

W (L(1))

L(1)
L′(t) +OP (b

3),

where the OP term is uniformly for t ∈ [0, 1]. Hence, inequality (14) implies
that∫ 1−b

b

∣∣∣b−1/2Γ(2)
n (t) + g(n)(t)

∣∣∣p dμ(t)

=

∫ 1−b

b

∣∣∣∣b−1/2

∫
k

(
t− u

b

)
dW (L(u)) + g(n)(t)− b1/2

W (L(1))

L(1)
L′(t)

∣∣∣∣p dμ(t)

+O(b3).
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Therefore, it is sufficient to prove a CLT for∫ 1−b

b

∣∣∣∣b−1/2

∫
k

(
t− u

b

)
dW (L(u)) + g(n)(t)− b1/2

W (L(1))

L(1)
L′(t)

∣∣∣∣p dμ(t).

(67)
Let

Xn,t = b−1/2

∫
k

(
t− u

b

)
dW (L(u)) + g(n)(t). (68)

Then Xnt ∼ N(g(n)(t), σ
2
n(t)), where

σ2
n(t) =

1

b

∫
k2
(
t− u

b

)
L′(u) du. (69)

We can then write

b−1/2

{∫ 1−b

b

∣∣∣b−1/2Γ(2)
n (t) + g(n)(t)

∣∣∣p dμ(t)−mc
n(p)

}

= b−1/2

{∫ 1−b

b

∣∣∣∣Xn,t − b1/2
W (L(1))

L(1)
L′(t)

∣∣∣∣p dμ(t)−mc
n(p)

}
+ o(1)

= b−1/2

{∫ 1−b

b

|Xn,t|p dμ(t)−mc
n(p)

}

− p
W (L(1))

L(1)

∫ 1−b

b

|Xn,t|p−1
sgn {Xn,t}L′(t)w(t) dt

+ b−1/2

∫ 1−b

b

O
(
bW (L(1))2

)
dt+ o(1),

(70)

where we use

|x|p = |y|p + p(x− y)|y|p−1 sgn(y) +O((x− y)2) (71)

for the first term in the integrand on the right hand side of the first equality
in (70). The third term on the right hand side of (70) converges to zero in
probability, so it suffices to deal with the first two terms. To establish a central
limit theorem for the first term, one can mimic the approach in [10] using a
big-blocks-small-blocks procedure. See Lemmas A.1 and A.2 in the Appendix
for details. It can be shown that

b−1/2

{∫ 1−b

b

|Xn,t|p dμ(t)−mc
n(p)

}
= b1/2

M3∑
i=1

ζi + oP (1),

where ζi =
∑di

j=ci
ξj , with ci = (i−1)(M2+2)+1 and di = (i−1)(M2+2)+M2,

M2 = [(M1−1)ν ], for some 0 < ν < 1 and M1 = [1/b−1],M3 = [(M1−1)/(M2+
2)], and

ξi = b−1

∫ ib+b

ib

{
|Xn,t|p −

∫ +∞

−∞

∣∣∣√L′(t)Dx+ g(n)(t)
∣∣∣p φ(x) dx}w(t) dt.
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The random variables ζi are independent and satisfy

b1/2
M3∑
i=1

ζi
d−→ N(0, γ2(p)), (72)

where γ2(p) is defined in (53).
Next, consider the second term in the right hand side of (70). We have

E

[∫ 1−b

b

|Xn,t|p−1
sgn {Xn,t}L′(t)w(t) dt

]

=

∫ 1−b

b

∫
R

∣∣σn(t)x+ g(n)(t)
∣∣p−1

sgn
{
σn(t)x+ g(n)(t)

}
φ(x) dxL′(t)w(t) dt

→
∫ 1

0

∫
R

∣∣∣√L′(t)Dx+ g(t)
∣∣∣p−1

sgn
{√

L′(t)Dx+ g(t)
}
φ(x) dxL′(t)w(t) dt,

where D and σn(t) are defined in (7) and (69), respectively, and φ denotes the
standard normal density. Note that

d

dx

∣∣∣√L′(t)Dx+ g(t)
∣∣∣p = p

∣∣∣√L′(t)Dx+ g(t)
∣∣∣p−1

sgn
{√

L′(t)Dx+ g(t)
}
.

Hence, integration by parts gives∫ 1

0

∫
R

∣∣∣√L′(t)Dx+g(t)
∣∣∣p−1

sgn
{√

L′(t)Dx+g(t)
}
φ(x) dxL′(t)w(t) dt=

θ1(p)

Dp
,

where θ1 is defined in (13). We conclude

E

[∫ 1−b

b

|Xn,t|p−1
sgn {Xn,t}L′(t)w(t) dt

]
→ θ1(p)

Dp
.

Moreover,

Var

(∫ 1−b

b

|Xn,t|p−1
sgn {Xn,t}L′(t)w(t) dt

)

=

∫ 1−b

b

∫ 1−b

b

Covar
(
|Xn,t|p−1

sgn {Xn,t} , |Xn,s|p−1
sgn {Xn,s}

)
· L′(t)L′(s)w(t)w(s) dt ds

=

∫ 1−b

b

∫ 1−b

b

1{|t−s|≤2b}Covar
(
|Xn,t|p−1

sgn {Xn,t} , |Xn,s|p−1
sgn {Xn,s}

)
· L′(t)L′(s)w(t)w(s) dt ds,

because for |t − s| > 2b, Xn,t is independent of Xn,s. As a result, using that
Xn,t has bounded moments, we obtain

Var

(∫ 1−b

b

|Xn,t|p−1
sgn {Xn,t}L′(t)w(t) dt

)
→ 0.
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This means that∫ 1−b

b

|Xn,t|p−1
sgn {Xn,t}L′(t)w(t) dt → θ1(p)

Dp
,

in probability and

−p
W (L(1))

L(1)

∫ 1−b

b

|Xn,t|p−1
sgn {Xn,t}L′(t)w(t) dt = CW (L(1)) + oP (1),

where

C = − θ1(p)

DL(1)
. (73)

Going back to (70), we conclude that

b−1/2

{∫ 1−b

b

∣∣∣b−1/2Γ(2)
n (t) + g(n)(t)

∣∣∣p dμ(t)−mc
n(p)

}

= b1/2
M3∑
i=1

ζi + CW (L(1)) + oP (1).

(74)

In the case nb5 → 0, we have g(t) = 0 in the definition of θ1(p) in (13). Hence,
by the symmetry of the standard normal distribution, it follows that θ1(p) = 0
and as a result C = 0. According to (72) and (74), this means that

b−1/2

{∫ 1−b

b

∣∣∣b−1/2Γ(2)
n (t) + g(n)(t)

∣∣∣p dμ(t)−mc
n(p)

}
converges in distribution to a mean zero normal random variable with variance
σ2(p).

Then, consider the case nb5 → C2
0 > 0. Note that ζi depends only on the

Brownian motion on the interval [cib − b, cib + b]. These intervals are disjoint,
because ci+1b− b = dib+ b. We write

W (L(1)) =

M3∑
i=1

[W (ti+1)−W (ti)] +W (L(1))−W (tM3),

where ti = L(cib− b), for i = 1, . . . ,M3. Moreover, W (L(1))−W (tM3) → 0, in
probability, since tM3 ∼ L(1 +O(b)) → L(1). Hence, the left hand side of (74),
can be written as

M3∑
i=1

Yi + oP (1), Yi = b1/2ζi + C [W (ti+1)−W (ti)] .

Since now we have a sum of independent random variables, we apply the
Lindeberg-Feller central limit theorem. Using E[Yi] = O(b5/2M2), it suffices
to show that

E

⎡⎣(M3∑
i=1

Yi

)2
⎤⎦→ θ̃2(p)> 0, (75)
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and that the Lyapounov condition

M3∑
i=1

E[Y 4
i ]

(
M3∑
i=1

E[Y 2
i ]

)−2

→ 0. (76)

is satisfied. Once we have (75), condition (76) is equivalent to
∑M3

i=1 E[Y
4
i ] → 0.

In order to prove this, we use that E[ζ4i ] = O(M2
2 ), (see (93) in the proof of

Lemma A.2 in the Appendix). Then, we get

M3∑
i=1

E[Y 4
i ] ≤ O(b2)

M3∑
i=1

E[ζ4i ] +O(1)

M3∑
i=1

E[(W (ti+1)−W (ti))
4]

≤ O(M3b
2M2

2 ) +O(M3(ti+1 − ti)
2)

= o(1) +O(M3M
2
2 b

2) = o(1).

Because E[Yi] = O(b5/2M2), for (75) we have

E

⎡⎣(M3∑
i=1

Yi

)2
⎤⎦ =

M3∑
i=1

E
[
Y 2
i

]
+ o(1)

= b

M3∑
i=1

E
[
ζ2i
]
+ C2

M3∑
i=1

(ti+1 − ti)

+ 2Cb1/2
M3∑
i=1

E[ζi{W (ti+1)−W (ti)}] + o(1).

It can be shown that b
∑M3

i=1 E
[
ζ2i
]
→ 0, see Lemma A.2 in the Appendix for

details. Moreover,
∑M3

i=1(ti+1− ti) = L((M3−1)(M2+2)b)−L(0) = L(1)+o(1).
Finally, since

ζi = b−1

∫ dib

cib

{
|Xn,t|p −

∫ +∞

−∞

∣∣∣√l(t)Dx+ g(n)(t)
∣∣∣p φ(x) dx}w(t) dt,

we can write

2Cb1/2
M3∑
i=1

E[ζi{W (ti+1)−W (ti)}] = 2C

M3∑
i=1

∫ dib

cib

E [|Xn,t|pZn,t]w(t) dt,

where Zn,t = b−1/2{W (ti+1)−W (ti)}. Note that

(Xn,t, Zn,t) ∼ N

([
g(n)(t)

0

]
,

[
σ2
n(t) ρn(t)σn(t)σ̃n(t)

ρn(t)σn(t)σ̃n(t) σ̃2
n(t))

])
.

where σ2
n(t) is defined in (69) and

σ̃2
n(t)= b−1[L(t+b)−L(t−b)], ρn(t)=σn(t)

−1σ̃n(t)
−1b−1

∫
k

(
t− u

b

)
l(u) du.
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Using

Zn,t | Xn,t = x ∼ N

(
σ̃n(t)

σn(t)
ρn(t)(x− g(n)(t)),

(
1− ρ2n(t)

)
σ̃2
n(t)

)
we obtain

E [|Xn,t|pZn,t] = E [|Xn,t|p E[Zn,t | Xn,t]]

= E

[
|Xn,t|p

σ̃n(t)

σn(t)
ρn(t)

(
Xn,t − g(n)(t)

)]
=

σ̃n(t)

σn(t)
ρn(t)E

[
|Xn,t|p

(
Xn,t − g(n)(t)

)]
=

σ̃n(t)

σn(t)
ρn(t)

∫
R

|g(n)(t) + σn(t)x|pσn(t)xφ(x) dx

= σn(t)
−1b−1

∫
k

(
t− u

b

)
l(u) du

∫
R

|g(n)(t) + σn(t)x|pxφ(x) dx.

Because σ2
n(t) → D2l(t), where D is defined in (7), g(n)(t) → g(t), as defined

in (5), and b−1
∫
k
(
t−u
b

)
l(u) du → l(t), we find that

E [|Xn,t|pZn,t] →
√

l(t)

D

∫
R

|g(t) +D
√

l(t)x|pxφ(x) dx.

Hence

E

⎡⎣(M3∑
i=1

Yi

)2
⎤⎦= θ2(p)+C2L(1)

+
2C

D

M3∑
i=1

∫ dib

cib

∫
R

|g(t)+
√
l(t)Dx|pxφ(x) dx

√
l(t)w(t) dt+o(1)

= θ2(p)+C2L(1)

+
2C

D

∫ 1

0

∫
R

|g(t)+D
√

l(t)x|pxφ(x) dx
√

l(t)w(t) dt+o(1)

= θ2(p)+C2L(1)+2CD−1θ1(p)+o(1)

= θ2(p)− θ21(p)

D2L(1)
+o(1),

applying the definitions of C and θ1(p) in (73) and (13), respectively. It follows

from the Lindeberg-Feller central limit theorem that
∑M3

i=1 Yi
d−→ N(0, θ̃2(p)),

where θ̃(p) is defined in (12).

8.2. Proofs for Section 4

Lemma 8.2. Let Yn and Y
(1)
n be defined in (34) and (36), respectively. Assume

that (A1) − (A2) hold. If 1 ≤ p < min(q, 2q − 7), 1/b = o
(
n1/3−1/q

)
and
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1/b = o
(
n(q−3)/(6p)

)
, then

b−p

∫ 1−b

b

|Yn(t)− Y (1)
n (t)|p dμ(t) = oP (1).

Proof. We follow the same reasoning as in the proof of Lemma 8 in [38]. Let
Inv = [0, 1] ∩ [v − n−1/3 log n, v + n−1/3 log n] and for J = E,W , let

NJ
nv =

{
[CM[0,1]Λ

W
n ](s) = [CMInvΛ

W
n ](s) for all s ∈ Inv

}
. (77)

Then according to Lemma 3 in [38], there exists C > 0, independent of n, v, d,
such that

P
(
(NW

nv )
c
)
= O(e−Cd3

)

P
(
(NE

nv)
c
)
= O(n1−q/3d−2q + e−Cd3

).
(78)

Let Knv = NE
nv ∩NW

nv and write

E
[∣∣AE

n (v)
p −AW

n (v)
∣∣] = E

[∣∣AE
n (v)

p −AW
n (v)

∣∣1Kc
nv

]
+ n2p/3

E
[∣∣[DInvΛn](t)

p − [DInvΛ
W
n ](t)p

∣∣1Knv

]
.

From the proof of Lemma 8 in [38], using (78) with d = logn, we have

E
[∣∣AE

n (v)
p −AW

n (v)
∣∣1Kc

nv

]
= OP (n

1/2−q/6(logn)−q + e−C(log n)3/2/2)

and

n2p/3
E
[∣∣[DInvΛn](t)

p − [DInvΛ
W
n ](t)p

∣∣1Knv

]
= Op

(
n−p/3+p/q

)
.

It follows that

b−p

∫ 1−b

b

|Yn(t)− Y (1)
n (t)|p dμ(t)

≤ Cb−p

∫ 1

−1

|AE
n (t− by)−AW

n (t− by)|p dy

= b−pOP

(
n−p/3+p/q

)
+ b−pOP

(
n1/2−q/6(logn)−q + e−C(log n)3/2

)
.

According to the assumptions on the order of b−1, the right hand side is of order
oP (1).

Lemma 8.3. Let Y
(1)
n and Y

(2)
n be defined in (36) and (40), respectively. As-

sume that (A1)− (A2) hold. If b → 0, such that nb → ∞, then

b−p

∫ 1−b

b

|Y (1)
n (t)− Y (2)

n (t)|p dμ(t) = oP (1).
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Proof. We have

sup
t∈(b,1−b)

E

[∣∣∣Y (1)
n (t)− Y (2)

n (t)
∣∣∣p]

= sup
t∈(b,1−b)

E

[∣∣∣∣∣1b
∫ t+b

t−b

k′
(
t− v

b

)
1(NW

nv)
c

(
AW

n (v)− n2/3[DInvΛ
W
n ](v)

)
dv

∣∣∣∣∣
p]

≤ c sup
t∈(b,1−b)

E

[
sup

v∈[0,1]

∣∣∣AW
n (v)− n2/3[DInvΛ

W
n ](v)

∣∣∣p(1

b

∫ t+b

t−b

1(NW
nv)

c dv

)p]
,

where NW
nv is defined in (77). Moreover, since

sup
v∈[0,1]

∣∣∣AW
n (v)− n2/3[DInvΛ

W
n ](v)

∣∣∣ ≤ 4n2/3

{
Λ(1) + n−1/2 sup

s∈[0,L(1)]

|Wn(s)|
}
,

from the Cauchy-Schwartz inequality we obtain

sup
t∈(b,1−b)

E

[
sup

v∈[0,1]

∣∣∣AW
n (v)− n2/3[DInvΛ

W
n ](v)

∣∣∣p(1

b

∫ t+b

t−b

1(NW
nv)

c dv

)p]

≤ 4pn2p/3
E

⎡⎣{Λ(1) + n−1/2 sup
s∈[0,L(1)]

|Wn(s)|
}2p
⎤⎦1/2

· sup
t∈(b,1−b)

E

⎡⎣(1

b

∫ t+b

t−b

1(NW
nv)

c dv

)2p
⎤⎦1/2 .

For the last term on the right hand side, we can use Jensen’s inequality:(
1

b− a

∫ b

a

f(x) dx

)p

≤ 1

b− a

∫ b

a

f(x)p dx,

for all a < b, p ≥ 1, and f(x) ≥ 0. Because all the moments of sups∈[0,L(1)] |Wn(s)|
are finite, together with (78), it follows that

sup
t∈(b,1−b)

E

[∣∣∣Y (1)
n (t)− Y (2)

n (t)
∣∣∣p] ≤ Cn2p/3 sup

t∈(b,1−b)

E

[
1

b

∫ t+b

t−b

1(NW
nv)

c dv

]1/2
= O

(
n2p/3 exp

(
−C(logn)3/2

))
.

(79)

Because

b−pn2p/3 exp
(
−C(logn)3/2

)
= (nb)2p/3−C(logn)2/2b−p−2p/3+C(logn)2/2 → 0,

this finishes the proof.
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Lemma 8.4. Let Y
(2)
n and Y

(3)
n be defined in (40) and (43), respectively. As-

sume that (A1)− (A2) hold. If 1/b = o
(
n1/3−1/q

)
, then

b−p

∫ 1−b

b

|Y (2)
n (t)− Y (3)

n (t)|p dμ(t) = oP (1).

Proof. Let Hnv = [−n1/3v, n1/3(1− v)] ∩ [− log n, logn] and

Δnv = n2/3[DInvΛ
W
n ](v)− [DHnvYnv](0).

By definition, we have∫ 1−b

b

|Y (2)
n (t)− Y (3)

n (t)|p dμ(t) =
∫ 1−b

b

∣∣∣∣∣1b
∫ t+b

t−b

k′
(
t− v

b

)
Δnv dv

∣∣∣∣∣
p

dμ(t).

Moreover, using

sup
t∈(0,1)

E [|Δnt|p] = O
(
n−p/3+p/q

)
(see the proof of Lemma 6 in [38]), we obtain

sup
t∈(b,1−b)

E

[∣∣∣∣∣1b
∫ t+b

t−b

k′
(
t− v

b

)
Δnv dv

∣∣∣∣∣
p]

≤ sup
u∈[−1,1]

|k′(u)|p sup
t∈(b,1−b)

E

[∣∣∣∣∣1b
∫ t+b

t−b

Δnv dv

∣∣∣∣∣
p]

≤ C sup
t∈(b,1−b)

1

b

∫ t+b

t−b

E [|Δnv|p] dv ≤ 2C sup
v∈(0,1)

E [|Δnv|p]

= O
(
n−p/3+p/q

)
.

(80)

Because 1/b = o
(
n1/3−1/q

)
, this finishes the proof.

Lemma 8.5. Let Y
(3)
n and Y

(4)
n be defined in (43) and (47), respectively. As-

sume that (A1)− (A2) hold. If 1/b = o
(
n1/3−1/q

)
, then

b−p

∫ 1−b

b

|Y (3)
n (t)− Y (4)

n (t)|p dμ(t) = oP (1).

Proof. Let Hnv be defined as in the proof of Lemma 8.4 and let

Jnv =

[
n1/3L(anv)− L(v)

L′(v)
, n1/3L(bnv)− L(v)

L′(v)

]
,

where anv = max(0, v − n−1/3 logn) and bnv = min(1, v + n−1/3 logn). As in
(4.31) in [33] we have

sup
v∈(0,1)

E

[∣∣∣[DHnv Ỹnv](0)− [DJnvZnv](0)
∣∣∣p] = O(n−p/3(log n)3p), (81)
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where Ỹnv and Znv are defined in (45) and (46). This means that,

sup
t∈(b,1−b)

E

[∣∣∣Y (3)
n (t)− Y (4)

n (t)
∣∣∣p]

≤ sup
u∈[−1,1]

|k′(u)|p sup
t∈(b,1−b)

E

[∣∣∣∣∣1b
∫ t+b

t−b

{
[DHnv Ỹnv](0)− [DJnvZnv](0)

}
dv

∣∣∣∣∣
p]

≤ C sup
t∈(b,1−b)

1

b

∫ t+b

t−b

E

[∣∣∣[DHnv Ỹnv](0)− [DJnvZnv](0)
∣∣∣p] dv

≤ C sup
v∈(b,1−b)

E

[∣∣∣[DHnv Ỹnv](0)− [DJnvZnv](0)
∣∣∣p] = O

(
n−p/3(log n)3p

)
.

(82)

Since 1/b = o
(
n1/3−1/q

)
, this finishes the proof.

Lemma 8.6. Let Y
(4)
n and Y

(5)
n be defined in (47) and (50), respectively. As-

sume that (A1)− (A2) hold. If nb → ∞, such that

1/b = o(n1/6+1/(6p)(logn)−(1/2+1/(2p))),

then

b−p

∫ 1−b

b

|Y (4)
n (t)− Y (5)

n (t)|p dμ(t) = oP (1).

Proof. We argue as in the proof of Lemma 4.4 in [33]. First, when v∈(n−1/3 logn,
1 − n−1/3 logn), there exists M > 0, only depending λ, such that [−M logn,
M logn] ⊂ Inv, and on the interval [−M logn,M logn] we have that
CM[−M logn,M logn]Z ≤ CMInvZ ≤ CMRZ. Let NnM = N(M logn), where
N(d) is the event that [CM[−d,d]Z](s) is equal to [CMRZ](s) for s ∈ [−d/2, d/2].
According to Lemma 1.2 in [32], it holds that

P(N(d)c) ≤ exp(−d3/27). (83)

For convenience, write δn = n−1/3 log n. Because [CM[−M logn,M logn]Z](0) =
[CMInvZ](0) = [CMRZ](0) on the event NnM , we have by means of Cauchy-
Schwarz, we find that

sup
v∈(δn,1−δn)

E [|[DInvZ](0)− [DRZ](0)|p]

= sup
v∈(δn,1−δn)

E [|[DInvZ](0)− [DRZ](0)|p]1Nc
nM

≤ 2pE

[(
sup
s∈R

|Z(s)|
)p

1Nc
nM

]

≤ 2p

(
E

[(
sup
s∈R

|Z(s)|
)2p
])1/2

P(N c
nM )1/2.
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Because E[(sup |Z|)2p] < ∞, together with (83), we find that

sup
v∈(δn,1−δn)

E [|[DInvZ](0)− [DRZ](0)|p] = O
(
exp(−C(log n)3)

)
. (84)

Note that

Y (4)
n (t)− Y (5)

n (t) =
1

b

∫ t+b

t−b

k′
(
t− v

b

)
1

c1(v)
([DInvZ](0)− [DRZ](0)) dv. (85)

When t ∈ (b+δn, 1−b−δn), then v ∈ (t−b, t+b) ⊂ (δn, 1−δn), so after change
of variables, it follows that

sup
t∈(b+δn,1−b−δn)

E

[∣∣∣Y (4)
n (t)− Y (5)

n (t)
∣∣∣p]

≤ 2p
supu∈[−1,1] |k′(u)|p

infv∈(0,1) c1(v)p
sup

v∈(δn,1−δn)

E [|[DInvZ](0)− [DRZ](0)|p]

= O
(
exp(−C(logn)3)

)
.

(86)

Next, consider the case where t ∈ (b, b+δn). In this case we split the integral on
the right hand side of (85) into an integral over v ∈ (t − b, δn) and an integral
over v ∈ (δn, t + b). The latter integral can be bounded in the same way as
in (86), whereas for the first integral we have∣∣∣∣∣1b

∫ δn

t−b

k′
(
t− v

b

)
1

c1(v)
([DInvZ](0)− [DRZ](0)) dv

∣∣∣∣∣
≤ b−1δn

supu∈[−1,1] |k′(u)|
infv∈(0,1) c1(v)

|[DInvZ](0)− [DRZ](0)|

≤ b−1δn
supu∈[−1,1] |k′(u)|
infv∈(0,1) c1(v)

[DRZ](0),

where we also use that [DInvZ](0) ≤ [DRZ](0). Furthermore, since [DRZ](0) has
bounded moments of any order, for t ∈ (b, b+ δn), we obtain

sup
t∈(b,b+δn)

E

[∣∣∣Y (4)
n (t)− Y (5)

n (t)
∣∣∣p]

≤ b−pδpn
supu∈[−1,1] |k′(u)|p

infv∈(0,1) c1(v)p
E [[DR]Z](0)p] +O

(
exp(−C(log n)3)

)
= OP

(
b−pδpn

)
+OP

(
exp(−C(log n)3)

)
.

(87)

A similar bound can be obtained for t ∈ (1 − b − δn, 1 − b). Putting things
together yields,∫ 1−b

b

∣∣∣Y (4)
n (t)− Y (5)

n (t)
∣∣∣p dμ(t) = OP

(
exp(−C(logn)3)

)
+OP

(
b−pδp+1

n

)
.

Because nb → ∞ implies b−p exp(−C(logn)3) → 0 and

1/b = o(n1/6+1/(6p)(logn)−(1/2+1/(2p)))

yields b−2pδp+1
n → 0, this finishes the proof.
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Appendix A: Kernel estimator of a decreasing function

Lemma A.1. Let L(t) =
∫ t
0
l(u) du for a differentiable function l(t) on [0, 1]

such that inf [0,1] l(t) > 0 and sup[0,1] |l′(t)| < ∞. Let Γ
(1)
n be as in (17). Assume

that (A1) and (A3) hold. Then

(bγ2(p))−1/2

{∫ 1−b

b

∣∣∣b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)−mc
n(p)

}
d−→ N(0, 1),

where γ2(p), g(n) and mc
n(p) are defined respectively in (53), (4) and (8).

Proof. With a change of variable we can write

∫ 1−b

b

∣∣∣b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)−mc
n(l, p)

= b

∫ (1−b)/b

1

{∣∣∣∣b−1/2

∫ t+1

t−1

k(t− y) dW (L(by)) + g(n)(tb)

∣∣∣∣p w(tb)
−
∫
R

∣∣l(tb)Dx+ g(n)(tb)
∣∣p φ(x) dx} dt

= b

{
M1−1∑
i=1

ξi + η

}
,

(88)

where M1 = [1/b− 1],

ξi =

∫ i+1

i

{∣∣∣∣b−1/2

∫ t+1

t−1

k(t− y) dW (L(by)) + g(n)(tb)

∣∣∣∣p
−
∫ +∞

−∞

∣∣l(tb)Dx+ g(n)(tb)
∣∣p φ(x) dx}w(tb) dt

(89)

and

η =

∫ (1−b)/b

M1

{∣∣∣∣b−1/2

∫ t+1

t−1

k(t− y) dW (L(by)) + g(n)(tb)

∣∣∣∣p
−
∫ +∞

−∞

∣∣l(tb)Dx+ g(n)(tb)
∣∣p φ(x) dx}w(tb) dt.

First, we show that η has no effect on the asymptotic distribution, i.e. is neg-
ligible. Using Jensen inequality and (a + b)p ≤ 2p(ap + bp) and the fact that l
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and w are bounded, we obtain

η2 ≤
∫ (1−b)/b

M1

{∣∣∣∣b−1/2

∫ t+1

t−1

k(t− y) dW (L(by)) + g(n)(tb)

∣∣∣∣2p

+

(∫
R

∣∣l(tb)Dx+ g(n)(tb)
∣∣p φ(x) dx)2

}
w(tb) dt

≤ C1

∫ (1−b)/b

M1

{∣∣∣∣b−1/2

∫ t+1

t−1

k(t− y) dW (L(by))

∣∣∣∣2p + ∣∣g(n)(tb)∣∣2p
}

dt+ C2,

for some positive constants C1 and C2. On the other hand,∫ (1−b)/b

M1

∣∣g(n)(tb)∣∣2p dt = (nb)p
∫ (1−b)/b

M1

∣∣λ(n)(tb)− λ(tb)
∣∣2p dt

= (nb)pb−1

∫ 1−b

M1b

∣∣λ(n)(t)− λ(t)
∣∣2p dt

= (nb)pb−1

∫ 1−b

M1b

∣∣∣∣∫ k(y)[λ(t− by)− λ(t)] dy

∣∣∣∣2p dt

≤ (nb)pb4p sup
t∈[0,1]

|λ′′(t)|2p
∣∣∣∣∫ k(y)y2 dy

∣∣∣∣2p
Hence,

E[η2] ≤ C1

∫ (1−b)/b

M1

E

[∣∣∣∣b−1/2

∫ t+1

t−1

k(t− y) dW (L(by))

∣∣∣∣2p
]
+ 2C3(nb)

pb4p + C2

= O
(
(nb)pb4p

)
= O(1).

(90)

This means that bη=oP (1). The statement follows immediately from Lemma A.2.

Lemma A.2. Let L(t) =
∫ t
0
l(u) du for a differentiable function l(t) on [0, 1]

such that inf [0,1] l(t) > 0 and sup[0,1] |l′(t)| < ∞. Assume that (A1) and (A3)
hold. Let ξi, for i = 1, . . . ,M1 − 1, be defined as in (89). Then we have

b1/2γ(p)−1
M1−1∑
i=1

ξi → N(0, 1),

where γ2(p) is defined in (53).

Proof. Let γ ∈ (0, 1) and M2 = [(M1 − 1)γ ], M3 = [(M1 − 1)/(M2 + 2)]. Define

ζi =

(i−1)(M2+2)+M2∑
j=(i−1)(M2+2)+1

ξj , i = 1, . . . ,M3
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γi = ξiM2+2i−1 + ξiM2+2i, γ∗ =

M1−1∑
j=M3(M2+2)+1

ξj .

With this notation we can write

M1−1∑
i=1

ξi =

M3∑
i=1

ζi +

M3∑
i=1

γi + γ∗

and we aim at showing that the first term in the right hand side of the previous
equation determines the asymptotic distribution of

∑M1−1
i=0 ξi.

Note that

b−1/2

∫ t+1

t−1

k(t− y) dW (L(by)) ∼ N
(
0, σ2

t

)
where

σ2
t =

∫ t+1

t−1

k2(t− y)l(by) dy = D2l(bt) +O(b2)

and

E

[∣∣∣∣b−1/2

∫ t+1

t−1

k(t− y) dW (L(by)) + g(n)(tb)

∣∣∣∣p
]

=

∫ +∞

−∞

∣∣σtx+ g(n)(tb)
∣∣p φ(x) dx

=

∫ +∞

−∞

∣∣∣D√l(tb)x+ g(n)(tb)
∣∣∣p φ(x) dx+O(b2).

Hence, we get E[ξi] = O(b2) and E[γi] = O(b2). Furthermore, and, as we did for
η, it can be seen that E[ξ2i ] = O(1) and E[γ2

i ] = O(1).
Since γi depends only on the Brownian motion on the interval [L(b(iM2+2i−

2)), L(b(iM2 + 2i+ 2))], it follows that γi are independent (note that M2 > 2).
Moreover, γ∗ is independent of γi, i = 1, . . . ,M3 − 1 and E[γ∗] = O(M2b

2). In
addition, since ξi is independent of ξj for |i − j| ≥ 3, we also have E[(γ∗)2] ≤
CM2. As a result

E

⎡⎣(M3∑
i=1

γi + γ∗

)2
⎤⎦ ≤ c(M3 +M2) = o(1/b) (91)

because bM2 → 0 and bM3 → 0. Indeed M2 ≤ (T/b)γ and

b

[
[(1− b)/b]

[[(1− b)/b]γ ] + 2

]
≤ 1− b

[(1− b)/b]γ + 1
≤ 1− b

1 + (1−2b)γ

bγ

=
bγ

(1− 2b)γ + bγ
→ 0.

Consequently

b1/2

(
M3∑
i=1

γi + γ∗

)
P−→ 0.
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Next, since ζi, i = 1, . . . ,M3 are independent, we apply the central limit theorem
to conclude that

b1/2γ(p)−1
M3∑
i=0

ζi → N(0, 1)

It suffices to show that

bE

⎡⎣(M3∑
i=1

ζi

)2
⎤⎦ = b

M3∑
i=0

E[ζ2i ] → γ2(p). (92)

and that they satisfy the Lyapunov’s condition∑
i E[ζ

4
i ]

(
∑

i E[ζ
2
i ])

2 → 0.

Once we have (92), the Lyapunov’s condition is equivalent to b2
∑

i E[ζ
4
i ] → 0.

Using

E[ζ4i ] = 4!
∑

k,l,m,r∈Ii
k≤l≤m≤r

E[ξkξlξmξr],

where Ii = {(i− 1)(M2 + 2) + 1, . . . , (i− 1)(M2 + 2) +M2}, the fact that

E[ξkξlξmξr] = O(b2)4 if l ≥ k + 3 or r ≥ m+ 3

and that all the moments of the ξi’s are finite, we obtain that

E[ζ4i ] = O(M2
2 ), (uniformly w.r.t. i). (93)

Consequently b2
∑

i E[ζ
4
i ] = O(b2M3M

2
2 ) → 0 because bM2 → 0 and bM3M2 =

O(1). Indeed

bM2M3 ≤ bM2
M1 − 1

M2 + 2
≤ bM1 ≤ 1.

In particular, it also follows that

b
∑
i

E[ζ2i ] = bE

⎡⎣(M3∑
i=0

ζi

)2
⎤⎦+ bO(M2

3M
2
2 b

4) = O(bM3M2) = O(1). (94)

Now we prove (92). From (88), it follows that

Var

(∫ 1−b

b

∣∣∣b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)

)
= b2Var

(
M1−1∑
i=1

ξi + η

)
.
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Moreover, since E[ξi] = O(b2) for i = 1, . . . ,M1 − 1 and E[η] = 0, we get

b−1Var

(∫ 1−b

b

∣∣∣l(t)b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)

)

= bE

⎡⎣(M1−1∑
i=1

ξi + η

)2
⎤⎦+ o(1)

= bE[η2] + 2bE

[(
M1−1∑
i=1

ξi

)
η

]
+ bE

⎡⎣(M1−1∑
i=1

ξi

)2
⎤⎦+ o(1)

We have already shown in the proof of the previous lemma that E[η2] = O(1),
so the first term in the right hand side of the previous equation converges to
zero. Furthermore,

bE

⎡⎣(M1−1∑
i=1

ξi

)2
⎤⎦ = bE

⎡⎣(M3∑
i=1

ζi +

M3∑
i=1

γi + γ∗

)2
⎤⎦

= bE

⎡⎣(M3∑
i=1

ζi

)2
⎤⎦+ bE

⎡⎣(M3∑
i=1

γi + γ∗

)2
⎤⎦

+ bE

[(
M3∑
i=1

ζi

)(
M3∑
i=1

γi + γ∗

)]
.

Now, making use of (91), (94) and the fact that, by Cauchy-Schwartz,

E

[(
M3∑
i=1

ζi

)(
M3∑
i=1

γi + γ∗

)]
≤ E

⎡⎣(M3∑
i=1

ζi

)2
⎤⎦1/2 E

⎡⎣(M3∑
i=1

γi + γ∗

)2
⎤⎦1/2

we obtain

bE

⎡⎣(M1−1∑
i=1

ξi

)2
⎤⎦ = bE

⎡⎣(M3∑
i=1

ζi

)2
⎤⎦+ o(1).

Similarly,

bE

[(
M1−1∑
i=1

ξi

)
η

]
= bE

[(
M3∑
i=1

ζi +

M3∑
i=1

γi + γ∗

)
η

]

≤ bE[η2]1/2

⎧⎪⎨⎪⎩E

⎡⎣(M3∑
i=1

ζi

)2
⎤⎦1/2 + E

⎡⎣(M3∑
i=1

γi + γ∗

)2
⎤⎦1/2
⎫⎪⎬⎪⎭

and the right hand side converges to zero. This means that

bE

⎡⎣(M3∑
i=1

ζi

)2
⎤⎦ = b−1Var

(∫ 1−b

b

∣∣∣b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)

)
+ o(1).
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Moreover, from Lemma A.3, it follows that

b−1Var

(∫ 1−b

b

∣∣∣b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)

)
=

1

b

∫ 1−b

b

∫ 1−b

b

{
E

[∣∣∣∣b−1/2

∫ t+b

t−b

k

(
t− y

b

)
dW (L(y)) + g(n)(t)

∣∣∣∣p∣∣∣∣b−1/2

∫ u+b

u−b

k
(u− y

b

)
dW (L(y)) + g(n)(u)

∣∣∣∣p]
−
∫ +∞

−∞

∣∣σn(t)x+ g(n)(t)
∣∣p φ(x) dx ∫ +∞

−∞

∣∣σn(u)y + g(n)(u)
∣∣p φ(y) dy}w(t)w(u) dt du

=
1

b

∫ 1−b

b

∫ 1−b

b

∫
R2

{ ∣∣σn(u)y + g(n)(u)
∣∣p∣∣∣g(n)(t) + σn(t)ρn(t, u)y +

√
1− ρ2n(t, u)σn(t)x

∣∣∣p
−
∣∣σn(t)x+ g(n)(t)

∣∣p ∣∣σn(u)y + g(n)(u)
∣∣p }w(t)w(u)φ(x)φ(y) dx dy dt du

=
1

b

∫ 1−b

b

∫ 1−b

b

∫
R2

{ ∣∣∣√L′(u)Dy + g(n)(u)
∣∣∣p∣∣∣g(n)(t) + σn(t)ρn(t, u)y +

√
1− ρ2n(t, u)σn(t)x

∣∣∣p
−
∣∣∣√L′(t)Dx+ g(n)(t)

∣∣∣p ∣∣∣√L′(u)Dy + g(n)(u)
∣∣∣p }w(t)w(u)φ(x)φ(y) dx dy dtdu

where ρn(t, u) and σn(t) are defined respectively in (96) and (95).
First we consider the case nb5 → 0 and show that we can remove the g(n)

functions from the previous integral. Indeed, since∣∣∣∣∣∣√L′(u)Dy + g(n)(u)
∣∣∣p − |

√
L′(u)Dy|p

∣∣∣
≤ p2p−1|g(n)(u)|p + p2p−1|

√
L′(u)Dy|p−1|g(n)(u)|

we obtain∣∣∣∣∣An − 1

b

∫ 1−b

b

∫ 1−b

b

∫
R

∫
R

∣∣∣√L′(u)Dy
∣∣∣p

·Bn(t, u, x, y)w(t)w(u)φ(x)φ(y) dxdy dt du|

≤ c

b

∫ 1−b

b

∫ 1−b

b

∫
R

∫
R

∣∣g(n)(u)∣∣p |Bn(t, u, x, y)|w(t)w(u)φ(x)φ(y) dxdy dt du

+
c

b

∫ 1−b

b

∫ 1−b

b

∫
R

∫
R

∣∣∣√L′(u)Dy
∣∣∣p−1 ∣∣g(n)(u)∣∣

· |Bn(t, u, x, y)|w(t)w(u)φ(x)φ(y) dxdy dt du,

where

An = b−1Var

(∫ 1−b

b

∣∣∣b−1/2Γ(1)
n (t) + g(n)(t)

∣∣∣p dμ(t)

)
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and

Bn(t, u, x, y) =
∣∣∣g(n)(t) + σn(t)ρn(t, u)y +

√
1− ρ2n(t, u)σn(t)x

∣∣∣p
−
∣∣∣√L′(t)Dx+ g(n)(t)

∣∣∣p .
Note that, if |t − u| ≥ 2b, then ρn(t, u) = 0 and the previous integrands are
equal to zero. Hence, a sufficient condition for the left hand side of the previous
inequality to converge to zero is to have

b−1

∫ 1−b

b

∫ 1−b

b

1{|t−u|<2b}
∣∣g(n)(u)∣∣p ∣∣g(n)(t)∣∣p du dt → 0.

and

b−1

∫ 1−b

b

∫ 1−b

b

1{|t−u|<2b}
∣∣g(n)(u)∣∣p du dt → 0.

This is indeed the case because gn(u) = O
(
(nb)1/2b2

)
uniformly w.r.t. u and

(nb)1/2b2 → 0. In the same way we can remove also the other g(n) functions
from the integrand, i.e.

An =
1

b

∫ 1−b

b

∫ 1−b

b

∫
R

∫
R

∣∣∣√L′(u)Dy
∣∣∣p B′

n(t, u, x, y)w(t)w(u)φ(x)φ(y) dx dy dt du+o(1)

where

B′
n(t, u, x, y) =

∣∣∣σn(t)ρn(t, u)y +
√

1− ρ2n(t, u)σn(t)x
∣∣∣p − ∣∣∣√L′(t)Dx

∣∣∣p
With the change of variable t = u+ sb, we get

An=

∫ 1−b

b

(1−b−u)/b∫
1−u/b
|s|≤2

∫
R

∫
R

∣∣∣√L′(u)
√

L′(u+ sb)D2y
∣∣∣p

{∣∣∣yr(s) +√1− r2(s)x
∣∣∣p − |x|p

}
w(u)w(u+ sb)φ(x)φ(y) dxdy dsdu+ o(1),

where r(s) is defined in (7). The continuity of the functions l and w and the
dominated convergence theorem yield

An =

∫ 1−b

b

∫
|s|≤2

∫
R2

∣∣∣√L′(u)
∣∣∣2p D2p|y|p

{∣∣∣yr(s) +√1− r2(s)x
∣∣∣p − |x|p

}
w(u)2φ(x)φ(y) dxdy dsdu+ o(1).

Then, with the change of variable yr(s) +
√
1− r2(s)x = z we can write equiv-
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alently

An = D2p

∫ 1−b

b

∣∣∣√L′(u)
∣∣∣2p w(u)2 du 1

2π∫
R3

|y|p
{
|z|p −

∣∣∣∣∣ z − r(s)y√
1− r2(s)

∣∣∣∣∣
p}

e
− z2+y2−2rzy

2(1−r2(s))
1√

1− r2(s)
dz dy ds+ o(1)

= σ1D
2p

∫ 1

0

∣∣∣√L′(u)
∣∣∣2p w(u)2 du+ o(1)

where σ1 is defined in (10).
Let us now consider the case nb5 → c20 > 0. First we show that the g(n)(u)

functions can be replaced by g(u) defined in (5). Indeed, g(n)(u) = g(u) +

o((nb)1/2b2), where the big O term is uniform w.r.t. u and similar calculations
to those of the previous case allow us to conclude that

An =
1

b

∫ 1−b

b

∫ 1−b

b

∫
R

∫
R

∣∣∣√L′(u)Dy + g(u)
∣∣∣p B′

n(t, u, x, y)

w(t)w(u)φ(x)φ(y) dxdy dt du+ o(1)

where

B′
n(t, u, x, y) =

∣∣∣g(t) +√L′(t)D
[
ρn(t, u)y +

√
1− ρ2n(t, u)x

]∣∣∣p
−
∣∣∣√L′(t)Dx+ g(t)

∣∣∣p .
With the change of variable t = u+ sb, we get

An =

∫ 1−b

b

(1−b−u)/b∫
(b−u)/b
|s|≤2

∫
R

∫
R

∣∣∣g(u) +√L′(u)Dy
∣∣∣p

{∣∣∣g(u+ sb) +
√
L′(u+ sb)D[yr(s) +

√
1− r2(s)x]

∣∣∣p
−
∣∣∣g(u+ sb) +

√
L′(u+ sb)Dx

∣∣∣p}w(u)w(u+ sb)φ(x)φ(y) dxdy dsdu

+ o(1).

Again, by the continuity of the functions l, w and g and the dominated conver-
gence theorem we obtain that An converges to∫ 1

0

∫
R3

∣∣∣g(u) +√L′(u)Dy
∣∣∣p {∣∣∣g(u) +√L′(u)D[yr(s) +

√
1− r2(s)x]

∣∣∣p
−
∣∣∣g(u) +√L′(u)Dx

∣∣∣p}w(u)2φ(x)φ(y) dxdy dsdu,
which is exactly θ2(p) defined in (11).
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Lemma A.3. Let L(t) =
∫ t
0
l(u) du for be a differentiable function l(t) on [0, 1]

such that inf [0,1] l(t) > 0 and sup[0,1] |l′(t)| < ∞. For t ∈ [0, 1], define

Xn,t = b−1/2

∫ t+b

t−b

k

(
t− y

b

)
dW (L(y)) + g(n)(t).

It holds

E [|Xn,tXn,u|p] =
∫
R

∫
R

∣∣σn(u)y + g(n)(u)
∣∣p∣∣∣g(n)(t) + σn(t)ρn(t, u)y +
√

1− ρ2n(t, u)σn(t)x
∣∣∣p φ(x)φ(y) dxdy,

where

σ2
n(t) = l(t)D2 +O(b2), σn(t, u) = b−1

∫
k(t− y)k(u− y)l(y) dy. (95)

and

ρn(t, u) =

∫
k
(
t−y
b

)
k
(
u−y
b

)
l(y) dy

b
√
D2l(t) +O(b2)

√
D2l(u) +O(b2)

(96)

Proof. First, note that

(Xn,t, Xn,u) ∼ N

([
g(n)(t)
g(n)(u)

]
,

[
σ2
n(t) σn(t, u)

σn(t, u) σ2
n(u)

])
.

Hence, we have

Xn,t|Xn,u =x2 ∼N

(
g(n)(t)+

σn(t)

σn(u)
ρn(t, u)

(
x2−g(n)(u)

)
, (1−ρ2n(t, u))σ

2
n(t)

)
.

Consequently, we obtain

E [|Xn,tXn,u|p] = E [E [|Xn,tXn,u|p|Xn,u]]

= E

[
|Xn,u|p

∫
R

∣∣∣∣g(n)(t) + σn(t)

σn(u)
ρn(t, u)

(
Xn,u − g(n)(u)

)
+
√

1− ρ2n(t, u)σn(t)x
∣∣∣p φ(x) dx]

=

∫
R

∣∣σn(u)y + g(n)(u)
∣∣p∫

R

∣∣∣g(n)(t) + σn(t)ρn(t, u)y +
√
1− ρ2n(t, u)σn(t)x

∣∣∣p φ(x) dxφ(y) dy
=

∫
R

∫
R

∣∣σn(u)y + g(n)(u)
∣∣p∣∣∣g(n)(t) + σn(t)ρn(t, u)y +

√
1− ρ2n(t, u)σn(t)x

∣∣∣p φ(x)φ(y) dxdy.
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Proof of Proposition 3.3. We first prove (i). For each t ∈ [0, b), we have

λ̃s
n(t)− λ(t) =

∫ t+b

0

kb(t− u) dΛn(u)− λ(t)

=

∫ t+b

0

kb(t− u) d(Λn − Λ)(u) +

∫ t+b

0

kb(t− u) dΛ(u)− λ(t)

=

∫ t+b

0

kb(t− u) d(Λn − Λ)(u) +

∫ t/b

−1

k(y)[λ(t− by)− λ(t)] dy

− λ(t)

∫ 1

t/b

k(y) dy.

Note that∣∣∣∣∣
∫ t+b

0

kb(t− u) d(Λn − Λ)(u)

∣∣∣∣∣
=

1

b2

∣∣∣∣∣
∫ t+b

0

(Λn − Λ)(u)k′
(
t− u

b

)
du

∣∣∣∣∣
≤ cb−1 sup

u≤2b
|Mn(u)−Mn(0)|

≤ cb−1

{
sup
u≤2b

∣∣∣Mn(u)− n−1/2Bn ◦ L(u)
∣∣∣+ n−1/2 |Bn ◦ L(u)−Bn ◦ L(0)|

}
= OP

(
b−1n−1+1/q

)
+ n−1/2b−1 sup

y≤cb
|Bn(y)| = OP

(
(nb)−1/2

)
,

(97)

uniformly in t ∈ [0, b], and that according to (21),∣∣∣∣∣
∫ t/b

−1

k(y)[λ(t− by)− λ(t)] dy

∣∣∣∣∣ = O(b),

Moreover, for t ≤ b/2,

λ(t)

∫ 1

t/b

k(y) dy ≥ inf
t∈[0,1]

λ(t)

∫ 1

1/2

k(y) dy = C > 0.

Now, define the event

An =

{
sup

t∈[0,b]

(∣∣∣∣ ∫ t+b

0

kb(t− u) d(Λn − Λ)(u)

∣∣∣∣
+

∣∣∣∣ ∫ t/b

−1

k(y)[λ(t− by)− λ(t)] dy

∣∣∣∣) ≤ C/2

}
.
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Then, P(An) → 1 and on the event An, |λ̃s
n(t)− λ(t)| ≥ C/2. Consequently we

obtain

E

[∫ b

0

∣∣∣λ̃s
n(t)− λ(t)

∣∣∣p dμ(t)

]
≥ E

[∫ b/2

0

∣∣∣λ̃s
n(t)− λ(t)

∣∣∣p dμ(t)

]

≥ E

[
1An

∫ b/2

0

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t)

]
≥ cP(An)b,

(98)

for some c > 0. Hence

(nb)p/2E

[∫ b

0

∣∣∣λ̃s
n(t)− λ(t)

∣∣∣p dμ(t)

]
≥ cb(nb)p/2P(An) → ∞,

because b(nb)p/2 ≥ b(nb)1/2 = (nb3)1/2 → ∞.
In order to prove (ii), due to (14), we can bound

b−1/2

∣∣∣∣∣
∫ b

0

(nb)p/2
∣∣∣λ̃s

n(t)− λ(t)
∣∣∣p dμ(t)−

∫ b

0

∣∣g(n)(t)∣∣p dμ(t)

∣∣∣∣∣
by

p2p−1b−1/2(nb)p/2
∫ b

0

∣∣∣∣∣
∫ t+b

0

kb(t− u) d(Λn − Λ)(u)

∣∣∣∣∣
p

dμ(t)

+ p2p−1b−1/2

(∫ b

0

(nb)p/2

∣∣∣∣∣
∫ t+b

0

kb(t− u) d(Λn − Λ)(u)

∣∣∣∣∣
p

dμ(t)

)1/p

·
(∫ b

0

∣∣g(n)(t)∣∣p dμ(t)

)1−1/p

.

According to (97)∣∣∣∣∣
∫ t+b

0

kb(t− u) d(Λn − Λ)(u)

∣∣∣∣∣ = OP

(
(nb)−1/2

)
,

uniformly in t ∈ [0, b]. Furthermore, using (20), (21), and (22), we have

g(n)(t) = O
(
(nb)1/2

)
, (99)

uniformly for t ∈ [0, b]. Hence, we obtain

b−1/2

∣∣∣∣∣
∫ b

0

(nb)p/2
∣∣∣λ̃s

n(t)− λ(t)
∣∣∣p dμ(t)−

∫ b

0

∣∣g(n)(t)∣∣p dμ(t)

∣∣∣∣∣
≤ OP

(
b1/2
)
+OP

(
n(p−1)/2bp/2

)
→ 0,
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because n(p−1)/2bp/2 = (bn1−1/p)p/2 → 0.

Next we deal with (iii). Again by means of (14), we can bound

b−1/2

∣∣∣∣∣
∫ b

0

(nb)p/2
∣∣∣λ̃s

n(t)− λ(t)
∣∣∣p dμ(t)−

∫ b

0

∣∣Yn(t) + g(n)(t)
∣∣p dμ(t)

∣∣∣∣∣
by

p2p−1b−1/2

{∫ b

0

∣∣∣∣∣(nb)1/2
∫ t+b

0

kb(t− u) d(Λn − Λ− n−1/2Bn ◦ L)(u)
∣∣∣∣∣
p

dμ(t)

+

(∫ b

0

∣∣∣∣∣(nb)1/2
∫ t+b

0

kb(t− u) d(Λn − Λ− n−1/2Bn ◦ L)(u)
∣∣∣∣∣
p

dμ(t)

)1/p

·
(∫ b

0

∣∣Yn(t) + g(n)(t)
∣∣p dμ(t)

)1−1/p
⎫⎬⎭

Note that

sup
t∈[0,b]

|Yn(t)| = sup
t∈[0,b]

∣∣∣∣∣b1/2
∫ t+b

0

kb(t− u) dBn(L(u))

∣∣∣∣∣ = OP (1),

and, as in (97),

∣∣∣∣∣
∫ t+b

0

kb(t− u) d(Λn − Λ− n−1/2Bn ◦ L)(u)
∣∣∣∣∣

≤ 1

b
sup
u≤2b

∣∣∣(Λn − Λ− n−1/2Bn ◦ L)(u)
∣∣∣ = OP

(
b−1n−1+1/q

)
,

uniformly for t ∈ [0, b]. Together with (99), we obtain

b−1/2

∣∣∣∣∣
∫ b

0

(nb)p/2
∣∣∣λ̃s

n(t)− λ(t)
∣∣∣p dμ(t)−

∫ b

0

∣∣Yn(t) + g(n)(t)
∣∣p dμ(t)

∣∣∣∣∣
≤ OP

(
b−1/2(nb)p/2bn−p+p/qb−p

)
+OP

(
b−1/2b(nb)p/2n−1+1/qb−1

)
= b−1/2(nb)p/2n−1+1/q

{
OP

(
(n−1+1/qb−1)p−1

)
+OP (1)

}
.

Because n−1+1/qb−1 = O(1), the term within the brackets is of order OP (1),
and since bp−1np−2+2/q → 0, the right hand side tends to zero. This proves (25).



1082 H. P. Lopuhaä and E. Musta

Then, by Jensen’s inequality, we get

b−1Var

(∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t)
)

= b−1
E

⎡⎣(∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t)−
∫ cb

0

E
[
|Yn(t) + g(n)(t)|p

]
dμ(t)

)2
⎤⎦

≥ b−1
E

[∣∣∣∣∣
∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t)−
∫ cb

0

E
[
|Yn(t) + g(n)(t)|p

]
dμ(t)

∣∣∣∣∣
]2

.

(100)

Note that Yn(t) ∼ N(0, σ2
n(t)), where,

σ2
n(t) = b−1

∫ t+b

0

k2
(
t− u

b

)
L′(u) du =

∫ t/b

−1

k2(y)L′(t− by) dy,

if Bn is a Brownian motion, and

σ2
n(t) =

∫ t/b

−1

k2(y)L′(t− by) dy +O(b),

if Bn is a Brownian bridge. Now, choose ε > 0. Then

lim inf
n→∞

P (ε ≤ Yn(0) ≤ 2ε) > 0 and lim inf
n→∞

P (−2ε ≤ Yn(0) ≤ −ε) > 0.

For c > 0, define the events

An1 = {ε/2 ≤ Yn(t) ≤ 3ε, for all t ∈ [0, cb]} ,
An2 = {−3ε ≤ Yn(t) ≤ −ε/2, for all t ∈ [0, cb]} ,

and let

Bn =

{∫ cb

0

E
[
|Yn(t) + g(n)(t)|p

]
dμ(t) >

∫ cb

0

|g(n)(t)|p dμ(t)
}
.

Then, since Yn has continuous paths, we have

lim inf
n→∞

P(An1) > 0 and lim inf
n→∞

P(An2) > 0.

Moreover, Yn(t) > 0 on the event An1, and from (23), it follows that Yn(t) +
g(n)(t) < 0, for n sufficiently large. Therefore, for n sufficiently large, we have
on An1, ∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t) ≤
∫ cb

0

|ε/2 + g(n)(t)|p dμ(t). (101)
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Similarly, Yn(t) < 0 on the event An2 and Yn(t) + g(n)(t) < 0, for large n, so
that on An2,∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t) ≥
∫ cb

0

| − ε/2 + g(n)(t)|p dμ(t). (102)

Next, write

E

[∣∣∣∣∣
∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t)−
∫ cb

0

E
[
|Yn(t) + g(n)(t)|p

]
dμ(t)

∣∣∣∣∣
]

≥ E

[∣∣∣∣∣
∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t)−
∫ cb

0

E
[
|Yn(t) + g(n)(t)|p

]
dμ(t)

∣∣∣∣∣1An1

]
1Bn

+ E

[∣∣∣∣∣
∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t)−
∫ cb

0

E
[
|Yn(t) + g(n)(t)|p

]
dμ(t)

∣∣∣∣∣1An2

]
1Bc

n
.

(103)

Consider the first term on the right hand side. Because for n large, Yn(t) +
g(n)(t) < 0 on the event An1, we have |Yn(t)+g(n)(t)| ≤ |g(n)(t)|. It follows that
on the event An1 ∩ Bn:∫ cb

0

|Yn(t)+g(n)(t)|p dμ(t)≤
∫ cb

0

|g(n)(t)|p dμ(t)<
∫ cb

0

E
[
|Yn(t) + g(n)(t)|p

]
dμ(t).

This means that we can remove the absolute value signs in the first term on the
right hand side of (103). Similarly, Yn(t) + g(n)(t) < 0, for n sufficiently large
on the event An2, so that on the event An2 ∩ Bc

n:∫ cb

0

|Yn(t)+g(n)(t)|p dμ(t)≥
∫ cb

0

|g(n)(t)|p dμ(t)≥
∫ cb

0

E
[
|Yn(t) + g(n)(t)|p

]
dμ(t),

so that we can also remove the absolute value signs in the second term on the
right hand side of (103). It follows that the right hand of (103) is equal to

E

[∫ cb

0

(
E
[
|Yn(t) + g(n)(t)|p

]
dμ(t)−

∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t)
)
1An1

]
1Bn

+ E

[(∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t)−
∫ cb

0

E
[
|Yn(t) + g(n)(t)|p

]
dμ(t)

)
1An2

]
1Bc

n

≥
(∫ cb

0

|g(n)(t)|p dμ(t)−
∫ cb

0

|ε/2 + g(n)(t)|p dμ(t)
)
P(An1)1Bn

+

(∫ cb

0

| − ε/2 + g(n)(t)|p dμ(t)−
∫ cb

0

|g(n)(t)|p dμ(t)
)
P(An2)1Bc

n
,

by using (21) and (22). Furthermore, for the first term on the right hand side

|g(n)(t)|p − |ε/2 + g(n)(t)|p = |g(n)(t)|p (1− |εn(t) + 1|p) ,
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where εn(t) = ε/(2g(n)(t)) = O((nb)−1/2) → 0, due to (20), (21) and (22),
where the big-O term is uniformly for t ∈ [0, b]. This means that, for n large,
1 + εn(t) > 0, and by a Taylor expansion |1 + εn(t)|p = 1+ pεn(t) +O((nb)−1).
It follows that∫ cb

0

|g(n)(t)|p dμ(t)−
∫ cb

0

|ε/2 + g(n)(t)|p dμ(t)

=

∫ cb

0

|g(n)(t)|p {1− |εn(t) + 1|p} dμ(t)

= −p

∫ cb

0

|g(n)(t)|pεn(t) dμ(t) + cb sup
t∈[0,cb]

|g(n)(t)|pO((nb)−1)

= p(ε/2)

∫ cb

0

|g(n)(t)|p−1 dμ(t) +O
(
b(nb)(p−1)/2

)
= O

(
b(nb)(p−1)/2

)
due to (99). Similarly∫ cb

0

| − ε/2 + g(n)(t)|p dμ(t)−
∫ cb

0

|g(n)(t)|p dμ(t) = O
(
b(nb)(p−1)/2

)
.

Going back to (100), since P(An1) → 1 and P(An2) → 1, we conclude that

b−1Var

(∫ cb

0

|Yn(t) + g(n)(t)|p dμ(t)
)

≥ b−1O
(
b(nb)(p−1)/2

)2
.

The statement follows from the fact that b−1(nb)p−1b2 = np−1bp → ∞.
Finally, one can deal in the same way with the Lp-error on the interval

(1− b, 1].

Proof of Proposition 3.6. By definition we have

(nb)p/2
∫ b

0

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t)
=

∫ b

0

∣∣∣∣∣(nb)1/2
∫ t+b

0

k
(t)
b (t− u) d(Λn − Λ)(u) + ḡ(n)(t)

∣∣∣∣∣
p

dμ(t),

where

ḡ(n)(t) = (nb)1/2
(∫

k
(t)
b (t− u)λ(u) du− λ(t)

)
. (104)

When Bn in assumption (A2) is a Brownian motion, we can argue as in the
proof of Theorem 3.1. By means of (14) we can bound

b−1/2

∣∣∣∣(nb)p/2 ∫ b

0

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣p dμ(t)
−
∫ b

0

∣∣∣∣∣b−1/2

∫ t+b

0

k(t)
(
t− u

b

)
dBn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dμ(t)

∣∣∣∣,
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from above by

p2p−1b−1/2b−p/2

∫ b

0

∣∣∣∣∣
∫ t+b

0

k(t)
(
t− u

b

)
d(Bn ◦ L− n1/2Mn)(u)

∣∣∣∣∣
p

dμ(t)

+ p2p−1b−1/2

(
b−p/2

∫ b

0

∣∣∣∣∣
∫ t+b

0

k(t)
(
t− u

b

)
d(Bn ◦ L− n1/2Mn)(u)

∣∣∣∣∣
p

dμ(t)

)1/p

·
(∫ b

0

∣∣∣∣∣b−1/2

∫ t+b

0

k(t)
(
t− u

b

)
dBn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dμ(t)

)1−1/p

.

(105)

Similar to (18),

sup
t∈[0,b]

∣∣∣∣∣
∫ t+b

0

k(t)
(
t− u

b

)
d(Bn ◦ L− n1/2Mn)(u)

∣∣∣∣∣
≤
∣∣∣∣∣
∫ t/b

−1

{
ψ1

(
t

b

)
k(y) + ψ2

(
t

b

)
yk(y)

}
d(Bn ◦ L− n1/2Mn)(t− by)

∣∣∣∣∣
≤ C sup

t∈[0,1]

∣∣∣Bn ◦ L(t)− n1/2Mn(t)
∣∣∣

= OP (n
−1/2+1/q).

(106)

Note that here we used the boundedness of the coefficients ψ1 and ψ2. Similar
to the proof of Theorem 3.1, the idea is to show that

b−1/2

∫ b

0

∣∣∣∣∣b−1/2

∫ t+b

0

k(t)
(
t− u

b

)
dBn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dμ(t) → 0, (107)

in probability. We first bound the left hand side of (107) by

Cb−1/2

∫ b

0

{
|ḡ(n)(t)|p + b−p/2

∣∣∣∣∣
∫ t+b

0

k(t)
(
t− u

b

)
dBn(L(u))

∣∣∣∣∣
p}

dμ(t).

According to (28), a Taylor expansion gives

sup
t∈[0,b]

|ḡ(n)(t)| = (nb)1/2 sup
t∈[0,b]

∣∣∣∣∣
∫ t+b

0

k
(t)
b (t− u)λ(u) du− λ(t)

∣∣∣∣∣
= (nb)1/2 sup

t∈[0,b]

∣∣∣∣∣
∫ t/b

−1

k(t)(y) [λ(t− by)− λ(t)] dy

∣∣∣∣∣
= (nb)1/2b2 sup

t∈[0,b]

∣∣∣∣∣12
∫ t/b

−1

k(t)(y)y2λ′′(ξt,y) dy

∣∣∣∣∣
= OP

(
(nb5)1/2

)
= OP (1).
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Furthermore,

E

[∣∣∣∣∣
∫ t+b

0

k(t)
(
t− u

b

)
dBn(L(u))

∣∣∣∣∣
p]

=

∫
R

(∫ t+b

0

(
k(t)
(
t− u

b

))2

L′(u) du

)p/2

|x|pφ(x) dx

= bp/2
∫
R

(∫ t+b

0

(
k(t)
(
t− u

b

))2

L′(u) du

)p/2

|x|pφ(x) dx

= O(bp/2),

where φ denotes the standard normal density. This proves (107) for the case
that Bn is a Brownian motion.

When Bn in (A2) is a Brownian bridge, then we use the representation
Bn(u) = Wn(u) − uWn(L(1))/L(1), for some Brownian motion Wn. In this
case, by means of (14), we can bound

b−1/2

∣∣∣∣ ∫ b

0

∣∣∣∣∣b−1/2

∫ t+b

0

k(t)
(
t− u

b

)
dBn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dμ(t)

−
∫ b

0

∣∣∣∣∣b−1/2

∫ t+b

0

k(t)
(
t− u

b

)
dWn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dμ(t)

∣∣∣∣
by

p2p−1b−1/2

∫ b

0

∣∣∣∣∣b−1/2Wn(L(1)

L(1)

∫ t+b

0

k(t)
(
t− u

b

)
L′(u) du+ ḡ(n)(t)

∣∣∣∣∣
p

dμ(t)

+ p2p−1b−1/2

·
(∫ b

0

∣∣∣∣∣b−1/2Wn(L(1))

L(1)

∫ t+b

0

k(t)
(
t− u

b

)
L′(u) du+ ḡ(n)(t)

∣∣∣∣∣
p

dμ(t)

)1/p

·
(∫ b

0

∣∣∣∣∣b−1/2

∫ t+b

0

k(t)
(
t− u

b

)
dWn(L(u)) + ḡ(n)(t)

∣∣∣∣∣
p

dμ(t)

)1−1/p

,

which tends to zero in probability, due to (107).

Appendix B: Isotonized kernel estimator

Lemma B.1. Assume (A1)-(A2) and let λ̃s
n be defined in (2). Let k satisfy (1)

and let p ≥ 1. If b → 0, nb → ∞, and 1/b = o(n1/4), then

P

(
λ̃s
n is decreasing on [b, 1− b]

)
→ 1.



CLT for the Lp-error of smooth isotonic estimators 1087

Proof. The proof is completely similar to that of Lemma A.7 in [37]. Note that
condition (8) in that paper follows from our Assumption (A2) and that here λ
is a decreasing function.

We use the fact that on [b, 1 − b], λ̃s
n is the standard kernel estimator of λ

given by (62) and we get

d

dt
λ̃s
n(t) =

∫ t+b

t−b

1

b2
k′
(
t− u

b

)
d (Λn − Λ) (u) +

∫ t+b

t−b

1

b2
k′
(
t− u

b

)
λ(u) du.

(108)
The first term on the right hand side of (108) converges to zero because in
absolute value it is bounded from above by

1

b2
sup

x∈[0,1]

|Λn(x)− Λ(x)| sup
y∈[−1,1]

|k′′(y)| = Op(b
−2n−1/2) = op(1),

according to Assumption (A2) and the fact that 1/b = o(n−1/4). Moreover,
integration by parts gives∫

1

b2
k′
(
t− u

b

)
λ(u) du =

∫ 1

−1

k(y)λ′(t− by) dy.

Hence, the second term on the right hand side of (108) is bounded from above
by a strictly negative constant because of Assumption (A1). We conclude that
λ̃s
n is decreasing on [b, 1− b] with probability tending to one.

Corollary B.2. Assume (A1)-(A2) and let λ̃s
n and λ̃GS

n be defined in (2) and
Section 5, respectively. Let k satisfy (1). Let 0 < γ < 1 and p ≥ 1. If b → 0,
nb → ∞, and 1/b = o(n1/4), then

P

(
λ̃s
n(t) = λ̃GS

n (t) for all t ∈ [bγ , 1− bγ ]
)
→ 1.

Proof. The proof is completely similar to that of Lemma 3.2 in [37], but now
we want to extend the interval to [bγ , 1− bγ ], which is not fixed but approaches
the boundaries as n → ∞. In this case we define the linearly extended version
of Λs

n by

Λ̂∗
n(t) =

⎧⎪⎨⎪⎩
Λs
n(b

γ) +
(
t− bγ

)
λ̃s
n(b

γ), for t ∈ [0, bγ),

Λs
n(t), for t ∈ [bγ , 1− bγ ],

Λs
n(1− bγ) +

(
t− 1 + bγ

)
λ̃s
n(1− bγ), for t ∈ (1− bγ , 1].

Choose 0 < δ < 2. It suffices to prove that, for sufficiently large n,

P

(
Λ̂∗
n is concave on [0, 1]

)
≥ 1− δ/2, (109)

and
P

(
Λ̂∗
n(t) ≥ Λs

n(t), for all t ∈ [0, 1]
)
≥ 1− δ/2. (110)
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To prove (109), define the event

An =
{
λ̃s
n is decreasing on [b, 1− b]

}
.

On the event An the curve Λ̂∗
n is concave on [0, 1], so

P

(
Λ̂∗
n is concave on [0, 1]

)
≥ P(An),

and the result follows from Lemma B.1. To prove (110), we split the interval
[0, 1] in five intervals I1 = [0, b), I2 = [b, bγ), I3 = [bγ , 1− bγ ], I4 = (1− bγ , 1− b]
and I5 = (1− b, 1]. Then, as in Lemma 3.2 in [37], we show that

P

(
Λ̂∗
n(t) ≥ Λs

n(t), for all t ∈ Ii

)
≥ 1− δ/10, i = 1, . . . , 5. (111)

For t ∈ I3, Λ̂
∗
n(t) = Λs

n(t), so (111) is trivial. For t ∈ I2, by the mean value
theorem,

Λ̂∗
n(t)− Λs

n(t) = Λs
n(b

γ) +
(
t− bγ

)
λ̃s
n(b

γ)− Λs
n(t) = (bγ − t)

[
λ̃s
n(ξt)− λ̃s

n(b
γ)
]
,

for some ξt ∈ (t, bγ) ⊂ (b, bγ). Thus,

P

(
Λ̂∗
n(t) ≥ Λs

n(t), for all t ∈ I2

)
≥ P(An) ≥ 1− δ/10,

for n sufficiently large, according to Lemma B.1. The argument for I4 is exactly
the same.

Next, we consider t ∈ I1. We have

Λ̂∗
n(t)− Λs

n(t)

= Λs
n(b

γ) +
(
t− bγ

)
λ̃s
n(b

γ)− Λs
n(t)

= [Λs
n(b

γ)− Λs(bγ)] + [Λs(t)− Λs
n(t)] + Λs(bγ)− Λs(t)−

(
bγ − t

)
λ̃s
n(b

γ)

≥ −2 sup
t∈[0,1]

|Λs
n(t)− Λs(t)|+ Λs(bγ)− Λs(t)− (bγ − t)λ(bγ)

+
(
bγ − t

) [
λ(bγ)− λ̃s

n(b
γ)
]
,

(112)

where Λs is the deterministic version of Λs
n,

Λs(t) =

∫ (t+b)∧1

(t−b)∨0

k
(t)
b (t− u)Λ(u) du.
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For the first term on right hand side of (112), note that

sup
t∈[0,1]

|Λs
n(t)− Λs(t)| = sup

t∈[0,1]

∣∣∣∣∣
∫ (t+b)∧1

(t−b)∨0

k
(t)
b (t− u) [Λn(u)− Λ(u)] du

∣∣∣∣∣
= sup

t∈[0,1]

∣∣∣∣∫ k(t)(y) [Λn(t− by)− Λ(t− by)] dy

∣∣∣∣
≤ sup

t∈[0,1]

|Λn(t− by)− Λ(t− by)|
∫

sup
t∈[0,1]

∣∣∣k(t)(y)∣∣∣ dy
= OP

(
n−1/2

)
,

(113)

due to Assumption (A2). Moreover, for the third term on right hand side
of (112), for t ∈ (b, 1− b), we have

∣∣∣λ(t)− λ̃s
n(t)
∣∣∣ ≤ ∣∣∣∣λ(t)− ∫ kb(t− u)λ(u) du

∣∣∣∣+ ∣∣∣∣∫ kb(t− u) d(Λ− Λn)(u)

∣∣∣∣
=

∣∣∣∣∫ k(y)[λ(t)− λ(t− by)] dy

∣∣∣∣+ b−1

∣∣∣∣∫ k′(y)(Λ− Λn)(t− by) dy

∣∣∣∣
= O(b2) +OP (b

−1n−1/2).

(114)

For the second term on right hand side of (112), for t ∈ [0, b), we write

Λs(bγ)− Λs(t)− (bγ − t)λ(bγ)

=

∫ bγ+b

bγ−b

kb(b
γ − u)Λ(u) du−

∫ t+b

0

k
(t)
b (t− u)Λ(u) du− (bγ − t)λ(bγ)

=

∫ bγ+b

bγ−b

kb(b
γ − u)[Λ(u)− Λ(bγ)] du−

∫ t+b

0

k
(t)
b (t− u)[Λ(u)− Λ(t)] du

+ [Λ(bγ)− Λ(t)− (bγ − t)λ(bγ)]

=

∫ 1

−1

k(y)[Λ(bγ − by)− Λ(bγ)] dy −
∫ t/b

−1

k(t)(y)[Λ(t− by)− Λ(t)] dy

− 1

2
(bγ − t)2λ′(ξt)

≥
∫ 1

−1

k(y)[Λ(bγ − by)− Λ(bγ)] dy −
∫ t/b

−1

k(t)(y)[Λ(t− by)− Λ(t)] dy

− inf
t∈[0,1]

|λ′(t)|b1+γ +
1

2
inf

t∈[0,1]
|λ′(t)|b2γ

(115)

where ξt ∈ (t, bγ). Furthermore, the first two integrals on the right hand side
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can be written as

b2

2

∫ 1

−1

k(y)y2λ′(ξ1,y) dy −
b2

2

∫ t/b

−1

k(t)(y)y2λ′(ξ2,y) dy

≥ −b2

2

∣∣∣∣∣
∫ 1

−1

k(y)y2λ′(ξ1,y) dy −
∫ t/b

−1

k(t)(y)y2λ′(ξ2,y) dy

∣∣∣∣∣
≥ −b2

2

∣∣∣∣∣
∫ 1

−1

k(y)y2λ′(ξ1,y) dy −
∫ t/b

−1

k(t)(y)y2λ′(ξ2,y) dy

∣∣∣∣∣ = O(b2),

with ξt ∈ (t, bγ), |ξ1,y − bγ | ≤ by and |ξ2,y − t| ≤ by. This means that

P

(
Λ̂∗
n(t)− Λs

n(t) ≥ 0, for all x ∈ I1

)
≥ P

(
Yn ≤ 1

2
inf

t∈[0,1]
|λ′(t)|b2γ

)
,

where

Yn = OP (n
−1/2) +O(bγ)

{
O(b2) +OP (b

−1n−1/2)
}
+O(b2)− inf

t∈[0,1]
|λ′(t)|b1+γ

= OP (b
1+γ).

Hence, for n large enough, this probability is greater than 1 − δ/10, because
γ < 1.

Appendix C: CLT for the Hellinger loss

Lemma C.1. Assume (A1)-(A3) hold. If λ is strictly positive, we have∫ 1

0

(√
λ̂s
n(t)−

√
λ(t)

)2

dμ(t) =

∫ 1

0

(
λ̂s
n(t)− λ(t)

)2
(4λ(t))−1 dμ(t)

+OP

(
(nb)−3/2

)
.

The previous results holds also if we replace λ̂s
n with the smoothed Grenander-

type estimator λ̃SG
n .

Proof. As in the proof of Lemma 2.1 in [39] we get∫ 1

0

(√
λ̂s
n(t)−

√
λ(t)

)2

dμ(t) =

∫ 1

0

(
λ̂s
n(t)− λ(t)

)2
(4λ(t))−1 dμ(t) +Rn,

where

|Rn| ≤ C

∫ 1

0

∣∣∣λ̂s
n(t)− λ(t)

∣∣∣3 dμ(t)

for some positive constant C only depending on λ(0) and λ(1). Then, from Corol-
lary 3.7, it follows that Rn = OP

(
(nb)−3/2

)
. When dealing with the smoothed

Grenander-type estimator, the result follows from Theorem 4.4.
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Theorem C.2. Assume (A1)-(A3) hold and that λ is strictly positive.

i) If nb5 → 0, then it holds

(bσ2,∗(2))−1/2
{
2nbH(λ̂s

n, λ)
2 −m∗

n(2)
}

d−→ N(0, 1).

ii) If nb5 → C2
0 > 0 and Bn in Assumption (A2) is a Brownian motion, then

it holds

(bθ2,∗(2))−1/2
{
2nbH(λ̂s

n, λ)
2 −m∗

n(2)
}

d−→ N(0, 1),

iii) If nb5 → C2
0 > 0 and Bn in Assumption (A2) is a Brownian bridge, then

it holds

(bθ̃2,∗(2))−1/2
{
2nbH(λ̂s

n, λ)
2 −m∗

n(2)
}

d−→ N(0, 1),

where σ2,∗, θ2,∗, θ̃2,∗ and m∗
n are defined, respectively, as in (9), (11), (12) and

(8) by replacing w(t) with w(t)(4λ(t))−1.

If p < min(q, 2q − 7) and 1/b = o
(
n(1/3−1/q)min(q/(2p),1)

)
, the same results

hold also when replacing λ̂s
n by the smoothed Grenander-type estimator λ̃SG

n .

Proof. According to Lemma C.1, it is sufficient to show that the results hold if
we replace 2H(λ̂s

n, λ)
2 by∫ 1

0

(
λ̂s
n(t)− λ(t)

)2
(4λ(t))−1 dμ(t) =

∫ 1

0

(
λ̂s
n(t)− λ(t)

)2
dμ̃(t),

where

dμ̃(t) =
1

4λ(t)
dμ(t) =

w(t)

4λ(t)
dt.

It suffices to apply Corollary 3.7 with a weight μ̃ instead of μ.

For the smoothed Grenander estimator the result would follow from Theorem
4.4.

Appendix D: Consistency of bootstrap

Let P
∗(·|Y1, Y2, . . .) be the bootstrap probability measure, conditional on the

observations Y1, Y2, . . . and let P
∗
n be the empirical distribution of Y ∗

1 , . . . , Y
∗
n ,

conditional on the observations. We first have to show that bootstrap versions
of assumptions (A1)-(A2) are satisfied. Note that the bootstrap versions of λ, Λ

and Mn are λ̃SG
n , Λ∗(t) =

∫ t
0
λ̃SG
n (u) du, and M∗

n =Λ∗
n −Λ∗, respectively, where

Λ∗
n is the Breslow estimator based on the bootstrap sample.

By definition, the smoothed Grenander estimator is twice continuously differ-
entiable. Moreover, from the proofs of Lemmas 3.1 and 3.2 in [14] with b = cn−γ
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for γ ∈ (1/6, 1/5), it can be shown that there exists an event An with P(An) → 1,
such that, on An,

sup
[0,1]

∣∣∣λ̃SG
n (t)− λ(t)

∣∣∣ ≤ C1b
2 logn,

sup
[0,1]

∣∣∣(λ̃SG
n )′(t)− λ′(t)

∣∣∣ ≤ C1b logn,
(116)

for some C1 > 0. Furthermore, on An we also obtain

sup
(b,1−b)

∣∣∣(λ̃SG
n )′′(t)− λ′′(t)

∣∣∣ ≤ C1(nb
5)−1/2 logn, (117)

by using a third order Tailor expansion for Λ(t− bu) (instead of a second order
expansion in [14]). Hence, there exists a positive constant C such that for n
sufficiently large, on An, we have inft∈[0,1] |(λ̃SG

n )′(t)| > C. This means that,
conditionally on the observations, the bootstrap version of assumption (A1)
holds on the event An. It can be proved as in Theorem 5 of [13] that, condition-
ally on the observations, the bootstrap version of assumption (A2) holds with a
Brownian motion W ∗

n with respect to P
∗, L∗(t) = σ̂2

nt, and q = ∞. Furthermore,
let A′

n be the event on which

n1/2|σ̂2
n − σ2| ≤ logn. (118)

Since
√
n(σ̂2

n − σ2) = OP (1) (it can be proved using the central limit theorem),
this means P(A′

n) → 1, and consequently P(An ∩A′
n) → 1.

With (A1)-(A2) holding with probability tending to one, Theorem 7.1 can
be proved following the same line of reasoning as in Theorem 4.1. It suffices to
show, that

sup
x∈R

∣∣∣∣∣P∗

(
b−p

∫ 1−b

b

|Y ∗
n (t)|p dμ(t) ≤ x,An ∩A′

n

)
−Ψ(x)

∣∣∣∣∣→ 0,

in probability, as n → ∞, where Ψ is the distribution function of αp
0[DRZ](0)p

and

Y ∗
n (t) = bn2/3

(∫ t+b

t−b

kb(t− u) d(Λ̃∗
n − Λ∗

n)(u)

)
where Λ̃∗

n is the least concave majorant of Λ∗
n. We need to prove bootstrap

versions of Lemmas 8.2-8.6, which essentially relies on bootstrap versions of
Lemmas 3, 5-8 in [38]. Note that this requires that Λ∗(1) is bounded, which is
satisfied on An.

The bootstrap version of Lemma 3 in [38] can be proved in the same way
by replacing Λn and ΛW

n with their bootstrap versions Λ∗
n and ΛW,∗

n = Λ∗ +
n−1/2W ∗

n ◦ L∗ and restricting ourselves to the event An ∩A′
n. We can then use

the fact that (L∗)′(t) and (λ̃SG
n )′(t) are bounded from above and below on [0, 1],

uniformly in n. Similarly, for the bootstrap version of Lemmas 5 and 6 in [38],
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the proofs remain the same after replacing the quantities Ynt, Λ
E
n , and ΛW

n , with
their bootstrap versions

Y ∗
nt(s) = n1/6

{
W ∗

n

(
L∗(t+ n−1/3s)

)
−W ∗

n (L∗(t))
}
+

1

2
(λ̃SG

n )′(t)s2,

ΛE,∗
n = Λ∗

n, and ΛW,∗
n . Furthermore, the process W ∗

n has the same distribution
as the process W ∗, which is a standard Brownian motion with respect to P

∗.
In order to obtain a bootstrap version of Lemma 7 in [38], we keep ant, bnt

and Hnt as in [38], and replace the quantities Ỹnt, Znt and Jnt by the following
bootstrap versions

Z∗
nt(s) = W ∗((L∗)′(t)s) +

1

2
(λ̃SG

n )′(t)s2,

Ỹ ∗
nt = W ∗

(
n1/3

(
L∗
(
t+ n−1/3s

)
− L∗(t)

))
+

1

2
(λ̃SG

n )′(t)s2,

and

J∗
nt =

[
n1/3 (L∗(ant)− L∗(t))

(L∗)′(t)
,
n1/3 (L∗(bnt)− L∗(t))

(L∗)′(t)

]
.

Note that, since L∗(t) = tσ̂2
n, we actually have Ỹ ∗

nt(s) = Z∗
nt(s) and J∗

nt = Hnt.
Hence, it is trivial that

E
∗
[
[DHnt Ỹ

∗
nt](0)

p
]
= E

∗ [[DJ∗
nt
Z∗
nt](0)

p
]
.

If the function L was not linear, then we would follow the proof of Lemma 4.4
in [33], making use of Lemma 4.3 in [33] with a bootstrap version of the function
Φnt. As in the proof of Lemma 4.4 in [33], we now have

c∗1(t)Z
∗
nt(c

∗
2(t)s)

d
= W ∗(s)− s2

where c∗1(t) and c∗2(t) are defined as in (49) with λ′ and L′ replaced by (λ̃SG
n )′

and (L∗)′, respectively. Moreover, since c∗1 is uniformly bounded on An ∩A′
n, it

follows that

E
∗
(
sup
s∈R

|Z∗
nt(s)|

)p

< ∞,

where the expectation is taken with respect to P∗. The rest of the proof continues
as in [33], and for J = E,W , we obtain that on An ∩A′

n,

E
∗ [AJ,∗

n (t)p
]
=

(
2(L∗)′(t)2

|(λ̃SG
n )′(t)|

)p/3

E
∗ [ζ∗(0)p] + o

(
n−1/6

)
,

uniformly in t ∈ (n−1/3 logn, 1− n−1/3 logn) and

E
∗ [AJ,∗

n (t)p
]
≤
(
2(L∗)′(t)2

|(λ̃SG
n )′(t)|

)p/3

E
∗ [ζ∗(0)p] + o

(
n−1/6

)
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uniformly in t ∈ (0, 1), where AJ,∗
n = n2/3(CM[0,1]Λ

J,∗
n − ΛJ,∗

n ) and ζ∗(s) =
[CMRZ

∗](s)−Z∗(s), with Z∗(s) = W ∗(s)−s2. Finally, the bootstrap version of
Lemma 8 in [38] can be proved in the same way as its original version, replacing
the quantities AJ

n,with bootstrap versions AJ,∗
n for J = E,W .

Using these results, we perform similar succeeding approximations of Y ∗
n (t)

by

Y (1),∗
n (t) =

1

b

∫ 1

−1

k′
(
t− v

b

)
AW,∗

n (v) dv

Y (2),∗
n (t) =

1

b

∫ 1

−1

k′
(
t− v

b

)
[DInvA

W,∗
n ](v) dv,

where Inv = [0, 1] ∩ [v − n−1/3 logn, v + n−1/3 logn], and

Y (3),∗
n (t) =

1

b

∫ 1

−1

k′
(
t− v

b

)
[DHnvY

∗
nv](0) dv,

Y (4),∗
n (t) =

1

b

∫ t+b

t−b

k′
(
t− v

b

)
[DJ∗

nv
Z∗
nv](0) dv,

as in Lemmas 8.2-8.5, where now Y
(3),∗
n (t) = Y

(4),∗
n (t). Next, the approximation

of Y
(4),∗
n (t) by

Y (5),∗
n (t) = [DRZ

∗](0)
1

b

∫ t+b

t−b

k′
(
t− v

b

)
1

c∗1(v)
dv,

can be proved exactly as in Lemma 8.6 using that c∗1 is uniformly bounded from
below on the event An ∩A′

n. As in (52), we obtain

b−p

∫ 1−b

b

|Y (5),∗
n (t)|p dμ(t) = [DRZ

∗](0)p
∫ 1−b

b

∣∣∣∣ (c∗1)′(t)c∗1(t)
2

∣∣∣∣p dμ(t) + oP∗(1)

= [DRZ
∗](0)p

∫ 1−b

b

∣∣∣∣ c′1(t)c1(t)2

∣∣∣∣p dμ(t) + oP∗(1)

+ [DRZ
∗](0)p

∫ 1−b

b

{∣∣∣∣ (c∗1)′(t)c∗1(t)
2

∣∣∣∣p − ∣∣∣∣ c′1(t)c1(t)2

∣∣∣∣p} dμ(t).

By definition,

c′1(t) = −1

3
λ′′(t)

(
1

2σ2|λ′(t)|2
)1/3

and

(c∗1)
′(t) = −1

3
(λ̃SG

n )′′(t)

(
1

2σ̂2|(λ̃SG
n )′(t)|2

)1/3

In particular, on An ∩ A′
n, (c∗1)

′ is uniformly bounded from above while c∗1
is uniformly bounded from above and below away from zero. Hence, through
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repeated use of the mean value theorem, using (116) and (117), it can be shown
that on An ∩A′

n

sup
t∈(b,1−b)

∣∣∣∣∣∣∣∣ (c∗1)′(t)c∗1(t)
2

∣∣∣∣p − ∣∣∣∣ c′1(t)c1(t)2

∣∣∣∣p∣∣∣∣ ≤ K(nb5)−1/2 log n, (119)

for some constant K > 0. It follows that, on An ∩A′
n,

b−p

∫ 1−b

b

|Y (5),∗
n (t)|p dμ(t) = [DRZ

∗](0)p
∫ 1−b

b

∣∣∣∣ c′1(t)c1(t)2

∣∣∣∣p dμ(t) + oP∗(1)

= [DRZ
∗](0)p

∫ 1

0

∣∣∣∣ c′1(t)c1(t)2

∣∣∣∣p dμ(t) + oP∗(1).

Because P
∗([DRZ

∗](0) ≤ t) = P([DRZ](0) ≤ t), for all t ∈ R, the limit distribu-
tion for the bootstrap version is still the same as the one in (51).
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[32] Kulikov, V. N. and Lopuhaä, H. P. (2006). The limit process of the
difference between the empirical distribution function and its concave ma-
jorant. Statist. Probab. Lett. 76 1781–1786. MR2274141
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