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Abstract

In this paper, we focus on investigating the potential of advanced Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting for
3D scene reconstruction from aerial imagery obtained via sensor platforms with an almost nadir-looking camera. Such a setting
for image acquisition is convenient for capturing large-scale urban scenes, yet it poses particular challenges arising from imagery
with large overlap, very short baselines, similar viewing direction and almost the same but large distance to the scene, and it
therefore differs from the usual object-centric scene capture. We apply a traditional approach for image-based 3D reconstruction
(COLMAP), a modern NeRF-based approach (Nerfacto) and a representative for the recently introduced 3D Gaussian Splatting
approaches (Splatfacto), where the latter two are provided in the Nerfstudio framework. We analyze results achieved on the recently
released UseGeo dataset both quantitatively and qualitatively. The achieved results reveal that the traditional COLMAP approach
still outperforms Nerfacto and Splatfacto approaches for various scene characteristics, such as less-textured areas, areas with high
vegetation, shadowed areas and areas observed from only very few views.

1. Introduction

3D reconstruction from multi-view imagery refers to the pro-
cess of creating a 3D representation of an object or scene using
multiple images captured from different viewpoints. This pro-
cess leverages the information contained in multiple images to
reconstruct the geometry and possibly also appearance of the
considered object or scene in three dimensions. It is widely
applied in fields such as computer vision, robotics, augmented
reality, archaeology, architecture, and medical imaging.

In recent years, traditional approaches for image-based 3D re-
construction have been complemented by a series of learning-
based approaches (Stathopoulou and Remondino, 2023) and,
meanwhile, also approaches relying on a Neural Radiance Field
(NeRF) (Mildenhall et al., 2020) and 3D Gaussian Splatting
(Kerbl et al., 2023). The latter two hold great potential, since
they also allow for impressively reconstructing reflectance prop-
erties beyond simple color in addition to geometry information.
A comparative assessment of the potential of both traditional
approaches and NeRF-based approaches has been addressed
in previous work regarding the reconstruction of cultural her-
itage objects of various scales from either terrestrial or drone
imagery (Croce et al., 2024) and regarding urban scene recon-
struction from UAV-borne imagery (Nex et al., 2023). Whereas
the former use case (Croce et al., 2024) focused on convergent
image acquisition, the latter use case (Nex et al., 2023) included
(mostly) imagery taken in almost nadir view.

In this paper, we direct our attention to the investigation of the
potential of state-of-the-art scene representations like advanced
Neural Radiance Fields (Tancik et al., 2023) and the recently
introduced 3D Gaussian Splatting (Kerbl et al., 2023) for 3D
scene reconstruction from aerial imagery obtained via sensor
platforms with an almost nadir-looking camera (cf. Figure 1).

Figure 1. Illustration of camera poses given during data
acquisition for a part of the UseGeo dataset (Nex et al., 2023).

Such a setting for image acquisition is convenient for captur-
ing large-scale urban scenes, yet it poses particular challenges
arising from imagery with large overlap, very short baselines,
similar viewing direction and almost the same but large dis-
tance to the scene, and it therefore differs from the usual object-
centric scene capture. We compare the modern NeRF-based
approach Nerfacto as well as the 3D Gaussian Splatting imple-
mentation Splatfacto provided in the Nerfstudio framework (Tan-
cik et al., 2023). Additionally, we investigate the use of differ-
ent sampling strategies for the NeRF-based approach. Thereby,
our work extends previous investigations (Nex et al., 2023) that
demonstrated promising results for NeRF-based 3D reconstruc-
tion from high-resolution imagery with large overlap and very
short baselines, while also showing that NeRF-based approaches
cannot yet compete with traditional photogrammetric 3D recon-
struction approaches in terms of point density and object/surface
details regarding different scene characteristics. In summary,
the main contributions of this paper are as follows:

• We investigate the potential of Nerfacto as a representative
NeRF-based approach and Splatfacto as a representative
approach for 3D Gaussian Splatting for the scenario of 3D
reconstruction from almost nadir-looking aerial imagery.
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• For the considered NeRF-based approach, we investigate
different sampling strategies.

• We analyze results achieved on the recently released UseGeo
dataset (Nex et al., 2023) quantitatively and qualitatively.

2. Related Work

In the following, we focus on 3D reconstruction from imagery
and address related work in the form of traditional approaches
(Section 2.1), learning-based approaches (Section 2.2), and ap-
proaches based on advanced scene representations (Section 2.3).

2.1 Traditional Approaches

Traditional approaches for 3D reconstruction from imagery rely
on hand-crafted features and matching metrics to achieve multi-
view consistency. Among these approaches, PhotoTourism /
Bundler (Snavely et al., 2006) was one of the first open-source
pipelines for image-based 3D reconstruction and point cloud
generation from a set of internet photos without prior know-
ledge of the scene or camera geometry. However, the 3D re-
construction achieved by such a Structure-from-Motion (SfM)
approach is rather sparse, since only point-like image features
between images are matched and triangulated. To derive a dense
3D reconstruction, Multi-View Stereo (MVS) approaches have
been integrated with PMVS/CMVS (Furukawa and Ponce, 2009)
and numerous follow-up developments (Stathopoulou and Re-
mondino, 2023). Several of these approaches have meanwhile
been provided in the form of open-source image-based 3D re-
construction pipelines (Stathopoulou et al., 2019, Ruano and
Smolic, 2021). In particular, COLMAP (Schönberger and Frahm,
2016, Schönberger et al., 2016) is often used, since it repres-
ents an end-to-end SfM and MVS pipeline that is actively main-
tained and easy-to-use for both expert and non-expert users.

Besides the standard offline approaches, that focus on accurate
3D reconstruction with typically high computational burden,
there are also approaches for online 3D reconstruction from im-
agery (Rothermel et al., 2012, Sinha et al., 2014, Kern et al.,
2020, Hermann et al., 2021). Due to the focus on real-time cap-
abilities, however, a significantly lower accuracy can usually be
observed regarding 3D reconstruction.

Traditional approaches heavily rely on photometric consistency,
and they encounter challenges in case of weakly-textured or re-
flective surfaces (Huang et al., 2018). Furthermore, such ap-
proaches do typically not involve other cues like illumination,
shadows and/or semantics, since it is non-trivial to address such
information within a hand-crafted objective function.

2.2 Learning-based Approaches

Learning-based approaches for 3D reconstruction from imagery
are often categorized with respect to the given scene representa-
tion. The two predominant categories comprise voxel-based ap-
proaches and depth-map-based approaches (Wang et al., 2021b,
Stathopoulou and Remondino, 2023). Voxel-based approaches
rely on directly predicting globally coherent voxel-occupancy
grids from the input imagery; they are constrained by the pre-
defined resolution of a reconstructed object or scene and thus
not suitable for use cases focusing on large-scale 3D recon-
struction. In contrast, depth-map-based approaches focus on
predicting the depth map corresponding to each view and sub-
sequently fusing all these depth maps into a coherent 3D rep-
resentation; this decoupling makes such approaches much more

efficient and also suitable for use cases focusing on large-scale
3D reconstruction.

Among the depth-map-based approaches, deep networks for
Multi-View Stereo reconstruction are represented by DeepMVS
(Huang et al., 2018) and MVSNet (Yao et al., 2018) and nu-
merous variants thereof, mainly focusing on optimization based
on 3D cost volumes. For instance, UniMVSNet (Peng et al.,
2022) represents a coarse-to-fine framework directly constrain-
ing the cost volume like classification methods, but also real-
izing sub-pixel depth prediction like regression methods. Geo-
MVSNet (Zhang et al., 2023) focuses on integrating coarse geo-
metric structures into finer depth estimations for improved geo-
metry awareness. The most recent learning-based approaches
also comprise transformer-based approaches like TransMVS-
Net (Ding et al., 2022), MVSFormer (Cao et al., 2022) and
MVSFormer++ (Cao et al., 2024).

2.3 Approaches based on Advanced Scene Representations

Recently, implicit neural scene representations have gained a
lot of attention. The underlying idea is to represent a scene in
terms of the weights of a neural network that is optimized in a
supervised manner to match its predicted scene appearance un-
der certain views to the respectively observed input photographs
for the corresponding view configurations. This is based on the
assumption that scene characteristics have been accurately cap-
tured in the neural scene model if the deviations to the input
reference views are small.

In particular, Neural Radiance Fields (NeRFs) (Mildenhall et
al., 2020) and their many extensions (Tewari et al., 2022) have
been demonstrated to offer a high potential for accurate scene
representation. The involved network predicts – for each point
in the volume – density and view-dependent color information
and involves volume rendering techniques to synthesize images
from the volumetric scene information. Particularly relevant to
the task of capturing accurate geometric models similar to the
dense matching of standard MVS pipelines are the NeRF ex-
tensions towards improving rendering quality and, hence, also
model quality by reducing aliasing (Barron et al., 2021, Wang et
al., 2022, Barron et al., 2022, Barron et al., 2023) as well as the
acceleration of the training of the underlying network (Müller
et al., 2022, Chen et al., 2022), allowing the inference of scene
models in the order of seconds (Müller et al., 2022). Further
developments include NeRF variants designed to handle photo
collections taken in-the-wild (Martin-Brualla et al., 2021). In
addition, several approaches focused on investigating the suit-
ability of NeRFs and respective extensions for large-scale scen-
arios (Tancik et al., 2022, Turki et al., 2022, Xiangli et al., 2022,
Mi and Xu, 2023, Xie et al., 2023, Xu et al., 2024).

Instead of relying on a network to predict volumetric fields for
density and view-dependent color information, several works
focused on representing scenes in terms of implicit surfaces (Wang
et al., 2021a, Wang et al., 2023, Ge et al., 2023) or explicit
representations in terms of meshes (Munkberg et al., 2022) or
based on 3D Gaussians (Kerbl et al., 2023).

The assessment of the potential of different neural scene repres-
entations with respect to conventional photogrammetric tools
requires comparisons on benchmark datasets, such as (Knap-
itsch et al., 2017, Nex et al., 2023, Yan et al., 2023). Compar-
isons of the geometric accuracy provided by different methods
can then be conducted based on point cloud representations de-
rived from NeRF methods or 3D Gaussian Splatting.
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Whereas NeRFs and respective variants have been demonstrated
to outperform conventional photogrammetric approaches for chal-
lenging scenarios (Condorelli et al., 2021, Balloni et al., 2023,
Pepe et al., 2023, Llull et al., 2023, Remondino et al., 2023)
including texture-less, metallic, highly reflective, and transpar-
ent objects, conventional techniques still performed better in
case of well-textured and partially textured objects (Remondino
et al., 2023). However, all of these studies focused on the
comparison of the respective techniques in terms of the qual-
ity achieved for 3D object reconstruction from input views all
around the object. Instead, the scenario we investigate in this
work differs in the following characteristics: We focus on high-
resolution aerial imagery obtained from an almost constant flight
altitude of about 80m, where the camera is facing downward.

3. Methodology

In this work, we consider a traditional approach for 3D re-
construction (Section 3.1), a state-of-the-art NeRF-based ap-
proach (Section 3.2) and a state-of-the-art learning-based expli-
cit representation of 3D Gaussian Splatting (Section 3.3), and
we compare them against a reference in terms of LiDAR data.

3.1 Traditional 3D Reconstruction

As a representative technique for 3D reconstruction based on
conventional SfM and MVS, we use COLMAP (Schönberger
and Frahm, 2016, Schönberger et al., 2016).

3.2 NeRF-based 3D Reconstruction

Before discussing the selected method for this category of ap-
proaches, we briefly provide background information on the un-
derlying concept of Neural Radiance Fields.

3.2.1 Preliminaries on Neural Radiance Fields: Neural Ra-
diance Fields (NeRFs) (Mildenhall et al., 2020) rely on inputs
in terms of N given training images with corresponding cam-
era parameters (i.e., camera intrinsics and pose). Based on
the concept of using a feed-forward network to predict view-
dependent radiance c(x,d) ∈ R3 and volume density σ(x) ∈ R
for a given spatial 3D location x ∈ R3 and the view direction
d ∈ R3, the color observed in a particular pixel in the image is
obtained by integrating along the respective viewing ray r(t) =
o + td in the volume. Here, o ∈ R3 and d ∈ R3 denote the
origin and direction of the ray, respectively. To compute this
integral, the standard NeRF approach leverages the sampling of
K ∈ N positions t1, ..., tK ∈ R along the ray (Max, 1995), i.e.,
the observed color is obtained according to

C(r) =

K∑
k=1

Tk αk ck, with αk = (1− e−σkδk ), (1)

where Tk = exp
(
−
∑k−1

j=1 σj δj
)

represents the transmittance
along the ray up to tk, ck = c(r(tk)) denotes the radiance,
σk = σ(r(tk)) denotes the density at tk, and δk = tk+1 − tk
denotes the distance of adjacent samples. The positions tk along
the ray are computed in a hierarchical manner. After an initial
stratified sampling, a refinement according to the density dis-
tribution along each ray is conducted (Mildenhall et al., 2020).
Finally, an optimization loss given in terms of the mean squared
error between the predicted color Ĉ(r) and the corresponding

observed color from the input image C(r) for a batch of camera
rays R according to

L = LI =
1

|R|
∑
r∈R

∥Ĉ(r)− C(r)∥22 (2)

is used to train the network.

3.2.2 Nerfacto: As a current representative NeRF variant,
we employ Nerfacto (Tancik et al., 2023), a method that has
been released in the scope of the Python-based framework Nerf-
studio (Tancik et al., 2023) and serves as the default model for
static scenes. Nerfacto is a combination of several components
from recent papers (i.e., camera pose refinement, per-image ap-
pearance conditioning, proposal sampling, scene contraction,
and hash encoding) in order to achieve a trade-off between fast
training and high reconstruction quality, while allowing to cor-
rect for inaccuracies in camera parameters and also remaining
flexible towards further modifications (Tancik et al., 2023).

Efficiency and reconstruction trade-off. Utilizing fully-fused
neural networks (Müller et al., 2021) and multi-resolution hash-
encoding proposed in the Instant-NGP (iNGP) approach (Müller
et al., 2022), fast training can be achieved. Regarding training
time, iNGP usually performs better than Nerfacto due to its bin-
ary occupancy grid, which aims at efficient skipping of empty
space within the scene. This occupancy grid approach, how-
ever, can lead to an inferior density-induced geometric scene
representation. In order to tackle various challenges exposed
by the binary occupancy grid approach, Nerfacto includes the
proposal network sampling proposed in (Barron et al., 2022).
While this method increases training time compared to the oc-
cupancy grid, the inherent surface-focused approach is espe-
cially of interest regarding 3D reconstruction. Originally, the
implementation consists of a proposal network which acts as a
density predictor on the ray, but does not include color. Thus,
ground truth data is not accessible for training the proposal net-
work. A distillation approach guided by the NeRF network is
therefore implemented. In turn, the objective of the proposal
network is then to learn a guidance for the NeRF ray sampling
near the surface of objects within the scene. By default, the
Nerfacto method first samples 256 uniformly distributed pos-
itions on a ray, performed by a piece-wise sampling. From
those samples, a first refinement iteration is applied through
proposal sampling with 96 samples, and in a second iteration
with 48 samples. Those sampling parameter values can be set
before training. The extended sampling strategy is especially
of interest for our investigations, because for remote sensing
imagery, there is a large distance between the projection center
and the scene surface. In contrast, the height variation within
the surface structure is usually rather low. For that matter, we
want to employ a high piece-wise uniform sampling for an ad-
equate initial surface approximation. In order to capture the
rather low height variation of the surface, we also employ high
sampling values for the proposal and NeRF sampler. We refer
to Section 4.3 for details.

Network parameters. NeRFs store scene content within the
parameters of neural networks, and, in case of the multiresolu-
tion hash-encoding, also in large feature tables, represented as
hash tables. To enable encoding and storing more scene con-
tent during the training process, we aim at extending the num-
ber of neurons of each layer. The objective is that with a higher
number of network parameters, especially areas with high vari-
ation in height (e.g., vegetation) can be adequately approxim-
ated. The fully-fused neural network is a hardware-optimized
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neural network implementation, which is usually used with lay-
ers of 64 neurons for optimized hardware saturation. (Müller et
al., 2021) state that, with this number of neurons, the network
performs four to five times faster than an analogous implement-
ation in Tensorflow. However, this speed-up effect begins to
vanish with an increasing number of neurons. To keep train-
ing time still as low as possible while increasing the number of
network parameters, 128 neurons are used for each layer.

Camera pose refinement. Due to remaining inaccuracies in
the camera calibration data (poses and intrinsics) computed with
COLMAP, we have to account for the flexibility to further re-
fine the position and viewing configuration of each pose. For
this purpose, Nerfacto involves the pose and intrinsics refine-
ment strategy proposed by (Wang et al., 2021c). The pose and
intrinsic parameters are stored as GPU-processable parameters,
fed to an Adam optimizer and updated based on the photometric
backward loss-gradient. Because of the model-specific optim-
ization process, we aim to further enhance the geometric rep-
resentation of the surface.

Derivation of point cloud representation. To generate point
clouds from the trained NeRF model, we render depth maps per
training pose. Utilizing camera pose and intrinsics, the depth
values per pixel are projected into the NeRF coordinate space.
Per-pixel depth is calculated by accessing the median density
response on the sampled ray.

3.3 3D Gaussian Splatting

Training the involved neural network as well as image synthesis
based on volume rendering makes NeRF-based approaches com-
putationally costly, particularly when aiming for high visual
quality. Instead of trading off training time and visual qual-
ity, 3D Gaussian Splatting (Kerbl et al., 2023) has been intro-
duced as a scene representation with 3D Gaussians that main-
tain the favorable characteristics of continuous volumetric ra-
diance fields for optimizing the scene whilst circumventing su-
perfluous computations in unoccupied space.

A 3D Gaussian consists of a mean vector µ, covariance mat-
rix Σ, opacity α and spherical harmonics coefficients as optim-
izable parameters. After an initialization based on the sparse
point cloud derived in the camera calibration process as provided
by COLMAP (Schönberger and Frahm, 2016), an interleaved
optimization and density control of the 3D Gaussians is conduc-
ted to optimize the placement of the Gaussians and their aniso-
tropic covariance. Density control is executed after every n iter-
ations, where n is a hyperparameter that can be set accordingly.
It includes the operations of removing, splitting and duplicat-
ing Gaussians in order to densify the scene, especially in over-
and under-reconstructed areas. The use of a respectively de-
signed, fast visibility-aware rendering algorithm that supports
anisotropic splatting allows efficient training and real-time ren-
dering. Due to the explicit nature of 3D Gaussian Splatting, the
mean vectors µG can be interpreted as scene points and expor-
ted as a point cloud. The iterative execution of density control
leads to a usually perpetually growing number of 3D Gaussians
over training time, resulting in a denser point cloud than the ini-
tial sparse SfM point cloud.

4. Experimental Results

After briefly describing the used dataset (Section 4.1), we ex-
plain the used evaluation metrics (Section 4.2) and implementa-

tion details (Section 4.3). Finally, we focus on the presentation
of achieved results (Section 4.4).

4.1 Dataset

The UseGeo dataset (Nex et al., 2023) has been acquired with a
UAV equipped with a SONY ILCE-7RM3 camera and a RIEGL
miniVUX-3UAV scanner. In total, three flights have been per-
formed from an average flight altitude of about 80m with an
image overlap of about 80% (forward) to 60% (side). Provided
data comprise aerial imagery (with corresponding camera poses
and camera intrinsics) and LiDAR point clouds as well as pho-
togrammetric MVS point clouds. The provided imagery (829
images with a size of 7952×5304 pixels) has a Ground Sampling
Distance (GSD), i.e. image resolution in object space, of ap-
proximately 2 cm, while the corresponding LiDAR point cloud
has a point density of about 50 points/m2. The data has been
released in the form of three datasets which are referred to as
Dataset-1, Dataset-2, and Dataset-3, representing three differ-
ent urban and peri-urban areas to address scenarios of differ-
ent complexity, respectively. Dataset-1 comprises 224 images,
Dataset-2 327 images and Dataset-3 277 images.

4.2 Evaluation Procedure

The quality of derived 3D reconstructions may generally be
derived by comparison to reference data on the level of depth
maps, point clouds, or triangle meshes. In our work, we focus
on evaluation on the level of point clouds.

Co-registration with reference. The evaluation on the level of
point clouds requires a co-registration of the derived 3D point
cloud P and the corresponding reference point cloud Pref. For
this purpose, a coarse manual alignment of P and Pref is per-
formed. This is followed by a 2-step refinement, where the
first step comprises a standard point cloud registration based on
the Iterative-Closest-Point (ICP) algorithm (Besl and McKay,
1992). Subsequently, an extension of ICP to similarity trans-
formations (including scale) is applied to refine the registration
of the dense point clouds (Knapitsch et al., 2017).

Evaluation metrics. Once P and Pref have been co-registered,
all errors are calculated at a completeness level of 90% to as-
sign less significance to outliers. A threshold of 0.2m is used to
determine completeness, indicating that all points in the ground
truth point cloud within this distance of an estimated point are
considered when calculating the completeness metric. On this
basis, standard evaluation metrics like the absolute error (L1-
abs) and the root-mean-square error (RMSE) can be calculated
from the distances between 3D points of the derived 3D recon-
struction to the corresponding closest points in the reference
point cloud, normalized by the number of points in P . Further-
more, precision and recall metrics can be derived for a given
distance threshold as proposed with a standard benchmark for
image-based 3D reconstruction (Knapitsch et al., 2017). Fol-
lowing this benchmark, the precision quantifies the accuracy of
the derived 3D reconstruction (i.e., it indicates how closely the
reconstructed points lie to the ground truth), whereas the recall
/ completeness quantifies the completeness of the derived 3D
reconstruction (i.e., it indicates to which extent all the ground
truth points are covered).

For our work, we use L1-abs, RMSE, and recall / completeness
(Cpl) as evaluation metrics. The reference point cloud is rep-
resented by the LiDAR point cloud available for the respective
dataset. Furthermore, we take into account the number of 3D
points in the derived 3D reconstructions (Npts).
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4.3 Implementation Details

In the following, we describe the used software configurations
as well as the used hardware.

Software. We use Nerfstudio v1.0.0 (Tancik et al., 2023) for
training NeRF and 3D Gaussian Splatting models as well as
generating point clouds from the trained models. Our NeRF
models are based on the Nerfacto architecture (Tancik et al.,
2023), and they are trained with two different sets of hyper-
parameters for each dataset, resulting in the Nerfacto-default
and Nerfacto-big models. The parameter sets particularly differ
in the number of neurons per layer, the sampling of the proposal
network (Barron et al., 2022) and the sampling of the NeRF net-
work (Table 1). Note that there are two hyperparameters for the
proposal network. The first one corresponds to a piece-wise sur-
face approximation sampling, while the second one represents
a resampling thereof as a first refinement iteration. A second
iteration is executed by the NeRF network itself through a PDF
sampler. To further saturate GPU capabilities and accelerate
training time, fully-fused neural networks (Müller et al., 2021)
are utilized for all NeRF models.

Configuration Nerfacto-default Nerfacto-big
Neurons per Layer 64 128
Sampling PN 256 / 96 512 / 256
Sampling NN 48 96

Table 1. Hyperparameter values for the two defined Nerfacto
models (PN: proposal network; NN: NeRF network)

The Nerfacto-default and Nerfacto-big models are trained for
100k iterations as (Tancik et al., 2023) propose 70k or more
iterations for state-of-the-art-competitive image reconstruction
quality. In order to refine the camera poses, the SE(3) optimiz-
ation for position and direction is used for all models. Training
data consists of camera poses with intrinsics and corresponding
ground truth images. Out of each dataset, 10% are used as a
validation set at training time.

3D Gaussian Splatting is also integrated in Nerfstudio with an
approach referred to as Splatfacto. The CUDA-based backbone
of Splatfacto is the gsplat (Ye et al., 2024) library as part of the
Nerfstudio github project, which is a re-implementation of the
original technique (Kerbl et al., 2023). We utilized the default
training configuration with the exception, that the images are
not resampled for training regarding the COLMAP data parser
of Nerfstudio. The default configuration sets the number of
training iterations to 30k. Densification is executed every 100
iterations after the warm-up process, which is active for the first
500 iterations. Splatfacto does not support camera pose refine-
ment currently.

Hardware. All experiments regarding the NeRF and 3D Gaus-
sian Splatting training as well as generation of point clouds are
performed on a desktop PC with an Intel i9 10950K CPU with
32 GB of RAM and an Nvidia RTX 3090 GPU.

4.4 Results

The 3D reconstructions derived via COLMAP, Nerfacto-default
and Nerfacto-big are shown in Figures 2, 3 and 4 for Dataset-
1, Dataset-2 and Dataset-3, respectively. Results achieved for
Splatfacto are shown in Figure 5. The corresponding quantitat-
ive results are summarized in Table 2 for Dataset-1, Dataset-2
and Dataset-3, respectively. Zoomed-in versions and more de-
tailed visualization of failure cases will be released at the web-
site of this project (https://github.com/UseGeoEvaluation/
DepthEstimationAnd3DReconstruction).

Dataset-1 L1-abs [m] RMSE [m] Cpl Npts
COLMAP 0.0609 0.0700 0.5911 13.8M
Nerfacto-default 0.1686 0.2227 0.3712 5.0M
Nerfacto-big 0.2024 0.2698 0.3127 5.0M
Splatfacto 0.2926 0.4004 0.2333 3.6M

Dataset-2 L1-abs [m] RMSE [m] Cpl Npts
COLMAP 0.0690 0.0812 0.5965 20.3M
Nerfacto-default 0.2448 0.3145 0.3221 15.0M
Nerfacto-big 0.2643 0.3388 0.3238 15.0M
Splatfacto 0.2060 0.2753 0.2686 5.5M

Dataset-3 L1-abs [m] RMSE [m] Cpl Npts
COLMAP 0.0782 0.0921 0.5418 17.2M
Nerfacto-default 0.2776 0.3599 0.3130 15.0M
Nerfacto-big 0.3052 0.3990 0.3317 15.0M
Splatfacto 0.2742 0.3687 0.2425 5.4M

Table 2. Results achieved for Dataset-1, Dataset-2 and
Dataset-3, respectively

5. Discussion

The L1-abs and RMSE scores (cf. Table 2) reveal that the level
of accuracy and completeness achieved by COLMAP cannot
be reached with the Nerfacto and Splatfacto approaches. This
also becomes visible in Figures 2-4 which indicate rather accur-
ate 3D reconstructions achieved by COLMAP, whereas the two
Nerfacto approaches reveal a lower accuracy of the achieved 3D
reconstructions and seem to contain systematic deviations. The
Nerfacto results seem best for scene parts that are contained
in many overlapping images, while accuracy decreases signi-
ficantly towards the scene boundaries. In contrast, Splatfacto
does not show such systematic deviations besides a decrease in
accuracy towards the scene boundaries (cf. Figure 5), but re-
veals lower completeness scores compared to the Nerfacto ap-
proaches (cf. Table 2), indicating that less points of the LiDAR
reference point cloud are covered by the achieved 3D recon-
struction. Both Nerfacto and Splatfacto approaches exhibit lar-
ger errors in less-textured areas, areas with high vegetation,
shadowed areas and areas observed from only very few views.

6. Conclusions

In this paper, we focused on investigating the potential of ad-
vanced Neural Radiance Fields and 3D Gaussian Splatting for
3D scene reconstruction from aerial imagery obtained via sensor
platforms with an almost nadir-looking camera. Such a set-
ting for image acquisition is convenient for capturing large-
scale urban scenes, yet it poses particular challenges arising
from imagery with large overlap, very short baselines, similar
viewing direction and almost the same but large distance to the
scene. The achieved results reveal that a traditional approach
for image-based 3D reconstruction represented by COLMAP
still outperforms approaches based on NeRF and 3D Gaussian
Splatting for various scene characteristics, for which we ap-
plied Nerfacto and Splatfacto from the Nerfstudio v1.0.0 frame-
work. Thereby, our investigation differs from the often con-
ducted studies regarding 3D object reconstruction in the object-
centered acquisition scenario.

Future work will address further ablation studies regarding dif-
ferent design choices of Nerfacto and Splatfacto in terms of
hyperparameter settings and extensions via dedicated modules
for improved 3D reconstruction. Furthermore, more recent ap-
proaches like Zip-NeRF (Barron et al., 2023), mip-NeRF 360
(Barron et al., 2022) or multi-tiling NeRF (Xu et al., 2024) and
multi-tiling 3D Gaussian Splatting to better exploit the capacity
of the representation to accurately capture local scene structures
will be addressed.
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Figure 2. Colored point clouds (top) and their deviation from the LiDAR point cloud (bottom) for the 3D reconstructions achieved by
COLMAP (left), Nerfacto-default (center) and Nerfacto-big (right) for Dataset-1.

Figure 3. Colored point clouds (top) and their deviation from the LiDAR point cloud (bottom) for the 3D reconstructions achieved by
COLMAP (left), Nerfacto-default (center) and Nerfacto-big (right) for Dataset-2.

Figure 4. Colored point clouds (top) and their deviation from the LiDAR point cloud (bottom) for the 3D reconstructions achieved by
COLMAP (left), Nerfacto-default (center) and Nerfacto-big (right) for Dataset-3.
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