

Delft University of Technology

The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

Jansen, Bas; Hermans, Felienne

DOI
10.1109/ICPC52881.2021.00035
Publication date
2021
Document Version
Final published version
Published in
Proceedings - 2021 IEEE/ACM 29th International Conference on Program Comprehension, ICPC 2021

Citation (APA)
Jansen, B., & Hermans, F. (2021). The Effect of a Block-based Language on Formula Comprehension in
Spreadsheets. In Proceedings - 2021 IEEE/ACM 29th International Conference on Program
Comprehension, ICPC 2021 (pp. 288-299). Article 9462970 (IEEE International Conference on Program
Comprehension; Vol. 2021-May). https://doi.org/10.1109/ICPC52881.2021.00035
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICPC52881.2021.00035
https://doi.org/10.1109/ICPC52881.2021.00035

The Effect of a Block-based Language on Formula
Comprehension in Spreadsheets

Bas Jansen
Delft University of Technology

The Netherlands

Email: b.jansen@tudelft.nl

Felienne Hermans
Leiden University

The Netherlands

Email: f.f.j.hermans@liacs.leidenuniv.nl

Abstract—The use of spreadsheets in industry is widespread. It
is known that spreadsheets have an average life span of five years,
and during this life span, they are used on average by thirteen
different persons. Consequently, spreadsheets need maintenance,
and knowledge about the spreadsheet needs to be transferred
from one user to another. To minimize the risk of introducing new
errors, a thorough understanding of the spreadsheet’s formulas
is needed during maintenance and knowledge transfer tasks.

Research on the use of block-based languages has shown
that they positively affect the comprehension of program code.
We hypothesize that using a block-based representation of a
spreadsheet formula will positively affect formula comprehension.

Hence, we extended XLBlocks, a block-based formula editor
for spreadsheets, with the functionality to generate a block-based
representation of an existing formula. We conduct a think-aloud
study with twenty-one experienced spreadsheet users from indus-
try and ask them to perform a set of spreadsheet comprehension
tasks using XLBlocks. During an interview, we ask them, using
the Cognitive Dimensions of Notations framework, to reflect on
the use of XLBlocks.

We found that participants preferred to use the block-based
representation of formulas when analyzing or explaining for-
mulas or to implement non-trivial changes. Named function
parameters and the absence of parentheses and commas make
functions easier to understand. Furthermore, the visualization
enables the user to separate smaller parts in the formula, which
improves comprehension. Finally, the possibility to navigate from
formula to formula makes it clear how formulas work together
and improve the understanding of the spreadsheet as a whole.

I. INTRODUCTION

Spreadsheets are ubiquitous in industry and often used

for critical business decisions. Unfortunately, spreadsheets are

also known for their error-proneness. Almost all spreadsheets

contain non-trivial errors [1]. Consequently, companies are at

risk of basing their decisions on inaccurate information, which

can lead to significant loss of money or reputation.1

A major part of spreadsheet research is focused on improv-

ing spreadsheets by applying software engineering methods.

For example, the concept of testing in spreadsheets was studied

by Rothermel et. al. [2] and more recently by Roy et. al. [3].

Hermans et. al. [4] and Cunha et. al [5] introduced the idea of

reverse engineering of spreadsheets and designed methods for

extracting class diagrams from spreadsheets. Several studies

[6] [7] [8] define and investigate code smells in spreadsheets.

Refactoring is closely related to code smells, and both Badame

1http://www.eusprig.org/horror-stories.htm

and Dig [9] and Hermans and Dig [10] developed tools for

refactoring in spreadsheets.

The common denominator in these studies is that they

provide methods and techniques that support users in im-

proving spreadsheets. Nevertheless, a focus on spreadsheet

comprehension is lacking. According to Hermans et. al. [11],

spreadsheets have an average life span of five years and are on

average used by thirteen different users. This means that during

a spreadsheet’s lifetime, maintenance is needed, and for that,

knowledge needs to be transferred from one user to another.

During these ‘transfer scenarios’, a thorough understanding of

the spreadsheet minimizes the risk of introducing new errors.

Therefore, we focus in this paper on formula comprehen-

sion. In an earlier study [12] we introduced XLBlocks, a

block-based formula editor for spreadsheets. With this editor,

it is possible to create formulas with a block-based language

instead of the default textual formula language and translate

them automatically into valid spreadsheet formulas. However,

in our first implementation of XLBlocks, it was impossible to

generate a block-based representation from a formula, making

it less suitable for formula comprehension. For this study, we

have extended XLBlocks with the functionality to generate

from a textual formula a block-based representation of that

formula. This enables users to analyze existing spreadsheet

formulas in a block-based language.

In this paper, we want to understand the effect of a block-

based language for spreadsheets on formula comprehension.

To answer this question, we conduct a think-aloud study

in which we ask participants to perform a set of formula

comprehension tasks with a new version of XLBlocks. When

they have completed these tasks, we interview them and ask

them to reflect on their experience with XLBlocks. To guide

the interview, we use the Cognitive Dimensions of Notation

(CDN) Framework [13].

II. RELATED WORK

A. Spreadsheets and Visual Languages

Related to our study is the work of Burnet et. al.
[14]. They introduced the visual research language Forms/3.

This language’s goal was to eliminate some of the spread-

sheet systems’ limitations without abandoning the spreadsheet

paradigm. The language describes a complete spreadsheet

288

2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC)

978-1-6654-1403-6/21/$31.00 ©2021 IEEE
DOI 10.1109/ICPC52881.2021.00035

20
21

 IE
EE

/A
C

M
 2

9t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 P

ro
gr

am
 C

om
pr

eh
en

si
on

 (I
C

PC
) |

 9
78

-1
-6

65
4-

14
03

-6
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

PC
52

88
1.

20
21

.0
00

35

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

����������	
����

�
����� ���

������� �
�����

�������	 ������
�

Fig. 1. Left the traditional view with the formula bar at the top, right the XLBlocks interface showing the block representation of the formula

model. This in contrast to XLBlocks, where we focus on an

individual formula.

Abraham et. al. [15] also introduced a visual language for

spreadsheets called ViTSL. With ViTSL, it is possible to define

a spreadsheet template. From such a template, a spreadsheet

can be generated automatically. Based on this work, Engels

and Erwig [16] introduced ClassSheet. A ClassSheet repre-

sents both the structure and the relation between (business)

objects within the spreadsheet. With ClassSheets, the problem

domain and spreadsheet domain are brought closer together.

The ClassSheets needed to be developed in a stand-alone

application, and for that reason, real-time synchronization

between the ClassSheet and the spreadsheet was not possible.

Cunha et. al. [17] integrated ClassSheets in the spreadsheet

and enabled two-way synchronization between the ClassSheet

and the spreadsheet.

Leitão and Roast [18] developed a visual language for

formulas. It is not a block-based language but a data-flow

language. They worked on two different variants: Explicit

Visualization (EV) and Data flow Visualization (DV). In the

EV, the visualization is a direct match of the spreadsheet

formula. Operators, cell references, constants, and functions

have been replaced by symbols. The DV uses the same

symbols, but they are presented as a syntax tree.

Finally, Sarkar et al. [19] introduced Calculation View,

which is also an alternative representation of the spreadsheet.

Formulas are presented in a textual calculation view adjacent

to the standard grid view. One of Calculation View features

is ‘range assignments’, which allows the user to assign the

same formula to a range of cells. This is more efficient and

less maintenance intensive than manually dragging the formula

down to a range of cells. Furthermore, with Calculation View,

it is possible to name cells easily and refer to those names in

other formulas.

B. Block-based languages

BLOX can be considered the first block-based language

and was introduced by Glinert [20]. After the introduction

of several block-based languages, like Alice [21], Scratch

[22], and Blockly [23] the body of research on block-based

languages started to grow.

Most related to our research is a study of Weintrop et.
al. [24]. In this study, they introduce CoBlox, a block-

based language to program a one-armed industrial robot. They

demonstrate that block-based languages are not only suitable

for children in an educational environment but also useful

for adult novice programmers in an industrial setting. Adult

programmers successfully implemented robot programs with

CoBlox faster and with no loss in accuracy than similar

programmers using one of two widely-used industrial robot

programming approaches. They also scored better on usability,

learnability, and overall satisfaction.

Weintrop et. al. also conducted a study on block-based

comprehension [25]. They asked participants to answer twenty

program comprehension questions using two variants (text-

based and block-based) of pseudocode developed for the

Advanced Placement CS Principles course. They concluded

that learners performed better on questions presented in the

block-based modality.

Finally, Hermans and Holwerda [26] conducted a user study

with ArduBlockly. Using a user study, they demonstrate a us-

ability analysis of block-based editors based on the Cognitive

Dimensions of Notation (CDN) framework. Furthermore, they

give an overview of several design maneuvers to improve

programming time and effort, program comprehension, and

programmer comfort.

III. ANALYZING FORMULAS WITH XLBLOCKS

A. XLBlocks Interface

Figure 1 shows the XLBlocks interface. The spreadsheet is

displayed on the left side of the screen, the XLBlocks editor

on the right side. At the top of the screen is the formula bar,

which is the Excel default tool to enter formulas. A formula

can be analyzed in XLBlocks by selecting the cell with the

formula and using the inspect formula button to generate the

formula’s block-based representation. A video demonstrating

the user interface of XLBlocks is available on-line.2

2https://doi.org/10.6084/m9.figshare.14268017.v1

289

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

(a) Syntax tree (b) Block representation of SUM
function

(c) XML Definition of block

Fig. 2. Generation of block-based formula

B. Generate Block-based Formulas

We extended XLBlocks with the functionality to generate a

block-model of a formula from the textual formula. To do so,

we use XLParser, a parser developed by Aivaloglou et. al [27]

[28] that produces a parse tree for spreadsheet formulas. In

XLBlocks, this parse tree is converted into an XML definition

of the block model, which is then translated to the formula’s

block-based representation (see Figure 2).

C. Highlighting and scrolling

Spreadsheet formulas often use the outcome of other formu-

las in their calculation. To completely understand a formula,

users need to trace the formula’s precedents. To support

users in understanding the formula and tracing its precedents,

XLBlocks highlights cells in the spreadsheet that are referred

to in the formula. In Figure 1 a part of the formula in

XLBlocks is selected (highlighted by a yellow border). The

cells referred to in this selected part of the formula are also

highlighted in the spreadsheet.

Some cells might be out of the user’s field of view. To

inspect these cells, a user can select a single range block, and

XLBlocks will automatically scroll the cursor to that cell and

make it the active cell. If needed, the user can immediately

inspect that formula and navigate from precedent to precedent

to analyze the complete calculation chain. For comprehension,

the user must see the cell, its content, and, preferable, the

corresponding label. In most spreadsheet models, the label can

be found to the left or above the cell. Therefore, XLBlocks

ensures that the columns to the left and the rows above the

cell are visible when a user scrolls to a cell.

D. Implementation

XLBlocks has been implemented as an Excel Add-in. It

has been developed with the Excel JavaScript API [29].

The Blockly Library [30] [23] is used to develop the visual

programming editor and was extended with custom blocks

and code generators for the definition and generation of

spreadsheet formulas. Twenty-tree different spreadsheet func-

tions have been implemented in the research prototype of

XLBlocks. Among these twenty-three functions are the fifteen

most frequently used functions of the Enron Corpus [31].

The current research prototype of XLBlocks can only analyze

formulas on the same worksheet.

IV. DESIGN THINK-ALOUD STUDY

A. Research Questions

Spreadsheets have a long lifespan, and thus spreadsheets

need maintenance. Furthermore, there will be several transfer

moments during their lifespan where knowledge about the

spreadsheet needs to be exchanged between different users. For

both maintenance tasks and the transfer scenarios, a thorough

understanding of the formulas is essential.

Therefore we focus in this study on the effect of a block-

based formula language on formula comprehension in spread-

sheets. In this paper, we will answer the following research

questions:

:

• RQ1: What is the effect of a block-based formula editor

on the users’ ability to understand a formula?

• RQ2: What is the effect of a block-based formula editor

on the users’ ability to explain a formula to somebody

else?

• RQ3: What is the effect of a block-based formula editor

on the users’ ability to understand the spreadsheet model

as a whole?

B. Participants

We invited forty-three professional Excel users by e-mail

from twenty-eight different companies. We were looking for

experienced Excel users that use Excel in their professional

lives. Twenty-one of them, working for thirteen companies,

accepted the invitation (see Table I). Five of them had partic-

ipated in our earlier study [12].

290

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

TABLE I
OVERVIEW OF THINK-ALOUD STUDY’S PARTICIPANTS

Nr. Gender Age Functional Domain La Fb Ec

P1 M 52 Engineering 7 D 35
P2 F 48 Controlling 8 D 25
P3 M 38 Controlling 8 D 25
P4 M 44 IT 8 D 20
P5 M 59 Finance & Control 7 D 35
P6 M 38 Consultancy 9 D 25
P7 M 43 Finance 8 D 20
P8 M 60 Finance 6 D 30
P9 M 38 Finance 8 D 18
P10 M 64 Finance 8 D 30
P11 M 55 Data analytics 8 W 30
P12 F 46 Business Intelligence 8 D 20
P13 M 49 Finance & Control 7 D 25
P14 M 49 Consultancy 6 D 25
P15 F 60 Consultancy 7 D 25
P16 M 55 General Management 7 M 25
P17 M 45 Business Control 7 D 20
P18 M 44 Finance & Control 8 D 24
P19 M 48 Finance 8 D 25
P20 M 38 Finance 9 D 20
P21 M 55 Finance 8 D 29
Average 49 8 25

aExcel level, bFrequency: (D)aily, (W)eekly, (M)onthly,
cExperience (yrs)

All participants use Excel professionally, are accustomed to

working with formulas, and have on average twenty-five years

of experience with Excel. Most of them use Excel daily. We

asked them to assess their level of expertise with Excel on a

ten-point scale (one = low, ten is high). This form of rating

is widely used in (European) schools, and the participants are

more familiar with it than, for example, a five-point Likert

scale. On average, they rated themselves an eight out of ten.

TABLE II
PACIONE’S COMPREHENSION ACTIVITIES

Activity Description
A1 Investigating the functionality of the system
A2 Adding to or changing the system’s functionality
A3 Investigating the internal structure of an artifact
A4 Investigating dependencies between artifacts
A5 Investigating run-time interactions in the system
A6 Investigating how much an artifact is used
A7 Investigating patterns in the system’s design
A8 Assessing the quality of the system’s design
A9 Understanding the domain of the system

C. Comprehension Tasks and Think-Aloud Study

In a think-aloud study, we asked participants to perform

twelve comprehension tasks on an existing spreadsheet model.

We used the framework designed by Pacione et. al [32], com-

monly used for empirical evaluation of code comprehension

[33] [34] and used their set of nine comprehension activities

(see Table II)

In previous research [35] we have translated Pacione’s

software comprehension tasks to the spreadsheet domain. In

this study, we use similar tasks. Each tasks covers at least one

of the activities in Table II and all tasks combined to cover

all activities (see Table III).

Because of the liveness of a spreadsheet, there is no

clear distinction between coding and runtime. We, therefore,

excluded activities A5 and A7.

The spreadsheet we use for the study is defined by the Dutch

Primary Education Board. Schools can use it to calculate the

annual salary costs of their employees. We choose this model

because it is publicly available3, and contains twelve of the

fifteen most frequently used functions in the Enron Corpus

[31]. We adapted the model to incorporate the three missing

functions and moved all lookup tables to the same sheet as

the calculation model4.

D. Think-Aloud study

We organized on-line meetings with the twenty-one partic-

ipants. We used either Microsoft Teams or GoToMeeting to

facilitate these meetings. At the start of every meeting, we

checked the participants’ monitor and resolution, shared our

screen with them, and asked if the different interface elements

were readable. For one participant, we changed the zoom

factor of the XLBlocks interface from 80% to 110%.

Before the meeting, we sent each participant an instruction

video about XLBlocks, asking them to watch it before partic-

ipating in the study. Two participants were not able to do this.

At the start of their meeting, we provided the instruction live,

using the same script that was used for the video.

We shared our screen with the participants during the meet-

ing and gave them control over our keyboard and mouse. We

also recorded the meeting on video. We asked the participants

to perform the twelve comprehension tasks and to think-aloud

during the study. If they felt silent while performing the tasks,

we gave them a quick reminder to express their thoughts.

E. Interview

Immediately after the comprehension tasks, we conducted

a 45-minute interview. We used the Cognitive Dimensions

of Notation (CDN) framework to structure the interview.

The CDN Framework has been used in several usability

studies [15], [36]–[39], and Blackwell and Green developed

a questionnaire for it [40]. In our interview, we covered the

dimensions as defined in [13]. We excluded the dimension

Abstract Gradient because, in XLBlocks, users can not create

their own blocks.

We did not ask the participants to fill out the CDN ques-

tionnaire, but rather, we used the questions to structure our

interview5. It allowed us to clarify a question, and it enabled

us to probe participants for additional details.

We grouped all participants’ answers per cognitive dimen-

sion and complemented them with our observations and the

participant’s remarks from the think-aloud study. We used the

combined information to answer our research questions. These

findings will be presented in the next section.

3https://www.poraad.nl/files/themas/financien/werkgeverslasten po 2020.xlsx
4Adapted model available at: https://doi.org/10.6084/m9.figshare.14268017.v1
5Interview questions available at:https://doi.org/10.6084/m9.figshare.14268017.v1

291

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

TABLE III
OVERVIEW OF COMPREHENSION TASKS

Comprehension Activities
Nr. Task A1 A2 A3 A4 A6 A8 A9 Total
T01 Explain a calculation X X X 3
T02 Adapt a calculation X X 2
T03 Explain a key concept of the model X X X 3
T04 Find and correct an error X X 2
T05 Correct an error X X 2
T06 Determine relationships between two cells X X 2
T07 Find dependents of a cell X X 2
T08 Explain how the spreadsheet can be improved X X 2
T09 Assess adaptability of the spreadsheet X 1
T10 Assess transferability of the spreadsheet X 1
T11 Explain a calculation X X X 3
T12 Explain a calculation X X X 3
Total 4 3 8 2 2 3 4 26

V. RESULTS

In this section, we present the results of the think-aloud

study. First, we will cover the execution of the different

comprehension tasks, after that the findings from the CDN

interview, and we end this section by answering the research

questions.

A. Comprehension Tasks

All twenty-one participants were able to perform ten of the

twelve comprehension tasks. In the next paragraphs, we will

describe our findings in detail. We grouped the findings by the

comprehension activities as defined by Pacione et al. [32].
1) Investigating the functionality of (a part of) the system:

By design, XLBlocks displays a single formula. Nevertheless,

several features helped the participants to get an understanding

of the spreadsheet model as a whole.

����� ��	
�

Fig. 3. Example of range blocks in XLBlocks

In the block-based representation of the formula, each cell

reference is represented by a range block (see Figure 3). If

a user clicks on any block in the formula, XLBlocks will

highlight all cells in the spreadsheet with a range block in

that part of the formula. This gives the user an overview of

the other cells in the spreadsheet that are involved in the

calculation of this formula. If users click on a single range

block, they can open that formula in XLBlocks to analyze it.

In this way, users are supported in understanding the working

of the spreadsheet model as a whole.

In the current implementation, XLBlocks highlights all cells

in the same color. Some participants suggested that it would

be helpful if the highlighted cells had a unique color and that

the selected range blocks would light up in the same color.

2) Adding or changing the system’s functionality: We con-

fronted the participants with two erroneous formulas, and all

participants were able to find and correct the errors in these

formulas. Furthermore, they were able to make a change in a

complex formula. They had to replace a nested IF structure

with a VLOOKUP function. According to the participants,

this was easier to perform in XLBlocks than in the formula

bar. In XLBlocks, it is possible to drag the complete IF

structure out of the formula and replace it with a VLOOKUP

function block. They did not need to consider the exact

placement of parentheses and commas’, making the change

more straightforward and quicker.

One of the errors the participants needed to find was a SUM

function in which some cells were omitted. The highlighting

of the involved cells in the spreadsheet helped to visualize the

mistake, but Excel offers the same functionality in the formula

bar. Eight participants remarked that for such a small change

(extending the range of a SUM function), the formula bar is

more efficient than XLBlocks.

The second error that participants had to correct was a

logic error in an IF formula. In this case, according to the

participants, it was easier to spot the error in XLBlocks

because the formula as a whole was easier to read.

3) Investigate the internal structure of an artifact: We

asked the participants to explain several formulas with XL-

Blocks. All participants were able to do that, even if they had

no domain knowledge of the spreadsheet model. In XLBlocks,

in contrast to the formula bar, the parameters of a function are

named. According to the participants, that makes it easier to

understand a formula. For example, P19 stated: ”In XLBlocks,
the IF, THEN, and ELSE parts of the formula are visible in
the IF Block. That is not the case in the Excel formula bar.”

When participants explained a formula, we observed that

it took significant time to look up a cell reference in the

spreadsheet to determine its meaning. If the same reference

is used more than once in the formula, it was not uncommon

that participants had to look up the meaning again. Some

participants suggested that formulas would be easier to read

if the cell references had meaningful names instead of the

abstract A1 naming style that is the default in Excel (see also

292

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

Section VI-B).

Several participants noted that in XLBlocks, a formula is

visually split into different components (instead of a long

string of characters in the formula bar), making it easier to

understand the formula.

4) Investigating dependencies between artifacts and how
much an artifact is used: The participants were asked to trace

the precedents of five different formulas. They were all able to

do that. XLBlocks provide two features that supported them

in these tasks:

1) When the formula is selected in XLBlocks, all cell

references used in the formula are highlighted in the

spreadsheet.

2) If a user selects a single cell reference in XLBlocks,

they can immediately inspect the formula in that cell

and quickly navigate from formula to formula.

5) Assessing the quality of the system’s design: We asked

the participants how they would improve the spreadsheet

model we used during the comprehension tasks. Two of

the twenty-one participants were not able to come up with

some improvements. The other participants mentioned im-

provements like:

• separating input, calculation, and output of the model to

different worksheets

• move all parameters and lookup tables to different work-

sheets

• in the current model, some calculation are based on

monthly amounts, other on yearly amounts. Several par-

ticipants proposed to make these calculations consistent.

Either all based on monthly or on yearly amounts, but

not mixing them.

6) Understanding the domain of the system: After working

with the spreadsheet model in XLBlocks, participants had a

better understanding of the functional domain (salary admin-

istration). One of the questions was if they could tell which

components make up the total salary costs. Furthermore, they

had to explain the calculation of several pension premiums.

To calculate this, you have to take into account an exemption

amount. If your income is lower than the exemption amount,

you do not have to pay a premium; however, if your income

is higher than the exemption amount, you pay a percentage

of your income minus the exemption amount. When the

participants had to explain these types of formulas, they first

read the formula aloud, and next, they would summarize the

logic of the formula in their own words, recognizing the

pattern described above.

B. CDN Interview

In the next paragraphs, we will present the results of the

interview. We will group the observations by the different

Cognitive Dimensions [13].

1) Viscosity: The dimension Viscosisty expresses the resis-

tance to change in a language and consequently has more

impact on maintenance than comprehension. We included it

in the interview because one of the comprehension activities

(A2 in Table II) involves adding or changing the system’s

functionality. XLBlocks has a drag and drop interface. The

mouse or trackpad is the primary input device. In general, this

slowed the user down, which several participants confirmed.

Because of this, participants would prefer to make small

changes in the formula bar instead of XLBlocks.

For complex formulas, this was different. In one of the tasks,

they had to replace a nested IF structure with a VLOOKUP

function. This is not easy in the formula bar and involves

careful placement of the cursor, ensuring that one is not

selecting one parenthesis too many or too few. Implementing

this change goes faster in XLBlocks. The user does not have to

bother about parentheses and can easily drag the IF structure

out of the formula and replace it with a VLOOKUP block.

Finally, some participants pointed out that it can be chal-

lenging to click on a range block, mostly when used in an

inline function block (for example, range E16 in Figure 3).

If the click is not precisely on the range block, the function

block is selected instead.

2) Visibility: All participants were able to see the complete

formulas at a glance. To understand the formula, it is also

essential to see which cells are referenced, which can be

problematic in a large spreadsheet. If users inspect a formula

in the formula bar, they have to scroll to the cells they

can not see. If a user selects a range block in XLBlocks,

it will automatically scroll to the corresponding cell in the

spreadsheet.

Several participants commented that multiple nested binary

operations (see, for example, the else clause in Figure 4b)

were difficult to understand. Function blocks have different

colors, depending on their category. All binary functions have

the same category (Math and Trigonometry) and, therefore,

the same color. Furthermore, each function block has its own

border, but it is thin and subtly colored. These issues combined

make it difficult to distinguish the individual functions.

3) Premature Commitment: In XLBlocks, the user can

build a formula in any order. Also, it is possible to change

the order of the functions within the formula at any given

time. The only requirement is that the output of the top-level

function is connected to a formula block.

Nevertheless, some participants had the feeling they had to

start with the formula block and build the formula from there,

starting with the top-level function. They even said they liked

how the blocks would force them to build the formula in a

structured manner. For example, P1 said: ”You are somewhat
forced in a structure, and I actually like that.”, and P7: ”I
think, because it is visual, you are forced to think about the
formula you are building.”

Other participants recognized that they could start anywhere

in the formula. All participants agreed that it is easy to change

the order of functions in the formula.

4) Hidden Dependencies: In a spreadsheet, there are depen-

dencies between functions in a formula and between cells in

the spreadsheet. Participants indicated that it is easy to see the

dependencies between functions in a formula. Each function

293

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

is visualized as a puzzle piece, and the connection between

two pieces visualizes the dependency between the functions.

Concerning the spreadsheet level, participants liked that

XLBlocks would highlight all cells in the spreadsheet used

in the formula. Also, the possibility to automatically scroll

to a precedent cell in the spreadsheet by clicking on the

corresponding range block was appreciated. P6 said: ”Clicking
on highlighted cells and jumping from one formula to another
makes it easier to explain the spreadsheet”, or according to P7:

”You can click on a cell and immediately jump to that formula,
that for me is one of the biggest advantages.” Furthermore,

they liked the option that once a precedent cell was selected in

XLBlocks, they could inspect that cell’s formula in XLBlocks.

Unfortunately, once they jumped to one of the precedent

cells, it was impossible to jump back to the original formula.

They also indicated that it was not possible in XLBlocks to

see depending cells of a formula. When they had to trace

dependents during the comprehension tasks, they had to fall

back to Excel’s native trace dependents function.
5) Role-Expressiveness: Participants said that in XLBlocks,

they could ‘see’ the formula. They named the IF function as

an example. ”I think you will make fewer logic errors because
you really see the formula” (P6), ”The structure is clear, it is
more transparent, you see it immediately.” (P11), and ”It is
very easy to read the IF, THEN, ELSE formula.” (P21). In the

formula bar (see Figure 4a), the IF function is displayed as a

single string. A comma separates the THEN and ELSE parts,

and by convention, the second argument is the THEN part, and

the third argument the ELSE part. In XLBlocks (see Figure

4b), the IF, THEN, and ELSE parts are labeled and visualized

on three different lines. Furthermore, each block has a thin

border that acts as the equivalent of parentheses. According

to the participants, these features combined made it easier to

understand the formula.

(a) The IF function as a long string in the formula bar

(b) The IF function split over several lines with named parameters in XLBlocks

Fig. 4. Two variant of the IF Function

XLBlocks, like the formula bar, does not provide an ex-

planation about the function parameters. When working with

the VLOOKUP function, participants indicated that they were

unsure about the meaning of some of the parameters, and

explanation would have helped. This could easily be solved

in XLBlocks by adding tool-tips to the parameters.
6) Error-Proneness: As was already mentioned at Prema-

ture Commitment, some participants pointed out that the blocks

guide you through a function’s structure. It is not possible to

forget a parameter and, because they are labeled, one can not

confuse them. As a consequence, this leads to fewer errors.

Additionally, most participants noted that XLBlocks places the

parentheses and commas automatically, which further reduces

possible errors.

Some participants remarked that the operators in the binary

function blocks (see Figure 7b) are hard to read, and it is easy

to forget to change the default operator. Both cases would lead

to an incorrect formula.

7) Secondary Notation: XLBlocks has a dedicated com-

ment block (see Figure 5) that can be used to annotate a

formula. Multiple comment blocks can be added to a formula,

and they can be placed freely on the canvas.

Fig. 5. Example of a comment block

Participants said that they would use the comment block

to document the formula, describe its purpose, explain the

calculation, and describe the meaning of the cells used in the

calculation. The current comment block has been designed

to accommodate short comments, but several participants

indicated they would like to enter larger text blocks.

8) Closeness of Mapping: Cells used in a formula are

visualized in XLBlocks with range blocks (see Figure 3).

The cells are identified by their cell address in A1 notation.

When participants had to explain formulas, they had to look

up the cell by their address in the spreadsheet to see its

functional meaning. While explaining a complex formula, it

occurred more than once that they forgot the meaning of a

cell and had to look it up again, which would slow down the

explanation. Several participants mentioned they would prefer

the possibility to give the range blocks a meaningful name.

An example can be found in Figure 6. Figure 6a shows the

formula as it is currently visualized in XLBlocks, and in Figure

6b the cell addresses are replaced by meaningful names.

(a) Cell references in A1 style

(b) Cell references with meaningful names

Fig. 6. Different styles for cell references

294

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

9) Consistency: Participants recognized that blocks with

the same purpose have the same color. Constants have a

different color than cell references, and Lookup functions have

a different color than logical functions. The use of color helped

them to understand the formulas better. Some participants

remarked that it would be even better if the colors would be

repeated in the toolbox menu. In that case, it is easier to derive

the meaning of a specific color.

There are over 450 functions in Excel. It is not feasible to

give every function a unique color. For that reason, functions

of the same type (as defined by Microsoft6, such as math

and trigonometry, logical, and lookup and reference) have the

same color. If in a formula several functions of the same

type are nested (for example, the addition, multiplication, and

comparison in the IF clause of Figure 6a), this will lead to

a group of blocks with the same color. According to the

participants, this makes it less easy to read and interpreter

the formula. Some participants argued that maybe the color

of a function block should depend on the formula’s level of

nestedness.

If a user selects (a part) of a formula in XLBlocks, the used

cells are highlighted in the spreadsheet. These cells get all the

same highlight color. Some participants suggested giving each

highlighted cell its own color and using that color to highlight

the formula’s corresponding range block.

10) Diffuseness: According to the participants, the size of

the formulas is adequate. This is remarkable because block-

based languages tend to be more diffuse [41] and programmers

value that as a negative because less code will fit on the

screen. However, spreadsheet users are accustomed to entering

their formulas in a tiny formula bar. They are relieved that

in XLBlocks, they have more space available, and because

XLBlocks focuses on one formula at a time, even complex

formulas will fit on the canvas and do not require additional

scrolling.

(a) External (b) Inline

Fig. 7. Different input types

XLBlocks handles the input of a function block in two

different ways: external (Figure 7a) and inline (Figure 7b).

Basic functions such as addition, subtraction, and division

use the inline variant. The inline variant is more natural to

read, but if several of these functions are concatenated, one

ends up with a wide formula block (see, for example, the

else clause in Figure 4b). The participants confirmed that

several binary operations after each other take more space than

needed. According to the participants, also the constant blocks

6https://support.microsoft.com/en-us/office/excel-functions-alphabetical-
b3944572-255d-4efb-bb96-c6d90033e188

(number, text, and boolean) are relatively large in relation to

their importance in the formula (see, for example, the number

block in Figure 4b).

11) Hard Mental Operations: According to the partici-

pants, working with XLBlocks does not require more mental

effort than working with formulas in the formula bar. They

provide two reasons for this:

• Because of the visualization in blocks, the formula is

split into smaller components. This makes it easier to

understand the formula. Participants do not have to un-

derstand the formula at once but can focus on a smaller

component. For example, P1 noted: ”I do not have to
split the formula into smaller parts, XLBlocks does that
for me, which makes it easier to understand.”

• In XLBlocks, the user does not have to think about the

placement of parentheses, quotes, or commas.

12) Provisionality: Participants loved the fact that they

could play with formulas in XLBlocks. P13: ”Dragging a part
of formula out of the formula is very easy” and P19: ”It is
very visual, you can drag a part out of it and paste it back in
very easily, I really like that.”

They could easily drag components out of the formula

onto the canvas and replace them with other functions or

components. A component that is dragged out of a formula

can be parked and saved on the canvas. It will not influence

the generation of the spreadsheet formula. If they were not

satisfied with their changes, they could quickly revert to the

previous state. It gave them also the opportunity to evaluate

two or more variations of the same formula. Finally, they

liked the opportunity to change the order of functions within

a formula easily.

13) Progressive Evaluation: Participants indicated that it is

possible to stop working on a formula at any time. The formula

does not need to be correct before it can be saved, which is not

the case in Excel’s formula bar. It is possible to test a part of

a formula as long as it will lead to a valid formula expression.

Seeing if a formula was finished was easy, according to the

participants. As long as there are no missing puzzle pieces, the

formula is finished. In Excel’s formula bar, it is much harder

to see if an argument of a function, a parenthesis, or comma

is missing.

��������	
��
�������

Fig. 8. Formula wizard in Excel displaying intermediate results

The participants indicated that they were missing intermedi-

ate results in XLBlocks. This is possible in the formula wizard

in Excel (see Figure 8), and they would like to see similar

functionality in XLBlocks.

295

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

C. Research Questions

In the final paragraphs of this section, we will answer the

research questions.

1) RQ1 understand a formula: Participants believe that,

for complex formulas, it is easier to understand them with

XLBlocks than with the formula bar. They have several argu-

ments for this. First, the formula’s block-based representation

splits the formula into smaller components, making it easier

to comprehend. Secondly, the parameters of a function are

named. Less knowledge of the function syntax is needed to

understand it, and lastly, if the user clicks on the formula in

XLBlocks, all cells used in the formula are highlighted in the

spreadsheet. This enables them to see which numbers are used

in the calculation.

2) RQ2 explain a formula to somebody else: According

to the participants, XLBlocks supports the user in explain-

ing the formula. When they click on a part of a formula,

XLBlocks highlight the blocks in that part of the formula.

This helps in focusing the explanation on a specific part of

the formula. Furthermore, comment blocks can be used to

document the purpose of a formula and explain components

in the formula, such as explaining the test performed in an IF

statement. Finally, by clicking on the individual range blocks

in the formula, participants could navigate the spreadsheet,

highlighting the cells used in the formula and explaining the

numbers’ functional meaning in these cells.

3) RQ3 understand the spreadsheet model as a whole:
XLblocks focuses on a single formula at a time. Nevertheless,

participants were able to get an understanding of the working

of the spreadsheet as a whole. Even if they were not familiar

with the functional domain of the spreadsheet (payroll admin-

istration). Participants could easily click from one formula to

another to see how the different formulas were related to each

other and form an opinion about the workings of the model.

Also, the possibility of automatically scrolling to the different

cells and quickly reading the labels helped to understand the

functional meaning of the calculation.

VI. DISCUSSION

A. Confusing IF statement

During the think-aloud study, several participants got con-

fused when explaining a formula that contained an IF function

(see Figure 9). In this formula, the outcome of an IF function

is multiplied with the addition of two percentages. Because

of how the blocks are visualized, the multiplication of the

sum of two percentages is displayed at the same height as

the IF statement. This led the participants to believe that the

multiplication was a part of the IF statement, leading to a

logical test that did not make any sense when translated into

business terms.

Several factors are causing this misconception.

• Both the operand and the arguments of the binary func-

tion are aligned at the top. If the multiplication symbol

and the addition of the two percentages had been aligned

��������	
 ����
�
�� ��������

Fig. 9. Several participants struggled to explain this formula

at the middle of the block, the formula would be less

confusing.

• Except for the IF function itself, all other functions in

the formula are binary functions and have the same color,

making it difficult to distinguish them from each other.

• Each function has its own border, but it is very thin with

a light gray color to simulate a 3D effect. This makes it

challenging to see where one function ends, and another

begins.

Aligning the operands and arguments at the middle of a

block and making the borders of function a fraction thicker

with a more contrasting color would prevent this kind of

misconception.

B. Giving Range Blocks Meaningful Names

As described in the previous section, several participants

suggested that the readability of formulas would benefit if

range blocks got meaningful names instead of an abstract

cell address (see also Figure 6b). In Excel, it is possible to

assign names to ranges, and several authors have advocated

the use of range names [42], [43]. However, other studies

indicate that there are inherent risks in using named ranges.

Panko and Ordway [44] identify the risk that named ranges

can appear correct in the formula but refer to the wrong

range, and McKeever [45], [46] found that the use of named

ranges decreases the ability of novice spreadsheet users to

find and correct errors. The question, if it would be possible

to implement range names in XLBlocks in such a way that it

would not hinder the debugging process and makes it easy to

see to which range the name refers, would make for interesting

future work.

C. Navigating Formulas

While performing task T06 Determine relationships between
two cells, participants noted that it is easy to navigate in

XLBlocks to a direct precedent of the current formula but

not to navigate back. This could be solved in XLBlocks by

displaying a breadcrumb trail at the top of XLBlocks’ canvas.

It would show a horizontal list of formulas that the user has

analyzed, and by clicking on any of the formulas in the list,

the user would navigate back to that formula. Another solution

that could be implemented complementary to the breadcrumb

trail would be a browser-like navigate back button.

D. Intermediate Results

When answering questions about the cognitive dimension

Progressive Evaluation (see Section V-B), participants indi-

296

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

cated that it would be even easier to evaluate formulas if,

in XLBlocks, they could see the intermediate results of the

calculation. Inspired by the work of Leber et. al [47], Figure

10 shows an example of how this could be implemented in

XLBlocks.

��������	
�� ������
����
� ���������
�	�� �� ������

�������� �
�� �� ������

��� � �� � 	�
���

Fig. 10. Showing textual formula and intermediate results in XLBlocks

If the user selects a part of a formula, a textual represen-

tation of that part of the formula is displayed at the bottom

left of the XLBlocks interface, while on the bottom right, the

result of the calculation is displayed. One could even consider

making the textual representation of the formula also editable.

We keep this as a point for future work.

E. Threats to Validity

A threat to the external validity of our think-aloud study

concerns the representativeness of the participants. Additional

studies are necessary to generalize our findings.

Furthermore, there is a risk of aptitude treatment interaction

since participants of a previous study were also invited to

participate in this study. It could be the case that only the

most positive ones responded to this request. Eventually, only

five of the twenty-one participants were also a participant in

the previous study, and judging by the number of points of

criticism we received from them during the think-aloud study

and the interview, we believe our finding were not impacted

by the aptitude treatment.

Another threat to the external validity is the representative-

ness of the comprehension tasks. We mitigated this by using

a validated set of comprehension tasks defined by Pacione et.
al [32].

Participants were selected from our network, which is a

threat to the internal validity of our study. However, we believe

the current group serves as a useful reference group, as the

persons were experienced professional spreadsheet users, came

from different companies, and worked in different functional

domains.

We fulfill the role of both developer of XLBlocks and an

interviewer during the think-aloud study. This is a threat to

the internal validity of the study. We lessened this risk by

using a validated set of comprehension tasks and using the

CDN Framework to guide our questions during the interview,

ensuring that all aspects of the usability of the XLBlocks

interface were covered.

VII. CONCLUDING REMARKS

The purpose of this paper is to research the effect of a block-

based language on formula comprehension in spreadsheets. We

extended the block-based formula editor XLBlocks with func-

tionality to generate block-based representations of existing

spreadsheet formulas. We asked participants in a think-aloud

study to perform twelve comprehension task and immediately

after they finished these tasks, interviewed them about their

experience with XLBlocks.
Participants believed that XLBlocks helped them to under-

stand formulas better. They argued that the formula’s visual-

ization in blocks helped separate smaller parts in the formula,

making it easier to comprehend. Furthermore, in XLBlocks,

each function argument had a descriptive label, making the

formula more comfortable to read. Finally, the formula’s cells

were also highlighted in the spreadsheet, making it easier to

see what was calculated by the formula.
During the study, participants had to explain three dif-

ferent formulas using XLBlocks. According to participants,

XLBlocks made it easier to do so. They could select a part

of a formula during an explanation, and XLBlocks would

highlight the relevant blocks. This helped both the participants

and the listener to focus their attention on this part of the

formula. Participants also noted that it is possible to document

a formula’s workings with the dedicated comment blocks of

XLBlocks. Finally, if a formula was part of a larger calculation

chain, users could easily navigate the formula’s precedents to

show how the formulas worked together.
This mechanic of navigating between formulas was, ac-

cording to the participants, also instrumental in gaining an

understanding of the spreadsheet’s workings. The possibility

of quickly navigating to cells in the spreadsheets by selecting

a cell reference in XLBlocks and looking up the corresponding

labels in the spreadsheet helped to gain more insight into the

spreadsheet’s problem domain.
This research gives rise to several directions for future

work. Tracing relations between formulas is instrumental in

understanding the workings of a spreadsheet. We have seen

that XLBlocks can help in finding precedents of a formula but

lacks functionality in tracing dependents. We will investigate

what would be the best way to extend XLBlocks with this

functionality. Furthermore, we will extend XLBlocks with the

possibility to show the textual representation of (a part of)

the formula and the corresponding intermediate results of the

calculation in real-time. It will enable users to receive direct

feedback on changes they make in the formula. Finally, we will

explore the possibility of giving cell references in XLBlocks

a meaningful name.

VIII. DATA AVAILABILITY

A video of XLBlocks, the source code of XLBlocks, the

spreadsheet model used during the Think-Aloud study, and

the interview questions used are available on figshare, DOI

10.6084/m9.figshare.14268017

297

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. R. Panko, “Spreadsheet errors: What we know. what we think we
can do,” arXiv preprint arXiv:0802.3457, 2008.

[2] K. J. Rothermel, C. R. Cook, M. Burnett, J. Schonfeld, T. R. Green,
and G. Rothermel, “Wysiwyt testing in the spreadsheet paradigm: An
empirical evaluation,” in Software Engineering, 2000. Proceedings of
the 2000 International Conference on. IEEE, 2000, pp. 230–239.

[3] S. Roy, F. Hermans, and A. van Deursen, “Spreadsheet testing in
practice,” in Software Analysis, Evolution and Reengineering (SANER),
2017 IEEE 24th International Conference on. IEEE, 2017, pp. 338–
348.

[4] F. Hermans, M. Pinzger, and A. Deursen, ECOOP 2010 –
Object-Oriented Programming: 24th European Conference, Maribor,
Slovenia, June 21-25, 2010. Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, ch. Automatically Extracting
Class Diagrams from Spreadsheets, pp. 52–75. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14107-2 4

[5] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring classsheet
models from spreadsheets,” in Visual Languages and Human-Centric
Computing (VL/HCC), 2010 IEEE Symposium on. IEEE, 2010, pp.
93–100.

[6] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and refactoring
code smells in spreadsheet formulas,” Empirical Software Engineering,
pp. 1–27, 2014.

[7] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva, “Towards a catalog
of spreadsheet smells,” in Computational Science and Its Applications–
ICCSA 2012. Springer, 2012, pp. 202–216.

[8] D. W. Barowy, D. Gochev, and E. D. Berger, “Checkcell: Data debugging
for spreadsheets,” in ACM SIGPLAN Notices, vol. 49, no. 10. ACM,
2014, pp. 507–523.

[9] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in
Software Maintenance (ICSM), 2012 28th IEEE International Confer-
ence on. IEEE, 2012, pp. 399–409.

[10] F. Hermans and D. Dig, “Bumblebee: a refactoring environment for
spreadsheet formulas,” in Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering. ACM,
2014, pp. 747–750.

[11] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting professional
spreadsheet users by generating leveled dataflow diagrams,” in Proceed-
ings of the 33rd International Conference on Software Engineering.
ACM, 2011, pp. 451–460.

[12] B. Jansen and F. Hermans, “Xlblocks: a block-based formula editor for
spreadsheet formulas,” in 2019 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 2019, pp. 55–63.

[13] A. F. Blackwell, C. Britton, A. Cox, T. R. Green, C. Gurr, G. Kadoda,
M. Kutar, M. Loomes, C. L. Nehaniv, M. Petre et al., “Cognitive
dimensions of notations: Design tools for cognitive technology,” in
International Conference on Cognitive Technology. Springer, 2001,
pp. 325–341.

[14] M. M. Burnett, J. W. Atwood, R. W. Djang, J. Reichwein, H. J. Gottfried,
and S. Yang, “Forms/3: A first-order visual language to explore the
boundaries of the spreadsheet paradigm,” Journal of functional program-
ming, vol. 11, no. 2, pp. 155–206, 2001.

[15] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert, “Visual
specifications of correct spreadsheets,” in Visual Languages and Human-
Centric Computing, 2005 IEEE Symposium on. IEEE, 2005, pp. 189–
196.

[16] G. Engels and M. Erwig, “Classsheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in Proceedings
of the 20th IEEE/ACM international Conference on Automated software
engineering. ACM, 2005, pp. 124–133.

[17] J. Cunha, J. Mendes, J. Saraiva, and J. P. Fernandes, “Embedding
and evolution of spreadsheet models in spreadsheet systems,” in 2011
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Sep. 2011, pp. 179–186.

[18] R. Leitão and C. Roast, “Developing visualisations for spreadsheet
formulae: towards increasing the accessibility of science, technology,
engineering and maths subjects,” in 9th Workshop on Mathematical User
Interfaces, 2014.

[19] A. Sarkar, A. D. Gordon, S. P. Jones, and N. Toronto, “Calculation view:
multiple-representation editing in spreadsheets,” in 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC),
Oct 2018, pp. 85–93.

[20] E. P. Glinert, “Towards second generation interactive graphical pro-
gramming environments,” in Proceedings of IEEE Workshop onVisual
Language. IEEE CS Press, Silver Spring, MD, 1986, pp. 61–70.

[21] M. Conway, R. Pausch, R. Gossweiler, and T. Burnette, “Alice: a
rapid prototyping system for building virtual environments,” in CHI
Conference Companion. Citeseer, 1994, pp. 295–296.

[22] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for all,” Commun. ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592779

[23] N. Fraser, “Ten things we’ve learned from blockly,” in 2015 IEEE Blocks
and Beyond Workshop (Blocks and Beyond), Oct 2015, pp. 49–50.

[24] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating coblox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’18. New York, NY, USA: ACM, 2018, pp. 366:1–366:12.
[Online]. Available: http://doi.acm.org/10.1145/3173574.3173940

[25] D. Weintrop, H. Killen, T. Munzar, and B. Franke, “Block-based
comprehension: Exploring and explaining student outcomes from a
read-only block-based exam,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’19. New
York, NY, USA: Association for Computing Machinery, 2019, pp. 1218–
1224. [Online]. Available: https://doi.org/10.1145/3287324.3287348

[26] R. Holwerda and F. Hermans, “Towards blocks-based prototyping of
web applications,” in 2017 IEEE Blocks and Beyond Workshop (B B),
Oct 2017, pp. 41–44.

[27] E. Aivaloglou, D. Hoepelman, and F. Hermans, “Parsing
excel formulas: A grammar and its application on 4 large
datasets,” Journal of Software: Evolution and Process, vol. 29,
no. 12, p. e1895, 2017, e1895 smr.1895. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1895

[28] XLParser web demo. Accessed: 2021-01-29. [Online]. Available:
https://xlparser.perfectxl.nl/demo/

[29] Javascript API for Office. Accessed: 2021-01-29. [On-
line]. Available: https://docs.microsoft.com/en-us/office/dev/add-
ins/reference/javascript-api-for-office

[30] Blockly. Accessed: 2021-01-29. [Online]. Available:
https://developers.google.com/blockly

[31] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and related
emails: A dataset and analysis,” in Proceedings of the 37th International
Conference on Software Engineering-Volume 2. IEEE Press, 2015, pp.
7–16.

[32] M. J. Pacione, M. Roper, and M. Wood, “A novel software visualisation
model to support software comprehension,” in Reverse Engineering,
2004. Proceedings. 11th Working Conference on. IEEE, 2004, pp.
70–79.

[33] F. Hermans and E. Aivaloglou, “Do code smells hamper novice pro-
gramming? a controlled experiment on scratch programs,” in Program
Comprehension (ICPC), 2016 IEEE 24th International Conference on.
IEEE, 2016, pp. 1–10.

[34] B. Cornelissen, A. Zaidman, and A. Van Deursen, “A controlled experi-
ment for program comprehension through trace visualization,” Software
Engineering, IEEE Transactions on, vol. 37, no. 3, pp. 341–355, 2011.

[35] B. Jansen and F. Hermans, “The effect of delocalized plans on spread-
sheet comprehension: a controlled experiment,” in Proceedings of the
25th International Conference on Program Comprehension. IEEE
Press, 2017, pp. 286–296.

[36] M. Kauhanen and R. Biddle, “Cognitive dimensions of a game scripting
tool,” in Proceedings of the 2007 conference on Future Play. ACM,
2007, pp. 97–104.

[37] M. Bellingham, S. Holland, and P. Mulholland, “A cognitive dimensions
analysis of interaction design for algorithmic composition software,”
2014.

[38] F. Turbak, D. Wolber, and P. Medlock-Walton, “The design of naming
features in app inventor 2,” in 2014 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). IEEE, 2014, pp.
129–132.

[39] R. Holwerda and F. Hermans, “A usability analysis of blocks-based pro-
gramming editors using cognitive dimensions,” in 2018 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), Oct
2018, pp. 217–225.

298

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

[40] A. F. Blackwell and T. R. Green, “A cognitive dimensions questionnaire
optimised for users.” in PPIG, vol. 13, 2000.

[41] T. R. G. Green and M. Petre, “Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework,” Journal of Visual
Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[42] S. Kruck, “Testing spreadsheet accuracy theory,” Information and Soft-
ware Technology, vol. 48, no. 3, pp. 204–213, 2006.

[43] P. L. Bewig, “How do you know your spreadsheet is right?” arXiv
preprint arXiv:1301.5878, 2013.

[44] R. R. Panko and N. Ordway, “Sarbanes-oxley: What about all the
spreadsheets?” arXiv preprint arXiv:0804.0797, 2008.

[45] R. McKeever, K. McDaid, and B. Bishop, “An exploratory analysis of
the impact of named ranges on the debugging performance of novice
users,” 2009.

[46] R. McKeever and K. McDaid, “How do range names hinder novice
spreadsheet debugging performance?” 2010.

[47] Ž. Leber, M. Črepinek, and T. Kosar, “Simultaneous multiple repre-
sentation editing environment for primary school education,” in 2019
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2019, pp. 175–179.

299

Authorized licensed use limited to: TU Delft Library. Downloaded on October 06,2021 at 10:57:38 UTC from IEEE Xplore. Restrictions apply.

		2021-06-25T06:20:33-0400
	Preflight Ticket Signature

