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a b s t r a c t

Estimation of the breathing effort and relevant lung parameters of a ventilated patient is essential
to keep track of a patient’s clinical condition. The aim of this paper is to increase estimation
accuracy through experiment design. The main method is an experiment design approach across
multiple breaths within a linear regression framework to accurately identify the patient’s condition.
Identifiability and persistence of excitation are used to formulate an estimation problem with a unique
solution. Furthermore, Fisher information is used for assessing the parameters sensitivity to slight
changes of the ventilator settings to improve the variance of the estimation. The estimation method is
applied to simulated patients who breathe regularly but also to patients who have variable breathing
patterns. A virtual experiment is conducted for both situations to generate estimation results. The
results are analyzed using mathematical tools and show that uniquely estimating the lung parameters
and breathing effort over multiple breaths for both regularly and variably breathing patients is possible
in the presented framework. The proposed estimation method obtains clinically relevant estimates for
a large set of breathing disturbances from the simulation case-study.

© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mechanical ventilators are mechatronic systems utilized in In-
ensive Care Units (ICUs) to provide life-saving therapy to support
atients who cannot fully breathe independently. Especially dur-
ng the flu season or a world-wide pandemic such as the SARS or
OVID-19 pandemic, mechanical ventilation has emerged as a vi-
al lifeline for many patients worldwide (Wunsch, 2020). The pri-
ary goal of mechanical ventilation is to ensure oxygenation and
arbon dioxide elimination for the patient as stated in Warner
nd Patel (2013). Patients that are fully sedated rely entirely
n mechanical ventilation, while patients that are spontaneously
reathing receive only ventilatory support.
Gaining information about the patient’s clinical condition is

rucial to achieve the most effective patient treatment. For tai-
oring individualized treatment plans, it is necessary to monitor
he patient’s condition continuously over time. Directly assessing
he patient’s clinical state through measurements is challeng-
ng. Insight into the patient’s condition can be inferred indi-
ectly from measurements using parametric patient models of
he lungs. In particular, parametric patient models, such as the
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nc-nd/4.0/).
one-compartmental lung model (Bates, 2009), allow for insight-
ful qualification of key factors affecting the patient’s condition,
including lung compliance and airway resistance. Both these pa-
rameters are important in a clinical context (Brochard et al.,
2012). In practice, these estimates are readily obtained for fully
sedated patients using recursive least squares algorithms (Avan-
zolini, Barbini, Cappello, Cevenini, & Chiari, 1997; Borrello, 2001)
or through static estimates based on delta-pressure/delta-volume
and peak-flows. These methods are readily available in commer-
cial ventilators. However, these methods produce inaccurate re-
sults for the parameter estimation when applied to spontaneously
breathing patients. These inaccuracies arise from omission of the
patient’s breathing as stated by Redmond, Chiew, Major, and
Chase (2019).

From an estimation perspective, it is essential to include the
unknown spontaneous breathing effort of the patient in the es-
timation problem to obtain accurate estimates of the patient
parameters (van de Kamp, Hunnekens, van de Wouw, & Oomen,
2023). In addition, information about the patient’s breathing ef-
fort also represents intrinsic value from a clinical perspective. It
contributes to patient monitoring and to the weaning process,
i.e., gradually reducing ventilatory support. Simultaneously esti-
mating patient parameters and breathing effort is possible if prior
knowledge on the breathing effort is imposed (van de Kamp et al.,
2023). Imposing such prior knowledge in parameter estimation
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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approaches is challenging since the estimated parameters highly
depend on the prior which is often uncertain and too patient- and
ventilator-specific.

A set of requirements for uniquely estimating the patient’s
ondition and breathing effort are defined. These requirements
nclude the following:

i Simultaneously and uniquely estimating the patient’s con-
dition and the breathing effort with a maximum error in
the accuracy of 20%.1

ii While the patient’s breathing effort shape is considered
to be free, the variability of the patient’s breathing effort
across breaths can be captured by additive disturbances on
top of the breathing effort.

iii The estimation method is allowed to only minimally in-
tervene with the treatment and thereby not decrease the
patient’s comfort.

Breathing effort estimation has received considerable research
interest given its importance and inherent challenges. In Petersen,
Graßhoff, Eger, and Rostalski (2020), Reinders, Hunnekens, van de
Wouw, and Oomen (2022), Schauer and Simanski (2021) and Vi-
cario et al. (2016), a specific breathing effort shape is enforced via
parameterization or regularization of the breathing effort. These
methods conflict with requirement (ii), because a breathing effort
shape is enforced, which results in a loss of generality. In Navajas
et al. (2000), a different approach is pursued, where it is assumed
that the breathing effort is identical across breaths. By adjusting
the ventilator settings over those breaths, the lung compliance
and resistance are estimated accurately. This deteriorates the
patient’s comfort, hence, this violates requirement (iii).

Although important progress has been made to estimate the
patient parameters and the patient breathing effort, at present
the required estimation accuracy is not achievable while simul-
taneously satisfying requirements i-iii.

The main contribution of this paper is the presentation of a
framework that is used to improve patient parameter estimation
over multiple breaths by selecting appropriate target pressures
for the ventilator. Theory from the field of system identifica-
tion is applied to the case of mechanical ventilation, which is
to the best of our knowledge, not yet done to this extent. To
this end, an optimal experiment design approach is developed
that integrates clinical knowledge to determine inputs that are
comfortable for the patient and result in accurate estimates. The
method presented is a step towards improved patient estimation
by understanding the problem better and offering valuable future
research directions.

The outline of this paper is as follows. First, in Section 2, the
considered patient and breathing effort model together with the
regression framework is presented. Subsequently, in Section 3,
a linear regression framework for multi-breath estimation is in-
troduced. In Section 4, optimal experiment design tools are used
to find the optimal ventilator target pressure for estimation of
the lung resistance, lung compliance, and breathing effort under
the condition that the breathing effort is equal across patient’s
breaths. Thereafter, in Section 5, a theoretical analysis together
with a simulation case study is conducted on a multi-breath esti-
mation approach with a variable breathing effort across breaths.
Finally, in Section 6, conclusions and recommendations for future
work are presented.

1 The 20% maximum error represents an indicative threshold established
hrough consultations with medical professionals and hospitals. While this
pecific value may not be explicitly supported or refuted in existing literature,
t serves as a practical guideline and makes the methodology explicit. It is
mportant to note that the threshold indicates that large changes over time
re more important for ensuring patient comfort and treatment than exactly
nowing the patient’s condition.
2

Fig. 1. Schematic representation of a mechanical ventilator that generates the
target pressure ptarget on the left and the linear one-compartmental lung model
on the right. The schematic representation of the interconnection between
ventilator and patient is omitted for simplicity.

2. Breathing effort estimation in a linear regression frame-
work

In this section, a linear regression framework that uses mul-
tiple breaths to estimate the patient parameters and breathing
effort is introduced. In Section 2.1, a patient model is presented
that contains the important patient parameters. Subsequently, in
Section 2.2, the linear regression framework is introduced.

2.1. Patient modeling

The patient model utilized in this paper is the linear one-
compartmental lung model as described in Bates (2009). This
model presents a simplified representation of pulmonary and
airway dynamics and stands out for its clinical applicability due
to the physiological parameters: the lung resistance Rlung and
lung compliance Clung (Brochard et al., 2012). Fig. 1 provides
a schematic overview that includes all signals and parameters
associated with the model. The model is a gray box model with
certain patient parameters, which are derived below. Finally, an
input–output model is presented, where the inputs, outputs, and
exogenous disturbance are defined.

The patient model consists of two components: the airway and
the lungs. The airway model describes the pressure drop over the
airway based on the airflow in and out of the lungs. The lung
model describes the change in lung pressure due to the volume
change inside the lungs together with the patient’s breathing
effort. The pressure inside the patient’s lungs is modeled as

plung (t) =
1

Clung
Vpat (t) + plung (t0) + pmus(t), (1)

where Vpat (t) =
∫ t
t0
Qpat (τ )dτ + Vpat (t0) represents the current

olume inside the patient’s lungs, Clung the constant lung com-
liance, Qpat (t) the flow towards the patient’s lungs, plung (t0)
he initial lung pressure, and pmus(t) denotes the patient’s time-
arying breathing effort. The breathing effort pmus affects the lung
ressure plung due to contraction and relaxation of the respiratory
uscles and is modeled as an additive exogenous disturbance in

1). In practice, the initial lung volume is assumed to be zero at
he start of a mechanical breath. Therefore, Vpat (t) represents the
dditional air volume relative to the start of a mechanical breath.
The patient’s airway is represented by a linear resistance Rlung ,

stablishing the relation between the airway pressure, lung pres-
ure, and the patient flow as

pat (t) =
paw(t) − plung (t)

Rlung
. (2)

The ventilator on the left side of Fig. 1 produces a target pres-
sure ptarget that affects the airway pressure paw , which leads to
changes in the patient flow Qpat . The pressure difference between
the target pressure and the airway pressure is predominantly
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determined by the hose characteristics (that connect the patient
and ventilator) and the internal pressure control loops of the
ventilator. The hose configuration determines the (non-linear)
hose resistance, hose compliance, and leakage which results in
a pressure drop. Two common hose configurations are the single
hose system with a passive leak for expiration (Reinders et al.,
2022) and the double hose system with an active expiration
valve (van Diepen et al., 2022).

Combining the expressions of the lung pressure (1) and the
atient flow (2) results in

aw(t) =
1

Clung
Vpat (t) + RlungQpat (t) + plung (t0) + pmus(t). (3)

he lung compliance Clung , the lung resistance Rlung , the initial
ung pressure plung (t0), and the breathing effort pmus(t) are un-
nown in practice. The signals that are in general measured
re the airway pressure paw(t), the patient flow Qpat (t), and the
olume Vpat (t). Discretization of (3) results in

aw(k) =
1

Clung
Vpat (k) + RlungQpat (k) + plung (1) + pmus(k), (4)

here k is the discrete sampling number and plung (1) the initial
ung pressure. The model (4) is used in the estimation problem
s presented in Section 2.2. The model is cast in the following
eneric form:

(k) = G(ξ )u(k) + d(k), (5)

here for the model as described in (4), y(k) := paw(k) is a
easured output, G(ξ ) =

[
ξ1 ξ2

]
:=

[
1/Clung Rlung

]
∈ R1×2

the (static) transfer function from u to y, which includes the
patient parameters, u(k) :=

[
Vpat (k) Qpat (k)

]⊤ the measured
input signals, and d(k) := plung (1) + pmus(k) the unknown exoge-
nous disturbance. In the next section, an estimation perspective
is developed to identify the patient parameters in G(ξ ) and the
exogenous disturbance d(k) simultaneously. It is important to
note that more complex lung models (as long as they are linear
in their parameters) can be utilized with the following estimation
method or with an extension thereof.

2.2. Linear regression framework for breathing effort estimation

In this section, an estimation perspective on spontaneously
breathing patients is presented, where a linear regression frame-
work based on a single breath is introduced and analyzed.

2.2.1. Introduction to the estimation problem
The primary objective is to achieve accurate estimates of both

patient parameters and the exogenous disturbances within the
gray box model as presented in (5). These estimates are important
for adjusting the treatment in response to the patient’s evolv-
ing condition. Ideally, this goal is accomplished by only using
the readily available measured signals, i.e., the airway pressure
paw(k), the patient Qpat (k), and the patient volume Vpat (k). These
ignals are measured for multiple breaths m of length N .
Parameter estimation over multiple breaths instead of a sin-

le breath enables us to formulate less restrictive constraints
n the breathing effort. In a multi-breath approach, constraints
ver multiple breaths are formulated for the variation between
reaths, hence, the shape of a single patient breathing effort
s completely free. Furthermore, enforcing constraints on the
ariability of the breathing effort aligns with clinical perspective.
he breathing effort variation is seen as a potential marker for
he patients to start breathing independently again (El-Khatib,

amaleddine, Soubra, & Muallem, 2001).

3

A multiple breath estimation approach leads to the following
odel structure:

β : X → Y , Y = Xβ (6)

with

Y =
[
paw(1) · · · paw(mN)

]⊤
,

X =

⎡⎢⎣ Vpat (1) Qpat (1)
...

... ImN×mN
Vpat (mN) Qpat (mN)

⎤⎥⎦ ,
=

[
ξ1 ξ2 d(1) . . . d(mN)

]⊤
∈ RmN+2

=

[
1

Clung
Rlung p̄mus(1) . . . p̄mus(mN)

]⊤

.

(7)

Here, p̄mus(k) = pmus(k) + plung (1) denotes the sum of the patient
effort and the initial lung pressure, N denotes the number of
samples within a single breath, and m denotes the number of
breaths. The data acquired during multiple breaths m is captured
y D = {X, Y }.
In the estimation procedure, the aim is to select the member

rom the model set Mβ that best reflects the patient given the
ataset D. Assume that the true system is given by the parameter
ector βo. Hence, measurements of the true system are expressed
s:

= Xβo + v, (8)

where X and Y are the regressor and output, respectively, that are
related through the exact parameters βo. The measured output Y
is available being contaminated with noise vector v. The noise
vector v is i.i.d. normally distributed with mean 0 and variance
σ 2
v . To estimate the parameters, the least-squares cost function

J(β̂) =

mN∑
k=1

(
paw(k) − p̂aw(k)

)2
= ∥Y − X β̂∥

2
2 (9)

is considered. Here, paw(k) corresponds to the measured airway
pressure generated by (8) and p̂aw(k) corresponds to the esti-
mated airway pressure generated by the model (4) with the esti-
mated lung resistance R̂lung , the estimated lung compliance Ĉlung ,
and the estimated breathing effort p̂mus(k). The parameter vector
that minimizes the cost function is found analytically (Hastie,
Tibshirani, & Friedman, 2009) and is given by

β̂ = (X⊤X)−1X⊤Y . (10)

It is important to note that the solution β̂ is only unique if (X⊤X)
is invertible, which is not the case for the estimation problem
as defined above. By definition, the system is underdetermined,
i.e., X is a wide matrix (X ∈ RmN×mN+2), meaning that β̂ is
non-unique.

2.2.2. Non-uniqueness of parameter estimates
A non-unique solution of the parameter estimates is due to

identifiability of the model structure and/or informativeness of
the inputs (Ljung, 1999). Given the underdetermined system, the
initial emphasis is on the model structure and the relation with
to the (lack of the) model property of identifiability.

Definition 1. The parameterization Mβ is identifiable if for all
β1 and β2 it holds that

Mβ1 = Mβ2 ⇒ β1 = β2, (11)

where the model equality is defined as

M = M ⇔ M (X) = M (X), ∀X . (12)
β1 β2 β1 β2
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Fig. 2. Three combinations of Ĉ , R̂, (Ĉ = 80 [ml/mbar], R̂ = 0.083 [mbar
/ml]( )), (Ĉ = 80 [ml/mbar], R̂ = 0.042 [mbar s/ml]( )), (Ĉ = 40
ml/mbar], R̂ = 0.083 [mbar s/ml]( )) with accompanying breathing effort
p̂mus leading to the same airway pressure paw ( ). This illustrates that the
odel structure in (7) is not identifiable.

Identifiability is a property of the model structure and remains
ndependent of the data. In this case, the model structure is not
dentifiable, because multiple regressor vectors produce identical
nput–output pairs, which is caused by the size of X . A physical
nterpretation of the lack of identifiability is given using (4). It
s observed that for a combination of Ĉlung and R̂lung , a breathing
ffort exists p̂mus(k) such that paw(k) = p̂aw(k) ∀k ∈ [1,N],
amely p̂mus = paw(k) −

(
1

Ĉlung
Vpat (k) + R̂lungQpat (k) + p̂lung (1)

)
.

his holds true even if the parametric estimates R̂lung and Ĉlung are
ncorrect. In Fig. 2, this is illustrated by showing three different
arameter combinations that yield the same airway pressure. This
urther underscores that the parameterization lacks identifiabil-
ty. Thus, the model structure requires adjustments to overcome
he identifiability challenge. An option often used in practice is to
ssume that a patient is not actively breathing; hereby, reducing
he parameter vector significantly because a large part is known,
.e., pmus(k) = 0 ∀k. This leads to an identifiable model structure
s shown in Example 1.

xample 1. Assume that the patient is fully sedated such that
here is no breathing effort, i.e., pmus(k) = 0 ∀k. In this scenario,
he regression problem simplifies to:

paw(1)
...

paw(N)

⎤⎥⎦
 
Y

=

⎡⎢⎣Vpat (1) Qpat (1)
...

...

Vpat (N) Qpat (N)

⎤⎥⎦
  

X

[ 1
Clung
Rlung

]
  

β

. (13)

In the modified regression problem, it is observed that the model
structure is identifiable, because the system is overdetermined,
resulting in a tall X ∈ RN×2 matrix. Each parameter vector β
produces a distinct output Y for inputs X under the assumption
that the columns of X⊤X are linearly independent.

The case of Example 1 is straightforward. Hence, an extended
solution is developed. An identifiable model structure for actively
breathing patients can be achieved by imposing constraints on
the breathing effort over a single breath or by imposing con-
straints on the breathing effort over multiple breaths instead of
leaving p̂mus(k) completely free.

An identifiable model structure is shown in Fig. 3, where the
parameter vector β is reduced to β̄ by including prior knowledge
on a single breathing effort, i.e., the breathing effort estimate p̂mus
is not described at every sampling instant k, but parameterized
4

Fig. 3. Enforcing constraints on the breathing effort shape reduces the amount
of parameters to be estimated β̄ , e.g., basis functions, sparse estimation.

Fig. 4. Estimation over multiple breaths with constraints over subsequent
breaths to increase information, e.g., a breath does not vary from the previous
breath(s).

by a functional description with a lower number of parameters. A
different identifiable model structure is shown in Fig. 4 where the
length of X̆ is increased while not increasing or only slightly in-
reasing the parameter vector β̆ . In the context of breathing effort
estimation, this is accomplished by estimating multiple breaths
while parameterizing the variability of the breathing effort.

The options visualized in Figs. 3 and 4 result in an overde-
termined system, i.e., in tall X-matrices and identifiable model
structures. Another model property that is crucial for obtaining
unique solutions is informativeness, which is made explicit by the
condition of persistence of excitation.

Definition 2. A dataset D is persistently exciting with respect to
the identifiable parameterization Mβ if, for any two realizations
Mβ1 , Mβ2 satisfying

Mβ1 (X) − Mβ2 (X) = 0, (14)

it holds that β1 = β2.

Informativeness is a property of the model that is directly
linked to the data. Non-informative input data result in a column
rank drop in X , which leads to non-unique estimates.

Remark. Note that the uniqueness properties; identifiability and
informativeness, are respectively linked to structural identifiabil-
ity and practical identifiability which might be more known in the
field of mechanical ventilation (Schranz, Docherty, Chiew, Chase,
& Möller, 2012).

2.2.3. Solutions for multi-breath estimation
In multi-breath estimation, four solutions result in unique

parameter estimates. These possibilities are shown in Fig. 5 and
below all possibilities are discussed briefly in terms of their model
assumptions and properties.

Starting in the top left of Fig. 5, quadrant I, it shows that
there are no variations in the breathing effort and target pressure.
Therefore a multi-breath approach is redundant. To obtain an
identifiable model structure, it is necessary to parameterize the
shape of the breathing effort to decrease the parameter vector.
Informativeness of the input data is guaranteed as long as the
target pressure is not constant during a breath (van de Kamp
et al., 2023).
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Fig. 5. Diagram that shows four different possibilities regarding multiple breath
estimation. The division is made based on target pressure and patient breathing
effort.

In quadrant II, the top right of Fig. 5, the breathing effort is
ariable across breaths. In this situation, a multi-breath approach
s employed where a parameterization of the breathing effort
ariability is used to make the model structure identifiable. In-
ormativeness of the input data cannot be enforced because the
atients control their own breathing. A unique estimate is found
hen the patient is breathing with a large (enough) variability;
owever, this variability is unknown, making it inherently chal-
enging to conclude whether estimates are accurate in practice in
uadrant II.
In the bottom left of Fig. 5, quadrant III, the target pressure

f the ventilator varies over breaths while the patient effort does
ot vary over breaths. The model structure is made identifiable
y the model assumption that the breathing effort is equal across
reaths, which is discussed in further detail in Section 3. Informa-
iveness of inputs can be guaranteed by designing target pressure
ariations across breaths. Hereby, tools from experiment design
an be used to design a target pressure signal that guarantees
oth patient’s comfort and persistence of excitation of specific
rder.
In quadrant IV, the bottom right of Fig. 5, both the target

ressure and breathing effort are varying across breaths. Identifi-
bility is guaranteed by the model assumption that the variation
f breathing effort over multiple breaths is parameterized. Note
hat guaranteeing persistence of excitation is more challenging
ompared to quadrant III because a patient, which cannot be
anipulated, can counteract the designed inputs, which results

n information loss.
In practice, it is challenging to derive which quadrant scenario

s occurring between patient and ventilator. Information about
he ventilator settings, the airway pressure, and patient flow are
ecessary to make a distinction between the different quadrants.
djustments to the ventilator settings induce changes to the
irway pressure and patient flow, while a different breathing
ffort mainly induces a change in patient flow. If the ventilator
ettings remain unchanged, but the patient flow differs, then
he breathing effort is varying, hence, quadrant II is occurring.
he distinction between quadrant III and quadrant IV is more
hallenging and requires analysis over sets of multiple breathing
ycles.
In remainder of this paper, quadrant III is further analyzed

n Sections 3 and 4. In Section 5, an analysis is conducted for
uadrant IV where the breathing effort and the target pressure
re both varying. Quadrant II is left as future research due to the
hallenging nature of the estimation regarding informativeness of
he data.
5

3. Linear regression framework for multi-breath estimation

In this section, the model structure of the multi-breath esti-
mation approach is introduced and their model properties, iden-
tifiability and informativeness are discussed.

The multi-breath model structure in (7) is made identifiable
by assuming that the breathing effort stays equal across breaths.
Note that the model assumption (equal breathing efforts across
breaths denoted by the double IN ) is more restrictive for larger
values of m; therefore, the emphasis lies on the estimation over
two breaths (m = 2). This leads to the following model structure:

Mβ̆ : Y̆ = X̆ β̆ (15)

with

Y̆⊤
=

[
paw(1) · · · paw(2N)

]
,

X̆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Vpat (1) Qpat (1)
...

... IN
Vpat (N) Qpat (N)

Vpat (N + 1) Qpat (N + 1)
...

... IN
Vpat (2N) Qpat (2N)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(16)

˘ ⊤
=

[
1

Clung
Rlung p̄mus(1) . . . p̄mus(N)

]
∈ RN+2.

he optimal parameter estimates are computed with the least
quares solution:

ˆ̆
=

(
X̆⊤X̆

)−1
X̆⊤Y̆ , (17)

where Y̆ is the measured output from the noiseless data-
generating system,

Y̆ = X̆ β̆o + v, (18)

where β̆o is denoted as the true parameter vector. The noise
vector v is i.i.d. normally distributed with mean 0 and variance
σ 2
v . Additional noise use cases are considered in Section 5. The

size of X̆ is tall, meaning that there are more data points than
parameters to be estimated. Thus, the model structure is identi-
fiable. To guarantee unique parameter estimates, it is necessary
to also check the informativeness of the input. It can be shown
that for two subsequent breaths with equal patient breathing
efforts (quadrant III in Fig. 5), a unique solution can be found if
the patient flow is different across breaths. First, let us introduce
an assumption before the condition for a unique estimate is
mathematically formalized in a theorem.

Assumption 1. The patient flow and volume satisfy the inequal-
ity

V i
pat ̸= cQ i

pat

with c being a constant and the subscript i standing for the ith
breath.

Remark. The patient flow assumption in Assumption 1 is not
stringent because practically valid breathing cycles satisfy the
inequality.

The uniqueness of the estimation problem is formalized in the
following theorem:

Theorem 1. Consider the nominal data generating system in (18)
together with the proposed estimation model structure in (15) and
(16) and Assumption 1. If

Q 1
− Q 2

̸= 0,
pat pat
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where Q 1
pat is the flow of the first breath and Q 2

pat of the second
reath, then the estimation problem in (15) and (16) with the data
enerating system (18) results in a full column rank matrix X̆ . This

ensures persistence of excitation of sufficient order and results in
unique parameter estimates.

A proof of Theorem 1 is provided in Appendix. Thus, the-
oretically a unique solution is found if the norm condition is
satisfied, i.e., the flow of the first and second breath is different
(Q 1

pat ̸= Q 2
pat ). In practice, a small deviation might raise numerical

issues due to ill-conditioning of the matrix X̆⊤X̆; therefore, it is
convenient to bound the condition in Theorem 1 from below by
α. Furthermore, it is crucial to note that only the target pressure
ptarget influences the patient flow Qpat when the breathing effort
pmus stays the same across breaths. The target pressure can be
manipulated by the user, which makes quadrant III in Fig. 5
an experiment design problem that is tackled in the upcoming
section.

4. Optimal experiment design of the target pressure for me-
chanically ventilated patients

In this section, the optimal experiment design framework is
introduced for the patient estimation problem as introduced in
Section 3. In Section 4.1, the criteria for the optimal experiment
design are introduced. Thereafter, in Section 4.2, the optimization
problem for the Fisher information matrix is introduced.

4.1. Experiment design problem definition

In the multiple breath estimation approach, the goal is to find
accurate estimates of the breathing effort and the patient param-
eters simultaneously. A unique solution exists if Theorem 1 holds,
which can be realized by designing two ventilator targets that are
different from each other while the breathing effort stays equal
across breaths. Here, it assumed that the patient does not react
to changes in ventilator settings on a time-scale of one breath. A
latency of few breaths exists before the patient starts adapting to
the new situation (Viale et al., 1998). A high estimation accuracy
for an unbiased estimator corresponds to a low covariance of
the parameter estimates. Therefore, we strive to minimize the
covariance. Below, the covariance of the estimation problem is
introduced and translated to scalar optimality measures via the
Fisher Information matrix (FIM). This enables us to formulate an
optimization problem that designs ventilator targets that lead to
accurate estimates.

The sample covariance matrix of the unique solution is given
by

cov
(

ˆ̆
β

)
:= E

[(
β̆o −

ˆ̆
β

)(
β̆o −

ˆ̆
β

)⊤
]

=

(
X̆⊤X̆

)−1
σ̂ 2
v , (19)

where σ̂ 2
v is the estimated sample variance

σ̂ 2
v =

1
mN − z − 1

∥Y̆ − X̆ ˆ̆
β∥

2
2 (20)

with z the amount of parameters that need to be estimated,
i.e., the length of β̆ . let ψ be the estimator of a multi-parameter
estimation problem then the covariance is bounded from below
by the Cramer–Rao lower bound (Rao, 1992)

covβ̆ (ψ(β̆)) ≥
∂ψ

∂β̆
I(β̆)−1 ∂ψ

∂β̆

⊤

, (21)

here I(β̆) is the Fisher Information Matrix. Let ψ be an unbiased
stimator, i.e., ψ(β̆) = β̆o, then the bound simplifies to

ov (ψ(β̆)) ≥ I(β̆ )−1. (22)
β̆ o

6

This shows that instead of minimizing the covariance, it is pos-
sible to maximize the information content within the FIM. Maxi-
mizing in terms of optimality conditions is discussed below. The
data generating system in (18) and the module structure in (15)
and (16) result in an unbiased estimate. The fisher information
matrix for the formulated regression problem with (18), (15), and
(16) is given by

I = X̆⊤X̆/σ̂ 2
v . (23)

This result shows that the information matrix solely depends on
the inputs X̆ and not on the parameter vector β̆ or the output Y̆ .
Hence, the covariance can be minimized by optimally designing
the inputs X̆ without having knowledge about the outputs Y̆ .

The information content within the FIM (see (23)) can be
maximized via scalar optimality measures, including:

• A-optimality: minimize the trace of (X̆⊤X̆)−1.
• D-optimality: minimize the determinant of (X̆⊤X̆)−1.
• E-optimality: maximize the minimum eigenvalue of

(X̆⊤X̆)−1.

Throughout this paper, the A-optimality measure is used as an
example. Hereby, the aim is to reduce covariance of the estimated
parameters by minimizing the average variance of the estimated

parameters, i.e., minimizing the trace of
(
X̆⊤X̆

)−1
.

4.2. FIM optimization in mechanical ventilated patients

The Fisher information matrix I(X̆) consists of the patient
flow and the volume response. These signals are a result of
the induced pressure difference between ventilator and patient
and the patient characteristics itself. In a general experiment
design problem, first an optimal spectrum of inputs is found via
optimization (Rojas, Welsh, Goodwin, & Feuer, 2007), and subse-
quently, viable inputs according to time constraints are sampled
from the optimal spectrum. In the case of breathing effort estima-
tion, optimization of the target pressure’s spectrum is redundant,
because the signal is constraint tightly by a set of parameters.
Furthermore, there are limits to adjusting the ventilator settings
due to patient comfort and treatment. This leads to the following
constrained optimization problem:

min
IPAP,trise

tr
{
(X̆⊤X̆)−1

}
,

s.t. α < ∥Q 1
pat − Q 2

pat∥ ≤ γ ,

Q i
pat = f1(pitarget , p

i
aw, p

i
lung ),

pitarget = f2(PEEP, IPAP, trise, tfall, Tinsp, Texp).

(24)

The target pressure ptarget is modeled as a first-order filtered block
wave, as shown in Fig. 6, defined by six parameters, where PEEP,
IPAP are the low and high pressure levels, respectively, trise the
ramp rise time of the target pressure from PEEP to IPAP, tfall
the ramp fall time of the target pressure from IPAP to PEEP,
Tinsp the time at which the inspiration is triggered, and Texp the
time when the expiration is triggered. In supportive modes, Tinsp
and Texp can be adjusted by respectively changing the (flow)
inspiration and expiration triggers. Furthermore, patients on a
ventilator are only able to handle inputs within a patient-specific
range. This is quantified by enforcing addition bounds on the
identifiability condition in Theorem 1. We only have to check the
norm condition of two subsequent breaths, where γ is a bound
to limit the difference between the first and second ventilator
breath. The norm must be greater than α where α ∈ R≥0 to not
have conditioning problems computing the inverse of X̆⊤X̆ . The
difference between the flow of two subsequent breaths, associ-
ated to Q 1 and Q 2 in (24), is a result of the pressure difference,
pat pat
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Fig. 6. Parameterization of the input signal ptarget . The input signal is a block-
ave defined by the PEEP and IPAP level together with the inspiration and
xpiration trigger. The blockwave is filtered with a first order filter, which
etermines the rise and fall time.

hich can quantified by the patient-hose model as described
n Reinders, Hunnekens, Heck, Oomen, and Van De Wouw (2021).

In a clinical setting, the inspiration and expiration trigger (and
hus Tinsp and Texp) should preferably not be adjusted, because this
ould induce patient-ventilator asynchrony, which can be detri-
ental for the patient’s health (Blanch et al., 2015). Furthermore,

he IPAP level and the rise time trise are most convenient to adjust;
herefore, these are the only two remaining parameters that are
onsidered for optimization of the information content in this
aper. Adjustments to the IPAP levels between breaths is similar
o a manoeuvre called variable PSV, which improves oxygenations
nd lung protection (Spieth et al., 2011).

. Application of optimal experiment design in multi-breath
stimation: a case study

In this section, an optimal experiment design case-study is
onducted for two scenarios. The first scenario describes a patient
hat has a non-varying breathing effort across breaths, i.e., quad-
ant III in Fig. 5. The second scenario describes a patient with a
arying breathing effort across breaths, i.e., quadrant IV in Fig. 5.
n Section 5.1, the data generating system and the estimation
roblem formulation with non-varying breathing effort across
reaths are introduced. Subsequently, in Section 5.2, a simulation
ase study is conducted to investigate the estimation accuracy
f the multi-breath estimation of quadrant III. In Section 5.3, the
ata generating system and the estimation problem formulation
ith varying breathing effort across breaths are introduced. Sub-
equently, in Section 5.4, a simulation case study is conducted to
nvestigate the estimation accuracy of the multi-breath estima-
ion approach with varying breathing effort. The ventilatory data
n this section is generated using a data-driven ventilator model,
realistic and measured single hose configuration, and a single
ompartmental lung model (Reinders, 2022, p. 197).

.1. Parameter estimation of multiple patient breaths with non-
arying breathing efforts

The data generating system for non-varying breathing effort
cross breaths containing measurement noise is:
˘ = X̆ β̆o + v, (25)

here β̆o is denoted as the true parameter vector. The noise
ector v is i.i.d. normally distributed with mean 0 and variance
2
v .
An unbiased estimate is expected within the ordinary least

quares solution, because the expected value of (17) is[
ˆ̆
β

]
= β̆o +

(
X̆⊤X̆

)−1
E [v] , (26)

here v is a disturbance vector with zero mean. In the upcoming
ection, this is further analyzed with a simulation case study.
7

.2. Results of the simulation case-study with non-varying breathing
fforts

In this section, we focus on changing two parameters of the
arget pressure, the IPAP level and the rise time, to minimize the
ovariance of the parameter estimates for non-varying breathing
fforts. For this simulation case study, we use the data-generating
ystem in (18) and the estimation module structure in (15), and
16). In Section 5.2.1, estimation results of different IPAP levels
re presented. Thereafter, in Section 5.2.2, a comparison of the
nformation gain obtained by changing both target pressure pa-
ameters is presented based on the A-optimality design criterium,
.e., solving the constrained optimization problem in (24).

.2.1. Results of variable pressure support ventilation
Increasing the inspiratory positive airway pressure (IPAP) of

he second breath, the patient flow of this second breath is higher
uring inspiration and lower during expiration compared to the
irst breath resulting in a unique estimate according to Theo-
em 1. The larger we make the difference in IPAP level (∆IPAP)
etween subsequent breaths, the larger the difference in flows
etween the subsequent breaths becomes. In Fig. 7, parameter
stimates and their 95% confidence bounds for the patient param-
ters and breathing effort for different ∆IPAP levels are shown.
he approximate confidence set for the entire parameter vector

˘o are defined as (Hastie et al., 2009)

β̆o
:=

{
β̆

⏐⏐⏐⏐( ˆ̆β − β̆o)⊤X̆⊤X̆( ˆ̆β − β̆o) ≤ σ̂ 2
v χ

2,(1−φ)
z+1

}
, (27)

where χ2,(1−α)
z+1 is the 1 − φ percentile of the chi-squared dis-

tribution on z + 1 degrees of freedom. The confidence bounds
on the parameter estimates are plotted by using an eigenvalue
decomposition of the covariance matrix.

We conclude that a larger ∆IPAP results in a smaller variance
on the parameter estimates based on Fig. 7. Furthermore, it is
observed that the estimated values do not perfectly coincide with
the true parameter values (black cross). In the case study, only
one double breath is evaluated resulting in a small mismatch of
the estimates. Evaluating multiple double breaths for different
noise configurations eventually leads to averaged estimate of
the breathing effort and the patient parameters that is unbiased
because E [v] = 0.

In Sections 5.3 and 5.4, an extension of this case is further
analyzed. There the variability in the breathing effort is added to
the output noise.

5.2.2. Optimal experiment design based on A-optimality
In this section, A-optimality is employed as a measure to find

the target pressure parameter that results in the most accurate
patient parameter estimates. Hereby, we solve the optimization
problem in (24) for a certain parameter range such that the flow
difference is bounded by α = 15 and γ = 220. The values for
α, γ are chosen for demonstration and should be clinically val-
idated. A-optimality enables us to quantify the information gain
that certain target pressure parameter adjustments induce. This
allows for better comparison between different parameters of
the target pressure ptarget . Fig. 8 shows the A-optimality measure
versus the norm of the difference in patient flow between the
two breaths for changes in IPAP level and rise time trise. From this
figure, it is concluded that within the given parameter sets,∆IPAP
variations result in a lower trace compared to ∆trise variations
or a given difference in flow between breaths. This shows that
djustments of∆IPAP are more effective to minimize the variance
f the estimates for the currently tested parameter set.
To find the optimal ∆IPAP while ensuring ∆trise = 0, a

linician should determine what is still allowed to not compro-
ise the patient comfort and treatment, hereby adjusting the γ
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Fig. 7. Simulation results of the estimated airway pressure p̂aw (colored lines),
patient parameters R̂lung and Ĉlung and the breathing effort p̂mus for 2 subsequent
breaths with different IPAP levels are displayed. An increase in the IPAP level of
the target pressure between subsequent breaths, i.e., a larger ∆IPAP, results in
more accurate estimates of the true airway pressure and breathing effort ( )
and true patient parameters (∗) regarding their estimated values and variances.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 8. A-optimality versus the norm of the difference between the patient flows
of the first and second breath. While varying the ∆IPAP levels, the difference
in rise time between breaths ∆trise is set to zero seconds and vice versa. The
chosen parameter set for the experiment stays within the bounds of α and γ
( ). The same patient parameters and breathing efforts from Fig. 7 are used.

ound in (24). The overall estimation approach of Section 4 shows
romising results; however, it is important to note that within
his approach restrictive assumptions are made that the patient
reathing effort does not change across breaths. In the upcoming
ection, the influence of a varying patient breathing effort on the
stimation approach is analyzed, i.e., going from quadrant III to
uadrant IV in Fig. 5.

.3. Parameter estimation of multiple patient breaths with varying
reathing efforts

The data-generating system for a double breath with variable
reathing effort is defined as:

ˇ = X̆ β̆o + v + w (28)

ith

:=
[
0 [0 κI ]⊤

]
β̆ , (29)
2N×2 N×N N×N o

8

where κ ∼ N (0, σ 2
κ ) is the variation on the breathing effort

amplitude. An assumption is made that the patient is breathing
with a constant duration and interval, while the amplitude of the
breathing effort is varying with a variance of σ 2

κ across breaths.
Patients on support ventilation breathe regularly with small vari-
ations (El-Khatib et al., 2001) that can be captured by a stochastic
parameter. There is no clear consensus on how the breathing
effort varies, therefore, it is chosen to model the variability of
the breathing effort by an amplitude variation. In general, all
additive variations on top of the breathing effort fit the current
data generating system.

For the estimation model, the breathing effort is assumed to
be constant across breaths because the variations are typically
unknown, resulting in (15) and (16). In other words, it is assumed
that there is no disturbance κ . This leads to the least squares
solution
ˆ̌
β = (X̆⊤X̆)−1X̆⊤Y̌

= (X̆⊤X̆)−1X̆⊤

(
X̆ β̆o + v + w

)
.

(30)

The estimator is unbiased, i.e., E
[
ˆ̌
β

]
= β̆o, in case the estimation

model is perfect because the disturbance vectors v and w are
independent and have zero mean. Therefore, if enough sets of
double breaths are taken into account, the average estimate con-
verges to the true parameter vector. In the upcoming section, the
performance of the estimation model in (15) and (16) is evaluated
while the data is generated with system (28).

5.4. Results of simulation case study with varying breathing efforts

In this section, the estimation results for a single set of double
breaths are discussed first. Afterwards, the analysis is extend to
a set of 300 double breaths. The variation of the target pres-
sure between two breaths is set to ∆IPAP = 1 [mbar] for all
simulations.

A single set of a double patient and ventilator breath is simu-
lated in Fig. 9. The second breathing effort is smaller compared to
the first breathing effort (κ = −0.74 [mbar]), hereby violating the
estimation model assumption of equal patient breathing efforts.
As a result, the parameter estimates are not accurate.

Although, a modeling error is present, let us simulate a set
of 300 double breaths with variable breathing effort and inves-
tigate the average estimated parameters. In Fig. 10, the results
of estimation lung parameters from 300 sets of double breaths
of a single patient are shown. The average parameter estimates
(black cross) do no converge to the true parameter values (black
asterix) for a patient amplitude variance of 0.14 mbar2. The extent
f convergence to the true parameter estimates is related to
he variation of the breathing effort amplitude variability σ 2

κ .
he larger the amplitude variability σ 2

κ , the larger the mismatch
with the estimation model assumption of equal breathing efforts,
the larger the bias of the parameter estimates. This statement
is substantiated by Fig. 11, which displays the relative error of
the average parameter estimates under different levels of breath-
ing effort amplitude variance. Higher variance levels yield larger
relative error, i.e., larger biases.

Finally, in Fig. 12, the average patient parameters are used
to compute the breathing effort for different variance levels.
Increasing the variance leads to larger biases, which results in
accurate estimation of the patient breathing effort if its variation
is small over breaths and in inaccurate breathing effort estimates
if the variation of the patient breathing effort is large.

From a clinical perspective, a small bias in the lung param-
eter estimates is allowed because parameter trends over time
are more important. Therefore, it is allowed to have a relative
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Fig. 9. Estimation results of the lung resistance, lung compliance, and the
reathing effort with estimation model (15) and (16), while the data is generated
ith a varying breathing effort. The gray area around the breathing effort pmus
epresents the 95% confidence bounds of the breathing effort estimate.

Fig. 10. Simulation results that contains the lung resistance and compliance
estimates for 300 double breaths where the breathing effort amplitude variance
is 0.14 [mbar2] and ∆IPAP is 1 [mbar]. The estimates together with their 95%-
onfidence intervals are shown. The true parameter values are displayed with
) and the estimate average is displayed with the black cross ( ). The difference
etween the true parameters values and the average estimated parameters
ndicate that a bias is present.

rror on the patient parameters of maximum 20% as stated in
equirement (i). This is shown by the marked green area in Fig. 11.
rom this figure, it is concluded that the allowed variance on the
reathing effort amplitude is 0.32 [mbar2] for the tested variants
ased on the 2-norm. The 2-norm of the estimated patient pa-
ameters reflect for which level of variance the breathing effort
stimates comply with requirement (i).
9

Fig. 11. Relative error of the average estimated lung compliance and resistance
for different levels of breath effort variance α. An increase in the breathing effort
amplitude variance σb results in a larger bias for the average lung compliance
and resistance estimates. The green area represents a 20% error band for the
patient parameter estimates. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 12. The average breathing effort ¯̂pmus is computed using the linear one-
compartmental lung model and the average estimated lung resistance and
compliance. The higher the variance of the breathing effort amplitude, the less
accurate the average breathing effort becomes. The green area is a 20%-error
bound on the true breathing effort, which is the maximum allowable error for
the breathing effort estimates. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

6. Conclusion and recommendations

6.1. Conclusions

In this paper, a new perspective on the simultaneous estima-
tion of patient breathing effort and lung parameters is studied
in the scope of mechanical ventilation. Simultaneous estimation
of lung parameters and breathing effort results in non-unique
estimates if no additional prior knowledge about the breathing
effort is taken into account. Therefore, a framework is presented
that helps to solve the non-uniqueness by analyzing the identi-
fiability and persistence of excitation. A persistence of excitation
analysis in the proposed multi-breath estimation problem reveals
that these unique parameter estimates are only found if the first
and second ventilator breath are not identical. Finally, experiment
design tools are leveraged to obtain accurate estimates of the
breathing effort and lung parameters for both regularly breathing
patients and patients that have a variable breathing pattern.

6.2. Recommendations

Further improvements regarding accurate and unique esti-
mate for both regularly and variably breathing patients include

choice of prior knowledge and formulation of the estimation
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problem. The assumption that the breathing effort only varies in
amplitude over multiple breaths is a stringent assumption that
does not occur frequently in practice. Therefore, to extend this
method by incorporating the fact that the breathing effort can
also vary in shape and timing, which is a necessary step for
implementation in practice. This leads to an error-in-variables
estimation model, that requires a different set of analysis tools.
Future research includes testing the framework in a clinical set-
ting with real patient data, that contains ground truth data of
the lung resistance, lung compliance, and breathing effort. Fur-
thermore, the designed estimator in this paper can potentially be
improved by using instrumental variable estimation. Lastly, it is
also interesting to look beyond the parameters of target pressure
for increasing the information content, such as adding a signal on
top of the target pressure.
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Appendix. Proof of Theorem 1

The proof for Theorem 1 is provided below.

Proof. The proof is given for two breaths, i.e., m = 2 in (15), but
can easily be extended to a general proof. Let column rank(X̆) =

+ 2, then we know that all columns are linearly independent
nd that the column space is given by

pan

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vpat (1)
Vpat (2)
Vpat (3)
...

Vpat (N)
Vpat (N + 1)
Vpat (N + 2)
Vpat (N + 3)

...

Vpat (2N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qpat (1)
Qpat (2)
Qpat (3)
...

Qpat (N)
Qpat (N + 1)
Qpat (N + 2)
Qpat (N + 3)

...

Qpat (2N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
...

0
1
0
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
...

0
0
1
0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, . . . ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

0
1
0
0
...

0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(A.1)

et ∃k ∈ [1,N] s.t. Q 1
pat (k) ̸= Q 2

pat (k). Then the vector
(Q 1

pat )
⊤ (Q 2

pat )
⊤
]⊤ cannot be in the column space spanned by

he last N columns of X̆ . This result can be simplified even further
o Q 1

pat − Q 2
pat ̸= 0. Furthermore, the vector

[
(V 1

pat )
⊤ (V 2

pat )
⊤
]⊤

s not in the column space spanned by the last N columns of
˘ because there is a difference in the flow between breaths,
10
i.e., Q 1
pat − Q 2

pat ̸= 0, and it holds that V i
pat =

∫ tiN
t(i−1)N

Qpat (τ )dτ .
Lastly, the volume and flow vectors are linearly independent due
the flow condition in Assumption 1, hence, the vectors span the
full space of RN+2. □
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