
Exploring the effects of
conditioning Independent

Q-Learners on the sufficient
plan-time statistic for

Dec-POMDPs

by

Alex Mandersloot

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday August 17, 2020 at 11:00 AM.

Student number: 4399986
Faculty: EEMCS
Master Programme: Computer Science
Thesis committee: Dr. F. A. Oliehoek, TU Delft, Thesis Supervisor

Prof. C. M. Jonker, TU Delft
Dr. M. M. de Weerdt, TU Delft
Dr. A. Czechowski, TU Delft

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

First and foremost, I would like to thank dr. Frans Oliehoek, my thesis super-
visor. You have always challenged me to critically analyze related works, and
to see the bigger picture. Moreover, you have continuously helped me to stay
focused on what is important. The opportunity to work with someone as expe-
rienced in the field of Dec-POMDPs as you has been invaluable. Your ability
to instantly come up with a potential solution to a problem I had been facing
for days (and, admittedly, sometimes weeks) is nothing short of remarkable.

To dr. Aleksander Czechowski, I hope you realize how valuable you have been to
me throughout this project as well. Our initial idea on Bridge really helped to
get the ball rolling. Even though ultimately we ended up steering in a different
direction, I feel that the ideas and papers we discussed were still highly relevant
to this work. Moroever, you have continuously provided me with useful feedback
for my intermediate results. Thank you.

Finally, I would like to thank dr. Alex Cowan for being a great friend. You
have always shown interest in my work, and I really enjoyed casually chatting
with you about my thesis and academic life in general. You have also helped
me keep my expectations in check.

1

Abstract

The Decentralized Partially Observable Markov Decision Process is a commonly
used framework to formally model scenarios in which multiple agents must col-
laborate using local information. A key difficulty in a Dec-POMDP is that in
order to coordinate successfully, an agent must decide on actions not only using
its own information, but also by reasoning about the information available to the
other agents. Nevertheless, existing value-based Reinforcement Learning tech-
niques for Dec-POMDPs typically take the individual perspective, under which
each agent optimizes its own actions using solely its local information, thus es-
sentially neglecting the presence of others. As a result, the concatenation of
individual policies learned in this way has a tendency to result in a sub-optimal
joint policy. In this work, we propose to additionally condition such Indepen-
dent Q-Learners on the plan-time sufficient statistic for Dec-POMDPs, which
contains a distribution over the joint action-observation history. Using this, the
agents can accurately reason about the resulting actions the other agents will
take, and adjust their own behavior accordingly. Our main contributions are
threefold. (1) We thoroughly investigate the effects of conditioning Independent
Q-Learners on the sufficient statistic for Dec-POMDPs. (2) We identify novel
exploration strategies that the agents can follow by conditioning on the suffi-
cient statistic, as well as their implications on the decision rules, the sufficient
statistic and the learning process. (3) We substantiate and demonstrate that
by conceptually sequencing the decision-making, and additionally conditioning
the agents on the current decision rules of the earlier agents, such learners are
able to consistently escape sub-optimal equilibria and learn the optimal policy
in our test environment, Dec-Tiger.

2

Contents

1 Introduction 5

2 Background 7
2.1 Single Agent Decision-Theoretic Planning 7

2.1.1 Markov Decision Process 7
2.1.2 Partially Observable Markov Decision Process 9

2.2 Multi-Agent Decision-Theoretic Planning 10
2.2.1 Multi-Agent Markov Decision Process 11
2.2.2 Multi-Agent Partially Observable Markov Decision Process 11
2.2.3 Decentralized Partially Observable Markov Decision Process 12

2.3 Multi-Agent Decision-Theoretic Learning 16
2.3.1 Game Theoretic Definitions 16
2.3.2 Independent Q-Learning 17
2.3.3 Deep Q Network . 18
2.3.4 Centralized Learning in Dec-POMDPs 20

3 Dec-POMDPs as Non-Observable MDPs 21
3.1 Sufficient plan-time statistics for Dec-POMDPs 21
3.2 Dec-POMDPs as Non-Observable MDPs 24
3.3 Q-Learning in NOMDPs . 26

4 Our approach 27
4.1 Towards feasible Q-Learning for NOMDPs 27
4.2 Deep Q-Network specifics . 29
4.3 Computing σt: methodology and assumptions 29
4.4 Algorithmic Properties . 31
4.5 Discussion on the action-observation history, potentially stochas-

tic decision rules and σ . 32

5 Experimental Overview 34
5.1 Research Questions . 34
5.2 Test Domain: Dec-Tiger . 35
5.3 Experimental Setup . 38
5.4 Experimental Runtime . 39

3

6 Exploration in the space of individual actions 42
6.1 Setup . 42
6.2 Decision Rules . 42
6.3 Results . 43
6.4 Analysis . 43
6.5 Conclusion . 46

7 Exploration in the space of individual decision rules 47
7.1 Setup . 47
7.2 Decision Rules and Sufficient Statistic 48
7.3 Results . 49
7.4 Analysis . 49
7.5 Conclusion . 51

8 Exploration in the space of joint decision rules 52
8.1 Setup . 52
8.2 Results . 52
8.3 Analysis . 55
8.4 Conclusion . 56

9 Conceptually Sequencing the Decision-Making 58
9.1 Setup . 58
9.2 Results . 60
9.3 Analysis . 60
9.4 Forcing sub-optimal equilibria initially 62
9.5 Conclusion . 62

10 Related Work 65
10.1 Addressing the convergence issues of Independent Q-Learning . . 65

10.1.1 Tabular, Multi-Agent MDPs 65
10.1.2 Dec-POMDPs . 66

10.2 Sufficient Statistic . 67
10.2.1 Direct work on NOMDPs 67
10.2.2 Relating the Sufficient Statistic to the Public Belief . . . 67

11 Conclusion, Discussion and Future Work 69
11.1 Conclusion . 69
11.2 Discussion and Future Work . 71

4

Chapter 1

Introduction

In many real-world scenarios, such as the control of autonomous drones and
cars, as well as the coordination of traffic lights, multiple entities must learn
to cooperate successfully. For example, traffic lights must coordinate with each
other in order to optimize the flow of traffic.

In such scenarios, often the entities, commonly referred to as agents, are not
allowed to freely share the information that is available to them. For example,
suppose a self-driving car would share its point of view to a coordinating system,
which subsequently relays all information it receives from other cars in this
way this back to it. This would require (1) a costly communication channel,
(2) latency- and noise-free broadcasts, and (3) protective measures against the
single point of failure. All of these combined prevent such a method from being
practical in many cases.

Instead, in such scenarios agents base their decision-making on their local
information. Moreover, in order to coordinate successfully, an agent must not
only reason about its own information, but also about the information that is
available to the other agents. For example, if we return to the example of a self-
driving car, it would be wise for such a car not to perform a sudden manoeuvre
while it is in the blind spot of the car in front of it.

The Decentralized Partially Observable Markov Decision Process was estab-
lished to formally model such environments. In a Dec-POMDP, multiple agents
cooperate in an environment under uncertainty, as they only have access to local
information. Solving Dec-POMDPs using planning methods has a rich history,
e.g. [1][2][3][4].

More recently, there have been many breakthroughs in the field of Deep Rein-
forcement Learning [5][6][7]. Such methods use a complex neural network func-
tion approximator to learn policies by repeatedly interacting with the environ-
ment. Existing applications of Deep Reinforcement Learning to Dec-POMDPs
often take the perspective of Independent Learners that optimize each agent’s
individual policy based on its local information. While this improves the scal-
ability of such an approach, it also has a tendency to result in a sub-optimal
joint policy, as agents are essentially oblivious to the presence of other agents.

5

In this Thesis we propose to augment such Independent Learners with knowl-
edge about the information available to the other agents. We make use of a key
advancement that identifies a sufficient statistic of a Dec-POMDP. This suffi-
cient statistic contains a probability distribution over the joint action-observation
history, i.e. each agent’s local information. Since optimal decision-making of
an agent in a Dec-POMDP is tightly interwoven with the information available
to the other agents (and their resulting actions), such augmented learners are
equipped with an invaluable learning signal.

Our main contributions are threefold. (1) We thoroughly investigate the
effects of conditioning Independent Q-Learners on the sufficient statistic for
Dec-POMDPs. (2) We identify novel exploration strategies that the agents can
follow by conditioning on the sufficient statistic, as well as their implications
on the decision rules, the sufficient statistic and the learning process. (3) We
substantiate and demonstrate that by conceptually sequencing the decision-
making, and additionally conditioning the agents on the current decision rules
of the earlier agents, such learners are able to consistently escape sub-optimal
equilibria and learn the optimal policy.

This Thesis is structured as follows. In Chapter 2, we recite necessary back-
ground knowledge. In Chapter 3 we recite a key related work on the sufficient
statistic for Dec-POMDPs. We furthermore re-introduce the reformulation of a
Dec-POMDP as a Non-Observable Markov Decision Process, whose perspective
is highly relevant to our work. In Chapter 4 we delineate the specifics of our
approach. In Chapter 5 we formally state our research questions, as well as
present an overview of our experimental setup. In our experimental Chapters
6, 7 and 8 we investigate various exploration strategies for our proposed learn-
ers. In Chapter 9, we delineate how decision-making in Dec-POMDPs can be
conceptually sequenced and subsequently we perform experiments following this
perspective. In Chapter 10 we describe related work to this Thesis. Finally, in
Chapter 11 we conclude our Thesis.

.

6

Chapter 2

Background

In this Chapter we provide the necessary background knowledge on single and
multi-agent decision-theoretic planning and learning for this Thesis. In this
Thesis, we focus on the Decentralized Partially Observable Markov Decision
Process, in which multiple agents have to collaborate using local information.
We introduce this framework by starting with the simpler Markov Decision
Process. We then gradually introduce partial observability as well as multiple
agents.

Furthermore, we discuss a widely used baseline for multi-agent Reinforce-
ment Learning, namely Independent Q-Learning. We also recite the Deep Q-
Network, which uses a neural network as function approximator when tabular
Q-Learning is infeasible. We conclude by briefly discussing how learning can be
centralized in Dec-POMDPs, while still yielding decentralized policies.

2.1 Single Agent Decision-Theoretic Planning

2.1.1 Markov Decision Process

A Markov Decision Process (MDP) is a stochastic process, in which a single
agent interacts with an environment in discrete time steps [8][9][10].

Definition 2.1.1. An MDP is defined by a tuple 〈S,A, T,R〉, where

• S is a finite set of states in the world

• A is a finite set of actions available to the agent.

• T : S×A×S −→ [0, 1] is the transition probability function, which specifies
P (st+1|st, at).

• R: S ×A −→ R is the reward function.

In this Section, we largely follow the exposition by Sutton et al. [10]. At each
time step t = 0, 1, 2, . . . , the agent is in a certain observable state st ∈ S. Based

7

on the state, it takes an action at ∈ A and the environment transitions to
state st+1 ∈ S, as specified by the transition function. The agent subsequently
receives a numerical reward rt ∈ R specified by the reward function. The current
timestep then concludes, and this process is repeated. The dynamics between
an agent and the environment thus give rise to a sequence,

s0, a0, r0, s1, a1, r1, s2, a2, r2, . . . , (2.1.1)

which is commonly referred to as the trajectory.
Trajectories either end at a a specific horizon h, or continue endlessly (h =

∞). The goal of the agent to maximize the expected sum of rewards it receives
during a trajectory:

E

 h∑
t=0

γt · rt

 (2.1.2)

Here, 0 ≤ γ ≤ 1 is a discount factor which usually incentivises the agent to
obtain rewards sooner rather than later.

Within this framework, the reward and transition function only depend on
the current state and action, which is known as the Markov Property. Conse-
quently, since the agent can directly observe its current state in an MDP, the
current state is a sufficient statistic. The agent can behave optimally if it re-
members only the current state, as opposed to its entire history of states and
actions. Intuitively, for example, if you can directly observe your position in a
maze, your best action does not depend on how you got to this position.

In an MDP, a stochastic policy π : S −→ ∆A maps states to a distribution
over actions. A deterministic policy π : S −→ A simply maps each state to a
single action. The goal of the agent is to find a policy which, when executed,
maximizes Eq. 2.1.2.

We will introduce both the value function and the action value function here,
as they will be used ubiquitously throughout this thesis. The value of a state s
under a fixed policy π is the expectation of the rewards the agent will receive,
given that it starts in s and follows π. It is defined as

V π(s) = Eπ
 ∞∑
k=0

γkrt+k+1

∣∣∣∣st = s

= R(s, π(s)) + γ

∑
s′∈S

T (s, π(s), s′)V π(s′),

(2.1.3)

where π(s) denotes the action we take in state s according to the policy π.
Consequently, the optimal value of a state follows easily:

V ∗(s) = max
π

V π(s) (2.1.4)

Besides the value function, the action value function under policy π, denoted
by Qπ(s, a), is also used frequently. It defines the value of taking action a from

8

state s and consequently following π:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)Qπ(s′, π(s′)) (2.1.5)

which differs from the value function in that we are now free to choose an
immediate action and only follow the policy thereafter. For the optimal Q-
function, instead of following π, we assume to behave optimally in the future:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′) max
a′

Q∗(s′, a′), (2.1.6)

and the relation between the value function and the Q-function becomes appar-
ent:

V ∗(s) = max
a

Q∗(s, a). (2.1.7)

2.1.2 Partially Observable Markov Decision Process

An MDP is used to model environments in which an agent directly observes the
state it is in at any given moment. More commonly, however, the state is not
directly observable. Instead, an agent receives noisy observations. For example,
multiple states could result in the same observation, or the same state can result
in different observations. To account for this partial observability, the Partially
Observable Markov Decision Process [11][12][13][14] was established.

Definition 2.1.2. A POMDP is a tuple 〈S,A, T,R,Ω, O, b0〉, where

• S, A, T, R are as in an MDP.

• Ω is the set of possible observations.

• O: S × A × Ω −→ [0, 1] is the observation probability function, which
specifies P (ot|at, st+1).

• b0 is the initial state distribution.

Like before, at each timestep t, the agent is in state st, takes an action at,
and the environment transitions to state st+1. However, contrary to an MDP,
the agent can not directly observe st and st+1. Instead, it only receives an
observation ot ∈ Ω after taking action at and landing in state st+1, whereby
the probability of a specific observation ot is given by the observation function
O(st+1, at, ot).

A simple example of a POMDP is described by Spaan [15]. Consider an
environment with two states 〈s, ṡ〉 and two possible observations 〈o, ȯ〉. There is
only one action, which is omitted for clarity. Therefore, the observation function
O(s, a, o) depends solely on O(s, o). Suppose we have the following observation
probabilities:

9

O(s, o) = 0.8 O(ṡ, o) = 0.2

O(s, ȯ) = 0.2 O(ṡ, ȯ) = 0.8

Now, when the agent receives observation o or ȯ, it can not tell with full certainty
which state it is in.

In an MDP we directly observed the current state, which was a sufficient
statistic. In a POMDP the agent receives an observation instead of directly
observing the state. One can then wonder if the current observation is also a
sufficient statistic for a POMDP: can the agent act optimally by only remem-
bering its last observation, or does it have to memorize its entire history of
observations?

It turns out that it cannot. See e.g. Section 3 in [16] for a counterexample.
Instead of solely remembering its last observation, an agent should maintain a
belief over states it can be in. This (state) belief summarizes all information
about the agent’s history of actions and observations in a vector b. Initially,
the agent has a belief b0 as defined by the environment, which contains, for
each state, the probability that the agent starts in that state. After taking an
action a from state s and receiving observation o, the belief of being in state s′

is updated according to Bayes’ Rule:

baot+1(s′) =
O(s′, a, o)

∑
s∈S T (s, a, s′)bt(s)∑

s′∈S O(s′, a, o)
∑
s∈S T (s, a, s′)bt(s)

(2.1.8)

and a new belief vector b1 is formed by updating b0(s′) for all new states s′.
This belief vector is a sufficient statistic for a POMDP [17]. A policy in a

POMDP thus maps beliefs to actions. As such, we can model a POMDP as a
continuous, belief-state MDP, where the beliefs form the states. To do so, we
must specify the transition and reward function for beliefs (instead of states, as
in an MDP), which we can do as follows:

T (b, a, b′) =
∑
s′∈S

O(s′, a, o)
∑
s∈S

T (s, a, s′)b(s)

R(b, a) =
∑
s∈S

b(s)R(s, a)
(2.1.9)

2.2 Multi-Agent Decision-Theoretic Planning

Both an MDP and a POMDP can be used to model environments with a single
agent. Naturally, similar frameworks have been established for environments
with multiple agents. In these, an important distinction must be made be-
tween the information available to each agent. This Section is largely based on
Oliehoek et al. [18].

10

2.2.1 Multi-Agent Markov Decision Process

First, let us suppose the environment is fully observable for each agent. That is,
each agent can directly observe the state, as well as the actions of other agents.
Such an environment is closely related to an MDP and is called a Multiagent
Markov Decision Process (MMDP) [19].

Definition 2.2.1. An MMDP is a tuple 〈D,S,A, T,R〉, where

• D = {1, . . . , n} is the set of agents.

• S is as in an MDP.

• A is the set of joint actions.

• T and R are the transition and reward function resp., which are now
dependent on joint actions.

In an MMDP, at each timestep t, each agent i fully knows the state of the
environment and chooses an action ait from the actions available to it, denoted
by Ai. The joint action at = 〈a1

t , . . . , a
n
t 〉 is formed and executed, and the

state transitions according to the transition function T (st, at, st+1). A reward
R(st, at) is obtained, and the process repeats.

Since the state is directly observable to each agent, they make decisions
based on the same information. Therefore, instead of seeing this as a multi-
agent environment, one can think of it as a single agent MDP in which an
imaginary agent, commonly referred to as a puppeteer agent, employs a policy
that maps states to joint actions. This joint policy specifies a joint action for
each of the states the environment can be in, and can then be decomposed into
an individual policy for each agent. In other words, although an MMDP is
used to model an MDP with multiple agents, conceptually we can still see it as
a single-agent MDP. The main limitation is that the joint action space scales
exponentially in the number of agents.

2.2.2 Multi-Agent Partially Observable Markov Decision
Process

Similarly to the extension of an MDP to a Multi-Agent MDP, the Multi-Agent
POMDP extends the single agent POMDP, when the state is not directly ob-
servable to the agents. Importantly, in an MPOMDP the agents are allowed to
freely share their individual actions and observations.

Definition 2.2.2. An MPOMDP is a tuple 〈D,S,A, T,R,Ω, O, b0〉, where

• D, S, A, T , and R are as in an MMDP.

• b0 is as in a POMDP.

• Ω is the set of joint observations.

11

• O is the observation function, dependent on joint actions.

Again, since each agent makes decisions based on the same information, we
can make use of the puppeteer agent to approach the underlying POMDP. Sim-
ilarly to how we computed a belief in a POMDP, we now compute a joint belief
over the states. Initially, this is specified by b0, the initial state distribution.
After taking a joint action a from state s and receiving a joint observation o,
we update the belief using Bayes’ Rule as follows:

baot+1(s′) =
O(s′, a, o)

∑
s∈S T (s, a, s′)bt(s)∑

s′∈S O(s′, a, o)
∑
s∈S T (s, a, s′)bt(s)

(2.2.1)

Note the similarity between this update and the corresponding update in a
POMDP (Eq. 2.1.8), the only difference being that we are now dealing with
joint actions and observations. A policy in an MPOMDP then maps joint beliefs
to joint actions, and can be decomposed into individual policies for each agent,
which map joint beliefs to individual actions. Since each agent has access to
the joint actions and observations in an MPOMDP, they can compute this joint
belief consistently.

2.2.3 Decentralized Partially Observable Markov Decision
Process

Thus far we have considered multi-agent environments which can be conceptu-
ally reformulated as single agent environments. However, such a reduction is
not possible when the agents are not allowed to share their local information,
as the puppeteer no longer has access to all information. Instead, agents must
then truly act in a decentralized fashion, based on their own, local information.

Framework. To model such environments in which multiple agents collabo-
rate based on local information, the Decentralized-Partially Observable Markov
Decision Process (Dec-POMDP) framework, first described by Bernstein et al.
[20], was established.

Definition 2.2.3. A Dec-POMDP is a tuple 〈D,S,A, T,R,Ω, O, b0〉, where

• D, S, T , R, Ω, O and b0 are as in an MPOMDP.

The underlying environment dynamics in a Dec-POMDP are the same as in an
MPOMDP. Rather, it differs in its agent model. To be more specific, in a Dec-
POMDP, each agent only observes its own action ait and does not observe the
actions of other agents. Similarly, an agent only receives its own component of
the joint observation, oit, and does not receive the observations of other agents.
As a result, each agent has access to some local information only, contrary to
the sharing of information discussed previously.

We have previously introduced a sufficient statistic for both an MDP and
a POMDP (which can be extended to an MMDP and MPOMDP), namely the
current state and the belief respectively. Using these, an agent does not have to

12

memorize its entire history of observations and actions. Does a Dec-POMDP
have a similar sufficient statistic available to the agents during execution? One
can easily see how both an MDP’s and a POMDP’s sufficient statistic are not
applicable to Dec-POMDPs: the state is not directly observable, and an agent
can not compute a belief over states as in an MPOMDP. To see why, recall
that the state and observation functions used in the MPOMDP belief update
(Eq. 2.2.1), depend on joint actions, which the agent does not know during
execution. It only knows its own action and observation. As a result, to date,
there is no known sufficient statistic of an agent’s individual history in a Dec-
POMDP during execution. In order to act optimally, an agent thus needs to
remember its entire history of observations (and possibly actions1) .

General Definitions. Here, we shall also take the opportunity to formally
introduce general definitions which will be used frequently throughout this The-
sis.

Definition 2.2.4. The action-observation history (AOH) of agent i up until
timestep t is defined as

θ
i

t = 〈ai0, oi1, ai1, oi2 . . . , ait−1, o
i
t〉 ∈ Θ

i

t. (2.2.2)

Definition 2.2.5. A stochastic decision rule for agent i at timestep t maps
every possible action-observation history up until timestep t to a distribution
over individual actions, i.e.

δit : Θ
i

t −→ ∆Ai. (2.2.3)

A decision rule thus contains precisely the information an agent needs during
execution: for each possible action-observation history it can experience, the
decision rule prescribes the correct (distribution over) actions. An agent’s policy
can then be represented as a sequence of decision rules, one for each timestep.

Definition 2.2.6. A horizon-h policy is a chronologically ordered sequence of
decision rules

πi = 〈δi0, δi1, . . . , δih−1〉. (2.2.4)

In other words, at each timestep the agent looks up its current AOH in the
respective decision rule, and takes the action prescribed by it.

Since we are dealing with multiple agents in a Dec-POMDP, it will be useful
to introduce joint definitions as well.

Definition 2.2.7. The joint action-observation history up until timetep t is
defined as

θt = 〈a0, o1, a1, o2, . . . , at−1, ot〉. (2.2.5)

Note that there is no longer an agent superscript.

1We specify what we mean with ‘possibly’ shortly.

13

Definition 2.2.8. A joint decision rule is the concatenation of each agent’s
individual decision rule.

δt = 〈δ1
t , δ

2
t , . . . δ

n
t 〉. (2.2.6)

Given the joint action-observation history, the joint decision rule prescribes the
joint action.

Definition 2.2.9. The history of joint decision rules at timestep t is defined as

ϕt = 〈δ0, δ1, . . . , δt−1〉. (2.2.7)

.

Another way to think of ϕt is as a partly specified joint policy, up until timestep
t− 1.

Deterministic decision rules. In the general case when agents employ stochas-
tic decision rules (and thus stochastic policies), indeed there is no known sum-
mary of the individual action-observation history. However, if we restrict our-
selves to deterministic decision rules, it is sufficient to remember only the ob-
servation history oit.

Definition 2.2.10. The individual observation history of agent i at timestep t
is defined as

oit = 〈oi1, oi2, . . . , oit〉. (2.2.8)

The joint observation history follows as before.
To see why the observation history is sufficient, suppose deterministic deci-

sion rules would map from action-observation histories to actions (as before).
Consider the policy depicted in Fig. 2.1. Initially, assume the agent always
takes action a0 (colored green). Therefore, the bottom subtree corresponding
to action ȧ0 becomes unreachable. As a result, in the next timestep the agent
can infer in which action-observation history it is in based solely on the obser-
vation history. If it observed o1, it must be in AOH 〈a0, o1〉, and similarly it
must be in AOH 〈a0, ȯ1〉 after observing ȯ1. Finally, in the leaf nodes, again
the agent can infer which one it is currently in based solely on the observation
history. For example, if an agent remembers its observations oit = 〈o1, ȯ2〉, it

must be in AOH θ
i

t = 〈a0, o1, ȧ1, ȯ2〉.
For deterministic decision rules, the action-observation history can thus be

reconstructed from the observation history, for a fixed policy. The OH thus
replaces the AOH in the formulations above. It has already been shown that a
finite-horizon Dec-POMDP has at least one optimal deterministic joint policy
[21].

Policies. For ease of exposition, we restrict ourselves to deterministic decision
rules here. At each timestep t, there are O

(
|Ω|t

)
individual observation histo-

ries. An individual decision rule maps each of these to a possible action, hence

14

Figure 2.1: A graphical example of a deterministic policy, which demonstrates
that solely remembering one’s observation history is sufficient. Arrows colored
green represent the reachable subtrees, as prescribed by the policy.

15

there are O
(
A|Ω|t

)
distinct individual decision rules, and O

(
A|Ω|nt

)
joint de-

cision rules. Recall that a policy is a chronological sequence of such decision
rules. In order to compute the value of such a policy, we must compute the
value of each (state, joint OH)-pair, under this policy. We know that for the
last timestep, the value is the immediate reward:

V π(sh−1, oh−1) = R(sh−1, π(oh−1)). (2.2.9)

For all other timesteps, the expected value is given by

V π(st, ot) = R(st, π(ot)) +
∑

st+1∈S

∑
ot+1∈O

P (st+1, ot+1|st, π(ot))V
π(st+1, ot+1),

(2.2.10)
where ot+1 = 〈ot, ot+1〉. Finally, the value of the policy is found by weighting
these pairs by the initial state distribution bo:

V (π) =
∑
so∈S

b0(s0)V π(s0, o0). (2.2.11)

2.3 Multi-Agent Decision-Theoretic Learning

When we do not have access to a model of the environment, we must instead
learn from our interactions with the environment. For example, if the state,
observation and reward function are unknown, one can not plan a joint policy in
advance. In our Thesis, we focus on value-based learning algorithms, specifically
those which learn the Q-values of actions.

2.3.1 Game Theoretic Definitions

Two definitions from the field of Game Theory are of particular interest to us.

Definition 2.3.1. (In cooperative settings) An individual policy πi is called a
best response to the policies of other agents, π−i, if

V (〈πi, π−i〉) ≥ V (〈π′i, π−i〉) ∀π′i ∈ Πi. (2.3.1)

Definition 2.3.2. A joint policy π is in a (Nash) equilibrium if πi is a best
response to π−i for all i.

In other words, if the expected reward can not be increased when any agent
changes its policy while the other agents keep theirs fixed, the joint policy is in
an equilibrium.

16

2.3.2 Independent Q-Learning

In a multi-agent MDP, one could apply conventional Q-Learning to the joint
action space of the puppeteer described in 2.2.1. However, the scalability of
this approach is limited because the size of the joint action space increases
exponentially with the number of agents. Alternatively, one can retain the
individual perspective, and have each agent optimize its individual Q-function
instead.

Independent Q-Learning (IQL) [22] uses the Q-Learning algorithm [23][24]
to learn their individual Q-values in a Multi-Agent MDP. More specifically, each
agent i maintains an estimate of Qi(st, a

i
t) as

Qi,new(st, a
i
t) = (1−λ) Qi,old(st, a

i
t)+λ

[
rt + γ max

ait+1∈Ai
Qi(st+1, a

i
t+1)

]
, (2.3.2)

where 0 ≤ λ ≤ 1, commonly referred to as the learning rate, controls the trade-
off between old information and newly acquired information. After learning has
concluded, each agent chooses actions based on its individual Q-function, i.e.
by acting greedily:

πi(s) = arg max
a

Qi(s, a), ∀s ∈ S. (2.3.3)

IQL thus gets around the exponential scale-up in the number of agents by
considering individual actions only. This does, however, come with numerous
drawbacks. Since each agent only learns its individual Q-function, they are es-
sentially completely oblivious to the presence of other agents, which are learning
simultaneously. Since the state transition and reward function are dependent
on joint actions, individual Q-values Qi(s, ai) are insufficient to capture this
dependency on other agents.

Convergence. In the cooperative environments that are of interest to us,
Independent Q-Learners are not guaranteed to converge to the optimal joint
policy. To see why, consider a very simple one-shot environment with a single
state and two actions, a and ȧ, whose payoff are as follows.

a2 ȧ2

a1 10 0
ȧ1 0 10

Suppose agents take actions uniformly random during learning. In theory, both
agents will learn the value of either action to be 5 on average. In practice, due to
the inherent stochasticity of selecting actions during learning, each agent might
slightly prefer one action over the other. However, there is no guarantee that
both agents will prefer a coordinated action.

Claus et al. [25] therefore suggest agents to follow an exploitative explo-
ration strategy instead, in which an agent selects its best action with a higher
probability than random actions. In doing so, they show that IQL almost surely
converges to equilibria, under the conditions that

17

• The learning rate decreases over time, such that
∑t
λ=0 λ =∞ and

∑t
λ=0 λ

2 <
∞.

• Each agent samples each of its actions infinitely often. (Both of these are
required for single agent Q-Learning to converge as well.)

• Each agent’s exploration strategy is exploitative, with the probability of
exploration decreasing over time: limt−→∞ P (ait) = 0, if ait 6= arg maxaQ

i(s, a).

Intuitively, if agents are in an equilibrium, they are likely to remain there due
to the self-confirming nature of equilibria. Agents can only escape it when
both agents explore (favorably) at the same time. The probability of joint
exploration, and thereby escaping equilibria, diminishes over time, as by the
third condition. Furthermore, when agents are in a non-equilibrium, when one
agent explores it will find another action to be more favorable, unless the other
agent is exploring simultaneously. Again, this probability diminishes over time.
Although IQL is thus likely to converge to equilibria, there is, however, no
guarantee about the quality of such an equilibrium. It does not have to be the
optimal equilibrium. We refer to [25] for one such example.

2.3.3 Deep Q Network

Tabular Q-Learning learns Q(s, a) for each (state, action)-pair. When the state
space becomes too large, typically a function approximator is used to generalize
across the state space. One particularly succesful function approximator is
the Deep Q-Network (DQN) [5], which uses a neural network as a function
approximator to generalize Q-values across the input space. It aims to learn
Q(s, a;θt), where θt are the network parameters at training iteration t 2. Instead
of directly updating Q-values, as in tabular Q-Learning, updates are now made
to the parameters of the network to minimize a differentiable loss function. The
loss function for iteration t is given by

Lt(θt) = Es,a,r,s′
[
(yt −Q(s, a;θt))

2
]

where yt = r + γmax
a′

Q̂(s′, a′;θ).
(2.3.4)

A major contributor to the stability of the training process is the Experi-
ence Replay [26]. In supervised Deep Learning, training samples are commonly
assumed to be independent and identically distributed. In Deep Reinforcement
Learning however, consecutive states we experience throughout a trajectory are
highly correlated. Moreover, supervised Deep Learning assumes the underlying
data distribution to be stationary, whereas in Deep Reinforcement Learning the
samples we experience are highly correlated with the current network parame-
ters. To overcome the instability this introduces to the learning process, a replay
memory D is used. A newly observed transition tuple 〈st, at, rt, st+1〉 is stored

2In the remainder of this Thesis, we drop the notation for this dependency on θt for clarity;
It is clear from the context of DQNs, and we do not want to overload the symbol θ.

18

in this memory (up to a maximum in FIFO fashion). Instead of updating the
network’s parameters θ sequentially with each newly observed transition tuple,
at each iteration we randomly sample a minibatch of transitions from D and
update by performing stochastic gradient descent on this minibatch.

A second contributor to the stability of the method is the use of a separate
network Q̂ for generating the targets yt. Initially, the agent network and the
target network share their parameters. The target network’s parameters are
then held fixed for C iterations, and copied from the agent network afterwards.
Temporarily fixing the target network thus prevents the agent network from
prematurely overfitting to current experiences.

For completeness, we present the full algorithm for DQN in Alg. 1. As a
final remark, we want to emphasize that the Deep Q-Network by itself is not a
way to achieve multi-agent learning. Instead, Indepedent Q-Learners can use a
Deep Q-Network to learn their individual Q-values, when tabular Q-Learning
falls short.

Algorithm 1: Deep Q-Learning, adapted from [5]

1 Initialize replay memory D to capacity N
2 Initialize action-value function Q(s, a;θ) with random weights θ

3 Initialize target action-value function Q̂(s, a;θ) with weights θ = θ
4 for episode = 0 to M do
5 for t = 0 to h do
6 With probability ε select random action at
7 otherwise select at = arg maxaQ(st, a;θ)
8 Execute action at and observe reward rt and state st+1

9 Store transition 〈st, at, rt, st+1〉 in D
// Experience Replay

10 Sample random minibatch of transitions 〈sj , aj , rj , sj+1〉 ∈ D
11 if episode terminates at step j + 1 then
12 yj = rj
13 end
14 else

15 yj = rj + γmaxa′ Q̂(sj+1, a
′;θ)

16 end
17 Perform gradient descent step on (yj −Q(sj , aj ,θ))2 with

respect to θ
18 Every C steps update Q̂ = Q // Target Network

19 end

20 end

19

2.3.4 Centralized Learning in Dec-POMDPs

In Dec-POMDPs, during execution the agents must act based on local informa-
tion, in a decentralized fashion. A key insight, however, is that learning does
not need to be decentralized, but can instead be centralized. This paradigm is
formalized as Centralized Learning with Decentralized Execution [21][27], un-
der which agents can freely share observations and actions, and they can freely
access the true (hidden) state during learning. Kraemer et al. [27] give a helpful
intuition behind this approach: during rehearsal (learning), actors can read the
script, discuss with others and receive feedback from the director. During the
show (execution), they are on their own.

Depending on the amount of hidden information we reveal to the agents,
during learning a Dec-POMDP can accordingly be reduced to either a Multi-
Agent MDP or Multi-Agent POMDP. In the case that we reveal both the hid-
den state as well as the actions of other agents to each agent, for example,
the Dec-POMDP is reduced to a Multi-Agent MDP. The optimal Q-values,
QMMDP (s, a) of joint actions in the underlying MMDP can then be learned.
The main challenge is how decentralized policies can be extracted from QMMDP ,
as during execution the agents do not have access to the state and actions of

other agents. Instead, they only know their own action-observation history θ
i

t.
One way to make progress is for agents to maintain an individual belief over

precisely those hidden features. Kraemer et al. [27], for example, employ a

frequency analysis during learning to compute P̂ i(s|θit) and P̂ i(a−i|s, θit), and
subsequently extract individual Q-functions from the centralized Q-function as

Qi(θ
i

t, a
i) =

∑
s,a−i

P̂ i(a−i|s, θit)P̂ i(s|θ
i

t)Q
MMDP (s, 〈ai, a−i〉). (2.3.5)

20

Chapter 3

Dec-POMDPs as
Non-Observable MDPs

In this Chapter, we recite the a key concept underpinning our research, namely
a sufficient statistic of the past joint policy. It was introduced by Oliehoek
[28], whose exposition we shall adhere to. Furthermore, we recite work on a
reformulation of a Dec-POMDP as a Non-Observable MDP, which introduces a
perspective on Dec-POMDPs highly relevant to our work. Finally, we discuss
how Q-Learning could be applied to Non-Observable MDPs. Even though Sec-
tions 3.1 and 3.2 can be seen as Background, we want to explicitly discuss them
separately due to their significance.

3.1 Sufficient plan-time statistics for Dec-POMDPs

Optimal value function of a Dec-POMDP. Recall that the goal of solving
a Dec-POMDP is to find a sequence of joint decision rules 〈δ0, δ1, . . . , δh−1〉
which, when executed, maximizes the expected return. But a key question we
have delayed in answering thus far is how we should compute the expected
value of a joint decision rule, such that we can select the maximizing one. It
should be clear that its value depends on the history of joint decision rules ϕt, as
these greatly impact the underlying state and joint action-observation history
distribution at the current timestep. With this in the back of our mind, we
now present the optimal value function for a Dec-POMDP [21], which explicitly
conditions on the initial state distribution b0.

Qt(b0, ϕt, θt, δt) = R(θt, δt) +
∑
at

∑
ot+1

P (θt+1|θt, δt)Qt+1(b0, ϕt+1, θt+1, δ
∗
t+1).

(3.1.1)
There are some terms on the right-hand side that warrant additional expla-
nation. The first, the immediate expected reward R(θt, δt) of taking the joint
decision rule, is fairly straightforward:

21

R(θt, δt) =
∑
st

P (st|b0, θt)
∑
at

R(st, at) δt(at|θt), (3.1.2)

where δt(at|θt) denotes the probability with which joint action at is taken un-
der the decision rule. As for the second term, P (θt+1|θt, δt), we let θt+1 =
〈θt, at, ot+1〉 (i.e. the addition of the current joint action and joint observation
to the joint action-observation history). We get

P (θt+1|θt, δt) =
∑
st

P (st|b0, θt)
∑
st+1

P (ot+1|at, st+1)P (st+1|st, at)δt(at|θt).

(3.1.3)
In both Eq. 3.1.2 and 3.1.3 we require the state belief P (st|b0, θt), which we
can compute in similar recursive fashion to the Bayesian belief in a POMDP,
except that we are now dealing with joint actions and joint observations:

P (st|b0, θt) =
P (ot|at−1, st)

∑
st−1

P (st|st−1, at−1)P (st−1|b0, θt−1)∑
st
P (ot|at−1, st)

∑
st−1

P (st|st−1, at−1)P (st−1|b0, θt−1)
.

(3.1.4)
In these, again at−1 and ot stem from θt.

The optimal decision rule δ∗ can then be found as:

Qt(b0, ϕt, δt) =
∑
θt

P (θt|b0, ϕt)Qt(b0, ϕt, θt, δt) (3.1.5)

δ∗t = arg max
δt

Qt(b0, ϕt, δt). (3.1.6)

It is important to note that in order to perform the maximization overQt(b0, ϕt, δt)
in Eq. 3.1.6, we require P (θt|b0, ϕt), the probability of a particular joint action-
observation history occurring given the partly specified policy thus far. Since
each ϕt might induce a different distribution over θt, as a result we must re-
evaluate these equations for each such ϕt.

Sufficient statistic for general policies. It turns out that the above equa-
tions can be reformulated to no longer depend on the history of joint decision
rules ϕt, but on a sufficient statistic σt that summarizes it instead. The main
motivation is that many ϕt might correspond to the same statistic, thus allowing
for a more compact representation of the optimal value function.

Definition 3.1.1. The sufficient statistic of the past joint policy for general
policies is a distribution over joint action-observation histories

σt(θt) = P (θt|b0, ϕt). (3.1.7)

In other words, it precisely contains the information for which ϕt was used
previously. The sufficient statistic thus summarizes the entire past joint policy.
We can update σt at each timestep as follows:

σt+1(θt+1) = P (ot+1|θt, at) δt(at|θt)σt(θt), (3.1.8)

22

where θt+1 = 〈θt, at, ot+1〉, and

P (ot+1|θt, at) =
∑
st

P (st|b0, θt)
∑
st+1

P (ot+1|at, st+1)P (st+1|st, at). (3.1.9)

For completeness, we recite the reformulation of the optimal value function (Eq.
3.1.1) in terms of this sufficient statistic now. The optimal value function which
conditions on σt is given as

Qt(b0, σt, θt, δt) = R(θt, δt) +
∑
at

∑
ot+1

P (θt+1|θt, δt)Qt+1(b0, σt+1, θt+1, δ
∗
t+1).

(3.1.10)
Continuing the reformulation, optimal decision rules (Eq. 3.1.5, 3.1.6) can be
formed as

Qt(b0, σt, δt) =
∑
θt

σt(θt)Qt(b0, σt, θt, δt) (3.1.11)

δ∗t = arg max
δt

Qt(b0, σt, δt). (3.1.12)

For a formal proof of the equivalence of both formulations, we refer to [28].
Intuitively, ϕt was used previously only to compute the probability distribu-
tion over joint action-observation histories P (θt|b0, ϕt) in Eq. 3.1.5. In these
new formulations, σt represents exactly this probability distribution, and thus
replaces the dependency on ϕt.

Including the state distribution in the sufficient statistic. Finally, note
that in order to update σt, implicitly a Bayesian state-belief P (st|b0, θt) must
still be maintained (Eq. 3.1.9). Instead, the state-belief can also be explicitly
maintained in σt.

Definition 3.1.2. The sufficient statistic of a tuple (b0, ϕt) with ϕt stochastic
is a distribution over (state, joint action-observation histories) tuples

σt(st, θt) = P (st, θt|b0, ϕt). (3.1.13)

Initially,

σ0(s0, θ0) = P (s0, ∅) ∼ b0 ∀s0. (3.1.14)

Subsequently, σt is updated as

σt+1(st+1, θt+1) =
∑
st

P (st+1, ot+1|st, at) δt(at|θt)σt(st, θt). (3.1.15)

Sufficient statistic for deterministic policies. Again, if we restrict our-
selves to deterministic policies, we only need to consider (joint) observation
histories instead of action-observation histories.

23

(a) Both ϕ2 differ for o1 = ȯ1, but result in the same σ2

when o1 is received with probability 1 after ȧ0.

(b) Both ϕ2 differ for any o1, but result in the same σ2 when
the observations are uniformly random.

Figure 3.1: Two examples where different ϕ2 correspond to the same statistic
σ2(s2, o2) (depending on the environment).

Definition 3.1.3. The sufficient statistic of a tuple (b0, ϕt) with ϕt determin-
istic is a distribution over (state, joint observation histories) tuples

σt(st, ot) = P (st, ot|b0, ϕt). (3.1.16)

As before, σ0 ∼ b0. At each timestep, σt is updated as

σt+1(st+1, ot+1) =
∑
st

P (st+1, ot+1|st, δt(ot))σt(st, ot). (3.1.17)

Different ϕt correspond to the same σt. Let us consider deterministic
decision rules here for ease of exposition. As was argued before, different ϕt
might correspond to the same σt, and this new representation can thus be more
compact. In other words, different histories of joint decision rules might induce
the same probability distribution over (state, joint observation history) tuples.
To see why, consider a simple environment with two joint observations (o, ȯ) and
two joint actions (a, ȧ). Fig. 3.1 depicts two different partly specified policies.
They differ in the joint action for joint observation history o1 = 〈ȯ1〉. ϕ1 per-
forms action a1, whereas ϕ2 performs action ȧ1. However, suppose that action
ȧ0 deterministically leads to observation o1. The right path will never be real-
ized, and as a result both ϕ2 induce the same distribution over joint observation
histories σ2(s2, o2). Similarly, if the observation is uniformly random, both ϕ1′

and ϕ2′ in Fig. 5.2b result in the same σ2 as well.

3.2 Dec-POMDPs as Non-Observable MDPs

Oliehoek et al. [29] further show that using the sufficient statistic, we can refor-
mulate a Dec-POMDP as a Non-Observable POMDP. We follow their exposition
here.

One way to conceptually think about a Dec-POMDP is that a single decision
maker needs to choose the joint decision rule at each timestep, based on the

24

joint policy ϕt that was followed thus far. The sufficient statistic σt(st, ot)
summarizes precisely this past joint policy, and thus replaces the dependency
on it. As such, we can reduce a Dec-POMDP to a single agent environment, a
POMDP to be specific. In this POMDP, the states š are formed by št = 〈st, ot〉.
Moreover, the actions in this POMDP correspond to the joint decision rules in
the underlying Dec-POMDP. Note that the true state is hidden. The decision
maker does not know the true state and joint observation history, as agents are
not allowed to share their information. Instead, the decision maker maintains a
typical state-belief, which corresponds precisely to σt(st, ot).

In this POMDP, the transition from one state št to another št+1 is deter-
ministic and can be expressed as

Ť (〈st, ot〉, δt, 〈st+1, ot+1〉) =

{
P (st+1, ot+1|st, δt(ot)) if ot+1 = 〈ot, ot+1〉
0 otherwise.

(3.2.1)
Furthermore, we can define the reward function quite easily as

Ř(〈st, ot〉, δt) = R(st, δt(ot)). (3.2.2)

We are now ready to present the reformulation formally.

Definition 3.2.1. The plan-time Non-Observable MDP for a Dec-POMDP is
a tuple 〈Š, Ǎ, Ť , Ř, Ω̌, Ǒ, b̌0〉 [29], where

• Š is the set of augmented states, each št = 〈st, ot〉.

• Ǎ is the set of actions, whereby each action corresponds to a joint decision
rule in the Dec-POMDP.

• Ť is the transition function, defined in Eq. 3.2.1.

• Ř is the reward function, defined in Eq. 3.2.2.

• Ω̌ = {NULL} is the observation set which contains only the NULL ob-
servation.

• Ǒ is the observation function, which specifies that the NULL observation
is received with probability 1.

• b̌0 is the initial state distribution in the Dec-POMDP, as follows from the
definition of σ0.

It might seem confusing that the observation space solely contains the NULL
observation. However, recall that we are now taking the perspective of a (single)
coordinator that decides on joint decision rules. Since individual agents can not
share their information in a Dec-POMDP, such a coordinator can therefore not
receive any observations. It also does not need any observations. Since the
state transitions are deterministic, the coordinator knows precisely the belief
σt+1 after taking joint decision rule δt from belief σt. Therefore, given such a
sequence of decision rules, the state-belief σt can be completely determined in
advance for all timesteps.

25

3.3 Q-Learning in NOMDPs

In this Section, we show how Q-Learning can be applied to NOMDPs, and how,
in theory, it converges to the optimal Q-values.

Naively, in order for the decision maker to select the right joint decision
rule at teach timestep, one could employ Q-Learning to learn the value of each
Q(št, δt) pair. However, these values are not directly useful. The underlying
states š = 〈st, ot〉 are hidden; we are dealing with a POMDP, after all. Alter-
natively, like any POMDP, a NOMDP can be seen as a continuous-state MDP,
in which the belief over š forms the states. In other words, in this MDP, pre-
cisely σt(st, ot) form the states. Q-learning could then be used to learn Q(σt, δt)
values.

The problem, of course, is that the states σt lie in a continuum. The value
Q(σt, δt) would, therefore, have to be learned for infinite amount of σt. However,
one insight we can use is that in case of deterministic decision rules, only a
subset of all σt are reachable. Recall that each partly specified policy ϕt implies
a certain σt in a many-to-one fashion. The total number of partly specified
deterministic policies is certainly finite at all timesteps. As a result, the subset
of reachable σt must necessarily be finite at all timesteps as well.

One could construct the finite subset of reachable σt for all timesteps and
subsequently, using Q-Learning, attempt to learn Q(σt, δt) for all such pairs as

Qnew(σt, δt) = (1− λ) Qold(σt, δt) + λ

[
rt + γ max

δt+1∈Ǎ
Q(σt+1, δt+1)

]
, (3.3.1)

where σt+1 is the result of the deterministic transition defined by Eq. 3.1.17 for
all 〈st+1, ot+1〉 pairs. Since we are now dealing with an MDP (albeit, with an
enormous state and action space), in theory these learned Q-values will converge
to the optimal Q∗-values

Q∗(σt, δt) =

{
R(σt, δt) for the last stage t = h− 1

R(σt, δt) + γmaxδt+1
Q∗(σt+1, δt+1) otherwise,

(3.3.2)
where

R(σt, δt) =
∑
st

∑
ot

σt(st, ot)R(st, δ(ot)). (3.3.3)

Of course, the necessary conditions for convergence in an MDP [30] must still
apply.

Theorem 1. Q-Learning in a NOMDP over the subset of reachable σt con-
verges to Q∗(σt, δt), under the same conditions that guarantee convergence of
Q-Learning in an MDP.

In practice, however, this is not directly useful. The state and action space are
simply too large. Even learning the value of joint decision rules for a single σt
quickly becomes intractible, as there are |A||Ω|nt

such joint decision rules.

26

Chapter 4

Our approach

In this Chapter, we present our approach to tackling Dec-POMDPs, which uses
the sufficient plan-time statistic and is inspired by the NOMDP reformulation.

4.1 Towards feasible Q-Learning for NOMDPs

As discussed in Chapter 3, exact tabular Q-Learning for a NOMDP, which
attempts to learn Q(σt, δt) for each such (reachable) tuple, is intractible due to
both its enormous state and action space. In our approach, we therefore make
an approximation with respect to both the state and the action space.

Addressing the state space. When dealing with a large state space, a com-
mon way to make progress is to use a function approximator. In our work, we
employ the Deep Q-Network, which uses a neural network function approxi-
mator. As discussed in Section 2.3.3, such a neural network does not need to
explicitly learn Q-values for each σt. Instead, it uses its function approximator
to generalize Q-values across the state space.

Moreover, neural networks are well-equipped to deal with continuous state
spaces, for precisely the reason described above. Since they no longer explicitly
learn Q-values for each σt, but rather optimize their network weights in such a
way that generalizes across the state space, states that lie in a continuum can
thus be dealt with. As a result, we no longer have to compute the subset of
reachable σt in advance.

Nevertheless, solely addressing the state space is insufficient, as optimizing
joint decision rules still quickly becomes intractible.

Addressing the action space. Although the reformulation of a Dec-POMDP
as a NOMDP in principle allows the application of single agent solution tech-
niques, its main limitation is an explosion in the action space. The coordinator
now decides on joint decision rules, which not only scale exponentially in the
horizon, but also exponentially in the number of agents. A common way to

27

address the exponential scale-up in the number of agents, as already discussed
in Section 2.3.2, is to take the individual perspective. Instead of a coordina-
tor learning the value of joint decision rules, in this individual perspective each
agent concurrently learns the value of individual decision rules, i.e. Q(σt, δ

i
t).

There is one additional insight we can use to further reduce the size of the
action space [31][32]. By taking the individual perspective, we can additionally

condition the agents on their local information θ
i

t. In doing so, the DQN can now
implicitly output an individual decision rule based on the sufficient statistic, i.e.
Q(σt, δ

i
t) as before. Subsequently, it then explicitly outputs a single entry from

this decision rule: precisely the one that maps its indiviudal action-observation

history to an action. Each DQN thus learns Q(θ
i

t, σt, a
i
t). In this way, we reduce

the size of the action space by increasing the size of the state space. This is
desirable, as neural networks have powerful abilities to generalize across the
input space, but are limited in their ability to deal with a large output space.

Of course, the main drawback of such an individual Q-Learning approach
is that agents now optimize their individual actions without taking the other
agents into account. The value of an individual action clearly depends on the

actions the other agents take. The individual Q(θ
i

t, σt, a
i
t)-values are therefore

insufficient to capture this inter-agent dependency. However, contrary to true

Independent Q-Learners (which would learn Q(θ
i

t, a
i
t)), our agents are aware of

the presence of other agents by conditioning on the sufficient statistic. This
sufficient statistic contains information about the decision rules that the other
agents are following, as well as the resulting state distribution. Our main area
of research therefore lies in investigating the effects of conditioning Independent
Q-Learners on the sufficient statistic. We will discuss this more concretely when
posing our research questions in Chapter 5.

A hybrid approach. Our approach can thus be seen as a hybrid between joint
planning and individual learning. On the one hand, we let each agent optimize
its own actions based on its local information. On the other hand, we aid the
learning process by conditioning the agents on the sufficient statistic, which
contains information about the joint state of the agents and the environment.
Moreover, in order to compute σt, the agents require full knowledge of the
transition and observation function, as opposed to true learning in which the
environment dynamics are assumed to be wholly unknown.

Where joint planners optimize joint (deterministic) decision rules, of which

at each timestep there are O
(
|A||Ω|nt

)
, we optimize individual actions, of which

there are only O
(
|Ai|

)
. However, in order to do so, we condition on σt(st, θt),

whose size is O
(
|S| · (|Ω| · |A|)nt

)
. Moreover, it lies in a continuum. This,

in turn, is considerably worse than purely individual learners, which optimize
individual actions by solely conditioning on their own action-observation history.

28

Figure 4.1: A graphical representation of our approach. (Two) Individual learn-
ers take their own action-observation history as well as the sufficient statistic as
input, and output the Q-values of each action. Separate DQNs are trained for
each timestep, to deal with the increasing size of θt over time.

4.2 Deep Q-Network specifics

We use a Deep Q-Network that learns Qit(θ
i

t, σt, a
i
t). Our learning setup, for two

agents, is depicted in Fig, 4.1. There is one subtlety we have to address. The

size of θ
i

t grows every timestep, yet neural networks expect input size to remain
constant. To get around this, we train a separate DQN Qit(·) for each timestep
(and for each agent). Normally, a DQN uses its own target network to predict
the value of the next state (line 15 in Alg. 1). In our setup, the target network
of the DQN at the next timestep, i.e. Q̂it+1(·), is used for this instead.

We thus define the loss function of agent i’s DQN at timestep t to be

L = E
[
(yt −Qit(θ

i

t, σt, a
i
t))

2
]

where yt = r + γmax
a′t+1

Q̂it+1(θ
i

t+1, σt+1, a
′
t+1),

(4.2.1)

where the gradient of the loss is taken with respect to the weights of the respec-
tive DQN, as usual.

4.3 Computing σt: methodology and assump-
tions

How should the agents compute σt? Recall from Eq. 3.1.15 that if the joint
decision rules δt, the state function and observation function are known, σt can
be computed consistently and independently by each agent. However, there is
a subtle problem here. In our setup, instead of joint decision rules, each agent
outputs Q-values for individual actions. How, then, should the joint decision
rules be recovered?

29

Figure 4.2: Recovering an explicit representation of δit from the learning al-
gorithm, by quering every action-observation history. For ease of exposition,
we consider a deterministic decision rule here. Stochastic decision rules would
map every Q(·) to a probability distribution over actions instead. The first
superscript index refers to the agent, the second to the AOH index.

The procedure to retrieve individual decision rules from a DQN is as follows.

Given a specific individual action-observation history θ
i

t and sufficient statistic
σt, the network outputs Q-values for each action. Let us suppose the action
corresponding to the highest Q-value is then chosen, i.e. we act greedily. We

have then recovered one entry from the individual decision rule, namely δit(θ
i

t) =

arg maxaQ
i
t(θ

i

t, σt, a). To recover an explicit representation of δit from the neural
network, we thus need to present every possible AOH to it, and observe the
resulting action. This procedure is depicted in Fig. 4.2. By repeating this
process to recover the decision rule δit of each agent, the joint decision rule
δt = 〈δ1

t , . . . , δ
n
t 〉 can then be recovered.

Assumptions. In order for each agent to be able to compute σt, we therefore
make three main assumptions in this Thesis:

1. The agents have full knowledge about the environment’s state
transition and observation function.

2. During learning, agents can freely access the neural networks of
other agents.

3. During execution, the sequence of joint decision rules 〈δ0, δ1, . . . , δh−1〉
is known to each agent.

30

We thus follow the Centralized Learning with Decentralized Execution paradigm.
In particular, we do not reveal the state nor the actions of other agents during
learning. Instead, we reveal the decision rules of the other agents during learn-
ing. If we indeed assume the agents are allowed to share their decision rules
before execution (Ass. 3), then the Q-values optimized during learning can be
directly used during execution, as there is no additional hidden information that
Q conditions on. We therefore do not require to factorize or bootstrap from the
learned Q-function.

Furthermore, note that the third assumption still allows for truly decentral-
ized execution, as no information needs to be shared during execution. In
essence, the agents simply agree on how they will act in any given situation
beforehand (i.e. the decision rules), without actually sharing information while
acting.

4.4 Algorithmic Properties

We present pseudocode for reconstructing the joint decision rule δt, as well as
updating σt here. Furthermore, we analyze their respective complexity.

Reconstructing the joint decision rule. We have already delineated the
procedure for reconstructing δt from individual DQNs. Pseudocode for this is
shown in Alg. 2. For each agent, we need to present each possible individual
action-observation history, alongside the current sufficient statistic, to it. Given
these, we subsequently assign a probability to each individual action based on
the exploration strategy of the agent. Since there are O

(
(|Ai| · |Ωi|)t

)
possible

AOHs for each agent at timestep t, the complexity of reconstructing δt can thus
be formulated as

O
(
n(|Ai| · |Ωi|)t · |Ai|

)
. (4.4.1)

Algorithm 2: reconstruct δt(σt)

1 for i ∈ {1, . . . , n} // For each agent

2 do

3 foreach θ
i

t ∈ Θ
i

t // For each possible indivdual

action-observation history thus far.

4 do
5 foreach ait ∈ Ai // For each individual action

6 do

7 δit(a
i
t|θ

i

t)←− action probability(Qit(θ
i

t, σt, ·))
8 end

9 end

10 end
11 δt ←− 〈δ1

t , . . . , δ
n
t 〉

31

Updating the sufficient statistic. In order to construct σt+1 from σt, first
we have to reconstruct the joint decision rule, as explained above. Next, we
must evaluate Eq. 3.1.15 for each new (state, joint AOH) pair. Given that
we know δt(·) and the state and observation function, evaluating each term in
the right-hand side in Eq. 3.1.15 is a simple lookup in O(1). Since we have
to evaluate the right hand side for each old state st, its complexity is O(|S|).
Combining the complexity of reconstructing δt, and subsequently evaluating Eq.
3.1.15 for each (state, joint AOH) pair, we can formulate the complexity of the
update of σt as follows

O
(
n(|Ai| · |Ωi|)t · |Ai|

)
+O

(
|S| · (|A∗|) · |Ω∗|)n(t+1) · |S|

)
= O

(
(|A∗|) · |Ω∗|)n(t+1) · |S|2

)
,

(4.4.2)
where the complexity of reconstructing the joint decision rule is outweighed for
any problem with |A|, |Ω|, n >= 2. A∗ resp. O∗ refer to the largest individual
action, observation space. Pseudocode for the procedure is shown in Alg. 3.

Algorithm 3: update sigma(σt)

1 δt ←− reconstruct δt(σt)
2 foreach st+1 ∈ S // For each new state

3 do

4 foreach θt+1 = 〈θt, at, ot+1〉 ∈ Θt+1 // For each possible

next joint action-observation history

5 do

6 σt+1(st+1, θt+1)←−
∑
st
P (st+1, ot+1|st, at) δt(at|θt)σt(st, θt)

// Implements Eq. 3.1.15

7 σt+1(st+1, θt+1) =

8 end

9 end

4.5 Discussion on the action-observation history,
potentially stochastic decision rules and σ

Let us finally address the elephant in the room: why do we bother with the
action-observation history and possibly stochastic decision rules, when we know
at least one optimal deterministic policy exists (which would require only the
observation history)?

Action-Observation history. Recall that if the policy is fixed and deter-
ministic, one can summarize the action-observation history with the observation
history, as the AOH can be reconstructed from the OH. However, during learn-
ing, the policy is certainly not fixed. The reason we use the action-observation

32

history is coupled to our use of Deep Q-Networks, which have difficulty with
implicitly reconstructing the AOH from the OH. This is in part due to the fact
that, while learning, such networks constantly change their policies. Conse-
quently, at some point a specific OH could imply a different AOH than at a
later point. This problem is brought to light when the DQN samples both old
and new trajectories from its memory in a minibatch.

Moreover, exploratory actions, which are key to the learning process, are
wholly uncaptured by the observation history. In other words, the network
would have no way of differentiating between a greedy trajectory and a partly
exploratory trajectory, given that it receives the same observations.

Deterministic or Stochastic decision rules? The use of deterministic or
stochastic decision rules is tightly coupled to the exploration strategy, as explo-
ration strategies precisely describe the probability with which a specific action is
taken. Consider naive individual epsilon-greedy exploration, for example. Given
a specific input, we can take each action with probability at least ε

|Ai| . There-

fore, it would require stochastic decision rules. In our experiments, we shall
investigate various exploration strategies. We therefore defer their specifics, as
well as their implications on the the decision rules, for our experimental Chap-
ters.

On the sufficient statistic. Out of the presented sufficient plan-time suffi-
cient statistics in Chapter 3, we use the statistic for general policies that includes

the state distribution, i.e. σt(st, θ
i

t). The reason we maintain a probability dis-
tribution over the joint action-observation history is logical given what we have
just discussed. We explicitly include the state distribution in σt, as we hypoth-
esize that this will contain relevant information for the learning process of our
agents.

33

Chapter 5

Experimental Overview

In this Chapter, we begin by exactly defining our research questions and formally
stating a hypothesis. Next, we describe our test environment, namely Dec-
Tiger. Finally, we describe the experimental setup for all experiments that we
will conduct.

5.1 Research Questions

In order to make Q-Learning in NOMDPs feasible, we make an approximation
regarding the state space by using a neural network, and we make an approx-
imation regarding the action space by taking the perspective of optimizing in-
dividual actions. In other words, instead of a coordinator learning Q(σt, δt) in
a tabular fashion, we focus on Independent Q-Learners that condition on the

sufficient statistic, and use a Deep Q-Network to learn Qit(θ
i

t, σt, a
i
t). Our pri-

mary interest in conducting our experiments is therefore to investigate whether
such approximations are viable, or whether they completely hamper the learning
process.

The main question we aim to investigate in this Thesis is as follows.

What are the effects of conditioning Independent Q-Learners in a
Dec-POMDP on the Sufficient Statistic?

In particular, the following ‘effects’ will be analyzed in detail.

1. Can independent learners (more consistently) find the optimal joint policy
by conditioning on the sufficient statistic?

2. (Related) Does conditioning on the sufficient statistic prevent premature
convergence of independent learners to sub-optimal equilibria?

3. How do various exploration strategies relate to the decision rules, the
sufficient statistic and the learning process?

34

4. How does the complexity of the Deep Q-Network influence the effects of
conditioning the learners on the sufficient statistic?

The first and second question aim to address the shortcoming of conventional In-
dependent Q-Learning, which is that they are prone to get stuck in sub-optimal
equilibria. As for the third, we have already discussed how the decision rules
are tightly interwoven with the exploration strategy. We will thoroughly inves-
tigate a number of exploration strategies and their respective effects. Finally,
the fourth question covers the consequences of the high dimensionality of the
sufficient statistic for the learning algorithm.

Baseline: True Indepedent Q-Learners. We will compare our learners
that condition on the sufficient statistic to truly independent learners. These

truly independent learners use a DQN to learn Qit(θ
i

t, a
i
t). That is, they take

solely their own action-observation history as input, and learn the values of
individual actions.

Hypothesis. In the remainder of this Thesis, we will refer to the learners that
use the sufficient statistic as σ-DQN. We will refer to the truly independent
learners as i-DQN.

We know that optimal decision making in a Dec-POMDP not only depends
on your own actions, but also on the actions of all the other agents. Using
the sufficient statistic, σ-DQN has knowledge about the distribution over joint
action-observation histories, and they can therefore make better informed pre-
dictions about the actions other agents will take. In general, we therefore expect
σ-DQN to learn better policies than i-DQN. Moreover, σ-DQNs can adjust their
own actions according to the likely actions the other agents will take. Conse-
quently, we expect σ-DQN to be able to escape sub-optimal equilibria more
easily compared to i-DQN. Furthermore, we expect σ-DQN to require a more
complex network architecture compared to i-DQN, as the size σt is orders of
magnitude higher than a sole encoding of the action-observation history. Fi-
nally, we expect σ-DQN to require more training time until convergence, again
because of the increased input space.

Regarding the exploration strategies, we initially expected naive epsilon
greedy to suffice. However, as we can hopefully convince you, investigating
various exploration strategies turned out to be one of the most interesting parts
of our research. Without properly introducing these exploration strategies first,
formally stating a hypothesis regarding them now is not particularly useful. We
shall discuss exploration in great depth in our experimental Chapters.

5.2 Test Domain: Dec-Tiger

We shall now present the Dec-Tiger environment in which we will conduct our
experiments.

35

The Dec-Tiger [1] environment is a Dec-POMDP in which the agents must
learn to cooperate to find a treasure. The treasure is hidden behind one of
two doors. Behind the other, a tiger awaits. At each timestep, the agents can
choose to either Listen (Li), to Open the left door (OL) or to Open the right
door (OR). If any agent opens the door to the tiger, both are punished (heavily).
Similarly, if any agent opens the door to the treasure, the agents are positively
rewarded, unless the other agent opened the door to the tiger. Additionally,
agents are rewarded higher and punished lighter when jointly opening a door,
thus stimulating coordination. If an agent chooses to listen, it can hear where
the tiger is located with high probability.

To be specific, Dec-Tiger has properties n = 2, |S| = 2, |Ai| = 3 and
|Ωi| = 2. The state transition function is quite simple, and is shown in Table
5.1, where sl denotes the tiger being behind the left door. Initially, the state
is uniformly random. When both agents choose to listen, the state remains the
same. For any other joint action (that is, if any agent opens a door), the state is
reset. Since execution is decentralized, if one agent listens and the other opens
a door, the state will be reset unbeknownst to the first agent.

sl −→ sl sl −→ sr sr −→ sl sr −→ sr
〈aLi, aLi〉 1 0 0 1
otherwise 0.5 0.5 0.5 0.5

Table 5.1: Transition probabilities. For any joint action that is not (Li, Li), the
state resets without notifying the agents.

The individual observation function is quite simple as well (Tab. 5.2). If
both agents listen, each agent can correctly hear the position of the tiger with
probability 0.85. For any other joint action, the observation is uniformly ran-
dom, since the state will be reset.

sl sr
oHL oHR oHL oHR

〈aLi, aLi〉 0.85 0.15 0.15 0.85
otherwise 0.5 0.5 0.5 0.5

Table 5.2: Individual observation probabilities. Only when both agents listen is
the observation reliable.

Finally, the reward function is shown in Tab. 5.3. Indeed, the punishment
for opening the wrong door is harsh. Note that if the agents open both doors,
they are always punished for opening the door to the tiger. Moreover, the payoffs
for jointly opening a door (as opposed to individually) stimulate coordination.

36

Figure 5.1: The optimal policy that both agents should follow in Dec-Tiger.
Taken from [18].

sl sr
〈aLi, aLi〉 -2 -2
〈aLi, aOL〉 -101 +9
〈aLi, aOR〉 +9 -101
〈aOL, aLi〉 -101 +9
〈aOL, aOL〉 -50 +20
〈aOL, aOR〉 -100 -100
〈aOR, aLi〉 +9 -101
〈aOR, aOL〉 -100 -100
〈aOR, aOR〉 +20 -50

Table 5.3: Reward function. Agents are rewarded higher / punished less severely
when acting in accordance.

Optimal Policy. In our experiments, we let the agents act for three timesteps
in total. Since the expected value of jointly opening a door without any prior
information is −15, the optimal joint policy can be described as follows. During
the first and second timestep, each agent should always listen in order to gain
information about the position of the tiger. Finally, in the third timestep,
an agent should open a door only if it heard the tiger behind the other door
twice. Otherwise, it should simply listen again. The optimal individual policy
is depicted in Fig. 5.1.

Sub-optimal equilibria. This environment is deceptively simple. The reason
why it is quite difficult is that (potentially sub-optimal) equilibria exist at each

37

Learning Rate 0.001
γ 1
ε 0.1

Batch Size 50
Minimum Memory Size 5000
Maximum Memory Size 20000

Update Target Network every 10000
Optimizer RMSprop

Table 5.4: Default DQN parameter settings.

timestep. If both agents prefer to open the same door at any timestep, the
expected reward can not be improved if a single agent deviates from the current
plan. For example, if one agent decides to listen, the reward will always be
lower, and the observation will be useless as the state will be reset by the other
agent. The same holds for opening the other door.

This environment is therefore perfect to test our approach. Since the agents
can get stuck in an equilibrium at any timestep, they will have ample opportu-
nity to escape sub-optimal ones as well.

5.3 Experimental Setup

In all of our experiments, we set the horizon to 3. We train a separate DQN
Qit(·) for each agent and each timestep t ∈ {0, 1, 2} in the undiscounted Dec-
Tiger domain. We let the DQNs train for 1000000 iterations, whereby we repeat
each experiment 50 times to obtain more robust results. We evaluate the DQNs’
intermediate performance by completing 100 simulations once every 1000 iter-
ations. After training is finished, we evaluate the final performance of the net-
works by simulating another 10000 trajectories. When evaluating the network’s
performance, we choose the action corresponding to the maximum Q-value, i.e.
we act greedily.

Network Architecture. The default parameters for the DQNs are listed in
Table 5.4. Furthermore, we investigate two network architectures of the DQNs.
The first network has the input layer directly connected to the output layer,
using a linear activation function. It can thus be seen as a linear function
approximator. The second architecture has an intermediate hidden layer of size
ht with a rectified linear unit as activation function. The size of ht is determined
by the respective timestep of the DQN: ht ∈ {0, 10, 100}. Since the size of σt
increases each timestep, so does the hidden layer. Because of the presence of
reLU activations, this network represents a non-linear function approximator.
See Fig. 5.2 for a graphical overview of the architectures. We shall refer to these
architectures as the small and large network henceforth.

38

(a) Small: A fully connected linear layer connects
the input layer directly to the output layer.

(b) Large: Contains an intermediary hidden layer of size ht with
ReLU activation.

Figure 5.2: Graphical overview of both small and large σ-DQN architectures.

Main simulation pseudocode. The main simulation pseudocode for σ-DQN
is presented in Alg. 4. i-DQN uses largely the same pseudocode, except that it
excludes any functionality based on σt.

5.4 Experimental Runtime

Although the runtime of our algorithms are not the focus of our experiments,
it is nevertheless important to state it. We present it in here, as to not distract
from our actual experiments in the following Chapters. Table 5.5 shows the
average time in seconds it takes to complete 1000 training iterations in the Dec-
Tiger domain, for various horizons. Although we solely train agents using h = 3,
varying the horizon does bring to light the scale-up for σ-DQN. Where i-DQN’s
runtime scales linearly with the horizon, σ-DQN clearly scales exponentially,
as expected. Moreover, although n is fixed at 2 in Dec-Tiger (and thus not
shown in Table 5.5), σ-DQN also scales exponentially in n, whereas i-DQN is
indifferent to n.

39

Algorithm 4: Main simulation loop

1 Q1
0, Q

1
1, Q

1
2, Q

2
0, Q

2
1, Q

2
2 ←− Deep Q-Networks for agents 1,2 and

timesteps 0,1,2
2 Q̂1

0, Q̂
1
1, Q̂

1
2, Q̂

2
0, Q̂

2
1, Q̂

2
2 ←− Target Networks, with equal parameters to

the Deep Q Networks Q1,2
0:2 initially.

3 D1
0, D

1
1, D

1
2, D

2
0, D

2
1, D

2
2 ←− Replay Memory for each DQN.

4 for e = 0 . . . 1000000 do

5 θ
1

0 ←− ∅; θ
2

0 ←− ∅ // Initialize empty histories

6 σ0(sl, ∅)←− 0.5 // Initialise σ to initial belief

7 σ0(sr, ∅)←− 0.5
8 for t = 0. . . 2 do
9 for i = 1. . . 2 // For both agents

10 do

11 ait ←− exploration strategy(Qit(θ
i

t, σt, ·)
12 end
13 ot+1, rt ←− env.step(a1

t , a
2
t) // Environment emits joint

observation and reward

14 θ
1

t+1 ←− 〈θ
1

t , a
1
t , o

1
t+1〉 // o1

t+1 is individual component of

joint observation.

15 θ
2

t+1 ←− 〈θ
2

t , a
2
t , o

2
t+1〉

16 σt+1 ←− update sigma(σt)
17 for i = 1 . . . 2 // Handle training

18 do
19 if size(Di

t) = max mem size then
20 Di

t.pop()
21 end

22 Di
t ←−

〈
Di
t,
〈
〈θit, σt〉, ait, rt, 〈θ

i

t+1, σt+1〉
〉〉

23 Sample minibatch B experiences〈
〈θij , σj〉, aij , rj , 〈θ

i

j+1, σj+1〉
〉

from Di
t.

24 if j + 1 = horizon then
25 yj ←− rj
26 end
27 else

28 yj ←− rj + maxa′ Q̂
i
j+1(θ

i

j+1, σj+1, a
′) // Target

network of the next timestep

29 end

30 Perform gradient descent on (yj −Qij(θ
i

j , σj , a
i
j))

2 w.r.t.

Qij network parameters.

31 if e mod C = 0 // Update Target Network every C
32 then

33 Q̂it ←− Qit
34 end

35 end

36 end

37 end

40

h = 1 h = 2 h = 3 h = 4
i-DQN 5.97 (0.01) 11.87 (0.10) 19.95 (0.26) 28.67 (0.35)
σ-DQN 5.86 (1.08) 21.83 (2.40) 105.81 (0.96) 4686.02 (46.16)

Table 5.5: Seconds (standard deviation) to complete 1000 training iterations in
the Dec-Tiger environment for various horizons.

41

Chapter 6

Exploration in the space of
individual actions

6.1 Setup

In this Chapter, we investigate the natural exploration strategy for independent
learners, namely exploration in the space of individual actions. We follow the
epsilon-greedy strategy (ε = 0.1). With probability 1 − ε, an agent chooses
the individual action corresponding to the highest Q-value. With probability
ε, it chooses a random action instead. Both σ-DQN and i-DQN follow this
exploration strategy. Recall that σ-DQN conditions on both the individual
action-observation history and the sufficient statistic, whereas baseline i-DQN
solely conditions on the former.

6.2 Decision Rules

The use of naive epsilon-greedy exploration requires stochastic decision rules, as
given a certain action-observation history, we can take any action with probabil-
ity at least ε

|Ai| . In Alg. 5 we show pseudocode specifying action probability,

which is used to form the individual decision rules in Alg. 2.

Algorithm 5: action probability(θ
i

t, σt, a
i
t)

1 if ait = arg maxaQ
i
t(θ

t

i, σt, a) then

2 δit(a
i
t|θ

i

t)←− (1− ε) + ε
|Ai|

3 else

4 δit(a
i
t|θ

i

t)←− ε
|Ai|

5 end

42

small i-DQN small σ-DQN large i-DQN large σ-DQN
Average Reward (std) 2.77 (7.18) -10.29 (12.66) -5.63 (16.48) -8.21 (12.93)

no. Optimal Policies / 50 44 20 22 22

Table 6.1: Average reward and number of optimal policies found of the 50 runs,
using exploration in the space of individual actions.

6.3 Results

For all four tested variants, small i-DQN, small σ-DQN, large i-DQN and large
σ-DQN, we show the average reward of the final learned policies in Table 6.1.
It also shows the number of optimal policies found, out of the total 50 runs.
Moreover, Fig. 6.1, 6.2, 6.3 and 6.4 show the learning curves over the 1000000
training iterations for each DQN. An average reward of about 5 indicates an
optimal policy has been found.

6.4 Analysis

Learned Policies. Let us discuss Table 6.1 first. We see that small i-DQN
vastly outperforms all three other combinations. Of its 50 respective runs,
44 manage to find the optimal policy, at least twice as much as the others.
Furthermore, we see that when increasing the size of i-DQN from small to large,
performance deteriorates. This could be explained by the fact that i-DQN’s
input, a one-hot encoding of the action-observation history, never grows beyond
10 bits. Therefore, an intermediate hidden layer with 100 units is uncalled for,
and we observe it hampers the learning process.

As for σ-DQN, we see that it manages to find the optimal policy less than
half the time. We do, however, see a slight improvement from large σ-DQN over
small σ-DQN, as we hypothesized, but not convincingly so.

Learning Curves. However, the final policies do not tell the whole story.
When we inspect the learning curves, we see a clear pattern for each tested
DQN: as soon as they settle for an equilibrium in which both agents jointly
open any door at any timestep, they are completely stuck 1. The oscillations
that are visible are simply the result of the stochastisity in the environment. We
fully expected i-DQN to get stuck in sub-optimal equilibria, but not σ-DQN.

Why do σ-DQNs not manage to escape sub-optimal equilibria, as we hypoth-
esized? The reason is tied to the use of exploration in the space of individual
actions, which requires stochastic decision rules. Recall that we recover the
individual decision rule from the neural network by presenting each possible

1The rather slow improvement from -6 to about 5 visible in small i-DQN and small σ-
DQN does not resemble agents getting unstuck from an equilibrium. Rather, it is simply the
improvement from (1) always listening to (2) one agent opening a door at the final timestep,
to (3) the optimal policy of both agents opening the same door at the final timestep (in case
of hearing the tiger behind the other door twice). Neither (1) nor (2) are equilibria.

43

Figure 6.1: Small i-DQN learning curve, with exploration in the space of indi-
vidual actions. Each line represents a single run. An average reward of about 5
indicates an optimal policy has been found.

Figure 6.2: Small σ-DQN learning curve, with exploration in the space of indi-
vidual actions.

44

Figure 6.3: Large i-DQN learning curve, with exploration in the space of indi-
vidual actions.

Figure 6.4: Large σ-DQN learning curve, with exploration in the space of indi-
vidual actions.

45

action-observation history (alongside σt) to it. For each such θ
i

t, we observe

the resulting Q-values Q(θ
i

t, σt, ·), and based on those we assign probabilities to
each action:

δit(a
i
t|θ

i

t) =

1− ε+ ε
|Ai| if ait = arg maxaQ

i
t(θ

i

t, σt, a).
ε
|Ai| otherwise.

(6.4.1)

The actual action that was taken is not relevant to this procedure. In other
words, the individual stochastic decision rule is the same regardless of whether
the agent took a greedy or an exploratory action. When the agents are stuck

in an equilibrium, their greedy actions arg maxaQ
i
t(θ

i

t, σt, a) remain the same
for all action-observation histories. As a consequence, their entire decision rules
are stuck as well.

How does this affect the sufficient statistic? For ease of readability, we restate
the update rule for σt.

σt+1(st+1, θt+1) =
∑
st

P (st+1, ot+1|st, at) δt(at|θt)σt(st, θt) (6.4.2)

Since the environment dynamics P (st+1, ot+1|st, at) are constant, the only factor
that can bring about change in the sufficient statistic σt+1 is the joint decision
rule. When the individual decision rules, and thereby the joint decision rule
are stuck, σt is completely stuck as well. That is, when agents are stuck in an
equilibrium, they will repeatedly experience the same σt. Even when an agent
takes an exploratory action, this is not reflected in its decision rule, and thus it
is also not captured by the sufficient statistic. Therefore, σt has no added value
for escaping sub-optimal equilibria.

6.5 Conclusion

To conclude, the reason why i-DQN outperforms σ-DQN quite substantially
using exploration in the space of individual actions, is that agents settle for
an equilibrium quite quickly. Since i-DQN’s input space is much smaller, the
agents can quickly focus on what is important: the individual action observation
history. On the other hand, by the time σ-DQN agents have finally had enough
time to decipher the meaning of the sufficient statistic, they are highly likely to
already be stuck in an equilibrium. When this happens, σt is completely stuck as
well, and thus it provides no useful information to escape sub-optimal equilibria.
The sufficient statistic therefore only obfuscates the important input.

46

Chapter 7

Exploration in the space of
individual decision rules

7.1 Setup

The problem with exploration in the space of individual actions is that an
exploratory action of one agent is not observable to the other agent. The reason
for this is that an actual exploratory action is not captured by the decision rule,
and consequently it is not captured by the sufficient statistic either. Since both
agents need to take a correct exploratory action simultaneously to escape an
equilibrium, it would be desirable for exploratory actions of one agent to be
visible to the other agent.

To overcome the aforementioned problem, we can have agents explore in the
space of individual decision rules instead. Specifically, with probability 1 − ε,
the greedy decision rule described by the neural network is followed. With prob-
ability ε, a random, deterministic decision rule is formed by assigning a random
action to every possible individual action-observation history. Subsequently, an
agent simply looks up the prescribed action for its individual AOH in this newly
formed decision rule.

Conceptually, taking the action prescribed by a random decision rule is
equivalent to simply taking a random action. However, the key difference is
that the decision rule is now capable of capturing an exploratory action. If the
greedy, neural network decision rule is followed, it will be completely different
from when an exploratory, random decision rule is followed. As a consequence,
through the sufficient statistic, an agent will now know when the other agent
has taken a greedy or exploratory action. Not only that, but the sufficient
statistic also contains information about how the other agent explored, as this
is precisely described by the random decision rule.

47

7.2 Decision Rules and Sufficient Statistic

Decision Rules. Exploration in the space of individual decision rules permits
deterministic decision rules, as exploration is no longer on the action-level. To be
specific, an agent either follows the arg max decision rule described by its neural
network when acting greedily, or follows the random, deterministic rule when ex-
ploring instead. We present pseudocode, again specifying action probability,
in Alg. 6.

Algorithm 6: action probability(θ
i

t, σt, a
i
t, δ

i,rnd
t)

1 if random float > ε // Follow the deterministic decision

rule from the neural network.

2 then

3 if ait = arg maxaQ
i
t(θ

i

t, σt, a) then

4 δit(a
i
t|θ

i

t)←− 1
5 else

6 δit(a
i
t|θ

i

t)←− 0
7 end

8 else if random float ≤ ε // Follow the random deterministic

decision rule instead

9 then

10 if ait = δi,rndt (θ
i

t) then

11 δit(a
i
t|θ

i

t)←− 1
12 else

13 δit(a
i
t|θ

i

t)←− 0
14 end

15 end

Sufficient Statistic. Since we are now working in the space of deterministic
decision rules, one might suggest to use the sufficient statistic for deterministic
policies, i.e. σt(st, ot), instead of the sufficient statistic for stochastic policies

σt(st, θ
i

t). However, we still require the action-observation history as input to
the DQN, because when the policy changes during learning, a certain obser-
vation history at one point might imply a different action-observation history
at a later point. Hence, there is a mismatch between, on one hand, using the
individual action-observation history as input (as is typical for stochastic de-
cision rules), and, on the other hand, working in the space of deterministic
decision rules. Our decision rules thus deterministically map action-observation
histories to actions. We therefore also stick to our use of the general suffi-

cient statistic σt(st, θ
i

t), which contains a distribution over precisely those joint
action-observation histories.

48

small σ-DQN large σ-DQN
Average Reward (std) -6.72 (12.53) -8.42 (13.35)

no. Optimal Policies / 50 26 23

Table 7.1: Average reward and number of optimal policies found of the 50 runs,
using exploration in the space of individual decision rules.

7.3 Results

Since exploration in the space of individual decision rules reduces to exploration
in the space of individual actions when an agent does not explicitly condition
on the sufficient statistic, we do not repeat experiments for i-DQNs.

Again, we show the evaluation of the final learned policies of both small and
large σ-DQNs in Tab. 7.1, as well as their respective learning curves in Fig. 7.1
and 7.2.

7.4 Analysis

Learned Policies. We observe that exploration in the space of individual de-
cision rules still does not come close to the performance of small i-DQN, which
managed to find 44 optimal policies earlier. With regard to the σ-DQNs, we ob-
serve that the number of optimal policies found is slightly higher now compared
to exploration in the space of individual actions: small σ-DQN improved from
20 to 26, whereas large σ-DQN improved from 22 to 23. The average reward
for small σ-DQN improved, whereas the average reward for large σ-DQN dete-
riorated slightly. However, due to the high standard deviations, none of these
results are conclusive.

Learning Curves. Again, the more interesting aspect of our results are the
learning curves. To our surprise, we still observe that σ-DQN gets completely
stuck in sub-optimal equilibria as soon as one is found. Even though the ex-
ploration of one agent is now visible to the other agent through the sufficient
statistic, the other agent is still not able to adapt its behavior accordingly.

This time, the reason can be explained as follows. In order to escape an
equilibrium, both agents need to explore simultaneously. We hypothesized that
the sufficient statistic will facilitate this, by capturing the exploratory decision
rule. However, a key limitation we have overlooked is tied to the very definition
of the sufficient statistic: σt is a summary of the history of joint decision rules
ϕt at timestep t. Therefore, if one agent takes an exploratory action and thereby
samples a random decision rule at timestep t, this will be captured only in σt+1.
In other words, if one agent explores at timestep t, this will become visible
to the other agent at timestep t + 1. Agents can therefore still not coordinate
their (joint) exploration through the sufficient statistic. As a result, sub-optimal
equilibria can still not be escaped.

49

Figure 7.1: Small σ-DQN learning curve, with exploration in the space of indi-
vidual decision rules.

Figure 7.2: Large σ-DQN learning curve, with exploration in the space of indi-
vidual decision rules.

50

7.5 Conclusion

In the Dec-Tiger domain, we observe that exploration in the space of individual
actions or decision rules makes little difference. However, we still believe that
exploration in the space of decision rules is the superior way to approach indi-
vidual exploration when conditioning on the sufficient statistic. Essentially, the
agents are still exploring to random actions. However, the key difference is that
by exploring in the space of individual decision rules, an agent can communicate
when and how it explored. Moreover, it allows for deterministic decision rules,
which significantly reduces the size of σt’s entries with non-zero probability.

Nevertheless, it still provides no way to escape sub-optimal equilibria, as an
exploratory action by one agent only becomes apparent to the other agent when
it is already too late.

51

Chapter 8

Exploration in the space of
joint decision rules

8.1 Setup

So far we have observed that the agents quickly settle for an equilibrium, and
that individual exploration is insufficient to escape them. One idea would then
be to perform some form of joint exploration instead, which is precisely what
we investigate in this Chapter.

Specifically, with probability 1 − ε, both agents follow their greedy, deter-
ministic decision rule described by their respective DQNs. Alternatively, with
probability ε, a random, deterministic joint decision rule is formed, and each
agent takes the action prescribed by it. Note that exploration in the space of
joint decision rules is precisely how Q-Learning for NOMDPs (i.e. Q(σt, δt))
would explore as well. Furthermore, for i-DQNs, this exploration strategy sim-
ply reduces to exploration in the space of joint actions, which is what we will
use as baseline here.

Since agents will now always explore simultaneously, a necessary condition to
escape an equilibrium, we shall investigate how this affects the learning process.

8.2 Results

Like before, final evaluation of the policies is shown in Table 8.1. As for the
learning curves, we notice that a single graph depicting all 50 runs is too clut-
tered now. We therefore split up each tested setting into four subgraphs, each
containing 10 runs. These are depicted in Fig. 8.1, 8.2, 8.3 and 8.4.

52

Figure 8.1: Small i-DQN learning curve, with exploration in the space of joint
decision rules (which reduces to joint actions for i-DQN). Each subplot shows
10 runs.

Figure 8.2: Small σ-DQN learning curve, with exploration in the space of joint
decision rules.

53

Figure 8.3: Large i-DQN learning curve, with exploration in the space of joint
decision rules.

Figure 8.4: Large σ-DQN learning curve, with exploration in the space of joint
decision rules.

54

small i-DQN small σ-DQN large i-DQN large σ-DQN
Average Reward (std) -7.02 (3.88) -11.82 (8.05) -6.38 (3.53) -10.15 (7.10)

no. Optimal Policies / 50 0 0 0 2

Table 8.1: Average reward and number of optimal policies found of the 50 runs,
using exploration in the space of joint decision rule.

8.3 Analysis

Learned Policies. For any tested DQN, the final reward was observed to de-
teriorate using joint exploration compared to individual exploration. Moreover,
large σ-DQN was the only DQN that managed to find two optimal policies. The
others were not able to find a single one. The reason for these deteriorations
can be explained by the fact that joint exploration is not even likely to con-
verge to an equilibrium in the first place. To see why, again consider a one-shot
toy environment with a single state, two agents and two actions, with payoff
described as in Table 8.2.

a2 ȧ2

a1 10 −20
ȧ1 0 10

Table 8.2: Toy environment demonstrating that agents are not able to escape
non-equilibrium (ȧ1, a2) with joint exploration.

Let us set ε = 0.9. Suppose the agents currently prefer joint action (ȧ1, a2),
yielding a reward of 0. Using individual exploration, when agent two explores
towards the equilibrium (ȧ1, ȧ2) by selecting action ȧ2, with probability 0.95 the
first agent chooses ȧ1, and a reward of 10 is obtained. Similarly, a reward of
−20 is received with probability 0.05. Therefore, on average the value of ȧ2 will
be 8.5, which is better than the value of action a2. The agents will therefore
likely converge to equilibrium (a1, a2) or (ȧ1, ȧ2).

However, this is not the case when the agents use joint exploration. Again,
suppose agent two explores towards the equilibrium (ȧ1, ȧ2) by selecting action
ȧ2. This time, agent one is always acting randomly when agent two explores. As
a result, the expected reward of ȧ2 is −5. Moreover, any penalties that might
occur when agent two explores to selecting its currently preferred action a2, will
be outweighed by greedily taking that same action with probability 0.9. As a
result, the agent will not find be able to escape this non-equilibrium.

The reason exploration in the space of joint decision rules does work for the
NOMDP setting, is that Q-Learning for NOMDPs reinforces Q(σt, δt), i.e. the
joint decision rules. It therefore circumvents the ambiguity that comes with
the action selection of the other agent in reinforcing individual actions, as this
ambiguity is resolved when considering joint decision rules.

We observe this effect in the final policies as well. For example, some of the

55

runs converged to the optimal policy, except that, at the final timestep, one
agent did not open the left door when it heard the tiger behind the other door
twice, whereas the other agent did. This joint policy is clearly sub-optimal, as
it is always better for both agents to open a door together.

Learning Curves. When we inspect the learning curves, we firstly notice
that many of the runs get stuck in a reward of −6, corresponding to the policy
of always listen. The reason is precisely given by what we have just described:
on average, the reward for exploring to opening the correct door at the final
timestep (and another agent possibly exploring to opening the wrong door), is
lower than safely choosing to listen. For example, even if an agent knows with
certainty that it should open the left door, exploring towards this action will
yield a reward of 1

3 (9 + 20− 100) = −23.67 on average.
We do, however, see that some of the runs (for all tested DQN settings)

manage to improve upon their policies during learning. This mostly happens
when the current policy is quite bad, with an average reward of about -20 or
worse. On average, the reward for a possible improvement then outweighs the
current penalty. ‘Less bad’ policies, e.g. the ones that always listen with average
reward of -6, could not be improved.

In theory, by conditioning on the sufficient statistic, it should be easier for
agents to improve their policies. The reason is as follows. Suppose agents are
stuck in opening a door at the second timestep. After taking a joint exploratory
action, their best action at the third timestep depends on how they explored
earlier. For example, if both listened, it would be wise to open a door. However,
if one agent listened, but the other did not, the agents should not open a door.
Without conditioning on σt, the agent that listened in both cases is unable to
distinguish between these two scenarios, and consequently takes the same action
in both. By conditioning on σt, however, the agent can differentiate between
these two scenarios, and consequently adjust its behavior accordingly.

Although this theory is not directly visible in the learning curves, it does be-
come apparent if we train the DQNs for another 1000000 iterations, as depicted
in Fig. 8.5. We see that runs that are stuck in jointly opening a door in both
the first and second timestep, manage to learn the optimal policy. As described,
this is precisely where sufficient statistic would be useful. Conversely, training
the i-DQNs for an additional 1000000 iterations did not change anything.

8.4 Conclusion

Contrary to individual exploration, joint exploration is not likely to converge
to an equilibrium. Our experiments confirm this. Using joint exploration, the
performance of the final policies deteriorates. None of the tested DQNs manage
to find an optimal policy, except for large σ-DQN, which found two. However,
we do observe (for all DQNs) that some runs manage to improve on their policy
during learning, which we did not observe with individual exploration. This

56

Figure 8.5: Two runs of large σ-DQN trained for an additional 1000000 itera-
tions.

improvement is limited to bad policies, for which joint exploration tends to
yield higher rewards on average than the current penalty.

Moreover, the effect of conditioning on the sufficient statistic only becomes
apparent when we train the σ-DQNs for an additional 1000000 iterations, thereby
confirming our hypothesis that such σ-DQNs require much longer training time
than their i-DQN counterparts. Given more time, the large σ-DQN was able to
perform a rather difficult improvement from a joint policy that opened a door
at both the first and second timestep, to the optimal policy.

57

Chapter 9

Conceptually Sequencing
the Decision-Making

9.1 Setup

So far, we have observed that agents can not escape equilibria using individual
exploration. A potential solution is to use joint exploration, but this came with
numerous other drawbacks. We therefore return to exploration in the space of
individual decision rules.

Using the sufficient statistic, the problem with exploration in the space of
individual decision rules is that an exploratory action of one agent only becomes
apparent to the other agent at the next timestep. To solve this problem, we could
additionally share the current decision rules during learning, and consequently
let each agent condition on (1) the individual AOH, (2) the sufficient statistic,
and (3) the current decision rule of the other agent(s). An exploratory action by
one agent will then become apparent to the other agent at the current timestep,
and it can adjust its behavior accordingly.

However, sharing the decision rule of both agents is impossible for the fol-
lowing reason. Normally, to extract δ1

t from agent 1’s DQN, we take the current

sufficient statistic and, alongside it, present each AOH θ
1

t to its DQN, and ob-
serve the resulting action. When agent 1 additionally conditions on the decision
rule of the other agent, we then require δ2

t as well for this procedure. The same,
however, holds for forming δ2

t , which would in turn require δ1
t . In order to

form an agent’s input, we require its output. The problem of infinite recursion
becomes apparent.

We can get around this problem by sequencing the decision making during
learning, whereby we share the decision rules forward in time. Specifically, we
pretend as if agent 1 acts first, followed by agent 2. In this way, agent two
can use the decision rule of the first agent (but not the other way around),
without the problem of infinite recursion. More generally, for N agents, agent i
conditions on δ1:i−1

t , and its own decision rule dit is subsequently used by agents

58

{i+ 1, . . . , N}. As before, after we have collected each agent’s resulting action,
the joint action is formed and executed in the environment. Since we already
require each agent’s individual decision rule to update the sufficient statistic,
this approach requires little additional computation.

Does conceptually sequencing the decision-making still allow for decentral-
ized execution? The answer is it does. During execution, we no longer have to
sequence the decision making, as the joint decision rules are completely deter-
mined and shared beforehand (by our third assumption). Therefore, each agent
can compute the sufficient statistic and the decision rules of the earlier agents
in advance as well, and no information needs to be shared during execution.

How does conditioning on the decision rules of earlier agents help to escape
equilibria? Contrary to our previous approaches, if the first agent explores, this
now becomes immediately apparent to the second agent. The second agent is
thus able to differentiate between an exploratory and a greedy action of the
other agent. It can therefore (learn to) act in accordance.

For example, suppose the agents are stuck in jointly opening a door at the
first timestep. When the first agent samples a random decision rule that listens
at the first timestep, the second agent will be notified of this. Initially, the
second agent will probably choose a poor action. However, as long as the first
agent keeps exploring to such a decision rule, at some point agent two will learn
to listen as well (assuming the agents act optimally in the future). Once it does,
listening in such cases will become the greedy action for the second agent. As a
result, whenever the first agent now explores to listening at the first timestep,
it will receive a reward higher than the current penalty for opening a door. It
will then learn to listen as well, and the sub-optimal equilibrium is escaped.

Using this approach, the n’th essentially knows everything: it knows its
own AOH θ

n

t , a summary of the joint decison rules followed thus far in σt,
and the decision rules followed by the other agents at the current timestep in
δ−nt . In a way, the n’th agent thus learns the values of joint decision rules
Q(σt, δ

−n
t , θ

n

t , a
n
t). The key difference, however, is that its action space is still

Ai (as opposed to the space of joint decision rules). Instead, it takes the other
decision rules as input, and using its neural network, it can therefore potentially
generalize across δ−nt , similarly to how it can generalize across various sufficient
statistics. Once the n’th agent has learned the value of joint decision rules, the
n− 1’th agent can then correctly learn the value of reduced joint decision rules
δ−nt , knowing that agent n will act optimally after it. And so on.

There is one final subtlety we have to address. During training, the DQN
requires its prediction at the next timestep as target (line 28 in Alg. 4). At
timestep t, the second agent therefore requires the decision rule of the first
agent at timestep t+ 1, which could potentially be a random decision rule. We
therefore make a fourth assumption:

4. During learning, the exploratory timesteps are determined at
the start of each trajectory.

Under this assumption, both agents can compute σt and (possibly exploratory)
δt, for all t, at the start of any trajectory.

59

small σδ-DQN large σδ-DQN
Average Reward (std) 4.57 (2.59) 5.00 (0.77)

no. Optimal Policies / 50 46 46

Table 9.1: Average reward and number of optimal policies found of the 50 runs,
using exploration in the space of individual decision rules.

9.2 Results

We show the evaluation of final learned policies for these σδ-DQNs in Tab. 9.1.
Moreover, their learning curves are depicted in Fig. 9.1 and 9.2.

9.3 Analysis

Learned Policies. Our numerical results validate our hypothesis that sharing
the current decision rules is essential. We observe that both small and large
σδ-DQNs manage achieve a better reward than the previously best result of
small i-DQN (2.77). Moreover, both manage to find the optimal policy more
consistently.

Learning Curves. When we inspect small σδ-DQN’s learning curve, we see
that many of the runs immediate settle for the optimal policy. Of the four runs
that did not converge to the optimal policy, one (light blue) gets stuck in a sub-
optimal equilibrium. The other three follow the optimal policy, except that the
second agent does not open either the left door after hearing the tiger right
twice, or the right door after hearing the tiger left twice. The first agent does
follow the optimal policy. The resulting joint policy is thus in a non-equilibrium.

For large σδ-DQN, contrary to its small counterpart, we observe that all
runs immediately settle for the optimal policy. However, we see that every now
and then, they momentarily unlearn this policy and follow a significantly worse
one. Afterwards, they quickly re-learn the optimal policy. This behavior was
not observed for the small DQN.

The tendency for small σδ-DQN to rarely get stuck in a sub-optimal policy
could be explained by the fact that its neural network simply is not powerful
enough to deal with its large input, which would be as we hypothesized. This
reason is further supported by the fact that large σδ-DQN never gets stuck in a
sub-optimal policy. In turn, these large networks appear to sporadically unlearn
the optimal policy, a behavior we have not observed thus far. Once the optimal
policy is found, the decision rules of the first agent and the sufficient statistic
should be completely fixed. Both agents should receive the same input over and
over, and it therefore seems unlikely that the agents should ever decide to take
an action that deviates from the optimal policy.

One possible explanation might be that when the first agent performs an
update to its neural network for the Q-value of its optimal action, it inadver-
tently changes the greedy action for another input, through the generalization

60

Figure 9.1: Small σδ-DQN learning curve, with conceptually sequencing the
decision-making.

Figure 9.2: Large σδ-DQN learning curve, with conceptually sequencing the
decision-making.

61

Policy for both agents 〈OL,Li, Li〉 〈Li,OR,Li〉 〈OL,Li,OR〉 〈OR,OL,Li〉 〈Li,OL,OR〉
Number of runs 10 10 10 10 10

Table 9.2: Sub-optimal policies the agents are forced to follow before starting
the learning process.

small σδ-DQN large σδ-DQN
Average Reward (std) 4.36 (3.15) 4.87 (1.03)

no. Optimal Policies / 50 45 43

Table 9.3: Average reward and number of optimal policies found of the 50 runs,
using exploration in the space of individual decision rules.

of the DQN. As a result, the decision rule of agent one will momentarily differ,
which is observed by the second agent, who consequently chooses the wrong
action. However, this theory should then also apply to the σ-DQNs, as this
change in decision rule is visible through the sufficient statistic as well. We did
not observe such behavior earlier. Perhaps it is brought to light here because
of the importance the second agent assigns to the relative compactness of the
decision rule’s dimensionality, compared to the size of the sufficient statistic.

9.4 Forcing sub-optimal equilibria initially

Although the performance of the σδ-DQN agents significantly improved on any-
thing we have tried so far, we can not state with certainty that they are able
to escape sub-optimal equilibria, as we have hypothesized. The reason is that
almost all of the runs immediately settle for the optimal policy. We therefore
perform one last experiment, in which we force the agents into sub-optimal equi-
libria beforehand, by temporarily adjusting the reward function. See Tab. 9.2
for the specifics of such policies.

See Tab. 9.3 for the final performance, and Fig. 9.3 and 9.4 for the learning
curves. Although we observe a slight deterioration in final performance, the
learning curves certainly validate our hypothesis that such σδ-DQNs are able
to escape sub-optimal equilibria. Like before, the effect is more pronounced for
the large DQN, which again confirms our hypothesis that a sufficiently complex
network is mandated.

9.5 Conclusion

Our experiments indicate that augmenting σ-DQNs with the current decision
rule of the previous agents, by conceptually sequencing the decision-making,
greatly improves their performance. The agent that is last to act essentially
knows everything: its local information, a summary of the past joint informa-
tion, and the (reduced) current joint decision rule. Using this approach, agents

62

Figure 9.3: Small σδ-DQN learning curve, with conceptually sequencing the
decision-making, and initially forcing the agents into a sub-optimal equilibrium.

Figure 9.4: Large σδ-DQN learning curve, with conceptually sequencing the
decision-making, and initially forcing the agents into a sub-optimal equilibrium.

63

manage to learn the optimal policy consistently. Moreover, they are consis-
tently able to escape sub-optimal equilibria, even when they are forced upon
them. These effects are more pronounced for sufficiently complex networks.
However, when using such networks, we do observe that the agents sporadically
unlearn the optimal policy before quickly re-learning it.

64

Chapter 10

Related Work

10.1 Addressing the convergence issues of Inde-
pendent Q-Learning

When Tan [22] formalized Independent Q-Learners, he already identified the
convergence issues accompanying them. Consequently, there have been more
than a few works attempting to address these. However, almost all of these
focus on the tabular, fully observable Multi-Agent MDP setting. We refer to
[33] for an extensive Survey.

10.1.1 Tabular, Multi-Agent MDPs

Lauer et al. [34] introduced Distributed Q-Learning, in which agents update
individual Q-function only when its value would increase.

Qi(s, ai) =

{
Qi(s, ai) if y < Qi(s, ai)

(1− λ) Qi(s, ai) + λ y otherwise.
(10.1.1)

where y = r + γ max
ai′∈Ai

Qi(s′, ai′) (10.1.2)

In deterministic MMDPs, taking action a from state s leads to state s′ with
probability 1. Therefore, penalties to the Q-function can only be the result of
other agents selecting a sub-optimal action, which are then ignored. In such
deterministic MMDPs (and a tabular setting), Distributed Q-Learning is guar-
anteed to converge to the optimal equilibrium when it is unique. However,
convergence guarantees are lost in stochastic MMDPs, in which penalties are
not solely the result of uncoordinated actions, but can also be the result of
stochasticity in the environment.

Hysteretic Q-Learning [35] aims to generalize Distributed Q-Learning to
stochastic MMDPs by updating the Q-values for penalties with a separate,

65

smaller learning rate λ′, instead of simply neglecting them.

Qi(s, ai) =

{
(1− λ′) Qi(s, ai) + λ′ y if y < Qi(s, ai)

(1− λ) Qi(s, ai) + λ y otherwise.
(10.1.3)

where y = r + γ max
ai′∈Ai

Qi(s′, ai′) (10.1.4)

It thus addresses overestimations of the Q-values of Distributed Q-Learning in
stochastic environments. However, it is not guaranteed to converge.

Related to hysteretic Q-Learning is lenient learning [36], which uses a tem-
perature for the degree of leniency towards penalties. The temperature is in-
versely proportionate to the visitation count of each (state, action)-pair. Ini-
tially, it thereby largely ignores penalties due to miscoordination and explo-
ration, but ultimately, as the temperature decreases, such penalties are accepted
and the Q-values average out.

10.1.2 Dec-POMDPs

Much less progress has been made in addressing theoretical convergence guar-
antees for IQL in Dec-POMDPs, with results mostly being empirical. A leading
cause for this is that we are not only dealing with the non-stationarity resulting
from the presence of multiple agents, but the state is also no longer directly
observable.

Banerjee et al. [37] propose distributed Q-Learning for Dec-POMDPs, in

which each agent learns Qi(θ
i

t, a
i
t) in a tabular fashion. In their work, the

agents take turns in updating their Q-function, as opposed to concurrent Inde-
pendent Q-Learners. When one agent is optimizing its Q-function, the policies
of the other agents are kept fixed, and the agent thus learns a best-response
policy. This approach therefore by definition converges to an equilibrium, with
no guarantees about its quality.

More commonly, a (Recurrent) neural network is used to deal with the large
size of the action-observation history. However, even in the fully observable
setting, such function approximators have no convergence guarantees. Many of
these deep multi-agent reinforcement learning approaches tend to favor policy-
based methods, which make use of a centralized critic [38][39][40]. There have,
however, been some works using value-based methods like IQL.

Foerster et al. [41] empirically demonstrate how IQL using a Deep Recurrent
Q-Network [42] can succesfully learn to act in partilaly observable, cooperative
environments. They use inter-agent weight sharing to train a single DRQN
which learns Q(〈i, ait−1, o

i
t, h

i
t−1〉, ait), where hit−1 is the agent’s previous hidden

state of its RNN, i.e. the summary of the full action-observation history. In
other words, besides the inter-agent weight sharing, this can be seen as a direct
application of IQL to Dec-POMDPs using a recurrent neural network as function
approximator, without any additional techniques to address convergence issues.
As a result, the problem of sub-optimal equilibria is largely neglected, and
exploring local minima is explicitly stated as future work.

66

In similar vein, Omidshafiei et al. [43] learn to act in a multi-agent, multi-
task setting with partial observability. However, again, each individual task
is solved with Independent Q-Learning in combination with a Deep Recurrent
Q-Network, without any further modifications to address the problem of sub-
optimal equilibria.

10.2 Sufficient Statistic

10.2.1 Direct work on NOMDPs

The few works that directly build on reformulating a Dec-POMDP as a NOMDP
(also coined an Occupancy-State MDP) are done by Dibangoye et al. For exam-
ple, [44] introduces the NOMDP planning algorithm FB-HSVI. A key property
it exploits is that the value function of a NOMDP is piece-wise linear and convex
[29], like that of a POMDP. Since a NOMDP is a POMDP, the Heuristic Search
Value Iteration planning algorithm for POMDPs was successfully applied to
NOMDPs, albeit with numerous modifications.

Furthermore, in oSARSA [41], Dibangoye et al. focus on learning Q(σt, δt).
Like us, they address the large state space with a linear or neural network
function approximator. Conversely, where we address the large action space

by taking the individual perspective Qi(θ
i

t, σt, a
i
t), they address the large action

space by representing the optimal Q-function of joint decision rules as a set
of α-vectors, thereby again exploiting the piece-wise linearity and convexity
of the value function. Furthermore, to address the computational difficulty of
identifying the current best joint decision rule, a mixed integer linear program
is used. Finally, they do not assume any knowledge about the environment
(whereas we do), and instead introduce a way of estimating σt from interactions
with it.

10.2.2 Relating the Sufficient Statistic to the Public Belief

Some Dec-POMDPs allow for partial information sharing during execution [31].
Foerster et al. [32] exploit such a structure in the game of Hanabi. Like us,
they take the individual perspective in which each agent takes as input its local

information (θ
i

t in our case), as well as the public belief (σt in our case). The key
difference is that in Hanabi, the actions of agents are visible to everyone. The
public belief thus only needs to maintain a probability distribution over obser-
vation histories (and possibly states). Moreover, if the policies of the agents are
known, when agents observe an action by another agent, they can retrospectively
[45] prune observation histories that are inconsistent with the actions that agent
has taken thus far. For example, if an agent fails to play a diamond-suited card
at the fifth timestep, and it has not drawn any cards between the first and fifth
timestep, this also implies it did not have a diamond-suited card at the first
timestep. As a result, agents can reduce the size of the set of elements in the

67

public belief with non-zero probability at an earlier timestep using the newly
acquired information.

Our approach can be seen as a generalization of the aforementioned one to
Dec-POMDPs without partial information sharing. When the actions of others
are not visible, such retrospective belief updates are impossible. This is precisely
why the observation set in a NOMDP only contains the NULL observation:
there is no additional information to be gained regarding the sufficient statistic
during execution. Consequently, σt reasons about joint decision rules, i.e. what
the agents would have done for any situation, rather than the action that was
actually taken as in the public belief.

68

Chapter 11

Conclusion, Discussion and
Future Work

11.1 Conclusion

In this Thesis, we have approached Decentralized Partially Observable Markov
Decision Processes from the perspective of a Non-Observable Markov Decision
Process. In this NOMDP, a coordinator decides on joint decision rules δt given
the plan-time sufficient statistic σt. We have investigated how Q-Learning for
such a NOMDP, which would learn Q(σt, δt), can be made tractible. We have
attempted this by (1) making an approximation regarding the state space by
using a Deep Q-Network function approximator, and (2) making an approxi-
mation regarding the action space by considering individual actions instead of
joint decision rules.

We have thus followed the perspective of Independent Q-Learners, which

attempt to learn Qit(θ
i

t, σt, a
i
t). Our main contribution is an investigation of the

effects of conditioning such Independent Q-Learners on the sufficient statistic

σt, as opposed to solely their individual action-observation history θ
i

t, as is
commonly done elsewhere. Additionally, we have delineated how conditioning
on σt allows for several novel exploration strategies, and subsequently we have
investigated their effects on the learning process.

Let us concretely answer our Research Questions now.

1. Can independent learners (more consistently) find the optimal
joint policy by conditioning on the sufficient statistic?

2. (Related) Does conditioning on the sufficient statistic prevent
premature convergence of independent learners to sub-optimal
equilibria?

σ-DQN is unable to escape sub-optimal equilibria using exploration in the space
of both individual actions as individual decision rules. To escape such an equi-

69

librium, both agents must explore favorably simultaneously. When the agents
explore in the space of individual actions, an exploratory action by one agent is
unobservable to the other agent, because an agent’s stochastic decision rule is
the same regardless of the actual action it took. When the agents explore in the
space of individual decision rules, an agent now samples a random, determinis-
tic decision rule when it explores. Consequently, through the sufficient statistic,
the other agent can now observe this exploratory action. However, because the
sufficient statistic is a summary of the past joint policy, the other agent can
only observe this exploratory action at the next timestep. They are therefore
still unable to successfully coordinate their exploration. During learning, the
agents settle for an equilibrium quite quickly. Since the sufficient statistic has
no added value for escaping such an equilibrium, such σ-DQNs fail to find the
optimal policy consistently.

Conversely, when agents explore in the space of joint decision rules, they do
manage to escape sub-optimal equilibria, but only when they are particularly
bad. The main drawback of joint exploration is that, when one agent explores,
the other agent is always taking a random action as well. Joint exploration is
therefore not likely to settle for an equilibrium in the first place. Since Dec-
Tiger is quite a punishing environment, on average joint exploration results in
largely negative rewards. As a result, the agents were able to find the optimal
policy only twice out of 100 runs.

Finally, we address the shortcoming of exploration in the space of individual
decision rules by conceptually sequencing the decision-making. Specifically, the
second agent additionally conditions on the current decision rule of the first
agent. As a result, an exploratory action by the first agent is immediately
observable to the second agent, and it can thus act accordingly. This method
finds the optimal policy consistently, even when we explicitly force the learners
into sub-optimal equilibria initially.

3. How do various exploration strategies relate to the decision rules,
the sufficient statistic and the learning process?

We have already delineated how exploration strategies affect the learning pro-
cess, and shall focus on the decision rules and the sufficient statistic now. Ex-
ploration in the space of individual actions requires stochastic decision rules, as
given a specific action-observation history, we can take any action with proba-
bility at least ε

|Ai| . This naturally warrants the sufficient statistic for general

policies, i.e. σt(st, θ
i

t).
Conversely, exploration in the space of individual and joint decision rules

permits deterministic decision rules. When acting greedily, the agents follow
the decision rule as prescribed by the neural network, i.e. by argmax’ing the
DQN’s Q-values. Alternatively, when the agents explore, they form a deter-
ministic decision rule by assigning a random action to each action-observation
history. In principle, exploration in the space of decision rules also permits the
sufficient statistic for deterministic policies, i.e. σt(st, ot). However, we have
stuck with the general sufficient statistic by arguing that the DQN requires the

70

action-observation history as input (instead of solely the observation history,
as is common for deterministic decision rules). The general sufficient statis-
tic maintains a probability distribution over precisely those action-observation
histories.

4. How does the complexity of the Deep Q-Network influence the
effects of conditioning the learners on the sufficient statistic?

When the agents explore individually without explicitly conditioning on the
decision rule of the previous agent, they quickly settle for an equilibrium. It
appears arbitrary which of the equilibria they find. As a result, we cannot
draw significant conclusions relating the complexity of the DQN to the effects
of conditioning the learners on the sufficient statistic for these experiments.

When the agents explore in the space of joint decision rules, we observe a
slight increase in iterations that manage to improve a sub-optimal policy for
large σ-DQN compared to small σ-DQN. However, the final learned policies are
terrible for both, due to the aforementioned drawbacks of joint exploration.

Finally, when we conceptually sequence the decision-making, we can observe
a significant effect of increasing the complexity of the DQN. Where small σδ-
DQN still settled for a sub-optimal equilibrium every now and then, large σδ-
DQN was able to learn the optimal policy always. However, this more complex
network was also observed to sporadically unlearn the optimal policy, before
quickly re-learning it.

11.2 Discussion and Future Work

The methods we have investigated in this Thesis are quite general, and can in
principle be applied to any Dec-POMDP. Of course, the main limitation to our
approach is the complexity of updating the sufficient statistic at each timestep:

O
(

(|A∗|) · |Ω∗|)n(t+1) · |S|2
)

. There is one interesting line of future work to

address it. In our experiments, we have delineated how deterministic decision
rules can be used even during learning. Nevertheless, the agents still used the
individual action-observation histories as input to the DQNs. This, in turn,

required the sufficient statistic for general policies σt(st, θ
i

t). We have argued
why agents need to use the action-observation history as input, instead of the
observation history (as is common for deterministic decision rules). The reason
is that, if the agents instead condition on the observation history, such an OH
might imply a different AOH at a later timestep during learning. When training
the DQN, the same observation history could therefore be sampled twice from
its memory, where in each one different actions were taken, without the agent
being able to differentiate between them.

However, by conditioning on the sufficient statistic, the agents can actually
differentiate between such observation histories. Since the sufficient statistic
is a summary of the past joint policy, an agent will be able to differentiate
between an observation history that implies multiple action-observation histories

71

through σt. We can therefore potentially use the observation history as input,
and instead maintain the sufficient statistic for deterministic policies σt(st, ot).

This significantly reduces the complexity of updating σt to O
(
|Ω∗|n(t+1) · |S|2

)
.

We would also like to point towards some work that reduce the dimensional-
ity of the sufficient statistic, by identifying various equivalence relations [44][46].
As a result, both the decision rules and the sufficient statistic can be represented
more compactly. However, one problem with such equivalence relations is that
they are usually computed after forming the sufficient statistic, and thus might
not directly improve on the complexity of computing the sufficient statistic. We
already use a function approximator to handle the large dimensionality of the
sufficient statistic. Nevertheless. the use of such compact representations can
be further investigated within our setting.

72

Bibliography

[1] Ranjit Nair, Milind Tambe, Makoto Yokoo, David Pynadath, and Stacy
Marsella. Taming decentralized pomdps: Towards efficient policy compu-
tation for multiagent settings. In IJCAI, volume 3, pages 705–711, 2003.

[2] Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic
programming for partially observable stochastic games. In AAAI, volume 4,
pages 709–715, 2004.

[3] Daniel Szer, François Charpillet, and Shlomo Zilberstein. Maa*: A heuris-
tic search algorithm for solving decentralized pomdps. arXiv preprint
arXiv:1207.1359, 2012.

[4] Christopher Amato, Jilles Steeve Dibangoye, and Shlomo Zilberstein. In-
cremental policy generation for finite-horizon dec-pomdps. In Nineteenth
International Conference on Automated Planning and Scheduling, 2009.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[6] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489, 2016.

[7] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu,
Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo
Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-
agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[8] Richard Bellman. A markovian decision process. Journal of mathematics
and mechanics, pages 679–684, 1957.

[9] Martin L Puterman. Markov Decision Processes.: Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 2014.

[10] Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-
troduction. MIT press, 2018.

73

[11] Karl J Astrom. Optimal control of markov processes with incomplete state
information. Journal of mathematical analysis and applications, 10(1):174–
205, 1965.

[12] Richard D Smallwood and Edward J Sondik. The optimal control of par-
tially observable markov processes over a finite horizon. Operations re-
search, 21(5):1071–1088, 1973.

[13] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artificial intel-
ligence, 101(1-2):99–134, 1998.

[14] Eric A Hansen. Solving pomdps by searching in policy space. In Proceedings
of the Fourteenth conference on Uncertainty in artificial intelligence, pages
211–219. Morgan Kaufmann Publishers Inc., 1998.

[15] Matthijs TJ Spaan. Partially observable markov decision processes. In
Reinforcement Learning, pages 387–414. Springer, 2012.

[16] Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Learning with-
out state-estimation in partially observable markovian decision processes.
In Machine Learning Proceedings 1994, pages 284–292. Elsevier, 1994.

[17] Edward J Sondik. The optimal control of partially observable markov pro-
cesses over the infinite horizon: Discounted costs. Operations research,
26(2):282–304, 1978.

[18] Frans A Oliehoek, Christopher Amato, et al. A concise introduction to
decentralized POMDPs, volume 1. Springer, 2016.

[19] Craig Boutilier. Sequential optimality and coordination in multiagent sys-
tems. In IJCAI, volume 99, pages 478–485, 1999.

[20] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilber-
stein. The complexity of decentralized control of markov decision processes.
Mathematics of operations research, 27(4):819–840, 2002.

[21] Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and ap-
proximate q-value functions for decentralized pomdps. Journal of Artificial
Intelligence Research, 32:289–353, 2008.

[22] Ming Tan. Multi-agent reinforcement learning: Independent vs. coopera-
tive agents. In Proceedings of the tenth international conference on machine
learning, pages 330–337, 1993.

[23] Stevo Bozinovski. A self-learning system using secondary reinforcement.
Cybernetics and Systems Research, pages 397–402, 1982.

[24] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

74

[25] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning
in cooperative multiagent systems. AAAI/IAAI, 1998(746-752):2, 1998.

[26] Long-Ji Lin. Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching. Machine learning, 8(3-4):293–321, 1992.

[27] Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learn-
ing as a rehearsal for decentralized planning. Neurocomputing, 190:82–94,
2016.

[28] Frans Adriaan Oliehoek. Sufficient plan-time statistics for decentralized
pomdps. In Twenty-Third International Joint Conference on Artificial In-
telligence, 2013.

[29] Frans A Oliehoek and Christopher Amato. Dec-pomdps as non-observable
mdps. 2014.

[30] Christopher John Cornish Hellaby Watkins. Learning from delayed re-
wards. 1989.

[31] Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. Decen-
tralized stochastic control with partial history sharing: A common informa-
tion approach. IEEE Transactions on Automatic Control, 58(7):1644–1658,
2013.

[32] Jakob N Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning,
Shimon Whiteson, Matthew Botvinick, and Michael Bowling. Bayesian
action decoder for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1811.01458, 2018.

[33] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. In-
dependent reinforcement learners in cooperative markov games: a survey
regarding coordination problems. 2012.

[34] Martin Lauer and Martin Riedmiller. An algorithm for distributed rein-
forcement learning in cooperative multi-agent systems. In In Proceedings of
the Seventeenth International Conference on Machine Learning. Citeseer,
2000.

[35] Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. Hys-
teretic q-learning: an algorithm for decentralized reinforcement learning in
cooperative multi-agent teams. In 2007 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 64–69. IEEE, 2007.

[36] Liviu Panait, Keith Sullivan, and Sean Luke. Lenient learners in coop-
erative multiagent systems. In Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems, pages 801–803,
2006.

75

[37] Bikramjit Banerjee, Jeremy Lyle, Landon Kraemer, and Rajesh Yellam-
raju. Sample bounded distributed reinforcement learning for decentralized
pomdps. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[38] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas
Nardelli, and Shimon Whiteson. Counterfactual multi-agent policy gra-
dients. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[39] Guillaume Bono, Jilles Dibangoye, Laëtitia Matignon, Florian Pereyron,
and Olivier Simonin. On the study of cooperative multi-agent policy gra-
dient. 2018.

[40] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and
Igor Mordatch. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in neural information processing systems, pages
6379–6390, 2017.

[41] Jakob N Foerster, Yannis M Assael, Nando de Freitas, and Shimon White-
son. Learning to communicate to solve riddles with deep distributed recur-
rent q-networks. arXiv preprint arXiv:1602.02672, 2016.

[42] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for par-
tially observable mdps. In 2015 AAAI Fall Symposium Series, 2015.

[43] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How,
and John Vian. Deep decentralized multi-task multi-agent reinforcement
learning under partial observability. arXiv preprint arXiv:1703.06182, 2017.

[44] Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François
Charpillet. Optimally solving dec-pomdps as continuous-state mdps: The-
ory and algorithms. 2014.

[45] Adam Lerer, Hengyuan Hu, Jakob N Foerster, and Noam Brown. Improv-
ing policies via search in cooperative partially observable games. In AAAI,
pages 7187–7194, 2020.

[46] Shimon Whiteson. Incremental clustering and expansion for faster opti-
mal planning in decentralized pomdps. Journal of Artificial Intelligence
Research, 46, 2013.

76

	Introduction
	Background
	Single Agent Decision-Theoretic Planning
	Markov Decision Process
	Partially Observable Markov Decision Process

	Multi-Agent Decision-Theoretic Planning
	Multi-Agent Markov Decision Process
	Multi-Agent Partially Observable Markov Decision Process
	Decentralized Partially Observable Markov Decision Process

	Multi-Agent Decision-Theoretic Learning
	Game Theoretic Definitions
	Independent Q-Learning
	Deep Q Network
	Centralized Learning in Dec-POMDPs

	Dec-POMDPs as Non-Observable MDPs
	Sufficient plan-time statistics for Dec-POMDPs
	Dec-POMDPs as Non-Observable MDPs
	Q-Learning in NOMDPs

	Our approach
	Towards feasible Q-Learning for NOMDPs
	Deep Q-Network specifics
	Computing t: methodology and assumptions
	Algorithmic Properties
	Discussion on the action-observation history, potentially stochastic decision rules and

	Experimental Overview
	Research Questions
	Test Domain: Dec-Tiger
	Experimental Setup
	Experimental Runtime

	Exploration in the space of individual actions
	Setup
	Decision Rules
	Results
	Analysis
	Conclusion

	Exploration in the space of individual decision rules
	Setup
	Decision Rules and Sufficient Statistic
	Results
	Analysis
	Conclusion

	Exploration in the space of joint decision rules
	Setup
	Results
	Analysis
	Conclusion

	Conceptually Sequencing the Decision-Making
	Setup
	Results
	Analysis
	Forcing sub-optimal equilibria initially
	Conclusion

	Related Work
	Addressing the convergence issues of Independent Q-Learning
	Tabular, Multi-Agent MDPs
	Dec-POMDPs

	Sufficient Statistic
	Direct work on NOMDPs
	Relating the Sufficient Statistic to the Public Belief

	Conclusion, Discussion and Future Work
	Conclusion
	Discussion and Future Work

