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Abstract: Multinomial logistic regression models are popular in multicategory classification analysis, but

existing models suffer several intrinsic drawbacks. In particular, the parameters cannot be determined

uniquely because of the over-specification. Although additional constraints have been imposed to refine

the model, such modifications can be inefficient and complicated. In this paper, we propose a novel and

efficient simplex-based multinomial logistic regression technique, seamlessly connecting binomial and

multinomial cases under a unified framework. Compared with existing models, our model has fewer

parameters, is free of any constraints, and can be solved efficiently using the Fisher scoring algorithm.

In addition, the proposed model enjoys several theoretical advantages, including Fisher consistency

and sharp comparison inequality. Under mild conditions, we establish the asymptotical normality and

convergence for the new model, even when the numbers of categories and covariates increase with

the sample size. The proposed framework is illustrated by means of extensive simulations and real

applications.

Key words and phrases: Asymptotics; Classification; Fisher consistency; Kernel learning; MLR; Simplex
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1. Introduction

Logistic regression (LR) is the most frequently used regression model for analysis of cate-

gorical outcomes (Cramer, 2003; Yee, 2015; Fang and Yi, 2021; Mo and Liu, 2021). LR has

been widely applied in epidemiology, biology, economics, and the social sciences, among oth-

ers (Hosmer et al., 2013; Lemeshow and Hosmer, 2014). LR models can be divided into two

types based on the number of categories, binomial LR and multinomial LR (MLR). The MLR

model is also known as the conditional maximum entropy model in natural language pro-

cessing (Berger et al., 1996; Malouf, 2002), and as the softmax regression in neural networks

(Ng et al., 2013; Goodfellow et al., 2016).

The statistical theory of binomial LR is well established, whereas modeling and inference

for MLR is more complicated. There have been numerous attempts to generalize the orig-

inal binomial LR to the multinomial case; see McCullagh and Nelder (1989), Hastie et al.

(2009), and Tutz (2011). For a k-categorical regression problem, a natural approach is to

estimate k regression functions, one for each category. The unknown parameters in these

functions are typically jointly estimated using a maximum likelihood or Bayesian updating.

As shown in Bühlmann and Van De Geer (2011, §3.3.3), such an extension is over-specified,

with unidentifiable parameters. In general, k − 1 functions are sufficient to determine a k-

categorical LR model. For instance, the binomial LR (k = 2) is defined by a single regression

function. Therefore, additional restrictions are needed on the regression functions to make

the model identifiable. Roughly speaking, there are two common schemes. The first pre-

specifies a reference category and sets its regression function to zero, and the second uses a

sum-to-zero constraint on the k functions (Hastie et al., 2015, §3.3). Both extensions sub-
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sume the binomial LR as a special example, and are introduced in Section 3. However, the

extra constraints complicate the parameter estimation and theoretical analysis. Specifically,

the reference-based MLR does not treat all categories equally, and the explicit sum-to-zero

constraint increases the computational cost. In addition, the relationship between these two

constrained MLR (CMLR) models is not entirely clear.

A powerful method for circumventing the explicit constraints is to use simplex coding.

The basic idea is to construct a k-vertex simplex structure in a (k−1)-dimensional Euclidean

space, where each vertex represents one category. The covariate vector of each instance is

then mapped to a point in this (k−1)-dimensional space. In other words, only k−1 regression

functions need to be estimated under the simplex coding scheme, and the non-identifiability

issue is resolved automatically, without further constraints on these k−1 functions. Therefore,

simplex coding for multiclass learning is expected to have lower computational complexity

in model training (Hill and Doucet, 2007; Lange and Wu, 2008; Mroueh et al., 2012). Such

a scheme is also called angle-based classification by Zhang and Liu (2014), Zhang et al.

(2018), and Fu et al. (2018), because the predicted label of a new observation corresponds

to the vertex that has the smallest angle with the mapped (k − 1)-dimensional point of the

covariates. This geometric interpretation makes the coding scheme easy to understand.

The first objective of our study is to remove the cumbersome constraints in existing MLR

models, and propose a novel MLR model using the delicate simplex structure, called simplex-

based MLR (SMLR). Inheriting from simplex coding, the redundancy of the categorical space

is removed and the representation of the regression functions is identifiable. Hence, the re-

sulting SMLR model has a clear geometric explanation, and is computationally efficient in
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terms of parameter estimation. Compared with regular CMLRs, the SMLR model enjoys

more parsimonious parameter specification. Specifically, the SMLR model avoids the sub-

jective selection of a reference category, gets rid of the sum-to-zero constraint, and provides

a symmetric insight on all categories by treating them equally. With fewer parameters, the

likelihood estimation of the SMLR solves an unconstrained optimization problem, which can

be implemented efficiently using the Fisher scoring algorithm. The proposed SMLR can be

treated as a unified framework recovering CMLRs, but the parameters involved have different

interpretations.

The second objective of this study is to establish the asymptotic properties of the MLEs

of an SMLR with a diverging number of categories, which is peculiar to multicategory clas-

sification applications. In practical problems, the granularity of the classification, in terms

of the number of categories, is usually determined based on the size of the available training

data (Dekel and Shamir, 2010). For example, photo sharing websites allow users to annotate

their photos with keywords. The key task is to recommend keywords whenever new photos

are uploaded. Assuming there are no restrictions on the keywords that may be used, the set

of distinct keywords is likely to grow as additional photos are uploaded to the site. Similarly,

web directory classification with Yahoo! taxonomies yields some rare categories that are

ignored under a small sample size, but are considered for larger samples (Liu et al., 2005).

Other examples include textual document categorization (Dekel and Shamir, 2010) and the

identification of flowers, plants and products using images (Nilsback and Zisserman, 2008;

Deng et al., 2010). The phenomenon of a diverging number of categories has attracted some

attention in the literature, with most existing studies focusing on algorithmic development,
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for example, distributed computing, hierarchical classification, and penalization techniques.

For instance, Deng et al. (2009, 2010) exploited the semantic hierarchy of categories to obtain

more informative image classifiers. Based on the hierarchical structure of categories, Price

et al. (2019) proposed a group-fused MLR model that automatically combines the categories.

However, there are a few asymptotic studies of MLR models when the class size increases with

the sample size, probably because the constraint on existing CMLRs makes the asymptotic

properties difficult to establish. In contrast, when the dimensions of the covariates and the

categories are fixed, the asymptotic properties of MLRs are well established (Fahrmeir and

Kaufmann, 1985; Van der Vaart, 1998; Tutz, 2011). In this study, we focus on the asymp-

totics of an SMLR model with varying category sizes. An important byproduct is that we

also establish the asymptotics under a diverging number of covariates, which has received

scant attention in the literature on MLR models.

The third objective of this study is to show the theoretical advantages of the SMLR

model under certain settings. In particular, we explore kernel learning for SMLR, which

enjoys a faster convergence rate than those of existing MLR models. Few studies have

conducted convergence analysis for kernel MLR under a diverging number of categories.

This study fills this gap by establishing the consistency of kernel SMLR, while letting the

number of categories k go to infinity at the order of o(n). In addition, we show that the

proposed SMLR enjoys some desirable statistical properties, including Fisher consistency

and comparison inequality, which are fundamental in understanding the nature of the SMLR

model.

The rest of the paper is organized as follows. In Section 2, we introduce the notation
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and briefly review regular MLR models. In Section 3, we propose the SMLR method, and

explore its connections with regular MLR models. We establish the asymptotical results for

an SMLR model with a diverging number of parameters in Section 4. Simulation studies

and real applications demonstrate the performance of the proposed approach in Section 5.

Section 6 concludes the paper. The main proofs are given in the Supplementary Material.

Throughout this paper, 0 and 1 represent vectors of zeros and ones, respectively, ej

is the jth column vector of an identity matrix I, the dimensions of which can be inferred

contextually, and diag(u) is a diagonal matrix with entries determined by a vector u. The

vectorization of a matrix A = (aij) ∈ Rm×n is defined as

−→
A := vec(A) = (a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn)> ∈ Rmn.

Let ‖A‖2 be the spectral norm, defined as the largest singular value of A. In general,

‖A‖ :=
√∑

i,j a
2
ij is the Frobenius norm, including the Euclidean norm of a vector. For

a square matrix A, λmax(A) and λmin(A) denote the maximum and minimum eigenvalues,

respectively. For any matrices A and B of the same dimensions, A � B or B � A denotes

A − B is positive semi-definite. A � 0 implies that A is positive definite, where 0 is a

matrix of zeros. For A � 0, A
1
2 denotes its symmetric square root, with A = (A

1
2 )2 and

A−
1
2 = (A

1
2 )−1. The Kronecker product of two matrices A and B is denoted by A⊗B.

2. Review of Regular MLR Models

Consider a multicategory classification problem with k possible categories Y , {1, 2, . . . , k}.

Suppose we are given a set of observationsD = {(xi, yi), i = 1, . . . , n}, where xi = (xi1, . . . , xid)
> ∈

X ⊆ Rd is the covariate vector and yi ∈ Y is the corresponding response category. We define
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X = (x1, . . . ,xn)> ∈ Rn×d as the design matrix.

Let πy(x) be the conditional probability that the response category is y for the given co-

variate x. Note that y must take one and only one class label from Y . We need the sum-to-one

condition
∑k

y=1 πy(x) = 1 to reflect this implicit nature of a multinomial regression. Under

this condition, only k − 1 free probabilities are informative, and the rest are redundant. For

the observations D, the joint distribution is
∏n

i=1 πyi(xi). To link the probability {π1, . . . , πk}

to the covariate x, a generic MLR model considers the multinomial-Poisson transformation

(Baker, 1994; Lang, 1996)

πy(x) =
ex
>θy∑k

j=1 e
x>θj

, x ∈ X , y = 1, . . . , k, (2.1)

where θ = (θ1, . . . ,θk) ∈ Rd×k is the regression coefficient matrix and θj ∈ Rd is the jth

column vector. Model (2.1) can be interpreted as a neural network (Ripley, 1996). Based on

the observations D, the log-likelihood function for (2.1) is

`n(θ) = log
{ n∏
i=1

πyi(xi)
}

=
n∑
i=1

x>i θyi −
n∑
i=1

log
( k∑
j=1

ex
>
i θj
)
. (2.2)

Note that if we add a common vector b ∈ Rd to each θj, the probabilities in (2.1) remain

unchanged and `n(θ+b1>k ) = `n(θ). Therefore, the MLR model (2.1) is not identifiable with

over-specified θ. In fact, θ has k − 1 free columns, because there are k − 1 free informative

conditional category probabilities. This problem may be readily resolved by adopting some

restrictions on θj, leading to the constrained MLR (CMLR).

Two customary constraints are used in the literature to refine the parameters. The first is

to choose a reference category, denoted by r ∈ Y , and set θr as the zero vector 0, leading to

the reference-based MLR (CMLR1); see Anderson (1972), Anderson and Blair (1982), Albert
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and Anderson (1984), Böhning (1992), Krishnapuram et al. (2005), and Hastie et al. (2009),

among others. As a result, the CMLR1 estimator is given by

θ̂rb = arg max
θ

`n(θ), s.t. θr = 0. (2.3)

The other is a sum-to-zero constraint
∑k

j=1 θj = 0, leading to the symmetric constrained

MLR (CMLR2), which has been studied by Friedman et al. (2000), Zhu and Hastie (2004,

2005), Friedman et al. (2010), Zahid and Tutz (2013b), and Hastie et al. (2015), among

others. Consequently, the estimator for the CMLR2 model is defined as

θ̂sc = arg max
θ

`n(θ), s.t.
k∑
j=1

θj = 0. (2.4)

Note that the total number of parameters in (2.3) or (2.4) is dk, and the exact number of free

parameters is d(k− 1), owing to the extra constraints. Comprehensive discussions on MLRs

can be found in Tutz (2011, §8), Hosmer et al. (2013, §8), Yee (2015), and the references

therein.

The above-mentioned CMLRs have some inherent deficiencies. On the one hand, when

the reference category for CMLR1 alters, the estimated parameters and the corresponding

interpretation change as well. As a result, CMLR1 lacks systematic insights on the categories,

and the choice of reference category is subjective and confusing in practice, especially with an

increasing number of categories. On the other hand, as shown in Zhang and Liu (2014), the

explicit sum-to-zero constraint in CMLR2 can be theoretically inefficient and computationally

expensive. We next propose a competent MLR formulation with appealing properties that

is free of constraints on the parameters.
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3. Simplex-based MLR

In this section, we formulate a novel and efficient simplex-based MLR (SMLR) in Section

3.1, develop the estimation procedure for the SMLR model in Section 3.2, and compare the

proposed SMLR with existing MLRs in Section 3.3.

3.1 Methodology

To address the limitations in existing CMLRs, we borrow from recent multicategory clas-

sification studies (Zhang and Liu, 2014; Zhang et al., 2018; Fu et al., 2018), and propose

an attractive simplex-based MLR model. A well-designed simplex in a (k − 1)-dimensional

Euclidean space plays a central role in reducing the parameter redundancy. To begin with,

consider k vertices {wj ∈ Rk−1, j = 1, . . . , k}

wj =


(k − 1)−1/21k−1, if j = 1

−(1 + k1/2)/{(k − 1)3/2}1k−1 + {k/(k − 1)}1/2ej−1, if 2 ≤ j ≤ k

, (3.1)

where 1 and ej are vectors in Rk−1. One can verify that each wj has Euclidean norm 1 and

W1k =
∑k

j=1 wj = 0. Denote the matrix of vertex vectors as W , (w1, . . . ,wk) ∈ R(k−1)×k.

Clearly, W is of full row rank k−1. Note that alternative constructions of the simplex exist,

such as those of Hill and Doucet (2007) and Mroueh et al. (2012). However, we can always

connect W with those simplices using proper linear transformations in Rk−1, and then show

that they are equivalent.

The simplex W can be used to reduce the dimension of the categorical space to k − 1.

Consider a k-categorical distribution with P (Y = y) = py > 0 (y ∈ Y), with the sum-to-one

condition
∑k

j=1 pj = 1. The conventional multinomial distribution encodes Y as a one-hot
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vector in Rk, that is, Y = eY . Here, Y is redundant, because 1>k Y ≡ 1. Let p = (p1, . . . , pk)
>

be the probability vector. Then, the covariance matrix of Y is diag(p)−pp> (Forbes et al.,

2011). Without loss of generality, we can encode category j to the jth vertex wj to obtain

another multinomial random vector Z = WY ∈ Rk−1, with P (Z = wj) = P (Y = ej) = pj.

The following proposition states a useful result on the covariance matrix of Z.

Proposition 1. The covariance matrix of Z = WY is positive definite.

Note that the original Y is redundant with the covariance matrix diag(p)−pp> � 0. On

the other hand, by Proposition 1, the refined category vector Z = WY has the covariance

matrix W(diag(p) − pp>)W> � 0. Therefore, the simplex W in Rk−1 leads to a refined

categorical space without redundancy. We can use the vertex wj to represent the jth category,

a strategy we call simplex coding.

Next, we use W to remove the explicit sum-to-zero constraint in CMLR2. For the coef-

ficients θ ∈ Rd×k with
∑k

j=1 θj = 0, we can find a matrix β ∈ Rd×(k−1) such that θj = βwj,

for j = 1, . . . , k. It is obvious that
∑k

j=1 θj =
∑k

j=1 βwj = β(
∑k

j=1 wj) = 0, using the fact

that
∑k

j=1 wj = 0. For example, a possible choice of β is (1 − 1
k
)θW>. The equivalence

between θ and βW is shown in the following proposition.

Proposition 2. {θ ∈ Rd×k |
∑k

j=1 θj = 0} is equivalent to {βW | β ∈ Rd×(k−1)}.

By Proposition 2, the parameters θ with a sum-to-zero constraint can be reformulated as

βW, without loss of information. By replacing θj in the classical MLR (2.1) with βwj, the

simplex-based MLR model takes the form

π̃j(x) =
ex
>βwj∑k

s=1 e
x>βws

, x ∈ X , j = 1, . . . , k. (3.2)
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We can interpret the quantity x>βwj as the inner product 〈β>x,wj〉 in Rk−1. In other words,

we first map a covariate x to a point β>x in Rk−1 using the coefficient matrix β, and then

take the inner product with the encoded vertex wj. Because π̃j(x) is increasing in x>βwj,

the predicted rule is ŷ(x) = arg maxj π̃j(x) = arg maxj{x>βwj}, which is computationally

more efficient than that of the reference-based MLR. In particular, SMLR simply requires

computing k individual inner products, whereas the reference-based MLR involves calculating

k probabilities using (2.1). As shown in Zhang and Liu (2014), the largest inner product rule

is equivalent to the least angle rule. Hence, the SMLR can be treated as an alternative

multicategory angle-based classifier.

The proposed SMLR model enjoys a parsimonious model specification without con-

straints. Each of the CMLRs involves dk parameters under a linear constraint, whereas

SMLR requires only d(k−1) parameters. Note that βW plays the same role as θ in existing

MLRs. Under the factorization βW, the k − 1 rows of W can be viewed as latent outcome

variables, and each row has a loading on each of the k categories. The k − 1 columns of β

specify parameter vectors for these latent outcome variables.

To further interpret the parameters of SMLR and investigate their relationships with the

CMLRs, we examine the log-odds forms. For a CMLR1 model with a reference category r

(that is, θr ≡ 0), we have

log

(
πj(x)

πr(x)

)
= x>θj, j = 1, . . . , k.

Clearly, θj depends on the selection of the reference category, and different selections yield

different interpretations of the parameters of CMLR1. On the other hand, the parameter

interpretation for CMLR2 is related to the median response (Tutz, 2011), which is defined
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as the geometric mean

GM(x) =
∏k

j=1
{πj(x)}1/k.

Then, for CMLR2 with the constraint
∑k

j=1 θj = 0, we have

log

(
πj(x)

GM(x)

)
= x>θj, j = 1, . . . , k.

Therefore, θj shows the effects of x on the comparison of Y = j with the geometric mean

response GM(x). Similarly, we can define the simplex-based geometric mean

SGM(x) =
∏k

j=1
{π̃j(x)}1/k.

After some algebra, we can show that

log

(
π̃j(x)

SGM(x)

)
= x>βwj, j = 1, . . . , k.

Thus, SMLR is a generalization of CMLR2 under the simplex-based coding scheme. The

modeling of CMLR1 is based on asymmetric comparisons of the categories, while CMLR2

and SMLR use symmetric comparisons. However, because SMLR removes the sum-to-zero

constraint in CMLR2 and involves fewer parameters, SMLR is more desirable and computa-

tionally efficient.

Note that Zhang and Liu (2014) proposed a flexible multicategory classification frame-

work under the simplex structure that considers a general large-margin loss function `(·).

According to Theorem 3 in Zhang and Liu (2014), if we consider an exponential loss of the

form `(z) = e−z and `′(z) = −e−z, the relationship between the conditional class probability

and the theoretical minimizer f ∗ can be expressed as

Pj(x) =
`′(〈f ∗(x),wj〉)−1∑k
i=1 `

′(〈f ∗(x),wi〉)−1
=

exp(〈f ∗(x),wj〉)∑k
s=1 exp(〈f ∗(x),ws〉)

, x ∈ X , j = 1, . . . , k,
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which recovers the probabilistic assumption (3.2) of the proposed SMLR. This interesting

connection sheds some light on SMLR from the perspective of large-margin classification.

3.2 Maximum Likelihood Estimation

The log-likelihood function for the SMLR model (3.2) based on the data set D is

Ln(β) = `n(βW) =
n∑
i=1

x>i βwyi −
n∑
i=1

log
( k∑
j=1

ex
>
i βwj

)
, (3.3)

and the corresponding estimator by maximizing the likelihood is defined as

β̂ = arg max
β

Ln(β). (3.4)

Compared with CMLRs, our SMLR solves an unconstrained problem with fewer parameters.

The Fisher scoring algorithm, which is equivalent to Newton’s method for the SMLR

model, can be used to solve (3.4). For notational simplicity, let π̃i , π̃(xi) be the probability

vector for the ith observation, where π̃i depends on β, as determined by (3.2). Let Λ(u) =

diag(u) − uu> be a matrix associated with u. After some tedious computation, the score

vector is

Un(β) =
∂Ln(β)

∂
−→
β

=
n∑
i=1

(W ⊗ xi)(eyi − π̃i), (3.5)

and the negative Hessian matrix is

Qn(β) = − ∂
2Ln(β)

∂
−→
β ∂
−→
β >

=
n∑
i=1

[WΛ(π̃i)W
>]⊗ (xix

>
i ). (3.6)

Observe that Qn(β) involves only the design matrix X, and does not depend on the

response Y . In what follows, we consider the setting of a fixed design. Then, Qn(β) is also

known as the Fisher information. The following proposition presents some basic results for

Qn(β).
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Proposition 3. For any design X, Qn(β) � 0 and Ln(β) is concave in β. In addition,

Qn(β) is positive definite if and only if the design matrix X is of full column rank.

Owing to the concavity of Ln(β), the MLE β̂ is a solution to the likelihood equation

Un(β) = 0, which can be solved using standard convex programming (Boyd and Vanden-

berghe, 2004). In addition, the full column rank of the design matrix X implies that the

number of observations n could be as low as d, that is, n ≥ d. If Qn(β) � 0, then Ln(β) is

strictly concave. In this case, as long as the estimate β̂ exists, it must be unique.

The Fisher scoring procedure can be reformulated further as an iteratively reweighted

least squares algorithm, and the corresponding updating scheme is

−→
β new =

−→
β old + Q−1n (βold)Un(βold)

=
−→
β old +

( n∑
i=1

[WΛ(π̃old
i )W>]⊗ (xix

>
i )
)−1( n∑

i=1

(W ⊗ xi)(eyi − π̃old
i )
)
,

where π̃old
i has the jth entry π̃old

ij = ex
>
i βoldwj∑k

s=1 e
x>
i

βoldws
, for j = 1, . . . , k.

3.3 Comparison with Regular CMLRs

As a new member of the MLR family, the SMLR is closely related to existing MLRs. The

main results are stated in the following theorem.

Theorem 1. The three estimators (2.3), (2.4), and (3.4) defined for the same observations D

achieve the same log-likelihood values, that is, `n(θ̂rb) = `n(θ̂sc) = Ln(β̂). Moreover, if β̂ is

unique, then the regular estimators can be recovered by θ̂rb = β̂(W−wr1
>
k ) and θ̂sc = β̂W.

Theorem 1 states that the two CMLR estimators θ̂rb and θ̂sc can be uniquely determined

by the SMLR estimator β̂, under some linear transformations. For any observation x, we



3 Simplex-based MLR 15

have the following prediction results:

π̂rb
j (x) = π̂sc

j (x) = ̂̃πj(x) =
ex
>β̂wj∑k

s=1 e
x>β̂ws

.

Therefore, these three MLR models are equivalent in terms of probability estimation and

label prediction. If an alternative simplex is applied, the estimated coefficients of SMLR may

be different, but these three MLR models still share the same prediction outputs.

Theorem 1 also implies connections between the two CMLRs, that is, θ̂rb = θ̂sc(Ik−er1
>
k )

and θ̂sc = θ̂rb(Ik −
1k1
>
k

k
), where Ik is a k × k identity matrix. To compare the three MLRs,

we consider a corner case in which there are two distinct categories, that is, k = 2. Let

P (x) = P (Y = 1|x) be the probability that the first category happens, conditioning on

the given covariates x. Clearly, P (Y = 2|x) = 1 − P (x). Then, the CMLR1 model with

parameter (θ,0) is

P (x) =
ex
>θ

ex>θ + 1
=

1

1 + e−x>θ
,

where the second category is viewed as a reference. For CMLR2, owing to the sum-to-zero

constraint θ1 + θ2 = 0, we can simplify (θ1,θ2) as (θ1,−θ1), yielding the model

P (x) =
ex
>θ1

ex>θ1 + ex>θ2
=

1

1 + ex>(θ2−θ1)
=

1

1 + e−2x>θ1
.

The SMLR model (3.2) with parameter β becomes

P (x) =
ex
>β

ex>β + e−x>β
=

1

1 + e−2x>β
.

Denote the three corresponding estimates as (θ̂,0), (θ̂1,−θ̂1), and β̂ ∈ Rd, respectively.

Based on Theorem 1, we have θ̂ = 2β̂ and θ̂1 = β̂. This leads to the following corollary.

Corollary 1. If k = 2, the three MLR models are equivalent up to a scaling factor.
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Theorem 1 can also be used to reveal some interesting properties of the regular CMLRs.

For example, consider the relation between the CMLR1 estimators under two different ref-

erence categories, r and s. By Theorem 1, we have θ̂(r) = β̂(W − wr1
>
k ) and θ̂(s) =

β̂(W −ws1
>
k ). The relation between θ̂(r) and θ̂(s) is shown in the following corollary.

Corollary 2. For the CMLR1 model with two different reference categories r and s, θ̂(r) and

θ̂(s) have the following relation:

θ̂(r) = θ̂(s) − θ̂(s)r 1>k .

For illustration, consider k = 2 and an available estimate (θ̂,0) for the CMLR1 model

with the second reference. By Corollary 2, the estimate for CMLR1 with the first reference

is (0,−θ̂).

According to Theorem 1, it is possible to transfer the properties of regular CMLRs to the

SMLR framework. For instance, Albert and Anderson (1984) showed that the MLE for the

CMLR1 model exists only when the data sets overlap, where existence means the finiteness

of an estimate. We can extend the concept of overlapping to the SMLR model, as follows.

Definition 1 (Overlapping). We say that the observations D are overlapping if for every

nonzero matrix β ∈ Rd×(k−1), there exists a duplet (i, t), with i ∈ {1, . . . , n} and t ∈ Y\yi,

such that x>i β(wyi −wt) < 0.

Applying Theorem 1, we have the following corollary for the existence of the SMLR

estimator.

Corollary 3. The MLE for the SMLR model exists if and only if the observations D overlap.
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Although the three MLRs are closely connected, the SMLR model treats all categories

equally, and provides systematic insights in a concise framework without further constraints.

Hence, the SMLR model serves as a unified framework that includes the binomial LR and

two regular CMLRs. In what follows, we focus on the SMLR model for succinct technical

presentation. All conclusions for the SMLR model can be adapted to regular CMLRs using

the link functions in Theorem 1.

4. Theoretical Properties

In this section, we establish the asymptotical results and statistical learning theory for the

proposed SMLR model, including the existence and uniqueness of the MLE, Fisher consis-

tency, the comparison inequalities as a classifier, and the convergence results for the kernel

SMLR.

4.1 Asymptotical Results

We are interested in the asymptotic behavior of the SMLR model under a complicated diverg-

ing setting, where both the number of covariates and the number of categories can increase

with the sample size. In the literature, the diverging number of covariates is well studied,

but few studies examine the diverging number of categories, even though such a setting is

not uncommon in practice. In the general “large n, diverging d and diverging k” setup, we

denote d = dn and k = kn to emphasize the effect of the sample size n. Then, the number of

parameters for the SMLR is (kn−1)dn. Hereafter, we replace (β, β̂) by (βn, β̂n) to emphasize

their dependencies on the sample size n.
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For the matrix Λ(π̃i) in Qn(βn), because π̃i depends on βn, we rewrite Λi(βn) = Λ(π̃i).

Hence, the Fisher information matrix Qn(βn) =
∑n

i=1[WΛi(βn)W>]⊗ (xix
>
i ) is a function

of βn. Assume that the true coefficient matrix is βn0. Denote Gn0 = Qn(βn0). When the

underlying model is correctly specified,

P (Y = j|X = x) =
ex
>βn0wj∑k

s=1 e
x>βn0ws

.

For the score vector Un(·) defined in (3.5), it follows that E[Un(βn0)] = 0. Define Sn =

X>X =
∑n

i=1 xix
>
i . Because the covariates xi are assumed to be deterministic, Qn(βn) and

Sn are not random. Given a fixed δ > 0, we consider a region of interest for βn, that is,

Nn(δ) =
{
β :
∥∥G1/2

n0

(−→
β −

−→
βn0
)∥∥ ≤ δ{dn(kn − 1)}1/2

}
.

In order to obtain the asymptotic results, we need the following assumptions.

Assumption 1. The true parameter βn0 is contained in the interior of a compact subset Bn

in Rdn×(kn−1).

Assumption 2. Each covariate of X is uniformly bounded by a constant C > 0.

Assumption 3. There exist two positive constants c1 and c2 such that c1 ≤ λmin(Sn/n) ≤

λmax(Sn/n) ≤ c2.

Assumption 4. There exists a constant L0 > 0 such that ‖Λ(β)−Λ(β′)‖2 ≤ L0 ‖β − β′‖,

for any β,β′ ∈ Bn.

The above assumptions are motivated by the literature on M -estimation with a diverging

dimension of covariates; see Portnoy (1985), Portnoy (1988), He and Shao (2000), Wang

(2011), Liang and Du (2012), and Gao et al. (2018). Assumption 1 restricts the true pa-

rameter βn0 under the doubly diverging setting. Assumption 2 ensures that each observed
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covariate vector is bounded, that is, ‖xi‖ ≤ C
√
dn, for any i = 1, . . . , n. Assumption 3 gives

some regular conditions on the design matrix X. Assumption 4 is specially tailored for the

SMLR model, and can be viewed as a generalized Lipschitz condition.

Remark 1. Assumption 3 is also used by Wang (2011) and Liang and Du (2012) to establish

the asymptotics for a binomial LR with diverging covariates. Based on Assumption 3, we

can find a positive constant c0 such that c0 ≤ maxi=1,...,n minj=1...,k π̃ij(βn0). Furthermore,

using Lemma 4 in the Supplementary Material, for the Fisher information matrix Gn0, we

have

Gn0

n
=

1

n

n∑
i=1

[WΛi(βn)W>]⊗ (xix
>
i ) � knc0

kn − 1

Sn
n
� cI(kn−1)dn , (4.1)

with a constant c ∈ (0, c0c1]. If k = 2, the result (4.1) is reduced to that of Liang and Du

(2012). In summary, there exists a positive constant c such that λmin(Gn0/n) ≥ c, and (4.1) is

required to establish the convergence and asymptotic normality of the estimated coefficients

under certain diverging settings.

Remark 2. Under Assumption 2, we have ‖Sn/n‖2 ≤ n−1
∑n

i=1 x>i xi ≤ dnC
2. Therefore,

Assumption 3 holds naturally in the “fixed d” case.

Remark 3. Owing to the complicated nature of an MLR, Assumption 4 is necessary to

control the behavior of different coefficients on the component of the Fisher information

matrix, which depicts the continuousness of a matrix function in another manner. Technical

proofs of the consistency and asymptotic normality can be simplified using Assumption 4.

Next, when the number of parameters dn(kn− 1) increases, the existence and consistency

of the MLE is guaranteed by the following theorem.
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Theorem 2. Suppose Assumptions 1–4 hold. If
√
dnkn/n→ 0, then there exists a sequence

{β̂n} such that as n→∞,

P
(
β̂n ∈ Nn(δ) and Un(β̂n) = 0

)
→ 1 and ‖β̂n − βn0‖ = Op

(√
dnkn/n

)
.

For the classical setting with fixed d and k, the conditions become 1/n→ 0. For a fixed

dimension d and varying categories kn, we require kn = o(n). When the number of categories

k is fixed, dn should satisfy dn = o(n).

The following theorem ensures the asymptotic normality of β̂n.

Theorem 3. Suppose Assumptions 1–4 hold. If dnkn/
√
n → 0, then for any dn(kn − 1)× l

matrix Vn with l fixed and such that V>nVn = Il,

V>nG
1/2
n0

(−→
β̂n −

−→
βn0

)
−→ N (0, Il), in distribution,

where N (·, ·) is a multivariate normal distribution.

In particular, let Un = G
−1/2
n0 Vn

(
V>nG−1n0 Vn

)−1/2
. Then U>nUn = Il. Based on Theorem

3, we have the following corollary which gives the asymptotic distribution of V>n

(−→
β̂n−

−→
βn0

)
.

Corollary 4. Under the same conditions as in Theorem 3, as n→∞, we have

(
V>nG−1n0 Vn

)−1/2
V>n

(−→
β̂n −

−→
βn0

)
−→ N (0, Il), in distribution.

If d and k are fixed, we only need n−1/2 → 0, which is trivially true. When the number

of categories kn diverges and d is fixed, the conditions in Theorem 3 reduce to kn/
√
n → 0,

which implies a sufficient condition kn = o
(√

n
)
. For a diverging number of covariates dn

and fixed k, we require dn/
√
n→ 0, that is, dn = o(

√
n). In particular, for the binomial LR
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model, we recover the result in Portnoy (1985, 1988), and our result is stronger than those of

He and Shao (2000) and Wang (2011). Hence, our conditions in Theorem 2 and 3 are general

for MLR models with a diverging number of parameters, even with a diverging number of

categories.

The following theorem and its corollary suggest that one can approximate Gn0 using

Qn(β̂n) when applying Theorem 3 and Corollary 4 for interval estimation.

Theorem 4. Under the same conditions as in Theorem 3, as n→∞, we have

∥∥V>nQ−1n (β̂n)Vn −V>nG−1n0 Vn

∥∥
2
−→ 0, in probability.

Corollary 5. Under the same conditions as in Theorem 3, as n→∞, we have

[
V>nQ−1n (β̂n)Vn

]− 1
2 V>n

(−→
β̂n −

−→
βn0

)
−→ N (0, Il), in distribution,

and (−→
β̂n −

−→
βn0

)>
Vn

[
V>nQ−1n (β̂n)Vn

]−1
V>n

(−→
β̂n −

−→
βn0

)
−→ χ2

l , in distribution,

where χ2
l is the χ2 distribution with l degrees of freedom.

According to Corollary 5 and the MLE, an asymptotic 1−α confidence interval (0 < α <

1) for βij is

β̂ij ± zα/2v>ij>Q−1n vij,

where zα/2 denotes the upper (α/2)-quantile of the standard normal distribution, and vij is

the unit vector of length dn(kn − 1), with the [(j − 1)dn + i]th element equal to one and

all other elements equal to zero. We can also apply these results when testing the following

linear hypothesis:

H0 : V>n
−→
βn0 = a ←→ H1 : V>n

−→
βn0 6= a,
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where the vector a ∈ Rl is known and Vn is a {(kn− 1)dn}× l matrix such that V>nVn = Il.

The large-sample Wald test statistic is defined as

Tn =
(−→
β̂n
>Vn − a>

)[
V>nQ−1n (β̂n)Vn

]−1(
V>n
−→
β̂n − a

)
.

Corollary 5 shows that the Wald test remains valid, that is, Tn −→ χ2
l in distribution under

the null hypothesis H0, even when the numbers of covariates and categories diverge with the

sample size.

4.2 Fisher Consistency and Error Analysis

Fisher consistency is a fundamental property for classifiers, and is also called infinite-sample

consistency by Zhang (2004) and classification calibration by Bartlett et al. (2006) and Tewari

and Bartlett (2007). In this section, we show these desired properties for the SMLR model.

First, let Pj(x) = P (Y = j|X = x) be the underlying class conditional probability for

any x ∈ X , and define a vector p(x) = (P1(x), . . . , Pk(x))>. Consider a classifier C : X 7→ Y .

The expected misclassification error is given by

R(C) = E[1(Y 6= C(X))] = 1− EX [P (Y = C(x)|X = x)].

One can verify that the optimal classifier minimizing R(C), often called the Bayes rule, is

denoted as CB(x) = arg maxj Pj(x). Denote R∗ = R(CB) = 1− EX [maxj Pj(X)].

Under the simplex coding scheme, it is sufficient to directly use k − 1 functions for mul-

ticategory classification. Let f = (f1, . . . , fk−1)
> : X 7→ Rk−1 be a generic classification

function. Then the prediction rule induced by f is Cf (x) = arg maxj〈f(x),wj〉. For the

SMLR log-likelihood (3.3), we can define the SMLR loss function for an observation (x, y)
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as

V (f(x), y) = log
(∑k

j=1
e〈f(x),wj〉

)
− 〈f(x),wy〉. (4.2)

We are interested in the expected V -risk

E(f) = E[V (f(X), Y )] = EX{E[V (f(X), Y )|X]}.

Consider the hypothesis space

F = {f : X 7→ Rk−1 | EX [‖f(X)‖] <∞},

where ‖·‖ is the standard Euclidean norm in Rk−1. Note that E(f) is a functional of f , and

we define its minimizer over F as f ∗ = arg minf∈F E(f). Fisher consistency requires that

CB(x) = Cf∗(x), for any x ∈ X .

Theorem 5. Assume that Pj(x) > 0, for j = 1, . . . , k. The expected V -risk E : F 7→ R+ is a

convex and continuous functional, with the minimizer f ∗(x) = (1 − 1/k)
∑k

i=1[logPi(x)]wi.

Moreover, the SMLR loss function (4.2) is Fisher consistent.

Theorem 5 states a one-to-one correspondence between f ∗ and p, where the argument x

is suppressed for brevity. Specifically, the explicit form of f ∗ is a linear expression of wi, with

coefficients determined uniquely by Pj. Because 〈f ∗(x),wj〉 = logPj(x)− 1
k

∑k
i=1 logPi(x),

for j = 1, . . . , k, we conclude that if Pi > Pj, then 〈f ∗,wi〉 > 〈f ∗,wj〉, and if Pi = Pj, then

〈f ∗,wi〉 = 〈f ∗,wj〉. However, if Pj → 0, f ∗ becomes unbounded and meaningless.

For a classification function f , R(Cf )−R∗ and E(f)− E(f ∗) are called the excess mis-

classification risk and the excess V -risk in SMLR, respectively. Then, the following theorem

provides an essential comparison inequality.



4 Theoretical Properties 24

Theorem 6. For any f ∈ F, we have R(Cf )−R∗ ≤
√

2{E(f)− E(f ∗)}1/2.

Theorem 6 covers the results for the binary LR in Bartlett et al. (2006). The upper bound

can be improved under some regularity conditions. To this end, we introduce the following

generalized Tsybakov’s low-noise assumption (Tsybakov, 2004).

Assumption 5. Let P(1)(x) and P(2)(x) be the largest conditional probability and the second

largest conditional probability, respectively. Assume that there exist C > 0 and α ≥ 0 such

that for all 0 < h ≤ 1,

PX({x ∈ X |P(1)(x)− P(2)(x) ≤ h}) ≤ Chα. (4.3)

Intuitively, it is clear that the misclassification error is particularly large when it is difficult

to separate the class with the highest probability from the others. In many multicategory

classification problems, it is reasonable to assume that the P(1)(x) is unlikely to be very close

to P(2)(x), for x ∈ X . Hence, Assumption 5 is a meaningful low-noise condition that depends

on the parameter α. We consider two extreme values of α. If α = 0, this imposes the case

without any assumption on the noise, as discussed in Theorem 6. If α = ∞, it reduces to

the noiseless case.

We can improve the bound for the excess misclassification risk under Assumption 5. Note

that similar results are established in Theorem 2 of Mroueh et al. (2012) for multicategory

support vector machines equipped with a hinge loss or a quadratic loss. Theorem 7 establishes

the results for the MLR models.

Theorem 7. For each f ∈ F, if Assumption 5 holds, then we have

R(Cf )−R∗ ≤ (8Cα)
α+1
α+2{E(f)− E(f ∗)}

α+1
α+2 ,
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where Cα = (α + 1)C
1

α+1α−
α
α+1 > 0 is a constant.

Remarkably, Theorem 6 is a particular case of Theorem 7 with α = 0. Furthermore,

Theorem 7 is a refined version of Theorem 6, because α+1
α+2

> 1/2 when α > 0.

4.3 Convergence Analysis of Kernel SMLR

Motivated by the kernel MLR of Zhu and Hastie (2005), we investigate the consistency of the

kernel SMLR and conduct a convergence analysis under a diverging number of categories,

which few works have done.

To start with, we consider a Mercer kernel K defined over X × X and the reproducing

kernel Hilbert space HK induced by K with the inner product 〈·, ·〉, stratifying 〈φ(x), φ(x′)〉 =

K(x,x′) with a feature map φ : X 7→ HK . Then, we introduce the following notation:

F = {f : X 7→ Rk−1, fj(x) = 〈uj, φ(x)〉 | EX [‖f(X)‖] <∞, uj ∈ HK , ∀j = 1, . . . , k − 1
}
,

FA =
{
f ∈ F

∣∣∣ (∑k−1

j=1
〈uj,uj〉

)1/2
≤ A

}
⊆ F ,

where A > 0 is a constant used to bound the hypothesis in F . Note that if φ(x) = x, the

classical setting of linear learning is recovered. We also need some technical assumptions

about the boundedness of the kernel function.

Assumption 6. There exists a constant C > 0 such that
√
K(x,x) ≤ C, for any x ∈ X .

Under Assumption 6, we know EX [‖f(X)‖] ≤ AC for any f ∈ FA, which ensures FA ⊆ F .

Theoretically, the expected risk minimizer for the kernel SMLR model is denoted as

f ∗ = arg min
f∈F

E(f) = E[V (f(X), Y )].
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To ensure the uniqueness of f ∗, we further define f ∗ = arg minf∈B(
∑k−1

j=1〈uj,uj〉)1/2, where

B = {f ∈ F|f = arg minf∈F E(f)}. In fact, our aim is to learn the empirical risk minimizer

from FA, defined by

f̂ = arg min
f∈FA

ÊD(f) =
1

n

n∑
i=1

V (f(xi), yi).

Proposition 4. Suppose Assumption 6 is met. For the function class FA, we have

ED

[
sup
f∈FA

∣∣∣ 1
n

n∑
i=1

V (f(xi), yi)− E(f)
∣∣∣] ≤ 4

√
2AC(k − 1)1/2n−1/2.

The concentration inequality in Proposition 4 involves the expectation of the supremum

of the empirical process, and it is a main tool to establish the consistency of f̂ under the

diverging number of categories, as shown in the following Theorem.

Theorem 8. Assume Assumption 6 holds and there exists a proper A such that the theoretical

minimizer f ∗ ∈ FA. If
√

(kn − 1)/n→ 0, then we have

lim
n→∞

ED[E(f̂)] = min
f∈FA

E(f) = E(f ∗).

Theorem 8 implies that the consistency of f̂ requires that k should increase at the order

o(n). In particular, this order is identical to that of Theorem 2 for the linear SMLR model.

The main difference is that Theorem 2 is established for the MLE of the linear SMLR, whereas

Theorem 8 is based on the negative log-likelihood loss function for the kernel SMLR. For the

kernel CMLR2 with fixed k, Zhang (2004) showed a convergence result under the condition√
k/n ln3/2 n → 0. On the other hand, our Theorem 8 requires

√
(k − 1)/n → 0, which is

faster than that of Zhang (2004).
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5. Numerical Studies

In this section, we conduct several experiments to demonstrate the numerical performance

of the proposed SMLR model. In particular, we study three simulated examples in Section

5.1, and consider two real-world applications in Sections 5.2 and 5.3.

5.1 Simulated Examples

Consider the following SMLR model:

π̃y(xi) =
ex
>
i βn0wy∑k

j=1 e
x>i βn0wj

, i = 1, . . . , n; y ∈ Y , (5.1)

where βn0 is a dn × (kn − 1) matrix of parameters. Specifically, Xi = (Xi1, . . . , Xidn)>, for

i = 1, . . . , n, are independently generated from a multivariate normal distribution with mean

zero and marginal standard deviation 0.2. In the simulation, we concentrate on the model

(5.1) with a diverging number of parameters, with the following explicit settings. Let bac be

the largest integer not greater than the number a.

Example 1 (diverging k and fixed d). Consider kn = b
√
nc and d = 3. Let an = {(kn −

1)d}−1/21(kn−1)d. The true parameter matrix is

βn0 =

(
kn−1
kn
· 1d −kn−2

kn
· 1d · · · (−1)kn−1 2

kn
· 1d (−1)kn 1

kn
· 1d

)
.

Example 2 (diverging d and fixed k). Consider dn = b2
√
nc and k = 3. Let d0 = bdn/4c
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and Vn =

(
vn1 vn2

)
= d

−1/2
n I2 ⊗ 1dn . The true parameter matrix is

βn0 =



0.4 · 1d0 −0.1 · 1d0

−0.3 · 1d0 0.2 · 1d0

0.2 · 1d0 −0.3 · 1d0

−0.1 · 1dn−3d0 0.4 · 1dn−3d0


.

Example 3 (diverging k and d simultaneously). Consider kn = b3n1/4cand dn = b2n1/4c.

Let d0 = bdn/2c and bn = {(kn − 1)dn}−1/21(kn−1)dn . The true parameter matrix is

βn0 =

 kn−1
kn
· 1d0 −kn−2

kn
· 1d0 · · · (−1)kn−1 2

kn
· 1d0 (−1)kn 1

kn
· 1d0

−kn−1
kn
· 1dn−d0 kn−2

kn
· 1dn−d0 · · · (−1)kn 2

kn
· 1dn−d0 (−1)kn+1 1

kn
· 1dn−d0

 .

The sample size n varies from {100, 500, 1000, 5000, 10000} for each example, and we

conduct 10000 replications for each simulation. Because the dimension of the estimated

coefficient matrix changes as n increases, we measure the accuracy of the estimation using the

simulated average mean squared error (AMSE), which is obtained by averaging
‖β̂n−βn0‖2
dn(kn−1) over

all simulated samples. We also report the asymptotic behaviors of some linear combinations

of β̂n, including the average estimation bias (Bias), standard error of the estimates (SE emp),

average estimated standard error (SE est), and coverage probability (CP) of a 95% confidence

interval over 10000 replications. All simulations are implemented in R (R Core Team, 2021).

From the theoretical results in Section 4.1, we can design certain diverging settings,

as shown in Examples 1–3. Tables 1–3 demonstrate the simulation results for the three

considered examples, where #para denotes the total number of unknown parameters. In

general, the biases and standard errors decrease as the sample size n increases, and the

coverage probabilities are close to the nominal value when n is large. These results suggest
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that the performance of the MLE is satisfactory under the considered diverging settings, and

that the asymptotic properties are valid.

Table 1: Results for simulated Example 1.

n k #para AMSE Bias SE emp SE est CP

100 10 27 2.9282 0.0110 1.7587 1.6932 0.9278

500 22 63 1.0520 0.0114 1.1039 1.0905 0.9326

1000 31 90 0.7218 0.0023 0.8439 0.8458 0.9422

5000 70 207 0.3473 0.0080 0.6015 0.5997 0.9426

10000 100 297 0.2472 -0.0011 0.5077 0.5092 0.9493

Table 2: Results for simulated Example 2.

n d #para AMSE
Estimate: v>n1

−→
β̂n Estimate: v>n2

−→
β̂n

Bias SE emp SE est CP Bias SE emp SE est CP

100 20 40 1.2580 0.1010 1.0868 0.9118 0.9137 0.0646 1.0786 0.9129 0.9173

500 44 88 0.1496 0.0323 0.4050 0.3813 0.9342 0.0305 0.4141 0.3906 0.9355

1000 63 126 0.0687 0.0252 0.2627 0.2517 0.9394 0.0445 0.2656 0.2538 0.9370

5000 141 282 0.0133 0.0223 0.1141 0.1133 0.9452 0.0198 0.1141 0.1134 0.9462

10000 200 400 0.0068 0.0169 0.0818 0.0817 0.9467 0.0171 0.0818 0.0821 0.9473

Lastly, we explore hypothesis testing based on the large-sample Wald test. Consider

the model (5.1) with n = 10000; the other settings remain the same as before. For each

scenario with a null hypothesis H0, we are interested in comparing its estimated density

curve and the density curve of its corresponding χ2 distribution, and the Q-Q plots for the
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Table 3: Results for simulated Example 3.

n d k #para AMSE Bias SE emp SE est CP

100 6 9 48 2.9184 0.0229 1.7543 1.6355 0.9233

500 9 14 117 0.6827 0.0070 0.8175 0.8085 0.9401

1000 11 16 165 0.3995 0.0020 0.6576 0.6482 0.9418

5000 16 25 384 0.1233 -0.0030 0.3675 0.3656 0.9466

10000 20 30 580 0.0744 0.0024 0.2841 0.2819 0.9479

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

χ2  approximation

Tn

D
en
si
ty

0 5 10 15

0
5

10
15

Q−Q plot for  χ2

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

Figure 1: Asymptotic results for testing H0 : a>n
−→
βn = a>n

−→
βn0 in Example 1. The left panel

gives the estimated null density of the large-sample Wald test (circle points) and the density

of the chi-square distribution χ2
1 under H0 (solid line). The right panel gives the Q-Q plot

for the Wald test statistic under H0.

Wald test statistic under H0. The related results are shown in Figures 1–3. As seen, the χ2

approximation for the null distribution is reasonably accurate, and the theoretical quantiles

are approximated very well by the sample quantiles.
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Figure 2: Asymptotic results for testing H0 : V>n

−→
βn = V>n

−→
βn0 in Example 2. The left panel

gives the estimated null density of the large-sample Wald test (circle points) and the density

of the chi-square distribution χ2
2 under H0 (solid line). The right panel gives the Q-Q plot

for the Wald test statistic under H0.

5.2 Application I

In this section, we apply the asymptotic results of the SMLR model to a real data set for

statistical inference. We consider the 1996 American National Election Study (NES96) data

set, which can be found in the CRAN package faraway, and contains data on 944 respondents,

where each respondent consists of 10 related variables. Following Faraway (2016) and Price

et al. (2019), we consider three explanatory variables, namely, education level (categorical

with seven levels), income (categorical with 24 levels), and age (numerical). Each covariate is

standardized to have mean zero and standard deviation one. The intercepts are considered as

well. In addition, the response variable is the self-identified political affiliation of voters. As

seen from Table 4, the response variable originally has seven categories (Original Categories),
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Figure 3: Asymptotic results for testing H0 : b>n

−→
βn = b>n

−→
βn0 in Example 3. The left panel

gives the estimated null density of the large-sample Wald test (circle points) and the density

of the chi-square distribution χ2
1 under H0 (solid line). The right panel gives the Q-Q plot

for the Wald test statistic under H0.

which is later reduced to three (Grouped Categories) by Faraway (2016). The objective here

is to use the proposed SMLR model to check whether the subjective grouping of the response

categories is recommended.

The fitted coefficient matrix β̂ = (β̂ij) ∈ R4×(k−1) for the original and grouped categories

is shown in Table 5, where the jth row vector of β is denoted by βj•. Note that β̂1• is very

close to zero under the grouped categories, which implies that the age factor may have a

weak effect. However, the effect of age on the original categories seems strong. To verify this,

we conduct the following hypothesis test to investigate the effects of the age factor:

H0 : β1• = 0 ←→ H1 : β1• 6= 0. (5.2)

By Corollary 5, with V = Ik−1 ⊗ (0, 1, 0, 0)>, the Wald test statistic β̂>1•[V
>Q−1n (β̂)V]−1β̂1•
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Table 4: Summary of NES96 categories.

Original Categories (size) Grouped Categories (size)

Strong Democrat (200)
Democrat (380)

Weak Democrat (180)

Independent Democrat (108)

Independent (239)Independent (37)

Independent Republican (94)

Weak Republican (150)
Republican (325)

Strong Republican (175)

Table 5: Fitted coefficients of the SMLR model based on the NES96 data.

Original Categories Grouped Categories

β̂•1 β̂•2 β̂•3 β̂•4 β̂•5 β̂•6 β̂•1 β̂•2

Intercept (β̂0•) 0.6304 0.1824 -0.8353 0.0667 0.5098 0.6198 0.0094 0.2519

Age (β̂1•) -0.1222 -0.0794 0.0815 0.2118 0.0728 0.1836 -0.0474 0.0103

Education Level (β̂2•) 0.0391 0.1050 -0.2889 0.0010 0.0175 0.0925 -0.0365 0.0120

Income (β̂3•) -0.5525 -0.1564 0.0168 -0.1116 -0.1451 -0.0377 -0.2570 -0.2312

follows χ2
k−1 under H0. For the grouped categories with k = 3, the Wald test statistic is

1.0572 and the p-value is 0.5894. As a result, the age factor plays no role in determining

the political affiliation of voters under the grouped categories. On the other hand, the Wald

test statistic is 18.3178 and the p-value is 0.0055 for the original categories, meaning that

the effects of the age factor are non-negligible. These results imply that the grouping of the
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response categories is not supported by the data, which is consistent with the conclusion in

Price et al. (2019).

5.3 Application II

As discussed, the main advantages of the proposed SMLR over CMLR1 and CMLR2 are from

computational and asymptotical perspectives, with these three MLRs proved to be equivalent

in Section 3.3. Therefore, these advantages may not be evident in a finite-sample real ap-

plication. On the other hand, the penalized counterparts of these three MLRs are no longer

equivalent. The penalty terms of CMLR1 and CMLR2 depend on prespecified constraints

to make the models identifiable, whereas the regularized SMLR solves an unconstrained op-

timization problem without the reference category. The simplex-based structure is expected

to be more convenient and efficient in terms of statistical analysis and algorithmic design

(Zhang and Liu, 2014).

In this section, we apply the three ridge-penalized MLR models to three real datasets

from the UCI machine learning repository to further illustrate the usefulness of the SMLR-

based models. A summary of the data sets is provided in Table 6, where n/d/k denote the

sample size of the training set, the dimension of the covariates and the number of categories,

respectively. In addition, nmin and nmax represent the sizes of the minority and majority

categories, respectively. Note that the ridge-penalized CMLR1 may have several versions,

depending on the choice of the reference category, whereas the regularized CMLR2 and SMLR

are unique. Given a fixed penalty factor λ, we train all three ridge-penalized MLR models

for each data set, and compare their performance in terms of their label prediction accuracy.

As seen from Table 6, the selection of the reference category has a significant effect on
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Table 6: Summary of real data sets and results of training ridge penalized MLRs.

Dataset
Information Accuracy

n d k nmin nmax λ CMLR1 CMLR2 SMLR

Breast 106 9 6 14 22 1.5
0.7830; 0.8019; 0.7925;

0.8019 0.8113
0.7547; 0.7830; 0.8113

Segmentation 210 19 7 30 30 1.1
0.9524; 0.9524; 0.9429; 0.9571

0.9571 0.9619
0.9619; 0.9571; 0.9524

Glass 214 9 6 9 76 0.5
0.7196; 0.7196; 0.7150;

0.7336 0.7336
0.7243; 0.7243; 0.7196

the prediction accuracy, which is expected and is widely accepted in the literature (e.g., Tutz

et al., 2015). This finding suggests that we need to be cautious when using the penalized

CMLR1 and need to select an appropriate reference category beforehand. In practice, an

extra tuning process on all possible reference categories may be needed to guarantee stable

performance of the penalized CMLR1. On the other hand, the penalized CMLR2 and SMLR

do not depend on the reference categories. Such MLR-based models offer symmetric and

systematic insight into all categories, and become more appealing; see Friedman et al. (2010),

Zahid and Tutz (2013a), Zahid and Tutz (2013b), Hastie et al. (2015), Powers et al. (2018),

and de Jong et al. (2019). Between these two MLRs, the penalized SMLR is preferred for

its computational convenience and the establishment of its statistical properties. Similar

arguments appear in Zhang and Liu (2014). Nevertheless, substantial efforts are needed to

investigate the theoretical properties of the penalized SMLR, which is left to future work. In

summary, the advantages of the SMLR can be better exploited in a regularization setting,
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and this study serves as a building block for further exploration of SMLR-based models.

6. Conclusion

We have proposed a novel SMLR model that has several distinct features. Compared with

regular MLRs, the proposed SMLR circumvents restrictions such as reference category selec-

tion and the sum-to-zero constraint, and hence is computationally efficient. In addition, the

SMLR can be treated as a unified framework that connects binomial and multinomial logis-

tic regressions. Moreover, the asymptotic results, statistical learning theory, and properties

under a general kernel of the SMLR are well established, even when the number of covariates

and the number of categories increase with the sample size. Note that few studies examine

these statistical properties for the MLR under a diverging number of categories. This study

fills this gap because of the close relationship between the SMLR and regular MLRs. Lastly,

numerical simulations and real examples show the excellent performance of the SMLR under

a variety of scenarios.

One possible future research direction is to extend the SMLR to more complicated data

sets such as clustered multinomial data and count data, which are ubiquitous in areas such

as genomics, sports, imaging analysis, and text mining. For example, Wang (2011) studies a

clustered binary LR model with a diverging number of covariates, although its extension to

clustered multinomial data remains challenging. In terms of categorical count data, Zhang

et al. (2017) proposed the reference-based MLR model. However, the selection of the reference

category is subjective, and is not computationally efficient, in general. The proposed SMLR

model could be a promising tool to deal with such multicategory data. Another potential
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research topic is to adapt the SMLR to high-dimensional settings, where, as discussed in

Section 5.3, the penalized SMLR is useful in such cases.

Supplementary Material

The online Supplementary Material provides the following: (i) preliminary lemmas used to

establish the theoretical results in the manuscript, and (ii) technical proofs for all propositions

and theorems presented in the manuscript.
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