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Abstract
Remaining useful life predictions depend on the quality of health indicators (HIs) generated from condition monitoring
sensors, evaluated by predefined prognostic metrics such as monotonicity, prognosability, and trendability. Constructing
these HIs requires effective models capable of automatically selecting and fusing features from pertinent measurements,
given the inherent noise in sensory data. While deep learning approaches have the potential to automatically extract features
without the need for significant specialist knowledge, these features lack a clear (physical) interpretation. Furthermore, the
evaluation metrics for HIs are nondifferentiable, limiting the application of supervised networks. This research aims to
develop an intrinsically interpretable ANN, targeting qualified HIs with significantly lower complexity. A semi-supervised
paradigm is employed, simulating labels inspired by the physics of progressive damage. This approach implicitly incorporates
nondifferentiable criteria into the learning process. The architecture comprises additive and newly modified multiplicative
layers that combine features to better represent the system’s characteristics. The developed multiplicative neurons are not
restricted to pairwise actions, and they can also handle both division and multiplication. To extract a compact HI equation,
making the model mathematically interpretable, the number of parameters is further reduced by discretizing the weights via
a ternary set. This weight discretization simplifies the extracted equation while gently controlling the number of weights
that should be overlooked. The developed methodology is specifically tailored to construct interpretable HIs for commercial
turbofan engines, showcasing that the generated HIs are of high quality and interpretable.

Keywords Interpretable health indicator · Prognostics and health management · Artificial neural network · Feature fusion ·
Multiplicative neuron · Ternary weights

1 Introduction

The health indicator (HI) is a crucial index of an engineering
system that indicates the status of a component’s health in
order to make maintenance decisions [1]. A HI can be cre-
ated based on the necessary information extracted from the
sensory data gathered by condition monitoring (CM) tech-
niques. Nevertheless, given the unprocessed nature of all the
early data produced by CM techniques, it is likely that they
are inappropriate for analysis. Developing HIs from raw sen-
sor data, which are typically uninformative, for diagnostic
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and prognostic needs is a challenging but essential task [2].
Although a HI is employed by a prognostic model to fore-
cast the remaining useful life (RUL), it brings further value,
such as interpretability and a closer connection to the com-
ponent’s health (damage) status. It is important to emphasize
that more qualified HI leads to more precise RUL forecasts,
which enhances decision-making processes [3].

HIs should satisfy the HI’s evaluation criteria in order to
be effectively used for diagnostic and prognostic applica-
tions. Three primary and well-known prognostic criteria—
monotonicity (Mo), trendability (Tr), and prognosability
(Pr)—are used to assess the HI’s quality [4–8]. The HI’s
overall increasing or decreasing evolution is indicated by
Mo, whereas the distribution of HI values at the end of life
(EoL) is quantified by Pr. Tr examines whether the deteri-
oration trajectories of a given component follow a similar
underlying trend. Given high criteria scores, even a basic
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prognostic model can adequately forecast RUL. Tr and Pr
calculations need data for two or more failed components,
meaning more than two HIs from a healthy condition until
EoL. This limitation, coupled with the nondifferentiability
of the objective function involving Mo, Pr, and Tr, makes it
very challenging to directly implement them into a super-
vised neural network based on backpropagation.

There are two types of HIs: physical (pHIs) and vir-
tual (vHIs) [9, 10]. The first ones are created directly from
physical measurements, such as static or dynamic strains,
acoustic emission, temperature, displacement, pressure, or a
combination of these. The latter are typically designed to pro-
vide desired characteristics, including Mo, Tr, and Pr, which
greatly increase prognostic efficiency [9], [10], as the first
ones are rather unlikely to be sufficient, especially for com-
plicated components. Nevertheless, one important aspect that
cannot be addressed using prognostic criteria is the inter-
pretability of a HI. In recent years, a number of data-driven
models have been developed to provide a reasonable option
for HI [11], [12]. However, the HI functions produced by
data-driven models are so complicated that they are almost
beyond comprehension, i.e., they lose their physical mean-
ings [13]. Sometimes it is even challenging to translate the
raw data from a sensor into a physical phenomenon, let alone
interpret the output of a complex data-driven model run on
a network of various sensors. Thus, the first step towards
understanding the physics of a system could be made if the
interpretability of the fusion model of the sensory inputs—
i.e., understanding which sensors were used and how they
formed the output (HI)—is possible. Additionally, the over-
fitting of a function decreaseswith increasing interpretability.
With this in mind, the main contribution of this research is
the development of a model to cope with the challenge of
designing an interpretable HI.

In applications with massive amounts of data, artificial
neural networks (ANNs) and deep learning (DL) algorithms
can be utilized to automatically build HIs without requir-
ing a lot of domain knowledge. On the other hand, due to
the thousands or even millions of parameters required by an
applicable ANN for generating HIs, the features produced
by DL are complex to interpret and subsequently cannot be
treated as physical characteristics of the system/component
under monitoring. In fact, data-driven approaches (such as
ANN, reinforcement learning, etc.) offer little insight into
the relationship between the inputs of captured sensory data
and the outputs (either HI or RUL) of the model (black-box)
[14]. One of the main causes is that DL models typically
have thousands of parameters [15], e.g., when generating
a HI, which makes them less generalized and very compli-
cated (the formula behind theDLmodel is not readable). This
renders them inefficient in terms of interpretability (i.e., the
equations are overly lengthy, involving numerous variables
and parameters).

However, it is important to define the term interpretability
first. In light of this, we allocate the next section to explore
interpretability, particularly in the context of prognostics and
HI application, where the two primary aspects of machine
learning interpretability—post—hoc and intrinsic—are dis-
cussed. At the end of the next section, we present our
methodology, including the key contributions.

2 Interpretability in machine learning for
prognostics

2.1 Machine learning interpretability

The field of machine learning (ML) often grapples with
the challenge of "interpretability," which lacks a universally
accepted definition. Instead, multiple dimensions of inter-
pretability are emerging, each quantifiable in different ways
[16]. Interpretable ML (iML) and eXplainable AI (XAI)
have grown significantly, focusing on making AI systems
more transparent and understandable [16, 17]. Explainabil-
ity and interpretability are different, even if they are related.
iML concentrates on the model itself, whereas XAI concen-
trates on themodel’s output [18]. Additionally, iML has been
referred to as intrinsic interpretability to distinguish it from
methods of post-hoc explainability [16, 19]. From an analyt-
ical perspective, post-hoc techniques are the main focus of
XAI [20], as they shed light on potentially unreadable black-
box models. The term "white-" or "gray-box" ML models is
described by iML [21], and architectural or functional restric-
tions impose restrictions on how they can be interpreted. iML
is analogous to models that do not require an explainable
mechanism to translate them; instead, they can be under-
stood as being intrinsically interpretable through techniques
like physical connections, structural constraints, etc.

Recent years have seen an increase in interest in the
application of ML interpretability in the context of prognos-
tics and health management (PHM), predictive maintenance,
and digital twins [20, 22]. As reported in a comprehensive
review [22], XAI gained more attention than iML in PHM,
where prognostic topics gained less attention than diagnostic
ones. Among prognostic topics, HI construction is the least
explored, while there are a few works on RUL predictions,
especially using XAI. Thus, the need for such studies is evi-
dent, as HIs carry valuable knowledge of the system under
monitoring and play an important role in the field of PHM.

In the following, after briefly explainingML interpretabil-
ity in two main categories, we narrow our approach. As
may already be noticed, approaches to ML interpretabil-
ity are broadly categorized into two types: intrinsic and
post-hoc. Intrinsic interpretability is achieved by designing
models that are inherently understandable, whereas post-hoc
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interpretability involves analyzing and explaining models
after they have been trained [16].

2.2 Post-hoc interpretability

Post-hoc interpretability seeks to comprehend complicated
models after they have been trained. This strategy has gained
interest in the context of RUL prediction, where techniques
like SHAP (SHapley Additive exPlanations) [23–25], LIME
(Local Interpretable Model-agnostic Explanations) [24, 26,
27], and Grad-CAM (Gradient-weighted Class Activation
Mapping) [28] are employed to offer insights into model
behavior and feature importance. These approaches, how-
ever, have several drawbacks:

• Approximation: Post-hoc explanations frequently make
assumptions about the model’s decision-making proce-
dure,which could result in erroneous interpretations [29].

• Local interpretations: While many post-hoc techniques
offer local explanations, they may not generalize well
across various input data points.

• Complexity: These explanations can be challenging to
follow, particularly when dealing with complicated sig-
nals such as multivariate time series collected by sensors.

• Sensitivity: Post-hoc approaches’ susceptibility to even
minor perturbations in input data raises questions regard-
ing their reliability [30, 31].

Similar or even more severe concerns can arise in HI
construction, where the non-transparency and complexity of
post-hoc explanations impede their practical applicability in
safety-critical contexts such as aircraft engine health moni-
toring. Since there are no actual labels for HI, which limits
supervised ML models, there may be more obstacles in HI
design than in RUL prognostics [32].

2.3 Intrinsic interpretability

To achieve intrinsic interpretability, models must be created
that are naturally comprehensible. This method ensures that
the model’s decision-making process is transparent and eas-
ily comprehensible for humans. Simple decision trees and
sparse linear models, for example, are frequently regarded
as intrinsically interpretable because their whole structure
can be understood at once. However, even these models can
become opaque if they are very high-dimensional or compli-
cated [29].While choosing a simple hypothesis class, such as
linearmodels or small decision trees, is a straightforwardway
to achieve interpretability, this strategy frequently comes at
the expense of predictive performance, which is not always
acceptable [33].

In this regard, a model should not only result in a pre-
diction close to the target value but also should consist of
a few features [34]. This directly relates to interpretabil-
ity because humans can only comprehend processes with
a finite set of variables [35]. Lipton [29] argues that nei-
ther linear models, rule-based systems, nor decision trees
are inherently interpretable in all cases. Reasonably compact
neural networks can become more transparent than suffi-
ciently high-dimensional models, unmanageable rule lists,
and deep decision trees. Therefore, to preserve transparency
while balancing predictive performance, establishing intrin-
sic interpretability necessitates careful consideration of
model complexity and structure.

Among intrinsically interpretable ML techniques, sym-
bolic regression, a branch of regression analysis, aims to
discover symbolic expressions that accurately fit a given
dataset [36]. This method yields interpretable equations that
characterize the data by inferring both the model structure
and parameters in a data-driven manner. As the length of the
string (arithmetic, symbolic expressions), in addition to the
presence of numeric constants, increases, the function space
of symbolic regression exponentially increases. This com-
plicates the exploration process, making symbolic regression
especially challenging [37]. One way to overcome this is to
model it as an optimization problem with a gradient basis.

Recent advancements have employed genetic program-
ming (GP), the most popular symbolic regression approach,
enabling the discovery of physical laws and transparent RUL
regression models [38, 39]. Recently, GP has been success-
fully adopted into the CMAPSS dataset in a model called
two-stage GP for aircraft engine health monitoring, demon-
strating its potential for generating interpretable HIs [40].

2.4 Our approach

Demonstrating that a new model accurately reflects the orig-
inal model is the final goal of many fields, which is indeed
challenging, particularly for complex systems like turbofan
engines. Here are some steps to achieve this (with a focus on
HI), where interpretability plays an important role:

• Extracting a readable equation: The first step is to extract
(discover) a readable equation that describes the rela-
tionship between inputs and outputs of the model, which
should align with the physical principles governing the
system under study. It is essential to see how the inputs
influence the model’s output, including the direction
(direct or inverse relationship), the severity (e.g., the
power of the input’s effect on the output), and the function
of severity (e.g., whether the effect is linear, polynomial,
exponential, etc.), which all are met in a readable equa-
tion. InXAI, the direction can bemainly addressed,while
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iML targets all three as it seeks a model that is intrinsi-
cally interpretable.

• Confirming physical phenomena: As mentioned in the
first step, the extracted equation should align with the
physical principles governing the system under study,
which it deems to reflect the original model. For HI, it is
first crucial tomeet prognostic criteria such asMo, Pr, and
Tr, among which Mo and Pr are factual measures, while
Tr is ideal and depends on how and when uncertain phe-
nomena happen to the unit under monitoring. The next
level of validation in this step is that aHI should alsomeet
diagnostic requirements, meaning it should accurately
reflect the physical events affecting the unit during mon-
itoring and correlate with the severity of those events in a
synchronized way. Diagnostic requirements are not inde-
pendent from prognostic ones. The accumulation of the
severity of those events is measured by Pr, demonstrat-
ing the same final failure. The synchronization of those
events with what the equation shows is somehow related
to Tr. On the other hand, to observe and validate the latter,
different measurements and labels for each unit (turbo-
fan engines in this study) are required over operational
time, which is expensive and sometimes not feasible. To
sum up, the extracted equation and its variables should be
explained in the context of physical phenomena, ensur-
ing that the model’s behavior is consistent with known
physical laws and observations.

Given the limitations of post-hoc interpretability and the
advantages of intrinsic interpretablity, our research focuses
on developing an intrinsically interpretableML technique for
HI construction.We propose a novel method for constructing
interpretable HIs for aircraft engines by developing an inter-
pretable neural networkwith discretizedweights. Thismodel
aims to provide clear and straightforwardmathematical func-
tions that relate sensory data to HIs, ensuring transparency
and ease of understanding, i.e., in the strictest sense (trans-
parency), a person can contemplate the entire model at once.

Typical ANNs employ additive neurons, which multi-
ply inputs by weights before summing the outputs. As a
consequence, the option to multiply the inputs together is
missing, particularly in situations where numerous inputs
are involved, such as CM sensory data. Instead of only tak-
ing additive neurons into account, the multiplicative operator
may produce a simpler, more inclusive, and more under-
standable equation. In fact, a multiplicative operator can
supply multiple summation operators, resulting in a shorter
length for the output equation. For instance, the HI function
developed by [40], for the CMAPSS dataset, uses just the
multiplication and division operators between the features—
there is no use of the summing operator. In order to simulate
multiplication and division operations using purely summing
operators (assuming this is doable), it ismost likely necessary

to use more weighted summation operators, which would
make the HI function more complicated to comprehend.

In this paper, a multiplicative neuron is first developed
to be exploited alongside the typical additive ones. The sug-
gestedmultiplicative neuron is adaptable since it canmultiply
all or part of the inputs together and is not restricted to multi-
plying them in pairs [41]. Division operations can also be
carried out simultaneously, albeit it should be mentioned
that using division units in a neural network is more chal-
lenging [42]. Then, a HI will be designed by integrating
additive and multiplicative neurons. However, this modifi-
cation alone is not enough to extract a compact HI from
the ANN. Having continuous weights for each neuron still
makes the equation large and non-understandable, with pos-
sibly many unnecessary terms that ought to be removed. In
this respect, the weights are discretized in two ways: first,
using a ternary set, and second, softening the ternary set by
rounding the weights at the first decimal number. This is per-
formed in order to develop a simple yet effective formula
for the HI and maintain its interpretability. The ternary set is
constructed in a fashion to converge the weights towards the
values {-1, 0, 1} by controlling the number of zeroes
as well, where the latter is termed sparsity control [43]. In
other words, an ANN consisting of many additive and mul-
tiplicative neurons with discrete weights is proposed, where
most of them can be controlled by converging towards zero
(sparsity control) during training. As such, having both the
summation and multiplication operators as well as the dis-
cretization with sparsity control makes the equation simple
and the ANN interpretable.

Given that HIs’ criteria are non-differentiable and the
entire timeseries of HIs, and consequently, CM data up to
the EoL should be available to calculate them— which is
impractical in many applications—a variety of kernel func-
tions (linear, polynomial, logarithmic, and exponential) were
explored based on their suitability to simulate hypothetical
HIs [44]. The investigation revealed that the polynomial ker-
nel equation provided the highest prognostic criteria, inspired
by damage accumulation [45]. Consequently, a label simula-
tion technique under the inductive semi-supervised learning
(SSL) paradigm can be adopted to train a back-propagation-
based model.

To validate our approach, we compare our model with
several established methods, including principal component
analysis (PCA), kernel PCA (KPCA), and the two-stage GP
model. The first two techniques are considered for compar-
ison as they are capable of generating qualified HI in many
applications. Nevertheless, as already mentioned, they lack
interpretability since, for high-dimensional inputs, the length
of the output equation is long and unreadable, i.e., it is not
sparse. Moreover, in the case of KPCA, the yielded equation
is not only sparse (it is longer than that of PCA) but also
more complicated as it is involved in kernel functions. The

123



Constructing explainable health indicators for aircraft... Page 5 of 19   143 

two-stage GP model was recently applied to the CMAPSS
dataset to generate interpretable HIs for commercial turbofan
engines while maintaining prognostic quality [19].

The proposed methodology is specifically designed to
construct interpretable HIs for commercial turbofan engines,
utilizing the NASA Ames Prognostics Data Repository
dataset, a widely recognized resource in the PHM field [46].
The findings will be discussed in comparison with PCA,
KPCA, and two-stage genetic programming (GP) outputs.
This work makes several key contributions, including:

1. Introducing a new type of neuron that operates multi-
plicatively and is not limited to pairwise operation, in
addition to the commonly used additive neurons.

2. Building a network that combines both additive and mul-
tiplicative neurons to generate accurate and robust hybrid
HI.

3. Utilizing the benefits of both multiplicative neurons and
sparsity control by implementing discretized (ternary)
weights, resulting in concise and efficient equations.

4. Developing HI models with concise and easy-to-unders-
tand equations, while ensuring they meet the evaluation
criteria of monotonicity, trendability, and prognosability.

5. Illustrating which sensors are involved in the HI of
turbofan engines and how effective these sensors are
(considering their direct (positive) or inverse (negative)
relationship and severity that can be measured by the
power in the equations).

6. Estimating the threshold for the time-to-failure of tur-
bofan engines with a minimum accuracy of 97.8%
considering the end of life (EoL) and, 93.2% for higher
safety confidence, i.e., 5% earlier than the end of life.

In summary, our work addresses the need for HI con-
struction in aircraft engines by leveraging the strengths of
intrinsically interpretable ML models. By comparing our
model with both GP and conventional methods like PCA
and KPCA, we aim to demonstrate its superiority in provid-
ing clear and interpretable health indicators.

The remainder of the paper is divided into three sections,
including Section 3 Workflow, Section 4 Results and discus-
sions, and Section 5 Conclusion.

3 Workflow

First, a short description of the pre-processing, de-noising,
and data division into training and test are presented in the
Dataset subsection (3.1). Next, the HI construction method
(3.2) containing the additive neuron, the multiplicative neu-
ron, discretized weights, and building the interpretable ANN

(INN), is described. Finally, the health indicator’s evaluation
criteria (3.3) will be provided.

3.1 Dataset

The present study focuses on the NASA Ames Prognostics
Data Repository dataset for commercial turbofan engines
(CMAPSS) [46]. This dataset is generated using the C-
MAPSS tool,whichmodels various engine fleet deterioration
scenarios—froma baseline condition to the point of final fail-
ure in the training data and a time period prior to the EoL
in the test data. The research investigates two sets of data:
first, engines degrading with one failure mode (FD001); and
second, engines degrading with two failure modes (FD003).
Each engine’s ID and deterioration time steps are given in
the first and second columns, respectively. The next three
columns provide the engine’s operational characteristics, and
the final 21 columns list the signals from 21 sensors. Both
subsets FD001 and FD003 consist of 200 turbofan engine
units each, with 100 designated for model training and the
remaining 100 for testing RUL prediction models. However,
the 100 units allocated for RUL model testing lack sen-
sory data up to the EoL. Consequently, these units cannot
be utilized for evaluating the HI construction model using
the prognostic criteria (Mo, Tr, and Pr). As a result, a test
fraction equivalent to 20% of the first 100 turbofan engines
with complete input sensory data until EoL in each subset is
reserved for testing.

Data processing can suffer from signals that are constant
throughout all measurement points. As a result, data that
have identical upper and lower boundaries is first found and
removed. Accordingly, out of the 21 sensors, the 1st , 5th ,
10th , 16th , 18th , and 19th are removed, leaving 15 in place for
the subset FD001. The same sensors are removed from subset
FD003 with the exception of sensor 10, leaving 16 in place.
As a result, the remaining sensors are denoted in the follow-
ing as 1 through 16, amongwhich the 16th sensor refers to the
different sensor used in subset FD003 (i.e., sensor 10), and the
other sensors have the same index. Data have been standard-
ized using a zero-mean normalization technique that used
only the training samples’ mean value and standard devi-
ation. Additionally, to improve the quality of the resulting
features and HI, the signals can be de-noised. In this case, a
polynomial function of order four is used to perform a regres-
sion. The resulting de-noised signals (features) can then be
chosen as HIs or retrieved (feature extraction) and combined
(feature fusion) to create an appropriate HI.

3.2 HI constructionmethod

Recent research has demonstrated that it is feasible to build
HIs simply by adding and multiplying the derived features
from sensory data [40]. In this section, we present the idea
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of creating such mathematical operators inside the ANN
automatically in order to formulate simple yet efficient HIs
without compromising the high accuracy that deep learning
may provide. It should be highlighted that the equation is not
produced as an output by the ANN; rather, the ANN contains
the equation itself.

In the context of learning paradigms, the model is tasked
with optimizing an objective function that includes prog-
nostic criteria (Mo, Pr, and Tr). However, this function is
non-differentiable, posing challenges for implementation in
backpropagation. Consequently, a semi-supervised learning
framework is employed, implicitly incorporating HI crite-
ria due to the absence of true labels for HIs [47]. In this
methodology, prognostic metrics are utilized to identify the
optimal simulator for generating ideal labels (targets), which
are subsequently used to guide the model. The ideal sim-
ulator function (H I(t) = t2/t2EoL ), which is in terms of the
operational time (t), has a quadratic polynomial shape.

A limited number of neurons and layers should be
employed in order to derive an effective equation that could
characterize a HI. An ANN’s compact size depends on the
subject under examination. It is presumed that even a basic
network of two 8-neuron layers could result in an outsized,
physically unexplainable equation representing a HI. At first,
it can seem extremely difficult for an ANN to be trained with
just a few parameters and deliver correct results. A probable
underfitting of the data is foreseen, even for small datasets.
A straightforward HI equation can be derived from the ANN
itself by including the physical parameters in it and zeroing
out some weights in the training step. In the current work, it
is regarded that physical properties could be basic multipli-
cations and summations among features, which can be done
by the combination of the multiplicative and additive layers,
as will be seen in the next subsections. By discretizing the
weights into a ternary shape and regulating the number of
weights that should be zero, as will be explained in Section
3.2.3, it is technically feasible to automatically decrease the
number of neurons and further simplify the HI formula.

3.2.1 Introspecting ANN - additive neuron

Artificial neurons, which are coupled together and organized
into layers, are the building blocks of an ANN. Each layer
receives input from signals. One layer’s output feeds into the
subsequent layer’s input. The basic equation of the typical
ANN for each neuron individually given certain inputs xK
from the preceding layer is:

N j =
K∑

i=1

[wl
j i xi ] + bl (1)

where N j is the initial output of neuron andwl
j i is the weight

relevant to the connection between the j th neuron at the lth

layer to the (l − 1)th layer’s i th neuron. The neuron also con-
tains bl to consider the bias. By using a nonlinearity through
an activation function F(N ), which has the only restriction of
being differentiable to the points of interest, the final output
of the neuron is computed. While the ANN is being trained,
the weights and biases of each neuron, which stand in for
the learnable parameters of the network, are attempting to
modify their values by backpropagating the error through
the derivatives. A differentiable loss function must also be
formulated at the points of interest. Due to the fact that this
neuron sums the weighted inputs, it is termed additive.

3.2.2 Introspecting ANN - multiplicative neuron

The basic equation of the neuron (1) should be modified in
order to induce the layers to generate multiplication oper-
ators. Accordingly, as stated in [48], we can construct a
multiplicative neuron instead of a typical additive neuron by
changing the summation step (

∑K
i=1[w j i xi ]) to a multiplica-

tion one (
∏K

i=1[xw j i
i ]), with the weights acting as exponents

in a product rather than weights in a sum. Unfortunately,
as mentioned in [49], an ANN with typical multiplicative
layers makes the training more complex and slower due to
the derivatives that are needed for backpropagation. This
is the main reason that these layers have not been applied
extensively in the literature. To mitigate this pitfall, a mod-
ified multiplicative neuron is developed by converting the
additive neuron via a specific pair of continuous activation
functions. In particular, the inputsmust get a logarithmic acti-
vation before being fed into (1) and an exponential activation
afterward. The following equation can be used to update an
additive neuron into a multiplicative one after the above-
mentioned adjustments:

N j = e
∑K

i=1[wl
j i ln(xi )]+bl

= eb
l
.e

∑K
i=1[ln(xi )

wl
j i ]

= eb
l
.eln(

∏K
i=1[x

wl
j i

i ])

= eb
l

K∏

i=1

[xwl
j i

i ]

(2)

The transition from additive to multiplicative neurons is
shown in Fig. 1. An ANN can avoid adding further non-
linearities that might result in a complex equation by only
employing these two types of activation functions. A key
point to highlight is that by constraining the neurons to per-
form these particular activation functions, their ability to
scale is confined by the requirement that the inputs be posi-
tive in order to apply the logarithm.Nonetheless, as the inputs
could be simply rescaled to a desirable positive range, this is
not a limitation in the current research. Furthermore, the con-
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Fig. 1 Additive and
multiplicative neurons

vergence principles of neural networks are fulfilled because
the logarithm exists and the proposed multiplicative neuron
derives naturally from the additive one by adjusting the acti-
vation functions.

Ultimately, with this modification, the forward and back-
ward remain the same as the vanillaANN.During the forward
pass, the inputs are fed into the network, and the activations
are computed layer by layer until the output is obtained. For
a network with L layers, the forward pass can be represented
as:

z(1) = W (1)x + b(1)

a(1) = σ(z(1))

z(2) = W (2)a(1) + b(2)

a(2) = σ(z(2)) (3)

. . .

z(L) = W (L)a(L−1) + b(L)

a(L) = ŷ = σ(z(L))

where x is the input,W (l) and b(l) are the weights and biases
of layer l, σ represents the activation function, and ŷ is the
predicted output. For themultiplicative neuron, the activation
function is strictly the exponential one which does not affect
the typical derivatives of the backpropagation.

The backward pass involves calculating the gradients of
the loss function with respect to the weights and biases of

the network using the chain rule of calculus. This process
starts from the output layer and propagates the error back-
ward through the network. The gradients of the loss function
L with respect to the weights and biases can be computed
using the chain rule as follows:

δ(L) = ∂L

∂ ŷ
· σ ′ (z(L)

)

∂L

∂W (L)
= δ(L) ·

(
a(L−1)

)T
(4)

∂L

∂b(L)
= δ(L)

Similarly, for hidden layers l = L − 1, L − 2, . . . , 2:

δ(l) =
(
(W (l+1))T δ(l+1)

)
� σ ′(z(l))

∂L

∂W (l)
= δ(l) ·

(
a(l−1)

)T
(5)

∂L

∂b(l)
= δ(l)

where� represents element-wisemultiplication and σ ′ is the
derivative of the activation function. Finally, the weights and
biases are updated using an optimization algorithm such as
gradient descent:
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W (l) := W (l) − α
∂L

∂W (l)
(6)

b(l) := b(l) − α
∂L

∂b(l)
(7)

where α is the learning rate.

3.2.3 Discretized weights

Learning the weights in continuous spaces is very favor-
able since gradient-based optimization techniques can be
employed to achieve a stable training process that is guaran-
teed to converge towards an optimal solution. Nevertheless,
because the ANN design is typically complex with vast num-
bers of weights, this is not effective in developing concise
equations. Having millions of parameters makes the inter-
pretation hard, and understanding the significance of each
weight and its impact on the model’s behavior may be dif-
ficult. Employing the weights in discrete spaces offers more
compact equations, and it is easier to analyze the contribution
of individual features to the model’s output. This is partic-
ularly important in the case of HI construction, where the
objective is to recognize the pattern and reconstruct a HI that
offers high criteria scores (Mo, Tr, and Pr) rather than merely
exact target values [44]. Incorporating continuous values
with multiple decimal digits provides a complex model, even
in extreme situations where only a small number of weights
are non-zero. An ANN cannot be trained with discontinuous
weights because there are no gradients for back-propagation;
hence, learning in a continuous space is ultimately inevitable.
Rounding the weights to the desired decimal during testing
could be an easy way to achieve a compact formula, yet it
would adversely affect the outputs and most likely result in
the ANN being ineffective.

By utilizing ternary weights, we enable straightfor-
ward additions and multiplications among input features,
resulting in compact equations. For instance, the equa-
tion Xw1

1 Xw2
2 + w3X3 + w4X4 can be transformed into

X1
1X

−1
2 + 0X3 + 1X4 = X1/X2 + X4. This demonstrates

that ternary weights allow for multiplication, division, or the
exclusion of features, thereby enhancing interpretability.

The weights should preferably be discrete to particular
decimal values or even integers without compromising pre-
cision. Ternary weights have lately been developed to help
with this challenge [43]. The objective is to train an ANN by
converging the weights to specified values instead of round-
ing them to particular decimal digits. They are known as
"ternary" values if the provided values are {-1, 0, 1}.
There are undoubtedly scenarios where we require weights
to fall within the range of those integers. This approach only
induces a portion of the weights, which is controllable, to be
integers rather than forcing all.

According to [43], the full-precision weight space is too
vast to identify an acceptable ternary solution, thereby the
continuousweight spaces need to be constrainedby tanh(w):

w′ = tanh(w) (8)

The weights are now bounded to the chosen [-1, 1],
hyperbolic tangent range. Adding just one more term to the
loss function (E) enables this transition work:

E = EC (y, ŷ) + λER(w′) (9)

EC (y, ŷ) = 1

n

n∑

j=1

(y j − ŷ j )
2 (10)

ER(w′) = ER(tanh(w)) =
L∑

l=1

|wl |∑

i

[(α − tanh2(wl
i ))tanh

2(wl
i )]

(11)

where EC (y, ŷ) is the mean-squared loss (MSE) between
labels y j and predicted outputs ŷ j over n data points, and
ER(w′) is the discretizing loss for converging the weights
towards the ternary values. λ is a regularization parameter,
L is the number of layers, |wl | denotes the total number
of weights for the lth layer, and α is the shape controller
of ER(). λ and α are supplementary hyperparameters that
should be adjusted for training the ANN; the first can be seen
as a trade-off between the importance of reducing the MSE
and ternarizing more weights effectively, and the latter softly
controls the number of weights to become zero. The gradi-
ents exist and are proven to be minimal at tanh(w) = −1,
tanh(w) = 0 and tanh(w) = 1 when 0 < α < 2 using the
aforementioned modifications and loss functions (the proof
in [43]). The ER(w′) for different α values is shown in Fig. 2.
The number of zeros in the trained weights, which can be
monitored to have more or fewer parameters, is the sparsity
control key property of (11). This is especially helpful in sit-
uations where larger ANN architectures were obtained, yet
we still want to have concise formulations for HIs by zero-
ing (raising α) more weights. By maintaining the weights as
close to their ternary shape as appropriate and regulating the
proportion of them that should be identical to zero, the ANN
is able to generate precise predictions, which is a benefit of
the adjustment to the weights and the incorporation of the
term to the total loss function E .

3.2.4 Building interpretable ANN (INN)

By definition, an ANN is a function approximator that
integrates input data into the expected output using a com-
plicated equation. Since an ANN needs large numbers of
weights to build acceptable HIs, retrieving the equation is
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Fig. 2 Gradients’ flow of the discretizing loss function ER during training for different shape controller parameters α. The desired local minima
exist when 0 < α < 2

not practical. The number of variables should be dropped
while ensuring high levels of performance to achieve an
interpretable network that could be transformed into an
intuitive and condensed equation expressing a HI. The pro-
posed methodology will demonstrate that combining the
weights’ discretization—the regulation of their sparsity—
and the simultaneous use of both multiplicative and additive
neurons results in an interpretability that is satisfactory. The
abovementioned ANN can also take into account the physi-
cal characteristics that invisibly underlie the components that
make up a HI. As a result, the proposed approach may now
uncover the ANN’s underlying formula, the HI, which prop-
erly represents the feature selection and fusion steps.

An additive layer is composed of several typical additive
neurons, whereas a multiplicative layer is made up of sev-
eral multiplicative neurons. Figure 3 illustrates the proposed
framework. First, a multiplicative layer receives the inputs
which are either raw sensory data or de-noised ones. Each
neuron at this layer is a multiplication of the inputs with
various weights and a bias in accordance with (2). There
are several multiplication combinations between the inputs
when there are plenty of neurons. The output of the multi-
plicative layer is then added to a subsequent additive layer
with a single additive neuron to create the final output. The
ANN becomes increasingly complex when more neurons
are added to the additive layer, and it is quite probable to
overuse a portion of the inputs. Terms that correspond to

Fig. 3 Framework of the proposedmethodology. The inputs are fed into
a multiplicative layer, and each neuron applies a multiplication oper-
ator. Then, the outputs are concatenated with the inputs and together

are driven into the additive layer which consists of one neuron, and the
output is alongside the equation of the constructed HI
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a single input instead of a combination of them are typi-
cally evident once a HI’s formula is obtained. For example,
if the inputs are x1, x2, and x3, we might get the equation
x1x2x3 + x1. It is difficult to establish such an equation uti-
lizing purely themultiplicative layer’s outputs to be imported
into the subsequent additive layer. Hence, utilizing the inputs
of the network in both additive and multiplicative layers is
the most applicable architecture. Accordingly, the inputs and
outputs from themultiplicative layer are concatenated before
being passed into the additive layer. It is clear that using
additive layers and then multiplicative layers results in more
complex equations, and the option to multiply the inputs
together is missing. For instance, considering four inputs
(two by two separated (zero weights) for simplification),
the simplified combination of additive+multiplicative yields
(x1 + x2)(x3 + x4) = x1x3 + x1x4 + x2x3 + x2x4 while the
simplified combination of multiplicative+additive yields
x1x2 + x3x4, which is less complex. This is due to the abil-
ity of the multiplication operation to capture more complex
dynamics than the addition one. Consequently, the model
should first create all the necessary complex combinations
between the features and then decide which of them are
important to be added together. It should also be noted that,
as mentioned, the option to directly multiply the inputs in the
additive+multiplicative configuration, i.e., x1 and x2 as well
as x3 and x4, is missing.

A stream of raw sensor data, a de-noised format, or some
extracted features could all be used as themodel’s inputs. The
trained INN serves as the equation for generating the outputs,
which are a series of points that make the HI. Before import-
ing the data into the model, a preprocessing step including
resampling is required due to the different sequence lengths
for each unit. The time-series data points will all be the same
length thanks to this step. To do this, there are two techniques.
The easier method involves upsampling with interpolation,
which involves increasing the number of time-series sam-
ples until each sequence is equal to the largest one. Based
on the interpolation method selected, those data points are
estimated. The second technique involves extending each
sequence by adding pseudo-data points since it meets the
maximum length needed. This can be performed by padding
with an irrelevant value. The padded inputs can then be used
to train the model, which outputs the results. This method’s
sensitive aspect is when it calculates losses. To prevent these
pseudo-values from biasing errors through backpropagation,
the padded lengths should be perfectly deleted. To con-
tinue the next forward pass following the updating of the
parameters, the lengths should be padded again. This method
eliminates the need for any estimation steps, unlike the first
technique. Nevertheless, training time rises remarkably. It
was found that both techniques in the present work produce
outcomes that are equal, and the first one has been adopted
thanks to its simplicity and speed.

So far, the equation for formulating the HI was not com-
pletely expressive because the weights could have any real
value. Thanks to (8) to (11) for training the INN, the majority
of the weights, if not all, shift in the direction of the integers
-1, 0, or 1. Weights can converge to the intended values in
practice, but theymay not always coincide.With this inmind,
it is safe to appropriately round the values during validation
without compromising accuracy in these circumstances. Uti-
lizing a de-noised version of the sensor data enables all the
weights to become ternary (see Section 4); however, using
their raw version does not cause this to happen. As long as
the majority of the weights are within the ternary form, a few
weights in this last scenario could range from [-1, 1],
which could be smoothly rounded to the first decimal point
with a trivial accuracy loss. Following training, several non-
ternary weights are a result of the noisy raw data. Hence,
there is indeed a trade-off between ternarizing the weights
and minimizing the EC loss, which can be controlled by the
regularization hyperparameter λ. A large value for λ indi-
cates that more ternary weights have been preferred (better
ER minimization), leading to a more concise equation rather
than optimally predicted results (not ideal EC minimization).
Fortunately, we intend to construct a HI that delivers high
criteria scores (Mo, Tr, and Pr), instead of purely simulated
label values, thus emphasizing more on developing concise
formulas.

3.3 Health indicator’s evaluation criteria

To regard a HI as a prognostic indicator, a set of criteria must
be satisfied. The three main metrics for assessing a HI are
Mo, Pr, and Tr [4], which are formulated as follows:

Mo= 1

M

M∑

j=1

∣∣∣∣∣∣
1

N j − 1

N j∑

i=1

∑N j
p=1,p>i

(
tp−ti

)
.sgn

(
x j (tp)−x j (ti )

)

∑N j
p=1,p>i

(
tp−ti

)

∣∣∣∣∣∣
.100%

(12)

Tr = min
j,k

|ρ(x j , xk)| ; j, k = 1, 2, ..., M (13)

Pr =exp

⎛

⎜⎜⎝−

√
1
M

∑M
j=1

∣∣∣x j
(
N j

)−
[

1
M

∑M
i=1 xi (Ni )

]∣∣∣
2

1
M

∑M
j=1

∣∣x j (1) − x j
(
N j

)∣∣

⎞

⎟⎟⎠

(14)

where M is the number of components being monitored, N j

and x j are the number of observations and the vector of HI on
the j th sample.μ, σ , ρ, and sgn are the mean value, standard
deviation, Pearson’s correlation, and sign functions, respec-
tively. The three HI criteria result in scores in a range of
[0, 1], with 0 being the worst and 1 denoting the highest
HI quality. tp and ti represent themeasurement times for x(tp)
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and x(ti ), correspondingly.An objective function termed "Fit-
ness", [32, 44] is utilized to simultaneously take into account
all of the aforementioned prognostic metrics:

Fitness = Mo(H I ) + Tr(H I ) + Pr(H I ) (15)

where the fitness index falls between [0, 3], with 0 denot-
ing the lowest HI performance and 3 denoting the highest
possible.

The availability of all degradation histories up to EoL is
necessary for these criteria to be taken into account. If not, it
is impossible to measure Tr and Pr properly. It is important
to emphasize that the RUL prediction metrics obtained from
prognostic models applied to the HIs in the current study
are not perfectly suitable for measuring the success of HI
construction models. This is due to the fact that the perfor-
mance of the prognostic model, not just the HI’s quality, has
an impact on the RUL prediction metrics.

4 Results and discussions

In this section, the HIs constructed using the introduced
approach are compared and discussed with the outputs of the
PCA, KPCA, and GP models for subsets FD001 and FD003,
respectively.

Thanks to the sparsity control of the ternary weights, the
active number of neurons in the INN that contribute to the

output can be reduced dramatically. Hence, the number of
multiplicative neurons could be large enough to capture mul-
tiple combinations of the inputs before extracting a compact
HI equation. The weights are uniformly initialized in the
range [-1, 1] to enable the INN to translate its continu-
ous weights into their ternary version. As will be addressed
later, using the raw sensory data requires softening the ternary
discretization to a smoother form, where float discrete val-
ues with one decimal confined to the same range can be
employed.

The INN model was trained on a single GPU (NVIDIA
GeForce RTX 2080). The entire training process takes
approximately 15 seconds per run. Utilizing the grid search
method for hyperparameter tuning increases the total time
up to 75 hours. Despite this, the efficiency of our model’s
training process ensures that we can explore various hyper-
parameter configurations without excessive computational
costs, maintaining robustness, and optimizing performance
effectively.

4.1 Subset FD001

Since the first principal component (PC) of the PCA and
KPCA covers the largest portion of variations in data, it
can be regarded as HI. These PCs were extracted through
models applied to the whole dataset including 100 units,
which are shown in Fig. 4. Sensor 8 has the highest fitness

Fig. 4 First principal component of the PCA and KPCA applied to the raw (first row) and de-noised (second row) entire dataset of subset FD001
given 100 engine units
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Table 1 The INN model’s
hyperparameters

Dataset Alpha (α) Lambda (λ) Batches Epochs Multiplicative Additive Learning
Neurons Neurons Rate

de-noised 1.6 10−5 4 200 32 1 0.01

raw 1.8 10−3 4 200 64 1 0.01

score for raw inputs, 2.58, which has been improved using
the PCA model to 2.85 (10.47%). This value for de-noised
inputs increased from 2.91 (sensor 8) to 2.94 (1%). On the
other hand, the KPCA model was unable to improve the HI
with regard to neither raw nor de-noised inputs, demonstrat-
ing that the CMAPSS dataset (especially, subset FD001) has
a linear rather than a nonlinear correlation among inputs.
As a result, PCA can produce a reasonably appropriate HI
for this dataset, and the results argue that complex models
for CMAPSS, including deep neural networks, are unnec-
essary and redundant. This is also valid for RUL prediction
because a better HI results in a more precise RUL forecast.
This viewpoint could be supported by the fact that the dataset
is an output of a simulation model instead of realistic cases,
and that the simulation tool most probably used a number of
existing equations in addition to typical noise.

The inability to interpret the generated principal compo-
nents is one of the HI-related drawbacks of the PCA and
KPCA methods, as was previously mentioned. Thus, effec-
tive solutions to copewith this issue should be introduced and
substituted. The following paragraphs provide an overview
of the proposed methodology’s outcomes.

The developed method constructed the following formula
after training with 80% of the de-noised dataset (80 turbofan
engines):

H I = −0.14X5X15 + X8 − X9 − X10 − X14 − 0.2 (16)

where Xi denotes the de-noised data from sensor i . Zero
weights have been given to the sensors that had no component
in the equation,whereas{-1, +1} have been applied to the
others. The existence of only one multiplication occurring
between the de-noised data shows that only one multiplica-
tive neuron with a bias of eb = 0.14 contributes to the
additive layer. The bias of the additive neuron is b = −0.2.
The INN hyperparameters are listed in Table 1. It is worth
mentioning that all of the hyperparameters were selected via
a grid search technique applied to the subset FD001 only, and
then the same values were also applied to the subset FD003.
The potential values for each hyperparameter are shown in

Table 2. To better explore the impact of two key hyperpa-
rameters, λ and α, on the model’s performance, the fitness
scores are provided in Table 3. The results demonstrate that
the model maintains acceptable performance across these
hyperparameter settings, thus supporting its stability and reli-
ability.

Since a combination of activation functions converts the
additive neuron into a multiplicative one, the computational
complexity is similar to a vanilla feed-forward neural net-
work, i.e. O(L×N2), where L is the number of layers and N
is the number of neurons on each layer. The created HIs for
each sample of the test data are displayed in Fig. 5(bottom
left), demonstrating successful performance for all threemet-
rics (Mo, Tr, and Pr). The overall fitness score is 2.9461, as
depicted in Table 4, demonstrating that the INN effectively
combined the de-noised data to produce a greater score for
criteria. Whereas the multiplicative layer has a large number
ofmultiplicative neurons (32) in order to obtain a concise for-
mula, as expected, only one multiplicative neuron—the one
that multiplies the features X5 and X15—contributes to the
output after implementing weight regularization with spar-
sity control.

Given directly unprocessed raw data as input, the sug-
gested model produces the following equation:

H I =0.04
X0.4
1 X0.3

2 X0.2
6 X0.1

7 X0.1
12

X0.2
5 X0.3

14 X0.2
15

−X5+X8−X9+X11+0.11

(17)

where Xi denotes the raw data from sensor i . Since it is more
challenging to achieve an effective equation given raw noisy
data than de-noised ones if only the ternary format of the
weights is employed, the HI equation contains more terms,
as expected. In order to construct (17), some weights of the
multiplication layer had to be float values that were rounded
to the closest first decimal point. Fig. 5(top left) displays the
created HIs for each—test unit. As can be seen in Table 4,
the fitness score for the raw data is 2.7407, which is lower
than the de-noised form. Once more, the proposed INN was
able to effectively combine the raw data to generate a bet-

Table 2 The hyperparameters’
spaces for grid search Alpha (α) [1.1, 1.3, . . . , 1.9] Multiplicative Neurons [1, 16, 32, 64, 128]

Lambda (λ) [10−5, 10−4, …, 10−2] Additive Neurons [1, 16, 32, 64, 128]

Batches [4, 8, 16] Learning Rate [10−4, 10−3, 10−2, 10−1]

Epochs [100, 200, 300]
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Table 3 Impact of
hyperparameters of Alpha (α)
and Lambda (λ) on the
performance of the model based
on fitness score

Fitness [ raw / de-noised ] Alpha (α)
1.2 1.4 1.6 1.8

Lambda (λ) 10−5 2.34 / 2.55 2.51 / 2.77 2.66 / 2.95 2.56 / 2.82

10−4 2.39 / 2.61 2.48 / 2.75 2.57 / 2.83 2.60 / 2.84

10−3 2.47 / 2.68 2.49 / 2.76 2.53 / 2.81 2.74 / 2.86

10−2 2.36 / 2.56 2.34 / 2.58 2.41 / 2.68 2.45 / 2.69

ter HI in terms of criteria and interpretability. We doubled
the number of neurons in the multiplicative layer (Table 1)
since processing raw data is more complicated. This makes
training more complex, but the sparsity control once again
eliminates the unneeded weights to still generate a simple
formula. The hyperparameters α and λ have to be raised
to increase the zeroed weights and emphasize this process
more, respectively, so that this doubling of the neurons can be
compensated. For comparison, the outputs of the most recent
study (a two-stage GPmodel [40]) are shown in Fig. 5(right),
along with the outputs of the proposed approach. It should
be emphasized that although the equation produced from the
two-stage GP model was only applied to and resulted from
de-noised data, we also used the same constructed equation
to generate HIs given the raw data in order to make a com-
parison. Tables 4 and 5 present, respectively, the evaluation
metrics scores for the test set and for the whole dataset (100
units). The latter is because the prognostic model, which also

needs to be trained on only the training portion, could achieve
more accurate RUL predictions for the test portion when the
criteria scores for the entire HIs, including the training and
test portions, are high, rather than only for the test HIs.

The developedmodel using the de-noised data has the best
fitness score of all (2.95). PCA-based HI has a close fitness
score (2.94), but the derived HI equation is complicated to
comprehend. The GP model similarly achieves a high score
(2.93); however, the authors [40] only took into account the
highest-quality inputs (based on the feature extractor in the
first stage) in the second stage (which has been dedicated to
the feature fusion process). It should be emphasized that a
larger INN including more layers and neurons with decreas-
ing α could have produced even higher fitness scores, but
with less interpretability and more complex functions. The
results show that the developed methodology is superior for
the subset FD001 as a result of the highest fitness score and,
in the meantime, good interpretability.

Fig. 5 HIs constructed by the proposed (INN) and two-stage GP (GP) models, utilizing raw (first row) and de-noised (second row) data for 20 test
engine units of subset FD001
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Table 4 Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80 engine units from subset FD001,
calculated considering the 20 test engine units.

PCA KPCA GP Proposed model Best Sensor (S 8)
Raw 0.99 0.96 0.97 0.98 0.96

Monotonicity
Denoised 1.00 1.00 1.00 1.00 1.00
Raw 0.92 0.64 0.83 0.92 0.78

Trendability
Denoised 0.96 0.95 0.97 0.99 0.97
Raw 0.96 0.71 0.92 0.83 0.87

Prognosability
Denoised 0.97 0.70 0.97 0.96 0.95
Raw 2.87 2.31 2.73 2.74 2.61

Fitness
Denoised 2.94 2.65 2.93 2.95 2.91

* “Green color → Red color” equalizes “Best result → Worst result” midpoint

4.2 Subset FD003

The PCA- and KPCA-based HIs for subset FD003, consid-
ering the whole dataset, are shown in Fig. 6. Similar to the
subset FD001, sensor 8 has the highest fitness score for raw
inputs, 2.56,whichhas beendiminishedusing thePCAmodel
to 2.29 (-10.55%). This value for de-noised inputs decreased
from 2.80 (sensor 8) to 2.47 (-11.79%). In contrast to the
subset FD001, the KPCA model provides slightly better HIs
compared to the PCA model, with scores of 2.37 and 2.49
for raw and de-noised inputs, respectively. However, they are
still less than the best input (sensor 8).

The INN model constructed the following equation after
training with 80% of the de-noised dataset:

H I = −3.04
X5X8X9X10X16

X14X15
− 1.51 (18)

where Xi denotes the de-noised data from sensor i . In com-
parison to (16) for the subset FD001, although the equation
format has changed, the same sensors are involved, except for
sensor 16 (X16) which was the different sensor used in sub-
set FD003.Although the same sensorswere included because
the objects (engines) are of a specialmodel, the new sensor 16
was also included in the formula, possibly because the subset
FD003 contains engines that have two failure modes (rather
than one), and thus this sensor likely carries the information
related to the failure modes. As can be seen, mainly multi-
plication neurons contribute to a bias of the additive neuron,
which is b = −1.51. It should be mentioned that the INN

hyperparameters for the subset FD003 are the same as the
FD001 (Table 1) since the purpose is also the interpretabil-
ity rather than purely the high criteria scores. The created
HIs for each sample of the test data are displayed in Fig.
7(bottom left), demonstrating successful performance for all
three metrics. The overall fitness score is 2.8624, as depicted
in Table 6, confirming the INN’s performance.

Given directly unprocessed raw data of the subset FD003
as input, the suggested model produces the following for-
mula:

H I = −0.024
X0.2
1 X0.2

2 X0.1
5 X0.3

6 X0.2
7 X0.2

8 X0.3
9 X0.1

11 X0.3
12 X0.3

14 X0.2
16

X0.1
14 X0.1

15

− 0.1(X1 + X2 − X6) − 3.29

(19)

where Xi denotes the raw data from sensor i . Similar to the
subset FD001, to construct (19) for the noisy data, some
weights of the multiplication layer had to be float values that
were rounded to the closest first decimal point. Fig. 7(top left)
displays the created HIs for each test unit. As can be seen in
Table 6, the fitness score for the raw data is 2.7893, which
is lower than the de-noised form. Again, the suggested INN
was successful in combining the raw data to produce a better
HI in terms of criteria and interpretability. Training becomes
more complicated as a result, but the sparsity control once
more excludes the extra weights to produce a straightforward
equation. In Fig. 7, the outputs of the INN and the two-stage
GP model [40] are displayed for comparison. It is impor-
tant to note that, even though the equation generated by the

Table 5 Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80 engine units from subset FD001,
calculated considering both the 80 training and 20 test units.

PCA KPCA GP Proposed model Best Sensor (S 8)
Raw 0.99 0.97 0.98 0.99 0.97

Monotonicity
Denoised 1.00 1.00 1.00 1.00 1.00
Raw 0.93 0.60 0.79 0.90 0.74

Trendability
Denoised 0.97 0.95 0.97 0.99 0.97
Raw 0.93 0.65 0.90 0.81 0.87

Prognosability
Denoised 0.97 0.68 0.96 0.96 0.94
Raw 2.85 2.22 2.67 2.70 2.58

Fitness
Denoised 2.94 2.63 2.93 2.94 2.91

* “Green color → Red color” equalizes “Best result → Worst result” midpoint
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Fig. 6 First principal
component of the PCA and
KPCA applied to the raw (first
row) and de-noised (second
row) entire dataset of subset
FD003 given 100 engine units

two-stage GP model was the result of applying to only the
de-noised data of the subset FD001, we also used the same
built equation to obtain HIs for the subset FD003 in order
to compare results. Tables 6 and 7 present, respectively, the
evaluation metrics scores for the test set and for the whole
dataset. Regarding the latter, it should be again emphasized

that if the criteria scores for the complete set of HIs (both
the training and test) are high, it will increase the accuracy
of RUL predictions for the test portion.

The INN model using the de-noised data has the highest
fitness score (2.86) compared to the other models. PCA and
KPCA models generated HIs with lower fitness scores, and

Fig. 7 HIs constructed by the
proposed (INN) and two-stage
GP (GP) models, utilizing raw
(first row) and de-noised
(second row) data for 20 test
engine units of subset FD003

123



  143 Page 16 of 19 M. Moradi et al.

Table 6 Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80 engine units from subset FD003,
calculated considering the 20 test engine units.

PCA KPCA GP Proposed model Best Sensor (S 8)
Raw 0.99 0.98 0.96 0.99 0.97

Monotonicity
Denoised 1.00 1.00 0.99 1.00 1.00
Raw 0.90 0.88 0.58 0.91 0.78

Trendability
Denoised 0.98 0.98 0.93 0.87 0.97
Raw 0.59 0.63 0.61 0.90 0.92

Prognosability
Denoised 0.59 0.63 0.60 0.99 0.94
Raw 2.47 2.50 2.15 2.80 2.67

Fitness
Denoised 2.57 2.60 2.52 2.86 2.91

* “Green color → Red color” equalizes “Best result → Worst result” midpoint

the extracted HI formula is also complicated to understand.
The GP model achieves the lowest score; however, the used
equation has been extracted from only the subset FD001.
The findings demonstrate that the INN model performs bet-
ter because of its high fitness score and, concurrently, its high
interpretability, i.e., the equation of the built HI can be inter-
preted and is readable in terms of the inputs. In contrast to the
thousands of parameters in typical DLmodels, the number of
parameters in HI equations of INN, given de-noised inputs,
is 8 and 9, and given raw inputs, it is 14 and 18, for subsets
FD001 and FD003, respectively.

4.3 Health indicator threshold

Since the HI labels were simulated according to a semi-
supervised framework with an initial range of [0-1] [44],
which can be scaled in any desired range, like [0-10], the end
limit was already considered as the threshold of HI for the
simulated labels. However, the true threshold of the designed
HI for the Time-To-Failure should be selected (or calculated)
after the training phase, considering the constructedHIs (pre-
dictions) rather than the simulated HIs (targets). With this in
mind, the mean value of the constructed HIs at the EoL or at
a predefined level based on the intended reliability and safety
as well as uncertainty could be selected as the threshold. For
example, the range of the simulated labels has been scaled
to [0-10] for the subset FD001, while the range for subset
FD003 is [0-1] without any scaling, which proves that the
employed semi-supervised model is insensitive to the range

of labels andonly the pattern of targets is important.However,
as explained, the constructed HIs are the basis for deter-
mining the threshold. With this in mind, for subset FD001,
the threshold considering the raw data-based constructed HI
is 8.56 and the threshold considering the de-noised data-
based constructed HI is -24.04 according to the mean value
of the predicted HIs in the training phase. Similarly, these
thresholds for subset FD001 considering a higher safety con-
fidence, 5% earlier than the EoL, are 6.09 and -26.56 for the
raw data-based and de-nosied data-based constructed HIs,
respectively. These threshold values for both subsets in com-
parison with the testing phase in order to calculate the error
between them are shown in Table 8. The error is calculated as
(ThresholdTraining - ThresholdT est )/ThresholdT est , to con-
sider the test as the basis. The negative errors indicate safer
thresholds, while positive ones indicate earlier failures. It
should be noted that the true thresholds (at 100% × EoL) for
the test units are always greater (later) than the thresholds at
95% × EoL based on the training units, which in turn shows
that with a 5% interval, the determined threshold is almost
safe.

The INN’s ability to directly convolve inputs together is
the main reason why it outperforms other compared meth-
ods, which lack the ability to multiply inputs, in terms of
both higher evaluation scores for HIs and interpretability.
Furthermore, sparsity control through the use of discretized
(ternary) weights has improved interpretability by making
the neural network more compact, resulting in more concise
output equations.

Table 7 Scores for HI evaluation criteria of PCA, KPCA, GP, and the proposed model (INN), all trained on 80 engine units from subset FD003,
calculated considering both the 80 training and 20 test units.

PCA KPCA GP Proposed model Best Sensor (S 8)
Raw 0.99 0.99 0.96 0.99 0.98

Monotonicity
Denoised 1.00 1.00 0.99 1.00 0.99
Raw 0.75 0.75 0.43 0.86 0.68

Trendability
Denoised 0.92 0.87 0.73 0.83 0.86
Raw 0.56 0.63 0.60 0.89 0.90

Prognosability
Denoised 0.56 0.62 0.61 1.00 0.94
Raw 2.29 2.37 1.99 2.74 2.56

Fitness
Denoised 2.47 2.49 2.33 2.82 2.80

* “Green color → Red color” equalizes “Best result → Worst result” midpoint
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Table 8 Mean value of the
constructed HIs at the EoL
(100% × EoL) and 5% earlier
than the EoL (95% × EoL) to
determine the threshold for the
Time-To-Failure, which should
be based on the training phase

Inputs Threshold at 95% × EoL Threshold at 100% × EoL
Training Test Error (%) Training Test Error (%)

Subset FD001 Raw data 6.09 5.70 6.84 8.56 8.55 0.12

De-noised data -26.56 -26.68 -0.45 -24.04 -23.95 0.38

Subset FD003 Raw data 0.84 0.85 -1.18 0.88 0.90 -2.22

De-noised data 0.97 0.99 -2.02 0.98 0.99 -1.01

5 Conclusion

Designing an appropriate HI that satisfies the evaluation
requirements of monotonicity, trendability, and prognosabil-
ity for prognostics while also being interpretable for an
engineering system or structure in PHM is a challenging
task. INN has the potential to combine the CM data and
create the intended HI. The majority of ANNs adopt addi-
tive neurons, which exclude the ability to multiply the inputs
together, probably resulting in a network and equation that
are more fundamental. More weighted summation operators
will be required instead of multiplication and division (if
practical), and the resulting HI product will be more com-
plex. This motivated us to develop a network including a
combination of both multiplicative and additive neurons to
produce HI in the present work. This work showed the poten-
tial of the INNs to achieve ultimate performances by making
their prohibitively large equations compact and readable. As
such, the HI function has also been simplified by combining
the aforementioned multiplicative and additive neurons with
the discretized (ternary) weights employing sparsity con-
trol. It was shown that even when increasing the number
of neurons, the extracted equation is still constructed only
by the contributions of a bunch of neurons by controlling
the hyperparameters α and λ. The results demonstrated that
the proposed methodology is superior based on its combined
highest score and interpretability.

To achieve such performances even with the noisy raw
data, a small number of weights were excluded from being
ternarized and were simply discretized to the first decimal
point. Therefore, future research may consider designing
a new restricted parameter space that might generalize the
discretization technique with more than three points of con-
vergence while maintaining the ternary form as the primary
option and the remainder as a secondary option. A technical
limitation of the proposed model is capturing the uncertainty
of themodel, which can in turn improve themodel’s stability,
always resulting in a unique equation. One of the possible
solutions could be to differentiate the noise or uncertainty
component (which itself can be divided into epistemic and
aleatoric uncertainty components) as inferior output func-
tions from the main output function. Similarly, the model
can be adapted for components involving multiple faults and

different operational conditions via adjusting output func-
tions, or inputs can be clustered based on different failure
modes and operational conditions before being fed into the
relevant INN model (designed for each scenario) in future
work.
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