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FOREWORD 

This report is the result of my graduation research to complete the Master Construction Management 

and Engineering at the Delft University of Technology. It introduces a non-parametric Bayesian 

Network supported reliability analysis in order to determine the failure probability of coastal pump 

stations. Here I would like to emphasize that concepts of the framework can be applied to hydraulic 

structures in general.  

The idea that initiated this research started approximately two-and-a-half years ago when the 

Merwede bridge closed for heavy vehicles. I wrote the idea on a small piece of paper which I took out 

of my closet approximately a year ago from now. From then on, I began to focus on predictive 

maintenance studies such as the conducted by Jan van Noortwijk. Although I understood the core, the 

underlying mathematics made me anxious.  

Looking back on what I learn throughout the process makes me pretty proud. Moreover, I seriously 

got interested into mathematical concepts such as Bayesian Networks, Gamma processes and Markov 

chains. For example, I never would have thought that I would read an interview with Judea Pearl – the 

initiator of Bayesian Networks – out of interest. I reckon that a thesis subject as this is not very popular 

among CME-students since the predominant part sees the mathematical concepts as a huge obstacle. 

I think that’s really a shame since it is – in my opinion – a very interesting side of infrastructure asset 

management. Therefore, a sub-aim of this research is to make those concepts more accessible to 

students with a less mathematical background.  

I would like to make use of this foreword to thank the members of the graduation committee, their 

input, knowlegde and time which have been of great value to conduct this master thesis. Second I want 

to thank my colleagues at Iv Infra, especially Arno Willems, for his support during this graduation 

process. Due to you all I was always able to work with a laugh and work in complete silence when 

needed. Third, I want to thank my family and friends for stimulating me to pursue the track that has 

led me to this point in my life. Due you all I have gone through this process with enthusiasm and 

produced a report that I am proud of.  

I hope that you, the reader, enjoy reading the reported and do not hesitate to contact me for any 

discussion or questions about the thesis.  

Robin Huijmans 

Delft, September 2018  
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EXECUTIVE SUMMARY 

Research Motive 

This research describes a way to determine the reliability of coastal pump stations  - from which their 

environment is influences by climate change – in time. Last decade, the challenge within the hydraulic 

infrastructure network shifted the focus from expanding the infrastructure inventory towards the 

maintenance and management of the existing network. The reason for this tendency is that the 

predominant part of the Dutch infrastructure inventory is approaching its end-of-life while their 

functions are still required. As a consequence, the asset owner is confronted with the challenge to 

choose the suitable maintenance action in order to extent the assets life-cycle.  

To weight the possible actions, an accurate estimation of asset failure is required. For this, many 

predictive failure models have been developed both deterministic as well as probabilistic, to assess the 

assets reliability in time. The predictive failure models are based on the fact that the structures 

performance deteriorates over time. The rate of deterioration is dependent on its ambient 

environment which is – for hydraulic structures - characterized by short- medium- and long term 

variabilities. Due to the environmental dependency, deterioration is fortified by long-term variabilities. 

In other words, mainly the long-term variabilities contribute to the complexity to estimate future asset 

failure. There are two underlying reasons. First, long-term variabilities often contain large uncertainties 

and secondly, historic data sets – on which those models are based - do not capture long-term 

variabilities. In this research, long-term variabilities are referred as long term trends. 

Furthermore, this research states that the long term trend that impacts the hydraulic infrastructure 

network is climate change with its accompanied effects such as sea level rise, increased rainfall etc. To 

narrow the scope of this research the focus will be on coastal pump stations. Climate change affects 

coastal pump stations in three ways:  

1. Sea level rise fortifies the deterioration rate and increases the probability that an individual 

pump is unavailable. 

2. Sea level rise reduces the maximum pump capacity. 

3. Increase of extreme rainfall events increase the number of peak-discharges per year 

The practical aim is to support coastal owners with predictive failure models that incorporates the 

three effects of climate change in order to accurately predict future asset failure. Based on this aim, 

the central question is drawn: 

‘How can long-term trends be introduced to reliability analysis in order to 

determine the effect on the pump stations reliability on the longer term?’ 

Reliability analysis for Pumping Stations 

In order to answer the question, this research departed from the limit state function which can be 

marked as the first most important concept. Limit state functions define a condition beyond which an 

object or structure does no long fulfil one of its performance requirements. The limit state function for 

pump stations is formulated as follows:  

 
𝑍(𝑡) = (∑ 𝐴𝑝𝑢𝑚𝑝,𝑛(𝑡) ∗  𝐶𝑝𝑢𝑚𝑝(𝑡)

𝑁

𝑛=1

) − 𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦;𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡) (1) 
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Where 𝐴𝑝𝑢𝑚𝑝,𝑛(𝑡) represents the availability of the pump at a random point in time, which is a 

discrete value with 1 representing pump-availability and 0 pump-unavailability. 𝐶𝑝𝑢𝑚𝑝(𝑡)  is the 

discharge capacity of one pump (m3/s) at a random moment in time. 𝑁 is the total number of pumps. 

The pump station is considered ‘failed’ when 𝑍(𝑡) < 0. Since the three variables consider uncertainties 

and can all be described by their (non-)parametric distributions, we are interested in the probability of 

failure: 𝑃(𝑍(𝑡) < 0). The three effects of climate change affect all three variables. Therefore, the 

predominant part of this research focusses on determining the distributions over time, including the 

three effect of climate change. 

To  determine those distributions in time, literature research showed that dependency modeling can 

be used to incorporate the long term trend, i.e. making the three limit state variables dependent on a 

network of affecting dependent environmental variables. Non-parametric Bayesian Networks (NPBNs)  

appeared to most suitable for the problem. NPBN are directed acyclic graphs (DAGs) where the nodes 

are represented (conditional) marginal distributions and the arcs their (conditional) copulae.  

Where the environmental dependencies of 𝐶𝑝𝑢𝑚𝑝(𝑡)  and 𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦;𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡)  can be modelled 

directly via the NPBN, the effect of deterioration to 𝐴𝑝𝑢𝑚𝑝,𝑛(𝑡) showed to be more challenging. 

Therefore a framework is presented that utilized NPBNs to update the Markov chain transition matrix 

for each time step. Briefly, the underlying idea is to model the dependencies between the environment 

and the input parameters of the Markov chain transition matrix; the transition times. The outcome of 

this framework is the probability that a specific component is in a specific state such as ‘unavailable’. 

Then, via the system decomposition of the pump one is able to determine the total pumps probability 

of unavailability at time 𝑡.  

The long term trend can then be incorporated by performing inference in the NPBNs. Generally, 

inference updates a belief into an unobservable variable when a dependent variable is observed. In 

other words, the model is able to stress a belief into the discharges, when a specific future rainfall-

amount is ‘observed’. Inference in NPBNs only has one limitation: the future ‘observations’ must be 

captured by the data set, i.e. it must have happened before. In this research is assumed that extreme 

rainfall has happened before, only the probability increases as an effect of climate change. Therefore 

inference is suitable to model the long term trend of increase of extreme rainfall events. Unfortunately, 

in case of sea level rise past data does not include future values. Then the future distributions must be 

estimated via – for example – expert judgement. Finally, when all distributions are known for every 

time step t. Probability of failure can be calculated via performing simulations.  

Application to the Case Study 

The reliability analysis for pump stations including the long term trends as described above is applied 

to pumping station IJmuiden in order to validate whether the model does what was expected. Since 

the goal is to proof the concept of the model, simplifications are made regarding the definition of water 

system failure and physics of component failure.  

Conclusion & Recommendations 

Despite the fact that the case application shows simplifications, one can conclude that the model does 

what was expected. The results of the case study show a gradual increase of its failure probability, 

dependent on the rate of the long-term trend. Thereby, the results show that the contribution of 

fortified deterioration to the total probability of pump station failure is very limited under expected 

long-term trend circumstances. In general can be stated that the impact of climate change to the 

pump’s reliability is very limited. 
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A general recommendation is given to gather environmental data in more structured- and 

standardized way and to gather deterioration data in accordance to the input parameters of stochastic 

processes such as the Markov Chain and Gamma Processes. Thereby, some more model accuracy-

increasing recommendations are given such as the incorporation of Gumbel and Clayton copulae in 

UniNet. Also, the utilization of Dynamic Bayesian Networks (DBNs) would be an added value in user-

friendly and decision-making sense.  
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Merwede bridge closing 

“Rijkswaterstaat stated that when the traffic flow since construction in 1961 has 

not increased, the bridge would easily be safe for years. Thereby the increased 

weight of passenger cars and trucks also contributed to the shortened technical 

lifetime” (ANP, 2016)  
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1. PROBLEM INTRODUCTION 

The news article on the left can be considered as the incentives of this research. The Merwede bridge 

was closed for several days which caused economic damages. Although no actual collapse happened 

it questioned the effect of increasing loads on a structures reliability over time. Especially for hydraulic 

structures, the consequences of potential failure are enormous. This chapter will elaborate the urge 

of this research, departing from the tendency within the field of hydraulic infrastructures. Thereafter 

this chapter will work towards the central problem stated in this research. 

1.1. DUTCH HYDRAULIC INFRASTRUCTURE INVENTORY 
In the Netherlands, Rijkswaterstaat is - among others - responsible for the management and 

maintenance of 650  hydraulic structures in the Netherlands. Generally, hydraulic structures are part 

of the flood defense system (e.g. barriers), the water management system (e.g. weirs) and the 

navigation system (e.g. navigation locks). Many of these systems have multiple functions; a navigation 

lock could also be part of the flood defense system (Jonkman, Voortman, Klerk, & van Vuren, 2018). A 

large part of the Dutch hydraulic infrastructure has been constructed after the Second World War, see 

figure 1. Until the 21st century new construction governed the development of infrastructure networks 

(Klatter & Roebers, 2017). The last decade shows that networks have matured and further expansion 

of the inventory is declining.  

 

Figure 1: Construction year of Dutch hydraulic structures (Jonkman et al., 2018). 

Due to ageing and more intensive use of the existing structures, many approach their end-of-life. 

Jonkman et al. (2018) notes that two challenges are of the main concern nowadays that arise from this 

tendency. First, despite the fact that the structures age, their functions might still be needed. This 

raises the question whether to renew, adapt or upgrade the considered structure.  

The second challenge concerns the management and maintenance of existing structures. Past events 

have raised attention to management and maintenance aspects. In 2013, it appeared that the scour-

hole protection near the Easter Scheldt barrier was eroding, whereas this was not noticed by the local 

management authority. Thereby, the reliability of the Maeslant barrier near Rotterdam appeared 

somewhat lower than expected, which resulted in the consideration of upgrades and reinforcements 

of the flood defenses behind the Maeslant barrier. Both events show the complexity of maintenance 

and management of structures that approach their end-of-life.  
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Overall, the combination of ageing existing structures and decline of further network expansion shifts 

the mindset from funding new infrastructure to the funding of renewals, adaptations, upgrades and 

proper management of the existing structures in order to fulfill its technical- and functional 

requirements. This is where infrastructure asset management comes in. 

1.2. INFRASTRUCTURE ASSET MANAGEMENT 
Infrastructure asset management aims at maximizing the performance of infrastructure asset systems 

in terms of functionality, for the energy, water and transport sector. In general, infrastructure asset 

management is concerned with applying technical and financial judgement to decide what 

infrastructure assets need to meet the performance aims over whole life, through to disposal 

(Hastings, 2015).   

The main contributor that enhances the complexity of the decision-making process is the problem that 

asset performances can decline over time. This process is called deterioration. Deterioration is an 

ongoing process where the value and performance of assets reduces over time due to stressful 

conditions. This negatively influences length of the assets lifecycle. To counteract early lifecycle ending 

due to asset deterioration, van Dongen (2011) described that the asset’s life cycle can be extended by 

performing maintenance. The type of maintenance actions – component replacements, upgrades or 

asset modifications etc. - are dependent on their type of ageing. One can distinguish four ageing-

processes that impact the assets lifecycle: technical ageing, functional ageing, economical ageing and 

compliance ageing. Within infrastructure asset management, the first two ageing processes are most 

common. Technical ageing means that there is a gradual degradation of often structural parts of an 

asset. Functional ageing comprises that the asset does not meet the primary function, the services to 

be provided, or the products produced (van Dongen, 2011). In case of technical ageing, the lifecycle 

can be extended by performing critical component replacements. For functional ageing, the lifecycle 

can be extended by asset modifications or upgrades. 

Generally, maintenance actions can be performed correctively or preventively. In this business 

maintenance is often preventive, since the consequences of sudden component failure are generally 

high (Jorissen & van Noortwijk, 1998). In the past decades, lots of preventive models have been 

proposed (Wang, 2002). Still they have all one thing in common; in order to make decisions whether 

to renew, recondition, modify or upgrade the object, the asset manager needs to have knowledge 

about the future moments of failure. For this reason predictive failure models have been developed, 

both deterministically and probabilistically (Jardine & Tsang, 2013). Deterministic models are those in 

which the timing of replacements are assumed to be known with certainty. In contrast, probabilistic 

models are those on which in which the timing of the failures depend on chance. Since civil assets are 

almost always subject to dynamic environmental conditions, failures cannot be timed with certainty. 

For this reason, probabilistic models are mostly used within the civil engineering domain. The 

adaptation of probabilistic methods forces the asset manager to think in terms of certain failure, 

towards thinking in terms of probability of failure. An important input to predictive failure models is 

an adequate understanding of all environmental variabilities. This typically includes the estimation of 

environmental conditions that can be expected over the life of an asset or asset system.  

1.3. ASSET ENVIRONMENT & LOAD TRENDS 
Infrastructure asset networks operate in a dynamic environment where they are exposed to short-, 

medium- and long-term variabilities in ambient environmental conditions (Rayner, 2010). Long-term 

variabilities embrace social-, economic- and climatic variabilities that affect the assets ambient 

environmental conditions. In most cases, the magnitude of impact on the environmental variables 
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posed by the long-term variables develop gradually over time. From now on, we refer to those long 

term variabilities as long term trends.  

Male (2010) states that organizations - whether public, private or hybrids - that heavily rely on physical 

assets to function will face unprecedented challenges over the coming decades. Many of these 

challenges will be due to the difficulties posed by the climatic long term trends. As mentioned 

previously, an asset manager requires an adequate understanding of all environmental variabilities, 

including the climatic variabilities affected by climate change. Rayner (2010) addresses the problem 

that the effects of climate change often contain large uncertainties, see for example IPCC (2014). In 

other words, it is very hard to retrieve accurate estimates regarding the magnitude of impact on the 

environmental variables.  Thereby, the use of historic data brings up the assumption that the use of a 

long enough time history of past variability will capture the future variability as well. Briefly stated, 

with the current models we assume that past data will be representative for the future. This 

assumption that is no longer valid when there is a cycle longer than the length of the measured time 

history (Rayner, 2010).  

1.4. SYNTHESIS  
Recapping, a large number of hydraulic assets will approach their end-of-life. Replacements or 

renovations are necessary since the function of those assets are still required. Rijkswaterstaat expects 

that the costs of those actions will raise up to 100 million euros per year (Rijkswaterstaat, 2014). To 

get an overview of the necessary actions, it is important to have the best possible estimate of the 

assets point of failure. For this, predictive maintenance models are available, of which the probabilistic 

models are preferred. Logically, the moment of asset failure is dependent on the deterioration rate 

which is related to the asset ambient environment.  

Paragraph 1.3. described that the asset environment is actually changing as a consequence of climate 

change. Due to the increasing intensity of the asset environment by long term trends like increasing 

use, higher loads, heavier rainfall, stronger winds, deterioration is fortified (Klatter & Roebers, 2017). 

This means that assets deteriorate faster and will approach their end-of-life earlier than expected 

during construction. In probabilistic terms; the probability of asset failure increases over time and will 

approach its unacceptable threshold earlier than expected during construction. Researchers, private- 

and public- entities, support this reasoning and commonly agree that the effects like social growth, 

economic growth and climate change impact the lifecycle of the hydraulic infrastructure inventory 

(Ministery of Infrastructure and Environment, 2016; U.S. Department of Transportation, 2015). The 

general research problem and urge of this research can be summarized as follows: 

Large maintenance assignments are upcomming. Hydraulic asset owners need 

accurate predictions of their assets lifecycle-end. Since climate change fortifies 

asset deterioration - and consequentially increases the failure probability over 

time -, long term trends as climate change must be incorporated into the 

predictive failure models. 

Among the hydraulic structures mentioned in figure 1, incorporating climate change into models to 

predict coastal pump station failure are expected to be most complex. The way how the long term 

trends posed by climate change affect  the function of a pump station is described in the next 

paragraph. To limit the scope of this study we will continue this research with the focus on coastal 

pump stations. Still we want to emphasize that concepts can be applied to various hydraulic structures.  
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1.5. EFFECT CLIMATE CHANGE ON PUMP STATIONS 
In this research is assumed that climate change impacts coastal pump stations via sea level rise and 

increase in rainfall occurrences. Here is assumed that those events affect the pump station function in 

three ways. For readability reasons, we already introduce those effects here. 

First, sea level rise affects the operating time of the pumps. The fact that the pumps must operate 

more often fortifies the deterioration over time. The timeslots that the pumps operate, is dependent 

on the water levels on both sides of the pump station. Unfortunately, the water level on the sea side 

rises as a result climate change. This would mean that the time slots that pumping is required will 

increase over time, which enhances the wear of the pumps, see figure 2. Due to the enhanced wear, 

the probability that the pump is unavailable to perform its function increases.  

Free discharge

Discharge by pumps

 

Figure 2: Effect of sea level rise on the pump- and free discharge time slots 

Second, sea level rise decreases the maximum capacity of the pumps. This can best be illustrated by 

use of a Q-H curve, see figure 3. The Q-H curve illustrates the relation between the decreasing pump 

volume when the water head increases. Sea level rise causes an overall increase of the water head, 

which implies that the pumps have to function more often with reduced pump capacity. Since this 

affects all pump in the pump station simultaneously, the total required pump volume will drop 

dramatically.  
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Figure 3: Example Q-H curve 

Third, increase in extreme weather occurrences increases the amount and quantity of pumped 

discharges. Normally, the excess water in the system, of which rainfall is a large contributor, will be 

drained and discharged towards the main channel and thereafter discharged by the pump station. 

Since the amount of rainfall increases with time, the peak-dischargeable amount water will also 

increase, as does the number of peak-occurrences. Consequentially, the occasion that maximum pump 

capacity is required - the occasion that all pumps must be available - will occur more often.  
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2. RESEARCH DESIGN 

This research aims to provide knowledge, insight and information that ‘fills’ the research gap discussed 

in paragraph 2.1.  Thereafter, the research objective and research question will be briefly introduced.  

2.1. RESEARCH GAP 
The function of coastal pump stations is to discharge the in-land water systems excess water into the 

sea. Failure occurs when the total discharge capacity delivered by the pump station is smaller than the 

required discharge capacity. As introduced in paragraph 1.5., climate change affects both total 

discharge capacity of the pumping station as the required discharges. As a result, the probability that 

the asset cannot perform its function increases gradually.  

Limited number of studies assessed the reliability of pumping stations. Those studies mainly analyzed 

the pumping station reliability via – for example - failure rate functions (Briggs & Hodkiewicz, 2005). In 

chapter 5 of this research we mention the limits of this way of assessing reliability and state that this 

model is insufficient to introduce long term trends. Concluding, a probabilistic way that is able to 

incorporate the impact of long term trends - especially climate change - on the reliability of the 

pumping station is not performed yet.  

2.2. RESEARCH OBJECTIVE 
In essence, the objective of this research is to fill the research gap, namely to conduct a reliability 

analysis that is able to incorporate the impact of long term trends - especially climate change. The 

focus of this research is therefore on introducing long term trends to reliability analysis. Based on this 

line of reasoning, the research objective can be formulated as: 

‘… to determine the coastal pump station reliability over time - including the effects 

of climate change - by introducing long term tends to reliability analysis theory’ 

2.3. RESEARCH QUESTION 

The research objective marks the scope of this research; the research focusses solely on introducing a 

long term trend to the reliability analysis of coastal pump stations that are affected by the effects of 

climate change. The research question is formulated as follows: 

‘How can long-term trends – such as climate change – be introduced to 

reliability analysis in order to determine the effect on the pump stations 

reliability on the longer term?’ 

Based on the research question, the aimed result would be a reliability analysis that is able to introduce 

long term trends for coastal pump station. Ideally, a general step-by-step approach is preferred in 

order to be able to perform the reliability analysis to real-life cases.    
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3. RESEARCH METHODOLOGY 

The main aim of this research is to close the research gap by introducing long term trends to reliability 

analysis of coastal pump stations. In order to close the gap, the research question gives a handle 

regarding the preferred result. This chapter generally clarifies the path to be taken in order to arrive 

at an answer to the formulated research question. The underlying figure shows the general.  

Research Motive
Reliability Analysis for Pump Stations,

 influenced by climate change
Application to 

Case Study
Conclusion

 

Figure 4: Overview research steps 

This research is divided into four phases, corresponding to the document parts mentioned in the table 

of contents. At first the necessity to conduct this research will be shown under ‘research motive’. The 

problem introduction mentioned the urge. The aim of the second phase is to find a theoretical 

framework to incorporate long term trends into the reliability analysis. To verify the proposed 

framework, the third part will reflect the proposed approach to an actual case study; Pump Station 

IJmuiden. Based on the findings of the case study, part four will reflect on the research objective and 

research question.  

Research Motive 

The research motive is already discussed extensively in chapter 1 – Problem introduction. Since large 

maintenance assignments are upcoming, the field of infrastructure asset management needs 

predictive failure models that are able to incorporate long term trends. 

Reliability analysis for pump stations 

Based on literature is aimed to find a handle to depart from in order to conduct a reliability analysis 

over time that is able to incorporate the three effects of climate change treated in paragraph 1.5. 

Literature showed that the use of a limit state function serves as the most suitable point of departure. 

See Appendix I. Conceptually, the limit state function can be divided into a resistance and a solicitation, 

both described by their (non-)parametric distributions. The main challenge is to determine the 

distributions for each time step, since both the resistance- as the solicitation- distributions are 

expected to change shape for every time step as a consequence of the three effects of climate change. 

Those distributions can be estimated directly, for example via expert judgement. However, in dynamic 

complex environments, network-based approaches are preferred. In other words, the problem asks 

for an approach to model the dependencies between the asset and its environment. 

Application to Case Study 

The framework sketched in the phase two will be applied to a case study in order to verify whether 

the model does what we expect it to do. The primary requirements to the choice of the case study is 

that its environment is subject to the effects of climate change. Secondary requirements 

predominantly relate to the availability of sufficient data regarding the local discharges and properties 

of the pump station itself. Pump Station IJmuiden appeared to be most fitting.   

To show the impact of climate change and fortified deterioration, we basically acknowledge two 

models; environment-independent deterioration model and environment-dependent deterioration 
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model and expressing them in terms of resistance and solicitation. Since the load trends are inevitable, 

the environment-independent deterioration model shows the case that we do not consider fortified 

pump deterioration, but climate change only affects the increase of the solicitation, the required 

discharges, see the left three figures. The environment-dependent deterioration model considers both 

fortified deterioration as increasing discharges due to climate change, see the figures on the right. 

Comparing the latter two figures, the probability of pump station failure is expected to be higher in 

the environment-dependent deterioration model. 

 

Solicitation (S)

Resistance (R)

Probability of Failure

Solicitation (S)

Resistance (R)

Probability of Failure

 

Figure 5: Schematic representation of development probability of failure. 

Conclusion 

The results of the case study will show whether the proposed pathway is able to determine the pump 

station reliability over time. Via the two models proposed before, the results show the impact of 

climate change to the deterioration rate. Thereafter, the framework will be evaluated, discussed and 

opportunities for further research will be summed up.  
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4. LIMIT STATE FUNCTION FOR PUMP STATIONS 

This chapter considers a mixture of literature research and interpretations regarding the addressed 

objective. Essentially, several tools are combined in order to perform a reliability analysis for every 

time step. The chapter departs from defining a general limit state function, applicable for pump 

stations. The concepts of a reliability analysis, based on the limit state function, is elaborated in 

Appendix I.  

Limit state functions define a condition beyond which an object or structure does no long fulfil one of 

its performance requirements. In order to make a limit state function suitable for the problem 

mentioned, the limit state function must be written in terms of discharge capacities. As mentioned, 

the pump station fails when the total discharge capacity is lower than the required discharge capacity. 

Therefore the limit state function can be written as follows:  

 𝑍(𝑡) = 𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦;𝑡𝑜𝑡𝑎𝑙(𝑡) − 𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦;𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡) (2) 

Where 𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦;𝑡𝑜𝑡𝑎𝑙 is the total discharge capacity and 𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦;𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  is the occurring capacity 

that must be pumped. Both variables can be described by their distributions. In fact, the total capacity 

(𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦;𝑡𝑜𝑡𝑎𝑙(𝑡)) at random moment 𝑡 is related to the question whether the pump is available and 

what the discharge capacity is. Therefore, equation (2) can be written as follows. 

 
𝑍(𝑡) = (∑ 𝐴𝑝𝑢𝑚𝑝,𝑛(𝑡) ∗  𝐶𝑝𝑢𝑚𝑝(𝑡)

𝑁

𝑛=1

) − 𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦;𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡) (3) 

Where 𝐴𝑝𝑢𝑚𝑝,𝑛(𝑡) represents the availability of the pump at a random point in time, which is a 

discrete value with 1 representing pump-availability and 0 pump-unavailability. 𝐶𝑝𝑢𝑚𝑝(𝑡)  is the 

discharge capacity of one pump (m3/s) at a random moment in time. 𝑁 is the total number of pumps. 

Deterioration affects the probability of failure over time, which consequentially enlarges the 

probability that 𝐴𝑝𝑢𝑚𝑝,𝑛(𝑡) returns a 0. On the other hand, sea level rise increases the probability that 

the individual pumps cannot pump with full pump capacity  𝐶𝑝𝑢𝑚𝑝(𝑡). In fact, this research is all about 

defensibly determining the distributions mentioned in equation (3). Probably the hardest task is to 

model the dependency between environment and individual pump deterioration. For this reason, we 

depart from the basic concepts of probabilistic deterioration modelling.  

Probability of Failure

Qcapacity;required

Qcapacity;total

 

Figure 6: Definition probability of failure pump stations 

 

  



Part II | Reliability Analysis for Pump Stations   

14 
 

5. PROBABILISTIC DETERIORATION MODELLING 

By means of this paragraph we aim to find a handle to depart from. This paragraph departs from a 

brief explanation of stochastic-based-processes which describe the deterioration of an object, 

component or asset over time. Decennia after the introduction of those methods derivatives started 

to appear that are more suitable for the complex challenges nowadays. In this research we refer to 

those methods as network-based-deterioration models.  

5.1. STOCHASTIC-PROCESSES-BASED DETERIORATION MODELS 
Currently used probabilistic methods, such as failure rate models, are based on time-to-failure 

distributions which are the probabilities of failure at random time 𝑡. In failure rate models, the time-

to-failure distributions are described by parametric families of distributions such as the exponential, 

the Gamma, the lognormal, the Pareto, the Weibull and their mixtures and multivariate analogues 

(Singpurwalla, 1995). Ideally, the parameters of those distributions are estimated via available data 

(Jardine & Tsang, 2013). 

However, Singpurwalla (1995) argued that a serious disadvantage of failure rates is that they cannot 

be observed or measured for a particular component. Thereby, the sparse amount of failure data 

results in unreliable estimations of the distribution parameters. In other words, in absence of sufficient 

failure data, a reliability analysis solely based on time-to-failure distributions and their unobservable 

failure rates is unsatisfactory (van Noortwijk, 2009). 

In addition, Singpurwalla (1995) suggested that a more appealing approach would be to choose a 

model based on the physics of failure and the characteristics of the operating environment. This brings 

us to stochastic-process-based deterioration models. Several authors have spent most of their work on 

those models (Cinlar, 1972a, 1972b; Frangopol, Kallen, & Noortwijk, 2004; Grall, Dieulle, Bérenguer, & 

Roussignol, 2002; Hastings, 2015; Jardine & Tsang, 2013; Nicolai, 2008; van Noortwijk, 2009). 

Nowadays, these stochastic-process-based models are supported by Rijkswaterstaat and proved their 

added value in the design- and the operation phase of several projects (van Noortwijk & Klatter, 1999; 

van Noortwijk & Peerbolte, 2000) 

Generally, stochastic processes, also called random processes, model the evolution of a random 

system in time. The goal of stochastic-process-based deterioration models is to derive the probability 

of object failure in time 𝐹(𝑡) and their accompanied time-to-failure distribution 𝑓(𝑡). In mathematical 

terms, a stochastic process is defined as a family of random variables 𝑋(𝑡)  defined on a given 

probability space and indexed by 𝑡 belonging to a parameter set 𝑇. The set 𝑇 is the time sequence of 

the process and it can be discrete (𝑇 = {0,1,2, … . , 𝑡}) or continuous (𝑇 = {0, ∞}). Here we treat two 

stochastic processes that are generally accepted in maintenance optimization of infrastructural assets: 

(discrete-state) Markov chains and (continuous-state) Gamma processes.  

Markov chains are the most elementary processes used in deterioration modeling. Markov chains 

enable us to calculate the probability that an object is in a certain state at time 𝑡. Markov chains have 

been extensively used in the context of risk, reliability, and maintenance management for civil 

infrastructures (Baik, Seok, Jeong, & Abraham, 2006; Edirisinghe, Setunge, & Zhang, 2015; Klutke & 

Sanchez-Silvia, 2016). Via estimating the transition probabilities from one state to the other, we are 

able to determine the probability of failure for each time step. Although challenging, those transition 

probabilities can be estimated directly via data (Baik et al., 2006) or expert judgement (Kosgodagan-

Dalla Torre et al., 2017).  
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Thereafter, a lot more extended stochastic-process models are proposed based on Brownian Motion, 

Levy processes etc.. Yet, the Gamma process is mainly preferred since it contains solely positive 

increments. Abdel-Hameed (1975) was the first who proposed to use the Gamma process as a model 

for random deterioration in time. Despite their elegance, Gamma processes are barely applied with 

respect to Markov chains. One of the Gamma-process main limitations is often the availability of data 

on which we base the calculations the Gamma process-parameters. For a mathematical background 

of the two processes, we refer to appendix II. 

5.2. NETWORK-BASED DETERIORATION MODELS 
The previously mentioned stochastic processes address uncertainties in (mainly) environmental 

variables, by treating the increments as random variables. The parameters of the stochastic processes 

are predominantly estimated or based on available data, originating from objects that are subject to 

different environments. In other words, the initial assumptions regarding the input variables is our 

best estimate of how the object deteriorates. As time matures more information becomes available 

regarding environmental variables due to performing inspections. As it turns out, a powerful method 

based on Bayes’ theorem enables us to update the initial assumptions via the obtained information. 

This method is called Bayesian Updating or Bayesian Inference.  

Theoretically, performing Bayesian Inference to the relatively easy-observable variables influencing 

the deterioration process would increase the accuracy of the stochastic process and consequentially 

our prediction regarding the time-to-failure distribution. A model that both facilitates Bayesian 

Inference and is able to incorporate multiple variables that influence the stochastic process is called a 

Bayesian Network (BN), initiated in Pearl (1988) and explained in Appendix III. Later on, Murphy (2002) 

proposed a method based on Dynamic Bayesian Networks (DBNs) that is very suitable to update 

predictions regarding stochastic processes. DBNs are a special type of BNs. They consist of a sequence 

of time-slices, each of which consists of one or more BN-nodes. The slices are connected by direct links 

from nodes in slide 𝑡 to nodes in slice 𝑡 + 1. Straub (2009) used DBNs to model deterioration due to 

fatigue cracks. Via updating the inner-process dependencies, the model became able to stress a more 

accurate belief into the future parameters once one parameter is updated.  

Kosgodagan-Dalla Torre et al. (2017) extended this theory to the so-called covariate Dynamic Bayesian 

Networks (cDBN). Generally, covariates are a synonym of environmental variables. Compared to 

Straub (2009), Kosgodagan-Dalla Torre et al. (2017) realistically made deterioration dependent on the 

covariates such as traffic and load. The study applied a cDBN to an interdependent steel bridge-

network in the Netherlands to determine their probability of failure in time. Here, a Markov chain is 

utilized to model the deterioration in time, based on transition probabilities estimated via expert 

judgement.  

Kosgodagan-Dalla Torre et al. (2017) asked experts questions regarding the time it takes to transit the 

steel bridge from one state to the next state. For this, Kosgodagan-Dalla Torre et al. (2017) used a four 

state Markov chain. Experts were requested to give their 5th, 50th and 95th quantiles. Then, Cooke’s 

method (Cooke, 1991) is applied to weight the given quantiles by the experts, based on their calibration 

and information scores. The results of this expert judgement application showed the transit times of 

the 5th, 50th and 95th quantiles for every transition. The 5th percentile transition times, correspond to 

low loads on the bridge. The 50th percentiles correspond to medium load on the bridge and the 95th 

percentiles correspond to the high loads on the bridge. Based on the transit time-percentiles, 

Kosgodagan-Dalla Torre et al. (2017) was able to determine the transition probabilities that the bridge 

remains in the same state after one time step via the underlying formula; 
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𝑝𝑖,𝑖 = 1 −

1

𝐸[𝑇𝑖,𝑖+1]
 (4) 

Here, 𝐸[𝑇𝑖,𝑖+1]  is the transition time, given a load; low, medium or high. In fact, in this way 

Kosgodagan-Dalla Torre et al. (2017) derived three Markov chain transition matrices corresponding to 

a certain load.  

5.3. LIMITATIONS WITH RESPECT TO THIS RESEARCH 
Sperotto, Molina, Torresan, Critto, & Marcomini (2017) reviewed the potentials of discrete BNs for 

climate change applications and concluded that the main limitations include amongst others: (1) that 

BNs have limited capacity to deal with continuous variables and (2) the growing complexity of the 

computational effort in case of complex systems.  

We can conclude that many domains such as the engineering domain, require reasoning about the 

joint behavior of a mixture of discrete and continuous variables (A. Hanea, Morales Napoles, & Ababei, 

2015). Focusing on the aim of this research to incorporate gradual trends, we need a model that is 

capable to produce small increases per time-step. Both reasons indicate that the discrete BNs are not 

suitable for the purpose of this research.  

Thereby, Kosgodagan-Dalla Torre et al. (2017) considers the deterioration of steel bridges due to 

fatigue crack growth in the deck plate. In the case of bridges, functional failure and technical failure 

are practically the same; when the bridge is technically failed, the function - to transport vehicles safely 

from one side to the other - is also failed. The underlying cause is that bridge systems are series-

connected; when one component fails, the asset fails. As a consequence, for the application of bridges 

it is sufficient to predict the point of asset failure by solely modeling the technical deterioration of the 

component. In contrast, for pump stations, asset components are connected in parallel; when one 

pump fails, the remaining pumps can also do the job.  In those cases, functional failure and technical 

failure have two different definitions.  

5.4. DIFFERENT APPROACH  
In accordance with the researches mentioned in the previous chapter, the general idea is to make the 

deterioration dependent on the environmental variables, in literature also called covariates. Due to 

the limitations of the recently developed deterioration models we are forced to come up with a model 

that is able to deal with continuous variables; continuous Bayesian Networks. Domains that can handle 

mixtures of discrete and continuous variables are called hybrid domains and hence, BNs dealing with 

discrete and continuous variables are called hybrid BNs (HBNs). One method for HBNs that departs 

from the classical BN-approach is the so-called non-parametric Bayesian Network (NPBN) (A. Hanea et 

al., 2015).  

Just as BNs, NPBN are directed acyclic graphs (DAGs) and feature the property of inference. The nodes 

are (conditional) joint distributions and the arcs represent (conditional) copulae. Bivariate copulae are 

bivariate distribution that describe the dependency structure between two marginal distribution. In 

that sense, they separate the effect of dependence from the effect of marginal distributions in a joint 

distribution. This property is precisely what is making the study of copulas the standard in modern 

statistics. For a more elaborate explanation on copulae we refer to appendix V. The use of copulas 

limits the input in NPBNs to the marginal distributions of each variable and the associated (conditional) 

rank correlations. The output of the NPBN is a sample-set of all variables in the NPBN. For a more 

detailed explanation regarding the theoretical and mathematical background of NPBNs we refer to 

chapter 6.  
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6. NON-PARAMETRIC BAYESIAN NETWORKS 

This chapter mathematically describes the most important aspects of Non-Parametric Bayesian 

Networks. This knowledge is necessary in order to validate the model. A. Hanea (2008), devoted her 

doctoral thesis to the modeling statistical dependency via NPBNs. In case the reader is interested in 

the details of this method, we refer to the thesis. In this chapter we will elaborate only on the most 

relevant concepts in order to understand the characteristics of a NPBN. NPBN’s combine the methods 

of the classical Bayesian Networks and copulae to efficiently deal with dependent continuous variables. 

To read this chapter pre-knowledge in BN’s and copulae is advised, see appendix III and IV respectively.  

6.1. JOINT PROBABILITY 
NPBNs are introduced in Kurowicka & Cooke (2005) and extended in Hanea, Kurowicka, & Cooke (2007) 

and A. M. Hanea, Kurowicka, Cooke, & Ababei (2010). NPBNs construct the joint distributions of a set 

of variables represented as a Directed Acyclic Graph (DAG) by coupling the marginal distributions of all 

variables with the dependence structure constructed from bivariate pieces of dependence. Here, just 

as for the ‘classical’ BNs, the main aim is to calculate the joint probability of 𝑛-variables which can be 

determined according the underlying formula (A. Hanea et al., 2015).  

 
𝑓1,…,𝑛(𝑥1, … , 𝑥2) = 𝑓1(𝑥1) ∏ 𝑓𝑖|𝑃𝑎(𝑖)(𝑥𝑖|𝑥𝑃𝑎(𝑖))

𝑛

𝑖=2

 (5) 

NPBNs distinguish themselves from BNs by using (conditional) one-parameter copulas as represented 

by the arcs of the DAG, see figure 7. Following Sklar’s theorem (Appendix IV), it is possible to construct 

the joint distribution requiring only the marginal distributions of the variables and a copula with their 

copula parameters (Clemen & Reilly, 1999).  

1 3

2 4

 

Figure 7: Schematic representation of a simplified Non-Parametric Bayesian Network 

Concluding, the input to derive the joint probability of the NPBNs is limited to a number of marginal 

distributions equal to the number of variables, and number of (conditional) copulae that depend on 

dependence parameters equal to the number of arcs of the NPBN. The marginal distributions is in most 

cases empirical, but can also be elicited from experts. The (conditional) copulae can in principle be any 

copula, but only the Gaussian copula affords the advantages of rapid calculations in large and complex 

problems. Since the Gaussian copula is utilized, we are interested in the Gaussian copula parameter; 

the product moment correlation 𝜌 . Since the Gaussian copula is essentially an bivariate normal 
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distribution, Pearson transformation 1  enables it to think in terms of rank correlations. Therefore 

dependence parameters between parent and child in the NPBN are described by (conditional) rank 

correlations 𝑟 . The (conditional) bivariate copulae are then used as building blocks of the joint 

distribution.  

6.2. BAYESIAN REASONING 
The direction of the arrows add information regarding to the conditional (in)dependencies within the 

graph or more simplified: it translates the reasoning behind the variables into conditional 

dependencies. This encoded information is also known as d-separation or conditional independence 

structures.  We can basically distinguish three structures: 

① → ② → ③ The first structure states that without observing 2, observing 1 would say 

something about the distribution of 3, or in probabilistic language;  𝑋1 ⟂/   𝑋3. 

That is 1 is not marginally independent of 3. However, if 2 is known, then 1 

would not add extra information to explain 3, that is 1 and 3 are conditionally 

independent, given 2: 𝑋1 ⟂ 𝑋3|𝑋2. 

① ← ② → ③  The second structure is similar as the first case: 𝑋1 ⟂/   𝑋3, but 𝑋1 ⟂ 𝑋3|𝑋2. 

① → ② ← ③ The third structure deviates from the latter cases. Here, 1 and 3 are marginally 

independent 𝑋1 ⟂ 𝑋3, but not conditionally independent when 2 is observed. 

That is, if we observe 1(3), without observing 2 that would say nothing about 

3(1), respectively. In contrast, if we observe 2, then observing 1(3)  will say 

something additional about the distribution of 3(1), so 𝑋1 ⟂/   𝑋3|𝑋2. 

6.3. CONDITIONAL RANK CORRELATIONS  
The encoded information in the DAG via the prementioned structures results in conditional 

dependencies between variables. But how are we able to incorporate conditional independencies into 

the NPBN?   

In NPBNs the conditional dependencies can be derived by adapting the Gaussian copula dependence 

parameter 𝜌  via rank correlations 𝑟 . In mathematical terms, the conditional rank correlations of 

variables 𝑋𝑖 and 𝑋𝑗 given 𝑋𝑘 and 𝑋𝑧 is: 

 𝑟(𝑋𝑖, 𝑋𝑗 |𝑋𝑘 , … , 𝑋𝑧) = 𝑟(𝑋�̃�, 𝑋�̃� ) (6) 

Where (𝑋�̃�, 𝑋�̃�)  has the distribution of (𝑋𝑖 , 𝑋𝑗)  given(𝑋𝑘 = 𝑥𝑘 , … , 𝑋𝑧 = 𝑥𝑧). Then the (conditional) 

copulae are assigned to the arcs of the NPBN according to a protocol that depends on a ordering of 

the parent nodes (A. Hanea, 2008).  

Briefly, this ordering implies that the correlation between the child and its first parent will be an 

unconditional rank correlation, and the correlations between the child and its next parents (in the 

ordering) will be conditioned on the values of the previous parents, etc.. Let’s assume the underlying 

configuration of figure 8. Here node 2 and 3 both have only one parent. According to the ordering 

protocol, the arc will be assigned to an unconditional rank correlation. In contrast, node 4 has two 

parents, namely 2 and 3. Dependent on the order, one arc will be assigned to a conditional rank 

                                                             
1  The Pearson transformation gives the relation between the product moment correlation and the 

rank correlation for joint normal distributions: 𝜌(𝑋, 𝑌) = 2sin (
𝜋

6
∙ 𝑟(𝑋, 𝑌)).  
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correlation and the other to an unconditional rank correlation. In this case we assume node 3 as the 

first parent, then 𝑟24  will be conditionalized on node 3: 𝑟24|3 . For a more extended example and 

application of so-called D-vines, we refer to A. M. Hanea, Kurowicka, Cooke, & Ababei (2010).  

1 3

2 4

r13

r
34r1

2

1 3

2 4

 

Figure 8: Schematic representation of a NPBN. 

In mathematical terms we can summarize the ordering protocol as follows: for each variable 𝑋𝑖 with 

𝑚-parents 𝑋1 = 𝑝𝑎1(𝑋𝑖), … , 𝑋𝑘 = 𝑝𝑎𝑚(𝑋𝑖), associate the arc 𝑝𝑎𝑗(𝑋𝑖) → 𝑋𝑖 with the rank correlation: 

 𝑟[𝑋𝑖 , 𝑝𝑎𝑗(𝑋𝑖)], 𝑗 = 1 

𝑟[𝑋𝑖 , 𝑝𝑎𝑗(𝑋𝑖)|𝑝𝑎1(𝑋𝑖), … , 𝑝𝑎𝑗−1(𝑋𝑖)], 𝑗 = 2, … , 𝑚 
(7) 

To calculate the conditional Gaussian copula parameters between nodes 2 and 4, we first make a 

transform the rank correlations to Pearson’s product-moment correlations. Thereafter we utilize the 

underlying recursive equation (A. Hanea et al., 2007; A. M. Hanea et al., 2010). 

 
𝜌1,2|3,…,𝑛 =

𝜌1,2|4,…,𝑛 − (𝜌1,3|4,…,𝑛)(𝜌2,3|4,…,𝑛)

√(1 − 𝜌1,3|4,…,𝑛
2 )(1 − 𝜌2,3|4,…,𝑛

2 )

 
(8) 

Via the conditional product moment correlation 𝜌1,2|3,…,𝑛  one can determine the conditional Gaussian 

copula in the NPBN which transforms the original marginal distribution to the conditional marginal 

distributions.  

6.4. VALIDATION METHODS 
In order to check whether the NPBN represents the dependence structure of the empirical data we 

have several methods available, beginning with the building blocks of the NPBN; the Gaussian copula. 

6.4.1. Validation Copulae 

Copula validation is based on the goodness-of-fit methods such as the ‘blanket’-test and semi-

correlations explained in Appendix V.  

6.4.2. Validation NPBN 

For the validation of the total NPBN we can compare the determinants of the rank correlation matrices. 

A determinant equal to 1 represents independence among all variables. A determinant equal to 0 

represents linear dependence between the variables. Based on the determinants we can perform two 

validation tests. Stepwise protocols to perform both tests can be read in A. Hanea et al. (2015). 
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The first test measures the suitability of the Gaussian copula to represent the empirical data 

dependence structure. As mentioned different copulae can be applied in order to create the 

dependence structure, but the Gaussian copula is the standard since it affords advantages regarding 

the efficiency  of sampling. Due to the assumption of the Gaussian copula, the determinant of the 

empirical normal rank correlation matrix (DNR) will differ from the determinant of the empirical rank 

correlation matrix (DER) since the latter is based on the empirical copula.   

Since we have the dependence parameter to construct the accompanied Gaussian copula and the 

marginal distributions, we are able to draw samples from the ‘Gaussian’ data. Then the rank 

correlations can be calculated with its accompanied correlation matrix. By re-sampling the normal data 

multiple times, we can obtain the empirical DNR and extract the 5th and 95th percentiles of the 

distribution. If the DER falls within the quantiles of the empirical DNR-distribution, the joint Gaussian 

copula represents the empirical dependence structure sufficiently.  

The second test concerns the comparison of the determinant of the rank correlation matrix of a BN 

constructed under the assumption of the Gaussian copula (DBN) and the DNR. Since purpose of a BN 

is to draw the (conditional) dependencies and (conditional) the DBN > DNR, in general unless the BN is 

saturated. Starting adding arcs between the nodes, the DBN value increases since we increase the 

(conditional) dependencies.  

Instead of re-sampling the DNR as in the previous test, we now re-sample the DBN to obtain the 

distribution of the DBN.  If the DNR is within the 90% central confidence band of the DBNs distribution, 

then it can be concluded that enough dependencies are captured in the model. If not, then find a pair 

of variables such that the arc between them is not in the DAG and their rank correlation is greater than 

the rank correlation of any other pair not in the DAG. In this way we are able to tweak the DBNs value. 

6.5. UNINET SOFTWARE 
UniNet, software initially developed by the Technical University of Delft (TU Delft), enables us to create 

NPBNs networks in an efficient way. UniNet is freely downloadable for academic purposes from 

http://www.lighttwist.net/wp/uninet.  

The idea behind the use of UniNet is to model the dependence structure among all variables, under 

the assumption of the Gaussian copula. When the dependence structure is known, UniNet can 

calculate the (conditional) rank correlations for every arc and its associated (conditional) marginal 

distributions. Based on the known (conditional) copulae and (conditional) distributions, UniNet is able 

to sample from the (conditional) distributions. In this way, we are able to retrieve enormous amounts 

of samples with a realistic dependence structure. Although applied to different types of cases as the 

one proposed in this research, A. M. Hanea et al., (2010) and Morales-Nápoles & Steenbergen (2014), 

provide a practical example how to work and reason with UniNet and NPBNs.  

 

  

http://www.lighttwist.net/wp/uninet
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7. DETERIORATION MODELLING VIA NPBNS 

Chapter 5 concluded that the available models are not suitable to treat the problem covered in this 

research since ‘classical’ BNs have limited capacity to deal with continuous variables. Non-Parametric 

Bayesian provided a solution to deal with discrete- and continuous variables. This chapter will 

therefore combine the theory of NPBNs and Markov chains to propose a model similar as in 

Kosgodagan-Dalla Torre et al. (2017).  

7.1. AVAILABILITY-MARKOV CHAIN 
Paragraph 5.1 introduced two generally accepted methods to model the deterioration; the Markov 

chain and the Gamma Process, with input variables transition probabilities and inspection data, 

respectively. Although Gamma processes provide a very elegant way to model the deterioration in 

time, Markov chains are easier in use and more fitting to calculate the probability of unavailability. 

Here we propose a very simplified way to model deterioration, based on Kosgodagan-Dalla Torre et al. 

(2017).  

X1 X2
p12

p11

p41

p22

X3

p23

p33

X4

p34

p44

 

Figure 9: Availability Markov chain 

Then, 𝑝𝑖,𝑖  is the probability that the component is still in function after one time step. 𝑝𝑖,𝑖+1 is the 

probability that the component switches from state 𝑋𝑖  to 𝑋𝑖+1  which is equal to its probability of 

failure. 𝑝4,4 is the probability that the component remains it its unavailable state; the component is in 

repair. Finally, 𝑝41  marks the transaction probability that the component switches from the repair 

state to the ‘as new’ state. Its transition matrix can be defined as follows: 

 

𝑷 = (

𝑝11 𝑝12 0 0
0 𝑝22 𝑝23 0
0 0 𝑝33 𝑝34

𝑝41 0 0 𝑝44

) (9) 

   
Note that this Markov chain has no absorbing state as the Markov chain mentioned in Appendix II. This 

Markov chain will converge towards a certain ‘stable’ probability. Estimating the transition 

probabilities directly is known to be challenging. Therefore, Kosgodagan-Dalla Torre et al. (2017) 

assumed sequential degradation and proposed a way to derive the transition probabilities via expected 

transition times via the underlying equation.  

 
𝑝𝑖,𝑖 = 1 −

1

𝐸[𝑇𝑖,𝑖+1]
 (10) 

   
Where 𝑝𝑖,𝑖  is the probability that the system remains in a particular state after one time-step, and 

𝐸[𝑇𝑖,𝑖+1]  is the expected transition time. Kosgodagan-Dalla Torre et al. (2017) performed expert 

judgement to derive the 5th, 50th and 95th percentiles of the transition times 𝑇12 , 𝑇23 , 𝑇34 , 
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corresponding to High, Medium and Low loads respectively. In this way, the probability that the 

component would transit to the next state is higher, given a High load; medium, given a Medium load; 

and lower, given a Low load. Although this is a very elegant way to model the environment-

deterioration dependency, this study strives for a way to model the dependency for continuous states. 

This is where the non-parametric Bayesian Network comes in. 

𝑝44, marks the probability that the component remains unavailable after a specified time step. The 

transition time to the ‘as new’ state, 𝑇41, can be interpreted as the Mean Time to Repair (MTTR).  

7.2. DETERIORATION WITH NON-PARAMETRIC BAYESIAN NETWORK 
The transition probabilities can be calculated via the expected transition times. Here we propose a 

framework based on NPBNs to model the dependencies between the environment and transition 

times, focusing on pumps. For simplicity is assumed that the transition times only depend on the 

operating time of the pumps per year. See the underlying figure for a stable environment.  

 

Figure 10: Unconditionalized Deterioration NPBN 

The transition distributions can – just as in Kosgodagan-Dalla Torre et al. (2017) – be determined via 

expect judgement. Then, calculating the expected value of the transition times returns the expected 

transition time 𝐸[𝑇𝑖,𝑖+1]. In the above case, the accompanied transition matrix would be as follows: 

 

𝑷(𝟎) = (

0.95 0.05 0 0
0 0.933 0.067 0
0 0 0.9 0.1

𝑝41 0 0 𝑝44

) (11) 

   
Now we introduce the dependency on the environment by performing inference. Let’s assume that at 

time t = 1 the pump station is in a calm environment and only assumes lower values, for example 1000 

– 1200 hours per year. Then the NPBN will change as follows: 
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Figure 11: Conditionalized Deterioration NPBN 

Note that the expected transition times increased as a result of the negative rank correlations. Now, 

the transition matrix would be as follows: 

 

𝑷(𝟏) = (

0.951 0.049 0 0
0 0.934 0.066 0
0 0 0.902 0.098

𝑝41 0 0 𝑝44

)  

 

Note that the probabilities that the system remains in the same state have gone up, which is exactly 

what was expected. Now, based on the beginning state 𝑿𝟎, we are able to calculate the probabilities 

that the system is in a specific state at a random point in time via the underlying equation.  

 𝑿𝒕 = 𝑿𝟎 ∗ ∏(𝑷(𝟏), 𝑷(𝟐), … , 𝑷(𝒕)) (12) 

7.3. LIMITATIONS 
Adopting this model contains a few assumptions. First, the Markov chain has no memory. So if the 

component in state 1 for a long time, the probability that it transits to the next state is equal to the 

probability that it transits the first time. Second, every time a component fails, the component returns 

to its ‘as new’ state. In other words, the model assumes perfect maintenance.  
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8. NPBN-SUPPORTED RELIABILITY ANALYSIS 

Chapter 6 introduced non-parametric Bayesian Networks as a tool to model the dependencies among 

variables. This chapter proposes two conceptual NPBNs to model (1) the total discharge capacity and 

its dependencies to sea level rise and (2) the required discharge capacity and its dependencies to 

rainfall. Thereafter this part will be closed with a road map to conduct a reliability analysis for pumping 

stations and include the introduction of long term trends.  

8.1. MODELING ENVIRONMENTAL DEPENDENCIES WITH NPBNS 
The impact on the resistance side of the limit state function – the total pump station discharge capacity 

– can be divided into the availability and individual pump capacity. In paragraph 1.5 is stated that both 

are impacted by sea level rise. For that reason, the conceptual NPBN can be divided into two branches, 

see figure 12; one representing the availability impacted by deterioration and one representing the 

individual pump capacity.  

For the resistance variables, we depart from the left branch, which can be compared to the figures in 

chapter 7. For simplicity, here is one transit time taken into account; 𝑇𝑖𝑚𝑒_𝑡𝑜_𝐹𝑎𝑖𝑙𝑢𝑟𝑒. Which is 

basically just the transit time that the component transits from available to unavailable. Here we want 

to emphasize the more transition time nodes could be added just as in chapter 7. Via the NPBN above 

we basically stress a belief into the operating time, given a certain sea level rise, and thereafter we 

stress a belief into the time to failure, given a certain operating time per year. Then, chapter 7 already 

elaborated on the use of this NPBN-output to the Markov chain in order to model deterioration. For 

right hand branch, the pump capacity can be deterministically derived from the water head, based on 

the Q-H curve described in chapter 1.5. The water head can on its turn be derived via the sea level rise 

and the water fluctuations influenced by storm surges and tidal variations.  

The solicitation variable; the required discharge capacity is dependent on – for example - the rainfall 

in the area, the discharged amounts of excess water from the surrounding water systems etc. This 

model can contain limitless of variables that influence the required discharge capacity. Practice 

applications show that often sufficient data is available that can be used to define the variables 

marginal distributions. Therefore it is recommended to add the variables of which data is available.  

          

Figure 12: Conceptual NPBNs to model the three effects of sea level rise 
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8.2. INTRODUCING LONG TERM TRENDS 
When all directly and indirectly impacting variables are gathered, we are ready to incorporate the long-

term trend. Basically there are two ways to conduct this, based on the trend and data itself. First, in 

case the data covers the long term trend, Bayesian Inference can be used to update initial assumptions 

via the future obtained information. As it turns out in most cases, we already have predictions of how 

the long term trend would develop. This predictive information can be used to update our model 

before the information is actually observed. In other words, we use BN’s largest beneficial element –  

inference – to update our beliefs into the time-to-failure distribution, see figure 13.  

The best example is rainfall. Climate change will increase the number of extreme rainfall occurences. 

In this research is assumed that the extreme rainfall amount is already covered in the historic data. 

Then, by conditionalizing on the higher values of  the rainfall is aimed to model the increase in 

discharge occurences in time. See figure 13 - top figures, notice that the mean of the time-to-failure 

distribution (𝑇𝑖𝑚𝑒_𝑡𝑜_𝐹𝑎𝑖𝑙𝑢𝑟𝑒) decreases in time, which implies a decrease of the Mean Time To 

Failure (MTTF) and a change in the Markov chain.  

If the historic dataset does not capture the future values,  the future marginal distributions must be 

estimated via – for example – Expert Judgement, see figure 13 – lower figures. This counts for sea level 

rise, since the historic water levels have never assumed any values that sea level rise-models predict. 

Paragraph 10.5 shows a way to determine the distributions in time by solely estimating the latest 

marginal distribution of the considered time span.  

 

Figure 13: Incorporating long term trends 

8.3. PUMP STATION RELIABILITY ANALYSIS ROADMAP 
Dependency modeling via NPBNs enables it to determine the input distributions of the limit state 

function in time. Here, a total conceptual framework to calculate the pump station reliability in time is 

proposed that combines the tools given in the previous chapters, see figure 14.  
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Figure 14: Methodology road map 
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Step 1: Limit state function  

The point of departure is the limit state function, see equation (3). The limit state function must be 

fitted to the failure definition. The limit state function defines the variables of which we aim to describe 

the dependence between the covariates directly influenced by the long term trend. 

Step 2: Set-up Non-Parametric Bayesian Network 

This step concerns the set-up of the NPBN. Notice that the roadmap shows two NPBNs; one to model 

the impact of the long term trend on the resistance and one to model the impact of the long  term 

trend on the solicitation side of limit state function. The conceptual models of chapter 8.1 can be used 

as a handle to gather data. Again, countless covariates could be added to the NPBN to finally arrive at 

an covariate that is directly influenced by the long term trend. Thereby, it could also be possible that 

an variable influences both the resistance side as the solicitation side. NPBNs can perfectly cover those 

interdependencies. 

Step 3: Model Validation  

When the NPBN is ready for use and able to stress beliefs in the deterioration-input variable(s) and 

solicitation variable(s). The NPBN must be verified whether it sufficiently represents the data and its 

dependency structure. Chapter 6 proposes two ways to validate the NPBN; verifying whether the 

copula represents the data between two variables, and whether the joint Gaussian copula is a 

sufficient assumption for the total NPBN.   

Step 4: Add long-term tend to NPBN 

For the resistance side, future distributions must be estimated. A defendable method is preferred here, 

for example expert judgement. For the solicitation side, inference is sufficient. See chapter 8.2. 

Step 5: Calculate deterioration 

The output-samples per time unit are used as input into the Markov chain, see chapter 7. 

Step 6: Effect on asset’s resistance 

How the deterioration of one component is related to the overall resistance is highly dependent on 

the configuration of the component in the pump itself. Step 5 calculates the probability that the 

component is unavailable. Then, via the pump decomposition one is able to calculate the effect on the 

total pump unavailability that affects the availability variable of the limit state function. 

Step 7: Simulations 

Following the predefined steps one will end up with a solicitation distribution and a resistance 

distribution at a particular time 𝑡. The solicitation distribution directly gained by the NPBN and the 

resistance distribution indirectly gained via the NPBN, stochastic-process-based deterioration models 

and asset decomposition. With simulating the distribution samples through the system we will end up 

with the probability of failure. 

After calculating the probability of failure for that particular time, the procedure repeats itself from 

step 4: the NPBN must be conditioned on the expected values for the directly impacted covariates for 

that particular year. Continuing this procedure will lead to the probability of asset failure in time, taking 

into account the deterioration and technical lifecycle enhancement actions for critical assets.    
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9. CASE STUDY: PUMP STATION IJMUIDEN 

The research will continue with applying the theory in practice. First we will introduce the case study 

of discharge complex IJmuiden. Thereafter we will elaborate on the reasoning behind the modeling 

procedure. The roadmap of part II is used as the thread through the model building.  

9.1. SYSTEM DESCRIPTION 
The complex can discharge the excess water in two ways: by pumps and by sluices. The pumping 

station contains six pumps in total, situated below sea level. Four of the six are Stork-pumps with a 

maximum capacity of 40 m3/s, coming from the year 1976. The remaining two pumps are Nijhuis-

pumps with a maximum capacity of 50 m3/s and were placed in 2004 in order to extend the maximum 

pump capacity from 160 m3/s to 260 m3/s.  

In comparison to the pumping station, the sluices have a much higher capacity, namely 500 – 700 m3/s. 

Thereby, pumping these large amounts of water towards the sea costs high amounts of energy, while 

free discharge only require the opening of the sluice gates. Logically the water management prefers 

free discharge with respect to discharge by pumping. However it is not that simple.  

Free discharge

Discharge by pumps

NS

NSC

 

Figure 15: Time slots of discharge by pumps and free discharge 

See figure 15, free discharge is only possible when the North Sea (NS) water level is below the water 

level of the North Sea Channel (NSC) at the considered point in time (ℎ𝑛𝑠 < ℎ𝑛𝑠𝑐 ). If the water level of 

the NS is higher than the water level of the NSC (ℎ𝑛𝑠 ≥ ℎ𝑛𝑠𝑐 ), the pumps are switched ‘on’ and excess 

water will be pumped into the NS. Under normal conditions, the NSC/ARC-water levels fluctuate 

between NAP - 0,30m and NAP – 0,55m. The NS water level fluctuates between the NAP - 1,03m and 

the NAP – 2,20m, under normal conditions. The water level on the NS-side is subject to incoming tidal 

waves. So as a rule of thumb, the complex will freely discharge during two intervals a day and also 

intervals via the pumping station.  

The function of the complex is to regulate the water level of the North Sea Channel (NSC)- and 

Amsterdam-Rhine Channel (ARC) water systems, see figure 16. The discharge complex of IJmuiden is 

for approximately 95% responsible for the total water discharge out of the water system towards the 

sea and is therefore an essential link in the water management of the region. But what are the factors 

that influence the dischargeable amount of water? 

The dischargeable amount of water is determined via the water balance of the system where, among 

others, the rainfall, the discharge of surrounding water systems into the NSC-ARC-water system and 

the Lek- and Markermeer-inlets are discounted. One limitation of the NSC/ARC-water system is that it 

has limited storage capacity. This implies that when the complex is somehow not able to discharge the 

excess water into the sea, the water cannot be stored elsewhere what consequentially results to an 

instant increase of the ground water level. To illustrate the accompanied problems; with an water level 



Part III | Application to Case Study  

32 
 

increase of 0,8m with respect to the NSC/ARC-target level, the cellars in Amsterdam will flood with all 

its consequences (van der Wiel, Persoon, & Stiksman, 2013). When the NSC-water level exceeds a 

certain critical water level, the surrounding water boards are forbidden to pump their excess water 

into the NSC/ARC water system. This consequentially results in higher water levels in these water 

systems.  

 

Figure 16: Overview of the NSC/ARC water system 

9.2. CASE PROBLEM 
Rijkswaterstaat is the execution agency of the Dutch Ministry of Infrastructure and Environment and 

makes sure that the Netherlands are a safe, livable and accessible country. Because a large part of the 

Netherlands is located below sea level, the country relies enormously on hydraulic structures such as 

navigation locks, bridges, dikes and storm surge barriers. Rijkswaterstaat maintains approximately 650 

of these structures, of which the larger part originates from the 1950’s (Jonkman et al., 2018; 

Rijkswaterstaat, 2014). Because the designed lifetime of these structures is around the 80 – 100 years, 

the larger amount will approach the end of its designed lifetime. This illustrates the problem of 

Rijkswaterstaat whether to renovate or replace the large amount of these important assets.  

Since the pumping station of IJmuiden has been built in 1975, the structural capacity is not an issue 

yet. However, many doubts exist whether the complex’ functional capacity is still sufficient for the 

longer term: can the discharge complex fulfill its functional requirements for the longer term in a 

reliable way? We translate this question into a failure definition. 

Failure definition: The asset fails when the required discharge capacity cannot be 

delivered when required 
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 The main contributing environmental factors that affect the complex’ reliability are the effects of 

climate change, specifically the increase in peak discharges and sea level rise. 

9.3. EFFECTS OF CLIMATE CHANGE TO PUMP STATION IJMUIDEN 
As mentioned in paragraph 9.1. the timeslots that the pumps operate, is dependent on the NS water 

level and the NSC water level. Unfortunately, the sea level raises due to climate change. The Royal 

Dutch Royal Meteorological Institute (KNMI) states that the sea level will increase with a rate of 1-6 

mm per year until 2030 (Klein Tank, Beersma, Bessembinder, Hurk, & Lenderink, 2015). This would 

mean that the time slots that pumping is required will increase over time, which enhances the wear of 

the pumps, se figure 17. But what is the magnitude of impact to the timeslots that the pumps are on?  

Free discharge

Discharge by pumps

NS

NSC

 

Figure 17: Effect of sea level rise on the pump- and free discharge time slots 

The second effect, also introduced by sea level rise can best be illustrated by use of the Q-H curve, see 

figure 18. The Q-H curve illustrates the relation between the decreasing pump volume when the water 

head increases. Sea level rise causes an overall increase of the water head, which implies that the 

pumps have to function more often in the lower pump volume regime. Since this affects all pumps 

simultaneously, the total required pump volume will drop dramatically.  

 

Figure 18: Pumpcurve Nijhuis (blue) and Stork (green) pumps.(van der Wiel et al., 2013) 

The final effect induced by climate change is the increase of extreme weather occurrences. Normally, 

the excess water in the system, of which rainfall is a large contributor, will be drained and discharged 

towards the ARC or NSC and thereafter discharged by the discharge complex in IJmuiden. Since the 
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amount of rainfall increases with time, the peak-dischargeable amount water will also increase, as 

does the number of peak-occurrences. Consequentially, the occasion that the maximum capacity, i.e. 

the occasion that all pumps must be available will occur more often.  

To conclude, let’s assume a peak discharge of 220 m3/s. In order to discharge this amount of water, at 

least 5 of the 6 pumps need to be available to provide this capacity. When two pumps fail at that 

specific moment, the system can be considered as failed. So combining the effects that (1) the 

increasing probability of pump failure due to sea level rise and (2) the increasing chance that a peak 

discharge occurs and maximum pump availability is required, will consequentially lead to an increasing 

probability of system failure. 
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10. MODEL BUILDING 

This chapter will make reliability analysis as described in chapter 8.3. suitable to the case of pumping 

station IJmuiden as described in chapter 9.  To simplify the problem, we make two preliminary 

assumptions. Thereafter we depart from the first step of the roadmap in chapter 0: determine the limit 

state function. On the basis of this limit state function we distinguish three models that will be treated 

further separately; the discharge model, the capacity model and the availability model. 

10.1. PRELIMINARY ASSUMPTIONS 
Before applying the methods to the case, we want to stress the main limitations that assist the 

interpretation of the results. For simplicity we make the following assumption: 

Preliminary assumption 1: As mentioned in paragraph 9.1, the ARC-NSC water 

system has a limited amount of storage capacity. In other words, the water level 

in the system will rise directly when the discharge complex fails. If the water level 

raises up to NAP +0.4m, the system fails. For simplicity, we assume immediate 

water system failure when the discharge complex cannot deliver the required 

capacity.  

With this assumption we can state that the probability of water system-failure is equal to the 

probability of discharge complex-failure. In reality however, the water management of the NSC/ARC-

region is able to store the excess water that cannot be pumped due to limited pump capacity. The 

remaining water will raise the water level in the system which again does not necessarily lead to system 

failure immediately.  

Next to the practical assumption of immediate failure when the discharge complex cannot deliver the 

required capacity, another assumption can be made in order to simplify the model. 

Preliminary assumption 2: The second assumption concerns modeling the 

discharges over time. Here we assume that the probability that the system fails 

during lower discharges is negligibly small. The system is more likely to fail when 

high-discharges occur simultaneously with a particular (reduced) pump capacity. 

To make this assumption clear, see the figure below. The black line represents the discharges over a 

time span of four years. The blue line represents the discharge capacity. The first ‘drop’ of the pump 

capacity is equal to the unavailability of one pump. However, this drop does not lead immediately to 

failure of the system, since the discharges at that point in time are low. In  contrast, the second ‘drop’ 

of the blue line leads to system failure since the discharge is higher than the discharge capacity at that 

point in time. The third ‘drop’ is equal to the unavailability of four pumps that makes the pump capacity 

intersect the required discharge and consequentially leads to pump failure. The assumption states that 

the latter case, where four pumps fail at a random moment in time, is negligibly small compared to 

the failure of the second ‘drop’ where only one pump fails simultaneously with a high discharge.  
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Figure 19: Data time series 

Based on this assumption, we do not have to model the whole time series. Modeling the whole time 

series would be much more complex and the benefits would be limited. Therefore, this assumption 

enables us to model the peak discharges over a year instead of the whole time series. Associated with 

the preliminary assumption comes one of the main limitations of this research: we are only able to 

model per peak-discharge occurence. 

10.2. LIMIT STATE FUNCTION 
The starting point of the quantitative analysis is the limit state function as described in chapter 4. The 

function describes the boundary between the states where the system can perform according the 

predefined requirements and the states where those requirements are not met. Here we translate the 

failure definition into the language of the limit state function; resistance and solicitation. The 

probability that the discharge complex cannot pump the required discharge can be merged in the 

following limit state function: 

 
𝑍(𝑡) = (∑ 𝐴𝑝𝑢𝑚𝑝,𝑛(𝑡) ∗  𝐶𝑝𝑢𝑚𝑝(𝑡)

6

𝑛=1

) − 𝑄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑡) (13) 

Where 𝐴𝑝𝑢𝑚𝑝,𝑛(𝑡) represents the availability of the pump at a random point in time, which is a 

discrete value with 1 representing pump-availability and 0 pump-unavailability. 𝐶𝑝𝑢𝑚𝑝(𝑡)  is the 

discharge capacity of one pump (m3/s) at a random moment in time and 𝑄𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  (𝑡) is the required 

discharge (m3/s)  at a random moment in time, in order to pump all excess water from the water system 

into the NS. The capacity of the pumps represents the resistance of the system and the required 

discharges the solicitation. The system fails when 𝑍(𝑡) drops below zero. Thus, the probability of 

failure 𝑃𝑓  equals 𝑃(𝑍 < 0).  

10.3. SET-UP NON-PARAMETRIC BAYESIAN NETWORK 
This paragraph elaborates on the reasoning to derive the input for the NPBN; the marginal distribution 

and rank correlations.  

10.3.1. Overall Model 

Figure 20 shows the overall NPBN which functions as the basis of the whole model. We distinguish two 

separate models: the solicitation model and  the resistance model. As mentioned in chapter 6, the 

input in NPBNs is limited to marginal distributions and conditional rank correlations. Most often there 

is a limited amount of data available or is not representative for the case. This also counted for this 

case. The solicitation model to derive the discharges of IJmuiden is solely based on datasets of the 

surrounding discharge stations and precipitation-amounts. The output of the solicitation-NPBN  is 

directly used as input for the simulations, see the roadmap of paragraph 8.3.  
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In contrast, the resistance-model is a mixture of several manners for deriving the marginal 

distributions. Here, expert judgement, defendable estimations and deterministic relations are used to 

putt a belief in the time-to-failure distribution and the pump capacity in time, described by the Q-H 

curve. See figure 20, the green nodes indicate that the marginal distribution determined by data-sets, 

the blue nodes show that the marginal distribution are determined via expert judgement, the red 

nodes are marginal distributions determined by estimations and finally the white nodes are 

determined by deterministic functions. The time-to-failure distributions are used as input for the 

deterioration model, a Markov chain, conceptually elaborated in chapter 7 and fitted to the case 

paragraph 10.6. A more detailed figure can be found in appendix VII.  

 

Figure 20: Overall NPBN 

10.3.2. Solicitation Model 

The fundamental goal for this model is to stress a belief into the discharges at IJmuiden, based on the 

rainfall in the area since those are expected to increase due to climate change. After raindrop, the 

water is expected to flow towards the discharge complex IJmuiden via the regional pump stations, 

Amsterdam Rhine Channel and North Sea Channel. As mentioned in paragraph 6.1., the input into 

NPBNs are the marginal distributions and rank correlations to determine the (Gaussian) copula. First 

we will sum up all variables that must be added into the NPBN. Thereafter we define the derivation of 

the marginal distributions and rank correlations. A more detailed figure can be found in appendix VII. 

 

Figure 21: The solicitation model 
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Covariates 

The water system can be considered to exist out of two regions: the NSC-region and  the ARC-region, 

see figure 22. Since this is a large area, we chose two representative locations for the rainfall in the 

area: one representative for the NSC-region (R_NSC) and one for the ARC-region (R_ARC). The rainfall 

will be discharged into the NSC and ARC by the adjoining discharge stations, D_NSC_n and D_ARC_n 

respectively. Thereafter the cumulative excess water, Discharge_NSC and Discharge_ARC, that is 

discharged by all adjoining stations will flow towards the discharge station of IJmuiden where it will 

finally be discharged into the North Sea.  

The ARC region consists of a large network of channels and rivers with many discharge stations with a 

relatively low discharge capacity. Instead of incorporating all adjoining discharge complexes, we 

incorporated 13 representative discharge stations that are for 53% responsible for the total discharge 

in the ARC between 2013 - 2016. For the names of the chosen discharge stations we refer to figure 22. 

The total discharges of the ARC (Discharge_ARC) represents the cumulative discharges of all adjoining 

discharge stations in the partial water system. 

The North Sea Channel water system is a smaller system with less discharge stations, but with higher 

discharge capacities. The model links the rainfall in the region to two discharge stations that drain their 

water into the NSC. The cumulative discharge (Discharge_NSC) consists of all discharge stations south 

of the NSC. Unfortunately, the discharge stations north of the NSC are not discounted since the 

gathered data is not sufficient. Still, NPBNs enables us to retrieve a belief in the discharge at IJmuiden 

(D_IJmuiden). Incorporating the data north of the NSC would make the model more realistic since it 

can contradict or support our current belief in the discharge at IJmuiden, based on the southern 

discharges.  

Deriving the Marginal Distributions 

Now that the covariates are known, their marginal distribution must be defined. The water boards 

gathered the discharge data of their discharge stations accurately, which makes it relatively easy to 

determine their marginal distributions. 

Preliminary assumption 2 enables it to only account for the peak discharges. Therefore, the first step 

is to set a threshold of which the discharges are equal or above this threshold can be considered as 

peak discharge. The only restriction related to the threshold is that enough peak discharges should be 

gathered to make a reliable estimation of the dependence structure between all variables in the 

model. A threshold of 120 m3/s, gives us 48 peak-occurrences in 2013, 51 in 2014, 71 in 2015 and 45 

peak-occurrences in 2016, which we consider as sufficient samples to use as marginal distribution.  

The marginal distributions for all other nodes are based on the values that occurred at simultaneously 

with the considered peak discharge. The figure below illustrates how the samples are retrieved. After 

gathering all values associated with a certain peak-value, the marginal distributions can be generated 

for each node and plugged into the NPBN. 
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Figure 22: Representative discharge stations and rainfall locations 



Part III | Application to Case Study  

40 
 

 

Date D_IJmuiden D_ARC1 … R_ARC 

 [m3/s] [m3/day]  [mm/day] 

1-1-2013 212 1.7288e+05 … 135 

2-1-2013 136 9.9637e+04 … 25 

28-1-2013 155 1.5939e+05 … 60 

… … … … … 

3-1-2014 135 6.7902e+04  74 

… … … … … 

 

N2013

N2014

 

Figure 23: Process to derive the marginal distributions for each node 

A very interesting parameter here is the frequency of peak discharge occurrences per year, denoted 

above as 𝑁𝑦𝑒𝑎𝑟. Based on the number of peak occurrences per year, we can fit a Poisson-distribution2 

to the data by estimating the only parameter 𝜆, which represents the average peak occurrences per 

year. In this way we can probabilistically describe the frequency of peak occurrences under stationary 

circumstances. In anticipation to the creation of time-dependence, one effect of climate change, 

namely the expected increase in peak discharges per year, can be incorporated by tweaking this 

parameter 𝜆.  

Rank correlations covariates 

So far, the datasets of the chosen covariates are modified on the basis of the peak-discharge-samples 

above 120 m3/s. The next step is to determine the dependency among all covariates, according 

Spearman’s rank correlation, in UniNet named ‘empirical rank correlation’. The correlation matrix is 

given in table 3. The rank correlations among the covariates are necessary to identify the covariates 

between which we have to draw an arc.  

Since the availability of sufficient data, the rank correlations can be directly determined and is 

represented in Appendix VII. High rank correlations imply that there is a clear dependency between 

the two variables. This means that an arc must be drawn in order to represent the dependency via an 

copula. We drew arcs between all variables above a threshold of 0.62.  

The direction of the arc adds the Bayesian reasoning component to the network. See paragraph 6.2 for 

the conditional independence structures. We also removed arcs that have correlations higher than the 

set threshold of 0.62 when correlation is assumed to be coincidence. By both adding and removing 

arcs, we ought to avoid sample jitter and generate reliable samples. 

At the end, we are mainly interested whether the BN represents the dependency between rainfall and 

discharge. One can check this by comparing the empirical correlations and BN-correlations of those 

                                                             
2 The Poisson distribution, 𝑃𝑜𝑖𝑠𝑠(𝜆),  is a discrete distribution with probability mass function 𝑃(𝑋 = 𝑘) =

𝜆𝑘

𝑘!
𝑒−𝜆 , where 𝜆 > 0, 𝐸[𝑋] = 𝜆 

and  𝑉𝑎𝑟(𝑋) = 𝜆. 

 



Part III | Application to Case Study  

41 
 

variables. According to the correlation matrix in appendix VII, the difference between the two 

correlations is approximately 0.1 which we consider small enough. One can conclude that the 

correlation is sufficiently represented in the model. 

Model output 

The resistance model output is the sampled distribution of the only solicitation variable: the peak 

discharge IJmuiden ≥ 120 m3/s . Thereby, we determined the Poisson-distribution that describes the 

number of peak discharges in a year. Both distribution will be used as an input into the simulations, 

described in paragraph 10.8. 

10.3.3. Resistance model 

The aim of this paragraph is to set-up a model to stress a belief into availability and pump-capacity via 

the NPBN illustrated below. First we will sum up all variables that must be added into the NPBN. 

Thereafter we define the derivation of the marginal distributions and rank correlations. 

 

Figure 24: Resistance model 

Covariates 

Chapter 8 described the way sea level rise will impact the time-to-failure distribution and the pump 

capacity. To recap, the system will wear faster since the duration of the pumping time slots will 

increase (figure 17) and the Q-H curve (figure 18) shows that the maximum capacity decreases when 

the water head increases. For this reason we need to find covariates that link sea level rise to the time-

to-failure distribution and water head.  

First, we addressed the problem that the pumping slots increase. Since the pumping time slots vary in 

time on a yearly basis due to yearly variations in tidal fluctuations, storm surges etc., we prefer to think 

in terms of yearly operational hours. By deriving the marginal distributions of the time-to-failure 

distribution and operating time of each pump, we  are able to model the dependency between sea 

level rise and component-time-to-failure distribution.  
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Secondly, we noted that the probability that the pumps not able to discharge with maximum capacity 

will decrease, when the average sea level rises. The Q-H curve shows a deterministic relationship with 

pump capacity and water head. For this reason, the water head is the node of interest. Since we 

assumed the water level in the NSC to be constant, the water head can be simply defined by subtracting 

the NS-level by the constant NSC-level (0.40m). This implies that the water level of the NS is the second 

node of interest. The water levels in the NS are determined by tidal fluctuations, storm surges and 

waves. Since the latter two contain uncertainties, we prefer to add a probabilistic node that contains 

the water levels at the NS in the considered period (2012-2016). The sum of sea level rise and current 

water level –data must represent the water levels in the NS over time.  

Deriving the Marginal Distributions 

In contrast to the solicitation model, there is limited data available to determine the marginal 

distributions of the nodes mentioned. This also counts for the parental node sea level rise. For this 

reason, we must switch to the other method to retrieve the distributions; expert judgement. We 

acknowledge that the next estimations of the marginal distributions and rank distributions contain an 

uncertain factor that will affect the results. Still, it is sufficient for the purpose of this research. 

Bamber & Aspinall (2013) performed an expert judgement assessment of future sea level rise form the 

western- and eastern Antarctica-ice sheets and the Greenland ice-sheet. By estimating the 

contributions per sheet to sea level rise for 2100, the combination results in total sea level rise at 2100. 

One very important fact is that the assessed SLR appeared to be non-Gaussian with a long upper tail. 

In order to estimate the marginal distributions for SLR we therefore assume the SLR to be lognormal 

distributed. Then, assuming linear increase of the total SLR-percentiles – which are given by W. Aspinall 

-, we are able to fit a log-normal distribution for each year. The mathematical procedure is given in 7.5. 

The next node is operating time. Estimations in van der Wiel et al. (2013) showed that the operational 

hours of the Stork- and Nijhuis-pumps vary. Current approximations state that the Stork pumps are 

approximately 1500 hrs/yr in operation and the Nijhuis pumps approximately 2200 hrs/yr. 

Unfortunatelly, data is not available to determine the marginal distributions and therefore we 

performed our own ‘expert judgement’ by estimating the 5th and 95th percentiles for 2017. As 

paragraph 1.5. introduced, the operation time is predominantly dependent on the tidal fluctuations. 

Thereby, it is also dependent on storm surges. Here we assume that the average sea level will be 

temporaly lift up for approximately 8 days in total. Therefore we assumed the 5th and 95th percentiles  

to be ± 200 hours of the 50th percentiles. 

Table  1: Estimations 5th, 50th and 95th percentiles of the operational time in 2017. 

 Nijhuis Stork 

 5th 50th 95th  5th 50th 95th  
Operational Time 2017 (hrs) 2000 2200 2400 1300 1500 1700 

 

The third node is the time-to-failure distribution. The failure data only shows the mean time to failure 

(MTTF), which we interpreted here as the 50th percentile of the distribution. Then we only have to 

estimate the 5th and 95th percentiles of the current distribution. Here we asked ourselves “Given that 

the 𝑛𝑡ℎ percentile of the Operational Time in 2017 is x hours, what will the 𝑛𝑡ℎ percentile of the time-

to-failure distribution be?”.  

Table  2: Estimations 5th, 50th and 95th percentiles of the operational time in 2100. 

 Nijhuis Stork 

Component ‘Hoofdasafdichting’ ‘Hoofdas’ 
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 5th 50th 95th  5th 50th 95th  
Time-to-failure distribution 2017 (years) 55 60 70 45 50 57 

 

On the pump capacity side, the nodes are mainly derived via a function, except the WaterLevelsNS-

node. This node is simply derived from Rijkswaterstaat data and need no further explanation. Since 

the functions are an alternative for a copula, we will treat the functions hereafter. 

Rank correlations covariates 

Due to the lack of data, we estimated the marginal distributions of SLR, operational time and lifetime 

distributions. Now, we also need to estimate the copula in order to represent the dependency. First 

the SLR-Operation Time copula. Essentially, this is a monotone function which indicates full 

dependency. However, since the pumps operate randomly when discharge is required, there is a small 

uncertainty in it. For this reason we estimated the rank correlation to be high; 0.8. The Operation Time 

– time-to-failure distribution copula is more uncertain and negative; high operating time goes 

accompanied with a low time-to-failure distribution. For this reason we estimated the rank correlation 

on -0.6. 

Now, we focus on the functional arc between the water head and the pump capacities for both the 

Stork- and Nijhuis pumps. The Q-H curve (figure 18) shows a deterministic relationship between water 

head and discharge capacity. This deterministic relationship is represented by fitting a curve on the 

known points in the figure. Those functions, both for the Stork- and Nijhuis-pump are represented in 

the NPBN do derive the discharge capacity-distributions. 

Model output 

The resistance model output are the sampled distributions of the four variables: the time-to-failure 

distribution(s) of the Stork component(s), the time-to-failure distribution(s) of the Nijhuis 

component(s), the discharge capacity of the Stork pumps and the discharge capacity of the Nijhuis 

pumps. The time-to-failure distributions are used as input into the deterioration model, described in 

chapter 7. The sampled distribution of the discharge capacities will directly be used as an input into 

the simulations, described in paragraph 7.8. 

10.4. MODEL VALIDATION 
The third step of the road map illustrated in paragraph 8.3, is the model validation. Since we used data 

we are interested whether the dependence structure is sufficiently represented in the NPBN. First we 

have to justify the utilization of the Gaussian copula. For this we use the validation-methods described 

in Appendix IV. The NPBN validation is described in paragraph 6.4.2. The Matlab-scribs can be found 

on https://github.com/RHuijmans.  

10.4.1. Copula Justification 

The justification of the Gaussian copula is based on the study of semi-correlations and a ‘Blanket Test’, 

extensively discussed in Appendix IV. The results are shown in Appendix VII. The results can be 

interpreted as follows, relatively small differences in semi-correlations and low values of the ‘Blanket 

Test’ statistic indicate a Gaussian copula, relatively high upper-tail correlations and low values of the 

‘Blanket test’ statistic indicate a Gumbel copula, and relatively high lower-tail correlations and low 

values of the ‘Blanket Test’ statistic indicate a Clayton copula.  

Analysis of the results indicate that  Gaussian copula – utilized in UniNet – is only a good representation 

for a few bivariate pairs of variable. For 42 out of the 61 bivariate pairs, the Gumbel copula shows to 

https://github.com/RHuijmans
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be the best fit. Only for 18 out of  the 61 pairs, the Gaussian copula shows the best fit and for 1 out of 

the 61 pairs, the Clayton copula shows to be the best choice.  

The dominance of  the Gumbel copula can be a consequence of the preliminary assumption to only 

incorporate the peak discharges. Despite this dominance, we maintain the assumption of the Gaussian 

copula due to the computational advantages via UniNet. Preserving this assumption would not have 

any very dramatic consequences for the sampling procedure; since the Gumbel copula illustrates 

upper-tail dependency, the lower-tail dependency is smaller than the Gaussian copula. The effect on 

the higher discharges is limited, which is the main spectrum of interest.  

10.4.2. NPBN Validation 

The first test measures the suitability of the Gaussian copula to represent the empirical data 

dependence structure. The determinant of the empirical normal rank correlation matrix (DNR) will 

differ from the determinant of the empirical rank correlation matrix (DER) since the latter is based on 

the empirical copula.  If the DER is within the 90% confidence bound of the DNR, the joint Gaussian 

copula is a reasonable assumption. In case of our BN, the DER remained within the 90% bound of the 

DNR if no more than ca. 350 samples were drawn. 

The second test concerned the comparison of the determinant of the rank correlation matrix of a BN 

constructed under the assumption of the Gaussian copula (DBN) and the DNR. In case of our BN, the 

DER remained within the 90% bound of the DNR if no more  than ca. 200 samples were drawn. Both 

sample-values are relatively small, indicating that the joint normal copula may not be the best 

assumption to utilize in the model. Still we stick to the utilization of the Gaussian copula. 

10.5. ADD LONG-TERM TREND 
The fourth step concerns the addition of the long term trend. As illustrated in paragraph 8.2, the most 

attractive way to do this, is to conditionalize the NPBN on the forecasted values. One requirement is 

necessary to perform this; the forecasted values have been occurred in the past. In this research we 

assume that this requirement is met for precipitation; i.e. we say that extreme rainfall has occurred 

simultaneously with an particular peak discharge and is captured in the historic data set. Unlike future 

precipitation, the future sea level is not captured in past data. This requires a different, more complex 

approach to model the long-term trend.   

10.5.1. Precipitation 

Klein Tank et al. (2015) state in ‘KNMI’14-klimaatscenario’s’ that the probability of extreme 

precipitation events increase under influence of climate change. Here, we assume that an extreme 

precipitation event has occurred in the past and is captured in the dataset. This enables us to add the 

long term trend via inference.  

In our case, we perform inference by conditioning the rainfall on the upper tail-percentiles, for example 

the 5th – 100th percentile. Although we assume then that a peak discharge will always occur together 

with rainfall, it puts higher probabilities in the other rainfall amounts, including the extremes. This is 

our best estimation to represent the future rainfall distribution. The effect on the discharge 

distribution is illustrated in the figure below. Repeating inference for every time step enables it to 

represent the effect of climate change on the discharges in IJmuiden for the longer term. 
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Figure 25: Effect inference on discharges IJmuiden 

10.5.2. Sea Level rise 

In contrast to the precipitation, we are not able to perform inference for the sea level rise case. The 

main reason is that NS-water level data does not capture any values that can occur when the sea level 

rises with one meter, which is realistic according (Bamber & Aspinall, 2013). For this reason, we must 

propose a more extended way to model the long-term trend of sea level rise and its impact on the 

child-nodes.  

The method we propose here can be compared to the Dynamic Bayesian Network described in 

paragraph 5.2.; for every time-slice we create a BN as illustrated in figure 20. The parental SLR node’s 

marginal distribution is described by the SLR-distribution at that particular time. This also implies that 

the (conditional) distributions  of the operating times and time-to-failure distributions must be 

conditionalized on the sea level rise. In other words, the marginal distributions of the probabilistic 

child-nodes also vary for every time slot.  This procedure implies that the we need to define the SLR-

distribution, operating time-distributions and lifecycle distributions for every time slot. One way to 

derive this is explained hereafter.  

In case of the SLR-distribution, the point of departure is the paper of Bamber & Aspinall (2013) that 

performed expert judgement to estimate the SLR-contributions of three ice-sheets in 2100. Based on 

the  retrieved 5th, 50th and 95th percentiles they fitted a lognormal distribution. By sampling those 

distributions and sum the samples they retrieved the total SLR-rate in 2100. The sampling procedure 

included the fact that the ice-sheets may be correlated. In their article, they assumed the correlations; 

EAIS – WAIS = -0.2, EAIS – GrIS = -0.2 and WAIS – GRIS = +0.7. For the purpose of this research, author 

W. Aspinall provided us with perfect positively correlated samples. Perfect positive correlation implies 

that all possible SLR-rates are covered, minimum and maximum. Consequentially, the uncertainty 

bandwidth of possible SLR-rates increases.  

As done in the B&A-paper, we converted the rates of SLR into cumulative values by assuming a linear 

increase from the experts’ estimate for the past decade (0.9 mm/year) to the 5th, 10th, 25th, 50th, 75th, 

90th and 95th- percentiles of the 2100-total SLR-rate distribution. Then, integrating the range values 

from 2010 to the year of interest gives us the SLR for that particular time. For the record, we used the 

findings of the 2012 elicit. Figure 26 illustrates the SLR over time, based on the given values in Bamber 

& Aspinall (2013).  
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Figure 26: Sea level rise over time, based on the values of Bamber & Aspinall (2013) 

Then, we are able to determine the ‘emperical’ 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles for 

every year. The calculated values are given in Appendix VI. Since it is already mentioned that the SLR 

is non-Gaussian, we fitted a lognormal distribution to the calculated percentiles via the underlying 

formula: 

 min 𝑆(𝜇, 𝜎) = ∑(𝐹𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑥𝑛 , 𝜇, 𝜎) − 𝐹𝑒𝑚𝑝𝑒𝑟𝑖𝑐𝑎𝑙(𝑥𝑛)2)

𝑖=𝑛

 (14) 

   
 Where 𝑛 = {5, 10, 25, 50, 75, 90, 95}. This formula calculates the lognormal distribution’s parameters 
(𝜇, 𝜎)  that minimizes the differences between the fitted lognormal distribution and empirical 

distributions. Here we used the cumulative distribution, but the density function can also be used. The 

results for years 2017 and 2100 are given in the table below. All results for the years in between are 

given in Appendix VI.  

Table  3: Estimations 5th, 10th, 25th, 50th, 75th, 90th and 95th percentiles of the sea level rise in 2017 and 2100 

      

 5th 10th 25th 50th 75th 90th 95th 
Sea Level Rise 2017 (mm) 6.10 6.20 6.47 7.04 8.14 10.00 11.68 
Sea Level Rise 2100 (mm) 42.17 62.21 113.22 222.99 431.92 785.93 1107.50 

 

 

Figure 27: Development distribution sea level rise from 2017 to 2100. 

This trick is also used for the child nodes. First the Operating time. In order to retrieve the percentiles, 

we asked ourselves the question “Given that the 𝑛𝑡ℎ percentile of the Sea Level Rise in 2100 is x mm, 

what will the 𝑛𝑡ℎ percentile of the time-to-failure distribution be?”. See  the underlying table for the 

outcome. Then as done for the SLR we assumed a linear increase over time to withdraw the 

distributions for each year, the results are given in Appendix VI.  
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Table  4: Estimations 5th, 50th and 95th percentiles of the operational times in 2017 and 2100. 

 Nijhuis Stork 

 5th 50th 95th  5th 50th 95th  
Operational Time 2017 (hrs) 2200 2400 2600 1500 1700 1900 
Operational Time 2100 (hrs) 2300 3000 4700 1900 2100 3400 

 

 

Figure 28: Development Opderational hours distribution from 2017 to 2050. 

Secondly, the time-to-failure distributions are purely based on estimation. In order to retrieve the 

percentiles, we asked ourselves the question “Given that the 𝑛𝑡ℎ percentile of the Operational Time in 

2100 is x hours, what will the 𝑛𝑡ℎ percentile of the time-to-failure distribution be?”. The results are 

shown in the underlying table. The stochastic based-processes of appendix II both show that the time-

to-failure distribution has a Weibull distribution-shape. We therefore fit a Weibull distribution to the 

calculated percentiles. The results are given in Appendix VI.  

Table  5: Estimations 5th, 50th and 95th percentiles of the time-to-failure distributions in 2017 and 2100. 

 Nijhuis Stork 

Component ‘Hoofdasafdichting’ ‘Hoofdas’ 
 5th 50th 95th  5th 50th 95th  
Time-to-failure distribution 2017 (years) 56 58 60 46 48 50 
Time-to-failure distribution 2100 (years) 48 55 59 38 44 48 

 

 

Figure 29: Development time-to-failure distribution from 2017 to 2050. 

By plugging the determined distribution at time 𝑡 into the BN of time-slice 𝑡, we are able to include sea 

level rise. In comparison to the previously mentioned DBN, this model contains no dependencies 

between the time-slices. In other words, drawing a sea level rise-sample at time 𝑡 is independent on 

the sea level rise-sample draw at time 𝑡 − 1. In reality their actually is dependency within this process. 

This dependency is not captured in this model.  



Part III | Application to Case Study  

48 
 

10.6. DETERIORATION MODEL 
NPBNs enable us to make to model the dependencies between a continuous-state deterioration and 

continuous covariates. In this research, we create dependency the Markov chain input – the time-to-

failure distribution and the covariates. For the case purposes, we need to take one component per 

pump that is critical, and deteriorates due to an increase operational time.  Based on the (partial) 

system decomposition in Appendix V, we choose the component ‘Hoofdas’ for the Stork-pump and 

‘Hoofdasafdichting’ for the Nijhuis pump.  

In this research, an oversimplified two-state Markov Chain is utilized due to the lack of sufficient data 

to define multiple states as described in chapter 7. For an visualization of the used Markov chain, see 

figure 30.  

X1 X2
p12

p11

p21

p22

 

Figure 30: Availability Markov chain 

The accompanied transition matrix is defined in equation (15).  The MTTR of both components can be 

expressed in hours. Since this research models on a peak discharge occurrence time-scale, we assume 

that the component is brought back to its ‘as new’ state before the following peak-discharge occurs. 

Then, 𝑝21 can be considered to be 1.  

  
𝑷(𝒕) = (

1 −
1

𝑀𝑇𝑇𝐹(𝑡)

1

𝑀𝑇𝑇𝐹(𝑡)
1 0

) (15) 

   
The utilization of this oversimplified Markov chain contains one main limitations. The use of two states 

limits the deterioration model to integrate the physics of failure as wear out. For example, once the 

component is already corroded for 10%, the transition time to 20% is less than the time it took the 

component to arrive at 10% departing from no corrosion. Now, the two-state Markov chain essentially 

assumes a constant failure rate: the chance that failure occurs at t = 0 is equal to the chance that the 

component is operational for 30 years.  

10.7. EFFECT ON THE ASSET’S RESISTANCE 
Step six of the roadmap concerns the translation of the deterioration in terms of assets resistance. 

Based on the failure definition, we concluded that pump function unavailability is the point of interest. 

In the previous paragraph 10.6. we choose the two components to model the deterioration; one for 

the Stork-pump and one for the Nijhuis-pump. However, the pump’s unavailaibility is not determined 

by those components only. The pumps unavailability is determined by a whole process from one side 

to the other; the pump process. All components in the pump process have a specified time-to-failure 

distribution, MTTR and unavailability. In order to estimate the combined effect of each component to 

the availability of one pump, we made a NPBN-shaped fault tree where the nodes are the (discrete) 

probabilities of component availability and unavailability, see figure 31. By sampling the fault tree 

NPBNs we are able to calculate the total unavailability of the Stork- and Nijhuis pumps. Since the 
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previous chapter states that the probability of component unavailability changes in time, we have to 

adapt the fault tree NPBNs for each time slice.   

 

Figure 31: Fault tree NPBN of the Stork pump process after sampling 

 

Figure 32: Fault tree NPBN of the Nijhuis pump process after sampling 
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Model output 

The model output are the sampled distributions of the Stork- and Nijhuis pumps unavailability, 

denoted in the upper nodes. The sampled distribution will be used as an input into the simulations, 

described in paragraph 10.8. 

10.8. SIMULATIONS 
The final step of the roadmap are the (Monte Carlo-) simulations of the retrieved sample distributions. 

Here, we elaborate on the sampling procedure that is programmed in Matlab®. First, we recap the 

distributions and their sample space, they are given in the table below.  

Table  6: Overview simulation variables 

𝝀 Peak discharge occurences per year Discrete 

𝑫 Discharge at IJmuiden Continuous 
𝑨𝑺𝒕𝒐𝒓𝒌 (Un)availability Stork pump Discrete 

𝑨𝑵𝒊𝒋𝒉𝒖𝒊𝒔  (Un)availability Nijhuis pump Discrete 

𝑪𝑺𝒕𝒐𝒓𝒌 Capacity Stork Pump Continuous 
𝑪𝑵𝒊𝒋𝒉𝒖𝒊𝒔 Capacity Nijhuis Pump Contninous 

 

The sampling procedure is as follows, see figure 33. For every year 𝑦 , we perform 𝑛  number of 

simulations. For every simulation 𝑛  we sample a the number of peak discharge occurences  

𝝀𝒚;𝒏 for the particular sample in that particular year. Thereafter we sample 𝝀-times from the remaining 

five distributions which represent all variables in the limit state function, equation (3). In other words, 

we are able to calculate the probability of failure by dividing the number of failures by the number of 

simulations for that particular year 𝑁 = (𝑛𝑦 ∗ ∑ 𝜆𝑦;𝑖)𝑛
𝑖=1 . Repeating this procedure for every time slice, 

we are able to calculate the probability of failure in time. The Matlab-scribs can be found on 

https://github.com/RHuijmans. 

λy;n Dy;n;r AStork;y;n;r CStork;y;n;r

...

r = 1

r = 2

r = λ

...

...

Year 1 ny = 1

ny = 2 r = 1

... ...

...

...

...
...

ANijhuis;y;n;r CNijhuis;y;n;r

...
...

 

Figure 33: Sampling Procedure for one year 

  

https://github.com/RHuijmans
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11. CASE STUDY RESULTS 

This chapter includes the results of the built model of chapter 10. The aim of this chapter is to verify 

that the model does what we expect it to do. The output results of the NPBN and deterioration model 

will be given in paragraph 11.2 and 11.3. Thereafter we introduce the hypothetical case that the 

current predictions of sea level rise are underestimated and happen twice as fast. The distributions of 

The Matlab-scribs to calculate the results can be found on https://github.com/RHuijmans. 

11.1. SCENARIO’S  
As introduced in chapter 3, to show the effect of making the environment dependent on the 

deterioration in order to model the fortified deterioration, we divide the model into two sub-models; 

the environment-independent deterioration model and the environment-independent deterioration 

model.  

Again, the environment-independent deterioration model calculates the probability of failure of 

discharge station IJmuiden assuming an increasing environment but a constant time-to-failure 

distribution and MTTF. The environment-dependent deterioration model calculates the probability of 

failure assuming dependency between the increasing environment and decreasing time-to-failure 

distribution. As mentioned in paragraph 8.2, we are able to add the long term trend on rainfall by 

conditionalizing on intervals. The underlying tables indicates on which values we conditionalize the 

covariates to represent the three scenarios. Here we would like to emphasize that all values are just 

estimations.  

Besides the independent- and dependent-deterioration models two extreme scenarios are developed 

in indicate the minimum and maximum impact of the long term trend. that different scenarios have 

been developed by conditionalizing on different percentiles representing extreme- and medium cases.  

Table  7: Conditional inference intervals to illustrate the minimum impact of the long term trend 

Years 2017 - 2019 2020 - 2029 2030 - 2039 2040 - 2050 

Rainfall occurences 53.75 55 57 59 
Rainfall 0th – 100th 7th – 100th  10th – 100th  12th – 100th  
SeaLevelRise 0th  – 5th   

 

Table  8: Conditional inference intervals to illustrate the average impact of the long term trend 

Years 2017 - 2019 2020 - 2029 2030 - 2039 2040 - 2050 

Rainfall occurences 53.75 57 62 67 
Rainfall 0th – 100th 9th – 100th  11th – 100th  13th – 100th  
SeaLevelRise 5th  – 95th   

 

Table  9: Conditional inference intervals to illustrate the maximum impact of long term trend 

Years 2017 - 2019 2020 - 2029 2030 - 2039 2040 - 2050 

Rainfall occurences 53.75 59 67 72 
Rainfall 0th – 100th 10th – 100th  12th – 100th  14th – 100th  
SeaLevelRise 95th  – 100th   
  

https://github.com/RHuijmans
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11.2. EFFECTS OF CLIMATE CHANCE TO THE PUMP STATION 
This chapter will reflect the results to the three effects to pump stations posed by climate change as 

introduced in paragraph 1.5:  

1. Increased pump deterioration. Sea level rise fortifies the deterioration rate and increases the 

probability that an individual pump is unavailable. 

2. Reduction of pump capacity. Sea level rise reduces the maximum pump capacity that can be 

retrieved from the Q-H curve. 

3. Increasing peak-discharges. Increase of extreme rainfall evens increase the number of peak-

discharges per year 

Although numerous results can be shown, the results elaborated here will be limited to the medium 

case solely. One of the main reasons is that the individual differences among the scenarios are hard to 

note on the eye; incorporating them would be nothing-saying. Only the distributions of the 2017-, 

2030- and 2050- time-slices will be shown here. We will come back on the scenarios when we are 

defining the final probability of asset failure.  

11.2.1. Increased Pump Deterioration 

As elaborated in previous chapters, sea level rise indirectly affects the time-to-failure of the 

component. The figure below shows the impact of sea level rise on the two considered deteriorating 

components; the Hoofdas of the Stork-pump and the ‘hoofdasafdichting’ of the Nijhuis pump. Here 

the shift to the lower lifetimes can be noticed. This would impact the input into the deterioration-

model since the MTTF decreases. To get an understanding of the magnitude, the MTTF of the Nijhuis-

pump Hoofdafdichting in 2017 is determined on 57.84 years, the MTTF in 2030 and 2050 are calculated 

on 56.94 and 56.54 years, respectively.  

 

Figure 34: CDFs of the Time-to-Failure distributions over time 

Now the MTTF’s for each year can be are retrieved from the conditional time-to-failure distributions - 

dependent on operation time and future sea level rise - the model is able to calculate the availability 

deterioration of both components. The figure below shows the unavailability over time of both 

components for the deterioration-independency model as well as for the deterioration-dependency. 

The deterioration-independency model shows a stable unavailability rate, which is as expected since 

Markov chains always search for a stable state. In contrast, the proposed dependent Markov chain, 

part of the deterioration-dependency model, clearly shows a gradual increase of the components’ 

probability of unavailability. For clarification, the first drop from 2017 to 2018 is a consequence of the 

Markov chain finding its stable value.  
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Figure 35: Availability deterioration of both pump’s components 

11.2.2. Reduction of Pump Capacity 

The second effect of sea level rise concerns the reduction of pump capacity due to the increasing water 

head. The figure below shows the occurring pump capacities per pump type. Those can be compared 

with the Q-H curve given by figure 36. Note that - when time matures – the discharge capacites shift 

to the lower discharges.  

 

Figure 36: Occurring discharge volumes pump per year 

The combined effect of figure 35 and 36 - deterioration of the pump availability and the shift to the 

lower discharge capacities, respectively – shows the effect of sea level rise on the total pump capacity, 

see equation (3). The cumulative distribution of  the total discharge capacity is shown in figure 37. The 

distribution is retrieved after the simulations. To recap, the long term trend is here represented by 

deriving a specific marginal distribution for each time step. According to Bamber & Aspinall (2013), the 

sea level has risen 40 - 200 mm. The cumulative distribution can be interpreted as the probability that 

the discharges capacity is lower than the given discharge on the x-axis: 𝑃(𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦;𝑡𝑜𝑡𝑎𝑙 < 𝑞).  

The figure shows a small decrease of the total pump discharges when time matures: the probability 

that the total pump capacity is smaller than q is higher in 2050 than in 2017 and 2030. Although the 

model does wat is expected, the impact of sea level rise to the total pump capacity is relatively small. 

Also the differences between the environment-independent deterioration model and the 

environment-dependent deterioration model apprear to be very small.  
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Figure 37: CDF of the total Discharge Capacity of Pump Station IJmuiden 

11.2.3. Increasing peak-discharges 

By sampling the NPBN, without any conditionalization, we are able to withdraw the distributions of 

2017, the starting point of our belief in future discharges. The solicitation part of the limit state function 

is represented by the discharges of IJmuiden. The figure below shows the effect on the discharges of 

Ijmuiden when NSC-  and ARC- rainfall is ‘observed’. One can note that the lower discharge 

probabilities slowly shift towards the higher-end values. Sampling the 2050 distribution will result in 

more extreme discharges which require full pump capacity.  

 

Figure 38: CDF of the Required Discharges over time 

11.3. PROBABILITY OF PUMP STATION FAILURE IN TIME 
Sampling and simulating the before-mentioned distributions - derived via conditionalizing the NPBN - 

returns the underlying probability of asset failure. The probability of failure can be interpreted as ‘the 

probability that the system cannot deliver the required capacity, while required’. Figure 39 is a result 

of the simulations, conditionalized on the values mentioned in paragraph 8.1 which represent the 

different scenario-packages. The High and Low values can be interpreted as the extreme probabilities 

of failure.  
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Figure 39: Probability of asset failure in time per scenario 

Note that these probabilities of failure are relatively high. The main contributor is the fact that the 

marginal distribution of the discharges in IJmuiden in the NPBN is an approximated dataset, see 

appendix V.2.. The original dataset covered all discharged data – by pumps as well as by free discharge. 

Still this is our best approximation, which shows to contain higher discharges than the cumulative 

density function of the pumped discharges in van der Wiel et al. (2013). Consequentially, the 

probabilities will rise significantly. Although the results of the simulations can be doubtable since they 

rely on many assumption, three main conclusions can be drawn. 

First note that the probability of pump station failure increases over time.  The overall increase of the 

curves can be explained by the fact that the probabilities of the extreme discharges and maximum 

total discharge capacities – see figures 37 and 38 - a slowly converge.  

Secondly, note that the slopes of mainly the lines are very small. The small slope indicates that climate 

change impacts the failure probability of pumps to very small proportions. In other words, the 

ARC/NSC-area does not have to fear for the effects of climate change on the short term. However, for 

the asset manager a small slope illustrates danger since a ‘hard’ moment of failure cannot be 

designated. 

Third, the contribution of the environment-dependent model is limited. The transition probabilities –

dependent on the time-to-failure and sea level rise – show a very small changes per time step. This can 

also be attributed to the very gradual effect of climate change.  

Overall one can say that the currently estimated effects of climate change are very limited. However, 

this statement immediately raises the question whether the effects are also limited when the current 

predictions are wrong.  

11.4. HYPOTHETICAL CASE: UNEXPECTED SEA LEVEL RISE 
This paragraph considers the case that the current predictions are incorrectly determined and sea level 

rise occurs twice as fast. The sea level rise increments are also based on Bamber & Aspinall (2013). 

Here the probability of failure will be briefly examined and reflected to the previous findings, discussed 

in the previous chapter. The results only consider the Medium case.  

Figure 40 shows the probability of failure of pump station failure influences by sea level rise that 

develops twice as fast as currently predicted. For comparison, the medium case of the previous 

paragraph is illustrated. Note that both lines are diverging over time. Thereby, note that the 
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environment-dependent deterioration model shows larger differences with the environment-

independent deterioration model than in the previous case.  

  

Figure 40:  Probability of asset failure based on ‘new’ sea level rise predictions 

The exponential increase of probabily of failure can be directly related to the Q-H curve. The figure 

below shows the discharge capacity occurrences per time unit. Note that – due to water head increase 

– the minimum pump capacities shift to the lower values as expected in paragraph 1.5. However, due 

to the enormous sea level rise – maximally 900mm – the probability that the pump cannot pump the 

discharges increases. Note for example that the pump already hits its minimum capacity in 2050. 

Although it sounds very logical, the model that once the water levels exceed the pump’s discharge 

range, the probability of failure increases exponentially and system failure is upcoming.  

 

Figure 41: CDF of the Required Discharges over time 

 

  



Part IV | Conclusions and Recommendations  

57 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Part IV – Conclusions and 

Recommendations 
  



Part IV | Conclusions and Recommendations  

58 
 

This page was intentionally left blanc 

  



Part IV | Conclusions and Recommendations  

59 
 

12. CONCLUSION 

This chapter concludes on the main research question which evolved from the research problem and 

research question. To recap, this research stated that since large maintenance assignments are 

upcomming, hydraulic asset owners require accurate predictions of their assets lifecycle-end. Since 

climate change fortifies asset deterioration - and consequentially increases the failure probability over 

time -, long term trends as climate change must be incorporated into the predictive failure models. To 

narrow the scope of the research, the focus is on coasta pump stations. Following from this statement, 

we derived the following research question: 

‘How can long-term trends – such as climate change – be introduced to reliability 

analysis in order to determine the effect on the pump stations reliability on the 

longer term?’ 

This research provided a reliability analysis of coastal pump station that is supported by non-

parametric Bayesian Networks and Markov chains to quantify the effect of the long term trend on the 

assets probability of failure. Part II: Reliability Analysis for pump stations described the path from NPBN 

set-up, through theoretical validation, to the performance of simulations in order to require the 

probability of failure in time. 

This formation of the model departed from Kosgodagan-Dalla Torre et al., (2017), which is the first 

who proposed a method that made a stochastic-process-based deterioration model dependent on its 

environment. In his study, Bayesian Networks are utilized to model the dependencies between 

covariates and the input of the deterioration model, represented by a discrete Markov chain. 

Unfortunately, the use of the discrete Bayesian Network makes the model unsuitable to incorporate 

long-term trends which requires the support continuous distributions. For this reason, Non-Parametric 

Bayesian Networks – that are able to support discrete- and continuous marginal distributions – are 

adopted to make the deterioration input dependent on the covariates. The NPBN’s input is limited by 

its marginal distributions and rank correlations. Ideally those are derived from data, but most often – 

particularly in failure modelling – the marginal distributions are not known. In the latter case, expert 

judgement can be applied to determine the marginals.  

Based on these tools, the reliability analysis by handling  the following seven steps. First, the limit state 

function should be derived. In this research a general limit state function for pump stations is 

presented: 

𝑍(𝑡) = (∑ 𝐴𝑝𝑢𝑚𝑝,𝑛(𝑡) ∗  𝐶𝑝𝑢𝑚𝑝(𝑡)

𝑁

𝑛=1

) − 𝑄𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦;𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡) 

Secondly, the NPBN must be set up. Here, the dependencies must be drawn between environmental 

variables such as rainfall or sea level, and the variables of interest. Third, if the marginal distributions 

are determined by data, the model must be verified whether it sufficiently represents the dependence 

structure. This research presented and applied three varication tests. Fourth, dependent on the effect 

of climate change, the marginal distributions must be determined per time slice. This can be performed 

via inference or distribution estimations methods such as expert judgement. In case of rainfall, Klein 

Tank et al. (2015) expect the extremes to occur more often. Assuming that the extremes are covered 

in the marginal distributions, the marginal distributions do not have to be modified for every time slice. 

Now, Bayesian inference enables it to stress a belief into the deterioration input by conditionalizing on 

the variables directly impacted by the long term trend. In case of sea level rise, Bamber & Aspinall 
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(2013) showed that the magnitudes of future sea levels are not incorporated in the current datasets. 

Then the marginals should be adapted for each time slice in order to represent all possible sea levels 

at time 𝑡. Fifth, component deterioration must be added in order to determine the pump availability 

in time. This research proposes a combined approach of NPBNs and Markov chains that is based on 

Kosgodagan-Dalla Torre et al., (2017). The underlying idea is to update the transition probabilities, 

based on the environment. The outcome of is the pump-component’s unavailability in time. Six. Based 

on the system decompositions and the gained component unavailability per time unit, one is able to 

calculate the probability that an individual pump is unavailable. The seventh - and final - step is to 

determine the total asset’s probability of failure in time by conduction simulations.  

In order to verify whether the model does what it is supposed to do, the model has been applied to 

the case study of pumping station IJmuiden. The pumping station’s performance is affected by long 

term trends as increase in extreme rainfall occurrences and sea level rise. Both effects are incorporated 

into the model. After running the simulations one can say that the currently estimated effects of 

climate change to the pump stations reliability are very limited for the 2050 estimations. However, the 

model shows that when the sea level rises to such extent that it is out of pump-curve range, failure 

behaves exponentially. We can state that the NPBN-supported reliability analysis sufficiently 

incorporates long-term trends in order to determine the probability of failure.  
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13. DISCUSSION 

This chapter discusses the journey throughout this research to propose a method and fit the proposed 

methods to the case study. Here, the fundamental choices are critically discussed. This chapter 

discusses the impact of those assumptions and simplifications which serves as points of reference for 

further research and summons the link to the recommendations in the next chapter.  

13.1. METHOD RELATED 
This research proposed a melting pot of probabilistic methods to describe the relationship between 

deterioration and environment. Probabilistic methods showed to be commonly accepted in 

infrastructure asset management. Therefore this research builds on probabilistic concepts such as 

stochastic-based deterioration models. Although the method proved to be valid, a lot of time, effort 

and statistical background knowledge is required to set up a model like this. Therefore one can 

question whether probabilistic methods are the best way to tackle the problem.  

The opposite of probabilistic methods are deterministic methods. One deterministic method that is 

able to represent the dependencies between variables is system dynamics. System dynamics 

elementary builds on differential equations, which directly marks the lack of adaptability once a 

variable is observed, see appendix III – Bayesian Reasoning. Thereby, system dynamics assumes a 

perfect correlation between variables, while this is absolutely not true. In other words, once one is 

interested in the development of a certain variable over time and its dependent variables can be 

observed, the probabilistic method can be assumed to be the most suitable method. Despite the fact 

that it requires lots of afford to set up, the benefits are great.  

13.2. CASE RELATED 
The theoretical method is reflected to the case study of Pumping station IJmuiden. To prove that the 

model actually worked as we expected, several assumptions are made that impact the case related 

results. Here, the case-related assumptions and simplification will be criticized.  

 Use of the real pump discharges 

The marginal distribution of the discharges in IJmuiden in the NPBN is determined by the 

dataset that covers all discharged data – by pumps as well as by free discharge. In the data 

analysis we voided the discharges > 260 m3/s since they cannot be pumped by the pumping 

station. What remains is a data set of discharge samples 120 – 260 m3/s of which we do not 

know which are pumped by the pumping station or freely discharged. Still this was the best 

approximation regarding the pumped discharges at IJmuiden.  

 

 Unjustified use of the Gaussian copula 

The model validation in paragraph 10.4. showed that the utilization of the Gaussian copula 

might not be the best assumption. The goodness-of-fit tests showed that the utilization of the 

Gumbel copula would be more justified. Due to the benefits of Gaussian copula utilization – 

rapid calculations and UniNet-support – we retained the Gaussian copula assumptions. The 

consequences of the assumption of the Gaussian copula are hard to estimate qualitatively; it 

dependents on the dependence structure of the whole network.    

 

 Estimations of the unknown marginal distributions 

Then the unknown marginal distributions – related to the input-parameter of the stochastic-

process-based deterioration model - are assumed via estimating by the 5th, 50th and 95th 
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percentiles, given its parental node. Then, a parametric distribution is fitted to the percentiles. 

Where the results show that the probability of failure is highly sensitive to the outcomes of 

the Markov chain, more accurate estimations of the unknown marginal distributions is 

required. The same counts for the estimations of the rank correlations.  

 

 Use of an oversimplified Markov chain 

One of the main discussion points is the use of an oversimplified deterioration model is used; 

a two-state Markov chain. The transition probabilities are determined by their MTTF and 

MTTR. The MTTF is determined by the mean of the drawn time-to-failure distribution samples. 

Mainly in the low and high scenario showed to the MTTF to fluctuate over time. This is because 

the MTTF is calculated based on 2500 samples of a (conditionalized) Weibull distribution. Since 

the increase is very small per time step, this small sample amount can cause shifts in the MTTF.  

 

 Number of simulations 

Although the probability of asset failure-curve shows an increasing trend, it is pretty ‘bumpy’ 

where we expect a smooth line. One of the main reasons is that the involved distributions 

increase in uncertainty over time. This is why the line gets more ‘bumpy’ when time matures. 

In this research, we performed 50.000 simulations times the number of peak-discharge 

occurrence per year, which is already an enormous amount since the simulations are 

performed over 34 years.  

Out of the above mentioned discussion-points we can conclude that mainly the application of the 

proposed framework contains some doubtable points that require further research. The next chapter 

summons some ideas regarding future research to make proposed framework more accurate.  

  



Part IV | Conclusions and Recommendations  

63 
 

14. RECOMMENDATIONS 

This study introduced a combination of reliability analysis theory, Non-Parametric Bayesian Networks 

and stochastic-process-based deterioration models to model the dependency between component-

deterioration and a dynamic environment, influenced by a long term trend such as climate change.  

Finally, the proposed model is able to calculate the probability of system failure. During the 

development of the model ideas came up that would improve the model or even extend it. The 

proposed ideas to improve the model mainly concern improvements regarding the accuracy of the 

model outcome. Before those ideas will be elaborated,  probably the most important recommendation 

will be discussed first in order to emphasize its importance. 

14.1. GENERAL RECOMMENDATIONS 
The general recommendations concern the overall recommendations that are not entirely  the aim of 

this research, but are worth to be mentioned. 

 Standardize the data-gathering procedure 

Within this research it showed to be challenging to gather sufficient- and suitable data. While 

the world is slowly shifting towards data-based applications, such as Artificial Intelligence,  the 

input into these new concepts is lacking behind. Consequentially, the motivation to initiate 

those new concepts into the business is very low since it currently takes much effort to retrieve 

suitable input.  The first main reason noticed throughout the research process is that the 

entities responsible for the asset’s management are not critical enough regarding their 

datasets. Although there are exceptions, mainly the water board’s data sets contain enormous 

amounts of gaps while this can easily be solved by reliable measurements. The second reason 

is that the data-sets are all gathered on different intervals. In this research, the  discharges 

passing by were gathered every day, every ten minutes or every 20 minutes. In order to 

compare the data,  the researcher must first transform the datasets to higher time-intervals; 

one day or even one year. Transformation limits the possibilities of the model; for example, to 

model the maintenance over time one actually needs an hour time-scale.  

 

Ideally, ideally continuous measurements should solve this but are known to be expensive 

since continuous data extends the required storage capacity enormously. Therefore we argue 

mainly governmental bodies – in this case Rijkswaterstaat and the water boards – to contribute 

to a standardized data gathering procedure in order to derive data with the same time-interval 

and invest in reliable measurements to collect the data without any gaps.   

 

Thereby, asset managers should gather their data in more structured in accordance to the 

input parameters of stochastic processes such as the Markov Chain and Gamma Processes. 

Admitting that it might be relatively hard to define more than 2 observable states, it would be 

an added value to do more accurate estimations regarding future failure and base it on the 

physics of failure. For the Markov Chain this would be expected transition time-distributions 

for each state, such as sketched in chapter 7. For the Gamma Process this would be a 

distributions of the cumulative deterioration on predefined inspection intervals.  
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14.2. MODEL RELATED IMPROVEMENTS 
This paragraph sums up the general model improvements to the reliability analysis presented to 

determine the probability of coastal pump failure in time that is influenced by a long term trend. The  

prosed recommendations are presented by importance. 

 Including the Clayton and Gumbel copula in UniNet 

Although the Gaussian copula contains huge benefits and is applicable to the predominant 

part of applications, this research showed to be an exception. Here, the Gumbel copula is the 

best fit. Unfortunately, to our knowledge no software has yet been developed that is able to 

represent the NPBN-arcs with Gumbel or Clayton copulae. A software package that supports 

the Gaussian, Gumbel and Clayton copula would be a solution to optimize the dependency 

structure.  

 

 Towards a Dynamic Non-Parametric Bayesian Network 

In this research are the separate time-slices treated as independent. However, in reality they 

actually are dependent. For example; given a high SLR this year, then the SLR is also likely to 

be high the next year. In order to model dependencies between time slices, Kosgodagan-Dalla 

Torre et al. (2017) and Straub (2009) showed that Dynamic Bayesian Networks are perfectly 

capable to stress a belief into future variable distributions based on observations in the 

present, see paragraph 5.1.2.. Another advantages of DBNs is that modelling the yearly 

dependencies would also make the reliability analysis more suitable for future decision-

making. For example, the construction of a lock in 2030 leads to higher leakages. Then, one is 

able to stress a future belief regarding the pump capacities of surrounding pump stations, 

given higher discharges in 2030.   

 

 Utilization of the Gamma Process 

In contrast to the previous recommendation for future research, one can also use the Gamma 

process as stochastic-based deterioration method. Appendix II elaborated the Gamma 

process. Compared to the Markov chain, the Gamma process is a more elegant process to 

derive the time-to-failure distribution. Adopting the Gamma process instead of the Markov 

chain would mean the following for the model; instead of making the environment dependent 

on the time-to-failure distribution, adaptation of the Gamma process indicated that the 

environment must be made dependent on the data describing the cumulative deterioration at 

predefined points in time.  

 

 Detailed applications 

This research determined the probability of failure on a yearly-time scale basis including 

renewals in case of failure. Although this time-scale shows to be suitable for the problem 

mentioned, other cases ask for a more detailed approach by modeling on a daily-time scale 

basis. Note that the models complexity would then exponentially increase since the number 

of time-slices – and with that nodes and arcs – increase. Thereby, modeling on a daily time-

scale would also include seasonal changes. In other words, modeling on smaller time scales 

would be a research itself. Here must be noted that a more detailed approach would increase 

the computation effort enormously.  
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14.3. CASE RELATED IMPROVEMENTS 
This paragraph sums up the recommendations for future research that were encountered through the 

process. The proposed ideas to improve the model mainly concern extensions that would increase the 

accuracy of the model outcome. The recommendations are order by their importance, beginning with 

the right inclusion of the stochastic-based process, since the used two-state Markov chain shows 

severe limitations to reliably assess the probability of asset failure.  

 Add pump policies 

In this research is assumed that the NSC/ARC-channel behaves as a river; the upcoming 

discharges must be pumped with certainty. However, in reality, when the discharges are too 

high, the surrounding water boards stop pumping their excess water into the NSC/ARC-

channel to reduce the required pump discharges at IJmuiden. This would give more reliable 

quantities for the probability of pump station failure.  

 

 Increase number of states Markov chain process  

A 𝑛-state Markov chain contains  benefits in modeling failure and maintenance. Including 

more than two states enables the deterioration process to include the rates of deterioration. 

For example, the probability that the component transits from state 1 to 2 can be lower than 

the probability that the component transits from state 2 to 3. This more detailed approach 

would contribute to the accuracy of component deterioration. Concerning maintenance 

modelling, the adopted two-state Markov chain assumes renewals to the ‘as new’ state. A 

benefit of an 𝑛-state Markov chain, maintenance can be modeled as being ‘imperfect’ by 

defining the transition probabilities that the component goes to state 𝑛  at time 𝑡  after 

maintenance.  

 

 Utilization of Expert Judgement for marginal distributions and rank correlations 

In chapter 6 is stated that the NPBN’s input is limited to its marginal distributions and rank 

correlations. In the ideal case, the both are defined by the associated data sets of two random 

variables. However, in many cases data is not available or not representative. In this  research 

the unknown marginal distributions are simply determined by estimating their 5th, 50th and 

95th percentiles, given the parental nodes. Thereby, the unknown rank correlations are 

estimated by logical reasoning. Although not applied in this research, there are methods to 

defensibly quantify both inputs. Cooke (1991) presents a method to determine the unknown 

marginal distributions based on expert elicitations. Thereby, Morales, Kurowicka, & Roelen 

(2008) proposed a model to defensibly elicit the (un)conditional rank correlations.  
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APPENDIX I – RELIABILITY ANALYSIS 

Reliability can be defined as the ability of an asset to perform a required function under state 

conditions for a specified period of time (Hastings, 2015). Pump stations does not perform its function 

when the discharge capacity is lower than the required capacity.  This chapter elaborates on the central 

concept to introduce the long term trend. 

In order to treat the problem described in chapter 1 in a probabilistic way, the point of departure is 

the reliability analysis. In terms of structural reliability the probability that the system functions at a 

specific time, can be represented as follows: 

 𝑃[𝑆𝑦𝑠𝑡𝑒𝑚 𝑖𝑠 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒] = 𝑃[𝑅 ≥ 𝑆] (16) 

Where 𝑅 is the resistance and 𝑆 the solicitation, both described by their distributions. Logically, but 

still worth to mention, those distributions can be parametric or non-parametric in case of data. Instead 

of thinking in terms of system reliability, literature prefers to reason in terms of system unreliability. 

The unreliability of a system is also denoted as the probability of failure (Verma, Ajit, & Karanki, 2016). 

In other words, the system reliability is simply the complement of the probability of failure. In its 

simplest format the system is failed when the resistance (𝑅) is smaller than the solicitation (𝑆), 𝑅 <

𝑆.  

Probability of Failure

Solicitation (S)

Resistance (R)

 

Figure 42: Definition probability of failure 

When the distributions of the resistance (𝑅) and solicitation (𝑆) are known, the probability of failure 

𝑃𝑓  can be calculated as the probability that the solicitation (𝑆) is higher than the resistance (𝑅), see 

figure 42. The same problem can be formulated by means of a limit state. This is an equation beyond 

which the system or part of the structure does no longer fulfil one of its performance requirements, 

technically of functionally. The limit state (𝑍) can be assessed by considering the resistance (𝑅) and 

the solicitation (𝑆): 

 𝑍 = 𝑅 − 𝑆 

𝑃𝑓 = 𝑃[𝑍 < 0]. 
(17) 

The equation above is called the limit state with accompanied definition of its probability of failure.  

Depending on the type of infrastructure under consideration, the limit state of various functions can 

be defined. For example, breaching is the crucial limit state for flood defenses. For other structures 

the key requirement can also refer to another function, such as the available discharge capacity of a 

discharge sluice or the availability of a navigation lock (Jonkman et al., 2018). 
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APPENDIX II - STOCHASTIC-PROCESS-BASED MODELS 

The aim of this appendix is (1) to explain stochastic-process-based methods which Singpurwalla (1995) 

prefers above the currently used failure rate models and (2) to quantify the independent 𝑋(𝑡) 

mentioned in the previous appendix. Stochastic-process-based models are also called deterioration-

models since they describe the decay of a certain object. First the reason to use stochastic processes 

to describe the decay of an object will be explained in more detail. Thereafter two stochastic processes 

that are commonly accepted, Markov- and Gamma processes, will be elaborated.  

II.1. STOCHASTIC PROCESSES 
Generally, stochastic processes, also called random processes, model the evolution of a random 

system in time. Mathematically, a stochastic process is defined as a family of random variables 𝑋(𝑡) 

defined on a given probability space and indexed by 𝑡 belonging to a parameter set 𝑇. The set 𝑇 is the 

time sequence of the process and it can be discrete (𝑇 = {0,1,2, … . , 𝑡}) or continuous (𝑇 = {0, ∞}). 

See figure 43, the range of the random variable 𝑋(𝑡) reduces a state space 𝑆, which can be discrete or 

continuous. Here we treat two stochastic processes that are generally accepted in maintenance 

optimization of infrastructural assets: (discrete-state) Markov chains and (continuous-state) Gamma 

processes.  

 

 

Figure 43: Two different trajectories of random walks 

A stochastic process is named a Markov process when it contains the so-called Markov property. The 

Markov property states that the future state of 𝑋(𝑡)  is only dependent on the present state, i.e. the 

past deterioration has no influence on the future deterioration. Another stochastic process is the 

Gamma process, initiated by Jan van Noortwijk. Published examples of stochastic-process applications 

to deterioration are erosion (van Noortwijk, 2009) or corrosion (Hong, 1999). The former is modeled 

by a Gamma process and the latter by a (discrete-state) Markov chain. 
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II.2. MARKOV CHAINS 
Markov chains have been extensively used in the context of risk, reliability, and maintenance 

management for civil infrastructures (Baik et al., 2006; Edirisinghe et al., 2015; Klutke & Sanchez-Silvia, 

2016). Let’s assume that random deterioration quantity 𝑋(𝑡)  has a discrete state space {1,2,3,4), 

which implies that 𝑋(𝑡)  can take 4 states, for example {𝐴𝑠 𝑛𝑒𝑤, 𝑔𝑜𝑜𝑑, 𝑏𝑎𝑑, 𝑓𝑎𝑖𝑙𝑒𝑑}, see figure 44.  

II.2.1. Mathematics 

In order to determine the probability that the component reaches the fourth state “failed” over time, 

we first have to determine the probabilities that the component goes from state 𝑖 to state 𝑗 for one 

time step Δ𝑡, see the underlying figure.  

X1 X2 X3 X4
p12 p23 p34

p11 p22 p33 p44

p41

 

Figure 44: Schematic representation Markov chain, including renewals 

This probability is called the transition probability, denoted as 𝑝𝑖𝑗 . Logically, 𝑝𝑖𝑖  represents the 

probability that the system remains in the same state as the previous state. According the Markov 

property, which states that the future state is only dependent on the present state,   𝑝𝑖𝑗  can 

mathematically be defined as follows for the first time step (Ross, 2014): 

 𝑝𝑖𝑗 = 𝑃(𝑋1 = 𝑔𝑜𝑜𝑑|𝑋0 = 𝐴𝑠 𝑛𝑒𝑤) (18) 

𝑝𝑖𝑗  is often also named as the one-step transition probability from state 𝑖  to state 𝑗, with 𝑝𝑖𝑗 ≥ 0,

𝑖, 𝑗 ≥ 0 and ∑ 𝑝𝑖𝑗 = 1, 𝑖 = 1,2, …∞
𝑗=0 , Ω. Let 𝑷𝒊𝒋 denote the matrix of one-step transition probabilities 

𝑝𝑖𝑗, so that: 

 
𝑷𝒊𝒋 = (

𝑝1,1 ⋯ 𝑝1,Ω

⋮ ⋱ ⋮
𝑝Ω,1 ⋯ 𝑝Ω,Ω

) (19) 

Now we have to define the 𝑡-step transition probability matrix 𝑷𝑖𝑗
𝑡 , which represents the transition 

probabilities  𝑝𝑖𝑗
𝑡  for time 𝑡: 

 𝑝𝑖𝑗
𝑡 = 𝑃(𝑋𝑡+𝑘 = 𝑗|𝑋𝑘 = 𝑖) (20) 

Then, via the Chapman-Kolmogorov equations is shown that the 𝑡-step transition matrix 𝑷𝑖𝑗
𝑡  may be 

obtained by multiplying the matrix 𝑷 by itself 𝑡 times (Ross, 2014): 

 𝑷𝑖𝑗
𝑡 = 𝑷𝒕 (21) 

Finally, we define the state probability vector at time 𝑛, 𝒑𝒕, as a row vector. Then, given the initial state 

probability 𝒑𝟎 and the one-step transition probability matrix 𝑷, we can easily determine 𝒑𝒕 by (Klutke 

& Sanchez-Silvia, 2016): 

 𝒑𝒕 = 𝒑𝒕𝑷 = 𝒑𝟎𝑷𝒕  (22) 
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Since 𝒑𝟎  is a 1 × 𝑚-matrix and 𝑷𝒕 a 𝑚 × 𝑚-matrix, 𝒑𝒕 is a 1 × 𝑚-matrix. Then, the mth-entry of 𝒑𝒕 

represents the probability that the component is in the failed-state at time 𝑡, i.e. the probability of 

component failure at time 𝑡 . After applying the Markov process, the underlying figures show 

representative pdf and cdf. 

 

Figure 45: Output Markov chain  

II.2.2. Input parameters 

To conclude, via estimating the transition probabilities from one state to the other, we are able to 

determine the probability of failure for each time step. Those probabilities can be estimated by data  

or via expert judgement (Baik et al., 2006; Kosgodagan-Dalla Torre et al., 2017).  

II.3. GAMMA PROCESSES 
In comparison with the Markov chain, the Gamma process is a more complex deterioration process. 

Abdel-Hameed (1975) was the first who proposed to use the Gamma process as a model for random 

deterioration in time. Since the initial paper, the same author used the Gamma wear process as a 

building  block for developing mathematical models for optimizing time-based maintenance and 

condition-based maintenance. Thereafter, many other researchers adopted the initial model of Abdel-

Hameed as a base for other applications and extensions.  

II.3.1. Mathematics 

The Gamma processes is illustrated in the underlying figure and can be defined as follows. A random 

deterioration quantity 𝑋(𝑡)  has a Gamma distribution with shape parameter 𝛼 > 0  and scale 

parameter 𝛽 > 0 if its probability density function is given by3: 

 
𝐺𝑎(𝑥|𝛼, 𝛽) =

𝛽𝛼

Γ(𝛼)
𝑥𝛼−1 exp{−𝛽𝑥} (23) 

Where Γ(𝛼)= ∫ 𝑧𝛼−1𝑒−𝑧𝑑𝑧
∞

𝑧=0
 is the Gamma function for 𝑎 > 0. As drawn in figure 46, we make a 

Gamma distribution for every time step ∆𝑡, which creates a series of Gamma distributions: a Gamma 

process. Time-increasing uncertainty and the behavior of deterioration can be incorporated in the 

shape parameter 𝑣. Then, let 𝛼(𝑡) be a non-decreasing, right-continuous, real-valued function for 𝑡 ≥

                                                             
3 In literature, the Gamma distribution is also frequently denoted as follows: 

𝐺𝑎(𝑥|𝑘, 𝜃) =
1

Γ(𝑘)𝜃𝑘
𝑥𝑘−1 exp (−

𝑥

𝜃
) 

The notation of the shape- and scale parameters 𝑘, 𝜃 , respectively, deviates from the paramters 
mentioned in equation (5): 𝑘 = 𝛼 and 𝜃 = 1/𝛽. MATLAB® uses the notation above.  
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0,with 𝛼(0) ≡ 0. The Gamma process with shape function 𝛼(𝑡) > 0 and scale parameter 𝛽 > 0 is a 

continuous-time stochastic process with the following properties (van Noortwijk, 2009): 

(1) 𝑋(0) = 0 with probability one: 

(2) 𝑋(𝜏) − 𝑋(𝑡)~𝐺𝑎(𝑣(𝜏) − 𝑣(𝑡), 𝑢) for all 𝜏 > 𝑡 ≥ 0; 

(3) 𝑋(𝑡) has independent increments. 

The shape parameter 𝛼(𝑡) is defined as the expected maximum deterioration at time 𝑡. In most cases, 

this function behaves according the following power law: 

 𝛼(𝑡) = 𝑎𝑡𝑏  (24) 

With physical constants 𝑎 > 0  and 0 < 𝑏 < 1 . Thereby, we also incorporate the uncertainty 

parameter 𝜓. This parameter represents the uncertainty in the deterioration process: the larger the 

𝜓, the more uncertain the deterioration process. Now, denote 𝑋(𝑡) as the maximum deterioration at 

time 𝑡, and substitute the parameter 𝜃 and equation (24) into equation (23), the probability density 

function of 𝑋(𝑡) be given via the underlying equation:  

 𝑝𝑋(𝑡)(𝑥) = 𝐺𝑎(𝑥|[𝑎𝑡𝑏]/ 𝜓, 1/ 𝜓) (25) 
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Figure 46: Gamma process 

As illustrated in figure 46, the component fails when it crosses as certain threshold, say 𝑦. Let the 

time at which failure occurs, i.e. at which the failure level is crossed, be denoted as the life time 𝐿. 

Owing the Gamma distributed maximum deterioration of equation (25), the (cumulative) time-to-

failure distribution can be written as: 

 
𝐹(𝑡) = P(𝐿 ≤ 𝑡) = P(𝑋(𝑡) ≥ 𝑦) =  ∫ 𝑝𝑋(𝑡)(𝑥)𝑑𝑥

∞

𝑥=𝑦

 (26) 
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                                                                                        =
Γ([at𝑏]/𝜃, 𝑦/𝜃)

Γ([at𝑏]/𝜃)
 

Where Γ(α, 𝑥) = ∫ 𝑡𝛼−1𝑒𝑡𝑑𝑡
∞

𝑡=𝑥
 is the incomplete Gamma function for 𝑥 ≥ 0  and 𝑎 > 0 . The 

probability density function can logically be calculated by determining the derivative of equation (8). 

However, a more appealing approach is to determine the probability that 𝑋(𝑡) = 𝑦 for each time step:  

 𝑃(𝑋(𝑡) = 𝑦) = 𝐺𝑎(𝑥|[𝑎𝑡𝑏]/ 𝜓, 𝑦/ 𝜓) (27) 

After all, the underlying figures show representative pdf and cdf after the application of the Gamma 

process.   

 

Figure 47: Output Gamma process 

II.3.2. Input parameters 

The challenge to model the Gamma process is to determine the input parameters 𝑎, 𝑏 and 𝜓. van 

Noortwijk (2009) proposes three models based on data which should represent the cumulative 

deterioration at several inspection-moments; method of maximum likelihood, method of moments, 

method of Bayesian statistics. In absence of representative data, expert judgement can be used. For 

more in-depth information we refer to the mentioned source.  
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APPENDIX  III - ‘CLASSIC’ BAYESIAN NETWORKS 

III.1. INTRODUCTION 
This appendix elaborates on the concept of Bayesian Networks. A Bayesian Network (BN), also called 

Bayesian Belief Networks, is a model that provides an elegant way of expressing joint distributions of 

a large number of interrelated variables. According to Pearl (1988), the initiator of BNs, a BN consists 

of two parts: a qualitative and a quantitative part. The qualitative part is the graphical part of the BN 

which consists of a set of nodes and a set of arcs, also known as an directed acyclic graph (DAG). The 

quantitative part of the BN contains the marginal distributions per node, conditioned on the parental 

nodes. The marginal distributions can be taken from data directly or that may be elicited from experts, 

for example via Cooke’s method (Cooke, 1991). Applications of Pearl’s theory, predominantly in the 

medical domain, demonstrate one of the main strength of Bayesian Networks; their ability to cope 

with large numbers of variables.  

III.2. BAYESIAN REASONING 
Three decades ago, a prime challenge in artificial intelligence research was to program machines to 

associate a potential cause to a set of observable conditions. Pearl figured out how to do it using 

Bayesian networks. In Hartnett (2018), Judea Pearl state the following: 

‘The language of algebra is symmetric: If 𝑋 tells us about 𝑌, then 𝑌 tells us about 𝑋. 

There’s no way to write in mathematics a simple fact – for example, that the upcoming 

storm causes the barometer to go down, and not the other way around. Mathematics 

has not developed the asymmetric language required to capture our understanding 

that if 𝑋 causes 𝑌 that does not mean that 𝑌 causes 𝑋.  

The combination of the directed acyclic graph (DAG) and conditional independence statements, or 

semantics, provide the Bayesian network of this asymmetric property.   

III.2.1. Directed Acyclic Graphs 

Briefly, the qualitative part of BNs consist of a set of variables (nodes) and a set of directed edges (arcs) 

between variables. The only constraint on the arcs allowed in a BN is that there must not be any 

directed cycles. The figure below shows a BN model for five random variables 𝑿 = {𝑋1, … . , 𝑋5}. Note 

that random variable 𝑋4 is attached to 𝑋1 and 𝑋2 via two arcs. According BN terminology, 𝑋4 is called 

a ‘child’ node of ‘parent’-nodes 𝑋1 and 𝑋2.  
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X1

X2 X3

X4 X5

 

Figure 48: An example of a Directed Acyclic Graph (DAG) 

III.2.2. Semantics 

The direction of the arrows add information regarding to the conditional (in)dependencies within the 

graph or more simplified: it translates the reasoning behind the variables into conditional 

dependencies. This encoded information is also known as d-separation or conditional independence 

structures.  We can basically distinguish three structures: 

① → ② → ③ The first structure states that without observing 2, observing 1 would say 

something about the distribution of 3, or in probabilistic language;  𝑋1 ⟂/   𝑋3. 

That is 1 is not marginally independent of 3. However, if 2 is known, then 1 

would not add extra information to explain 3, that is 1 and 3 are conditionally 

independent, given 2: 𝑋1 ⟂ 𝑋3|𝑋2. 

① ← ② → ③  The second structure is similar as the first case: 𝑋1 ⟂/   𝑋3, but 𝑋1 ⟂ 𝑋3|𝑋2. 

① → ② ← ③ The third structure deviates from the latter cases. Here, 1 and 3 are marginally 

independent 𝑋1 ⟂ 𝑋3, but not conditionally independent when 2 is observed. 

That is, if we observe 1(3), without observing 2 that would say nothing about 

3(1), respectively. In contrast, if we observe 2, then observing 1(3)  will say 

something additional about the distribution of 3(1), so 𝑋1 ⟂/   𝑋3|𝑋2. 

III.3. CONDITIONAL PROBABILITY FUNCTIONS 
As mentioned in the introduction of this appendix, the quantitative part consists of the marginal 

distributions per node, conditioned on the parental nodes. Obviously, these conditional probabilities 

are built Bayes’s theorem which describes the probability of an event, based on prior knowledge of 

conditions that are related to the event: 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
 

Here, 𝑃(𝐴|𝐵) is the conditional probability: the likelihood that event 𝐴 occurs, given that 𝐵 occurs. 

𝑃(𝐵) is the marginal probability of observing parental event 𝐵. Note that if events 𝑃(𝐵) and 𝑃(𝐴) are 

independent, i.e. 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵) , then 𝑃(𝐴|𝐵) = 𝑃(𝐴) . If we want to know the joint 

probability density function of multiple dependent variables, one uses the following notation that is 

based on conditional probabilities.  
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𝑃(𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛) = ∏  𝑃(𝐴𝑖|𝐴𝑖+1, … , 𝐴𝑛)

𝑛

𝑖=1

 

Now, let’s combine the conditional independence statements and the joint conditional probability 

function above. Then, a fundamental conclusion is that every variable is independent of its ancestors, 

given its parents. Therefore if every variable is associated with a conditional probability function of the 

variable given its parents 𝑃(𝐴𝑖|𝑃𝑎(𝐴𝑖)) then the joint probability may be written as:  

 
𝑃(𝐴1, 𝐴2, 𝐴3 , … , 𝐴𝑛) = ∏  𝑃(𝐴𝑖|𝑃𝑎(𝐴𝑖))

𝑛

𝑖=1

 (28) 

If a node has no parents, then 𝑃(𝐴𝑖|𝑃𝑎(𝐴𝑖)) = 𝑃(𝐴𝑖). For example, In figure 48,  node {𝑋1} have no 

parents, these nodes are solely defined by their marginal distributions. The other ‘child’-nodes’ 

marginal distributions, {𝑋2, 𝑋3, 𝑋4, 𝑋5} must be conditioned on the accompanied parental nodes. 

 

Positive Negative

0.2 0.8

Positive Negative

0.003 0.997

Smoking hist.

Positive

Negative 5E-5 0.999

Positive Negative

0.60 0.4

Lung Cancer

Positive

Negative 0.02 0.98

Positive Negative

0.25 0.75

Smoking hist.

Positive

Negative 0.05 0.95

Positive Negative

0.25 0.75

Bronchitis

Positive

Positive 0.05 0.95

Lung Cancer

Positive

Negative

Negative Positive

Negative Negative

0.50 0.50

0.05 0.95   

Figure 49: An example of an Bayesian Network with probability tables 

Let’s assume the BN above, similar as figure 48, with discrete probabilities. According equation (28), 

the joint probability can be defined as follows: 

𝑃(𝐻, 𝐵, 𝐿, 𝐹, 𝑋) = 𝑃(𝐻)𝑃(𝐵|𝐻)𝑃(𝐿|𝐻)𝑃(𝐹|𝐵, 𝐿)𝑃(𝑋|𝐿) 

III.4. INFERENCE 
The probabilities are then given by the conditional probabilities in the associated tables. Based on the 

joint probability distribution we are able to calculate the conditional probabilities given that a certain 

variable is observed via, again, the conditional probability function. This is called inference. If one is 

interested in the probability that the patient has bronchitis, given that the X-ray is negative and the 

patient has a smoking history: 

𝑃(𝐵|𝐻+, 𝑋−) =
∑ 𝑃(𝐻+ , 𝐵, 𝐿, 𝐹, 𝑋−)𝐿,𝐹

∑ 𝑃(𝐻+ , 𝐵, 𝐿, 𝐹, 𝑋−)𝐵,𝐿,𝐹
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APPENDIX IV - BIVARIATE COPULAE 

In reliability analysis theory, one often utilizes the bivariate distributions of two random variables, for 

example the resistance 𝑅  and solicitation 𝑆 . As mentioned, in some cases those variables can be 

treated as independent which simplifies calculations. When variables are dependent, not enough 

information is provided by the separate one-dimensional marginal distributions to shape the two-

dimensional probability density function. Therefore, modern statistics shift more and more to the 

study of copulas. Their importance has clearly grown in the last ten years. Despite their growth in 

popularity, copulas are not too familiar year. Here we will briefly sketch the general concept of copulae.  

IV.1. SKLAR’S THEOREM 
Roughly speaking, copulas separate the effect of dependence from the effect of marginal distributions 

in a joint distribution (Jonkman, Steenbergen, Morales-Nápoles, Vrouwenvelder, & Vrijling, 2015). 

Following the copula approach, it is possible to construct the joint distribution requiring only the 

marginal distributions of the variables and measures of their dependence (Clemen & Reilly, 1999).The 

concept of copula is based on Sklar’s theorem which states that any multivariate joint distribution can 

be written in terms of the univariate marginal distribution functions {𝐹𝑥(𝑥), 𝐹𝑦(𝑦)}  and a copula 𝐶 

which describes the dependence between the random variables (Sklar, 1959): 

 𝐹𝑥𝑦(𝑥, 𝑦) = 𝐶{𝐹𝑥(𝑥), 𝐹𝑦(𝑦)}      𝑥, 𝑦 ∈ ℝ (29) 

IV.2. COPULA FAMILIES 
There is a large variety of copula types of which the Gaussian-, Clayton- and Gumbel copula are the 

most familiar one-parametric copulae. First, the Gaussian copula is given by:   

𝐶𝜌(𝑢, 𝑣) = 𝜙𝜌(𝜙−1(𝑢), 𝜙−1(𝑣)) 

Where 𝜙𝜌 denotes the bivariate standard normal cumulative distribution function with product 

moment correlation 𝜌 and 𝜙−1is the inverse of the univariate standard normal distribution function. 

The Clayton and Gumbel copulas are two of the most used one-parameter Archimedean copulas. The 

Clayton copula, parameterized by 𝜃, is given by:  

𝐶𝜃(𝑢, 𝑣) = exp {−([− log(𝑢)]𝜃 + [− log(𝑣)]𝜃)
1/𝜃

} , 𝜃 ≥ 1 

And the Gumbel copula, parametrized by 𝛽, is defined as: 

𝐶𝛽(𝑢, 𝑣) = (𝑢−𝛽 + 𝑣−𝛽 − 1)
−

1
𝛽 , 𝛽 ∈ [−1, ∞) 

Those three copula types present an important aspect of joint distributions, known as tail dependence. 

Joe (2014) introduced an upper tail dependence coefficient 𝜆𝑈  that measures the magnitude of tail 

dependence. A value 𝜆𝑈 > 0 indicates that it is likely to observe values of 𝑈 greater than 𝑢 given that 

𝑉 is greater than 𝑢 for 𝑢 arbitrarily close to 1. Via this coefficient, Joe (2014) showed that the Gaussian 

copula presents no tail dependence (𝜆𝑈 = 0), the Clayton copula presents lower tail dependence 

(𝜆𝑈 = 2−
1

𝜃) and the Gumbel copula presents upper tail dependence (𝜆𝑈 = 2 − 2
1

𝛽). 

In the figure below, you can find the separate copula-types, with its accompanied randomly sampled 

scatter plots. In the scatter plots one sees the (tail)dependence structure between the two marginal 𝑈 

and 𝑉.  
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Figure 50: Most frequently used copulas and its accompanied scatterplots.  

IV.3. COPULA VALIDATION 
Since the benefits and theory of around the study of copulas are familiar now, the focus shifts to the 

practical side now, namely fitting a copula to data. Many proposals have been made for goodness-of-

fit testing of copula models. Joe (2014) suggested an approach based on semi-correlations and Genest, 

Rémillard, & Beaudoin (2009) propose a set of statistical ‘blanket tests’ of which the Cramèr-von Mises 

statistic test will be utilized here.  

IV.3.1. Semi-Correlations 

According to Joe (2014), semi-correlations can be defined as the Pearson’s product moment 

correlation coefficients computed in the upper and lower quadrants of the normal transforms of the 

original variables. First, the original variables (𝑋1, 𝑋2) need to be transformed to standard normals 

(𝑍1, 𝑍2), via: 

 𝑍(𝑋𝑖,𝑗) =  𝜙−1(𝐹(𝑋𝑖,𝑗)) (30) 

Where 𝑖  is the number of the considered variable and 𝑗 = 0,1, … , 𝑛 , with 𝑛  is the number of 

observations. For clarification, first one should calculate the ranks per value via the empirical 

cumulative distribution function: 𝐹(𝑋1)  and 𝐹(𝑋2). Then every observation 𝑋𝑖,𝑗  has an associated 

rank-value 𝐹(𝑋𝑖,𝑗), [0,1] . The ranks per variable 𝑈 ~ 𝐹(𝑋𝑖) is uniformly distributed. Plugging the 

uniformly distributed rank values of 𝑋𝑖  into the inverse standard normal distribution will give the 

transformed standard normal values 𝑍𝑖,𝑗. For positive correlation, semi-correlations in the upper right 

(𝜌𝑁𝐸) and lower left (𝜌𝑆𝑊) quadrants are: 

 𝜌𝑁𝐸 = 𝜌(𝑍1, 𝑍2|𝑍1 > 0, 𝑍2 > 0) (31) 

 𝜌𝑆𝑊 = 𝜌(𝑍1, 𝑍2|𝑍1 < 0, 𝑍2 < 0) (32) 
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For negative correlations, semi-correlations in the upper left (𝜌𝑁𝑊) and lower right (𝜌𝑆𝐸) are defined 

similarly. In general, larger absolute values of the semi-correlations than the ‘overall’ correlations 

indicate tail dependence.  

 

Figure 51: Semi-correlations per quadrant 

IV.3.2. Blanket test 

The ‘blanket’ test is discussed in Genest et al. (2009) and is based on Cramèr-von Mises statistics. 

Cramèr-von Mises statistics is used for judging goodness-of-fit of a cumulative distribution function 

compared to a given empirical distribution function. Translating the this application to the copula case: 

the idea behind this test is to measure the difference between the cumulative empirical copula and 

the cumulative theoretical copula. In essence the smaller the calculated differences are, the better the 

theoretical copula fits. The difference between the copula is measured according the ‘sum of the 

squared differences’-principle, stated below: 

 𝑀𝑛(𝒖) =  ∑{𝐶�̂�𝑛
(𝒖) − 𝐶𝑛(𝒖)}

2
, 𝒖 ∈ [0,1]2

|𝒖|

 (33) 

Where, 𝐶�̂�𝑛
(𝒖) is the theoretical copula and 𝐶𝑛(𝒖) is the empirical copula. The empirical copula is 

based on pseudo-observations 𝑼1, … , 𝑼𝑛. Pseudo-observations can simply be deduced from the ranks, 

𝑈𝑖𝑗 = 𝑅𝑖𝑗/(𝑛 + 1) = 𝑛𝐹(𝑋𝑖,𝑗)/(𝑛 + 1) and can be interpreted as a sample of the underlying copula. 

Then, the empirical copula is simply the bivariate cumulative distribution of pseudo-observations 

(𝑼1, 𝑼2): 

 
𝐶𝑛(𝒖) =

1

𝑛
∑ 𝟏(

𝑛

𝑖=1

𝑈𝑖1 ≤ 𝑢1, … , 𝑈𝑖𝑗 ≤ 𝑢𝑗) 

𝒖 = (𝑢1, … , 𝑢𝑗) ∈ [0,1]2 

(34) 

In this research we will only treat the one-parameter theoretical copulas. Figure 52 shows an example 

of the empirical copula and the cdf’s of the three treated theoretical copulae. Ostensibly, the 

differences between the theoretical copulae are very small, but large enough to designate the best fit. 

Where figure 51 also shows a magnitude of tail dependence with 𝜌𝑁𝐸 = 0.71, the best-fit Gumbel 

copula also designate upper tail dependence. 
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Figure 52: Example Blanket test 
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APPENDIX V – SYSTEM DECOMPOSITION & DATA 

This appendix elaborates on essential case characteristics such as the system decomposition and the 

background of the retrieved data.  

V.1. PUMP DECOMPOSITION  
The underlying figures show the simplified the pump-decomposition. The green nodes contain sub-

elements but for simplicity reasons those are the omitted.  

V.1.1. Stork Pump 

 

Figure 53: Pump decomposition Stork-pump 

V.1.2. Nijhuis Pump 

 

Figure 54: Pump decomposition Nijhuis pump 
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V.2. BACKGROUND DATA 
Since the NPBN builds on the input of marginal distributions and rank correlation coefficients, see 

chapter 6, the first step to build the NPBN is to analyze the environmental data. Every node in the 

network is attached to a certain data set to retrieve the marginal distribution. Unfortunately, we are 

dedicated to four-year dataset; from 2013 to 2016. The underlying reasons can be read in the following 

paragraph’s where the individual datasets are described. 

V.2.1. Data Discharge Complex IJmuiden 

The discharge-data of the IJmuiden complex is retrieved from the Rijkswaterstaat data-base on 

http://live.waterbase.nl. Here, we can retrieve historical discharge data until 21-7-2017. The retrieved 

data considers discharge measurements with an interval of 24h, measured at 08:00 in m3/s-units. 

In order to make the data suitable for the NPBN, we limited the data set until 31-12-2016 since we are 

interested in full year data. This date sets the upper limit for all following data. Thereby the lower limit 

is set on 1-1-2013. The dataset captures the free discharges as well as the discharge by pumps. 

Thereby, since the maximum pump capacity of the complex is 260 m3/s, all values above can be 

assumed to be freely discharged. These values are cancelled out of the dataset.  

V.2.2. Data Discharges Amsterdam Rhine Channel 

The original discharge-data of the ARC-water system is retrieved from Waternet which is the 

governmental agency that regulates  the drinking water supply, sewage systems and water 

management within the water board of ‘Amstel, Gooi en Vecht’. For this research we received data 

from 17-5-2012 until 9-2-2018. The retrieved data considers discharge measurements with an interval 

of 1h, measured in m3/h-units. 

In order to make the data suitable for the NPBN, we limited the data set until 31-12-2016. The lower 

limit is set on 1-1-2013, since we are interested in full years. This date is the under limit of all following 

data sets. Thereby, it will take time to transport the discharged water that is discharged by the 

considered pump station to get actually pumped by the discharge complex of IJmuiden. In order to 

catch this delay, we transformed the data from hourly discharges to cumulative discharges per day. By 

this, we capture the time it takes that the water will actually be pumped away by the discharge 

complex of IJmuiden, assuming that it will take one day.  

V.2.3. Data Discharges North Sea Channel 

The entities that are responsible for the discharges into the North Sea Channel are the water boards 

of Rijnland and Hollands Noorderkwartier. The water board of Rijnland is responsible for the discharges 

on the south side of the NSC and the water board of Hollands Noorderkwartier is responsible for the 

discharges north of the NSC. The data for the discharges is gather via these entities. Again, the data of 

the Hollands Noorderkwartier contains lots of unreliable measurements and is not considered in the 

NPBN. The discharge data of Rjjnland also contains errors for three of the five discharge complexes, 

only the complexes of Halfweg and Spaarndam are reliable. This enables us to calculate the cumulative 

discharges of all discharge complexes and transform these values, together with the two discharge 

complexes that contain no errors, to daily values. In this way we capture the time it takes that the 

water will actually be pumped away by the discharge complex of IJmuiden, assuming that it will take 

less than one day. 

V.3.4. Data Rainfall 

The daily cumulative rainfall-data has been registered by the Royal Dutch Meteorological Institute 

(KNMI) since 1951. Throughout the Netherlands, the KNMI has 325 precipitation stations that measure 

http://live.waterbase.nl/
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the daily rainfall between 08:00 and 08:00 the next day. For each station, the rainfall can be retrieved 

from https://www.knmi.nl/nederland-nu/klimatologie/monv/reeksen.  

For the purpose of this research, the rainfall data in the water system is divided into two locations; 

Loenen aan de Vecht and Heemstede. The first station must represents the ARC-region and the latter 

is considered representative for the NSC southern-region since we only work with the discharge data 

on the south-side of the NSC.  

 

  

https://www.knmi.nl/nederland-nu/klimatologie/monv/reeksen
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APPENDIX VI – ESTIMATION OF UNKNOWN VARIABLES 

VI.1. DISTRIBUTION FIT SEA LEVEL RISE 
Year 5th 10th 25th 50th 75th 90th 95th 𝝁 𝝈 

2017 6.10 6.20 6.47 7.04 8.14 10.00 11.68 2.039 0.190 

2018 6.93 7.07 7.43 8.19 9.65 12.13 14.38 2.201 0.217 

2019 7.75 7.93 8.39 9.38 11.25 14.44 17.33 2.346 0.242 

2020 8.56 8.79 9.36 10.60 12.94 16.92 20.53 2.477 0.266 

2021 9.37 9.64 10.34 11.85 14.72 19.58 24.00 2.597 0.290 

2022 10.16 10.49 11.33 13.14 16.58 22.42 27.72 2.708 0.312 

2023 10.94 11.33 12.33 14.47 18.53 25.43 31.69 2.812 0.334 

2024 11.72 12.17 13.33 15.83 20.57 28.62 35.92 2.908 0.355 

2025 12.48 13.01 14.34 17.22 22.70 31.98 40.41 2.999 0.375 

2026 13.24 13.84 15.37 18.65 24.91 35.52 45.16 3.085 0.394 

2027 13.98 14.66 16.39 20.12 27.22 39.24 50.16 3.166 0.413 

2028 14.72 15.48 17.43 21.62 29.61 43.13 55.41 3.242 0.431 

2029 15.44 16.30 18.48 23.16 32.08 47.20 60.93 3.316 0.448 

2030 16.16 17.11 19.53 24.74 34.65 51.44 66.70 3.385 0.465 

2031 16.86 17.91 20.59 26.35 37.30 55.86 72.72 3.452 0.481 

2032 17.56 18.72 21.66 27.99 40.04 60.46 79.01 3.516 0.497 

2033 18.25 19.51 22.74 29.67 42.87 65.23 85.54 3.578 0.513 

2034 18.92 20.30 23.82 31.39 45.78 70.18 92.34 3.637 0.528 

2035 19.59 21.09 24.91 33.14 48.79 75.30 99.39 3.694 0.542 

2036 20.25 21.87 26.01 34.92 51.88 80.60 106.70 3.749 0.556 

2037 20.90 22.65 27.12 36.74 55.05 86.08 114.26 3.802 0.570 

2038 21.53 23.43 28.24 38.60 58.32 91.73 122.08 3.854 0.584 

2039 22.16 24.19 29.37 40.49 61.67 97.56 130.16 3.903 0.597 

2040 22.78 24.96 30.50 42.42 65.11 103.56 138.49 3.951 0.610 

2041 23.39 25.72 31.64 44.39 68.64 109.75 147.08 3.998 0.622 

2042 23.99 26.47 32.79 46.39 72.26 116.10 155.93 4.044 0.635 

2043 24.58 27.22 33.95 48.42 75.96 122.63 165.03 4.088 0.647 

2044 25.16 27.97 35.11 50.49 79.75 129.34 174.39 4.131 0.659 

2045 25.73 28.71 36.29 52.60 83.63 136.23 184.00 4.173 0.670 

2046 26.29 29.44 37.47 54.74 87.60 143.29 193.87 4.213 0.681 

2047 26.84 30.17 38.66 56.91 91.65 150.52 204.00 4.253 0.692 

2048 27.38 30.90 39.86 59.12 95.80 157.94 214.38 4.292 0.703 

2049 27.91 31.62 41.06 61.37 100.03 165.52 225.02 4.330 0.714 

2050 28.44 32.34 42.28 63.65 104.34 173.29 235.92 4.367 0.724 

2051 28.95 33.05 43.50 65.97 108.75 181.23 247.07 4.403 0.735 

2052 29.45 33.76 44.73 68.33 113.24 189.35 258.48 4.438 0.745 

2053 29.94 34.46 45.97 70.71 117.82 197.64 270.14 4.472 0.755 

2054 30.43 35.16 47.21 73.14 122.49 206.11 282.06 4.506 0.764 

2055 30.90 35.85 48.47 75.60 127.24 214.75 294.24 4.539 0.774 

2056 31.36 36.54 49.73 78.09 132.09 223.57 306.67 4.572 0.783 

2057 31.82 37.23 51.00 80.63 137.02 232.57 319.36 4.603 0.793 
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2058 32.26 37.91 52.28 83.19 142.03 241.74 332.31 4.635 0.802 

2059 32.70 38.58 53.56 85.79 147.14 251.09 345.51 4.665 0.811 

2060 33.12 39.25 54.86 88.43 152.33 260.61 358.97 4.695 0.819 

2061 33.54 39.92 56.16 91.10 157.61 270.31 372.69 4.724 0.828 

2062 33.94 40.58 57.47 93.81 162.98 280.19 386.66 4.753 0.837 

2063 34.34 41.23 58.79 96.56 168.44 290.24 400.89 4.782 0.845 

2064 34.72 41.88 60.11 99.33 173.98 300.47 415.37 4.810 0.853 

2065 35.10 42.53 61.45 102.15 179.62 310.88 430.11 4.837 0.862 

2066 35.47 43.17 62.79 105.00 185.33 321.46 445.11 4.864 0.870 

2067 35.82 43.81 64.14 107.88 191.14 332.21 460.36 4.890 0.878 

2068 36.17 44.44 65.50 110.81 197.04 343.15 475.87 4.916 0.886 

2069 36.51 45.07 66.87 113.76 203.02 354.26 491.64 4.942 0.893 

2070 36.84 45.69 68.24 116.75 209.09 365.54 507.66 4.967 0.901 

2071 37.16 46.31 69.62 119.78 215.24 377.00 523.94 4.992 0.908 

2072 37.46 46.93 71.02 122.84 221.49 388.64 540.47 5.016 0.916 

2073 37.76 47.54 72.41 125.94 227.82 400.45 557.26 5.040 0.923 

2074 38.05 48.14 73.82 129.08 234.24 412.44 574.31 5.064 0.931 

2075 38.33 48.74 75.24 132.24 240.75 424.60 591.61 5.087 0.938 

2076 38.60 49.33 76.66 135.45 247.34 436.94 609.17 5.110 0.945 

2077 38.86 49.92 78.09 138.69 254.03 449.46 626.99 5.133 0.952 

2078 39.11 50.51 79.53 141.96 260.80 462.15 645.06 5.156 0.959 

2079 39.35 51.09 80.98 145.28 267.66 475.02 663.39 5.178 0.966 

2080 39.58 51.67 82.43 148.62 274.60 488.07 681.97 5.199 0.972 

2081 39.80 52.24 83.89 152.00 281.63 501.29 700.81 5.221 0.979 

2082 40.02 52.81 85.37 155.42 288.76 514.69 719.91 5.242 0.986 

2083 40.22 53.37 86.85 158.87 295.96 528.26 739.27 5.263 0.992 

2084 40.41 53.93 88.33 162.36 303.26 542.01 758.88 5.284 0.999 

2085 40.59 54.48 89.83 165.88 310.64 555.93 778.74 5.304 1.005 

2086 40.76 55.03 91.33 169.44 318.12 570.03 798.86 5.324 1.011 

2087 40.93 55.57 92.84 173.04 325.67 584.31 819.24 5.344 1.018 

2088 41.08 56.11 94.36 176.67 333.32 598.76 839.88 5.364 1.024 

2089 41.22 56.64 95.89 180.33 341.06 613.39 860.77 5.383 1.030 

2090 41.36 57.17 97.43 184.03 348.88 628.20 881.92 5.402 1.036 

2091 41.48 57.70 98.97 187.77 356.79 643.18 903.32 5.421 1.042 

2092 41.60 58.22 100.52 191.54 364.78 658.33 924.98 5.440 1.048 

2093 41.70 58.73 102.08 195.35 372.87 673.67 946.90 5.458 1.054 

2094 41.80 59.24 103.65 199.19 381.04 689.18 969.07 5.477 1.060 

2095 41.88 59.75 105.22 203.07 389.30 704.86 991.50 5.495 1.065 

2096 41.96 60.25 106.81 206.98 397.65 720.72 1014.19 5.513 1.071 

2097 42.03 60.74 108.40 210.93 406.08 736.76 1037.13 5.530 1.077 

2098 42.08 61.24 110.00 214.92 414.61 752.97 1060.33 5.548 1.082 

2099 42.13 61.72 111.61 218.94 423.22 769.36 1083.78 5.565 1.088 

2100 42.17 62.21 113.22 222.99 431.92 785.93 1107.50 5.582 1.093 
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VI.2. DISTRIBUTION FIT OPERATION TIME &  TIME-TO-FAILURE DISTRIBUTIONS 
 

 Stork Nijhuis 

 Operational Time Time-to-failure distribution Operational time Time-to-failure 
distribution 

Year µ σ 𝜶 𝜷 µ σ 𝜶 𝜷 

2017 7.438 0.071 48.296 59.935 7.783 0.051 58.294 72.920 

2018 7.445 0.078 48.258 58.028 7.791 0.058 58.270 70.052 

2019 7.453 0.085 48.221 56.076 7.799 0.064 58.249 67.020 

2020 7.461 0.090 48.186 54.023 7.807 0.069 58.234 63.552 

2021 7.468 0.095 48.155 51.755 7.815 0.074 58.231 59.000 

2022 7.475 0.100 48.130 49.066 7.822 0.079 58.238 54.427 

2023 7.482 0.104 48.114 46.053 7.829 0.083 58.230 51.764 

2024 7.489 0.107 48.094 43.757 7.837 0.087 58.213 49.920 

2025 7.496 0.111 48.066 42.147 7.844 0.090 58.192 48.449 

2026 7.503 0.114 48.034 40.894 7.851 0.094 58.169 47.191 

2027 7.510 0.117 47.999 39.837 7.858 0.097 58.145 46.074 

2028 7.516 0.119 47.963 38.906 7.865 0.100 58.119 45.066 

2029 7.523 0.122 47.926 38.067 7.872 0.104 58.093 44.138 

2030 7.529 0.124 47.888 37.296 7.879 0.107 58.066 43.275 

2031 7.535 0.126 47.850 36.570 7.885 0.110 58.039 42.465 

2032 7.542 0.129 47.811 35.901 7.892 0.113 58.012 41.699 

2033 7.548 0.131 47.771 35.276 7.899 0.116 57.984 40.973 

2034 7.554 0.134 47.731 34.675 7.906 0.120 57.955 40.290 

2035 7.561 0.136 47.691 34.102 7.912 0.123 57.927 39.634 

2036 7.567 0.138 47.651 33.556 7.919 0.126 57.899 39.006 

2037 7.573 0.141 47.611 33.030 7.926 0.129 57.870 38.400 

2038 7.579 0.143 47.570 32.529 7.932 0.132 57.841 37.826 

2039 7.585 0.145 47.530 32.046 7.939 0.136 57.812 37.268 

2040 7.592 0.148 47.489 31.580 7.945 0.139 57.783 36.723 

2041 7.598 0.150 47.448 31.127 7.952 0.142 57.753 36.214 

2042 7.604 0.153 47.407 30.694 7.958 0.145 57.724 35.714 

2043 7.610 0.155 47.366 30.273 7.964 0.148 57.695 35.230 

2044 7.616 0.157 47.324 29.862 7.971 0.152 57.665 34.761 

2045 7.622 0.160 47.283 29.469 7.977 0.155 57.636 34.306 

2046 7.627 0.162 47.242 29.083 7.983 0.158 57.606 33.866 

2047 7.633 0.165 47.200 28.711 7.990 0.161 57.577 33.435 

2048 7.639 0.167 47.159 28.348 7.996 0.164 57.547 33.022 

2049 7.645 0.169 47.117 27.994 8.002 0.167 57.517 32.619 

2050 7.651 0.172 47.076 27.648 8.008 0.171 57.487 32.226 
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APPENDIX VII – NPBN FOR PUMPING STATION IJMUIDEN 

VII.1. TOTAL NPBN 
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Figure 55: Total non-parametric Bayesian Network of pump station IJmuiden 
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VII.1. CORRELATION MATRICES 
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Discharge_IJmuiden Discharge_NSC Discharge_ARC R_NSC R_ARC D_NSC1 D_NSC2 D_ARC1 D_ARC2 D_ARC3 D_ARC4 D_ARC5 D_ARC6 D_ARC7 D_ARC8 D_ARC9 D_ARC10 D_ARC11 D_ARC12 D_ARC13 

Discharge_IJmuiden 1.00 0.54 0.69 0.52 0.49 0.42 0.40 0.66 0.52 0.61 0.57 0.62 0.60 0.63 0.54 -0.02 0.43 0.56 0.38 0.47 
Discharge_NSC 0.54 1.00 0.58 0.55 0.51 0.75 0.80 0.56 0.51 0.51 0.57 0.49 0.47 0.50 0.50 -0.12 0.39 0.52 0.25 0.49 
Discharge_ARC 0.69 0.58 1.00 0.47 0.55 0.49 0.42 0.94 0.65 0.69 0.87 0.87 0.86 0.81 0.86 -0.10 0.66 0.80 0.51 0.55 

R_NSC 0.52 0.55 0.47 1.00 0.82 0.43 0.42 0.43 0.45 0.57 0.37 0.45 0.43 0.42 0.33 -0.08 0.11 0.42 0.22 0.54 
R_ARC 0.49 0.51 0.55 0.82 1.00 0.39 0.41 0.50 0.44 0.54 0.40 0.48 0.50 0.44 0.42 -0.11 0.22 0.53 0.26 0.54 

D_NSC1 0.42 0.75 0.49 0.43 0.39 1.00 0.25 0.48 0.44 0.38 0.52 0.39 0.41 0.43 0.38 -0.12 0.35 0.42 0.11 0.35 
D_NSC2 0.40 0.80 0.42 0.42 0.41 0.25 1.00 0.39 0.36 0.41 0.37 0.37 0.30 0.35 0.39 -0.05 0.26 0.37 0.25 0.41 
D_ARC1 0.66 0.56 0.94 0.43 0.50 0.48 0.39 1.00 0.59 0.65 0.85 0.85 0.81 0.76 0.77 -0.07 0.59 0.76 0.44 0.45 
D_ARC2 0.52 0.51 0.65 0.45 0.44 0.44 0.36 0.59 1.00 0.56 0.57 0.52 0.58 0.54 0.49 -0.06 0.38 0.51 0.32 0.55 
D_ARC3 0.61 0.51 0.69 0.57 0.54 0.38 0.41 0.65 0.56 1.00 0.51 0.62 0.62 0.61 0.54 -0.03 0.29 0.53 0.26 0.51 
D_ARC4 0.57 0.57 0.87 0.37 0.40 0.52 0.37 0.85 0.57 0.51 1.00 0.78 0.75 0.72 0.75 -0.13 0.62 0.68 0.40 0.45 
D_ARC5 0.60 0.47 0.86 0.43 0.50 0.41 0.30 0.81 0.58 0.62 0.75 0.76 1.00 0.67 0.75 -0.11 0.56 0.73 0.45 0.43 
D_ARC6 0.63 0.50 0.81 0.42 0.44 0.43 0.35 0.76 0.54 0.61 0.72 0.77 0.67 1.00 0.73 -0.02 0.45 0.55 0.39 0.50 
D_ARC7 0.54 0.50 0.86 0.33 0.42 0.38 0.39 0.77 0.49 0.54 0.75 0.78 0.75 0.73 1.00 -0.09 0.53 0.69 0.51 0.46 
D_ARC8 -0.02 -0.12 -0.10 -0.08 -0.11 -0.12 -0.05 -0.07 -0.06 -0.03 -0.13 -0.06 -0.11 -0.02 -0.09 1.00 -0.18 -0.20 -0.10 -0.13 
D_ARC9 0.43 0.39 0.66 0.11 0.22 0.35 0.26 0.59 0.38 0.29 0.62 0.48 0.56 0.45 0.53 -0.18 1.00 0.51 0.38 0.22 

D_ARC10 0.56 0.52 0.80 0.42 0.53 0.42 0.37 0.76 0.51 0.53 0.68 0.70 0.73 0.55 0.69 -0.20 0.51 1.00 0.35 0.42 
D_ARC11 0.38 0.25 0.51 0.22 0.26 0.11 0.25 0.44 0.32 0.26 0.40 0.42 0.45 0.39 0.51 -0.10 0.38 0.35 1.00 0.20 
D_ARC12 0.62 0.49 0.87 0.45 0.48 0.39 0.37 0.85 0.52 0.62 0.78 1.00 0.76 0.77 0.78 -0.06 0.48 0.70 0.42 0.47 
D_ARC13 0.47 0.49 0.55 0.54 0.54 0.35 0.41 0.45 0.55 0.51 0.45 0.47 0.43 0.50 0.46 -0.13 0.22 0.42 0.20 1.00 

 

 
Discharge_IJmuiden Discharge_NSC Discharge_ARC R_NSC R_ARC D_NSC1 D_NSC2 D_ARC1 D_ARC2 D_ARC3 D_ARC4 D_ARC5 D_ARC6 D_ARC7 D_ARC8 D_ARC9 D_ARC10 D_ARC11 D_ARC12 D_ARC13 

Discharge_IJmuiden 1.00 0.55 0.66 0.50 0.48 0.42 0.42 0.62 0.48 0.56 0.52 0.56 0.61 0.50 0.00 0.42 0.54 0.38 0.59 0.43 
Discharge_NSC 0.55 1.00 0.61 0.50 0.51 0.72 0.78 0.58 0.52 0.50 0.57 0.46 0.51 0.53 -0.10 0.40 0.53 0.25 0.50 0.49 
Discharge_ARC 0.66 0.61 1.00 0.83 0.63 0.47 0.45 0.92 0.55 0.63 0.84 0.81 0.80 0.46 -0.06 0.65 0.78 0.51 0.85 0.52 

R_NSC 0.50 0.50 0.83 1.00 0.47 0.34 0.42 0.73 0.41 0.49 0.71 0.69 0.70 0.31 -0.07 0.53 0.67 0.49 0.74 0.42 
R_ARC 0.48 0.51 0.63 0.47 1.00 0.44 0.35 0.57 0.40 0.51 0.56 0.53 0.53 0.41 -0.02 0.37 0.50 0.30 0.49 0.49 

D_NSC1 0.42 0.72 0.47 0.34 0.44 1.00 0.21 0.46 0.37 0.33 0.50 0.41 0.41 0.40 -0.10 0.35 0.40 0.10 0.35 0.33 
D_NSC2 0.42 0.78 0.45 0.42 0.35 0.21 1.00 0.42 0.43 0.43 0.37 0.29 0.38 0.43 -0.06 0.28 0.40 0.26 0.40 0.41 
D_ARC1 0.62 0.58 0.92 0.73 0.57 0.46 0.42 1.00 0.47 0.59 0.83 0.74 0.75 0.39 -0.05 0.59 0.73 0.41 0.81 0.42 
D_ARC2 0.48 0.52 0.55 0.41 0.40 0.37 0.43 0.47 1.00 0.52 0.38 0.47 0.45 0.79 -0.09 0.22 0.53 0.28 0.47 0.55 
D_ARC3 0.56 0.50 0.63 0.49 0.51 0.33 0.43 0.59 0.52 1.00 0.44 0.55 0.57 0.54 0.00 0.26 0.49 0.24 0.58 0.46 
D_ARC4 0.52 0.57 0.84 0.71 0.56 0.50 0.37 0.83 0.38 0.44 1.00 0.70 0.68 0.33 -0.11 0.61 0.65 0.37 0.74 0.42 
D_ARC5 0.56 0.46 0.81 0.69 0.53 0.41 0.29 0.74 0.47 0.55 0.70 1.00 0.63 0.39 -0.09 0.53 0.68 0.44 0.70 0.39 
D_ARC6 0.61 0.51 0.80 0.70 0.53 0.41 0.38 0.75 0.45 0.57 0.68 0.63 1.00 0.42 0.01 0.46 0.54 0.40 0.75 0.47 
D_ARC7 0.50 0.53 0.46 0.31 0.41 0.40 0.43 0.39 0.79 0.54 0.33 0.39 0.42 1.00 -0.07 0.11 0.39 0.23 0.41 0.50 
D_ARC8 0.00 -0.10 -0.06 -0.07 -0.02 -0.10 -0.06 -0.05 -0.09 0.00 -0.11 -0.09 0.01 -0.07 1.00 -0.18 -0.18 -0.10 -0.05 -0.11 
D_ARC9 0.42 0.40 0.65 0.53 0.37 0.35 0.28 0.59 0.22 0.26 0.61 0.53 0.46 0.11 -0.18 1.00 0.51 0.39 0.49 0.21 

D_ARC10 0.54 0.53 0.78 0.67 0.50 0.40 0.40 0.73 0.53 0.49 0.65 0.68 0.54 0.39 -0.18 0.51 1.00 0.33 0.69 0.40 
D_ARC11 0.38 0.25 0.51 0.49 0.30 0.10 0.26 0.41 0.28 0.24 0.37 0.44 0.40 0.23 -0.10 0.39 0.33 1.00 0.41 0.19 
D_ARC12 0.59 0.50 0.85 0.74 0.49 0.35 0.40 0.81 0.47 0.58 0.74 0.70 0.75 0.41 -0.05 0.49 0.69 0.41 1.00 0.43 
D_ARC13 0.43 0.49 0.52 0.42 0.49 0.33 0.41 0.42 0.55 0.46 0.42 0.39 0.47 0.50 -0.11 0.21 0.40 0.19 0.43 1.00 

 

 
Discharge_IJmuiden Discharge_NSC Discharge_ARC R_NSC R_ARC D_NSC1 D_NSC2 D_ARC1 D_ARC2 D_ARC3 D_ARC4 D_ARC5 D_ARC6 D_ARC7 D_ARC8 D_ARC9 D_ARC10 D_ARC11 D_ARC12 D_ARC13 

Discharge_IJmuiden 1.00 0.55 0.54 0.43 0.43 0.38 0.42 0.49 0.29 0.30 0.44 0.45 0.44 0.44 -0.04 0.32 0.45 0.12 0.46 0.26 
Discharge_NSC 0.55 1.00 0.27 0.54 0.44 0.70 0.78 0.23 0.19 0.24 0.19 0.23 0.22 0.21 -0.04 0.12 0.26 0.13 0.23 0.25 
Discharge_ARC 0.54 0.27 1.00 0.44 0.55 0.18 0.19 0.92 0.48 0.45 0.84 0.81 0.80 0.83 -0.05 0.62 0.79 0.16 0.85 0.35 

R_NSC 0.43 0.54 0.44 1.00 0.79 0.40 0.43 0.38 0.32 0.42 0.30 0.38 0.36 0.33 -0.07 0.18 0.43 0.22 0.38 0.44 
R_ARC 0.43 0.44 0.55 0.79 1.00 0.32 0.34 0.47 0.40 0.52 0.38 0.47 0.45 0.41 -0.09 0.22 0.53 0.28 0.47 0.55 

D_NSC1 0.38 0.70 0.18 0.40 0.32 1.00 0.18 0.16 0.13 0.17 0.12 0.16 0.15 0.14 -0.03 0.07 0.18 0.09 0.16 0.18 
D_NSC2 0.42 0.78 0.19 0.43 0.34 0.18 1.00 0.17 0.14 0.18 0.13 0.17 0.16 0.15 -0.03 0.08 0.19 0.10 0.17 0.19 
D_ARC1 0.49 0.23 0.92 0.38 0.47 0.16 0.17 1.00 0.43 0.34 0.83 0.74 0.75 0.73 -0.05 0.59 0.73 0.13 0.81 0.28 
D_ARC2 0.29 0.19 0.48 0.32 0.40 0.13 0.14 0.43 1.00 0.51 0.40 0.40 0.40 0.36 -0.04 0.09 0.38 0.11 0.42 0.30 
D_ARC3 0.30 0.24 0.45 0.42 0.52 0.17 0.18 0.34 0.51 1.00 0.30 0.40 0.41 0.32 -0.05 0.12 0.35 0.15 0.40 0.46 
D_ARC4 0.44 0.19 0.84 0.30 0.38 0.12 0.13 0.83 0.40 0.30 1.00 0.70 0.68 0.71 -0.04 0.60 0.65 0.11 0.74 0.24 
D_ARC5 0.45 0.23 0.81 0.38 0.47 0.16 0.17 0.74 0.40 0.40 0.70 1.00 0.64 0.69 -0.05 0.45 0.68 0.13 0.70 0.30 
D_ARC6 0.44 0.22 0.80 0.36 0.45 0.15 0.16 0.75 0.40 0.41 0.68 0.64 1.00 0.70 -0.04 0.43 0.61 0.13 0.75 0.29 
D_ARC7 0.44 0.21 0.83 0.33 0.41 0.14 0.15 0.73 0.36 0.32 0.71 0.69 0.70 1.00 -0.04 0.46 0.67 0.12 0.74 0.25 
D_ARC8 -0.04 -0.04 -0.05 -0.07 -0.09 -0.03 -0.03 -0.05 -0.04 -0.05 -0.04 -0.05 -0.04 -0.04 1.00 -0.02 -0.05 -0.03 -0.05 -0.05 
D_ARC9 0.32 0.12 0.62 0.18 0.22 0.07 0.08 0.59 0.09 0.12 0.60 0.45 0.43 0.46 -0.02 1.00 0.44 0.06 0.49 0.12 

D_ARC10 0.45 0.26 0.79 0.43 0.53 0.18 0.19 0.73 0.38 0.35 0.65 0.68 0.61 0.67 -0.05 0.44 1.00 0.15 0.71 0.31 
D_ARC11 0.12 0.13 0.16 0.22 0.28 0.09 0.10 0.13 0.11 0.15 0.11 0.13 0.13 0.12 -0.03 0.06 0.15 1.00 0.13 0.15 
D_ARC12 0.46 0.23 0.85 0.38 0.47 0.16 0.17 0.81 0.42 0.40 0.74 0.70 0.75 0.74 -0.05 0.49 0.71 0.13 1.00 0.30 
D_ARC13 0.26 0.25 0.35 0.44 0.55 0.18 0.19 0.28 0.30 0.46 0.24 0.30 0.29 0.25 -0.05 0.12 0.31 0.15 0.30 1.00 
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VII.2. COPULA JUSTIFICATION 
The underlying table show the results of the two validation tests. The bolt numbers indicate the best 

copula that shows the best fit. Thereby, graphs for a few selected cases are given in figure 56. 

X Y 𝝆 𝝆𝑵𝑬 𝝆𝑺𝑾 𝝆𝑵𝑾 𝝆𝑺𝑬 M 
Gumbel 

M 
Gaussian 

M 
Clayton 

D_ARC1 D_ARC10 0.70 0.66 0.18 0.36 0.19 2.21 2.12 3.19 

D_ARC1 D_ARC12 0.41 0.13 0.10 -0.01 -0.07 11.34 13.94 13.05 

D_ARC1 D_ARC4 0.84 0.63 0.62 0.46 0.04 0.21 0.20 1.34 

D_ARC1 D_ARC5 0.77 0.61 0.31 0.28 0.17 2.59 0.86 2.87 

D_ARC1 D_ARC6 0.75 0.61 0.32 0.28 0.27 0.17 0.28 1.82 

D_ARC1 D_ARC7 0.73 0.50 0.21 -0.34 0.46 0.39 0.43 2.30 

D_ARC1 Discharge_ARC 0.92 0.89 0.66 0.29 0.51 0.10 0.16 1.39 

D_ARC10 D_ARC12 0.33 0.16 -0.18 -0.05 -0.12 13.06 16.89 15.06 

D_ARC10 Discharge_ARC 0.76 0.72 0.23 0.29 0.24 2.23 2.21 2.97 

D_ARC11 Discharge_ARC 0.52 0.23 0.25 0.04 0.11 11.63 14.55 13.48 

D_ARC12 Discharge_ARC 0.84 0.73 0.42 -0.27 -0.25 0.50 0.53 1.71 

D_ARC13 D_ARC3 0.49 0.57 -0.07 -0.12 -0.18 1.02 1.37 2.68 

D_ARC13 Discharge_ARC 0.54 0.49 0.17 0.18 0.49 0.51 0.80 2.01 

D_ARC2 D_ARC1 0.58 0.49 0.39 -0.01 0.19 0.14 0.19 0.87 

D_ARC2 D_ARC4 0.56 0.37 0.29 -0.20 -0.06 0.21 0.27 0.88 

D_ARC2 Discharge_ARC 0.64 0.52 0.44 -0.08 -0.17 0.19 0.28 1.05 

D_ARC3 D_ARC1 0.62 0.61 0.24 -0.61 0.14 0.71 1.17 3.07 

D_ARC3 D_ARC12 0.27 0.27 0.21 -0.23 -0.19 12.49 14.06 15.55 

D_ARC3 D_ARC5 0.57 0.31 0.31 -0.42 -0.16 2.03 1.03 1.93 

D_ARC3 D_ARC6 0.60 0.60 0.05 -0.42 0.02 0.66 1.01 2.63 

D_ARC3 Discharge_ARC 0.67 0.68 0.34 -0.40 -0.06 0.74 1.17 3.16 

D_ARC4 D_ARC10 0.65 0.42 0.23 0.22 0.31 1.83 1.86 2.27 

D_ARC4 D_ARC12 0.38 0.17 -0.08 0.18 0.26 11.26 14.00 13.10 

D_ARC4 D_ARC5 0.72 0.47 0.37 -0.05 0.30 2.05  0.67 2.00 

D_ARC4 D_ARC6 0.69 0.59 0.19 0.44 0.38 0.44 0.56 2.26 

D_ARC4 D_ARC7 0.71 0.45 0.29 -0.02 0.12 0.46 0.45 1.91 

D_ARC4 Discharge_ARC 0.85 0.71 0.62 -0.08 0.22 0.17 0.21 1.37 

D_ARC5 D_ARC10 0.69 0.48 0.16 0.22 0.30 2.68 1.93 2.68 

D_ARC5 D_ARC12 0.48 0.12 0.00 0.04 -0.08 12.45 14.59 14.31 

D_ARC5 D_ARC6 0.65 0.32 0.23 0.41 0.08 1.69 0.42 1.48 

D_ARC5 D_ARC7 0.70 0.50 0.22 0.19 -0.08 2.01 0.82 2.49 

D_ARC5 Discharge_ARC 0.83 0.64 0.55 0.06 -0.36 2.19 0.66 1.90 

D_ARC6 D_ARC12 0.41 0.18 0.16 0.39 -0.30 12.06 15.26 14.73 

D_ARC6 Discharge_ARC 0.80 0.67 0.38 0.18 0.29 0.12 0.19 1.53 

D_ARC7 D_ARC10 0.65 0.49 0.12 0.35 0.07 2.19 2.16 2.41 

D_ARC7 D_ARC12 0.50 0.25 -0.05 0.15 0.00 10.94 14.19 13.12 

D_ARC7 D_ARC6 0.70 0.40 0.18 0.45 0.31 0.34 0.27 1.42 

D_ARC7 Discharge_ARC 0.82 0.62 0.33 0.52 0.03 0.32 0.35 2.15 

D_ARC8 Discharge_ARC -0.08 -0.02 0.11 0.03 0.09 22.66 21.41 22.92 

D_ARC9 D_ARC4 0.57 0.27 0.29 0.12 0.20  14.31 16.77 15.84 

D_ARC9 Discharge_ARC 0.62 0.31 0.38 -0.07 0.25 15.66 18.13 16.40 
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D_NSC1 Discharge_NSC 0.75 0.36 0.55 -0.06 0.79 1.05 0.77 0.84 

D_NSC2 Discharge_NSC 0.79 0.82 0.06 0.69 0.18 29.08 30.09 28.91 

Discharge_ARC Discharge_IJmuiden 0.67 0.45 0.15 0.42 0.26 0.26 0.45 1.84 

Discharge_NSC Discharge_IJmuiden 0.55 0.41 -0.01 0.32 0.08 0.20 0.44 1.27 

R_ARC D_ARC1 0.48 0.38 0.06 0.07 -0.11 0.52 0.72 1.59 

R_ARC D_ARC10 0.51 0.60 0.26 0.19 0.00 3.06 3.10 2.90 

R_ARC D_ARC11 0.27 0.21 0.12 0.12 -0.17 12.87 15.50 16.63 

R_ARC D_ARC12 0.27 0.21 0.12 0.12 -0.17 12.87 15.50 16.63 

R_ARC D_ARC13 0.56 0.54 0.09 -0.03 0.09 0.77 0.95 1.76 

R_ARC D_ARC2 0.39 0.35 0.09 -0.01 -0.32 0.46 0.56 0.98 

R_ARC D_ARC3 0.54 0.53 0.00 0.31 -0.26 0.91 1.09 2.10 

R_ARC D_ARC4 0.40 0.26 0.07 -0.16 -0.15 0.42 0.52 0.95 

R_ARC D_ARC5 0.50 0.34 0.20 0.09 -0.34 1.50 0.64 0.93 

R_ARC D_ARC6 0.46 0.38 0.23 0.11 -0.10 0.47 0.60 1.10 

R_ARC D_ARC7 0.40 0.36 0.02 -0.18 -0.42 0.46 0.59 1.09 

R_ARC D_ARC8 -0.11 0.00 0.09 0.25 -0.09 21.58 19.80 21.58 

R_ARC D_ARC9 0.19 0.28 0.19 0.14 -0.24 13.09 14.66 16.43 

R_NSC D_NSC1 0.43 0.30 0.22 0.23 0.27 0.66 0.66 0.92 

R_NSC D_NSC2 0.47 0.26 0.01 0.03 0.11 22.39 22.90 23.86 

R_NSC R_ARC 0.81 0.67 0.70 -0.80 -0.53 0.57 0.65 0.93 

Table  10: Semi-correlations and 'Blanket Test' statistic for all pairs of variables used in the NPBN to model the peak 
discharges at pumping station IJmuiden. 

 

Figure 56: Graphs of selected pairs of variables of the NPBN. 


