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Summary

Lay summary
In estuaries, the part of a river where the flow is predominantly driven by the tide, the water motion is im-
portant to understand. For instance, by understanding the flow, one can better predict how pollutants are
transported, or when flooding is likely to occur. However, much is still unknown about certain aspects of the
water motion, such as how the hydrodynamics are influenced by the steepness of the river bed. In this thesis,
the effect of steep lateral inclines on the river bed is systematically investigated. Because these steep inclines
come with significant mathematical challenges, a new model for the water motion in estuaries is developed.

To study the effects of steepness, the model is applied to short estuaries with increasingly deep channels with
increasingly steep inclines in the middle of the river, and shallower waters closer to the banks. The results
indicate that during flood, i.e. the moment when flow into the estuary is strongest, water flows in through the
deep channel and then from the channel towards the banks. During ebb, this pattern is reversed. For estuaries
with steeper beds, currents are stronger, and the previously mentioned pattern is more pronounced.

Through a process known as momentum advection, so-called residual currents appear that are present re-
gardless of the phase of the tidal cycle. Because these residual currents produce net transport by the move-
ment of water, they are crucial in many transport processes involving sand, mud, salt, pollutants or other
materials. The structure of the current is as follows: in the deeper channels, the residual current flows from
the sea into the channel, and close to the banks, water flows out of the estuary. Steeper beds cause the residual
flow to become stronger and (indirectly) because of the Coriolis effect, notably asymmetric.
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iv Summary

Summary
In this thesis, the effect of steep lateral bathymetries on the three-dimensional hydrodynamics of estuaries,
i.e. the part of a river where the water motion is primarily forced by the tide, is systematically investigated.
Special focus is put on residual currents driven by (non-linear) momentum advection through the tidal mo-
tion. Because current three-dimensional idealised models are unable to give accurate results when advection
becomes a dominant process, which can be the case for steep bathymetries, a new three-dimensional ide-
alised model is developed.

The model is based on the three-dimensional Reynolds-averaged shallow water equations and solved using
a truncation method, in which the equations and boundary conditions are projected onto a Fourier basis in
time and an eigenfunction basis in the vertical dimension. The resulting system of non-linear differential
equations is discretised using the spectral element method, and solved using the Newton-Raphson method.

To investigate the effects of steepnes systematically, the model is applied to short, rectangular estuaries with
a Gaussian bathymetry whose steepness is controlled by a steepness parameter. First, the model results corre-
sponding to a nearly flat bathymetry are compared to the results corresponding to a steep bathymetry. Sub-
sequently, the most striking observations are quantified using parameters that capture these observations in
a single scalar value.

The results indicate that bathymetry steepness has the following effects on the semidiurnal tidal water mo-
tion: firstly, as the steepness increases, along-channel tidal velocities increase in the deep parts of the estuary
and decrease in the shallow parts. This effect is caused by the increased maximum depth and decreased min-
imum depth associated to higher values of the steepness parameter. Furthermore, steeper bathymetries lead
to larger cross-channel (lateral) velocities. During flood, water flows in through the deep channel, and from
the channel towards the shallower areas closer to the banks, and during ebb, the flow is reversed. In estuaries
with less steep bathymetries, this lateral structure is less pronounced. Finally, significant phase differences
between flow velocities in the channel and closer to the banks appear as the steepness parameter increases;
velocities in the channel are increasingly delayed compared the velocities closer to the banks.

The steepness parameter also has notable influence on advectively-driven residual currents: in estuaries with
steeper bathymetries, inflow through the deep channel is stronger and the lateral structure is more asymmet-
ric. The forcing balances indicate that for estuaries with nearly flat bathymetries, residual currents are pri-
marily driven by along-channel momentum advection. As the steepness increases, contributions from lateral
and vertical advection increasingly take part in generating along-channel residual currents. While it is diffi-
cult to draw definitive conclusions about lateral residual flow, due to the large number of numerical artifacts
left in the solutions, the results seem to indicate that the current is pointed from the channel towards the
banks.
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1
Introduction

1.1. Estuaries
There are many different definitions of estuaries, which are used in different fields of study (Valle-Levinson,
2010). For instance, Cameron and Pritchard (1983) define an estuary as "a semi-enclosed coastal body of
water which has a free connection with the open sea and within which sea water is measurably diluted with
fresh water from land drainage". On the other hand, Fairbridge (1980) defines an estuary as the part of a river
starting at the mouth and ending at the point where tides cease to influence the flow of water (i.e. because of
friction). This is the definition used in this thesis. Examples of estuaries are shown in Figure 1.1.

(a) Scheldt, the Netherlands & Belgium (b) Hudson, USA

Figure 1.1: Satellite image of the Scheldt and Hudson estuaries. Obtained using Google Earth (Google, n.d.).

For many reasons, estuaries are important regions to study. They support some of the world’s busiest ports,
such as the ports of Antwerp, New York City and Shanghai, located in the Scheldt, Hudson and Yangtze es-
tuaries, respectively. Furthermore, estuaries are some of the most productive habitats on the planet due to
a large supply of nutrients from runoff (Cloern et al., 2014), serve as breeding grounds for many species of
fish and crustaceans (Van Damme et al., 2005), and estuarine ecosystems are among the most valuable in the
world (Costanza et al., 1997).
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4 1. Introduction

Both the economic and ecological functions of estuaries are significantly affected by the (tidally driven) water
motion, or hydrodynamics in estuaries, both directly and indirectly. For instance, the environments around
estuaries are at risk of flooding (Fairchild et al., 2021) and transport of sediment, salt and pollutants can have
adverse effects for ecosystems and human populations alike (Kromkamp & Peene, 1995; Alam et al., 2017;
Sunderland et al., 2019).

The hydrodynamics is in turn influenced by a plethora of factors, among which the shape of the river bed: the
bathymetry (Li & Valle-Levinson, 1999). Many studies have investigated the periodic tidal motion in estuaries
with general bathymetries (Li & Valle-Levinson, 1999; Winant, 2007; Ensing et al., 2015; Kumar et al., 2016),
but a lot is still unknown about the sensitivity of the hydrodynamics to the steepness of the bathymetry.
Furthermore, it is unclear what exact role momentum advection, the transport of momentum through the
flow of water, plays in driving a stationary residual flow, especially in estuaries with steep bathymetries. This
residual flow, which comes about due to the non-linear nature of advection, plays a crucial role in many
transport processes, since the residual flow drives net transport. Work has been done researching residual
flow, but many focus on density-driven flows (Burchard & Schuttelaars, 2012; Lerczak & Geyer, 2004). The
studies that do focus on advection-driven residual flow often use two-dimensional models (Huijts et al., 2009;
Li & O’Donnell, 2005), whose results can differ significantly from three-dimensional models that capture
the full spatial structure of the flow (Rozendaal et al., 2024), or focus on longitudinally varying bathymetries
(Ianniello, 1979). The aim of this thesis is to shed light on the role of lateral bathymetry steepness and its
effect on advection in the three-dimensional hydrodynamics of estuaries.

1.2. Existing models for estuarine hydrodynamics
Mathematical models are excellent tools for researching the water motion in estuaries: mathematical models
can be applied to hypothetical situations, which is useful for, among other things, studying the sensitivity of
the water motion to parameters such as the steepness of bathymetry, for predicting the effects of changes to
the shape of estuaries (e.g. deepening them to allow larger ships to pass through), and isolating the dominant
physical processes that lead to specific patterns in the water flow. Mathematical models for estuarine hydro-
dynamics can be ordered based on their purpose (Murray, 2003), with simulation models at one extreme end,
and idealised models at the other.

Simulation models like Delft3D (Lesser et al., 2004) and Telemac (Villaret et al., 2013) are designed to make
accurate predictions that match observations quantitatively. They achieve this by resolving a large range
of physical scales and including a wide variety of physical processes. This makes them applicable to many
different situations. However, simulation models come with large computational costs, which makes stud-
ies that require large numbers of tests, such as parameter sensitivity studies, prohibitive. Furthermore, due
to the complexitiy of such models, the results of simulation models are difficult to analyse systematically.
Therefore, simulation models are less suitable to gain insight into the physical mechanisms involved in the
hydrodynamics.

Idealised models, such as the model from Winant (2007) and iFlow (Dijkstra et al., 2017), on the other hand,
are designed specifically for this purpose. By focusing on the dominant physical processes and making many
simplifications, idealised models become fast enough for parameter sensitivity studies. Often, these types
of models are solved semi-analytically. For instance, many idealised models make use of perturbation tech-
niques based on scaling assumptions. These methods allow non-linear terms to be dealt with by viewing
them as an infinite sum of linear ones (Holmes, 2013). Using perturbation methods also result in a clear
cause-and-effect structure, which aids analysis of the results. However, because of the large number of sim-
plifications and scaling assumptions, idealised models are often only able to reproduce observations qualita-
tively, and they are accurate in fewer situations than simulation models.

Both types of models are still unsuited to studying the (combined) effects of steep bathymetries and advec-
tion: simulation models are not suitable for systematic analysis in general and current idealised models are
inaccurate if non-linear processes such as advection become dominant (leading-order), which might very
well be the case in estuaries with steep bathymetries. Thus, a new type of idealised model that can handle
leading-order non-linearities accurately is necessary to study these types of situations.
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1.3. Research questions
The final goal of the thesis is to understand the sensitivity of the three-dimensional hydrodynamics to the
steepness of the bathymetry. To achieve this, a model that can handle leading-order non-linearities accu-
rately is developed. The final goal can be subdivided in two more specific research questions:

Q1: How does the steepness of the bathymetry affect the periodic tidal flow?

Q2: What residual flow patterns emerge due to momentum advection from the periodic tidal motion, and
how are they affected by the bathymetric steepness?

The structure of the thesis is as follows. First, Chapter 2 describes the model equations and boundary condi-
tion. Subsequently, Chapter 3 discusses the methods used to solve the model equations, after which Chapter
4 presents the results of the experiments. In Chapter 5, the results are embedded into the literature and an
outlook for future research is given, and finally, Chapter 6 summarises the conclusions and answers the re-
search questions.





2
Model Formulation

This chapter describes the new mathematical model of estuarine hydrodynamics, including a definition of
the domain (Section 2.1), the model equations (Section 2.2), and boundary conditions (Section 2.3).

2.1. Mathematical description of the domain

To describe the estuarine domain mathematically, let D2D ⊆ R2 be a connected set that delineates the (hori-
zontal) shape of the estuary. In principle, the set D2D can be geometrically complex. Furthermore, let H(x, y)
be the (positive) water depth, and let ζ(x, y, t ) be the time-dependent water surface elevation above the mean
water level, which is assumed to be at 0 m. Then the full domain is given by

D = {
(x, y, z, t ) ∈ D2D ×R× [0,∞) : −H(x, y) ≤ z ≤ ζ(x, y, t ) for all (x, y, t ) ∈ D2D × [0,∞)

}
. (2.1)

Here, the surface elevation ζ is an unknown, and is obtained by solving the model equations given in Section
2.2. Figure 2.1 gives a schematic overview of an example domain D .

Because the surface of the Earth is (approximately) spherical, spherical coordinates should be used. However,
Cartesian coordinates x, y and z are used instead, since estuaries are small enough to warrant approximating
the Earth’s surface by a flat plane. Here, x and y are the horizontal coordinates, and z is the vertical coordinate
pointing upwards. The orientation of the horizontal coordinates can be chosen freely.

The boundary Γ of the two-dimensional domain D2D can be partitioned into three parts: a part Γs that con-
nects to the sea, a part Γr that connects to the river, and a part Γc that consists of the closed boundary repre-
senting the banks of the river. Similar to (2.1), three-dimensional analogues can be defined:

∂Ds =
{
(x, y, z, t ) ∈ Γs ×R× [0,∞) : −H(x, y) ≤ z ≤ ζ(x, y, t ) for all (x, y, t ) ∈ Γs × [0,∞)

}
, (2.2a)

∂Dr =
{
(x, y, z, t ) ∈ Γr ×R× [0,∞) : −H(x, y) ≤ z ≤ ζ(x, y, t ) for all (x, y, t ) ∈ Γr × [0,∞)

}
, (2.2b)

∂Dc =
{
(x, y, z, t ) ∈ Γc ×R× [0,∞) : −H(x, y) ≤ z ≤ ζ(x, y, t ) for all (x, y, t ) ∈ Γc × [0,∞)

}
. (2.2c)

2.2. Model equations
In this thesis, the three-dimensional Reynolds-averaged shallow water equations are used. Turbulent ed-
dies are parametrised as additional viscosity, and the associated eddy viscosity is assumed to be constant in
time and space. Furthermore, the f -plane approximation is used and horizontal eddy viscosity terms are
neglected. To focus on advection-driven residual flows, salinity gradients are neglected as well. Appendix A
contains a derivation and explanation of these equations, starting from the Navier-Stokes equations which
represent conservation of mass and momentum for fluids, and subsequently making various simplifications.
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z = 0
z = ζ(x, y, t )

z =−H(x, y)

(a) Cross-section

Γs Γr

Γc

Γc

D2D

(b) Bird’s eye view

Figure 2.1: Schematic overview of the domain D , seen from two different perspectives: a cross-section (a) and a bird’s eye view (b).

The (as of yet unclosed) 3D-shallow water equations are given by

∇·u = 0, (2.3a)

ut +ε(uux + vuy +wuz )− f v =−gζx +Av uzz , (2.3b)

vt +ε(uvx + v vy +w vz )+ f u =−gζy +Av vzz . (2.3c)

Here, u = (u, v, w) is the flow velocity vector, f is the Coriolis frequency, g is the gravitational acceleration,
and Av is the vertical eddy viscosity. Equation (2.3a) is the continuity equation and represents conservation
of mass. Equations (2.3b-c) are the momentum equations and, unsurprisingly, represent conservation of
momentum.

In the momentum equations (2.3b-c), non-linearities are present in the form of products of flow velocities.
These terms are called the advective terms, and model the transport of momentum caused by the water mo-
tion, a process also known as advection. The advective terms are multiplied with the parameter ε, which
has no physical meaning. This parameter is used to control the strength of momentum advection. This is
necessary for convergence of the solution method (see Subsection 4.3.1).

The other terms in the equations are referred to (from left to right starting from the terms with f ) as the Cori-
olis terms, accounting for the Earth’s rotation, the barotropic pressure gradient, the depth-independent pres-
sure gradient due to water surface variations, and finally, the eddy viscosity term dissipating energy through
internal friction and turbulent eddies.

2.3. Boundary conditions
Firstly, velocities are required to vanish at the bed, i.e.

u = v = w = 0, at z =−H . (2.4)

This is called the no-slip condition and models the fact that viscous fluids stick to solid surfaces (Day, 1990;
Sochi, 2011).

Furthermore, it is assumed that a water particle on the water surface always remains part of the water surface.
Mathematically, this means that for a particle on the surface with horizontal position (xp , yp ) at any point in
time t , the vertical position zp is given by zp = ζ(xp , yp , t ). Taking the material derivative of this expression
leads to a kinematic boundary condition in terms of the flow variables:

w = ζt +uζx + vζy , at z = ζ. (2.5)

Because focus is put upon tidal flows and residual flows due to momentum advection, it is assumed that no
wind is present, and thus, the flow experiences no shear stress at the water surface: τwind,x = τwind,y = 0. By
using the assumption that turbulent water may be seen as a Newtonian fluid (see Section A.3 in Appendix A),



2.3. Boundary conditions 9

one can derive that
Av uz =Av vz = 0, at z = ζ. (2.6)

At the seaward boundary ∂Ds , the water motion will be forced by the semidiurnal tide (M2), that is, the tide
with a period of half a (lunar) day, and its overtides (M4, M6, . . .), possibly including a residual/subtidal com-
ponent (M0). Mathematically, this can then be expressed as a Fourier series:

ζ(x, y, t ) =
∞∑

i=0
AM2i (x, y)cos

(
2πσi

(
t −θM2i (x, y)

))
, (x, y) ∈ Γs . (2.7)

Here, AM2i is the tidal forcing amplitude of component M2i , θM2i is the phase. The parameter σ is the fre-
quency of the M2-tide, and is equal to 2.236 ·10−5 s−1 (see Table 3.2 in Gerkema (2019)). Temporal changes in
the amplitudes AM2i due to e.g. the spring-neap cycle (Gerkema, 2019) are neglected.

At the closed boundaries, an impermeability condition will be imposed, that is, water is not allowed to flow
through:

u ·n = 0, (x, y) ∈ Γc ∪Γr , z ∈ [−H ,0] (2.8)

where n is the outward-pointing normal vector. Since the closed boundaries ∂Dc are assumed to be perfectly
straight vertical walls, the normal vector has no vertical component. River discharge is neglected, such that
residual (stationary) flow is the result of non-linear interactions alone.

The model equations (2.3a-c) also contain time derivatives. To close the equations, initial conditions are
theoretically also necessary. However, the solution methods described in Chapter 3 only solve the equilibrium
flow, and disregard the transient solution. Therefore, it is not necessary to impose initial conditions.

To resolve the water surface elevation ζ, equations (2.3a-c) are not sufficient. In addition to (2.3a-c), the kine-
matic surface boundary condition (2.5) can be viewed as a model equation. However, the form of (2.4) makes
it difficult to use as a model equation, since flow velocities would have to be evaluated at the dynamic wa-
ter surface. Instead, it is possible to derive an equivalent expression in terms of depth-integrated quantities.
Moreover, this equation is more suitable for interpretation of solutions, since the vertical velocity is absent.

To start, integrate the continuity equation (2.3a) over the water depth:∫ ζ

−H
∇·u dz =

∫ ζ

−H
ux dz +

∫ ζ

−H
vy dz + [w]ζ−H

((2.4) and (2.5)) =
∫ ζ

−H
ux dz +

∫ ζ

−H
vy dz +ζt +uζx + vζy .

Now, application of the Leibniz integration rule leads to the so-called depth-integrated continuity equation:

ζt +
(∫ ζ

−H
u dz

)
x
+

(∫ ζ

−H
v dz

)
y
= 0. (2.9)

Physically, this means that whenever there is non-zero divergence (i.e. a sink or a source) in the depth-
integrated water flow, the water level should rise or fall accordingly. This is an inevitable consequence of
the incompressibility assumption.

In principle, the velocities should be integrated from z to the dynamic water surface ζ. However, to focus the
analysis on advection, this non-linear contribution of ζ is neglected and the upper limits of integrals are equal
to the mean sea level at z = 0. Similarly, when flow velocities should be evaluated at z = ζ, they are evaluated
at z = 0 instead. In many cases, this approximation is justified by a scaling analysis, see for example Dijkstra
et al. (2017).





3
Solution methods

Now that the model equations (2.3a-c) and their boundary conditions have been defined, the solution method
for the model will be presented. Before all the details are discussed, we first explain the idea of the method,
which is based on Dijkstra et al. (2022).

We look for solutions that are in dynamic equilibrium, that is, solutions that are T -periodic, where T = σ−1

is the period of the semidiurnal tide. Periodic behaviour on longer time scales such as the spring-neap cycle,
and transient parts of the solution are neglected. Therefore, it is possible to write the solution as a Fourier
series with the M2-tidal frequency σ as fundamental frequency.

Furthermore, the solution can be written as an (infinite) linear combination of orthogonal basis functions
in the vertical coordinate z. Because of orthogonality, the matrices that have to be solved at the end of the
method are sparse. Also, the vertical dependence of the solution is always smooth, no matter the number of
basis functions taken into account.

Once the equations have been projected onto these bases, the resulting system of two-dimensional PDEs
is discretised using a spectral element method (SEM), which is a variant of the finite element method, and
solved using the Newton-Raphson method. The spectral element method allows for geometrically complex
domains, which makes our method suited to modelling realistic estuaries.

After a helpful coordinate transformation is introduced in Section 3.1, Section 3.2 details the projection of
the model equations and boundary conditions onto the Fourier and vertical bases using a technique called
Galerkin projection. After projection, the spectral element method and the Newton-Raphson method applied
to non-linear PDEs are discussed briefly in Sections 3.3 and 3.4, respectively.

3.1. The vertical ς-coordinate transformation
The vertical range of the domain D is given by z ∈ [−H(x, y),0], for any (x, y) ∈ D2D. In order to define and
perform operations on a vertical orthogonal basis, it will be beneficial to transform the z-coordinate in such a
way that the domain D can be written as D = D2D×[−1,0]×[0,∞). To this end, ς-coordinates, first introduced
by Phillips (1957) will be used1.

Assume that the model was written in the coordinate system (x̂, ŷ , ẑ, t̂ ). The new coordinate system (x, y,ς, t )
is defined as

x(x̂, ŷ , ẑ, t̂ ) = x̂, (3.1a)

y(x̂, ŷ , ẑ, t̂ ) = ŷ , (3.1b)

ς(x̂, ŷ , ẑ, t̂ ) = ẑ

H(x̂, ŷ)
= ẑ

H(x, y)
, (3.1c)

t (x̂, ŷ , ẑ, t̂ ) = t̂ . (3.1d)

1Usually, ς-coordinates are denoted by σ, but since this symbol is already used in this work, alternative notation is used.

11
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Note that ς ∈ [−1,0], since ς(x̂, ŷ ,0, t ) = 0 and ς(x̂, ŷ ,−H(x̂, ŷ), t̂ ) = −1, so this coordinate system satisfies our
requirements. Using the chain rule, partial derivatives in the old coordinates may be rewritten to coordinate
system (3.1):

∂

∂x̂
= ∂

∂x

∂x

∂x̂
+ ∂

∂y

∂y

∂x̂
+ ∂

∂ς

∂ς

∂x̂
+ ∂

∂t

∂t

∂x̂
= ∂

∂x
−ςHx

H

∂

∂ς
, (3.2a)

∂

∂ŷ
= ∂

∂x

∂x

∂ŷ
+ ∂

∂y

∂y

∂ŷ
+ ∂

∂ς

∂ς

∂ŷ
+ ∂

∂t

∂t

∂ŷ
= ∂

∂y
−ςHy

H

∂

∂ς
, (3.2b)

∂

∂ẑ
= ∂

∂x

∂x

∂ẑ
+ ∂

∂y

∂y

∂ẑ
+ ∂

∂ς

∂ς

∂ẑ
+ ∂

∂t

∂t

∂ẑ
= 1

H

∂

∂ς
, (3.2c)

∂

∂t̂
= ∂

∂x

∂x

∂t̂
+ ∂

∂y

∂y

∂t̂
+ ∂

∂ς

∂ς

∂t̂
+ ∂

∂t

∂t

∂t̂
= ∂

∂t
. (3.2d)

Before substituting (3.2a-d) into the model, Burchard and Petersen (1997) suggest using an alternative defi-
nition of the vertical velocity, given by

ω̃= 1

H

(
w −ςuHx −ςv Hy

)
. (3.3)

The velocity ω̃ has two main benefits over w . Firstly, the kinematic boundary condition at the river bed
(2.4) turns into the simple condition ω̃ = 0. Moreover, the use of (3.3) causes convenient cancellations after
substitution of (3.2) into the model equations. Following Burchard and Petersen (1997), the model equations
in ς-coordinates are given by

(Hu)x + (H v)y +Hω̃ς = 0, (3.4a)

Hut + (Hu2)x + (Huv)y +H(uω̃)ς− f H v =−g Hζx + Av

H
uςς, (3.4b)

H vt + (Huv)x + (H v2)y +H(vω̃)ς+ f Hu =−g Hζy + Av

H
vςς, (3.4c)

ζt +
(

H
∫ 0

−1
u dς

)
x
+

(
H

∫ 0

−1
v dς

)
y
= 0. (3.4d)

Equations (3.4a-d) are subject to the following transformed boundary conditions:

ω̃= 0, ς=−1, (3.5a)

Av

H
uς = Av

H
vς = 0, ς= 0, (3.5b)

u = v = 0, ς=−1, (3.5c)

ζ=
imax∑
i=0

AM2i cos
(
2πσi

(
t −θM2i

))
, (x, y) ∈ Γs , (3.5d)

u ·n = 0, (x, y) ∈ Γc ∪Γr , ς ∈ [−1,0]. (3.5e)

Note that the tidal forcing boundary condition (3.5d) is truncated at imax ∈N rather than prescribing infinitely
many harmonic modes.

3.2. Galerkin projection
The unknowns u, v and ζ are written as truncated series expansions in terms of the temporal basis functions
hi (t ), i =−imax, . . . , imax and vertical basis functions fm(ς), m = 1, . . . , M :

u(x, y,ς, t ) =
M∑

m=1

imax∑
i=−imax

αmi (x, y) fm(ς)hi (t ), (3.6a)

v(x, y,ς, t ) =
M∑

m=1

imax∑
i=−imax

βmi (x, y) fm(ς)hi (t ), (3.6b)

ζ(x, y, t ) =
imax∑

i=−imax

γi (x, y)hi (t ). (3.6c)
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where αmi , βmi and γi are the spatially varying coefficients associated to each combination of temporal and
vertical basis functions, and M and imax are the number of vertical and temporal basis functions taken into
account, respectively. If αmi , βmi and γi are known exactly, the basis expansions (3.6) converge to the exact
solution in the limit as M , imax → ∞. The vertical basis functions fm , m ∈ N and Fourier basis functions
hi , i ∈ Z are defined in Subsection 3.2.1. Note that the vertical velocity ω̃ is absent from (3.6a-c), since an
analytical expression for ω̃ in terms of the coefficients αmi and βmi follows from the continuity equation
(2.3a). This expression is derived in detail in Subsection 3.2.2. Subsection 3.2.3 describes the projection of
the model equations and boundary conditions onto the bases. This is achieved using a technique called
Galerkin projection, which is explained below. Finally, the weak formulations of the resulting equations that
are necessary for the spectral element method are derived in Subsection 3.2.4.

By representing the unknowns as finite linear combinations of basis functions, they are approximated in a
finite-dimensional subspace of the full infinite-dimensional solution space. For general solutions, this finite
representation cannot be exact. Instead, the coefficients of each basis function must be chosen so that the
finite-dimensional representation matches the full solution as closely as possible, in some sense.

The method of weighted residuals (Karniadakis & Sherwin, 1999, pg. 18) is one method to achieve this. Let V
be a Hilbert space with inner product (·, ·)V and norm ∥ · ∥V =p

(·, ·)V ,and let Vn := Span{ψ j }n
j=1 with Vn ⊆ V

be a finite-dimensional subspace. The vector u ∈V is approximated by a finite linear combination un :

un :=
n∑

j=1
a jψ j , (3.7)

and let R = u −un denote the residual. In the method of weighted residuals, the coefficients a j , j = 1, . . . ,n
are chosen to satisfy

(v j ,R)V = 0, j = 1, . . . ,n, (3.8)

where v j ∈ V are weight functions. For instance, if V is a function space and v j are given by Dirac deltas
δ(x −x j ), then the method of weighted residuals becomes a collocation method, using which the finite repre-
sentation is exact at x = x j . The Galerkin projection corresponds to the choice v j =ψ j , j = 1, . . . ,n. If {ψ j }n

j=1
is an orthogonal basis, then (3.8) reduces to

a j =
(u,ψ j )V

(ψ j ,ψ j )V
, j = 1, . . . ,n, (3.9)

and the Galerkin projection is the orthogonal projection of V onto Vn , that minimises ∥R∥V (van Neerven,
2022). Galerkin projection can also be applied to equations, where the projection is obtained by multiplying
both sides by one of the basis functions and subsequently taking the inner product, which for function spaces
is usually defined by integration. In this thesis, the standard L2-inner products are used, since the basis
functions defined in Subsection 3.2.1 are orthogonal with respect to this inner product.

3.2.1. Defining the expansion bases

Since the solutions are T -periodic, they may be written as a Fourier series. Accordingly, the basis functions
hi (t ) are of Fourier-type. They are given by:

hi (t ) =


cos(2πσi t ) , i > 0,
1
2

p
2, i = 0,

sin(2πσi t ) , i < 0,

(3.10)

The function h0(t ) is constant and represents the residual flow, which does not vary with the tide. It is chosen
to be equal to

p
2/2 such that the L2((0,T )-norm of every hi , i ∈Z is equal to (2σ)−1, for the sake of notational

brevity.

Since the flow velocities u and v are subject to boundary conditions on the vertical boundaries ς=−1, ς= 0,
the vertical basis functions are chosen such that they satisfy these conditions. This way, the final solutions
satisfy the vertical boundary condition regardless of the coefficients αmi and βmi . To satisfy the no-stress
boundary condition (3.5b) at the top of the water column, it must hold that f ′

m(0) = 0 for all m = 1, . . . , M . The
no-slip condition at the bed implies that fm(−1) = 0 for all m = 1, . . . , M .
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Now, the functions are defined for all ς ∈ [−1,0]. A desirable property for an expansion basis is orthogonality,
since projection of the model on an orthogonal basis leaves the resulting equations as decoupled as possible.
Therefore, the fm , m = 1, . . . , M are chosen to obey the eigenvalue problem

f ′′ =−λ f . (3.11)

Equation (3.11) combined with the boundary conditions f (−1) = f ′(0) = 0 is a regular Sturm-Liouville eigen-
value problem, which is known to have infinitely many eigenvalue-eigenfunction pairs (λm , fm), m ∈N such
that the eigenfunctions fm are pairwise orthogonal with respect to some weighted inner product on L2((−1,0))
(Haberman, 2013). In this case, the orthogonality is with respect to the standard L2((−1,0))-inner product.
Additionally, second derivatives of the vertical basis functions appear in the model equations. However, be-
cause the eigenvalue problem (3.11) is used to define fm , −λ f can be substituted any time they appear. This
leads to simplifications in the projected model equations.

The solutions of the eigenvalue problem (3.11) are given by

fm(ς) = cos

((
m + 1

2

)
πς

)
, λm =

(
m + 1

2

)2

π2, (3.12)

for m ∈ N. The solution procedure is outlined in Appendix B. Figure 3.1 shows the first four basis functions
fm(ς).

Figure 3.1: The first four solutions to eigenvalue problem (3.11) plotted against ς.

3.2.2. An analytical expression for vertical flow velocity

Using the continuity equation (3.4a), an analytical formula can be derived for ω̃ in terms of the velocity coef-
ficients αmi and βmi . The notationαmi = (αmi ,βmi ) is introduced for brevity.

Substitution of the truncated basis expansions (3.6) into the continuity equation (3.4a) results in

ω̃ς =− 1

H

M∑
m=1

imax∑
i=−imax

∇· (Hαmi ) fm(ς)hi (t ), (3.13)

which can be integrated to obtain

ω̃= C̃ (x, y, t )− 1

H

M∑
m=1

imax∑
i=−imax

∇· (Hαmi )hi (t )
∫ ς

−1
fm(ς′) dς′, (3.14)
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where C̃ is an integration constant that is later chosen to satisfy the kinematic boundary condition at the bed
(3.5a). By the fundamental theorem of calculus, the integral in (3.14) is equal to∫ ς

−1
fm(ς′) dς′ = 2

(2m +1)π

[
sin

((
m + 1

2

)
πς

)
+ (−1)m

]
. (3.15)

Furthermore, (3.14) shows that ω̃(x, y,−1, t ) = C̃ (x, y, t ). To satisfy boundary condition (3.5a), C̃ must be iden-
tically equal to zero. In conclusion,

ω̃=− 1

H

M∑
m=1

imax∑
i=−imax

2

(2m +1)π
∇· (Hαmi )hi (t )

[
sin

((
m + 1

2

)
πς

)
+ (−1)m

]
. (3.16)

Using relation (3.3), the actual vertical velocity w can be recovered as well.

3.2.3. Projecting the equations and boundary conditions

In the rest of this chapter, a notational convention inspired by Einstein summation notation is used, which
allows summations to be notated more efficiently. The summation operator is omitted in favour of specifying
the summation indices beforehand. In the following, m and n will be summation indices ranging from 1 to M ,
and i and j summation indices ranging from −imax to imax. As an example, the along-channel flow velocity
(3.6a) is written in this notation convention as

u =αmi fmhi .

First, the linear depth-integrated continuity equation will be projected. To this end, substitute (3.6a-c) into
(3.4d) to obtain

γi
dhi

dt
+∇· (Hαmi )hi

∫ 0

−1
fm dς= 0. (3.17)

Since (3.17) is already depth-independent, only projection onto the Fourier modes is necessary. To this end,
multiply by hk , k =−imax, . . . , imax and integrate over the period [0,T ]. This yields

H 2
i ,kγi +H 2

i ,k∇· (Hαmi )
∫ 0

−1
fm dς= 0, k =−imax, . . . , imax, (3.18)

where the integration coefficients H 1
i ,k and H 2

i ,k are defined by

H 1
i ,k =

∫ T

0
hi hk dt = (2σ)−1δi ,k , (3.19a)

H 2
i ,k =

∫ T

0

dhi

dt
hk dt =πiδi ,−k =−πkδi ,−k . (3.19b)

In (3.19), δi ,k denotes the Kronecker delta. Rewriting (3.18) using (3.19) then results in 2imax+1 two-dimensional
PDEs given by

−πkγ−k +
2 · (−1)m

(2m +1)π
(2σ)−1∇· (Hαm,k ) = 0, k =−imax, . . . , imax. (3.20)

Now, substitution of (3.6) and the expression (3.16) for ω̃ into the momentum equation for u (3.4b) leads to
the double sum

Hαmi
dhi

dt
fm + [

(Hαmiαn j )x + (Hαmiβn j )y
]

hi h j fm fn−

αmi∇· (Hαn j )hi h j

[
fm fn + d fm

dς

∫ ς

−1
fn dς′

]
− Av

H
αmi hi

d2 fm

dς2

− f Hβmi hi fm =−g (γi )x hi .

(3.21)

First, (3.21) will be projected onto the Fourier basis functions. The resulting equations are then projected
onto the vertical basis2. In the derivation of (3.22), the second derivatives of the vertical basis functions are

2By Fubini’s theorem, projecting the equations onto the vertical basis first would lead to the same results.
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interchanged with −λm fm . All this results in

HG1
m,ℓH 2

i ,kαmi +G2
m,n,ℓH 3

i , j ,k

[
(Hαmiαn j )x + (Hαmiβn j )y

]−
H 3

i , j ,k (G2
m,n,ℓ+G3

m,n,ℓ)αmi∇· (Hαn j )+ λmAv

H
G1

m,ℓH 1
i ,kαmi−

f H 1
i ,kG1

i ,kβmi =−g H 1
i ,k (γi )x

∫ 0

−1
fm dς,

(3.22)

for k =−imax, . . . , imax and ℓ= 1, . . . , M . In the same way as (3.22), the momentum equation for v (3.4c) can be
written as

HG1
m,ℓH 2

i ,kβmi +G2
m,n,ℓH 3

i , j ,k

[
(Hβmiαn j )x + (Hβmiβn j )y

]−
H 3

i , j ,k (G2
m,n,ℓ+G3

m,n,ℓ)βmi∇· (Hαn j )+ λmAv

H
G1

m,ℓH 1
i ,kβmi+

f H 1
i ,kG1

i ,kαmi =−g H 1
i ,k (γi )y

∫ 0

−1
fm dς,

(3.23)

for k =−imax, . . . , imax and ℓ= 1, . . . , M .

The new integration coefficients are defined by

G1
m,ℓ =

∫ 0

−1
fm fℓ dς= 1

2
δm,ℓ, (3.24a)

G2
m,n,ℓ =

∫ 0

−1
fm fn fℓ dς= 1

4

[
(−1)m+n+ℓ+1

(m +n +ℓ+ 3
2 )π

+ (−1)m+n−ℓ

(m +n −ℓ+ 1
2 )π

+ (−1)m−n+ℓ

(m −n +ℓ+ 1
2 )π

+ (−1)m−n−ℓ+1

(m −n −ℓ− 1
2 )π

]
,

(3.24b)

G3
m,n,ℓ =

∫ 0

−1

d fm

dς

∫ ς

−1
fn dς′ fℓ dς= 2m +1

8n +4

[
(−1)m−n+ℓ+1

(m −n +ℓ+ 1
2 )π

+ (−1)m+n+ℓ+1

(m +n +ℓ+ 3
2 )π

+

(−1)m−n−ℓ

(m −n −ℓ− 1
2 )π

+ (−1)m+n−ℓ

(m +n −ℓ+ 1
2 )π

]
+ 2m +1

4n +2

[
(−1)m+n+ℓ−1

(m +ℓ+1)π
+

(1−δm,ℓ)
(−1)m+n−ℓ+1 −1

(m −ℓ)π

]
,

(3.24c)

H 3
i , j ,k =

∫ σ−1

0
hi h j hk dt =


(4σ)−1

1{i= j+k or j=i+k or k=i+ j }, i , j ,k ≥ 0,

(4σ)−1
(
1{k=−i+ j or j=−i+k} −1{i=− j−k}

)
, i ≥ 0, j ,k < 0,

0, otherwise.

(3.24d)

The shallow water equations have now been reformulated in terms of the coefficients αmi , βmi and γi . Fur-
thermore, the boundary conditions at the vertical boundaries ς = −1 and ς = 0 are captured by the basis
functions fm(ς). The lateral boundary conditions (3.5e-g) still have to be expressed in terms of the new un-
knowns.

Firstly, by standard trigonometric identities, the tidal forcing boundary condition may be rewritten as:

ζ=
imax∑
i=0

AM2i hi (θM2i )hi (t )+ AM2i h−i (θM2i )h−i (t ), (x, y) ∈ Γs . (3.25)

Then, if

Ai := AM2|i |hi (θM2|i | ),

Galerkin projection results in

H 1
i ,kγi = H 1

i ,k Ai , (3.26)

which implies γk = Ak for k =−imax, . . . , imax and (x, y) ∈ Γs .
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For the normal flow conditions (3.5f-g), the same methods as for the model equations are used. Because the
three-dimensional normal vector n has no vertical component since the riverine boundary is a straight verti-
cal wall, the normal flow conditions immediately translate to conditions forαmi ·n. After Galerkin projection
onto the Fourier and eigenfunction modes, the following boundary conditions are obtained

αℓk ·n = 0, (x, y) ∈ Γc ∪Γr , (3.27a)

for k =−imax, . . . , imax and ℓ= 1, . . . , M .

3.2.4. Weak formulations

To solve the projected system of two-dimensional PDEs, a spectral element method based on the more gen-
eral Galerkin method is used (Section 3.3). The Galerkin method works with so-called weak formulations of
the equations, which are equivalent to the classical formulation for sufficiently smooth solutions (van Neer-
ven, 2022). Weak formulations are derived by multiplying the equations by a test function φ in a certain
function space (usually a variation of the Sobolev space H 1(D2D)), integrating over the domain, and finally
applying integration by parts, which involves the divergence theorem for dimensions higher than one (van
Kan et al., 2005). One further advantage of weak formulations is that natural boundary conditions such as
(3.27a-b) can be substituted directly into the weak formulation, eliminating the need to handle them sep-
arately. Essential boundary conditions such as the Dirichlet condition (3.26) have to be treated separately,
and thus, the test functions φ are assumed to vanish on boundaries that are governed by essential boundary
conditions.

First, we derive the weak form of the projected depth-integrated continuity equation (3.20). Since the water
surface is subject to an essential boundary condition, the test functions φ are assumed to be members of the
space H 1(D2D;Γs ), consisting of H 1-functions that vanish3 at the seaward boundary Γs . After applying the
process described before, we obtain

−πk
∫

D2D

γ−kφ
1
k dA =− 1

2σ

(−1)m

(m + 1
2 )π

[∫
Γr

φ1
k Hαmk ·n ds −

∫
D2D

H

(
αmk

∂φ1
k

∂x
+βmk

∂φ1
k

∂y

)
dA

]
, (3.28)

for all k = −imax, . . . , imax and all φ1
k ∈ H 1(D2D;Γs ). Here, the notation dA denotes integration over two-

dimensional surfaces, and ds denotes integration over one-dimensional curves. Since αmk is known on
the riverine boundary, the line integral acts as a forcing term in the equation. The superscript of the test
function indicates that it belongs to the equations derived from the depth-integrated continuity equation.
Similarly, the superscripts 2 and 3 indicate that the test functions belong to the equations derived from the
along-channel and cross-channel momentum equations respectively.

Because the momentum equations (3.22) and (3.23) are non-linear, their weak forms are non-linear as well.
The test functions of these weak formulations live in the space H 1(D2D), since the horizontal velocities are
not subject to any essential boundary conditions. The along-channel momentum equation is given by

−πk

2

∫
D2D

αℓ,−kφ
2
ℓk dA+G1,mnℓH3,i j k

(∮
∂D2D

Hαmiφ
2
ℓkαn j ·n ds −

∫
D2D

Hαmiαn j ·∇φ2
ℓk dA

)
−H3,i j k (G1,mnℓ+G2,mnℓ)

(∮
∂D2D

Hαmiφ
2
ℓkαn j ·n ds −

∫
D2D

Hφ2
ℓk∇αmi ·αn j dA−∫

D2D

Hαmiαn j ·∇φ2
ℓk dA

)
+ π2Av

4σ

(
ℓ+ 1

2

)2 ∫
D2D

1

H
αℓkφ

2
ℓk dA−

f

4σ

∫
D2D

Hβℓkφ
2
ℓk dA =− g (−1)ℓ

2(ℓ+ 1
2 )πσ

∫
D2D

∂γk

∂x
φ2
ℓk dA,

(3.29)

for all k = −imax, . . . , imax, ℓ = 1, . . . , M and all φ2
ℓk ∈ H 1(D2D). The cross-channel momentum equation has

3in the same sense as the definition of the space H1
0 (Ω) on page 361 of van Neerven (2022).
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weak form

−πk

2

∫
D2D

βℓ,−kφ
3
ℓk dA+G1,mnℓH3,i j k

(∮
∂D2D

Hβmiφ
3
ℓkαn j ·n ds −

∫
D2D

Hβmiαn j ·∇φ3
ℓk dA

)
−H3,i j k (G1,mnℓ+G2,mnℓ)

(∮
∂D2D

Hβmiφ
3
ℓkαn j ·n ds −

∫
D2D

Hφ3
ℓk∇βmi ·αn j dA−∫

D2D

Hβmiαn j ·∇φ3
ℓk dA

)
+ π2Av

4σ

(
ℓ+ 1

2

)2 ∫
D2D

1

H
βℓkφ

3
ℓk dA+

f

4σ

∫
D2D

Hαℓkφ
3
ℓk dA =− g (−1)ℓ

2(ℓ+ 1
2 )πσ

∫
D2D

∂γk

∂y
φ3
ℓk dA,

(3.30)

for all k =−imax, . . . , imax, ℓ= 1, . . . , M and all φ3
ℓk ∈ H 1(D2D).

In (3.29), (3.30), the closed contour integrals act as linear terms for the riverine and closed boundaries, since
the normal flow can be substituted. However, no normal flow is prescribed on the seaward boundary, imply-
ing that the integral over Γs is an additional non-linear term.

3.3. The spectral element method
The spectral element method (SEM) is a method to discretise weak forms of partial differential equations
based on the finite element method (FEM), which is in turn based on the method of weighted residuals and
Galerkin projection (see Subsection 3.2.3). FEM is a method to generate (continuous) basis functions that are
supported on small sets, based on a triangulated mesh of the domain, leading to sparse systems of equations.
In SEM, (potentially high order) orthogonal polynomials are used to construct the basis. Subsection 3.3.1
describes how this SEM expansion basis is constructed, and after, Subsection 3.3.2 describes how weak forms
are solved. Karniadakis and Sherwin (1999) provide additional details about this method; the information in
this section is based on their book.

3.3.1. SEM expansion bases

When using SEM (and FEM), the domain of interestΩmust be partitioned into a finite number of elements. In
one dimension, these elements are intervals, and in two dimensions, elements are usually given by triangles.
By using triangles as elements, SEM is able to handle very general domains. An expansion basis can then be
constructed on each element separately, after which all element bases (or local bases) are combined in such
a way that the basis functions of the full basis (or global basis) are continuous. The process of constructing
the global basis from the local ones is called assembly. In this subsection, the construction of a local basis on
a one-dimensional element is described first, after which two-dimensional local bases can be considered.

Usually, a local basis is constructed on a standard element and subsequently transformed to general elements
by means of a coordinate transformation. For one-dimensional domains, the standard element is the inter-
val [−1,1]. In many versions of FEM, the only two basis functions considered on this interval are the linear
functions

ξ 7→ 1−ξ
2

, ξ 7→ 1+ξ
2

.

However, SEM makes use of higher order polynomials as well. Often, these higher order polynomials are
chosen from a family of orthogonal polynomials, such as Legendre polynomials Pp (ξ) or Jacobi polynomials

Pα,β
p (ξ), which are the solutions of the Sturm-Liouville problem

d

dξ

[
(1−ξ)1+α(1+ξ)1+β d

dξ
Pα,β

p (ξ)

]
=λp (1−ξ)α(1+ξ)βPα,β

p (ξ), (3.31)

with λp = −p(α+β+ p + 1) and where p denotes the order of the polynomials. The orthogonality (w.r.t. a
weighted inner product) of these functions benefits the sparsity of the eventual linear system to solve.
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A commonly used one-dimensional SEM expansion basis of order P is given by

φp (ξ) =



1−ξ
2

, p = 1,(
1−ξ

2

)(
1+ξ

2

)
P 1,1

p−1(ξ), p = 2, . . . ,P −1,

1+ξ
2

, p = P.

(3.32)

Other types of bases, for example based on Lagrangian interpolation, are used as well.

Once the local basis is mapped to every element, a continuous global basis can be constructed. The only
local basis functions that are non-zero at the element boundaries are the linear ones (p = 1, p = P ). Thus,
to satisfy global continuity, the two linear basis functions that are nonzero at element boundaries must be
joined together. This creates piecewise linear function that bear resemblence to tents. The higher-order
functions can be incorporated into the continuous global basis by restriction to their respective elements.
An example of a second-order SEM basis is given in Figure 3.2. The construction of two-dimensional SEM

x1 x2 x3

x1 x2 x3

x1 x2 x3

x1 x2 x3

x1 x2 x3

Figure 3.2: The basis functions of a second-order SEM expansion basis onΩ= [x1, x3] with elements [x1, x2] and [x2, x3].

expansion bases follows along similar lines as the construction of the one-dimensional bases. Firstly, since
the two-dimensional standard element is a triangle, barycentric coordinates (Λ1,Λ2,Λ3) are used4, which for
a standard triangle with vertices (−1,−1), (1,−1) and (−1,1) are given by

Λ1 = 1−ξ1

2
− 1+ξ2

2
, (3.33a)

Λ2 = 1+ξ1

2
, (3.33b)

Λ3 = 1+ξ2

2
. (3.33c)

Here, ξ1 and ξ2 are Cartesian coordinates. Barycentric coordinates are defined such that (1,0,0) corresponds
with the vertex (−1,−1), (0,1,0) with the vertex (1,−1) and (0,0,1) with (−1,1).

4Since three coordinates are used to describe two-dimensional space, an extra condition is necessary to guarantee that every point is
described uniquely. Usually, the conditionΛ1 +Λ2 +Λ3 = 1 is used.
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An example of a P-th order SEM expansion basis on the standard triangle, called the Dubiner basis is given
by

φV
i =Λi , i = 1, . . . ,3, (3.34a)

φE
i , j ,p =ΛiΛ j P S

p (Λi −Λ j ,Λi +Λ j ), i , j = 1, . . . ,3, i ̸= j , p = 0, . . . ,P −2, (3.34b)

φB
p,q =Λ1Λ2Λ3P S

p (Λ1 −Λ2,Λ1 +Λ2)P 0,2p+1
q (2Λ3 −1), p +q ≤ P −3. (3.34c)

Here P S
p : (x, y) 7→ Pp (x/y)y p is the scaled Legendre polynomial. The basis functions are subdivided into vertex

modes which are nonzero on triangle vertices, edge modes which are nonzero on edges but zero on vertices,
and bubble modes which are zero on the entire triangle boundary. This subdivision is necessary for the global
assembly process: to enforce continuity, the vertex modes at any vertex in the mesh must be combined, and
likewise for the edge modes at any edge in the mesh. Similarly to the one-dimensional case, the bubble modes
can be restricted to their elements without creating discontinuities. The Dubiner basis (3.34) is the basis used
by the Python package ngsolve (Schöberl, 2014), which is used for our SEM implementation. An illustration
of some of these basis functions on a triangular mesh of a rectangular domain is given in Figure 3.3.

Figure 3.3: Three basis functions of a fourth order Dubiner basis on a mesh of the unit square. Top right: vertex modes joined at a vertex.
Bottom left: edge modes joined at an edge. Bottom right: bubble mode restricted to its element.

3.3.2. Solving weak forms of PDEs: the Galerkin method

To find an approximate solution to (the weak forms of) the differential equations, the solution is written as a
linear combination of the SEM basis functions with unknown coefficients. Furthermore, since the solution is
approximated on a finite-dimensional space spanned by the expansion basis, it is reasonable to assume that
the test functions live in this space as well (van Kan et al., 2005). Because the weak forms hold for every test
function in the test space which is now finite-dimensional, it is natural to enforce that the weak forms hold
for every basis function as test function, since each possible test function in the finite-dimensional solution
space is a linear combination of the basis functions.

For example, to solve the linear weak form∫
Ω

L(u)φ dA =
∫
Ω

f φ dA,
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for some linear operator L, one would write u = ∑N
i=1 aiφi and choose test functions φ j , j = 1, . . . , N . This

results in the linear system of algebraic equations

N∑
i=1

ai

∫
Ω

L(φi )φ j dA =
∫
Ω

f φ j dA, j = 1, . . . , N , (3.35)

from which the unknown (ai )N
i=1 may be obtained using any linear solver of choice. This method of obtaining

approximate solutions to weak formulations is called the Galerkin method. In principle, this is the same as
the Galerkin projection described in Section 3.2. By definition of the SEM expansion basis, many pairs of
basis functions are disjointly supported or (nearly) orthogonal, which makes (3.35) a relatively sparse system
of equations.

For simplicity, a direct linear solver based on Gaussian elimination is used. The package ngsolve contains
two built-in (unsymmetric) sparse direct solvers: UMFPACK (Davis & Duff, 1997) and PARDISO (Schenk &
Gärtner, 2004). It was found that applied to the model of this thesis, PARDISO is generally fast and leads to
solutions with relatively large residuals, whereas UMFPACK is generally slower but gives more accurate solu-
tions. In this thesis, both of them are applied, depending on which property is necessary for the computation
of interest.

3.4. Newton’s method for non-linear partial differential equations
Applying the spectral element method to the weak formulations (3.29) and (3.30) will lead to a large system of
non-linear algebraic equations. The Newton-Raphson method, or Newton’s method can provide solutions to
these equations. Given an initial guess u0 for the solution of a non-linear equation F (u) = 0 with F :Rd →Rd ,
a solution can be obtained via the iterative process

J (uk )(uk+1 −uk ) =−F (uk ). (3.36)

Here, J is the Jacobian matrix of the non-linear function F . If J (u) is non-singular at the actual solution u
and the initial guess u0 is ’close enough’ to u, then the Newton method converges quadratically. What ’close
enough’ means differs per situation.

Because it is hard to gain access to the non-linear algebraic equations in the Python package ngsolve that is
used for the spectral element code, The Newton method is approached from a slightly different angle, though
Subsection 3.4.1 will show that the resulting methods are equivalent after discretisation.

First, the Fréchet derivative of a non-linear operator acting between normed vector spaces must be intro-
duced. If T : V → W is a non-linear operator, then T is said to be Fréchet differentiable if for every u ∈ V ,
there is a bounded linear operator DT (u) such that

lim
∥h∥V →0

∥T (u +h)−T (u)−DT (u)h∥W

∥h∥V
= 0. (3.37)

Here, ∥h∥V → 0 indicates that the h ∈V may approach 0 from any direction. In this case, DT (u) is called the
Fréchet derivative of T at u. A related concept is the Gateaux derivative of T in the direction of a given vector
v ∈U . T is Gâteaux differentiable at u ∈U in the direction of v ∈V if the limit

DT (u; v) = lim
ε→0

T (u +εv)−T (u)

ε
= d

dε
T (u +εv)

∣∣∣∣
ε=0

(3.38)

exists in W . If T is Fréchet differentiable, then it is also Gâteaux differentiable in every direction and its
Fréchet derivative at u ∈V is given by DT (u) : v 7→ DT (u; v) (Kesavan, 2004).

Using these functional derivatives, a Newton method for non-linear equations on general Banach spaces can
be defined in an analogous way to (3.36). To solve the non-linear equation T (u) = 0, with T : V → W a
non-linear operator, the iterative process

DT (uk )(uk+1 −uk ) =−T (uk ) (3.39)

can be used to find a solution, provided the initial guess u0 is close enough to the solution. Here, the meaning
of ’close enough’ depends on the equations considered.
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To apply the general Banach space analogue of the Newton method (3.39), the weak forms of the momentum
equations (3.29) and (3.30) must be linearised. Since each momentum equation is a vector-valued opera-
tor, the Fréchet derivatives will be as well. As an illustration, one of the non-linear terms in (3.29), namely
Ti j mnkℓ(α) := ∫

D2D
Hαmiαn j ·∇φ2

ℓ,k dA is linearised. Assuming that all αmi are almost everywhere continu-

ously differentiable, the Leibniz integration rule implies that the Gâteaux derivative of Ti j mnkℓ at α0 in the
direction of α̃ is given by

DTi j mnkℓ(α0;α̃) = d

dε

(∫
D2D

H(α0
mi +εα̃mi )(α0

n j +εα̃n j ) ·∇φ2
ℓ,k dA

)∣∣∣∣
ε=0

=
∫

D2D

H
d

dε

(
α0

miα
0
n j +εα̃miα

0
n j +εα0

mi α̃n j +ε2α̃mi α̃n j

)∣∣∣∣
ε=0

·∇φ2
ℓ,k dA

=
∫

D2D

H(α0
mi α̃n j + α̃miα

0
n j ) ·∇φ2

ℓ,k dA.

(3.40)

The other two types of non-linear terms can be linearised in exactly the same manner. They are given by∫
D2D

Hφ2
ℓ,k∇αmi ·αn j dA

D→
∫

D2D

Hφ2
ℓ,k∇α̃mi ·α0

n j dA+
∫

D2D

Hφ2
ℓ,k∇α0

mi · α̃n j dA, (3.41a)∫
Γs

Hφ2
ℓ,kαmiαn j ·n ds

D→
∫
Γs

Hφ2
ℓ,k α̃miα

0
n j ·n ds +

∫
Γs

Hφ2
ℓ,kα

0
mi α̃n j ·n ds. (3.41b)

Here
D→ denotes taking the Gâteaux derivative atα0 in the direction of α̃.

3.4.1. Order of linearisation

In this final subsection, it is proved that the final linear systems of algebraic equations that result from the
Newton methods (3.36) and (3.39) are equal as long as the initial guess u0 in (3.39) can be represented exactly
by the SEM basis. For notational brevity, the result is proved for weak forms that can be written like∫

Ω
F (u,ux ,uy , x, y)φ(x.y) dA = 0,

i.e. ’systems’ of only a single PDE. However, the proof extends to systems of PDEs as well.

Proposition 3.1. LetΩ⊆R2 be a bounded and open set, let F :R5 →R be continuously differentiable and let the
SEM basis (φi )N

i=1 for N ∈N be bounded and continuously differentiable almost everywhere in Ω. For a given

test function φ, define the operator Tφ : C 1(Ω) →C 1(Ω) by

Tφ(u) =
∫
Ω

F (u,ux ,uy , x, y)φ(x, y) dA.

If the initial guess u0 in (3.39) can be represented exactly by (φi )N
i=1, then the two Newton methods (3.39) and

(3.36) for the weak form ∀φ : Tφ(u) = 0 lead to exactly the same system of algebraic equations for any given
iteration.

Proof. First, note that C 1(Ω) is a normed vector space (even a Banach space) in the norm ∥ ·∥C 1(Ω) given by

∥ f ∥C 1(Ω) := max{∥ f ∥∞,∥ fx∥∞,∥ fy∥∞},

(van Neerven, 2022, pg. 77). Thus, taking Gâteaux and Fréchet derivatives of T is justified. Now, for v ∈C 1(Ω),
by linearity of differentiation, one has that

DTφ(u; v) = d

dε

(∫
Ω

F (u +εv,ux +εvx ,uy +εvy , x, y)φ dA

)∣∣∣∣
ε=0

(Leibniz rule) =
∫
Ω

d

dε
F (u +εv,ux +εvx ,uy +εvy , x, y)

∣∣∣∣
ε=0

φ dA

(Chain rule) =
∫
Ω

(
v
∂F

∂ξ1
(u,ux ,uy , x, y)+ vx

∂F

∂ξ2
(u,ux ,uy , x, y)+ vy

∂F

∂ξ3
(u,ux ,uy , x, y)

)
φ dA.
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Here ∂F
∂ξk

denotes the partial derivative of F with respect to its k-th variable. Using the Leibniz rule is justified
by the fact that F , u, v and φ are bounded and continuously differentiable almost everywhere.

The continuous Newton method (3.39) for the weak form ∀φ : Tφ(u) = 0 can now be discretised using the
Galerkin method to obtain the linear system

N∑
i=1

bk
i

(∫
Ω

∂F

∂ξ1
(uk ,uk

x ,uk
y , x, y)φiφ j dA+

∫
Ω

∂F

∂ξ2
(uk ,uk

x ,uk
y , x, y)

∂φi

∂x
φ j dA

+ ∂F

∂ξ3
(uk ,uk

x ,uk
y , x, y)

∂φi

∂y
φ j dA

)
=−

∫
Ω

F (uk ,uk
x ,uk

y , x, y)φ j dA,

for j = 1, . . . , N . The coefficients bk
i can then be used to construct uk+1−uk , by means of uk+1−uk =∑N

i=1 bk
i φi .

Note that if u0 can be written as
∑N

i=1 a0
i φi , then all subsequent uk can be written as

∑N
i=1 ak

i φi .

Now, the algebraic version of the Newton method (3.36) is applied. To this end, the weak form ∀φ : Tφ(u) = 0
is discretised using the Galerkin method, which results in a non-linear system of algebraic equations:∫

Ω
F

(
N∑

i=1
aiφi ,

N∑
i=1

ai
∂φi

∂x
,

N∑
i=1

ai
∂φi

∂y
, x, y

)
φ j dA = 0, j = 1, . . . , N ,

⇔ Tdisc(a1, . . . , aN ) = 0.

To apply (3.36), the Jacobian of Tdisc must be computed:

∂

∂ai
(Tdisc(a1, . . . , aN )) j =

∂

∂ai

(∫
Ω

F

(
N∑

i=1
aiφi ,

N∑
i=1

ai
∂φi

∂x
,

N∑
i=1

ai
∂φi

∂y
, x, y

)
φ j dA

)

(Leibniz rule) =
∫
Ω

∂F

∂ai

(
N∑

i=1
aiφi ,

N∑
i=1

ai
∂φi

∂x
,

N∑
i=1

ai
∂φi

∂y
, x, y

)
φ j dA

(Chain rule) =
∫
Ω

∂F

∂ξ1

(
N∑

i=1
aiφi ,

N∑
i=1

ai
∂φi

∂x
,

N∑
i=1

ai
∂φi

∂y
, x, y

)
φiφ j dA

+
∫
Ω

∂F

∂ξ2

(
N∑

i=1
aiφi ,

N∑
i=1

ai
∂φi

∂x
,

N∑
i=1

ai
∂φi

∂y
, x, y

)
∂φi

∂x
φ j dA

+
∫
Ω

∂F

∂ξ3

(
N∑

i=1
aiφi ,

N∑
i=1

ai
∂φi

∂x
,

N∑
i=1

ai
∂φi

∂y
, x, y

)
∂φi

∂y
φ j dA.

Then the linear system that must be solved in iteration k is given by

N∑
i=1

bk
i

[∫
Ω

∂F

∂ξ1

(
N∑

i=1
ak

i φi ,
N∑

i=1
ak

i
∂φi

∂x
,

N∑
i=1

ak
i
∂φi

∂y
, x, y

)
φiφ j dA

+
∫
Ω

∂F

∂ξ2

(
N∑

i=1
ak

i φi ,
N∑

i=1
ak

i
∂φi

∂x
,

N∑
i=1

ak
i
∂φi

∂y
, x, y

)
∂φi

∂x
φ j dA

+
∫
Ω

∂F

∂ξ3

(
N∑

i=1
ak

i φi ,
N∑

i=1
ak

i
∂φi

∂x
,

N∑
i=1

ak
i
∂φi

∂y
, x, y

)
∂φi

∂y
φ j dA

]

=−
∫
Ω

F

(
N∑

i=1
ak

i φi ,
N∑

i=1
ak

i
∂φi

∂x
,

N∑
i=1

ak
i
∂φi

∂y
, x, y

)
φ j dA,

for j = 1, . . . , N , and where bk
i are defined in the same way as before. If every uk can be represented exactly

using the basis functions, then the linear systems resulting from (3.39) and (3.36) are exactly equal. As noted
before, this is the case when the initial guess satisfies this requirement.





4
Results

In this chapter, the results are presented. In Section 4.1, I present the default choice of domain and bathymetry,
and values of physical and numerical parameters. Section 4.2 discusses the semidiurnal tidal motion (M2)
without advection. Subsequently, Section 4.3 describes the structure of the residual flow induced by advec-
tion. In each section, the solutions for a relatively flat bathymetry and a steeper one are compared, and the
effects of steepness of the bathymetry are quantified by means of scalar values that characterise aspects of
the solutions.

4.1. Parameter values
For simplicity, the two-dimensional domain D2D is chosen to be rectangular, with width B and length L:
D2D = [0,L]× [−B/2,B/2]. The length L is chosen just small enough to be able to use sufficiently fine meshes
and/or high SEM basis orders to obtain numerically converged results on ordinary computers.

The model is forced at the seaward boundary (x = 0) by a uniform semidiurnal (M2) tidal water level ζ(x, y, t ) =
AM2 cos(2πσt ) with zero phase.

Table 4.1 contains default values of all physical and numerical parameters. In this table, p is the order of the
SEM basis and ∆x is the mesh size. For triangular meshes, ∆x is the length scale of the largest elements in
the mesh. If multiscale geometries are used, elements can differ in size by quite a lot, but for rectangular
domains, the parameter ∆x is a good indication for the size of all elements.

4.1.1. Bathymetries with variable steepness

The bathymetry has a Gaussian shape independent of the along-channel coordinate x, and is given by

H(x, y) = Hoffset +Hscalee−Cη2
. (4.1)

Here, Hoffset and Hscale control the offset and scale of the Gaussian profile, and C , the steepness parameter,
controls the steepness of the profile. The coordinate η is given by η= 2y/B , such that it runs from −1 to 1.

To study the effect of bathymetric steepness, the steepness parameter C is varies. The other parameters Hoffset

and Hscale are chosen in such a way, that the cross-sectional area remains constant if C is varied. Ensing et al.
(2015) tune Hoffset and Hscale such that the water depth at the closed boundaries remains constant. However,
this restriction excludes flat beds, since the cross-sectional area of an estuary with a flat bed cannot be equal
to the cross-sectional area of an estuary with depth strictly larger than the depth at the closed boundaries.
Instead, the offset parameter Hoffset is used to preserve cross-sectional area under varying C . The parameter
Hscale is kept constant. Using some integral identities and elementary algebra, it is found that Hoffset should
be equal to

Hoffset =
Hscale

2

(√
π

6
erf

(p
6
)
−

√
π

C
erf

(p
C

))
+2, (4.2)
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Physical parameters

g 9.81 ms−2

f 10−4 rad s−1

Av 0.01 m2s−1

σ 2.236 ·10−5 s−1

ρ0 1020 kg m−3

AM2 1 m

Shape parameters

L 10 km

B 3 km

Hoffset 2 m

Hscale 10 m

C 6

Numerical parameters

M 7

imax 2

p 4

∆x 1 km

K (explained in Subsection 4.1.2) 1.2

Table 4.1: Default values of numerical and physical parameters

where erf denotes the error function. The range of bathymetries available by varying C is illustrated in Figure
4.1.

Figure 4.1: Bathymetries given by (4.1) for different steepness parameters (C = 0,1,3,6 and 12).

4.1.2. Local mesh refinement

Steep and narrow channels corresponding to large steepness parameters introduce small length scales in
the domain, which leads to small length scales in the solution. To capture this behaviour accurately, either
high order basis functions or small mesh sizes are necessary. However, these small mesh sizes or high-order
basis functions are really only required over those locations where the small-scale behaviour is located. Local
mesh refinement allows us to decrease the mesh size exactly in those places where it is required, increasing
the efficiency of the solution method. Local p-refinement, which increases the order of the local SEM basis
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where more accuracy is required, is also a possibility, but this is more difficult to implement in ngsolve.

First, a computational mesh is generated using the standard algorithm of ngsolve. Then, we loop over every
triangular element in the mesh and mark them based on some refinement rule. Finally, the marked elements
are refined, which involves bisecting the element along one of its medians. To ensure that the new element
vertices do not border the edges of neighbouring elements, the mesh refinement modifies the neighbouring
elements as well. This step is necessary to preserve the classification of vertex, edge and bubble modes in the
SEM basis.

Elements are marked based on the rule:∫
e
∥∇H∥ dA ≥ K

|E |
∑
e∈E

∫
e
∥∇H∥ dA, (4.3)

where ∥ · ∥ is the Euclidean norm in R2, E is the set of all elements, K > 1 is a parameter controlling how
sensitive the rule is. In words, (4.3) marks elements if the bathymetry gradient in that element exceeds the
average bathymetry by a factor of K : if an element is located over sufficiently steep bathymetry, it will be
marked. Figure 4.2 illustrates mesh refinement using rule (4.3) applied to the default bathymetry (C = 6).

Figure 4.2: Refinement of a mesh generated with ∆x = 700 m based on rule (4.3), applied to the default bathymetry (C = 6). The white
wireframes denote the edges of the meshes, and the colour indicates the local water depth.

By default, K is set to 1.2 and the mesh is subjected to two iterations of local mesh refinement. These values
were based on trial and error; using two iterations with K = 1.2 leaded to numerically converged results that
were able to be computed on an ordinary computer.

4.2. Semidiurnal tidal flow
First, the principal semidiurnal tidal flow (M2) and its dependence on the bathymetric steepness parameter
C is investigated. For this purpose, the non-linear advective terms are neglected (ε = 0). This has two main
reasons. Firstly, understanding the linear tidal motion is beneficial for understanding the full tidal motion.
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Indeed, Ianniello (1979) has shown that under certain scaling assumptions, the linear M2-flow constitutes the
dominant part of the hydrodynamics. Secondly, the Newton method failed to converge if advective effects
were included. As of yet, it is unclear why the method diverges in this case. Subsection 4.3.1 elaborates on
this.

The effect of steep bathymetries on the linear M2-flow is investigated both qualitatively (Subsection 4.2.1) and
quantitatively (Subsection 4.2.2). The solutions for a gently sloping bathymetry (C = 0.1)1 are first compared
to those of a steeper bathymetry (C = 6). To describe the effects of steepness quantitatively, we capture the
hydrodynamics using a small set of scalars and plot those scalars against the steepness parameter.

For the following analysis, it is useful to describe the time-dependent solutions as complex waves, like:

u(x, y, z, t ) =Ureal(x, y, z)h1(t )+ iUimag(x, y, z)h−1(t ) = |U (x, y, z)|exp(iϕ(x, y, z)),

for the M2-along-channel velocity. With this formulation, the tidal flow can be described using amplitudes
and phases relative to the phase of the tidal water level forcing at x = 0. Importantly, positive phases are
perceived as delays with respect to the tidal forcing, and negative phases indicate that the solution is ahead
of the forcing.

4.2.1. Comparison of two solutions

Water surface amplitude

In Figures 4.3-4.5, the amplitude of the M2 water surface elevation corresponding to C = 0.1 and C = 6 and
their difference is shown. By linearity, other tidal constituents than M2 are identically equal to zero.

Figure 4.3: Top view of the amplitude of the M2-water surface ele-
vation corresponding to C = 0.1. Lighter (darker) colours indicate
larger (smaller) amplitudes.

Figure 4.4: Top view of the amplitude of the M2-water surface el-
evation corresponding to C = 6. Lighter (darker) colours indicate
larger (smaller) amplitudes.

Figure 4.5: Top view of difference between M2-water surface eleva-
tion amplitudes corresponding to C = 0.1 and C = 6. Blue indicates
that the amplitude corresponding to C = 6 is larger than the one
corresponding to C = 0.1, and red indicates the opposite. Darker
(lighter) colours signify larger (smaller) differences

1In the case C = 0 (flat bed), Coriolis effects are dominant. It is better to use C = 0.1, because the effects of steepness become more
noticable this way.
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The plots indicate that the water surface elevation is not overly affected by the steepness of the bathymetry,
since both cases are very similar (as shown in Figure 4.5), though the steeper bathymetry seems to lead to
larger amplitudes. In both cases, variations in the amplitude of the surface elevation never exceed three cen-
timeters. The phase varies even less (shown later in Figures 4.14 and 4.15). Thus, the water surface elevation
behaves like a spatially uniform surface moving up and down in phase with the tidal forcing, regardless of the
steepness.

These observations are consistent with the literature. Linear wave theory indicates that tidal waves have
wavelengths of approximately σ−1

√
g H (Bosboom & Stive, 2023, Appendix A). Estuaries are typically around

10-20 metres deep (Nitsche et al., 2007; Van Damme et al., 2005). It follows that the tidal wave is hundreds of
kilometers long. Therefore, the surface will vary but little in the short range of 10 km. Furthermore, Winant
(2007) showed that the lateral surface variation ζy is of order O (B/L). Since the length L is larger than the
width B , the small lateral variations shown in Figures 4.3 and 4.4 are consistent with his results.

Along-channel velocity amplitude

In Figures 4.6 and 4.7, maps of the amplitude of the along-channel velocity u are shown. From these figures,
it becomes clear that varying the steepness parameter significantly affects the flow velocities.

Figure 4.6: Top view of amplitude of depth-averaged M2-along
channel velocity corresponding to C = 0.1. Lighter (darker) colours
indicate larger (smaller) amplitudes.

Figure 4.7: Top view of amplitude of depth-averaged M2-along
channel velocity corresponding to C = 6. Lighter (darker) colours
indicate larger (smaller) amplitudes.

Firstly, the figures show that in both cases, the contour lines of the velocity curve upwards close to the seaward
boundary. This is the effect of an unphysical boundary layer, and should be ignored in the analysis. Indeed,
Winant (2007) demonstrated that in the presence of Coriolis forces and a non-flat bathymetry, it is impossible
for the water surface elevation to be spatially uniform, as prescribed in (3.5d). Because the surface elevation
and flow velocities are coupled, the flow velocities are unphysical close to the boundary as well. The cross-
channel velocity is also affected by this boundary layer.

Secondly, the flow velocity in the deeper channel is larger than the velocity closer to the banks of the river.
This effect is much more pronounced when a steeper bathymetry is used. Intuitively speaking, the water
experiences less friction from the bed in the deeper channel than closer to the shallower sides. A more precise
explanation is as follows: in ς-coordinates, the parameter controlling the bed friction is given by Av H−2. In
deeper waters, this parameter will be much smaller than in shallow water. As a result, the boundary layer (in
ς-coordinates) at the bed, caused by the no-slip condition (3.5c-d) will be smaller, and accordingly, velocities
above the bed are able to grow more quickly due to the reduced influence of bed friction. Figures 4.8 and 4.9
illustrate this boundary layer by showing the along-channel velocity amplitudes in the cross-section {L/2}×
[−B/2,B/2], i.e. halfway along the estuary.

Tidal currents

Above, only the amplitudes of the solution were discussed. Now, the velocity vector, i.e. the current, and its
variation over the tidal cycle is described and explained. To this end, the amplitudes of the cross-channel
velocities in the central cross-section are shown in Figures 4.10 and 4.11, and Figures 4.12 and 4.13 show
the depth-integrated velocities, i.e. the transport of water in the x- and y-direction at slack tide before ebb
(minimum flow velocity before flow out of the estuary), ebb (maximum flow out of the estuary), slack tide
before flood (minimum flow velocity before flow into the estuary) and flood (maximum flow into the estu-
ary), respectively. The depth-integrated velocities are shown instead of depth-averaged velocities because the
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Figure 4.8: Amplitude of M2-along-channel velocity in the cross-
section {L/2} × [−B/2,B/2] corresponding to C = 0.1. Lighter
(darker) colours indicate larger (smaller) velocities.

Figure 4.9: Amplitude of M2-along-channel velocity in the cross-
section {L/2}×[−B/2,B/2] corresponding to C = 6. Lighter (darker)
colours indicate larger (smaller) velocities.

depth-integrated velocities are directly linked to the water surface through the depth-integrated continuity
equation. This makes interpretation of the structure of the depth-integrated currents straightforward.

In case C = 0.1, the tidal currents are approximately laterally uniform, though they are slightly stronger in the
deeper channel, as expected. In Figure 4.12, the arrows indicate that the cross-channel velocity is nowhere
of the same order of magnitude as the along-channel velocities; all arrows are horizontal. This observation is
supported by Figures 4.10 and 4.11. These figures also show that the cross-channel velocity is two orders of
magnitude smaller than the along-channel velocity.

The flow in the steep estuary (C = 6) differs a lot from the nearly flat estuary (C = 0.1). During ebb, most of the
water flows out of the estuary through the deep channel, and water on the shallow banks flows towards the
channel. During flood, the exact opposite is visible: water flows in through the channel and from the channel
towards the banks. As Figures 4.10 and 4.11 indicate, the lateral velocities are much larger in this case as well,
and are able to balance the along-channel velocities close to the banks. The asymmetry of the lateral velocity
structure shown in Figures 4.10 and 4.11 is caused by Coriolis forces.

Figure 4.10: Amplitude of M2-cross-channel velocity in the
cross-section {L/2} × [−B/2,B/2] corresponding to C = 0.1.
Lighter (darker) colours indicate larger (smaller) velocities.

Figure 4.11: Amplitude of M2-cross-channel velocity in the
cross-section {L/2}×[−B/2,B/2] corresponding to C = 6. Lighter
(darker) colours indicate larger (smaller) velocities.

These observations can be explained using the previous observations and the depth-integrated continuity
equation (3.4d). The depth-integrated continuity equation and the divergence theorem imply that for any
D̃ ⊆ D2D that has a piecewise-smooth boundary,

∫
D̃
ζt dA =−

∮
∂D̃

(
H

∫ 0

−1
u dς

)
·n ds =: −

∮
∂D̃

U ·n ds. (4.4)

U is the vector of depth-integrated velocities, and n is the outward-pointing normal vector. In words, identity
(4.4) states that the total increase of surface elevation in D̃ must be equal to the total amount of water flowing
into D̃ .



4.2. Semidiurnal tidal flow 31

Figure 4.12: Transport of water (depth-integrated velocity) at four
moments in the tidal cycle (t = 0, t = 0.25σ−1, t = 0.5σ−1 and t =
0.75σ−1) corresponding to C = 0.1. The colour denotes the norm
of the transport where lighter (darker) colours denote stronger
(weaker) currents, and the arrows denote the direction.

Figure 4.13: Transport of water (depth-integrated velocity) at four
moments in the tidal cycle (t = 0, t = 0.25σ−1, t = 0.5σ−1 and
t = 0.75σ−1) corresponding to C = 6. The colour denotes the norm
of the transport where lighter (darker) colours denote stronger
(weaker) currents, and the arrows denote the direction.

First, the case C = 6 is analysed. During flood, water is transported into the estuary via the channel, because
the along-channel velocity is large in deeper areas. Accordingly, the total amount of water flowing into any
D̃ located in the channel is also large. However, the water surface elevation and its time derivative are ap-
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proximately uniform in space. Therefore, for any D̃ located in shallow waters, the total flow into D̃ must be
approximately equal to the the total flow into a D̃ of the same area in the deep channel. Since along-channel
velocities are small in shallow waters, the lateral transport of water must be relatively large in these areas, i.e.
water flows from the channel towards the banks. The same arguments can be used to explain the current
during ebb and the currents in the case C = 0.1. In the latter case, the difference in along-channel velocity
between channel and banks is much smaller, which implies that the lateral velocities will be much smaller as
well.

Phase difference in the channel

In short estuaries, the water surface is typically approximately a standing wave (Friedrichs, 2010), in which
the velocities are ahead of the surface by π/2 radians. This phase difference arises because water must flow
into the estuary before the water surface can rise. However, the slack water currents in the steep estuary indi-
cate that the water transport above the channel is delayed compared to the transport over shallower waters.
Figures 4.14 and 4.15, in which the phases of the surface and the along-channel velocity and their differences
are shown, support this observation. To be able to discern variation in the phase, the colour ranges in both
these Figures differ. Furthermore, the figures indicate that in the nearly flat estuary, the phase difference be-
tween surface and velocity is indeed close to π/2, but that in the steep estuary, the phase difference between
surface and velocity differs significantly from π/2.

Figure 4.14: Phases [rad] of water surface elevation (top), depth-
averaged along-channel velocity (middle) and their difference
(bottom) in the case C = 0.1. Lighter (darker) colours are associ-
ated with larger (smaller) phases.

Figure 4.15: Phases [rad] of water surface elevation (top), depth-
averaged along-channel velocity (middle) and their difference
(bottom) in the case C = 6. Lighter (darker) colours are associated
with larger (smaller) phases.

4.2.2. Quantifying the effects of steepness

Summarising Subsection 4.2.1, the most striking differences between the hydrodynamics in the steep and
nearly flat estuaries are the growing difference between along-channel flow in the channel and close to the
banks, the increasing cross-channel flow induced by this difference, and the smaller phase difference be-
tween surface and velocity above the channel. To quantify these effects of the bathymetric steepness, the
following indicative scalar values are plotted as a function of the steepness parameter C :

• The maximum and mean along-channel velocity amplitude (depth-dependent) computed in the cen-
tral cross-section {L/2}× [−B/2,B/2] to prevent interference of the seaward boundary layer,



4.2. Semidiurnal tidal flow 33

• the maximum cross-channel velocity amplitude (depth-dependent) computed in the central cross-
section,

• the phase differences between surface elevation and depth-averaged along-channel velocity at the
point (L/2,0) in the middle of the channel and at the point (L/2,−B/2+ 100), located close to one of
the banks of the estuary. The point (L/2,−B/2+100) is used instead of a point on the bank to reduce
the influence of numerical errors, which get relatively large close to the bank for large values of C , since
velocities are very small there.

The steepness parameter ranges from C = 0 (flat bed) to C = 12.

In Figures 4.16 and 4.17, the dependence of the mean and maximum along-channel velocity, and maximum
cross-channel velocity on the steepness parameter C is shown, respectively. As expected from Subsection
4.2.1, the maximum along-channel and cross-channel velocities increase as the bathymetric steepness in-
creases. The maximum along-channel velocity grows faster between C = 0 and C = 1 than in the rest of the
range of C . Furthermore, the maximum cross-channel velocity seems to stop growing close to C = 12. Finally,
the mean along-channel velocity in the central cross-section decreases as the steepness increases, but after
C ≈ 3, it remains constant.

Figure 4.16: Mean and maximum along-channel velocity ampli-
tude in the central cross-section as a function of the steepness pa-
rameter C .

Figure 4.17: Maximum cross-channel velocity amplitude in the
central cross-section as a function of the steepness parameter C .

To study the dependence of the mean along-channel velocity on the steepness parameter C , one could take
inspiration from Rozendaal et al. (2024) and parametrise the bed friction term in a one-dimensional (1DH)
model (see for example Friedrichs (2010)) exactly using analytical vertical and lateral structures. In this work,
the authors give an exact parametrisation of three-dimensional bed friction in a two-dimensional model.
To achieve similar results in the model of this thesis, the analytical vertical and lateral structures of Winant
(2007) can be used; this model is very similar to the model of this thesis. Using the dependence of this cross-
sectionally averaged friction parameter on the steepness parameter C , one could explain the dependence of
the cross-sectionally averaged velocity on C as shown in Figure 4.16, assuming that a large friction parameter
corresponds to a small cross-sectionally averaged velocity. However, because of time constraints, this analysis
is not carried out in this thesis.

The dependence of the phase difference on C is shown in Figure 4.18. As expected from Subsection 4.2.1, the
phase difference above the channel decreases as C increases, and the phase difference close to the banks in-
creases as C increases. There is a conspicuous peak at C = 4.4 that breaks the trend, but this is likely the result
of numerical error and not reflective of physical behaviour; nothing about the bathymetry corresponding to
C = 4.4 is qualitatively different than the bathymetries corresponding to neighbouring values of C .

Figure 4.18 indicates that the phase difference between the surface elevation and the along-channel veloc-
ity is strictly smaller than π/2. Indeed, Li and O’Donnell (2005) explain that due to bed friction, the phase
difference between surface elevation and flow is smaller than π/2. The tide may be decomposed into an inci-
dent and reflected wave. Because of bed friction, the reflected wave is slightly weaker than the incident wave,
which causes the tide to be closer to a progressive wave, i.e. with a phase difference of 0. Because the estuary
considered in this thesis is short, the reflected wave is only slightly weaker than the incident wave. Therefore,
the phase difference is only slightly smaller than π/2.
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Figure 4.18: Phase difference between water surface and depth-averaged along-channel velocity in the middle of the channel and close
to the banks, plotted against the steepness parameter C . The dashed line indicates π/2.

However, Figure 4.18 shows phase differences that are much larger than π/2 for non-flat bathymetries. Thus,
additional analysis is needed to explain the results in this figure. As before, this additional analysis is not
performed in this thesis due to time constraints.

4.3. Advection-induced residual flow
Now, the residual (subtidal) flow patterns that emerge from advection are studied. Since river discharge and
density gradients were neglected, advection is the only mechanism that produces residual flow. As mentioned
before, convergence of the Newton method proved to be a significant challenge; to be able to generate inter-
pretable results, the equations had to be modified slightly. In Subsection 4.3.1, this modification is described
and it will be argued that the results are most likely still valid despite the modification. Afterwards, the same
approach as Section 4.2 is taken: two solutions associated to different steepness parameters are compared
qualitatively in Subsection 4.3.2 and the effect of steepness is quantified using scalar values in Subsection
4.3.3

4.3.1. Divergence of the Newton method

It can be shown that the Newton method converges in one iteration if it is applied to linear problems. There-
fore, there is a connection between how fast the Newton method converges and how strong the non-linearities
in the equations are. Inspired by this, one may aid convergence by suppressing non-linear terms. To this end,
the equations are modified in two ways.

Firstly, advective terms are only included in the equations for the residual flow. That means that the semidi-
urnal tidal motion does not change compared to Section 4.2, and overtides (M4, M6, . . .) and their non-linear
interactions with M2-flow and residual flow are neglected. Thus, the residual flow is only affected by momen-
tum advection from the semidiurnal tide and the residual flow itself. Later, the results show that the influence
of momentum advection through the residual flow on the residual flow itself is negligible. Therefore, it is likely
that advection from residual flow does not significantly affect semidiurnal flow as well.

Secondly, the parameter ε is chosen to be equal to 0.1 instead of 1. The momentum equations for the residual
flow (2.3b-c) then transform to

ε(uux + vuy +wuz )− f v =−gζx +Av uzz , (4.5a)

ε(uvx + v vy +w vz )+ f u =−gζy +Av vzz . (4.5b)
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Here, the bar denotes taking the average over the tidal period. Note that the time derivative vanishes be-
cause residual flow is considered. The momentum equations in ς-coordinates and the projected equations
transform accordingly.

It is difficult to predict how the residual flow structure is affected by using ε= 0.1 instead of ε= 1. Ideally, this
only affects the scale of the residual flow, and not its spatial structure. However, this is not guaranteed. Even
in this case, analysis of the solutions will be valuable, as this would later allow us to conclude that the spatial
structure of residual flow is significantly affected by the strength of advection, once solutions with ε= 1 have
been computed.

Even with these modifications convergence is not certain, but when the initial guess was chosen to be the
solution of the linear problem, convergence was achieved for nearly all values of C considered; the only value
for which the Newton method did not converge was C = 12, where the norm of the residual did not tend to
zero, but remained approximately constant. However, the norm of the residual was small enough to be con-
fident that the solution is approximately correct. Moreover, the results for C = 12 (shown later in Subsection
4.3.3) do not break trends.

As for why convergence is such a challenge, I have two hypotheses. Firstly, the reason could be the seaward
boundary layer. The results indicate that in this boundary layer, residual currents are an order of magnitude
stronger than outside this layer, which suggests that the advective terms are very influential here. Possibly,
this occurs because of unphysical large gradients in the tidal motion. Secondly, there are noticable numerical
artifacts present in the solutions, especially in v , w and their gradients. It is possible that these artifacts
strengthen the advective terms, which makes convergence more difficult. More analysis is necessary before
definitive conclusions can be drawn. Methods to avoid the above issues are discussed in Section 5.2.

4.3.2. Comparison of two solutions

Like Subsection 4.2.1, the residual flow patterns associated with a gently sloping bathymetry (C = 0.1) are
compared to the patterns associated with a steep bathymetry (C = 6).

Along-channel velocity

In Figure 4.19 the residual along-channel velocities corresponding to both bathymetries are shown, from a
top perspective and in the central cross-section (x = L/2).

Looking at Figure 4.19, it becomes clear that the seaward boundary layer discussed before strongly affects
the advective residual flow. In the nearly flat estuary (C = 0.1), the contourlines are curved, and in the steep
estuary (C = 6), the currents even switch sign in the boundary layer. Like before, these flow patterns are
expected to be unrealistic and hence, exclude the seaward boundary layer from the analysis.

Comparing the left panels of Figure 4.19 to the right panels, one can observe that the residual flow is stronger
in the case C = 6 and the maximum positive flow is noticeably more off-center. These observations can be in-
terpreted by looking at which terms in the residual momentum equations are dominant. To this end, Figures
4.20 and 4.21 show the cross-sectional views of each forcing term, computed using the solution correspond-
ing to C = 0.1 and C = 6, respectively. The term ’forcing’ is defined loosely as every term in the along-channel
residual momentum balance (4.5a) except Av uzz .

The contribution of advection from tidal motion is calculated as follows: the semidiurnal flow can be written
in terms of the harmonic basis functions as u1(x, y, z)cos(2πσt )−u−1(x, y, z)sin(2πσt ). Thus, the product
uux is given by

1

2

(
u1
∂u1

∂x
+u−1

∂u−1
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)
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(
u1
∂u1

∂x
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)
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2

(
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+u−1

∂u1

∂x

)
sin(4πσt ), (4.6)

and hence, the contribution of uux to the residual momentum equations is given by 1
2 (u1(u1)x +u−1(u−1)x ).

Similar formulas can be derived for the contribution of the other advective terms to the residual momentum
equations.

In the case C = 0.1, Figure 4.20 shows that the along-channel residual flow is governed by a balance between
momentum advection through along-channel tidal motion and the surface gradient. The surface gradient is
determined as a reaction to other forcing mechanisms in such a way that the cross-sectionally averaged resid-
ual along-channel velocity vanishes. This is required by the depth-integrated continuity equation. Indeed,
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(a) Top view for C = 0.1 (b) Top view for C = 6

(c) Cross-sectional view for C = 0.1 (d) Cross-sectional view for C = 6

Figure 4.19: Residual along-channel flow for two different bathymetries (C = 0.1 (left) and C = 6 (right)), showed from two different
perspectives: a top view (top) and a cross-sectional view (bottom). Positive (negative) velocities are signified by blue (red) and indicate
flow into (out of) the channel. The range of the colour is restricted to the maximum absolute velocity in the central cross-section; in the
seaward boundary layer, velocities are much larger than suggested here.

since the time derivative of residual quantities vanishes, it holds that(∫ 0

−H
u dz

)
x
+

(∫ 0

−H
v dz

)
y
= 0.

Integrating this equation over the width of the estuary and using that there is no lateral transport through the
closed boundaries, one finds that the cross-sectionally averaged residual along-channel velocity is constant.
Because the river discharge was neglected, the cross-sectionally averaged residual along-channel velocity is
equal to 0 as well.

In the case C = 6, Figure 4.21 shows that the residual flow also is governed by a balance between advection and
surface gradients. However, in this case, advection of momentum through lateral and vertical tidal motion
is significant as well. In fact, close to the borders of the deep channel, lateral advection is stronger than
along-channel advection. Lateral advection is able to become part of the dominant balance because of two
reasons: lateral tidal velocities are larger in the presence of steep bathymetries and the difference between
along-channel tidal velocities in the channel and velocities above the banks is larger, leading to a large lateral
gradient uy . Because of the Coriolis effect, the structure of the lateral velocity is asymmetric and hence, the
lateral advection (and vertical advection through (3.16)) is asymmetric as well. Because these processes are
part of the dominant balance, the total forcing is asymmetric, which causes the asymmetry in the residual
along-channel flow.

Furthermore, along-channel tidal velocities are larger in the case C = 6 than in the case C = 0.1. Because
river discharge was neglected, the along-channel velocity must decay to zero. It follows that the larger along-
channel velocities in the steep estuary decay faster than velocities in the nearly flat estuary. Therefore, both u
and ux are larger and hence, advection through along-channel flow is stronger. Combined with the stronger
lateral and vertical advection, the total forcing in the residual equation is larger, which is likely the reason for
the stronger residual along-channel flow in the steep estuary.
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Figure 4.20: Forcing balance in residual along-channel momentum equation in the case C = 0.1. The bar denotes averaging a quantity
over the tidal period.

Cross-channel velocity

In Figure 4.22, the residual cross-channel velocities are shown. It is clear that Figure 4.22 is riddled with
numerical artifacts. In fact, Figure 4.22d seems to indicate that the cross-sectionally averaged residual cross-
channel velocity does not vanish. This would imply a net lateral transport, which is physically impossible.
Because of these artifacts, a sensitivity analysis for residual lateral velocities is not carried out; any indicative
scalar value would be significantly affected by the artifacts.

However, there are still useful conclusions to be drawn from Figure 4.22: in both cases, momentum advection
of tidal motion causes residual flow towards the banks of the estuary. Furthermore, lateral velocities are
stronger if the bathymetry is steeper.

4.3.3. Quantifying the effects of steepness

In this subsection, the observations about the increased strength and asymmetry of the residual along-channel
flow are quantified using two indicative scalar values:

• The exchange rate Q over the central cross-section as a measure of the strength of the residual flow,
which is defined as the total amount of residual inflow (Li & O’Donnell, 2005). Because river discharge
was neglected, the exchange rate could equivalently be defined as minus the total amount of residual
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Figure 4.21: Forcing balance in residual along-channel momentum equation in the case C = 6.

outflow. The exchange rate is computed by setting the outflow to zero and integrating over the cross-
section.

• The center of mass (COM) of the residual depth-integrated inflow as a measure of the lateral asymme-
try of the residual flow. If the inflow is divided by the exchange rate such that it integrates to 1 and
constitutes a probability density, the center of mass is equal to the expected value of this probability
distribution. More precisely, the center of mass is computed using the following formula:

COM = 1

Q

∫ B/2

−B/2
y

∫ 0

−H
max{u,0} dz dy, (4.7)

where u denotes the residual along-channel velocity.

These integral quantities are used instead of (the location of) the maximum because integral quantities are
much less sensitive to numerical errors in the solution than maxima. In Figures 4.23 and 4.24, the dependence
of Q and COM on the steepness parameter is shown.

Figure 4.23 indicates that the exchange rate grows approximately linearly with the steepness parameter and
it shows no signs of slowing down at C = 12. This figure shows that the dependence of the exchange rate on C
bears a remarkable resemblance to the dependence of the maximum tidal velocity amplitude on C . For low
values of C , it was shown that the forcing balance for residual flow is dominated by along-channel advection.
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(a) Top-down view for C = 0.1 (b) Top-down view for C = 6

(c) Cross-sectional view for C = 0.1 (d) Cross-sectional view for C = 6

Figure 4.22: Residual cross-channel flow for two different bathymetries, showed from two different perspectives. Positive velocities (blue)
indicate flow towards positive values of y . The range of the colour is restricted to the maximum absolute velocity in the central cross
section.

Therefore, it seems likely that for those values of C , the increase of exchange rate as the steepness parameter
increases is linked to the increase of semidiurnal tidal velocities.

Figure 4.24 shows that the center of mass first moves towards to lower bank of the river, reaching its maximum
distance from y = 0 at C = 6, before moving back to y = 0 again. Figures 4.10 and 4.11 show that the locations
of the maximum lateral tidal velocities do not move inward as the steepness increases to C = 6. However,
comparing Figure 4.11 to Figure 4.25, which shows the amplitudes of cross-channel tidal velocities for C = 10,
indicates that after C = 6, the maxima follow the borders of the deep channel and move inward. Lateral tidal
velocities are also stronger in estuaries with steeper bathymetries.

Using these observations, a possible explanation of Figure 4.24 is as follows. For small values of C , lateral
advection is unable to balance the symmetric along-channel advection even where it is weaker, leading to a
relatively symmetric residual flow pattern. However, as the steepness of the bathymetry increases, the asym-
metric lateral advection becomes stronger, leading to more asymmetric forcing, which in turn leads to more
asymmetric residual flow. This pattern continues until the maxima of the lateral tidal velocities (and the max-
ima of uy ) have started to move to the center of the channel, causing them to encroach on the territory of the
along-channel advection, which is still stronger. At this point, the influence of lateral advection diminishes
and accordingly, the residual flow pattern becomes more symmetric. Because the asymmetry in the spa-
tial structure of semidiurnal lateral velocities arises due to Coriolis forces, the asymmetry in the structure of
the residual along-channel velocity is indirectly caused by the Coriolis effect, even though the contribution
of the Coriolis terms in the along-channel residual momentum balance (4.5a) is negligible, as shown in the
bottom-left panels of Figures 4.20 and 4.21



40 4. Results

Figure 4.23: Exchange rate as a function of the steepness param-
eter C .

Figure 4.24: Lateral location of center of mass of residual inflow
as a function of the steepness parameter C .

Figure 4.25: Amplitude of M2-cross-channel velocity in the central cross-section {L/2}× [−B/2,B/2] for steepness parameter C = 10.
Lighter (darker) colours indicate larger (smaller) velocities.
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Discussion

In this section, differences and similarities between the results of this thesis and previously known results are
discussed (Section 5.1). After, a brief overview is given of which aspects of the model and solution method
should be improved to be able to answer the research questions in a more satisfying way (Section 5.2).

5.1. Embedding in the literature
This section is subdivided in two subsections. In Subsection 5.1.1, the results of Section 4.2 about the semid-
iurnal tidal motion are compared to previous studies. Likewise, in Subsection 5.1.2, the results of Section 4.3
about residual flow are compared to the literature.

5.1.1. Semidiurnal tidal motion

There are many studies that investigate linear tidal motion using idealised models. Li and Valle-Levinson
(1999) use a depth-averaged (2DH) model to describe tidal motion in rectangular estuaries with arbitrary lat-
eral bathymetries. They study the along- and cross-channel tidal currents for various complex bathymetries,
among which bathymetries that match bathymetries considered in this thesis very closely (see Figure 1a in
their paper). They find along-channel and cross-channel velocity patterns that look very similar to the pat-
terns found in Figures 4.8, 4.7, 4.10 and 4.11. The lateral velocities found in this work are of the same order
of magnitude as my results, but their along-channel velocities are much larger than the velocities found in
Section 4.2. However, the domain of Li and Valle-Levinson (1999) is much longer than the domain considered
in this thesis. In the last ten kilometres of their domain, the order of magnitude of the along-channel velocity
does match the results of this work.

The work of Winant (2007), which was discussed before, uses a fully three-dimensional model to study the
effects of Coriolis forces on the three-dimensional tidal hydrodynamics. Comparing his results to mine, one
can see that for the matching value of the friction parameter δ (for C = 6, δ≈ 1), the along-channel velocity re-
sults of Winant (2007) are similar to my results; both the order of magnitude and the spatial structure match.
Furthermore, his results show that the phase difference between water surface and velocity depends on lo-
cation, and that velocities in the deep channel are more delayed (or equivalently, less ahead) than velocities
close to the banks.

Comparing Figure 5.1, which shows the semidiurnal lateral velocity amplitude of Winant’s model, to Figure
5.2, which shows the lateral velocity amplitude resulting from the model of this work applied to a domain that
only differs in the length (50 km in the results depicted by Figure 5.1 and 10 km in the results depicted by Fig-
ure 5.2), one can see that the spatial structure of the lateral velocities is similar. However, the location of the
smaller of the two local maxima is completely different: in Figure 5.1, the smaller local maximum is located
deep in the channel, and in Figure 5.2, the smaller local maximum is located at the water surface. Further-
more, the lateral velocity amplitudes are much larger in Figure 5.1 than in Figure 5.2. Because Winant’s model
is so similar to ours, and the width and bathymetry match, the length is likely the source of the discrepancy.
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This would indicate that varying the length of the estuary has significant effects on both the size and the
lateral structure of semidiurnal cross-channel velocities.

Figure 5.1: Semidiurnal lateral veloc-
ity amplitudes [m/s] for a rectangu-
lar estuary with a length of 50 km,
width of 1 km and a parabolic lateral
bathymetry H(η) = 2+8(1−η2) obtained
with Winant’s model. Source: Figure 11
in Kumar et al. (2016), who also com-
pared their model to Winant’s model.

Figure 5.2: Semidiurnal lateral velocity amplitudes [m/s] for a
rectangular estuary with a length of 10 km, width of 1 km and
a parabolic lateral bathymetry H(η) = 2+ 8(1−η2) obtained
with the model of this thesis.

Ensing et al. (2015) used a three-dimensional perturbative model to study lateral tidal motion in response
to bathymetry steepness, among other factors. While their lateral velocity structure is different than the one
presented by Figures 4.10 and 4.11, they do find that increasing bathymetry steepness strengthens lateral
tidal velocity. The structural differences are likely due to the differences in model set-up and domain. For
instance, Ensing et al. (2015) include width-convergence effects and a tidally varying salinity, which can be a
major driver of lateral tidal motion (Lerczak & Geyer, 2004).

5.1.2. Advection-induced residual flow

As for the advection-driven residual flow, Li and O’Donnell (2005) used a depth-averaged perturbative model
to study the effects of channel length on the residual flow. They found that the channel length (relative to
the quarter tidal wave length) has a profound effect on the structure of the residual flow: for short channels,
water flows into the estuary through the deep channel and out closer to the banks. For long channels, this is
exactly the other way around. Since this thesis considered short channels, the findings in Section 4.3 match
their results. The depth-averaged residual velocity vectors found using their model, applied to a long estuary
with a Gaussian lateral bathymetry, are shown in Figure 5.3. In the last ten kilometres of the domain of Figure
5.3, the residual flow matches the results found in this thesis: the flow points into the estuary in the deep
channel and from the channel towards the banks. Since the authors state that their results for a short channel
resemble the results for a long channel close to the riverine boundary, the results in this thesis match the
results of Li and O’Donnell (2005) in short channels.

Finally, Huijts et al. (2009) study the lateral distribution of residual flow in response to various factors using
a cross-sectional model that assumes uniform along-channel conditions. Because they use a perturbation
method to solve their equations, they are able to decompose the solution into contributions from each forc-
ing mechanism, among which momentum advection from semidiurnal tidal flow. Furthermore, they give
formulas to compute residual velocity scales for each forcing mechanism. Comparing their Figure 9 to Figure
4.19, it can be seen that the residual flow found in this thesis differs greatly from the results of Huijts et al.
(2009). Both the velocity scales and the lateral structure of the residual along-channel velocity are completely
different. In Table 5.1, the residual along-channel velocity scales observed in Figure 4.19 divided by ε are
compared to the expected velocity scales using the formulas in Huijts et al. (2009), which shows that the for-
mulas of Huijts et al. (2009) significantly underestimate the strength of the residual current. Furthermore, the
authors find that residual current flows into the estuary in one half of the cross-section, and out of the estuary
in the other half (see their Figure 9h), whereas the results of this thesis indicate inflow through the channel
and outflow at the shallower sides.
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Figure 5.3: Depth-averaged residual velocity vectors found using the model of Li and O’Donnell (2005), applied to a rectangular estuary
with L = 105 km, B = 2 km and a Gaussian lateral bathymetry H(η) = 5+10exp(−8.16η2). Adapted from Figure 2 in Li and O’Donnell
(2005).

Steepness parameter C Figure 4.19 divided by ε Expected from Huijts et al. (2009)

0.1 2 ·10−3 m/s 2 ·10−5 m/s

6 1 ·10−2 m/s 3 ·10−3 m/s

Table 5.1: Residual along-channel velocity scales observed in Figure 4.19 compared to the velocity scales expected from the formulas
in Table 2 of Huijts et al. (2009). The velocities observed in Figure 4.19 are divided by ε to account for the multiplication discussed in
Subsection 4.3.1.

Because Huijts et al. (2009) use a cross-sectional model, along-channel velocity gradients are neglected. Since
it was found that residual along-channel flow is driven by a balance of forces that includes along-channel mo-
mentum advection as a dominant factor, this is likely the source of the differences. This explanation is con-
sistent with the result that residual flow in estuaries with steeper bathymetries is driven by a balance between
advection from all tidal velocity directions, whereas residual flow in the nearly flat estuary is forced primarily
by along-channel momentum advection. Indeed, the disparity between the predicted velocity scales from
Huijts et al. (2009) and the actual velocity scales is smaller in the case C = 6. In any case, the findings of this
thesis suggest that at least in short channels where along-channel velocity gradients are large, cross-sectional
models are insufficient to describe residual flow due to momentum advection from semidiurnal tidal motion.
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5.2. Outlook
At several points in this chapter, numerical issues hampered interpretation of the results by forcing us to
limit the domain to short estuaries, to modify the equations to achieve convergence, and to limit our analysis
of lateral residual velocities. In order to answer the research questions completely, several steps need to be
taken:

1. Implement a parallel version of the model that can be solved by large computing clusters and super-
computers. This will allow us to compute numerically converged solutions for realistically sized estuar-
ies, as well as overtides (M4, M6, . . .) and their interactions with each other, even when advection-driven
flow is leading-order.

2. Investigate why convergence of the Newton method is so challenging and find a solution to this prob-
lem. Previously, two hypotheses for why the method kept diverging were presented. If numerical arti-
facts are the reason for divergence, then point 1 will solve these convergence problems. On the other
hand, if the seaward boundary layer is the source of divergence, it could be possible to reduce the size
and strength of the boundary layer by choosing a seaward boundary condition that fits better with the
bathymetry than a uniform signal. For example, the analytical solutions of Winant (2007) for the water
surface elevation could be used instead.

Furthermore, some non-linear physical processes have been neglected that might be influential factors for
hydrodynamics in estuaries, especially when the bathymetry becomes very steep. Firstly, it was assumed
that the free surface was not part of the domain, so integration over depth and evaluation of velocities at
the surface for the surface boundary conditions did not involve one of the unknowns of the model. Dijkstra
et al. (2017) have shown that these non-linear effects are of order O (ζ/H), showing that they might become
dominant if the domain contains shallow areas, which is the case for many values of C . Secondly, it was
assumed that the eddy viscosity Av was constant. In reality, the eddy viscosity scales with the size of the
turbulent eddies, which scales with the local water depth (Friedrichs & Hamrick, 1996). For high values of C ,
the deepest point in the domain can be six times as deep as the shallowest point, implying that in reality, six
times as much energy should be dissipated by the turbulent eddies. Once these physical effects are included,
the research questions can be answered more completely.
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Conclusion

This thesis presented a three-dimensional idealised model for the hydrodynamics in estuaries, based on the
Reynolds-averaged shallow water equations with constant density and eddy viscosity. To solve this model, a
truncation method was employed, which expands the unknowns in terms of a harmonic Fourier basis and
a vertical basis defined using an eigenvalue problem. After projecting the equations and boundary condi-
tions onto these bases, the resulting system of two-dimensional PDEs is discretised using a spectral element
method and subsequently solved using the Newton-Raphson method. To be able to give numerically con-
verged results with a standard computer, the model was applied to short estuaries (10 kilometres long).

Using the model, the effect of steep lateral bathymetries on the (linear) semidiurnal tidal motion (Q1) and
advection-induced residual flows (Q2) was studied, by comparing solutions associated to gently sloping and
steep bathymetries and quantifying observations.

It was found that the semidiurnal water surface elevation behaves approximately like a uniform oscillating
surface regardless of the steepness of the bathymetry, because the estuary is much shorter than the tidal
wave length, and because lateral variations in the water surface scale with the ratio between estuary width
and length, which is small even in a short estuary.

Bathymetric steepness does have a significant effect on along-channel tidal velocities. In estuaries with
steeper bathymetries, velocities are larger in the deeper channel and smaller above the shallower banks. This
can be explained using the depth: the bed boundary layer has more space to develop in deep water than in
shallower water.

The steepness also has an effect on the strength and spatial structure of the lateral velocities. At flood, water
flows in through the deep channel and from the deep channel, out onto the banks. At ebb, the pattern is
reversed. For steeper bathymetries, both the flow into the channel, and from the channel onto the banks
are stronger. Because the water surface elevation is an approximately uniform oscillating surface, and along-
channel currents are stronger in the channel than on the banks, water must flow onto the banks from the
channel in order for the surface elevation to remain uniform.

Finally, the tidal flow associated to steep bathymetries exhibits significant phase differences between veloc-
ities in the channel and velocities close to the banks; velocities close to the banks are ahead compared to
velocities in the channel. These phase differences grow as the bathymetry becomes steeper.

These results are consistent with other studies. While the lateral structure of cross-channel velocities differs
known results, this can likely be explained by the fact that the estuaries considered in this thesis were short.

Because the Newton method was not converging, some modifications had to be made to the equations to be
able to compute advection-driven residual flow. Firstly, advective effects on the semidiurnal tide and over-
tides were neglected, and secondly, the advective terms in the equations for the residual flow were multiplied
by 0.1. This means that the resulting residual flows are generated because of momentum advection from the
semidiurnal tide and the residual flow itself, and they are weaker than they would be in reality.
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The results indicate that the along-channel residual current is characterised by inflow through the deep chan-
nel and outflow closer to the banks. Steeper bathymetries generate stronger residual flows, and notably more
asymmetric flow structures. Looking at the forcing balance, one can see that the along-channel residual flow
is governed by a balance between momentum advection from semidiurnal tidal velocities and along-channel
surface gradients. In estuaries with gently sloping bathymetries, the contribution from advection is domi-
nated by along-channel advection, and in estuaries with steep bathymetries, the contribution from advec-
tion is more balanced between along-channel, cross-channel and vertical momentum advection. Because
the cross-channel velocity structure is asymmetric due to the Coriolis effect, the forcing balance is asymmet-
ric as well in these estuaries.

The cross-channel flow is characterised by flow from the channel towards the banks, and residual cross-
channel currents become stronger if the bathymetry becomes steeper. However, because the lateral residual
velocities are riddled with numerical artifacts, one should be hesitant about drawing definitive conclusions.

Comparing the results to a depth-averaged model, one can see qualitatively similar residual flows, though the
new model did not reproduce the same residual circulation. Bigger differences can be found when comparing
the model to a cross-sectional model: the spatial structure of the along-channel residual flow is completely
different and the three-dimensional model predicts much stronger residual currents than the cross-sectional
model. The source of this discrepancy is likely the neglected along-channel velocity gradients by the cross-
sectional model. Indeed, it was found that along-channel momentum advection was a dominant contributor
to the residual flow. Thus, the results suggest that at least for short channels where along-channel velocity
gradients are large, cross-sectional models are insufficient to study advection-driven residual flows.
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A
Geophysical hydrodynamics

To derive the equations governing geophysical hydrodynamics, we start from the famous Navier-Stokes equa-
tions that represent conservation of mass and momentum, taking into account the effect of the Earth’s rota-
tion (Section A.1). Afterwards, the Boussinesq approximation will be incorporated (Section A.2), and the
effects of turbulence will be parametrised in Section A.3. For these sections, we follow Chapters 3 and 4 in
Cushman-Roisin and Beckers (2011). Finally, the shallow water equations are derived in Section A.4

A.1. The Navier-Stokes equations
Flowing water obeys the principle of conservation of mass. For any fixed volume of water V , it then follows
that

∂

∂t

Ñ
V
ρ dV =−

Ó
∂V
ρu ·n dS. (A.1)

Here, ρ is the density of the water, u = (u, v, w) is the velocity field and n is the outward unit normal vector.
Application of Leibniz’s integration rule and the divergence theorem leads to a differential equation, which is
commonly referred to as the continuity equation:

ρt +∇· (ρu) = ρt + (ρu)x + (ρv)y + (ρw)z = 0. (A.2)

Equation (A.2) is written in Cartesian coordinates, where the x and y coordinates are horizontal and the z-
direction is vertical.

While the length scales associated with geophysical fluid dynamics are typically large, they are usually still
small enough to warrant viewing the Earth as flat, instead of working with the more accurate spherical coor-
dinates.

By applying the principle of conservation of linear momentum in the same fashion as before, one obtains the
momentum equations:

ρ
(
ut +uux + vuy +wuz + f∗w − f v

)=−px +
(
τxx)

x +
(
τx y )

y +
(
τxz)

z , (A.3a)

ρ
(
vt +uvx + v vy +w vz + f u

)=−py +
(
τy x)

x +
(
τy y )

y +
(
τy z)

z , (A.3b)

ρ
(
wt +uwx + v wy +w wz + f∗u

)=−pz +
(
τzx)

x +
(
τz y )

y +
(
τzz)

z − gρ. (A.3c)

In (A.3a-c), p is the pressure and the terms with τ denote normal and shear stresses representing friction.
Furthermore, g is the gravitational acceleration, and f and f∗ are the Coriolis and reciprocal Coriolis param-
eters respectively. They are given by f = 2Ωsinφ and f∗ = 2Ωcosφ, where Ω is the Earth’s angular velocity
based on a true siderial day, equal to 7.29 ·10−5 rad s−1 (Gerkema, 2019), and φ is the latitude in degrees. For
estuaries in Northern Europe, with latitudes around 50◦, it follows that f is approximately equal to 10−4 rad
s−1.
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The Coriolis terms represent the fact that the water motion is not observed from an inertial reference frame,
but rather a rotating reference frame following the rotation of the Earth about its axis. Because of this rotation,
the flow would seem to turn counterclockwise for an observer standing on the Northern hemisphere. Thus,
while the Coriolis terms can be interpreted as a force deflecting the flow, it is more accurate to view them as
correction terms accounting for a non-inertial frame of reference.

Since geophysical flow is predominantly horizontal, the reciprocal Coriolis terms are generally negligible and
are therefore often left out of the equations. This is called the traditional approximation, (Gerkema, 2019;
Gerkema et al., 2008). Furthermore, we will treat the Coriolis parameter f as a constant, by choosing a con-
stant reference latitude. The domain under consideration may thus be seen as a flat plane centered around
the reference latitude, and this approximation is fittingly called the f -plane approximation.

Equations (A.3a-c) can be further specified by noting that water is a Newtonian fluid, that is, a fluid for which
the stresses are proportional to the derivatives of the velocity:

τxx = 2µux , τx y =µ(
uy + vx

)
, τxz =µ (uz +wx ) , (A.4a)

τy x =µ(
vx +uy

)
, τy y = 2µvy , τy z =µ(

vz +wy
)

, (A.4b)

τzx =µ (wx +uz ) , τz y =µ(
wy + vz

)
, τzz = 2µwz . (A.4c)

Here, µ is the dynamic viscosity of the fluid, representing the internal friction. The kinematic viscosity is given
by ν=µ/ρ. Using the constitutive relation (A.4) and applying the traditional approximation, the momentum
equations (A.3) may be rewritten to

ut +uux + vuy +wuz − f v =− 1

ρ
px +ν∆u +ν ∂

∂x
(∇·u), (A.5a)

vt +uvx + v vy +w vz + f u =− 1

ρ
py +ν∆v +ν ∂

∂y
(∇·u), (A.5b)

wt +uwx + v wy +w wz =− 1

ρ
pz +ν∆w +ν ∂

∂z
(∇·u)− g . (A.5c)

The terms involving ∇·u will be eliminated in Subsection A.2 using the Boussinesq approximation.

Combined with the continuity equation (A.2), Equations (A.5a-c) are known as the Navier-Stokes equations.
Typically, they are augmented by an equation specifying the density. Assuming that water is an incompress-
ible fluid, i.e. a fluid whose density changes by a negligible amount in response to pressure changes, the
density depends on temperature T and salinity S through

ρ = ρ0
(
1−α(T −T0)+β(S −S0)

)
, (A.6)

where ρ0, T0 and S0 are constant reference values (Cushman-Roisin & Beckers, 2011, pg. 71). The proportion-
ality constants α and β are called the coefficients of thermal expansion and saline contraction, and typical
values for seawater are α = 1.7 ·10−4 K−1 and β = 7.6 ·10−4 psu−1 (practical salinity units). In this thesis, we
prescribe a constant temperature T = T0 and a constant salinity S = S0.

A.2. The Boussinesq approximation
Density variations are typically small in geophysical contexts. In fact, since we prescribe T = T0 and S = S0,
our model contains no density variation at all. It follows that the continuity equation (A.2) reduces to

∇·u = 0, (A.7)

which makes the continuity equation a reflection of conservation of volume, as well as conservation of mass.
Equation (A.7) holds exactly if the density is constant, but if density variations are small compared to the
mean density, (A.7) is a good approximation of the true continuity equation (A.2).
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The momentum equations (A.5a-c) are then reduce to

ut +uux + vuy +wuz − f v =− 1

ρ
px +ν∆u, (A.8a)

vt +uvx + v vy +w vz + f u =− 1

ρ
py +ν∆v, (A.8b)

wt +uwx + v wy +w wz =− 1

ρ
pz +ν∆w − g . (A.8c)

Equations (A.7) and (A.8a-c) are commonly referred to as the Boussinesq approximation of the Navier-Stokes
equations.

A.3. Parametrisation of turbulence
Turbulent flow, in which velocity and pressure change chaotically, is ubiquitous in geophysical hydrodynam-
ics. Indeed, due to the long length scales and low viscosities, the Reynolds number Re given by

Re = ∥u∥L

ν
,

is typically quite large. In turbulent flow, eddies and vortices of swirling water appear, creating smaller eddies
and vortices of their own. Dissipation of energy is concentrated in the smallest eddies, sometimes on the
scale of micrometers (Davidson, 2015). Figure A.1 provides an example of a turbulent jet of water, in which
eddies appear.

Figure A.1: Water flow in a turbulent jet, captured using laser-induced fluorescence and particle image velocimetry. Source: Westerweel
et al. (2002)

Resolving these eddies in geophysical simulations on the scale of hundreds of kilometers is unfeasible. How-
ever, turbulence must be captured in the model equations, since it is a dominant energy-dissipating process.
In order to achieve this, we parametrise the turbulent effects by viewing them as additional viscosity, leading
to the so-called eddy viscosity parametrisation.

To start, all unknowns are decomposed into a statistically averaged mean part 〈·〉 free of turbulence, and a
fluctuating part representing turbulent motion denoted by a prime. This is called the Reynolds decomposition.
For instance, the along-channel velocity u is written as

u = 〈u〉+u′, (A.9)

with 〈u′〉 = 0.
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Using the Reynolds decomposition, equations for the mean flow may be derived by taking the (linear) ex-
pected value of (A.7) and (A.8):

∇· 〈u〉 = 0, (A.10a)

〈u〉t +〈u〉〈u〉x +〈v〉〈u〉y +〈w〉〈u〉z − f 〈v〉 =− 1

ρ
〈p〉x +

(
ν〈u〉x −

〈
(u′)2〉)

x +
(
ν〈u〉y −

〈
u′v ′〉)

y

+ (
ν〈u〉z −

〈
u′w ′〉)

z ,
(A.10b)

〈v〉t +〈u〉〈v〉x +〈v〉〈v〉y +〈w〉〈v〉z + f 〈u〉 =− 1

ρ
〈p〉u + (

ν〈v〉x −
〈

u′v ′〉)
x +

(
ν〈v〉y −

〈
(v ′)2〉)

y

+ (
ν〈v〉z −

〈
v ′w ′〉)

z ,
(A.10c)

〈w〉t +〈u〉〈w〉x +〈v〉〈w〉y +〈w〉〈w〉z =− 1

ρ
〈p〉z +

(
ν〈w〉x −

〈
u′w ′〉)

x +
(
ν〈w〉y −

〈
v ′w ′〉)

y

+ (
ν〈w〉z −

〈
(w ′)2〉)

z − g .
(A.10d)

Because of the presence of the unknown Reynolds stresses 〈(u′)2〉, 〈(v ′)2〉, 〈(w ′)2〉, 〈u′v ′〉, 〈u′w ′〉 and 〈v ′w ′〉,
equations (A.10) do not form a closed system of equations. In this thesis, we will assume that turbulent fluids
act like Newtonian fluids, and parametrise the Reynolds stresses as additional viscosity similar to (A.4), even
though more sophisticated techniques exist (Cushman-Roisin & Beckers, 2011, ch. 14).

Geophysical flows tend to feature horizontal velocities that are much larger than vertical velocities. Therefore,
it is to be expected that horizontal turbulent eddies are larger than vertical ones. In light of this, we introduce
two parameters: the horizontal eddy viscosity Ah and the vertical eddy viscosity Av , where Ah is assumed to
be larger than Av . For simplicity, both are assumed to be constant. The Reynolds stresses can then be written
as 〈

(u′)2〉= 2Ah〈u〉x ,
〈

(v ′)2〉= 2Ah〈v〉y ,
〈

(w ′)2〉= 2Av 〈w〉z , (A.11a)〈
u′v ′〉= Ah(〈u〉y +〈v〉x ),

〈
u′w ′〉= Av 〈u〉z + Ah〈w〉x ,

〈
v ′w ′〉= Av 〈v〉z + Ah〈w〉y . (A.11b)

Using this parametrisation, a closed set of equations for the mean flow can be derived. In the following, Ah

and Av denote the horizontal and vertical effective eddy viscosity respectively. They are given by Ah = Ah +ν
and Av = Av +ν.

∇·u = 0, (A.12a)

ut +uux + vuy +wuz − f v =− 1

ρ
px +Ahuxx +Ahuy y +Av uzz , (A.12b)

vt +uvx + v vy +w vz + f u =− 1

ρ
py +Ah vxx +Ah vy y +Av vzz , (A.12c)

wt +uwx + v wy +w wz =− 1

ρ
pz +Ah wxx +Ah wy y +Av wzz − g . (A.12d)

In this work, only the mean flow variables are considered and therefore, the brackets 〈·〉 will be omitted like
in (A.12a-d).

A.4. The shallow water equations
The typical length and width scales of estuaries are far larger than their typical depth scales. For instance, the
tidal Scheldt estuary in Belgium and Southern Netherlands is approximately 160 km long and its width ranges
from 5 km at the mouth to 50 m at the end of the tidal influence zone, whereas the estuary is on average only
about 15-20 m deep (see Table 1 in Van Damme et al. (2005)). It follows that the typical length scales for
estuarine flow velocities are also much larger in the horizontal than in the vertical. Mathematically, if L is a
characteristic horizontal length scale for the water motion and H0 is a characteristic vertical length scale, we
may assume that H0 ≪ L.

From the continuity equation (A.12a), it is then possible to derive characteristic scales U and W for the hori-
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zontal and vertical flow velocities. The scaling of (A.12a) is given by

ux + vy + wz = 0.

U

L

U

L

W

H0

Assuming a three-way balance, it follows that

W =O

(
U H0

L

)
,

and since H0 ≪ L, the vertical velocity scale W is much smaller than the horizontal velocity scale, i.e. W ≪U .

Following Pedlosky (1987), the vertical momentum equation (A.12d) can then be reduced to the hydrostatic
balance:

pz = ρg , (x, y, z, t ) ∈ D, (A.13)

with boundary condition p(ζ(x, y, t )) = pa , where pa is the atmospheric pressure, assumed to be constant.
This ordinary differential equation can be integrated to obtain

p(x, y, z, t ) = pa + g
∫ ζ(x,y,t )

z
ρ(x, y, z ′, t ) dz ′. (A.14)

Partial derivatives of (A.14) are computed using the Leibniz integration rule. This results in

px = gρ(ζ)ζx + g
∫ ζ

z
ρx dz ′, (A.15a)

py = gρ(ζ)ζy + g
∫ ζ

z
ρy dz ′. (A.15b)

Here, ρ(ζ) denotes the density at the water surface ζ, which is equal to ρ at every point (x, y) ∈ D2D, since
the prescribed salinity is constant. The first term in Equations (A.15) is generally known as the barotropic
contribution to the pressure gradient, and the second term as the baroclinic contribution. Because a constant
density is prescribed, the baroclinic pressure gradient vanishes.

These can then be substituted in the horizontal momentum equations (A.12b-c) to obtain:

ut +uux + vuy +wuz − f v =−gζx +Ahuxx +Ahuy y +Av uzz , (A.16a)

vt +uvx + v vy +w vz + f u =−gζy +Ah vxx +Ah vy y +Av vzz . (A.16b)

Combined with the continuity equation (A.12a), equations (A.16a-b) are known as the (three-dimensional)
shallow water equations.

Finally, horizontal eddy viscosity is neglected to ensure that non-linear boundary conditions are not required.
Indeed, using this assumption, the no-stress boundary condition at the water surface (2.6) is a linear bound-
ary condition.

This simplification may be (partially) justified using a scaling argument. The eddy viscosity parameters may
be assumed to scale linearly with the size of the turbulent eddies (Friedrichs & Hamrick, 1996). Thus, Ah =
O (A L) and Av = O (A H0), for some common factor A that describes the general viscous effects of turbu-
lence. It then follows that Ahuxx ,Ahuy y =O (A L−1) and Av uzz =O (A H−1

0 ). Since H0 ≪ L, Ahuxx ,Ahuy y ≪
Av uzz . The same holds for the cross-channel velocity v .





B
Solving eigenvalue problem 3.11

Consider the eigenvalue problem (3.11) subject to boundary conditions f (−1) = 0, f ′(0) = 0:

f ′′ =−λ f .

First suppose that λ< 0. Then the general solution of (3.11) is given by

f (ς) =C1e
p
λς+C2e−

p
λς. (B.1)

Substituting (B.1) into the Neumann boundary condition results in

f ′(0) =
p
λ

(
C1e

p
λ·0 −C2e−

p
λ·0

)
=
p
λ(C1 −C2) = 0,

which implies C1 =C2. In this case, the Dirichlet boundary condition requires

f (−1) =C1

(
e
p
λ+e−

p
λ
)
= 2C1 cosh

(p
λ
)
= 0.

This is only possible if C1 =C2 = 0. Thus, the only solution associated toλ< 0 is the trivial solution. Therefore,
any λ smaller than 0 cannot be an eigenvalue of (3.11).

Now suppose that λ= 0. Then the general solution of (3.11) is given by

f (ς) =C1ς+C2. (B.2)

Again, the boundary conditions require that C1 =C2 = 0, so λ= 0 is also no eigenvalue.

Finally, suppose that λ> 0. The general solution of (3.11) is given by

f (ς) =C1 cos
(p
λς

)
+C2 sin

(p
λς

)
. (B.3)

The Neumann boundary condition f ′(0) = 0 necessitates C2 = 0. Now, substitution of (B.3) into the Dirichlet
boundary condition f (−1) = 0 leads to the equation

C1 cos
(p
λ
)
= 0. (B.4)

Equation (B.4) is solved by C1 = 0, which would again lead to a trivial solution. However, by letting

p
λ= mπ+ π

2
, m ∈N,

Equation (B.4) is satisfied regardless of C1.

In conclusion, the eigenvalue problem (3.11) is solved by the eigenvalue-eigenfunction pairs (λm , fm) given
by

fm(ς) = cos

((
m + 1

2

)
πς

)
, λm =

(
m + 1

2

)2

π2.
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