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An Improved Source Term for Finite-Element Modelling with 

the Stress-Velocity Formulation of the Wave Equation

R. Shamasundar* (CiTG, TU Delft), W.A. Mulder (Shell GSI B.V., Technical University of Delft)

Summary 

For seismic modelling, imaging and inversion, finite-difference methods are still the workhorse of the industry 

despite their inability to meet the increasing demand for improved accuracy in subsurface imaging. Finite-

element methods offer better accuracy but at a higher computational cost. A stress-velocity formulation with 

linear elements and an iterative method, defect correction, for inverting the mass matrix offers fourth-order 

super-convergence but is susceptible to numerical noise if waves in the wrong part of the dispersion curve are 

excited. We propose an improved source term that reduces that noise and investigate the accuracy of the 

method on structured triangular meshes as well as on unstructured rotated meshes. With an optimised source 

function, it is seen that the dispersive wavelengths can be avoided, giving the defect-correction approach a 

better performance than the mass-lumped formulation with only a marginal increase in compute effort. 



79th EAGE Conference & Exhibition 2017  
Paris, France, 12-15 June 2017 

Introduction

The finite-elementmethod (FEM) offers generality, accuracy and adaptivity not available in the finite-
difference method (FDM). The latter is popular for production runs in the hydrocarbon industry because
of its relative ease of coding and reasonable computational efficiency. With the increasing demand for
more accuracy in subsurface imaging as well as more abundant compute cores, the FEM may become
more attractive. They have a higher computational cost than FDMs but high-order versions have superior
accuracy in the presence of hard contrasts and topography and better exploit modern computer hardware.
Alternatively, we may look for less compute-intensive formulations. The second-order formulation of
the wave equation is often used for modelling seismic wave propagation with spectral methods, both
for box-like elements on quadrilaterals and hexahedra (Komatitsch et al., 1999, e.g.) as well as for
simplex-based elements on triangles (Mulder, 1996, 2013) or tetrahedra (Zhebel et al., 2014; Mulder
and Shamasundar, 2016). For some applications, a first-order formulation may be desirable. Ainsworth
(2014) claims better accuracy than with the second-order formulation in terms of numerical dispersion
for odd-degree polynomial basis functions if the consistent mass matrix is used. Shamasundar and
Mulder (2016a), however, showed that for elements of degree higher than one, projection errors on the
spurious modes interfere and make the first-order formulation inferior to the second-order one. That only
leaves the lowest-degree linear element as a serious candidate. Mass lumping, required to avoid the cost
of inverting the large sparse mass matrix, will unfortunately decrease its accuracy from fourth to second
order. A single iteration with an iterative method like defect correction will solve this problem, as shown
in (Shamasundar and Mulder, 2016a) for the 1-D case. Shamasundar and Mulder (2016b) presented a
first step towards extending the method to 2D, but initial results were extremely noisy unless a gaussian
source was used that suppressed waves in the high-wavenumber part of the numerical dispersion curve,
where the group velocity has the wrong sign. Here, we propose the use a tapered-sinc source term in
the finite-element discretization that band-limits the wavenumber spectrum, similar to the one of (Hicks,
2002) for the FDM, and examine its performance on a homogeneous problem with an exact solution,
using structured or unstructured triangular meshes. An application of the method to a less trivial model
is included.

Method

The first-order formulation of the constant-density acoustic wave equation is

ρ−1c−2∂t p= ∂xvx+∂zvz+ f , ρ∂tvx = ∂xp, ρ∂tvz = ∂zp,

in contrast to the second-order formulation,

ρ−1c−2∂tt p= ∂x(ρ−1∂xp)+∂z(ρ−1∂zp)+ f ′.

These are equivalent but their finite-element discretizations are usually different. In the 2-D case, the
first-order or velocity-stress formulation involves three global mass matrices, which may or may not be
lumped, whereas the second-order formulation has only one. The wavefieldsp,vx,vz are represented by
polynomial interpolantsψk(ξ ,η) on the reference triangle. The triangles in the mesh are mapped from
Cartesian to natural coordinates, (ξ ,η ,1− ξ −η), on the reference triangle with vertices (0,0), (0,1),
(1,0). In each element, there is a local mass matrixA and first-derivative matricesD1 andD2, each with
entries

Ak,l =
∫ 1

0
dξ

∫ 1−ξ

0
dη ψk(ξ ,η)ψl (ξ ,η),

D1
k,l =

∫ 1

0
dξ

∫ 1−ξ

0
dη ψk(ξ ,η)

d
dξ

ψl (ξ ,η), D2
k,l =

∫ 1

0
dξ

∫ 1−ξ

0
dη ψk(ξ ,η)

d
dη

ψl (ξ ,η).

Together with an additional iteration, this leads to a higher cost per time step, which is offset by a
less restrictive time step limit for stability and a much improved accuracy. Whether or not this gain in
accuracy can be achieved on an unstructured mesh is the question addressed here.

To discretize the source term, we can integrate the FEMs linear basis functions against a delta function.
With the current first-order formulation, this produces very noisy results, as shown earlier (Shamasundar
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Figure 1 Wavefields at the end of the simulation (0.45s) on a structured mesh with 20301 vertices. The
top row shows the numerical solution for p (a), vx (b) and vz (c), the bottom row their errors.
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Figure 2 As Figure 1 but on an unstructured mesh with 26542 vertices, rotated by 30◦ .

and Mulder, 2016b). An alternative is to integrate against a gaussian. This effectively suppressed the
noise produced by that part of the dispersion curve where the group velocity has the wrong sign but also
increases the numerical error for wavelengths in the correct part of the dispersion curve. A third option
is integration against a tapered-sinc function of the form

1
2

[

1+cos

(

πζ
nw+1

)]

sinπζ
πζ

, ζ =

√

(x−xs)2+(z−zs)2

rs
≤ (1+nw),

and zero otherwise. Here, the source is located at(xs,zs) andrs andnw are parameters that need to be
optimized.

Results

We tested our method first on a homogeneous velocity model of 1.5km/s in a domain of size[0,3.0]×
[0,1.5]km2 with zero Dirichlet pressure boundary conditions on all sides. The numerical solution was
compared against the exact solution. The source was placed atxs= 1.5km andzs= 0.5km. The wavelet
had compact support and wasw(t) =−(Tw/8)2 d

dt [1− (2t/Tw)
2]8. for |t|< 1

2Tw andzero otherwise. We
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Figure 3 Convergence on a structured (a) and unstructured (b) mesh with the consistent mass matrix
(dotted line), lumped mass matrix (dashes), 1 iteration (drawn) or 2 (dash-dotted line). Although the for-
mal fourth-order accuracy is not obtained, the accuracy improvement with just one iteration compared
to the second-order mass-lumped scheme is substantial.

(a) (b)

Figure 4 Velocity model (a) and a snapshot of the pressure wavefield (b).

setTw= 0.31s, which in the second-order formulation would correspond to a peak frequency of 3Hz, and
let the computation run from time−1

2Tw to 0.45s.The convergence behaviour on both a structured and
an unstructured mesh were examined. The latter was rotated by 30◦. Figure 1 displays modelling results
for one particular run on a structured mesh and Figure 2 for the rotated unstructured mesh. Figure 3
shows the convergence in terms of the root-mean-square error, divided by the maximum amplitude of
the corresponding wavefield, as a function of mesh size. The latter has been replace byN1/2, whereN
is the number of degrees of freedom for just the pressure or one of the velocity components. Fourier
analysis predicts fourth-order convergence on structured triangular meshes (Shamasundar and Mulder,
2016a) but that rate is not obtained, partly because of the second-order order time-stepping error showing
up on finer meshes, despite the fact that the time step was chosen deliberately smaller than its maximum
allowable value. Although the fourth-order convergence rate is not obtained, the improvement over
just mass-lumping with one or two inexpensive iterations is significant. The use of the consistent mass
matrix is computationally unattractive and its results are only included for reference. We have repeated
runs like these for a range of parametersnw andrs and found thatnw = 3 andrs= 2 are good choices for
both the structured and unstructured test problem.

Figure 4 displays a more complicated model, along with the wavefield at a time of 0.4s. The mesh
was generated such that the triangle sizes scale with the local velocity. The Ricker wavelet had a peak
frequency of 12Hz and the source was located atxs = 2468.4m andzs = 410.35m.
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Conclusions

We have demonstrated that the first-order formulation of the wave equation for constant-density acous-
tics with mass lumping and defect correction and linear elements can provide a substantial gain in accu-
racy compared to just mass lumping. A judiciously chosen source function, which avoids the excitation
of waves in the ‘wrong’ part of the dispersion curve, enables this gain, although the formal fourth-order
super-convergence predicted by local-mode analysis on structured triangular meshes was not obtained
in our test problems. It remains to be seen if the method can outperform the less accurate but also less
compute intensive second-order formulation, in particular in 3D.
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