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ABSTRACT
Machine learning methods including support-vector-machine and deep learning are
applied to facies classification problems using elastic impedances acquired from a
Paleocene oil discovery in the UK Central North Sea. Both of the supervised learning
approaches showed similar accuracy when predicting facies after the optimization
of hyperparameters derived from well data. However, the results obtained by deep
learning provided better correlation with available wells and more precise decision
boundaries in cross-plot space when compared to the support-vector-machine ap-
proach. Results from the support-vector-machine and deep learning classifications
are compared against a simplified linear projection based classification and a Bayes-
based approach. Differences between the various facies classification methods are
connected by not only their methodological differences but also human interactions
connected to the selection of machine learning parameters. Despite the observed dif-
ferences, machine learning applications, such as deep learning, have the potential to
become standardized in the industry for the interpretation of amplitude versus offset
cross-plot problems, thus providing an automated facies classification approach.

Key words: Elastics, Interpretation, Inversion, Reservoir geophysics, Rock physics.

INTRODUCTION

Machine learning applications are already becoming increas-
ingly widespread in a variety of data-driven industries ranging
from financial services to life sciences. The data-rich environ-
ment of the oil and gas industry is also becoming an advocate
of this emerging technology. De-risking of exploration and
development opportunities, using quantitative–interpretation
driven by amplitude versus offset (AVO) workflows, is re-
garded as a crucial step in developing hydrocarbon resources.
The quantitative nature of this work often involves the
classification of facies using multiple elastic impedances and
is therefore ideally suited to machine learning algorithms.

Machine learning algorithms, such as the support
vector machine (SVM; Vapnik and Learner 1963; Vapnik
1995) method, have been used extensively in fields such as

∗E-mail: yohei.nishitsuji@gmail.com

pattern recognition. There are two main problem-solving
capabilities to SVM: classification problems (Vapnik 1995)
and regression problems (Smola and Schölkopf 2004). In this
regard, SVM basically consists of three main elements: linear
neural networks (NN), kernel-tricks (Schölkopf et al. 1999)
and regularizations. The linear NN part consists of two layers
(input and output) and broadly imitates the neuron to synapse
model of a biological brain. The NN works with the maximal-
margin approach that attempts to maximize the margin (most
often Euclid distance) between data groups and their decision
boundaries in the feature domain. With the kernel-tricks, in
addition to linear decisions, non-linear decisions can also be
handled. Finally, the regularization helps avoid overfitting
problems, which when combined with the NN and kernel-
tricks provides the general procedure for most SVM applica-
tions. SVM’s simplicity in implementation provides the main
reason as to why it is easily adapted in many applications.

1040 C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers.
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(a)

(b)

Figure 1 (a) Regional map showing study area and the deposition of Dornoch, Cromarty and basin wide Paleocene Forties sandstones. The
depositional extents are modified from Mudge (2014). The field data used in this study is centred on the Avalon discovery in Block 21/6b.
Avalon’ s reservoir is contained within the Cromarty Member that is predominantly a late stage depositional system restricted to the basin
margins. (b) RMS amplitude through the reservoir interval of the Avalon discovery. The line of section, as depicted in Figures 11 and 12, is
shown along with the locations of Wells #1, #2 and #3.

Deep learning (DL; Hinton, Osindero and Teh 2006;
Hinton and Salakhutdinov 2006), on the other hand, pro-
vides a more recent advancement over SVM methods. In the
broad definition, DL consists of a multi-layer perceptron,
input layer(s), hidden layer(s) and output layer(s), which
collectively solves problems (e.g. classification) by automated

feature extraction. The perceptron is a self-training algorithm
for classifying data (Rosenblatt 1958). The simple (single)
perceptron solves linear problems while the multi-layer
perceptron has the ability to solve non-linear problems. DL
is considered a deep neural network rather than the already
established systems such as convolutional neural networks

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers. Geophysical Prospecting, 67, 1040–1054
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Figure 2 Schematic of the NN architecture used by the SVM approach
in this study. The original data x in the input layer are classified with
the indicator i , via the kernel K, with the weight w, and bias b.

(CNN being mainly for image-recognition problems) or
recurrent neural networks (used mainly for time-series
problems such as speech recognition).

Past studies, specifically focusing on AVO, have predom-
inantly used only SVM methods. Kuzma (2003) and Li, You
and Liu (2015) presented an AVO regression problem using
synthetic wells, whereas Li and Castagna (2004) introduced
AVO cross-plot classification using SVM but again only us-
ing a synthetic dataset. In the following case study, we show
the application of SVM and DL to a field dataset, obtained
from a discovery in the UK Central North Sea, for the purpose
of lithological classification using elastic impedance cross-plot
products. Furthermore, we compare the results from SVM and
DL with a more simplified linear projection and a Bayes-based
classification approach (Zabihi Naeini and Exley 2017).

F IELD DATA

The case study shown in this paper centres on a Paleocene
discovery, in Block 21/6b of the UK Central North Sea lo-
cated at the north-western edge of the Central Graben, just
south of the Buchan Field (Figure 1(a)). The discovery was ini-
tially identified using conventional, simultaneous, pre-stack,
inversion, followed by an exploration well that successfully
encountered a 26-m oil column in good quality sands. The

reservoir sands lie within the proximal part of the prolific
northwest to southeast, late Paleocene, Forties and Cromarty
depositional trends, which includes the giant Forties Field.
Post discovery, the seismic data were re-inverted but on this
occasion using a joint impedance–facies inversion (Kemper
and Gunning 2014) to provide updated seismically derived
elastic properties calibrated to the discovery well (Well #1 in
Figure 1(b)).

The initial discovery well (Well #1) was used to provide
the input rock physics data in order to train the support vector
machine (SVM) and deep learning (DL) methods detailed in
this paper. Post-training the equivalent elastic data (acoustic
impedance, AI and VP/VS

) output from the joint impedance–
facies inversion was characterized in terms of potential facies
using both SVM and DL. A further test was provided by the
drilling of an appraisal well (Well #2 in Figure 1(b)), which
along with an older well drilled outside of the discovery (Well
#3 in Figure 1(b)) provided two ‘blind tests’ for the SVM and
DL facies classification.

METHODOLOGY

The support vector machine approach

Structural risk minimization

Support vector machine (SVM) learning is based on two
fundamental theories termed statistical learning theory and
structural risk minimization (SRM; Vapnik 1995). Although
statistical learning theory aids in finding the maximal-margin
that corresponds to the solution of an optimization problem,
SRM provides us with a trade-off between hypothesis and
model complexity, which is called the Vapnik–Chervonenkis
dimension (VC-dimension; Vapnik and Chervonenkis 1974).
Since applications of SVM for exploration geophysics and
rock physics are not familiar, a brief description with step-
by-step equations follows. For a simple binary classification
problem, let us assume that we have a training dataset, T,

x p s a

w b

Input layer Hidden layer 1

Input: 2D Neuron: 6D 
Weight: 2x6D 
Bias: 6D

p s a

w b

Hidden layer 2

Neuron: 6D 
Weight: 2x6D 
Bias: 6D

p s a

w b

Output layer

Neuron: 4D 
Weight: 6x4D 
Bias: 4D

Figure 3 Schematic of the NN architec-
ture used by the DL approach in this
study. The original data x in the input
layer are classified in the output layer
via the hidden layers. p and s indicate
multiplication and summation operations
of the weight w, and the bias b, of the
input. The activator is indicated as a.
6D, for example, indicates that it has six
dimensions.

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers. Geophysical Prospecting, 67, 1040–1054
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(a)

(b)

Figure 4 Synthetic elastic impedance cross-plot (AI and VP/VS
) results from the SVM where (a) is the cross-validation (CV) of the hyperparameters

and (b) is the classification. The filled circles are the supervisors (training data), the hollow circles are the classified (test data) and the crosses
are the ground truth. The hollow orange circles are the support vectors that were used to establish the boundaries in this realization. S, B, H
and T in the legend box stand for shale, brine-bearing sand, hydrocarbon-bearing sand and tuff facies. The four different background colours
correspond with the classified facies labels. Confusion matrices of the training and test accuracies are shown in Figure 6(a) and (c).

which contains nth number of vectorized samples xi , and
their associated labels y. Such a dataset can be written as:

T = {(
x1, y1

)
,
(
x2, y2

)
, . . .

(
xn, yn

)}
, xi ∈ R

m, yi ∈ {0, 1}. (1)

We would like to find a learning function that classifies
the unlabelled or unknown dataset. The number of feature
dimensions in the input domain is m. In this case, the
empirical risk Remp( f ), which we would like to optimize in
order to obtain the learning function, can be described as:

Remp( f ) = 1
N

n∑
i=1

∣∣ f (xi ) − yi

∣∣ , (2)

where | f (xi ) − yi | is, in theory, the so-called 0-1 loss function
used to evaluate if the learning function f (xi ) correctly iden-
tifies the expected value of yi and N is the total number of
training datasets. The function f (xi ) that minimizes equation
(2) over the training dataset is the learning function we eventu-
ally obtain. However, solving equation (2) often ends up with
an overfitting of the problem because the number of the train-
ing datasets N is not infinite. Here we can try to avoid this
issue by controlling the VC-dimension. The VC-dimension
gives bounds on the expected risk Rexp( f ), which we can-
not directly obtain due to the lack of information about the
probabilistic distribution of the whole dataset, as a function

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers. Geophysical Prospecting, 67, 1040–1054
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(a)

(b)

(c)

Figure 5 Synthetic elastic impedance cross-plot results from the DL approach where (a) is the cost function when the optimized hyperparameters
are used, (b) is the lowest costs between the learning and modelled outputs when different hyperparameter values are used and (c) is the
classification. The legend in (c) is the same as is described in Figure 4 with omission of the support vectors, which are not applicable to DL.
Equivalent confusion matrices of training and test accuracies are shown in Figure 6(b) and (d).

of both Remp( f ) and the number of data samples. Following
Vapnik (1995), this can be written as:

Rexp( f ) � Remp( f ) +
√

h
(
log

(
2N
h + 1

)− log
(

δ

4

))
N

, (3)

where h is the VC-dimension of the model used to solve
the problem, and (1 − δ) is a probability that equation (3)
can satisfy. The second term of the right-hand side of equa-
tion (3) is called the VC-confidence. From equation (3), one
can expect that the VC-confidence gets smaller (thus N in-
creases and h decreases) when Rexp( f ) and Remp( f ) converge.
In other words, the best model occurs when the sum of Remp( f )
and the VC-confidence is minimized and should therefore be
automatically chosen by SRM.

Optimization problem

Support-vector-machine (SVM) theory, with respect to the
optimal hyperplanes that classify the dataset non-linearly in
the feature dimension via the so-called kernel-trick, has been
presented by Li and Castagna (2004) and Li et al. (2015).
Let us here directly start with the Lagrangian dual-problem
regarding the maximal-margin of the classifiers as shown
in the following:

maximize : L(α1, α2, . . . αn) =
n∑

i=1

αi − 1
2

n∑
i=1

n∑
j=1

αiα j yi yj

× K
(
xi , x j

)
, (4)

with the constraints:

s.t.

{
0 � αi � c∑n
i=1 αi yi = 0

, (5)

where αi are the Lagrange multipliers (weights), K(xi , x j )
is the kernel function that represents a dot (inner) prod-
uct of feature vectors and c is the cost (penalization) pa-
rameter of the hinge-loss function that indicates how many
misclassifications during the optimization run we can al-
low. c originally appeared in the primal problem (not shown
here) of the dual-problem equation (4). Together with the
Kuhn–Tucker conditions, the learning (identification) func-
tion can be obtained by solving equations (4) and (5) as
follows:

f (x) = sgn

(
n∑

i=1

αi yi K (xi , x) + b

)
, (6)

where xi are the support vectors for αi �= 0 and b is the
bias parameter that shifts the classifiers from the origin of
the hyperplane solution. In Figure 2, a sketch of neural net-
works (NN) architecture for SVM is depicted. Since our ac-
tual problem is a multi-labelled classification, rather than
the binary one, we used the one-against-one classification
strategy.

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers. Geophysical Prospecting, 67, 1040–1054
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Test accuracy by SVM using synthetic data: 76.5%
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Test accuracy by DL using synthetic data: 77.0%
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Figure 6 Confusion matrices from the synthetic data classification where (a) is the SVM and (b) is the DL training accuracies, whilst (c) is the
SVM and (d) is the DL test accuracies. The percentile in each bin is the prediction accuracy between the target and result classes. The integer in
each bin is the number of counts/samples used.

Kernel and hyperparameters

There are some parameters and functions that are precon-
ceived in order to train the support vector machine (SVM).
The key parameters are those associated with the kernel func-
tion and the hyperparameters. For the kernel function, fol-
lowing Schölkopf et al. (1997) who concluded that the radial

basis function (RBF or Gaussian) generally performed better
than other kernels, RBF is also selected in this study. The RBF
can be expressed as:

K (xi , x) = exp

(
− ∥∥xi − x

∥∥2

2σ 2

)
, (7)

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers. Geophysical Prospecting, 67, 1040–1054
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(a)

(b)

Figure 7 Elastic impedance cross-plot results from the SVM approach using the field data where (a) is the CV of the hyperparameters and (b)
is the classification. The legend in (c) is the same as is described in Figure 4. Confusion matrices of the training and test accuracies are shown in
Figure 10(a) and (d).

where σ is the kernel width (variance) that determines how
far the influence should be reached. Intuitively speaking, we
get smoother (linear) classifiers when smaller values of σ are
used and vice versa. σ and the c parameters in equation (5)
are often referred as the hyperparameters of SVM.

In order to determine specific values of these hyperpa-
rameters, an exhaustive grid search was carried out followed
by a twofold cross-validation (Hsu, Chang and Lin 2003) over
the training dataset. Since the number of major hyperparam-
eters is two (σ and c), we were not encouraged to apply a
random grid search (Bergstra and Bengio 2012) or Bayesian
optimization (Mockus, Tiesis and Zilinskas 1978). After find-
ing the optimized hyperparameters, via the exhaustive grid
search, they were then applied to the rest of the data.

The deep learning approach

TensorFlow

For the deep learning (DL) approach in this study,
we used TensorFlow developed and provided by Google
(https://www.tensorflow.org). In TensorFlow, the architec-
ture for DL is expressed as a graph that is basically a much sim-
pler representation of a conventional neural networks (NN).
Figure 3 shows the graph specifically designed for our prob-
lem. The architecture of Figure 3 can be translated into an
algebraic equation as:

q = a(p · w + b), (8)

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers. Geophysical Prospecting, 67, 1040–1054
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(a)

(b)

(c)

V
V

Figure 8 Elastic impedance cross-plot results from the DL approach using the field data where (a) is the cost function when the optimized
hyperparameters are used, (b) is the lowest costs between the learning and modelled outputs when different hyperparameter values are used
and (c) is the classification. The legend is the same is described in Figure 5. Equivalent confusion matrices of the training and test accuracies are
shown in Figure 10(c) and (f).

where q denotes the vector of outputs (the output layer in
Figure 3), a denotes the activation function (activator) that
introduces non-linearity to the output, p denotes the vector
of inputs (the input layer in Figure 3), w denotes the ma-
trix of weights (wi ) whose values can be varied depending
on the strength of the synapse (similar analogy to the bio-
logical brains neuron connectors) and b denotes the vector
of bias (bi ) that acts as a threshold of the neurons excita-
tion. The number of neurons and hidden layers are parts
of DL’s hyperparameters. Note that, in the nomenclature of
TensorFlow these are all different dimensions such that vec-
tors and matrices are all termed tensors with different ranks.
Following Heaton (2008), the number of neurons is set to
be roughly two-thirds the size of the input layer plus the
size of the output layer and the number of hidden layers
are set to be two in order to handle any non-linear decision
boundaries.

Optimization problem and hyperparameters

Similar to other learning algorithms, deep learning (DL) solves
maximization/minimization problems using cost (objective,
error and loss) functions. During the training process of
the supervised classification in this study, the cost function
C, between the expected labels and known labels, is back-
propagated (Rumelhart, Hinton and Williams 1986) to the
nearest and shallower layer to be updated. Our cost function is
therefore a cross entropy between two probability functions;

however, this process does not happen without the hidden
layers. The updating procedure is commonly carried out by
minimizing the cost function using gradient-descent (Svetlana
and Solov’ev 1997), which can be written as:

minimize : ∇CTd, (9)

with the constraint:

s.t.
∥∥d
∥∥ = 1, (10)

where d is the direction of the gradient-decent solver. Gen-
erally speaking, the gradient-descent (the first derivatives of
the objective function) is easily trapped by local minima. An
alternative approach, to avoid being trapped by local minima,
is based on the calculation of Hessian matrices (the second
derivatives of the objective function) that directly indicate a
minimum, maximum or saddle point, thereby providing an
escape route and more accurate solutions. However, their
computational costs are much more expensive compared to
the gradient descent approach alone. Therefore, we used
a mini-batch stochastic gradient descent algorithm (Metel
2017) to increase computation speed. The algorithm is a
combination of both batch gradient decent and stochastic
gradient decent. Batch gradient decent tries to solve the cost
function using the whole training dataset, which leads to
local minima for non-convex surfaces of the cost function.
The stochastic approach, on the other hand, provides im-
provement in computational cost and more chances to escape
from local minima due to the method’s ability to search out

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers. Geophysical Prospecting, 67, 1040–1054
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(a)

(b)

V
V

Figure 9 Elastic impedance cross-plot results from the SVM approach using the field data where (a) is the CV of the hyperparameters and (b)
is the classification. The legend is the same as is described in Figure 4. The range of the hyperparameters are constrained when compared to
Figure 7. Confusion matrices of the training and test accuracies are shown in Figure 10(b) and (c).

more solutions from multiple directions. In order to solve
the cost function in equation (9), the weights and bias in
equation (8) are updated as follows:

wi+1 = wi − η
∂C
∂wi

(11)

and

bi+1 = bi − η
∂C
∂bi

, (12)

where η is the learning rate (step size). However, one of
the drawbacks of stochastic gradient decent is that the
average trend of data redundancy is not measured because
the algorithm is always based on one random data point.
Therefore, mini-batch stochastic gradient decent combines the

advantages from both algorithms providing both an average
trend of data redundancy and the ability to escape from local
minima. The mini-batch size can therefore be regarded as one
of key influencing hyperparameters for DL.

It is very difficult to optimize all of the hyperparameters
since there are many (e.g. the depth of layers, the optimizer,
the activator, the learning rate, the iteration number, the mini-
batch size, the regularization and so on) as well as accommo-
dating the trade-off effects among them, which can be an
added complication (Li et al. 2015). This issue explains why
this optimization is one of the most pertinent research topics
in DL. However, there seems to be consensus that the learning
rate is one of the most critical hyperparameters (Bergstra and
Bengio 2012).

C© 2018 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of
Geoscientists & Engineers. Geophysical Prospecting, 67, 1040–1054
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Test accuracy by SVM using field data (constrained): 83.4%
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Test accuracy by DL using field data: 84.6%
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Figure 10 Confusion matrices from the field data classification, where (a) is the SVM training accuracy as in Figure 7, (b) is the SVM training
accuracy with the constrained hyperparameters as in Figure 9, (c) is the DL training accuracy as in Figure 8, (d) is the SVM test accuracy as in
Figure 7, (e) is the SVM test accuracy with the constrained hyperparametrs as in Figure 9 and (f) is the DL test accuracy as in Figure 8.

The hyperparameters used in the DL workflow were
determined as follows. The activators for the hidden layers
and the output layers are the rectified linear unit (ReLU, also
called the ramp-function) and the softmax. The ReLU in the
hidden layers is known to avoid the gradient vanishing
problem, whereas the softmax in the output layer provides
the probability of each output making the DL approach
probabilistic in application. There is no substantial difference
between either the sigmoid or the softmax in the output layer
if the classification is a binary problem. The iteration number
is set as 40,000. The choice of the solver and the depth of the
neural networks (NN) are already described above. The re-
maining two main hyperparameters (the learning rate and the
mini-batch size) are optimized by the exhaustive grid search,
just as we applied to the support vector machine (SVM),

thereby providing a fair comparison. Note that there are
many reports about the optimization of the hyperparameters.
For instance, while Bergstra and Bengio (2012) suggested that
the random grid search is a good choice, Snoek et al. (2015)
argued the Bayesian optimization is better. Such comparisons
are beyond the scope of this study.

R E S U L T S

Synthetic test results

The field dataset we intend to classify has four facies
(shale, brine sand, hydrocarbon-bearing sand and tuff) that
are determined by elastic cross-plot products principally
using AI and VP/VS

. Before performing the actual appli-
cation of support vector machine (SVM) with LIBSVM
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Figure 11 Cross-sections (location shown in Fig-
ure 1(b)) depicting the output seismically derived
elastic impedances, where (a) AI and (b) VP/VS

.
These data were derived from a joint-impedance
facies inversion and used as the input to the vari-
ous classification methods as shown in Figure 12.
An anomalous response, in terms of decreased AI
and VP/VS

, is visible at the top of the section and
corresponds to a hydrocarbon accumulation en-
countered within Wells #1 and #2.

(http://www.csie.ntu.edu.tw/˜cjlin/libsvm), we tested charac-
terization feasibility with a synthetic dataset in order to check
whether the elastic parameters provided sufficient input to
identify the four facies. The synthetic dataset has been gener-
ated by a randomizer to realize the four-labelled facies. The
number of training data (supervisor) and test (classified) data
per label is 1000 and 50, respectively. Figure 4(a) shows the
cross-validation value obtained between σ and c using the
synthetic dataset. The cross-validation was done by the ex-
haustive grid search with the global-maximum value being
found successfully (Figure 4(a)). The test accuracy of the clas-
sification was found to be 76.5%. With these given hyper-
parameters, SVM was performed as shown in Figure 4(b).
The classifiers in Figure 4(b) appeared to not be too hard

(linear wise) or be too soft (non-linear wise), which gave us
some confidence that the SVM worked in terms of chosen
hyperparameters.

Using an identical dataset, as input to the SVM modelling
in Figure 4, we employed the same synthetic test for the deep
learning (DL) approach (Figure 5). Figure 5(a) shows the cost
function per iterations when the optimized hyperparameters
from the grid search are used. In Figure 5(b), we show the
cost value associated with the learning rate and the mini-
batch size. The results indicate that the global minima was
found (Figure 5(b)). Finally, the classifier results are shown in
Figure 5(c). The test accuracy of the classification is found to
be 77.0%, which is nearly same as to what was achieved with
the SVM approach. Both the results in Figures 4 (SVM) and
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Figure 12 Cross-sections (location shown in Figure 1(b)) depicting the seismic upscaling output from the four main facies classification methods
where (a) is the linear, (b) is the Bayes, (c) is the SVM and (d) is the DL approach. The Vshale logs are also plotted for each of the wells
(yellow for sand and brown for shale). Note the Vshale logs are shown without being filtered back to the seismic’s vertical resolution in order
to illustrate the marked difference in vertical resolution between the seismic and well data.

5 (DL) appear to be visually similar. The computation time of
the DL approach is, however, 1.6 times faster than that of the
SVM approach when all the hyperparameters are fixed in our
environment.

To objectively compare the performance between the
SVM and DL approaches, when the above synthetic data are
used, we plot confusion matrices for the training and test accu-
racies in Figure 6. The percentiles for each bin are also shown
in Figure 6 and provide the prediction accuracy per target
class when the sample numbers in the same bin are used.

Field data results

In Figures 7 and 8, we show the classification results of the
elastic impedance cross-plot products applied to support vec-
tor machine (SVM) and deep learning (DL) using the Avalon
discovery well (Well #1 in Figure 1). Wells #2 and #3 were not

used for the training process, but instead acted as blind tests,
in order to objectively test the seismic upscaling of the SVM
and DL facies classification outputs. The ratio of the training
to test data was fixed at 0.7. Although the hyperparameters
of the SVM approach seem to be sufficiently optimized via
cross-validation (Figure 7(a)), the classifications in Figure 7(b)
appeared to be over-fitted (exhibit strict decision boundaries)
with a classification accuracy of 84.8%. As pointed out by
Kuzma (2003) previously, higher penalization values can
be numerically unstable and for this reason we therefore
limited their range in Figure 9. This range limitation yielded
softer decision boundaries (Figure 9(b)) with the trade-off
that the hyperparameters were ultimately marginally less
optimized (Figure 9(a)) compared to before (Figure 7(a)). The
classification accuracy was still however 83.4%. On the other
hand, the DL result (Figure 8(b)) appeared to provide simpler
decision boundaries compared to the SVM result (Figures 7(b)
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Figure 13 Blind test of elastic impedance cross-plot products from Wells #2 and #3, whose locations are given in Figure 1(b). The classification
is based on Well #1 by (a) the SVM and (b) the DL approaches, which are identical to the results already shown in Figures 9 and 10. The arrow
marks the area, corresponding to Well #2, where hydrocarbons should have been classified instead. This SVM misclassification resulted in a
decreased hydrocarbon column around Well #2, Figure 12(c), compared to what was actually encountered.

and 9(b)). We observed that the overall trend of the DL
cost function seems to decrease with increasing iterations
(Figure 8(a)) but also becomes less efficient as it fine tunes
itself to the optimum solution. In Figure 8(b), the combi-
nation between learning rate and batch size looks to be
approximately optimized giving a classification accuracy of
84.6% (Figure 8(c)).

As we made confusion matrices with the synthetic data
(Figure 6), we also show equivalent matrices in Figure 10 when
SVM and DL are applied to the field data. However, based on
the matrices, we do not observe any major differences between
the approaches.

Seismic upscaling

For the purpose of demonstrating practical application and
validation of the obtained results against the blind test wells
(Wells #2 and #3), we apply the SVM and deep learning
(DL) trained classifiers, as shown in Figures 9(b) and 8(c),
to actual seismic data. Figure 11 shows the amplitude versus
offset (AVO) inversion derived AI and VP/VS

used as input to
allow the upscaling away from Well #1. It is noted that areas
with low AI and low VP/VS

(labelled in Figure 11) correspond
to proven hydrocarbon bearing facies. In order to determine
any substantial differences between more conventional facies
classification methods and the SVM or DL approaches,
we compare four different classifications: linear projection,
Bayes, SVM and the DL solution, as shown in Figure 12. We
normalize the seismic input in the same fashion to the elastic

impedances from the well data to ensure a consistent scale.
The linear-regression line (Projection = (uAI + v) − VP/VS

(where u denotes the gradient and v denotes the intercept
of the regression line)) is calculated by gradient decent. The
Bayes result is calculated by the facies-based seismic inversion
(Zabihi Naeini and Exley 2017) and uses probability dis-
tribution functions to determine facies in elastic impedance
cross-plot space. Note that the result of the Bayes approach
(Figure 12(b)) is representatively taken from where we have
strongest confidence from the corresponding probability
density functions (the maximum a posteriori). The main
formation tops around the reservoir and Vshale (the volume
of shale) at the three wells are also plotted in Figure 12.

D I S C U S S I O N

One of the most obvious observations from Figure 12 is that
the four different methods generally exhibit similar results. In
particular, the results of the linear projection (Figure 12(a))
and the deep learning (DL) approach (Figure 12(d)) appear
to be most similar compared to other comparisons. How-
ever, it can be noted that the linear approach wrongly iden-
tified hydrocarbons within the Base Bittern Sand at Well #1
(Figure 12(a)); conversely this error does not present itself in
the DL result (Figure 12(d)). The Bayes result (Figure 12(b))
has better signal-to-noise ratio compared to the other meth-
ods with good lateral continuity of potential sedimentary lay-
ers but had the poorest correlation with the wells particularly
the Cromarty Sand interval in Well #3. The support vector
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machine (SVM) result (Figure 12(c)) shows better correla-
tion within the deeper section but a reduced hydrocarbon
column compared to what was actually encountered in the
wells, which was due to the harder decision boundaries in
Figure 9(b) (SVM) compared to Figure 8(c) (DL).

To further check the performance of the SVM and DL ap-
proaches, we applied AI and VP/VS

derived from blind Wells #2
and #3 to the predicted classification in Figure 13. Although
the test accuracy in Figure 10 indicated similar performance,
the classification of the brine sand in Figure 13(a) seems to be
overestimated, around the normalized AI of 0.1 and VP/VS

of
0.5, where hydrocarbons should have been classified (labelled
in Figure 13). This would explain why the SVM result in
Figure 12(c) shows a decreased hydrocarbon column com-
pared to what was actually encountered in the wells or the
DL result in Figure 12(d). In general, the SVM result suf-
fers from an overly strict classification, with marginally more
constrained decision boundaries, compared to the DL result.
However, both the SVM and DL results could converge with
additional training using a wider range of input training data,
more representative of general rock physics trends.

It is natural to expect that better results can be obtained
when more training wells, for instance Wells #2 and #3, are
used. However, such improvements are not necessarily guar-
anteed for the linear approach because it cannot handle non-
linear (or complex) decision boundaries. On the other hand,
while the Bayes approach is more suited to more complex
decision boundaries, that is where different facies overlap
in elastic cross-plot space, it requires good prior informa-
tion to determine appropriate probability distribution func-
tions. Whilst the SVM and DL approaches do not require
this prior knowledge, they do not take into account any rock
physics trends that may be known outside of the immedi-
ate input data range provided by the learning data. This is
in contrast to both the linear and Bayes based methods that
are orientated to capture general compaction/porosity/depth
trends.

One potential way to increase DL’s performance further
is to use data augmentation, especially when the available
data are limited. In the case of convolutional neural networks
(CNN), augmenting image samples by rotating, stretching,
shrinking, flipping, adding noise and so on is common (Okafor
et al. 2017). These processes can be applied either in the orig-
inal or feature domain. However, since DL automatically and
implicitly extracts relevant features from the input data, one
might, for instance, try to use Vshale, density, VP , VS or other
rock property trends such as the Castagna equation (Castagna,
Batzle and Eastwood 1985). These inputs could be directly

used in the first layer of DL, or pre-training, to extract fea-
tures via an auto-encorder (Baldi and Hornik 1989).

Although all of the details regarding the well correla-
tions are not disclosed here, the overall correlation of sand,
shale, tuff and oil sand facies compared with the seismically
derived classifications is qualitatively reasonable, as shown in
Figure 12 despite differences in vertical resolution. It is, how-
ever, difficult to decisively choose which one of the classi-
fication methods might be superior because each method is
inherently subject to different weaknesses and ultimately clas-
sification errors. For example, as briefly described above, the
linear regression can be too simplistic when there is significant
overlap of different facies types in elastic cross-plot space.
Whilst the Bayes-based method can treat such overlapping
scenarios better it does, however, require good prior infor-
mation that may not be known. Also, as discussed previously
with the SVM and DL approaches, appropriate optimization
of the hyperparameters is essential and also subject to error.
Nonetheless, we find great potential in the application of the
DL method with respect to elastic impedance cross-plot clas-
sification as given sufficient training one can expect to achieve
a high level of automation within inversion workflows, whilst
also reducing reliance on human interactions and rock physics
assumptions.

CONCLUSIONS

This paper presents support vector machine (SVM) and deep
learning (DL) facies classification examples using well-derived
elastic impedances from the UK, North Sea. Additionally, the
SVM and DL methods were also upscaled and applied to
equivalent elastic outputs of an amplitude versus offset (AVO)
inversion applied to a seismic field dataset covering the well
data. Although the SVM and DL approaches provided similar
results with a simple synthetic input, there were obvious differ-
ences when upscaled to the seismic data. Such differences seem
to be connected to the variation in optimized hyperparame-
ters between the SVM and the DL approaches. Even though
the SVM approach provided similar training accuracy, com-
pared to DL, the DL approach showed visually more realistic
results and better correlation with the well data. The similar-
ities of the ‘automated’ SVM and DL results when compared
to established ‘manual’ classification methods such as linear
projection or Bayes-based classification are encouraging and
suggest that machine learning approaches such as DL have
the future potential to guide us towards automated quanti-
tative interpretation, whilst also mitigating subjective human
interactions.
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