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Abstract—In this contribution, a well-conditioned method for
the modelling of scattering by so-called multi-screens or PEC
sheets including junctions is introduced. The method starts
from the inflated screen approach by Claeys and Hiptmair. We
introduce a Calderón preconditioner and a suitable discretisation
scheme. The resulting scheme contains many more DoFs than
strictly required. We will show how almost all redundancy can
be removed without significant loss of effectiveness of the method.

I. INTRODUCTION

In [3], a variational formulation for the scattering by multi-
screens has been introduced and analysed. The problem is
posed on the jump space: the quotient-space of the multi-
trace space with all single-trace (non-radiating) currents. In
[2] a discretisation for this quotient-space is presented, and a
strategy to reduce the number of degrees of freedoms (DoFs)
is proposed. In this contribution, we construct a Calderón
preconditioner that works for the quotient-space discretisation.
We explore ways to reduce the representation of the quotient-
space such that preconditioners can be constructed efficiently.
It turns out that the choice that seems most straightforward
does not result in the desired efficiency, and extra care is
required in choosing these spaces.

II. EQUATIONS AND DISCRETISATION

We define simple screens as open surfaces in R3 without
junctions. For orientable simple screens Γp and Γq , with their
chosen normals np and nq , the single layer operator is

Tpqj =− np × iκ

∫
Γq

e−iκ|x−y|

4π|x− y|
j(y)dy

+ np ×
1

iκ
grad

∫
Γq

e−iκ|x−y|

4π|x− y|
div j(y)dy, (1)

with x ∈ Γp. Consider a multi-screen Γ containing a single
junction γ. Three simple screens Γi, i = 1, 2, 3 meet at the
junction. We decompose Γ as

Γ = ∪3
i=1Γi,i+1 (2)

with Γi,j = Γi∪Γj . The normal on Γi,i+1 is chosen ’outward’,
i.e. such that near the junction it points away from other
screens. Each simple screen Γi appears once as the ’front’ and
once as the ’back’ of the multi-screen (Fig. 1). The simple
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Fig. 1. Inflated screen. The discrete multi-trace contains two DoFs per edge
not on the junction, and three DoFs per edge on the junction.

screens Γi are meshed with target element size h, with the
meshes matching up along γ. The simple screens Γi,j inherit
this mesh.

Let Ui,i+1 be the Raviart-Thomas spaces on Γi,i+1 subject
to the condition m·f = 0 on ∂Γi,i+1, with m the bi-normal on
∂Γi.i+1 (the tangent to Γi,i+1 at ∂Γi,i+1, normal to ∂Γi,i+1).
The discrete multi-trace space is built as the direct product of
these spaces, i.e. U =

∏3
i=1 Ui,i+1. A variational description

of the scattering problem reads: Find j ∈ U such that, for all
k ∈ U :

≪ n× k, T j ≫Γ= −1

η
≪ n× k, n× einc ≫Γ . (3)

The double parentheses denote the multi-screen duality pairing

≪ u, v ≫Γ=

3∑
i=1

< u, v >Γi,i+1
. (4)

Note that (3) does not yield a unique solution. Fortunately,
for regular incident fields, Fredholm compatibility is ensured.
Moreover, all solutions of (3) radiate the same field, so the
representation converged to by the iterative solver does not
affect physical quantities.

The matrix for (3) is severely ill-conditioned, leading us to
look for an efficient preconditioner. Inspired by the success
of Calderón preconditioning, the space V =

∏3
i=1 Vi,i+1 is

defined as the space of Buffa-Christiansen functions [1], dual
to U and with basis (gn)

N
n=1. Denote the standard basis of U

by (fn)
N
n=1. The following preconditioned system is proposed:

NfgTggN
gfTffx

f = NfgTggN
gfef (5)



with (Tff )m,n =≪ n × fm, T fn ≫Γ, Ngf = (Nfg)
−1,

(Nfg)m,n =≪ n × fm, gn ≫Γ, etc. Note that Nfg is block-
diagonal, subordinate to the partitioning (2) of Γ.

Unfortunately, this strategy is flawed. In fact, for simple
screens, the range of NgfTff coincides with the non-radiating
subspace of V , which in turn coincides with the nullspace
of NfgTgg . This implies the preconditioned system matrix is
zero. To fix this, a block-diagonal bilinear form is introduced:

t̃(k, j) =

3∑
i=1

< n× ki,i+1, T ji,i+1 >Γi,i+1
(6)

with j = (ji,i+1)
3
i=1 and k = (ki,i+1)

3
i=1. As opposed to

the full single layer bilinear form, this block-diagonal form
gives rise to invertible matrices. The nullspace of the system
does not grow upon application of the preconditioner. The
preconditioned system becomes

NfgT̃ggN
gfTffx

f = NfgT̃ggN
gfef (7)

where the full single layer operator Tgg has been replaced by
the block-diagonal single layer operator T̃gg .

III. REDUCTION OF DEGREES OF FREEDOM

Numerical examples demonstrate that this preconditioner is
highly effective in reducing the number of iterations required
for the approximate solution of the scattering problem. How-
ever, the space on which the problem is posed contains a very
large subspace of non-radiating currents. As explained above,
this redundancy does not lead to incorrect solutions, but it does
lead to unnecessary computations, which is not desirable. In
the following, it is investigated how the multi-trace space can
be reduced whilst retaining the efficiency of the preconditioner.

It is tempting to try to reduce the DoFs to the absolute
minimum, and choose them so that its span only intersects the
single-trace subspace at 0. The saw-tooth reduction (Fig. 2)
is such a reduction. Unfortunately, this results in a residual
branch of eigenvalues piling up at zero, and a number of
iterations that increases as the mesh parameter tends to zero.

The most economic discretisation that leads to Calderón
preconditioning with the expected iteration count is one where
the full finite element space on Γ12 is retained, together with
the finite elements on Γ̂23, where Γ̂23 is the union of all
triangles in Γ23 that either are not on Γ2 or have a vertex in
common with the junction. Roughly speaking, this amounts to
extending Γ3 with a single strip of elements from Γ2 beyond
the junction. Fig. 2 shows the two reduced discretisations. The
primal space for the strip reduction is Û = U12×Û23, with U12

and Û23 the finite element spaces spanned by standard bases
of RWG functions attached to internal edges of the meshes
on Γ12 and Γ̂23, respectively.

IV. NUMERICAL EXAMPLE

Consider a plane wave einc(x) = (1, 0, 0)T exp
(
−i 2πλ x3

)
with λ = 2π meter. This field illuminates the structure
in Fig. 1. The problem is solved with the strip and saw-
tooth reduced quotient-space boundary element method. The

Fig. 2. Two strategies to reduce the degrees of freedom in the multi-trace
space. Left (saw-tooth mesh): the RWG space on this mesh is a complement
of minimal dimension of the non-radiating subspace. Right (strip mesh):
DoFs at edges in the overlapping strip are redundant for description of the
jump space but required in building an efficient preconditioner.

Fig. 3. Top: far fields for the unpreconditioned, unreduced inflated screen
method and the precondition strip and sawtooth-reductions agree exactly. Bot-
tom: number of iterations required for GMRES convergence. At h = 0.0125
the strip reduction outperforms the sawtooth reduction by a factor of 2.

far fields for these solutions agree (Fig. 3). The number of
iterations for a tolerance of 2e − 5 for the preconditioned
saw-tooth reduced method is much smaller than that for the
unpreconditioned unreduced solver and depends only mildly
on h. It is reduced by another factor of 2 by the preconditioned
strip reduced method (Fig 3).
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