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1. INTRODUCTION

Max-min-plus-scaling (MMPS) systems are algebraic mod-
els that can represent both linear and nonlinear discrete-
event systems. These systems act as a nonlinear general-
ization for models based on max-plus or min-plus algebra
(Baccelli et al., 1992) such as max-plus linear system, min-
plus linear system, max-min-plus system etc. The basic op-
erations in this system include maximization (synchroniza-
tion or sequential operation), minimization (competition),
addition (operation time), and scaling (state-dependent
processing time) (van den Boom et al., 2023; Markkassery
et al., 2024).

Switching max-min-plus-scaling (S-MMPS) systems are
discrete-event systems that can switch between various
modes of operation. Each mode of operation is described
by an MMPS system. The mode is either determined
by the present state, previous mode, and some external
signals, or the mode is arbitrary and cannot be determined
in advance. This is analogous to the principle of switching
max-plus-linear systems, where, in each switching mode,
the dynamics of the discrete-event system is represented
by a max-plus-linear system (Kersbergen et al., 2016;
Segovia et al., 2022; Lopes et al., 2014; van den Boom
and De Schutter, 2012). An S-MMPS system can model
structural changes in a discrete-event system due to some
external factors. Examples of switching MMPS systems
are flexible production systems, telecommunications net-
works and traffic light-controlled urban traffic networks,
where switching between different modes can occur due to
changing production recipes, customer or traffic demand,
or failures in production units, transmission lines or traffic
connections.

The growth rate or the additive eigenvalue of max-
plus/min-plus algebraic models has been studied widely

in literature (Van Der Woude and Heidergott, 2006; Zhao
et al., 2001; Markkassery et al., 2024). For a discrete-
event system to be stable, all the states should have equal
asymptotic growth rates (Gupta et al., 2020). The max-
plus-linear systems, min-plus linear systems and max-min-
plus systems have a unique growth rate (if the growth
rate exists) (Zhao et al., 2001). A general MMPS system
is non-monotonic and can have multiple growth rates
(Markkassery et al., 2024). However, when the function
governing the MMPS system is time-invariant, monotonic
and non-expansive, the system has a unique growth rate.

The class of systems that are non-monotonic was con-
sidered in (Plus, 1999), in which the issue of analyzing
the asymptotic behavior in general (without the mono-
tonicity condition) was stated as an open problem. The
case of monotonic systems satisfying a homogeneity con-
dition has been studied in (Cohen et al., 1995, 1998) and
more recently in (Allamigeon et al., 2021). In general, the
monotonic, time invariant MMPS system dynamics are
equivalent to the dynamic programming equations of turn
based stochastic games, which have been widely studied
in the game literature (Akian et al., 2023). This provides
further motivation for the study of this class of systems.

The main contributions of this paper are as follows. We
analyze the growth rate of an autonomous, explicit, time-
invariant, and monotone S-MMPS system. We show that
the growth rate of such a system is bounded. Further, an
algorithm is presented to calculate the least upper bound
and greatest lower bound of the growth rate of an S-MMPS
system.

The paper is organized as follows. Section 2 presents
the mathematical preliminaries and notations. Section 3
introduces the structural properties of a time-invariant
and monotone S-MMPS system. In Section 4, the proof
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for boundedness of the growth rate of a time-invariant and
monotone S-MMPS system is given. Section 5 shows the
derivation of a mixed-integer linear programming problem
for finding the upper and lower bounds of the growth rate
of an S-MMPS system. The simulations in support of these
results are provided in Section 6 and the conclusions are
given in Section 7.

2. PRELIMINARIES

In this section, we introduce some basic concepts and
definitions from max-plus linear algebra and min-plus
linear algebra based on Heidergott et al. (2006). Let
⊤ = ∞, ε = −∞, R⊤ = R ∪ {∞}, Rε = R ∪ {−∞},
and Rc = R ∪ {∞} ∪ {−∞}, where R is the set of
real numbers. Further, we introduce the convention ⊤ +
ε = 0. Often we use the set R, which can be either R,
Rε, R⊤ or Rc. We define 0n = [ 0 0 · · · 0 ]

⊺ ∈ Rn and

1n = [ 1 1 · · · 1 ]
⊺ ∈ Rn. The notation Z+ denotes the set

of positive integers. The matrix-vector product of a matrix
C ∈ Rp×n and a vector x ∈ Rn is denoted as, C ·x and the
scalar multiplication of a scalar µ ∈ R and a vector x is
denoted as µx. The d-norm of a vector x ∈ Rn is denoted
as ||x||d =

n
i=1|xi|1/d, d ≥ 1. Let a, b ∈ Rc. Then, the

operations a⊕b = max(a, b), a⊗b = a+b, a⊕′b = min(a, b),
and a⊗′ b = a+ b represent the max-plus addition, max-
plus multiplication, the min-plus addition, and min-plus
multiplication, respectively (Heidergott et al., 2006).

From max-plus algebra, we adopt the following operations
for matrices A,B ∈ Rm×n

ε and C ∈ Rn×p:

[A⊕B]i,j = max([A]i,j , [B]i,j)

[A⊗ C]i,j =

n
k=1

�
[A]i,k ⊗ [C]k,j


= max

k

�
[A]i,k + [C]k,j



From min-plus algebra, we adopt the following operations
for matrices A,B ∈ Rm×n

⊤ and C ∈ Rn×p:

[A⊕′ B]i,j = min
�
[A]i,j , [B]i,j



[A⊗′ C]i,j =

n
k=1

′ �[A]i,k ⊗′ [C]k,j

= min

k

�
[A]i,k + [C]k,j



Given the vector v ∈ Rn, we define a max-plus diagonal
matrix d⊗(v) and min-plus diagonal matrix d⊗′(v),

d⊗(v) =




v1 ε · · · ε

ε v2
...

...
. . .

...
ε · · · · · · vn


, d⊗′(v) =




v1 ⊤ · · · ⊤

⊤ v2
...

...
. . .

...
⊤ · · · · · · vn




The inverse max-plus diagonal matrix is [d⊗(v)]
−1 =

d⊗(−v) and the inverse min-plus diagonal matrix is
[d⊗′(v)]−1 = d⊗′(−v). Further, we define the following
bounds:

{x(k)}max = max
i

xi(k), {x(k)}min = min
i

xi(k)

Finally, we define the following limits for a sequence x(n):

lim sup
n→∞

x(n) = lim
n→∞

sup{x(n);n ≥ ∞}

lim inf
n→∞

x(n) = lim
n→∞

inf{x(n);n ≥ ∞}

3. TIME-INVARIANT, MONOTONE, SWITCHING
MMPS SYSTEM

Definition 1. ((Markkassery et al., 2024)MMPS system in
canonical form) Consider the following system:

x(k) = A⊗ (B ⊗′ (C · x(k − 1))) (1)

where A ∈ Rn×m
ε , B ∈ Rm×p

⊤ , and C ∈ Rp×n and the
index k ∈ Z+ is the event counter. This system is called
an MMPS system in the ABC canonical form.

In Markkassery et al. (2024), it has been shown that any
MMPS system can be written in the ABC canonical form
(1). We extend the system (1) to include switching as
follows:

Definition 2. (Switching max-min-plus-scaling system)

Consider the following system:

x(k) = A(ℓ(k))⊗ (B(ℓ(k))⊗′ (C · x(k − 1))) (2)

in which the matrices A(ℓ) ∈ Rn×m
ε , B(ℓ) ∈ Rm×p

⊤ ,
C ∈ Rp×n are the system matrices for the ℓ-th mode,
ℓ ∈ {1, . . . , nL}. This system is called a switching MMPS
system.

We assume that there are nL possible modes for the system
(2). For S-MMPS systems, the state x(k) typically contains
the time instants at which the internal events occur for the
k-th time, and the mode ℓ(k) determines which MMPS
model is valid during the k-th event.

Remark 1. Note that in Definition 2 the C-matrix does
not depend on ℓ(k). This is done for the brevity of proofs
in Section 4. Consider a system with system matrices
A(ℓ(k)), B(ℓ(k)), C(ℓ(k)) where the mode is determined
as in Definition 2. Then we can choose new matrices

B̄(ℓ(k)) = [ P1(ℓ(k)) P2(ℓ(k)) · · · PnL
(ℓ(k)) ]

C̄T =

CT (1) CT (2) · · · CT (nL)



where Pi(ℓ(k)) ∈ Rm×p
⊤ with

Pi(ℓ(k)) =


B(i) if i = ℓ(k)

⊤m×p if i ̸= ℓ(k)

such that,

x(k) = A(ℓ(k))⊗ (B̄(ℓ(k))⊗′ (C̄ · x(k − 1))).

Hence, the matrix C in (2) can always be chosen to be
independent of mode ℓ(k).

Definition 3. (Homogeneous, monotone and non-expansive
system (Gunawardena, 2003)) Consider a system,

x(k + 1) = f(x(k)) (3)

The system is called homogeneous if

f(x+ α1) = f(x) + α1

for any α ∈ R. As the states of an MMPS system has the
dimension of time, time-invariance in these systems is the
same as homogeneity. I.e. if we shift all the events by the
same amount of time, the dynamics of the system is not
altered. The system (3) is called monotone if x ≤ y, then

f(x) ≤ f(y). The system (3) is called non-expansive in
the d-norm, with d ≥ 1 if ∥f(x) − f(y)∥d ≤ ∥x − y∥d.
When the system (3) is time-invariant and monotonic, it
is also non-expansive (Gunawardena, 2003). Similar to the
MMPS system (1), the switching MMPS system (2) is
time-invariant if and only if


j

Ci,j = 1, ∀i where Ci,j
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are the components of the matrix C (Markkassery et al.,
2024). A switching MMPS system as defined in Definition
2 is monotone if Ci,j ≥ 0, ∀i, j. A switching MMPS system
is non-expansive if it is time-invariant and monotone.
Therefore, from monotonicity and time-invariance we get
Ci,j ≤ 1, ∀i, j. The proof for these results can be found in
(Markkassery et al., 2024).

Definition 4. (Markkassery et al. (2024)). The time invari-
ant MMPS system, x(k) = f(x(k − 1)), x ∈ Rn and
f : Rn → Rn is said to have an additive eigenvalue/growth
rate if there exists a real number λ ∈ R and a vector
v ∈ Rn such that

f(v) = v + λ1n.

The scalar λ is then called an additive eigenvalue/growth
rate and the vector v is called a corresponding additive
eigenvector.

Proposition 1. A time-invariant, monotonic and non ex-
pansive MMPS system has a unique growth rate, if it exists

Proof: This can be proved using the non-expansive prop-
erty of the system as in Lemma 1.2 (Cochet-Terrasson
et al., 1997) � End Proof

Definition 5. A switching MMPS system x(k) = f(x(k −
1)) is well-defined in Rn if the following holds:

x(k − 1) ∈ Rn =⇒ x(k) ∈ Rn

A sufficient condition for the MMPS system (1) to be well-
defined is that the matrices A and B have at least one finite
element in each row (Heidergott et al., 2006) and C has
all elements in R.
Assumption 1. We assume the switching MMPS system
(2) to be well-defined, time-invariant and monotone in the
rest of the analysis.

Assumption 2. We assume that each MMPS system (5),
between which the system (2) switches, has a unique
growth rate.

4. BOUNDS ON GROWTH RATE

Definition 6. Given a system (2) with arbitrary switching
modes ℓ(k). Then, the asymptotic maximum growth rate
σmax and asymptotic minimum growth rate σmin are
defined as

σmax = lim sup
n→∞

1

n
{x(n)}max

σmin = lim inf
n→∞

1

n
{x(n)}min

(4)

regardless of any finite initial state x(0). A max-plus alge-
braic system is stable when all the states with the dimen-
sion of time evolve with the same growth rate. For stable
max-plus-linear systems the asymptotic maximum growth
rate is equal to the largest eigenvalue, and the same holds
for stable max-min-plus systems and stable max-min-plus-
scaling systems (Heidergott et al., 2006; Gunawardena,
1994b,a; Markkassery et al., 2024). For switching max-
plus-linear systems, the asymptotic maximum growth rate
is larger or equal to the largest eigenvalue of all system
matrices (van den Boom and De Schutter, 2012).

Lemma 1. Consider a time-invariant, monotone S-MMPS
system (2). Let

ρmax = max
ℓ

(
0Tn ⊗ (A(ℓ)⊗ (B(ℓ)⊗′ 0p))

)

= max
ℓ

max
i

max
j

(Ai,j(ℓ) + min
q

Bj,q(ℓ)), (5)

ρmin = min
ℓ

(
0Tn ⊗′ (A(ℓ)⊗ (B(ℓ)⊗′ 0p))

)

= min
ℓ

min
i

max
j

(Ai,j(ℓ) + min
q

Bj,q(ℓ)), (6)

then

{x(k)}max − {x(k − 1)}max ≤ ρmax

{x(k)}min − {x(k − 1)}min ≥ ρmin

Proof: Consider the switching MMPS system

z(k) = C · x(k − 1)

y(k) = B(ℓ)⊗′ z(k)

x(k) = A(ℓ)⊗ y(k)

From time-invariance and monotonicity property of S-
MMPS system, we have Ci,j ≤ 1. So, it follows that

{x(k − 1)}min ≤ {z(k)}max ≤ {x(k − 1)}max

Furthermore,

y(k) = B(ℓ)⊗′ z(k)

≤ B(ℓ)⊗′ (0p + {z(k)}max1p)

≤ (B(ℓ)⊗′ 0p) + {x(k − 1)}max1p

≤ b(ℓ) + {x(k − 1)}max1p

and

y(k) = B(ℓ)⊗′ z(k)

≥ B(ℓ)⊗′ (0p + {z(k)}min1p)

≥ (B(ℓ)⊗′ 0p) + {x(k − 1)}min1p

≥ b(ℓ) + {x(k − 1)}min1p

where b(ℓ) = B(ℓ)⊗′ 0p. For x(k) we find

x(k) = A(ℓ)⊗ y(k)

= A(ℓ)⊗ (B(ℓ)⊗′ z(k))

≤ A(ℓ)⊗ (b(ℓ) + {x(k − 1)}max1p)

≤ (A(ℓ)⊗ b(ℓ)) + {x(k − 1)}max1p

≤ a(ℓ) + {x(k − 1)}max1p

(7)

and
x(k) = A(ℓ)⊗ y(k)

= A(ℓ)⊗ (B(ℓ)⊗′ z(k))

≥ A(ℓ)⊗ (b(ℓ) + {x(k − 1)}min1p)

≥ (A(ℓ)⊗ b(ℓ)) + {x(k − 1)}min1p

≥ a(ℓ) + {x(k − 1)}min1p

(8)

where a(ℓ) = A(ℓ) ⊗ (B(ℓ) ⊗′ 0p). Finally, using (7) and
(8), we have

{x(k)}max ≤ max
ℓ

max
i

(
ai(ℓ) + {x(k − 1)}max

)

≤ max
ℓ

max
i

max
j

(Ai,j(ℓ) + min
q

Bj,q(ℓ))

+ {x(k − 1)}max

≤ ρmax + {x(k − 1)}max

{x(k)}min ≥ min
ℓ

min
i

(
ai(ℓ) + {x(k − 1)}min

)

≥ min
ℓ

min
i

max
j

(Ai,j(ℓ) + min
q

Bj,q(ℓ))

+ {x(k − 1)}min

≥ ρmin + {x(k − 1)}min

(9)

where ρmax and ρmin are defined in (5)-(6).
� End Proof
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Proposition 2. For time-invariant and monotone S-MMPS
systems,

A. the asymptotic maximum growth rate is larger or
equal to the largest eigenvalue among all the MMPS
subsystems.

B. the asymptotic minimum growth rate is smaller or
equal to the smallest eigenvalue among all the MMPS
subsystems.

Proof: The time-invariant, monotone MMPS system has a
unique eigenvalue/growth rate (when an eigenvalue exists
(Proposition 1)). Each MMPS system grows at a rate
equal to its eigenvalue. Let ℓ(k) be a constant, and the
MMPS system corresponding to this mode is the one
with the maximum eigenvalue. Then this S-MMPS system
has a growth rate equal to the maximum eigenvalue
among all the MMPS systems within which the S-MMPS
system is switching. So, the maximum growth rate of the
arbitrarily switching S-MMPS system should be greater
than or equal to the largest eigenvalue among all the
MMPS systems. Following the same argument, we can
say that the minimum growth rate of an S-MMPS system
with arbitrary switching is lesser or equal to the smallest
eigenvalue among the MMPS systems within which the S-
MMPS system is switching. Hence, we have ρmax ≥ λmax

and ρmin ≤ λmin, where λmax and λmin are the largest and
smallest eigenvalues, respectively, among all the MMPS
systems. � End Proof

5. TIGHTER BOUNDS FOR THE ASYMPTOTIC
GROWTH RATE

The bounds obtained in Section 4 are analytical and con-
servative in nature. In this section, we present a methodol-
ogy to calculate tighter bounds by using a shifted S-MMPS
system.

Let r ∈ Rn, s ∈ Rm, and t = C · r ∈ Rp. Furthermore, let
R = d⊗(r), S = d⊗(s), S

′ = d⊗′(s) and T ′ = d⊗′(t), and

Ã(ℓ, r, s) = R⊗A(ℓ)⊗S−1 , B̃(ℓ, s, t) = S′⊗′B(ℓ)⊗′T ′−1

where S−1 = d⊗(−s) and T ′−1 = d⊗′(−t). For brevity,

we follow the notations Ã(ℓ) for Ã(ℓ, r, s) and B̃(ℓ) for

B̃(ℓ, s, t). Finally, define

x̃(k) = x(k) + r, ỹ(k) = y(k) + s, z̃(k) = z(k) + t (10)

Then we have

z̃(k) = z(k) + t = C · x(k − 1) + t

= C · (x(k − 1) + r) = C · x̃(k − 1)

ỹ(k) = y(k) + s = S′ ⊗′ y(k) = S′ ⊗′ B(ℓ)⊗′ z(k)

= S′ ⊗′ B(ℓ)⊗′ T ′−1 ⊗′ z̃(k) = B̃(ℓ)⊗′ z̃(k)

x̃(k) = x(k) + r = R⊗ x(k) = R⊗A(ℓ)⊗ y(k)

= R⊗A(ℓ)⊗ S−1 ⊗ ỹ(k) = Ã(ℓ)⊗ ỹ(k)

Hence, for any, r, s, t we can write:

x̃(k) = Ã(ℓ)⊗ (B̃(ℓ)⊗′ (C · x̃(k − 1))) (11)

The system (11) is called a shifted switching MMPS
system corresponding to (2).

Consider the system (11) and define ρmax (5) and ρmin (6)
for this system:

ρ̃max = max
ℓ

max
i

max
j

(Ãi,j(ℓ) + min
q

B̃j,q(ℓ)),

ρ̃min = min
ℓ

min
i

max
j

(Ãi,j(ℓ) + min
q

B̃j,q(ℓ))

Using (9), we derive

{x̃(1)}max ≤ ρ̃max + {x̃(0)}max

{x̃(1)}min ≥ ρ̃min + {x̃(0)}min

and therefore using successive substitution, we get

{x̃(n)}max ≤ n · ρ̃max + {x̃(0)}max

{x̃(n)}min ≥ n · ρ̃min + {x̃(0)}min

From (10), we have

{x(n)}max = {x̃(n)− r}max ≤ {x̃(n)}max − {r}min

≤ n · ρ̃max + {x̃(0)}max − {r}min

≤ n · ρ̃max + {x(0) + r}max − {r}min

≤ n · ρ̃max + {x(0)}max + {r}max − {r}min

(12)

and for {x(n)}min:

{x(n)}min = {x̃(n)− r}min ≥ {x̃(n)}min − {r}max

≥ n · ρ̃min + {x̃(0)}min − {r}max

≥ n · ρ̃min + {x(0) + r}min − {r}max

≥ n · ρ̃min + {x(0)}min − {r}max + {r}min

(13)

Theorem 1. The asymptotic maximum growth rate σmax

and asymptotic minimum growth rate σmin are bounded
as follows:

σmax ≤ ρ̃max, σmin ≥ ρ̃min

Proof: From (4), (12), and (13), we have

σmax = lim sup
n→∞

1

n
{x(n)}max ≤ ρ̃max

σmin = lim inf
n→∞

1

n
{x(n)}max ≥ ρ̃min

� End Proof

Let,

b̃(ℓ, r, s, t) = B̃(ℓ)⊗′ 0p, ã(ℓ, r, s, t) = Ã(ℓ)⊗ b̃(ℓ, r, s, t)

Then,

b̃j(ℓ, r, s, t) = min
q

B̃j,q(ℓ)

= min
q

[S′ ⊗′ B(ℓ)⊗′ T−1]j,q

= min
q

[d⊗(s)⊗′ B(ℓ)⊗′ d⊗(−t)]j,q

= min
q

(Bj,q(ℓ) + sj − tq)

ãi(ℓ, r, s, t) = max
j

(Ãi,j(ℓ) + b̃j(ℓ, r, s, t))

= max
j

(
[R⊗′A(ℓ)⊗′S−1]i,j+b̃j(ℓ, r, s, t)

)

= max
j

(
Ai,j(ℓ)+ri−sj+min

q
(Bj,q(ℓ)+sj−tq)

)

= max
j

(
Ai,j(ℓ) + ri +min

q
(Bj,q(ℓ)− tq)

)

Note that ãi does not depend on the vector s. Now, finding
the smallest upper bound for the asymptotic maximum
growth rate σmax is the same as minimizing {ã}max over
r:
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ρ̃max = min
r

max
ℓ

max
i

ãi(ℓ, r, t)

= min
r

max
ℓ

max
i

max
j

(
Ai,j(ℓ)+ri+min

q
(Bj,q(ℓ)− tq)

)

This optimization problem can be recast as a mixed-
integer linear programming problem as follows:

min
r,t,ℓ,µ

ρ̃max

subject to

−ρ̃max + ri + bj,ℓ ≤ −Ai,j(ℓ) ∀i, j, ℓ
bj,ℓ + tq ≤ Bj,q(ℓ) ∀j, q, ℓ

−bj,ℓ +M µj,q,ℓ − tq ≤ −Bj,q(ℓ) +M ∀j, q, ℓ
−
∑
q

µj,q,ℓ ≤ −1 ∀j, ℓ

t = C r

(14)

where µ is a binary tensor variable and M is a large
positive number. Here µ and M are used to make sure
that in one of the indices q, ∀j, l, the value of bj,l hit
the minimum. This is because, we have to maximize
ã(ℓ, r, t), which contains a ‘min’ expression. The details
of this technique can be seen in Bemporad and Morari
(1999). Similarly, finding the largest lower bound for the
asymptotic minimum growth rate σmin is the same as
maximizing {ã}min over r:

ρ̃min = max
r

min
ℓ

min
i

ai(ℓ, r, t)

= max
r

min
ℓ

min
i

max
j

(
Ai,j(ℓ) + ri +min

q
(Bj,q(ℓ)− tq)

)

Also, this optimization problem can be recast as the
following mixed-integer linear programming problem.

min
r,t,ℓ,µ,ν

(−ρ̃min)

subject to

−ai(ℓ) + ri + bj,ℓ ≤ −Ai,j(ℓ) ∀i, j, ℓ
ai(ℓ)− ri − bj,ℓ +M νi,j,ℓ ≤ Ai,j(ℓ) +M ∀i, j, ℓ

ρ̃min − ai(ℓ) ≤ 0 ∀i, j, ℓ
bj,ℓ + tq ≤ Bj,q(ℓ) ∀j, q, ℓ

−bj,ℓ − tq +M µj,q,ℓ ≤ −Bj,q(ℓ) +M ∀j, q, ℓ
−
∑
q

µj,q,ℓ ≤ −1 ∀j, ℓ, −
∑
j

νi,j,ℓ ≤ −1 ∀i, ℓ

t = C r

(15)

where µ, ν are binary tensors, which are associated with a
‘maxmin’ expression as explained for the problem (14).

6. SIMULATIONS

In this simulation, we consider 250 well-defined, time-
invariant, monotone, and arbitrary S-MMPS systems of
the form (2) with n = m = p = 5 and nL = 4 switching
modes per S-MMPS system. We set 50% of the variables
of the matrix A as ε, and 50% of the variable of the matrix
B as ⊤, arbitrarily with a uniform distribution. The finite
values of A and B are set to an integer value between 0
and 5 arbitrarily. The bounds ρmax and ρmin are computed
using (5) and (6). The bounds ρ̃max and ρ̃min are computed
using (14) and (15) in Matlab using YALMIP. Now,
we perform 100 simulations for each generated S-MMPS
system and compute the maximum value {x(N)}max, N =
200 over all 100 simulations, for arbitrary initial states x(0)
drawn from a normal distribution and arbitrary modes

ℓ(k) ∈ {1, . . . , nL}. Similarly, we also compute the mini-
mum value {x(N)}min, N = 200 over all 100 simulations.
We calculate the estimates of σmax and σmin (denoted as
σ̂max and σ̂min, respectively) as follows:

σ̂max = max
i∈{1,...,100}

{x(i)(N)}max

N

σ̂min = min
i∈{1,...,100}

{x(i)(N)}min

N

where x(i)(N) is the state value at i-th simulation.

Figure 1 plots ρmax/σ̂max and ρ̃max/σ̂max whereas Figure
2 plots ρmin/σ̂min and, ρ̃min/σ̂min for all the S-MMPS
systems (250 systems) along with their corresponding box
plots. The box plots show the average range of the data.
The center line indicates the median. The markers that
extend in y axis are the extreme points.

It can be observed from the box plots that the mixed-
integer linear programming problem results in a tighter
upper and lower bound as compared to the analytical
bounds calculated using (5) and (6). The average improve-
ment of the upper bound (ρmax − ρ̃max)/σ̂max is 18.31%
and the average improvement of the lower bound (ρ̃min −
ρmin)/σ̂min is 22.67%.

7. CONCLUSIONS

In this paper, we have considered switching max-min-
plus-scaling systems, which is a subclass of discrete-event
systems in which the system can switch between different
modes of operation. We have proved that the growth
rate of a time-invariant, and monotone S-MMPS system
is bounded. We have also derived a mixed-integer linear
programming problem to find the estimates of the smallest
upper bound and largest lower bound of the growth
rate. We found that the mixed-integer linear programming
problem gives a tighter bound on the growth rate of the
S-MMPS system.

In future research, we plan to relax the condition of mono-
tonicity of S-MMPS systems and analyze the conditions for
existence of bounds on growth rate. Further, formulate an
optimization problem for this case to get optimum bounds.
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