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If anyone can refute me—show me I’m making a mistake or looking at things from the
wrong perspective—I’ll gladly change. It’s the truth I’m after, and the truth never harmed

anyone. What harms us is to persist in self-deceit and ignorance.

Marcus Aurelius
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SUMMARY

This thesis concerns the fundamental problem of learning the behavior of decision-
making agents using only observations of how they act in different situations. As hu-
mans, we do it all the time, and have been doing it since birth: think about how a child
learns to speak and walk. However, this thesis does not only focus on imitating. We go a
step further and try to learn why an agent does what it does. In other words, what is the
agent’s objective, which led them to act in a certain way? This is a much harder question,
but also much more rewarding when answered correctly: knowing the agent’s motiva-
tion allows us not only to imitate but also to understand or even influence the agent’s
behavior.

For this purpose, we ask the question: what is the agent optimizing for when making
decisions? For instance, imagine a consumer agent that buys a certain set of products
given their budget. To model the consumer’s behavior, we interpret their action as buy-
ing the products with maximum utility, given a limited budget. Thus, learning how the
consumer evaluates each product (that is, the utility of each product for the consumer)
would allow us to understand, replicate, and possibly influence their behavior. Mathe-
matically, we model the decision process of the agent as an optimization program, and
we use Inverse Optimization (IO) as a tool to “reverse engineer” the agent’s optimization
program from observed behavior.

This thesis can be divided into two parts. First, we dive into the mathematical formal-
ization of the IO problem. We look at the geometry of the mathematical objects emerging
from IO problems, and we discuss what it means to solve the IO problem and different
ways to do it, proposing tractable reformulations and efficient algorithms. In the second
part of this thesis, we develop a tailored IO methodology to solve IO problems emerging
from routing problems. We test the potential of our methodology for modeling human
driving behavior on real-world problems using data from the Amazon Last Mile Routing
Research Challenge. We achieve excellent results, showcasing the potential of IO to solve
real-world problems. Additionally, we also developed InvOpt, an open-source Python
package to solve general IO problems.

ix





SAMENVATTING

Dit proefschrift gaat over het fundamentele probleem van het leren van het gedrag van
besluitvormende agenten door alleen waarnemingen te doen van hoe ze zich gedragen
in verschillende situaties. Als mensen doen we dit de hele tijd, en we doen het al sinds
onze geboorte: denk maar aan hoe een kind leert praten en lopen. Dit proefschrift richt
zich echter niet alleen op imiteren. We gaan een stap verder en proberen te leren waarom
een agent doet wat hij doet. Met andere woorden, wat is het doel van de agent, waardoor
hij op een bepaalde manier handelt? Dit is een veel moeilijkere vraag, maar ook veel
belonender als deze correct wordt beantwoord: als we de motivatie van de agent kennen,
kunnen we niet alleen imiteren, maar ook het gedrag van de agent begrijpen of zelfs
beïnvloeden.

Hiervoor stellen we de vraag: waar optimaliseert de agent voor als hij beslissingen
neemt? Stel je bijvoorbeeld een consumentenagent voor die een bepaalde set producten
koopt gegeven zijn budget. Om het gedrag van de consument te modelleren, interprete-
ren we hun actie als het kopen van de producten met maximaal nut, gegeven een beperkt
budget. Als we dus leren hoe de consument elk product beoordeelt (dat wil zeggen het
nut van elk product voor de consument), kunnen we hun gedrag begrijpen, repliceren
en mogelijk beïnvloeden. Wiskundig gezien modelleren we het beslissingsproces van
de agent als een optimalisatieprogramma en we gebruiken Inverse Optimization (IO) als
een hulpmiddel om het optimalisatieprogramma van de agent te “reverse engineer” op
basis van geobserveerd gedrag.

Dit proefschrift kan in twee delen worden verdeeld. Eerst duiken we in de wiskun-
dige formalisering van het IO-probleem. We kijken naar de geometrie van de wiskundige
objecten die voortkomen uit IO-problemen, en we bespreken wat het betekent om het
IO-probleem op te lossen en verschillende manieren om dit te doen, waarbij we hanteer-
bare herformuleringen en efficiënte algoritmen voorstellen. In het tweede deel van dit
proefschrift ontwikkelen we een op maat gemaakte IO-methodologie om IO-problemen
op te lossen die voortkomen uit routeringsproblemen. We testen het potentieel van onze
methodologie voor het modelleren van menselijk rijgedrag op basis van echte proble-
men met behulp van gegevens van de Amazon Last Mile Routing Research Challenge.
We behalen uitstekende resultaten en laten het potentieel van IO zien om echte pro-
blemen op te lossen. Daarnaast hebben we ook InvOpt ontwikkeld, een open-source
Python-pakket om algemene IO-problemen op te lossen.
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1
INTRODUCTION

In Inverse Optimization (IO) problems, our goal is to model the behavior of an expert
agent, which given an exogenous signal, returns a response action. The underlying as-
sumption of IO is that to compute its response, the expert agent solves an optimiza-
tion problem parametric in the exogenous signal. We assume to know the constraints
imposed on the expert, but not its cost function. Therefore, our goal is to model the
cost function being optimized by the expert, using examples of exogenous signals and
corresponding expert response actions. For example, consider the problem of learning
how to route vehicles using examples from experienced drivers. Given a set of customer
demands (exogenous signal), the experienced driver chooses a certain vehicle route to
serve the customers (expert response). Assuming the drivers solve some kind of route
optimization problem to compute their routes, where their cost function depends on
the drivers’ evaluation of how costly it is to drive from one customer to another, one
could look at this problem as an IO problem. Thus, one could use IO tools to learn the
cost function being used by these drivers, i.e., we learn the preferences of the expert
drivers when driving from a certain customer to another. IO tools have been used in
many application areas, for instance, the papers [BT92; FSS03; BPS17] use IO to learn
the cost matrix of shortest path problems. The paper [CD12] investigates IO for the
Traveling Salesperson Problem (TSP), where they study the problem of, given an edge-
weighted complete graph, a single TSP tour, and a TSP solving algorithm, finding a new
set of edge weights so that the given tour can be an optimal solution for the algorithm,
and is closest to the original weights. Moreover, cutting-plane methods have been pro-
posed to solve general IO for mixed-integer programs [Wan09; DW11; BCZ22], in par-
ticular, the authors of [BCZ22] propose the use of trust regions to lower the computa-
tional cost of generating cuts. IO has also been used to learn household activity patterns
[CR12], for network learning [CRJ14; Xu+18], for learning complex model predictive con-
trol schemes [AKE21], healthcare problems [Cha+14; Cha+22], modeling of consumer
behavior [BGP15], portfolio selection [BGP12], and forecast of electricity prices [SM17].
For more examples of applications of IO, we refer the reader to the recent review paper
[CMZ23] and references therein.
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2 1. INTRODUCTION

The literature on IO can be roughly divided into so-called classical and data-driven
IO. In classical IO, the goal is usually to find a cost function that renders a single signal-
response pair optimal, that is, a cost function under which the observed response is op-
timal. A direct approach to modeling this scenario leads to a bi-level optimization prob-
lem, thus, much of the early IO literature focuses on reformulating this problem into a
single-level tractable program [AO01]. This idea has been extended to different classes of
optimization problems, such as conic and integer programs [Heu04; IK05; AG05; Wan09;
Sch09]. On the other hand, data-driven IO usually deals with problems with multiple
signal-response examples, and it is not necessarily assumed that there exists a cost func-
tion consistent with all signal-response data. In this scenario, the IO problem can be
viewed as a supervised learning problem with multivariate output where the IO model
forms a hypothesis class. In this view, one minimizes a training loss function to find a
good "fit" to the input (response), output (optimizer) data. With this in mind, much of
the data-driven IO literature focuses on the choice of the training loss function, particu-
larly because the usual supervised learning losses lead to nonconvex programs [ASS18].
Examples of such losses are the KKT loss [KWB11], first-order loss [BGP15], predictability
loss [ASS18], and the suboptimality loss [Moh+18a]. It is worth noting that in the stan-
dard IO setting, directly learning the cost function (i.e., regression with signal-pair as the
input and the cost function value as the scaler output) is typically not an option since the
available data contains only the signal-response pair and not the value of the unknown
cost function. Recently, in a framework called “predict, then optimize”, [EG22] considers
this additional information, and proposes another loss function coined as SPO. Other
concepts have also been investigated in the context of IO problems, such as goodness-
of-fit [CLT19], robustness against misspecification [Gho+18], and learning constraints
instead of cost functions [GM21].

Notation. The trace, range space, and Moore-Penrose inverse of a matrix Q ∈ Rm×m

are denoted as Tr(Q), R(Q) and Q†, respectively. For two symmetric matrices Q,R ∈
Rm×m , Q ≽ R means Q −R is positive semidefinite. The Euclidean inner product be-
tween two vectors x, y ∈ Rm is denoted by 〈x, y〉. The set of vectors with nonnegative
components is denoted as Rn+ := {x ∈ Rn : x ≥ 0}. The cardinality, complement, interior,
and convex hull of a set A are denoted as |A|, A, int(A) and conv(A), respectively. The
set of integers from 1 to N is denoted as [N ]. A set of indexed values is compactly de-
noted by {x[i ]}N

i=1 := {x[1], . . . , x[N ]}. The euclidean projection of x onto a set A is defined
asΠA(x) := argminy∈A ∥y −x∥2. The euclidean angle between two nonzero vectors θ and

θ̃ is defined as a(θ, θ̃) := arccos〈θ, θ̃〉/(∥θ∥2∥θ̃∥2). For vectors x, y ∈ Rm , x ⊙ y , max(x, y)
and exp(x) mean element-wise multiplication, element-wise maximum, and element-
wise exponentiation, respectively. Moreover, whenever the arguments of exp(·) or log(·)
are matrices, they should be interpreted as the usual matrix exponentiation and matrix
logarithm, respectively. The vector vec(Q) ∈ Rpq denotes the vectorization of the matrix
Q ∈ Rp×q formed by stacking the columns of Q into a single column vector. The symbol
⊗ denotes the Kronecker product. The vector e j ∈ Rn denotes the vector of zeros except
for the j ’th element which is equal to one. The vector of ones is represented by 1.
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1.1. PROBLEM DESCRIPTION
Let us begin by formalizing the IO problem. Let s ∈ S be an exogenous signal, and S
be the signal space. The expert agent is assumed to solve the parametric optimization
problem

min
x∈X(s)

F (s, x), (1.1)

where X(s) is the feasible set, and F : S×X→ R is the expert’s cost function, where we
define X := ⋃

s∈SX(s). In our IO formulation, the signal space S may contain any infor-
mation that the expert uses to solve the optimization problem (1.1). For example, in the
context of routing problems, the signal may contain the demands of customers, time
windows for the service of customers, the set of customers that need to be served, time
of the day, day of the week, weather information, etc. Since it would not be practical
to formally (i.e., mathematically) define a signal space that contains all possible types
of signals, we leave it as a general signal space S. Recall that the cost F is unknown to
us, and we only have access to a dataset of N pairs of exogenous signals and respective
expert optimal decisions D̂ := {(ŝ[i ], x̂[i ])}N

i=1, that is,

x̂[i ] ∈ argmin
x∈X(ŝ[i ])

F (ŝ[i ], x), ∀i ∈ [N ].

In this work, we always assume knowledge of the constraint setX. For more information
on IO problems with an unknown constraint set, we refer the reader to the recent survey
paper [CMZ23]. Moreover, we generally assume that the observed data is feasible, that is,
x̂[i ] ∈X(ŝ[i ]) ∀i ∈ [N ]. For ways to handle infeasible data, see Remark 2.9, or Step 1 from
Section 3.3.2 for an ad-hoc approach. We use the notation “·̂” to indicate signal-response
data (e.g., ŝ and x̂). When using a dataset of signal-response data, we use the superscript
“[i ]” to refer to the i ’th pair of the dataset, e.g., ŝ[i ] and x̂[i ]. Using this data, our goal is to
learn a cost function that when minimized, reproduces the expert’s decisions as well as
possible.

In this work, we consider the following hypothesis space (i.e., cost function space),
parametrized by θ:

Fφ := {〈θ,φ(·, ·)〉 : θ ∈Rp}
, (1.2)

where θ ∈Rp is called the cost vector and φ :S×X→Rp is called feature mapping, which
maps a signal-response pair (s, x) to a feature vector φ(s, x) ∈Rp . In practice, choosing a
suitable mappingφ is part of the modeling of the IO problem. To exemplify the generality
of this hypothesis space, the next example shows how to model a quadratic function
as a member of Fφ. Other utility functions from the literature, for instance, the CES
function and the Cobb-Douglas function can also be easily fitted into our framework
[CK20, Appendix A].

Example 1.1 (Quadratic hypothesis). Consider a quadratic function

F (s, x) = 〈x,Qxx x〉+〈x,Qxs s〉+〈x, q〉,
parametrized by (Qxx ,Qxs , q) ∈Rn×n×Rn×m×Rn . Using the identity vec(AX B) = 〈vec(X ),B⊗
A⊤〉, we can rewrite this quadratic function as

F (s, x) = 〈vec(Qxx ), x ⊗x〉+〈vec(Qxs ), s ⊗x〉+〈x, q〉 = 〈θ,φ(s, x)〉,
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where

θ :=
vec(Qxx )

vec(Qxs )
q

 and φ(s, x) :=
x ⊗x

s ⊗x
x

 .

Thus, our IO goal is to find a cost vector θ such that when solving the optimization
problem

min
x∈X(s)

〈θ,φ(s, x)〉, (1.3)

we can reproduce (or approximate as well as possible) the action the expert would have
taken, given the same signal s. An important object in IO problems is C, the set of cost
vectors consistent with the dataset D̂.

Definition 1.2 (Consistent cost vectors). Given a dataset D̂ = {(ŝ[i ], x̂[i ])}N
i=1, feature map-

ping φ and feasible set X, the set of consistent cost vectors is defined as

C := {
θ ∈Rp : 〈θ,φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])〉 ≤ 0, ∀x[i ] ∈X(ŝ[i ]), ∀i ∈ [N ]

}
. (1.4)

In other words, C corresponds to the set of cost vectors θ that render the expert re-
sponses x̂[i ]’s optimal, i.e., x̂[i ] ∈ argminx[i ]∈X(ŝ[i ])〈θ,φ(ŝ[i ], x[i ])〉, for all i ∈ [N ]. Geomet-
rically, the set C is a cone, defined by the intersection of half-spaces defined by hyper-
planes that pass through the origin.

1.2. OUTLINE AND CONTRIBUTIONS
In Chapter 2, we present contributions concerning novel interpretations for IO prob-
lems, tractable reformulations, loss functions, and first-order optimization algorithms.
This chapter is based on P. Zattoni Scroccaro, B. Atasoy, and P. Mohajerin Esfahani, “Learning
in Inverse Optimization: Incenter Cost, Augmented Suboptimality Loss, and Algo-
rithms”, to appear as a full paper in Operations Research, 2024 [ZAM24]. The main con-
tributions of Chapter 2 are summarized as follows:

(i) Geometric & robustness interpretations. Motivated by the geometry of the set of
consistent cost vectors, we introduce the concept of an incenter (Definition 2.3),
and provide insights into its geometry (Figure 2.1) and robustness (Remark 2.4) in
comparison with the circumcenter concept from [BFL23].

(ii) Convex reformulations & tractability. We develop tractable convex reformulations
of the incenter (Theorem 2.5, Corollary 2.6), along with a geometric interpretation
of these characterizations (Figure 2.2). This may be of particular interest as the
corresponding circumcenter concept is equivalent to an intractable optimization
program (Theorem 2.2). To establish this intractability result, we draw connections
between the circumcenter/incenter concepts and the well-known problem of ex-
tremal volume balls (Remark 2.7). Moreover, since the problem of extremal volume
balls is a special case of the problem of extremal volume ellipsoids, this connection
allows us to derive “ellipsoidal” versions of the incenter and circumcenter concepts
(e.g., Eq. (2.8)), which perform well in our numerical experiments (Section 2.4.1).
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(iii) Generalization to inconsistent data & Augmented Suboptimality Loss. General-
izing to the inconsistent data setting, we propose a novel loss function for IO prob-
lems, which we name Augmented Suboptimality Loss (ASL) (Definition 2.8). This
loss can be interpreted as a relaxation of the incenter concept, to handle IO prob-
lems with inconsistent data (Eq. (2.11)). In special cases, this formulation of the
IO problem can be shown to be equivalent to the so-called Structured SVM formu-
lation of structured prediction problems, revealing a connection between IO and
structure prediction (Remark 2.10). We further propose a general convex reformu-
lation of the ASL for IO problems with mixed-integer feasible sets (Theorem 2.12
and Corollary 2.13), which generalizes several reformulations from the literature
(Remark 2.14).

(iv) Tailored first-order algorithm: Stochastic Approximate Mirror Descent. Moti-
vated by the structure of IO loss functions, we propose a novel first-order algorithm,
which we name Stochastic Approximate Mirror Descent (SAMD). This algorithm ex-
ploits the finite sum structure of the IO problem to compute stochastic gradients,
uses approximate evaluating IO loss functions to compute approximate subgradi-
ents, and uses mirror descent update steps for problems with favorable geome-
try (Sections 2.3.1, 2.3.2, and 2.3.3). We prove convergence rates for this algorithm
(Proposition 2.16) and show how the components of this algorithm can be tailored
to exploit the structure of IO loss functions (Algorithm 1).

In Chapter 3, we tailor and extend the general IO methodology introduced in Chapter
2 for the case of routing problems. Our tailored approach is flexible to what type of rout-
ing problem the expert is assumed to solve, handles cases when there is a large number
of routing examples, as well as cases when solving the routing problem is computation-
ally expensive. This chapter is based on P. Zattoni Scroccaro, P. van Beek, P. Mohajerin
Esfahani, and B. Atasoy, “Inverse Optimization for Routing Problems”, Transportation
Science, 2024 [Zat+24]. The main contributions of Chapter 3 are summarized as follows:

(i) IO methodology for routing problems. We propose an IO methodology, which has
the following specifications tailored for routing problems:

(a) Hypothesis class: We introduce a hypothesis class of affine cost functions with
nonnegative cost vectors representing the weights of edges of a graph, along
with an affine term that can capture extra desired properties for the model (Sec-
tion 3.1.1).

(b) Loss function: We introduce a loss function for IO applied to routing problems
(Section 3.1.2). This loss function extends the Augmented Suboptimality Loss
by using our affine hypothesis class. Moreover, exploiting the fact that the deci-
sion variables of the routing problem can be modeled using binary variables,
we show that the nonconvex cost function of the inner minimization prob-
lem of the loss function can be equivalently reformulated as a convex function
(Proposition 3.1). This result is of independent interest since this reformulation
can be used for any IO problem with binary decision variables.
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(c) First-order algorithm: We also design a first-order algorithm specialized to min-
imize our tailored IO loss function, and is particularly efficient for IO prob-
lems with large datasets and with computationally expensive decision prob-
lems, e.g., large VRPs (Section 3.1.3). Compared to the SAMD algorithm, our
algorithm is tailored to our affine hypothesis function and new loss function
reformulation and also uses a “reshuffled” sampling strategy, which improves
its empirical performance compared to the uniform sampling employed by the
SAMD algorithm (Section 3.2.2).

(d) Modeling flexibility: We showcase the flexibility of our IO methodology by demon-
strating how three specific instances of routing problems (CVRP, VRPTW, and
TSP) can be modeled using our framework (Sections 3.2.1, 3.2.2, and 3.2.3).
We present numerical results that give intuition on how our tailored algorithm
works for routing problems (Figure 3.2), as well as its efficacy in handling large
routing problems (Figure 3.3).

(ii) Application to the Amazon Challenge. We evaluate our IO methodology on the
Amazon Challenge, namely, we learn the drivers’ preferences in terms of geograph-
ical city zones using IO. We present results for a general IO approach as well as for
the tailored approach developed in this chapter, showcasing how insights about the
structure of the problem at hand can be seamlessly integrated into our IO method-
ology, illustrating its flexibility and modeling power (Sections 3.4.1). Our approach
achieves a final Amazon score of 0.0302, which ranks 2nd compared to the 48 mod-
els that qualified for the final round of the Amazon Challenge (Figure 3.9). More-
over, using an approximate TSP solver and a fraction of the training dataset, we can
learn a good routing model in just a few minutes, demonstrating the possibility of
using our IO approach for real-time learning problems (Table 3.2). All of our exper-
iments are reproducible, and the underlying source code is available in [Zat23a].

IO python package. In addition to the works reported in Chapters 2 and 3, we have
also developed the InvOpt Python package: https://github.com/pedroszattoni/
invopt [Zat23b]. This is a general library of functions with implementations of all algo-
rithms and formulations presented in Chapter 2 and Chapter 3, as well as other standard
IO methods to solve (continuous) linear and quadratic IO problems. Moreover, all nu-
merical experiments from Chapter 2 and part of the experiments from Chapter 3 are
available in InvOpt’s GitHub repository as usage examples for the package.

1.3. OTHER CONTRIBUTIONS AND CURRENT WORK
In addition to the works reported in Section 1.2, we have also worked on the following
project during the PhD.

Online convex optimization with predictions. In the past few years, Online Convex
Optimization (OCO) has received notable attention in the control literature thanks to
its flexible real-time nature and powerful performance guarantees. In [ZKM23], we pro-
pose new step-size rules and OCO algorithms that simultaneously exploit gradient pre-
dictions, function predictions and dynamics, features particularly pertinent to control

https://github.com/pedroszattoni/invopt
https://github.com/pedroszattoni/invopt
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applications. The proposed algorithms enjoy static and dynamic regret bounds in terms
of the dynamics of the reference action sequence, gradient prediction error, and func-
tion prediction error, which are generalizations of known regularity measures from the
literature. We present results for both convex and strongly convex costs. We validate the
performance of the proposed algorithms in a trajectory tracking case study, as well as
portfolio optimization using real-world datasets.

Moreover, we are currently working on two projects: kernel methods for IO and IO
for dynamic problems.

Kernel methods for IO. In our current project [Lon+24], we address the issues of the
choice of the feature mapping φ and the complexity of the IO problem w.r.t. the size of
the feature vector. For some classes of IO problems, both issues can be handled us-
ing kernel methods, where we reformulate the IO problem in terms of a kernel func-
tion κ(ŝ1, x̂1, ŝ2, x̂2) = 〈φ(ŝ1, x̂1),φ(ŝ2, x̂2)〉. This way, by choosing standard kernels (e.g.,
polynomial or Gaussian) one does not need to design the feature mapping φ. Also,
κ(ŝ1, x̂1, ŝ2, x̂2) ∈ R, which is independent of the size of φ(ŝ1, x̂1), so the complexity of
the IO problem (in other words, the number of parameters to be optimized) does not
depend anymore on the size of the feature vector. On the other hand, the complexity
of the resulting IO reformulation will depend on the size of the training dataset, which
for large-scale applications, requires specialized optimization algorithms, for instance,
coordinated descent methods.

IO for dynamical decision-making problems. In dynamical decision-making prob-
lems, decisions must be taken sequentially, and the signal observed at time t +1 may be
a function of the decision taken at time t . In other words, we can interpret the dataset
D̂ = {(ŝ[i ], x̂[i ])}N

i=1 as coming from a dynamical system, where ŝ[t+1] = f (ŝ[t ], x̂[t ]), for

some function f . For instance, the signal ŝ[t+1] could represent the state of the dynamical
system and x̂[t+1] the control input from an expert controller, where f is the dynamics
mapping of the system. For such problems, ignoring their dynamical nature can lead
to poor out-of-sample performance of the learned IO model, since small errors can be
compounded by the dynamical aspect of the problem. Thus, the goal of this project
is to develop IO methodologies tailored to dynamical decision-making problems, with
a particular interest in applications to dynamic vehicle routing problems, and possibly
combine ideas from the Reinforcement Learning and Contextual Bandits algorithms.





2
LEARNING IN INVERSE

OPTIMIZATION

Recently, [BFL23] shows that given a dataset of expert examples and the set C, which is
defined as the set of cost vectors consistent with the dataset, the optimal solution to the
IO problem, for a certain regret performance measure, is the so-called circumcenter of
the set C. To the best of our knowledge, this is the first minimax regret result for IO prob-
lems. To derive this result, the authors exploit the geometry of IO problems and provide
strong regret guarantees. The general optimization program associated with computing
the circumcenter vector, however, turns out to contain intractable problem instances.
Moreover, when the IO dataset is inconsistent with a single cost function (which is ex-
pected in real-world problems), it is not clear how one could generalize the circumcenter
concept to solve the IO problem. These shortcomings motivate us to propose a new con-
cept called “incenter" to select an IO cost vector from the set of consistent costs.

2.1. INCENTER COST VECTOR
From Definition 1.2, one can observe that a trivial element in the set C is θ = 0. However,
this trivial choice is not really of interest since it yields any response x ∈X(s) to the signal
s an optimal solution, hence no differentiation between different responses. Therefore,
when C contains other elements than θ = 0, that is, the data is consistent with the hy-
pothesis space in the sense that the expert’s true cost is F (s, x) = 〈θ⋆,φ(s, x)〉 for some
nonzero element θ⋆, it is natural to restrict the search space to C \ {0}. It is also worth
noting that a similar issue concerns the feature map φ. Namely, from a modeling per-
spective, it is important to consider a feature class where φ(s, x) is not identically zero in
the second argument over the setX(s) for typical signal variables s ∈S. This assumption,
together with excluding the trivial cost vector θ = 0 from the search space, is necessary.
Thus, in this section, we assume C\{0} ̸= ; and thatφ is not trivially zero, and we discuss
different ways to choose a cost vector from the set C. A straightforward way to do this is

This chapter is based on [ZAM24].

9



2

10 2. LEARNING IN INVERSE OPTIMIZATION

by solving a feasibility optimization problem, which we call feasibility program:

min
θ

0

s.t. 〈θ,φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])〉 ≤ 0 ∀x[i ] ∈X(ŝ[i ]), ∀i ∈ [N ]

∥θ∥2 = 1.

(2.1)

Problem (2.1) simply translates the idea that we wish to find some nonzero θ ∈ C. No-
tice that the normalization constraint ∥θ∥2 = 1 excludes the trivial solution θ = 0, and it
is nonrestrictive in the sense that argminx∈X(s)〈θ,φ(s, x)〉 = argminx∈X(s)〈αθ,φ(s, x)〉, for
any α > 0. By solving the IO problem using the feasibility program (2.1), we implicitly
suggest that any cost vector θ ∈ C \ {0} is an equally good solution to the IO problem.
However, one could argue that there are more principled ways to choose a cost vector
from the set of consistent vectors C.

2.1.1. GEOMETRY, ROBUSTNESS, AND TRACTABILITY
Considering two cost vectors θ and θ⋆ with their corresponding responses defined as

xθ ∈ argmin
x∈X(ŝ)

〈θ,φ(ŝ, x)〉 and x⋆ ∈ argmin
x∈X(ŝ)

〈θ⋆,φ(ŝ, x)〉, (2.2a)

the authors in [BFL23] define the regret

R(θ,θ⋆) := 〈θ⋆,φ(ŝ, xθ)−φ(ŝ, x⋆)〉. (2.2b)

The regret (2.2b) is a distance function between two cost vectors that measures the dif-
ference via the impact of their respective optimizers xθ and x⋆ evaluated through the
second argument, here the ground truth θ⋆. As shown in [BFL23], the worst-case opti-
mal cost vector θ for the regret R(θ,θ⋆) is the so-called circumcenter of C.

Definition 2.1 (Circumcenter [BFL23]). Let C be a nonempty set. A circumcenter of C is
defined as

θc ∈ argmin
θ ̸=0

max
θ̃∈C
θ̃ ̸=0

a(θ, θ̃). (2.3)

In the original definition of [BFL23], the non-zero constraints over the cost vectors
are enforced via ∥θ∥2 = ∥θ̃∥2 = 1, which does not change the circumcenter since the angle
in the objective is scale-invariant (recall that the euclidean angle between two nonzero
vectors θ and θ̃ is defined as a(θ, θ̃) = arccos〈θ, θ̃〉/(∥θ∥2∥θ̃∥2)). Geometrically, θc can be
interpreted as a point in the axis of the revolution cone with the smallest aperture angle
containing C. Informally speaking, the circumcenter approach chooses a cost vector by
looking for the vector in C furthest away (in terms of the angle) from the “corners” of
C (more precisely, from the extreme rays of C). However, in this study we identify the
following three possible shortcomings when using the circumcenter concept to choose
an IO model:

(i) Computational tractability: Computing the circumcenter, in general, turns out to
be intractable.
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(ii) Robustness interpretation: While the circumcenter is, by definition, robust to an
adversarial (i.e., worst-case) ground truth data-generating model, the challenge in
practice is often related to noisy data.

(iii) Inconsistent data: The circumcenter is only defined for problems with consistent
data (i.e., nonempty C) and, to the best of our knowledge, cannot be straightfor-
wardly extended to IO problems with inconsistent data.

In the rest of this section, we first formalize the tractability result (i), and then intro-
duce a new notion that addresses these possible shortcomings related to circumcenter.

Theorem 2.2 (Intractability of circumcenter). Assume C is a nonempty polyhedral cone.
Then, solving the inner maximization of (2.3) for any θ is equivalent to maximizing a
quadratic function over a polytope, which is NP-hard.

Proof. Section 2.C.1.

Definition 2.3 (Incenter). Let C be a nonempty set. An incenter of C is defined as

θin ∈ argmax
θ ̸=0

min
θ̃∈int(C)
θ̃ ̸=0

a(θ, θ̃). (2.4)

We will show how the incenter problem (2.4) can be reformulated as a tractable con-
vex optimization problem (as opposed to the NP-hardness of the circumcenter), and by
relaxing the reformulation, it can be straightforwardly extended to handle problems with
inconsistent data. Let us first elaborate more on the intuition behind the incenter vector
in Definition 2.3 compared to the circumcenter vector in Definition 2.1. Geometrically,
an incenter of C can be interpreted as a vector furthest away (in terms of the angle) from
the exterior of C, or in other words, the vector in C furthers away from the boundary of
C. To provide insight into these different centers, we visualize them in a simple three-
dimensional space in Figure 2.1. Interestingly, these notions also have robustness inter-
pretations, which are different from existing learning models in which the robustness is
introduced explicitly via regularization or distributional robust approaches [Moh+18a].

Remark 2.4 (Robustness: circumcenter vs. incenter). A circumcenter θc in (2.3) can be
interpreted as the vector most robust to an adversary with the authority to choose the true
data-generating cost vector in C to be furthest away from our learned model, which is a
notion captured by the regret performance measure introduced in [BFL23]. On the other
hand, the incenter θin (2.4) can be viewed as the vector furthest away from the boundary
of C. Since each facet of C is determined by a signal-response (ŝ[i ], x̂[i ]) pair in the dataset
of the IO problem, the incenter vector can be interpreted as the cost vector most robust to
perturbations of the training dataset (i.e., perturbations of the facets of C).

Let us provide some additional details supporting the robustness interpretation in
Remark 2.4. To formalize this robustness notion, recall the definition of the set of con-
sistent cost vectors C = {

θ ∈Rp :
〈
θ,∆(ŝ[i ], x̂[i ], x)

〉≤ 0, ∀x ∈X(ŝ[i ]), ∀i ∈ [N ]
}
, where we

define∆(ŝ[i ], x̂[i ], x) := (φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ]))/∥φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])∥2 ifφ(ŝ[i ], x̂[i ]) ̸=
φ(ŝ[i ], x[i ]), and ∆(ŝ[i ], x̂[i ], x) := 0 otherwise. Differently from the definition in Eq. (1.4),
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(a) Circumcenter θc defined in (2.3). (b) Incenter θin defined in (2.4).

Figure 2.1: Geometrical visualization of the circumcenter and incenter vectors. The green regions are the
intersection of C with the sphere and the blue cones are revolution cones with an aperture angle equal to
the optimal value of (2.3) and (2.4).

here we simply normalize the vectorsφ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ]), which does not change the
set C. Notice that the vectors ∆(ŝ[i ], x̂[i ], x) are defined by the data {(ŝ[i ], x̂[i ])}N

i=1, and in
turn define the setC. Thus, the vector θ ∈Cmost robust to perturbations in the data, i.e.,
perturbation of ∆(ŝ[i ], x̂[i ], x), can be found by solving the minimax problem

max
∥θ∥2=1
θ∈C

min
w∈Rp

(ŝ[k],x̂[k])∈{(ŝ[i ],x̂[i ])}N
i=1

x∈X(ŝ[k])

∥w∥2
2

s.t. 〈θ,∆(ŝ[k], x̂[k], x)+w〉 = 0.

(2.5)

In problem (2.5), the “max player” optimizes for the vector θ ∈C that requires the largest
perturbation w so that it lies in the hyperplane 〈θ,∆(ŝ[k], x̂[k], x)+w〉 = 0 (i.e., a perturbed
facet of C). The “min player” tries to find the “most vulnerable” ∆(ŝ[k], x̂[k], x), that is, the
facet of C that requires the smallest perturbation vector w to make 〈θ,∆(ŝ[k], x̂[k], x)+
w〉 = 0. It can be shown that the optimal perturbation is w =−(〈θ,∆(ŝ[k], x̂[k], x)〉/∥θ∥2

2

)
θ,

and substituting it in the objective function of (2.5), one can show that the optimization
problem (2.5) is equivalent to the incenter reformulation of Theorem 2.5.

As a final comment, even ignoring the computational cost of computing the circum-
center vector versus computing the incenter vector, for cases when the set of consistent
vectors C is not empty, the incenter approach may perform better in practice (e.g., see
the results in Section 2.4.1). In light of the discussion in Remark 2.4, this suggests that
approaches robust to perturbations in the data (i.e., incenter) might be preferred to the
one that is robust to an adversarial true data-generating model (i.e., circumcenter).

2.1.2. REFORMULATIONS
Next, we present a reformulation of (2.4). This reformulation will be used to derive
tractable incenter-based approaches to IO problems, and we show that if int(C) ̸= ;, one
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can compute the incenter vector by solving an optimization problem without a norm
equality constraint.

Theorem 2.5 (Incenter reformulation). Problem (2.4) can be reformulated as

(θin,r in) ∈ argmax
θ,r

r

s.t. 〈θ,φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])〉+ r∥φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ])∥2 ≤ 0,

∀x[i ] ∈X(ŝ[i ]),∀i ∈ [N ]

∥θ∥2 = 1.

(2.6)

Proof. Section 2.C.2.

Corollary 2.6 (Incenter convex characterization). Assume int(C) ̸= ;. Then, problem
(2.6) can be solved as

θ̄in ∈ argmin
θ

∥θ∥2

s.t. 〈θ,φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])〉+∥φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ])∥2 ≤ 0

∀x[i ] ∈X(ŝ[i ]), ∀i ∈ [N ],

(2.7)

where θin = θ̄in/∥θ̄in∥2 is an optimal solution of problem (2.6).

Proof. Section 2.C.3.

Figure 2.2 presents a geometrical intuition behind the alternative reformulation of
Corollary 2.6 in a simple 2D example. Intuitively, the condition int(C) ̸= ; guarantees
that the optimal r > 0 in Theorem 2.5, and since the 1 in the norm equality constraint
is arbitrary, we can rescale the problem to get rid of the optimization variable r . Thus,
exploiting the nonempty interior assumption int(C) ̸= ;, we were able to formulate prob-
lem (2.7) without a norm equality constraint, making it a convex optimization problem.
In particular, it is tractable wheneverX(ŝ[i ]) has finitely many elements for all i ∈ [N ] . In
Sections 2.2.2 and 2.3, we discuss approaches to deal with cases when X(ŝ[i ]) may have
infinitely many elements. The tractability results in Theorem 2.2 and Corollary 2.6 build
on a connection to well-known problems in the optimization literature: computing ex-
tremal volume balls.

Remark 2.7 (Connection with extremal volume balls). Interestingly, the circumcenter
(resp. incenter) problem is closely related to the problem of finding the minimum (resp.
maximum) volume ball that covers (resp. lies inside) a nonempty polyhedron. The dif-
ference is that, instead of optimizing the volume of a ball so that it covers (resp. lies in-
side) a nonempty polyhedron, we optimize the aperture angle of a circular cone, so that
it covers (resp. lies inside) a polyhedral cone (see Figure 2.1). It is known that comput-
ing the minimum volume ball that contains a polyhedron defined by linear inequalities
is an intractable convex optimization problem [Nem96, Section 10.5.1], and Theorem 2.2
indicates that the circumcenter has the same property. Moreover, finding the maximum
volume ball that lies inside a polyhedron defined by linear inequalities (a.k.a. the Cheby-
shev center of the polyhedron) is known to be equivalent to a convex optimization problem
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Figure 2.2: Geometrical illustration of Corollary 2.6 in a simple 2D example. The grey region represents C, the
green region represents the feasible set of (2.6), and the red region represents the feasible set of (2.7). As can
be seen, the optimal solution of (2.7) can be interpreted as the smallest norm vector inside an inner cone with
boundaries 1 unit away from the boundaries of C. Also, it can be seen that by normalizing θ̄in, we retrieve θin,
an optimal solution of (2.6).

[BV04, Section 8.5.1], and Corollary 2.6 also confirms that the incenter has the same prop-
erty.

Since the problem of extremal volume balls is a special case of the more general prob-
lem of extremal volume ellipsoids [BV04, Section 8.4], one natural generalization of the
incenter and circumcenter concepts is to use ellipsoidal cones. For instance, an ellip-
soidal generalization of the circumcenter concept is used by [BFL23] for online IO prob-
lems. An ellipsoidal generalization of the incenter reformulation of Theorem 2.5 is

max
θ,A

log(det(A))

s.t. 〈θ,φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])〉+∥A(φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ]))∥2 ≤ 0,

∀x[i ] ∈X(ŝ[i ]),∀i ∈ [N ]

∥θ∥2 = 1, A ≽ 0,

(2.8)

which is based on [BV04, Section 8.4.2]. Even though, to the best of our knowledge, there
are no theoretical results for the performance of ellipsoidal incenter and circumcenter
approaches for offline IO problems, their performance in our numerical experiments in
Section 2.4 is indeed promising.

We end this section presenting a generalization of the program (2.7). This general-
ization will give us the flexibility to exploit structures specific to different IO problems.
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We generalize (2.7) as

min
θ

R(θ)

s.t. 〈θ,φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])〉+d(x̂[i ], x[i ]) ≤ 0, ∀x[i ] ∈X(ŝ[i ]), ∀i ∈ [N ]

θ ∈Θ.

(2.9)

The generalization occurs on three levels:

(i) Regularizer: We generalize the objective function to a general regularization func-
tion R :Rp →R. For example, we could have R(θ) = ∥θ− θ̂∥2

2, where θ̂ is an a priory
belief or estimate of the true cost vector, or R(θ) = ∥θ∥ for a general norm.

(ii) Distance in the response space: Instead of computing the distance between vec-
tors using the Euclidean distance, we consider a general distance function d : X×
X→ R+. For instance, d(x̂, x) = ∥x̂ − x∥ on continuous spaces, or d(x̂, x) = I (x̂, x)
on discrete spaces, where I (x̂, x) = 0 if x̂ = x, otherwise I (x̂, x) = 1. We note that d
could also be a function of ŝ. For instance, we could use it to penalize the distance
between x̂ and x in the feature space, by choosing d(x̂, x) = ∥φ(ŝ, x̂)−φ(ŝ, x)∥. For
simplicity, we omit this dependency.

(iii) Prior information constraint: We add the additional constraint θ ∈Θ. The set Θ is
used to encode any prior information or assumption we may have on the expert’s
true cost function, e.g., nonnegativity of the cost vector.

Notice that as long as R(θ) is convex in θ and the set Θ is convex, Problem (2.9) is a
convex optimization problem.

2.2. AUGMENTED SUBOPTIMALITY LOSS
In the previous section, we have shown how one can tackle IO problems when the dataset
D̂ is consistent with some cost F (s, x) = 〈θ⋆,φ(s, x)〉 ∈Fφ. Moreover, to use the proposed
approaches in practice, we also need to be able to list all elements ofX(ŝ[i ]) for all i ∈ [N ],
since each of these elements induces one inequality constraint (e.g., see (2.9)). In this
section, we present approaches to tackle an IO problem based on a loss function, which
will allow us to handle problems with possibly inconsistent data and when the cardinal-
ity ofX(ŝ[i ]) is very large (or even infinite). We first introduce a novel loss function for IO
problems and show how solving the IO problem using this loss can be interpreted as a
relaxation of the optimization program (2.9).

Recall that in IO problems, our goal is to find a parameter vector θ, such that when
solving the optimization problem minx∈X(s) 〈θ,φ(s, x)〉, we can reproduce (or approxi-
mate) the action the expert would have taken given the same signal s ∈ S (see Section
1.1). In the data-driven IO literature, this problem is usually posed as a (regularized)
empirical loss minimization problem

min
θ∈Θ

κR(θ)+ 1

N

N∑
i=1

ℓθ(ŝ[i ], x̂[i ]), (2.10)
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where R : Rp → R is a regularization function, κ is a nonnegative regularization param-
eter, and ℓθ : S×X→ R is some loss function, designed in a way that, by solving (2.10),
we find a cost vector θ such that the function 〈θ,φ(s, x)〉 achieves our IO goal. Simi-
lar to supervised learning methods in machine learning, the regularization parameter κ
should be chosen to improve the out-of-sample performance of the learned model, e.g.,
using cross-validation techniques. In this chapter, we propose a new loss function for IO
problems, which we name Augmented Suboptimality Loss (ASL).

Definition 2.8 (Augmented Suboptimality Loss). Given a signal-response pair (ŝ, x̂), the
Augmented Suboptimality Loss of a cost vector θ is

ℓθ(ŝ, x̂) := max
x∈X(ŝ)

{〈θ,φ(ŝ, x̂)−φ(ŝ, x)〉+d(x̂, x)
}

, (ASL)

where φ is a feature mapping and d is a distance function.

To simplify the notation, we omit the dependence of the ASL on φ and d . We note
that the ASL can be the well-known Suboptimality Loss [Moh+18a] for the special case
with no distance penalization, i.e., d(x̂, x) = 0.

2.2.1. CONNECTIONS WITH INCENTER
Next, we show how to solve problem (2.10) when the loss function is the ASL. This re-
formulation is useful to tackle IO problems with inconsistent data, where there is no
cost vector θ⋆ that describes the dataset D̂ = {(ŝ[i ], x̂[i ])}N

i=1 perfectly. Using a standard
epigraph reformulation, one can see that the optimization problem (2.10) with the ASL
yields the program

min
θ,β1,...,βN

κR(θ)+ 1

N

N∑
i=1

βi

s.t. 〈θ,φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])〉+d(x̂[i ], x[i ]) ≤β[i ], ∀x[i ] ∈X(ŝ[i ]), ∀i ∈ [N ]

θ ∈Θ.

(2.11)

Problem (2.11) is closely related to the incenter reformulation (2.9). More precisely,
(2.11) can be interpreted as a relaxation of (2.9) to handle IO problems with inconsistent
data. To see this, simply notice that we can arrive at (2.11) by adding slack variables to
the constraints of (2.9) and using κ as a trade-off parameter between the sum of slack
variables (i.e., the total violation of the constraints of (2.9)) and the regularization term
R(θ). Another way to see (2.10) as a relaxation of (2.9), is to write (2.9) in a “loss mini-
mization” form. Namely, notice that (2.9) can be written as

min
θ∈Θ

R(θ)+ I
(

1

N

N∑
i=1

ℓθ(ŝ[i ], x̂[i ])

)
, (2.12)

where the indicator function I(a) = 0 if a ≤ 0, otherwise I(a) =∞. Thus, (2.10) can also
be interpreted as Lagrangian relaxation of (2.12). In Appendix 2.A, we present a different
way to motivate the ASL, namely, as a convex surrogate of the so-called predictability loss.
There, we also discuss several properties of the ASL which are relevant to IO problems.
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So far, we have only considered the case when the data {x̂[i ]}N
i=1 is feasible, i.e., x̂[i ] ∈

X(ŝ[i ]). However, in practice, it may be the case that x̂[i ] ∉ X(ŝ[i ]) for some i ∈ [N ]. This
may happen due to noise in the data acquisition, or simply due to a mismatch in the
choice of the set mapping X compared with the true constraint set used by the expert
agent. For example, consider the problem where the signal ŝ[i ] represents a graph, and
X(ŝ[i ]) is the set of Hamiltonian cycles over this graph (i.e., a graph cycle that visits each
node exactly once). This scenario is common when modeling vehicle routing problems,
where the nodes of the graph represent a set of customers, and the Hamiltonian cycle
represents the sequence of customers a driver visited (for example, to deliver packages).
In this scenario, infeasible data could reflect, for example, missing data on the complete
cycle driven by the driver (i.e., noise in the data acquisition), or the fact that in reality,
the driver can visit the same customer multiple times to deliver missing packages (i.e.,
mismatch in the choice of the set mapping X(ŝ[i ])).

Remark 2.9 (Handling infeasible data). One way to handle infeasible data is just trying
to ignore these cases, treating them as outliers in the data. Numerically, since the nonneg-
ativity of the ASL depends on the assumption that x̂[i ] ∈ X(ŝ[i ]) ∀i ∈ [N ] (see Proposition
2.21), having infeasible data may lead to negative loss values. Thus, a possible way to han-
dle these cases is to use a modified loss function ℓ̃θ(ŝ, x̂) = max{0,ℓθ(ŝ, x̂)}, which simply
ignores negative loss values (i.e., infeasible data). This technique shares the same principle
as the bounded rationality loss of [Moh+18a]. Importantly, this modification preserves the
convexity of the loss minimization problem. For instance, this modification is equivalent
to simply adding the constraints βi ≥ 0, ∀i ∈ [N ] to (2.11).

The IO problem shares some similarities with structured prediction problems, which
commonly refer to the class of supervised learning problems, where the output space
consists of a finite set of structured objects (e.g., graphs), instead of a simple set of la-
bels, like in standard multiclass classification problems [Tas+05]. Interestingly, the IO
formulation in Eq. (2.11) is closely related to some formulations proposed to solve struc-
tured prediction problems.

Remark 2.10 (Connections with structured prediction). In the incenter program (2.11),
when R is the Euclidean norm, d is the Hamming distance, and feature function φ is lin-
ear in x, learning the incenter cost vector is equivalent to the Maximum Margin Planning
problem presented in [RBZ06], which is a type of structured prediction problem. More
generally, formulation (2.11) is closely related to the so-called Structured Support Vector
Machine (SSVM) approach for structured prediction problems [Tso+05; NL+11].

The connection between IO problems with discrete feasible sets and the SSVM ap-
proach to structured prediction problems is related to the fact that when the constraint
set X(ŝ) has finitely many elements, each of these elements can be interpreted as a class
in a multiclass classification problem. Under this interpretation, the optimization prob-
lem (2.11) can be viewed as a generalization of the soft-margin SVM problem, where the
“classes” x ∈X(ŝ) can be complex structured objects, which is precisely the SSVM prob-
lem. Moreover, the concept of “margin” in the SVM framework is related to the distance
function d in (2.11), which comes from the fact that in our incenter-based IO formula-
tion, we want to maximize the angle between the incenter vector and the boundaries of
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the set C (see Figure 2.1b). These observations reveal an interesting connection between
incenter-based approaches for IO problems with discrete constraint sets and SSVM ap-
proaches for structured prediction problems.

In the last part of this section, we revisit this relation between the incenter and cir-
cumcenter concepts through the lens of the regret R defined in (2.2). In fact, given
two cost vectors (θ,θ⋆), there is an asymmetry R(θ,θ⋆) ̸= R(θ⋆,θ), interestingly, each
of which relating to one of these concepts.

Remark 2.11 (Connections with regret). Consider the cost vectors (θ,θ⋆) and the regret
(2.2b).

(i) SPO vs Suboptimality losses: The regret R(θ,θ⋆) is indeed the Smart “Predict, then
Optimize" loss (SPO) studied in [EG22], with respect to which the circumcenter in
Definition 2.1 is shown to be the worst case optimal. However, the symmetric coun-
terpart R(θ⋆,θ) coincides with the Suboptimality loss from [Moh+18a], which, as
discussed above, is a special case of the ASL connected to the incenter in Defini-
tion 2.3.

(ii) Convexity and tractability: The regret R is convex in the second argument [Moh+18a]
(note the connection to suboptimality in the previous point), whereas inherently
nonconvex in the first argument; see [EG22] for the connection of the latter to the
0-1 loss in classification problems. This observation is indeed aligned with the in-
tractability results of circumcenter (Theorem 2.2) and the tractability of incenter
(Corollary 2.6). It is worth noting that [EG22] also proposes a convexified version
of the SPO loss (i.e., the regret in the first argument), reminiscent of the hinge loss in
classification problems.

(iii) Additional required data measurements: Given the cost vector θ and the IO data
pair (ŝ, x⋆) (for the definition of x⋆ see (2.2a)), the regret R(θ⋆,θ) can be computed
without the knowledge of the ground truth θ⋆, whereas its symmetric counterpart
R(θ,θ⋆) depends explicitly on θ⋆ or its projection through a feature function [EG22].

2.2.2. GENERAL REFORMULATION FOR MIXED-INTEGER FEASIBLE SETS

In this section, we present a way to reformulate the IO problem using the ASL for prob-
lems whenX(ŝ) is a linear mixed-integer set, which generalizes many formulations from
the literature. For this purpose, we consider the mixed-integer feasible set

X(ŝ) := {
(y, z) ∈Ru ×Zv : Ây + B̂ z ≤ ĉ, z ∈Z(ŵ)

}
, (2.13)

where ŝ := (Â, B̂ , ĉ, ŵ), andZ(ŵ) is a bounded set that may depend on the signal ŵ . Since
y is a continuous variable, X(ŝ) has infinitely many elements and we cannot use (2.11)
for this IO problem in practice. To solve this problem, one could use first-order iterative
methods to directly optimize the IO loss minimization problem (2.10) (we discuss such
approaches in Section 2.3). In this section, we leverage classical tools from convex dual-
ity to reformulate (2.10) with the ASL and constraint set (2.13) as a tractable finite convex
optimization.
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For this reformulation, we use the following hypothesis function

〈θ,φ(ŝ, x)〉 = 〈y,Qy y y〉+〈y,Qφ1(ŵ , z)〉+〈q,φ2(ŵ , z)〉, (2.14)

where x := (y, z), θ := (vec(Qy y ),vec(Q), q) ∈ Ru2+um+r , Qy y ≽ 0, and φ1 : W×Zv → Rm

and φ2 :W×Zv →Rr are feature functions (φ can be written in terms of φ1 and φ2). The
choice of a quadratic hypothesis and X(ŝ) with linear inequality constraints is chosen
because it generalizes the linear hypothesis case, and also for simplicity of exposition.
In general, as long as the hypothesis function and constraint set are convex w.r.t. the
continuous part of the decision vector (e.g., conic representable problems [Moh+18a]),
similar results could be derived. Continuing, we use d(x̂, x) = ∥ŷ − y∥∞ +dz (ẑ, z), that
is, we use the ∞-norm for the continuous part of the decision vector and a general
distance function for the integer part of the decision vector. We use the ∞-norm for
the continuous part of the decision vector because, to use reformulation techniques
based on convex duality, we need the inner maximization problem of the ASL to be
concave in y , and by introducing auxiliary integer variables, we can reformulate the ∞-
norm as a concave function of y . More precisely, we exploit the identity ∥ŷ − y∥∞ =
maxh∈{−1,0,1}u ,∥h∥1=1〈h, ŷ − y〉.

Theorem 2.12 (ASL and mixed-integer feasible set). For the mixed-integer feasible set
(2.13), hypothesis function (2.14), and distance function d(x̂, x) = ∥ŷ−y∥∞+dz (ẑ, z), prob-
lem (2.10) can be reformulated as

min κR(θ)+ 1

N

N∑
i=1

βi

s.t. θ = (vec(Qy y ),vec(Q), q) ∈Θ, λi j k ≥ 0, αi j k ,βi ∈R
〈θ,φ(ŝ[i ], x̂[i ])〉+αi j k +〈λi j k , ĉi − B̂i zi j 〉−〈q,φ2(ŵi , zi j )〉+〈hk , ŷi 〉+dz (ẑi , zi j ) ≤βi[

Qy y Qφ1(ŵi , zi j )+hk + Â⊤
i λi j k

∗ 4αi j k

]
≽ 0,

(2.15)
where the constraints are for all (i , j ,k) ∈ [N ]× [Mi ]× [2u], Z(ŵi ) := {zi 1, . . . , zi j , . . . , zi Mi },
Mi := |Z(ŵi )|, and if k ≤ u (resp. k > u), hk is the vector of zeros except for the k’th (resp.
(k −u)’th) element, which is equal to 1 (resp. -1).

Proof. Section 2.C.4.

In case we use a linear hypothesis function instead of a quadratic one, the matrix
inequality constraints of (2.15) reduce to much simpler linear equality constraints.

Corollary 2.13 (LP reformulation for linear hypotheses). For the mixed-integer feasible
set (2.13), linear hypothesis function (i.e., (2.14) with Qy y = 0), and distance function
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d(x̂, x) = ∥ŷ − y∥∞+dz (ẑ, z), problem (2.10) can be reformulated as

min κR(θ)+ 1

N

N∑
i=1

βi

s.t. θ = (vec(Q), q) ∈Θ, λi j k ≥ 0, βi ∈R
〈θ,φ(ŝ[i ], x̂[i ])〉+〈λi j k , ĉi − B̂i zi j 〉−〈q,φ2(ŵi , zi j )〉+〈hk , ŷi 〉+dz (ẑi , zi j ) ≤βi

Qφ1(ŵi , zi j )+hk + Â⊤
i λi j k = 0,

(2.16)
where the constraints are for all (i , j ,k) ∈ [N ]× [Mi ]× [2u], Z(ŵi ) := {zi 1, . . . , zi j , . . . , zi Mi },
Mi := |Z(ŵi )|, and if k ≤ u (resp. k > u), hk is the vector of zeros except for the k’th (resp.
(k −u)’th) element, which is equal to 1 (resp. -1).

We note that one can reduce the number of constraints in these reformulations by a
factor of 2u by using d(x̂, x) = dz (ẑ, z), i.e., only penalizing the integer part of the decision
vector, which is equivalent to setting hk = 0 ∀k ∈ [2u].

Remark 2.14 (Generality of Theorem 2.12). Reformulation (2.15) in Theorem 2.12, for
IO problem with mixed-integer decision sets, generalizes several reformulations from the
literature. For instance, for an IO problem with purely continuous decision sets and linear
hypothesis functions, reformulation (2.15) with dz (x̂, x) = 0 and hk = 0 ∀k ∈ [2u] reduces
to classical Inverse Linear Optimization reformulations [AO01; CLT19]. Similarly, if the IO
problem has purely continuous decision set and a quadratic hypothesis function, then the
program (2.15) with dz (x̂, x) = 0 and hk = 0 ∀k ∈ [2u] reduces to the LMI reformulation in
[AKE21]. If the decision set is purely discrete, that is, X(ŝ) has finitely many elements, then
(2.15) and (2.16) recover (2.11).

In conclusion, by dualizing the continuous part of the problem, Theorem 2.12 and
Corollary 2.13 present a way to deal with a case when the feasible set X(ŝ) is a mixed-
integer set. It is worth noting that when the feasible set X(ŝ) is a mixed-integer set, the
size of reformulations (2.15) and (2.16) grow linearly in the number of integer variables,
in the dimension of the continuous variables, and in the size of the dataset. That means,
for IO problems with large datasets and/or mixed-integer sets with a large number of
decision variables, these reformulations can be computationally challenging to solve.
This issue is the main focus of our tailored first-order algorithm in the next section.

2.3. TAILORED ALGORITHM: STOCHASTIC APPROXIMATE MIR-
ROR DESCENT

All approaches to solving IO problems presented so far depend on optimization pro-
grams with possibly a large number of constraints. Given a dataset {(ŝ[i ], x̂[i ])}N

i=1, these

optimization problems have at least
∑N

i=1 |X(ŝ[i ])| (or
∑N

i=1 |Z(ŵi )| for the mixed-integer
case) constraints. When N is too large (i.e., we have too many signal-response exam-
ples) or |X(ŝ[i ])| is too large, solving these optimization programs may be intractable in
practice. Thus, the focus of this section is to develop a tailored first-order algorithm
to tackle such IO problems in a provably efficient way, opening doors to a wider range
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of real-world applications. A straightforward first-order approach to solve (2.10) is the
standard Project Subgradient method [Sho85]. This is a general first-order optimization
algorithm, and it converges to an optimal solution of the problem under mild convexity
conditions on the objective function and constraint set. For example, this was the ap-
proach used in [RBZ06] to solve the Maximum Margin Planning problem (see Remark
2.10). Another idea is to solve (2.10) as a minimax problem. [Tas+06] showed that in
some special cases, this problem can be formulated as a bilinear saddle point problem,
and then used Nesterov’s dual extragradient method [Nes07] to solve it. However, other
than only being applicable to a restrictive class of problems, this approach also requires
2N projections ontoX(ŝ[i ]) to be computed per iteration of the algorithm, which may be
prohibitive in many applications. Other algorithms for minimax problems, such as Ne-
mirovski’s Mirror-Prox algorithm [Nem04], would suffer from similar drawbacks. In this
section, we introduce an efficient optimization algorithm that can be applied to general
IO problems, while also exploiting the specific structures that stem from IO problems.
To this end, we define the following notion of a stochastic approximate subgradient.

Definition 2.15 (Stochastic approximate subgradient). Let f : Θ→ R be a convex func-
tion. We say that the random vector g̃ε(θ) is a stochastic approximate subgradient of f at
θ if E

[
g̃ε(θ) | θ]= gε(θ) and gε(θ) is an ε-subgradient of f for some ε≥ 0, that is,

f (θ)− f (ν) ≤ 〈gε(θ),θ−ν〉+ε, ∀ν ∈Θ.

For different notions of approximate subgradients, see [RBZ07; TSK22]. Next, we
propose to solve IO problems with a novel algorithm, the Stochastic Approximate Mirror
Descent (SAMD). We first define the SAMD as an algorithm to optimize general convex
programs and prove convergence rates for it. After that, we discuss how we can use the
SAMD algorithm to exploit the structure of IO problems. For a function f and set Θ, the
SAMD updates are

θt+1 = argmin
θ∈Θ

{
ηt 〈g̃εt (θt ),θ〉+Bω(θ,θt )

}
, (SAMD)

where ηt is the step-size, the function Bω is the Bregman divergence w.r.t. ω : Θ→ R

[Bub15, Section 4], and g̃εt (θt ) is a stochastic approximate subgradient of f as defined in
Definition 2.15. The SAMD algorithm can be interpreted as a combination of a stochas-
tic mirror descent algorithm [Bub15, Section 6.1] and an ε-subgradient method [Ber15,
Section 3.3]. Next, we prove a convergence rate for the SAMD algorithm, where we
use the concept of relative strong convexity, which is a generalization of the standard
strong convexity property [LFN18]. Namely, if R is α-strongly convex relative to Bω,
then R(x)−R(y) ≤ 〈g (x), x − y〉−αBω(y, x), where g (x) ∈ ∂R(x).

Proposition 2.16 (SAMD convergence rate). Let f :Θ→R be a convex function, andΘ be
a convex set. Assume Bω(θ,ν) ≤ R2, for some R > 0, and E

[∥g̃εt (θ)∥2∗ | θ] ≤G2, ∀θ,ν ∈Θ.
Using ηt = c/

p
t for some constant c > 0, the SAMD algorithm guarantees

E

[
f

(
1

T

T∑
t=1

θt

)]
−min

θ∈Θ
f (θ) ≤

(
R2

c
+ cG2

)
1p
T

+ 1

T

T∑
t=1

εt .
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Moreover, if we assume f = h +R, where h is convex and R is α-strongly convex relative
to Bω, then using ηt = 2/α(t +1), the SAMD algorithm guarantees

E

[
f

(
2

T (T +1)

T∑
t=1

tθt

)]
−min

θ∈Θ
f (θ) ≤ 2G2

α(T +1)
+ 2

T (T +1)

T∑
t=1

tεt .

Proof. Section 2.C.5.

The convergence rate of the SAMD algorithm is a combination of the O(1/
p

T ) (or
O(1/T )) rate of the stochastic mirror descent algorithm plus a term that depends on
{εt }T

t=1 due to the use of approximate subgradients. Notice that, if we use the SAMD algo-
rithm with errors εt diminishing at a rate O(1/t ) (i.e., as t increases, we use increasingly
more precise approximate subgradients), then the convergence rates of Proposition 2.16
reduce to O(1/

p
T ) and O(1/T ). The SAMD algorithm differs from a simple projected

subgradient method in three major ways: it uses (i) mirror descent updates, (ii) stochas-
tic subgradients, and (iii) approximate subgradients. Next, we discuss how each of these
properties can be used to exploit the structure of the IO problem (2.10).

2.3.1. MIRROR DESCENT UPDATES

For instance, consider (2.10) with R(θ) = ∥θ∥1 and Θ=Rp . This problem can be equiva-
lently written as

min
θ∈Rp

1

N

N∑
i=1

ℓθ(ŝ[i ], x̂[i ])

s.t. κ̃∥θ∥1 ≤ 1,

(2.17)

for some κ̃ that depends on κ and the data {(ŝ[i ], x̂[i ])}N
i=1. Then, by introducing the non-

negative variables θ+ and θ−, defining θ̃ := (θ+,θ−) (i.e., the concatenation of θ+ and
θ−), and setting θ = θ+−θ− = [I − I ]θ̃ (here, I is the identity matrix and [I − I ] is a block
matrix), (2.17) can be written as

min
θ̃∈∆κ̃

1

N

N∑
i=1

ℓ[I −I ]θ̃(ŝ[i ], x̂[i ]), (2.18)

where ∆κ̃ := {θ̃ ∈R2p : κ̃∥θ̃∥1 ≤ 1, θ̃ ≥ 0} [Tib96]. In other words, (2.17) can be recast as an
optimization problem over a simplex. Next, choosing ω(θ) = ∑p

i=1θi log(θi ), the SAMD
updates applied to (2.18) can be written as “exponentiated updates”

θ̃t+1 =
θ̃t ⊙exp(−ηt g̃εt (θ̃t )) if κ̃∥θ̃t ⊙exp(−ηt g̃εt (θ̃t ))∥1 ≤ 1

θ̃t⊙exp(−ηt g̃εt (θ̃t ))

κ̃∥θ̃t⊙exp(−ηt g̃εt (θ̃t ))∥1
otherwise.

Exponentiated updates are known to have better convergence properties compared to
standard subgradient descent updates for “simplex constrained” problems, as well as
not requiring solving optimization problems to project onto the simplex [Bub15]. For a
detailed discussion on the advantages of mirror descent updates for different settings,
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see [JN11, Section 5.7]. In general, by choosing ω(θ) = 1
2∥θ∥2

2, the SAMD updates reduce
to standard project subgradient updates

θt+1 =ΠΘ(θt −ηt g̃εt (θt )),

that is, the subgradient method can be seen as a special case of the mirror descent algo-
rithm.

2.3.2. STOCHASTIC SUBGRADIENTS
Using stochastic subgradients is advantageous when computing a stochastic subgradi-
ent is computationally cheaper than computing a deterministic subgradient. This obser-
vation is supported by the fact that, in expectation, the stochastic subgradient method
guarantees the same convergence rate as its deterministic version [Bub15, Theorem 6.1].
For the IO loss minimization problem (2.10), computing a stochastic subgradient can be
significantly cheaper than computing the full subgradient, due to the finite sum struc-
ture of (2.10). Namely, by Danskin’s theorem [Ber08, Section B.5], we have that the subd-
ifferential of the ASL w.r.t. θ is

∂ℓθ(ŝ, x̂) = conv

{
φ(ŝ, x̂)−φ(ŝ, x⋆(ŝ))

∣∣∣ x⋆(ŝ) ∈ argmax
x∈X(ŝ)

{
d(x̂, x)−〈θ,φ(ŝ, x)〉}} . (2.19)

Thus, to compute a subgradient of 1
N

∑N
i=1ℓθ(ŝ[i ], x̂[i ]), we need to solve N maximization

problems, one for each signal-response pair {(ŝ[i ], x̂[i ])}N
i=1. On the other hand, by sam-

pling an index j uniformly from [N ], we have that g j (θ) ∈ ∂ℓθ(ŝ j , x̂ j ) is a stochastic sub-
gradient of 1

N

∑N
i=1ℓθ(ŝ[i ], x̂[i ]), that is, E j∼[N ][g j (θ) | θ] = (1/N )

∑N
i=1 gi (θ). This is a stan-

dard method for computing stochastic (sub)gradients for empirical risk minimization-
type problems (e.g., [Bub15, Chapter 6]). In summary, to compute an unbiased stochas-
tic subgradient of (2.10), instead of N , we need to solve only one maximization problem.

2.3.3. APPROXIMATE SUBGRADIENTS
As shown in (2.19), we need to solve the optimization problem maxx∈X(ŝ){d(x̂, x)−〈θ,φ(ŝ, x)〉}
in order to compute a subgradient of the ASL. However, in practice, it may be too costly
to solve this optimization problem to optimality at each iteration of the algorithm. Thus,
it would be useful if we could use an approximate solution to this problem, instead of an
optimal one. Turns out that, indeed, given an ε-approximate solution to the maximiza-
tion problem, that is, a feasible point xε such that

d(x̂, xε)−〈θ,φ(ŝ, xε)〉 ≥ max
x∈X(ŝ)

{
d(x̂, x)−〈θ,φ(ŝ, x)〉}−ε,

we can construct an ε-subgradient of the ASL.

Lemma 2.17 (Approximate solutions and ε-subgradients). Let xε be a feasible, ε-suboptimal
solution of maxx∈X(ŝ)

{
d(x̂, x)−〈θ,φ(ŝ, x)〉}. Thus, the vector gε(θ) =φ(ŝ, x̂)−φ(ŝ, xε) is an

ε-subgradient of ℓθ(ŝ, x̂) with respect to θ, i.e.,

ℓθ(ŝ, x̂)−ℓν(ŝ, x̂) ≤ 〈φ(ŝ, x̂)−φ(ŝ, xε),θ−ν〉+ε.
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Proof. Section 2.C.6.

In summary, we can use an approximate solution to the inner maximization problem
of the ASL to construct ε-subgradients, and as proved in Proposition 2.16, these can be
effectively used to compute an approximate solution of convex optimization problems.
Finally, it is not difficult to show that by combining stochastic subgradients (i.e., by us-
ing only one random signal-response pair) and approximate subgradients (i.e., solving
the respective maximization problem approximately), one gets a stochastic approximate
subgradient (Definition 2.15). Putting these ideas together, Algorithm 1 shows the pseu-
docode of the SAMD algorithm applied to problem (2.10), where we denote the gradient
(or a subgradient) of R as ∇R. In line 3 of Algorithm 1, one example is sampled from the
dataset for each iteration of the algorithm. However, in practice, it may be advantageous
to instead sample a batch of 1 ≤ B ≤ N examples, and use this batch of data to compute
the approximate stochastic subgradient. By changing the size B of the batch, we can
control the trade-off between having more precise subgradients (large B) versus faster
subgradient computations (small B). This idea is explored in the numerical experiments
of Section 2.4.4.

Algorithm 1 SAMD algorithm for (2.10)

1: Input: Step-size sequence {ηt }T
t=1, κ, θ1, d , φ, ω, ∇R and dataset {(ŝ[i ], x̂[i ])}N

i=1.

2: for t = 1, . . . ,T do

3: Sample j uniformly from {1, . . . , N }

4: Compute xt , a (possibly approximate) solution of maxx∈X(ŝ[ j ])

{
d(x̂[ j ], x) −

〈θt ,φ(ŝ[ j ], x)〉}
5: Approximate stochastic subgradient: g̃ t (θt ) = κ∇R(θt )+φ(ŝ[ j ], x̂[ j ])−φ(ŝ[ j ], xt )

6: Mirror descent step: θt+1 = argminθ∈Θ
{
ηt 〈g̃ t (θt ),θ〉+Bω(θ,θt )

}
7: end for

8: Output: {θt }T
t=1

We end this section by briefly discussing the case of online IO. In this scenario, in-
stead of having a dataset of signal-response data upfront, we receive one signal-response
pair at a time. After receiving each signal-response data pair, we must choose a cost vec-
tor θt using all the information gathered so far, and evaluate the loss of this cost vector.
The final performance of the algorithm is measured using regret performance metrics.

Remark 2.18 (Regret bounds and online IO). [BPS17] use an online Multiplicative Weights
Updates (MWU) algorithm to prove an O(

p
T ) regret bound, and more recently, [BFL23]

use an online adaptation of the circumcenter concept to prove an O(log(T )) regret bound.
In Algorithm 1, line 3, if instead of sampling a new signal-response example we use the
online data received at that iteration, Algorithm 1 can be readily adapted to online IO
problems. Moreover, the convergence bound of Proposition 2.16 may also be straightfor-
wardly converted to an O(

p
T ) regret bound (or O(log(T )) for the strongly convex case)

[Ora19, Chapter 3]. In particular, Algorithm 1 can be interpreted as a generalization of the
MWU algorithm [AO14, Appendix A.2].



2.4. NUMERICAL EXPERIMENTS

2

25

2.4. NUMERICAL EXPERIMENTS
In this section, we numerically evaluate the approaches to IO proposed in this chapter.
All linear and quadratic programs were solved using Gurobi. All semidefinite programs
were solved using CVXPY with MOSEK as the solver. For all results presented in this sec-
tion, we learn the expert’s cost function using a training dataset of expert signal-response
data and evaluate its performance using a test dataset (i.e., out-of-sample performance).
Moreover, in every plot, we report the average performance value for 10 randomly gener-
ated true cost vectors, as well as the 5th and 95th percentile bounds. In Appendix 2.D.2,
the in-sample results are reported, complementing the ones from this section. All of our
experiments are reproducible and are part of the InvOpt Python package [Zat23b].

2.4.1. CONSISTENT DATA
In this section, we numerically evaluate the approaches discussed in Section 2.1 for IO
problems with consistent data.

Decision problem of the expert. To generate its decisions, the expert solves the bi-
nary linear program

min
x

〈θ, x〉
s.t. Ax ≤ b

x ∈ {0,1}n ,

(2.20)

where θ ∈ Rn+ is the cost vector, A ∈ Rt×n , b ∈ Rt , and x is the decision vector. Although
the decision problem (2.20) is presented as a general binary linear program, many real-
world problems can be modeled within this class of optimization problems. As a mo-
tivating example, we briefly discuss the problem of modeling consumer behavior, and
how it fits (2.20). In this problem, the expert is a consumer, who given some contextual
information, decides which products to buy from a set of n products. That is, each com-
ponent of the decision vector x ∈ {0,1}n corresponds to one of the n products, and equals
1 if the consumer buys it, and 0 otherwise. The signal with contextual information could
be, for instance, ŝ = (A,b), where each component of A ∈ Rn corresponds to the price of
each product, and b ∈ R corresponds to the total budget of the consumer. In this case,
the constraint Ax ≤ b simply represents the budget constraint of the consumer. Finally,
each component of the cost vector θ ∈Rn represents (the negative of) the utility the con-
sumer assigns to each product, and by minimizing 〈θ, x〉, the goal of the consumer is to
buy the set of products that maximizes its utility, while respecting its budget constraint.
Thus, in this context, solving the IO problem translates to learning the utility function
underlying the actions of a consumer agent.

Data generation. To generate training and test data, we sample cost vectors uni-
formly from {θ ∈Rn : 0 ≤ θ ≤1}, we sample Â uniformly from {A ∈Rt×n : −1 ≤ A ≤ 0} and
b̂ uniformly from {b ∈ Rt : −1 ≤ b ≤ 0}. To make sure the problem instances are feasi-
ble, we check if the sum of each row of Â is larger than the respective component of b̂,
which ensures that x = (1, . . . ,1) is a feasible solution of (2.20). Given a signal ŝ = (Â, b̂),
we generate a response x̂ by solving (2.20), i.e., x̂ ∈ argminx∈X(ŝ)〈θ, x〉. To evaluate the IO
approaches, we generate 10 random cost vectors θtrue. For each of these cost vectors, we
generate a training dataset D̂train = {(ŝ[i ], x̂[i ])}N

i=1 and a test dataset D̂test = {(ŝ[i ], x̂[i ])}N
i=1,

with N = 100, n = 6 and t = 4.
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Approach Feasibility Incenter Circumcenter Ellip. incenter
Time (seconds) 69 98 1323 915

Approach Ellip. circ. Cutting plane Predic. loss
Time (seconds) 1345 206 236

Table 2.1: Computational time to generate the results of Figure 2.3.

IO approaches. We compare seven approaches to choose a vector from the set of
consistent cost vectors (1.4):

• Feasibility: we use (2.1) with ∥θ∥1 = 1, s = (A,b), X(s) = {x ∈ {0,1}n : Ax ≤ b},
φ(x, s) = x, augmented with the constraint θ ∈Θ= {θ ∈Rn : θ ≥ 0};

• Incenter: we use (2.9) with R(θ) = 1
2∥θ∥2

2, s = (A,b), X(s) = {x ∈ {0,1}n : Ax ≤ b},

φ(x, s) = x, d(x̂[i ], x[i ]) = ∥x̂[i ] −x[i ]∥2, and Θ= {θ ∈Rn : θ ≥ 0};

• Circumcenter: we solve the following optimization problem:

min
∥θ∥2=1

r

s.t. max
θ̃∈C

∥θ̃∥2=1

∥θ− θ̃∥2
2 ≤ r, (2.21)

which is an epigraph reformulation of the circumcenter problem (see the proof
of Theorem 2.2). To solve this optimization problem, we substitute the max con-
straint by the constraints ∥θE − θ̃∥2

2 ≤ r, ∀θE ∈ E , where E is the set of normalized
extreme points of C;

• Ellip. incenter: we solve (2.8), the ellipsoidal version of the incenter concept. In
our implementation, we use the convex constraint ∥θ∥ ≤ 1 instead of ∥θ∥ = 1, since
one can show that the constraint ∥θ∥ ≤ 1 will always be tight at an optimum when
int(C) ̸= ;;

• Ellip. circumcenter: we solve

max
A≽0,θ

logdet(A)

s.t. max
θ̃∈C

∥θ̃∥2=1

∥A(θ̃−θ)∥2
2 ≤ 1,

which is an ellipsoidal generalization of the circumcenter reformulation (2.21);

• Cutting plane: we use the cutting plane algorithm of [Wan09];

• Predictability loss: we use the predictability loss of [ASS18] (Appendix 2.A).

Results. Figure 2.3 shows the results for this scenario. To make the comparisons con-
sistent, before evaluating the results, all cost vectors are normalized. For all the plots, the
x-axis refers to the number of training examples used to compute the results. The idea
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is to evaluate how efficient these approaches are with respect to the amount of data fed
to them. Figure 2.3a shows the difference between the cost vector returned by the IO
approaches (which we name θIO) and the cost vector used to generate the data (θtrue).
As expected, the more data we feed to the approaches, the closer θIO tends to get from
θtrue. Comparing them, the incenter, ellipsoidal incenter, and ellipsoidal circumcenter
approaches have similar performance and clearly outperform the other approaches. Fig-
ure 2.3b shows the average difference between the optimal decision of (2.20) using θIO

(which we name xIO) and the decision in the test dataset (which we name xtrue). Again,
we see that the incenter, ellipsoidal incenter, and ellipsoidal circumcenter approaches
present the best performance. Figure 2.3c shows the normalized difference between the
cost of the expert decisions and the cost of the decisions using θIO. More precisely, we
define CostIO := ∑N

i=1〈θtrue, xIO,i 〉 and Costtrue := ∑N
i=1〈θtrue, x̂[i ]〉 and compare the rela-

tive difference between them. Notice that this difference will always be nonnegative by
the optimality of x̂[i ]. Once again, the incenter, ellipsoidal incenter, and ellipsoidal cir-
cumcenter approaches outperform the other approaches.

Moreover, Table 2.1 shows the time it took to generate the results of this section for
each approach. As can be seen, even though the incenter, ellipsoidal incenter, and el-
lipsoidal circumcenter approaches show similar performance, the incenter approach is
at least one order of magnitude faster to compute. Although these numbers depend on
the actual implementation of each IO approach, such a difference in solving time is ex-
pected, since the incenter problem can be formulated as a quadratic program, whereas
the ellipsoidal approaches involve semidefinite constraints. Finally, regarding the main
driver for improved out-of-sample performance of the Incenter and the ellipsoidal ap-
proaches, one possible explanation is that these approaches optimize for a vector in the
interior of C, that is, away from the boundaries of this set. This conclusion is based
on the following observations: recall the intuition for the incenter vector provided in Re-
mark 2.4, also visualized in Figure 2.1b. That is, the idea behind the incenter is to find the
vector furthest away from the boundaries of the set C. Also, recall that [BFL23] showed
that circumcenter concept fails for online IO problems precisely because, in the worst
case, the circumcenter vector can lie exactly in the boundary of the set C [BFL23, Figure
2], and the ellipsoidal circumcenter addresses this problem since its circumcenter lies
inside the set C [BFL23, Figure 3]. Therefore, the incenter, ellipsoidal incenter, and ellip-
soidal circumcenter in some sense optimize for vector in the interior of C, and as shown
in Figure 2.3, achieve similar out-of-sample performance in this offline IO experiment
(although the incenter vector is computationally cheaper to compute).

2.4.2. INCONSISTENT DATA

In this section, we numerically evaluate the approaches discussed in Section 2.2 for IO
problems with inconsistent data.

Decision problem of the expert. To generate its decisions, the expert solves the bi-
nary linear program (2.20), where θ ∈ Rn is the cost vector, A ∈ Rt×n and b ∈ Rt , and x is
the decision vector. Notice that different from the previous section, we do not assume
the cost vector θ is nonnegative.

Data generation. To generate training and test data, we sample cost vectors uni-
formly from {θ ∈ Rn : −1 ≤ θ ≤ 1}, we sample Â uniformly from {A ∈ Rt×n : −1 ≤ A ≤ 1}
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(a) Difference between the true cost vector (θtrue) and
the one learned using IO (θIO).

(b) Average error between the decision generated by
θtrue and θIO.

(c) Relative difference between the cost of the deci-
sions generated using θtrue and θIO.

Figure 2.3: Out-of-sample results for consistent data scenario.

and b̂ uniformly from {b ∈ Rt : −1≤ b ≤ 0}. After generating a signal ŝ = (Â, b̂), we check
if X(ŝ) is nonempty to ensure the problem instance is feasible. To generate the response
vectors x̂ for the training datasets, we solve problem (2.20) with noise added to the cost
vector, i.e., x̂ ∈ argminx∈X(ŝ)〈θ+ w, x〉, where w ∈ Rn is a random vector with compo-
nents sampled from a normal distribution with zero mean and standard deviation equal
to 0.05. This means that different from the consistent data case, (most probably) there
will be no single cost vector consistent with the entire training dataset. To evaluate the
IO approaches, we generate 10 random cost vectors θtrue. For each of these cost vec-
tors, we generate a training dataset D̂train = {(ŝ[i ], x̂[i ])}N

i=1 (by solving the noisy version of
(2.20), with a different noise vector w for each signal-response pair) and a test dataset
D̂test = {(ŝ[i ], x̂[i ])}N

i=1 (noiseless), with N = 100, n = 10 and t = 8.

IO approaches. We compare five IO approaches for this problem:

• Suboptimality Loss (SL): we use (2.10) with κ = 0, Θ = Rn , s = (A,b), X(s) = {x ∈
{0,1}n : Ax ≤ b},φ(x, s) = x, and the suboptimality lossℓθ(ŝ, x̂) = maxx∈X(ŝ){〈θ,φ(ŝ, x̂)−
φ(ŝ, x)〉}. To prevent the trivial solution θ = 0, we add a norm equality constraint
∥θ∥∞ = 1, and solve 2n linear programs, one for each facet of the ∞-norm unit
sphere [Moh+18a];
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Approach SL ASL Ellipsoidal ASL Cutting plane Predictability loss
Time (seconds) 230 241 351 440 6192

Table 2.2: Computational time to generate the results of Figure 2.4.

• Augmented Suboptimality Loss (ASL): we use (2.10) with the ASL,κ= 0.001, R(θ) =
1
2∥θ∥2

2, s = (A,b), X(s) = {x ∈ {0,1}n : Ax ≤ b}, φ(x, s) = x, d(x̂[i ], x[i ]) = ∥x̂[i ] − x[i ]∥2,
and Θ=Rn ;

• Ellipsoidal ASL: we solve

min
A,θ,β1,...,βN

−κ log(det(A))+ 1

N

N∑
i=1

βi

s.t. 〈θ,φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])〉+∥A(φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ]))∥2 ≤βi ,

∀x[i ] ∈X(ŝ[i ]),∀i ∈ [N ]

∥θ∥2 ≤ 1, A ≽ 0,
(2.22)

which is an ellipsoidal generalization of (2.11) (see Remark 2.7).

• Cutting plane: we use the cutting plane method of [BCZ22], which is a extension
of the cutting-plane algorithm of [Wan09] for IO problems with inconsistent data;

• Predictability loss: we use the predictability loss of [ASS18] (Appendix 2.A).

Notice that we do not test circumcenter-based approaches since they are not defined for
the inconsistent data case, that is, when C\ {0} =;.

Results. Figure 2.4 shows the results this scenario. The discussion on the interpre-
tation of each performance metric presented in Figure 2.4 mirrors the one of Figure 2.3.
Importantly, the approach based on the ASL and its ellipsoidal version outperforms the
other approaches. Moreover, as expected, due to the noise in the training data, one can
see that θIO was not able to reproduce the behavior of the expert as well as in the consis-
tent (i.e., noiseless) case. In Table 2.1 we show the time it took to generate the results of
this section for each approach. As can be seen, even though the ASL and Ellipsoidal
ASL show similar performance, the ASL approach is more computationally efficient.
Again, this difference is because the Ellipsoidal ASL involves semidefinite constraints
(Eq. (2.22)), which is not the case for the standard ASL (Eq. (2.11)).

2.4.3. MIXED-INTEGER FEASIBLE SET
In this section, we numerically evaluate the approach from Section 2.2.2 for IO problems
with mixed-integer feasible sets.

Decision problem of the expert. To generate its decisions, the expert solves a mixed-
integer linear program of the form

min
y,z

〈qy , y〉+〈qz , z〉
s.t. Ay +B z ≤ c

0 ≤ y ≤1, z ∈ {0,1}v ,

(2.23)



2

30 2. LEARNING IN INVERSE OPTIMIZATION

(a) Difference between the true cost vector (θtrue) and
the one learned using IO (θIO).

(b) Average error between the decision generated by
θtrue and θIO.

(c) Relative difference between the cost of the deci-
sions generated using θtrue and θIO.

Figure 2.4: Out-of-sample results for inconsistent data scenario.

where θ := (qy , qz ) ∈Ru+v+ is the cost vector A ∈Rt×u , B ∈Rt×v and b ∈Rt .
Data generation. To generate training and test data, we sample the cost vector uni-

formly from {θ ∈ Ru+v : 0 ≤ θ ≤ 1}, we sample Â uniformly from {A ∈ Rt×u : −1 ≤ A ≤ 0},
B̂ uniformly from {B ∈ Rt×v : −1 ≤ B ≤ 0} and ĉ uniformly from {c ∈ Rt : −2 ≤ c ≤ 0}.
To make sure the problem instances are feasible, we checked if the sum of each row of
[Â B̂ ] is smaller than the respective component of ĉ. Given a tuple (Â, B̂ , ĉ), we generate
a response x̂ = (ŷ , ẑ) by solving problem (2.23). To evaluate the IO approaches, we gen-
erate 10 random cost vectors θtrue. For each of these cost vectors, we generate a train-
ing dataset D̂train = {(ŝ[i ], x̂[i ])}N

i=1 and a test dataset D̂test = {(ŝ[i ], x̂[i ])}N
i=1, with N = 100,

u = v = 6 and t = 4.
IO approaches. We compare six IO approaches for this problem:

• Suboptimality Loss (SL): we use (2.16) with no regularization R and no distance
function (i.e., κ= 0 and d(x̂[i ], x[i ]) = 0). To avoid the trivial solution θ = 0, we add
the constraint ∥θ∥1 = 1. We call this approach SL since it is the result of performing
the reformulation steps of Corollary 2.13 using the Suboptimality loss instead of
the ASL;

• ASL-yz: we use (2.16) with θ = (qy , qz ), s = (A,B ,c,0) (A and c have to be aug-



2.4. NUMERICAL EXPERIMENTS

2

31

Approach SL ASL-z ASL-yz
Time (seconds) 607 694 7060

Approach Circumcenter Cutting plane Predictability loss
Time (seconds) 5954 981 1336

Table 2.3: Computational time to generate the results of Figure 2.5.

mented to account for the constraints 0 ≤ y ≤1),Z(w) = {0,1}v , Qy y = 0,φ1(w, z) =
1, φ2(w, z) = z, κ= 0, Θ= {θ ∈Ru+v : θ ≥ 0}, and dz (ẑ[i ], z[i ]) = ∥ẑ[i ] − z[i ]∥2.

• ASL-z: same as ASL-yz, but with hk = 0 ∀k ∈ [2u] (see discussion in the paragraph
after Corollary 2.13);

• Circumcenter: we solve (2.21);

• Cutting plane: we use the cutting plane algorithm of [Wan09];

• Predictability loss: we use the predictability loss of [ASS18] (Appendix 2.A).

Results. Figure 2.5 shows the results for this scenario. The discussions on the inter-
pretations of the results of this section mirror the ones of Figure 2.3 from Section 2.4.1.
Once again, the approach based on the ASL outperforms the other approaches on all
three performance metrics. In particular, the ASL-z and ASL-yz show similar perfor-
mance, with the ASL-yz being slightly better overall and when there are very few training
examples. However, because the ASL-yz optimization problem has 2N times more con-
straints than the ASL-z optimization problem, it is much more costly to solve, as can be
seen from the computational times in Table 2.3.

2.4.4. STOCHASTIC APPROXIMATE MIRROR DESCENT
In this section, we numerically evaluate the SAMD algorithm proposed in Section 2.3.

Decision problem of the expert. To generate its decisions, the expert solves the bi-
nary linear program (2.20), where θ ∈ Rn+ is the cost vector, A ∈ Rt×n , b ∈ Rt , and x is the
decision vector. We can write this optimization problem as minx∈X(s) F (s, x) by defining
s := (A,b), F (s, x) := 〈θ, x〉 and X(s) := {x ∈ {0,1}n : Ax ≥ b}.

Data generation. To generate training and test data, we sample cost vectors uni-
formly from {θ ∈Rn : 0 ≤ θ ≤1}, we sample Â uniformly from {A ∈Rt×n : −1 ≤ A ≤ 0} and
b̂ uniformly from {b ∈Rt : −n

3 ≤ b ≤ 0}. To make sure the problem instances are feasible,

we checked if the sum of each row of Â is larger than the respective component of b̂.
Given a signal ŝ, we generate a response x̂ by solving (2.20), i.e., x̂ ∈ argminx∈X(ŝ)〈θ, x〉.
To evaluate the IO approaches, we generate 10 random cost vectors θtrue. For each of
these cost vectors, we generate a training dataset D̂train = {(ŝ[i ], x̂[i ])}N

i=1 and a test dataset

D̂test = {(ŝ[i ], x̂[i ])}N
i=1, with N = 50, n = 20 and t = 15.

IO approaches. We tackle this IO problem using (2.10) with κ = 0.01, R(θ) = ∥θ∥1,
Θ = {θ ∈ Rn : θ ≥ 0} and the ASL with s = (A,b), X(s) = {x ∈ {0,1}n : Ax ≤ b}, φ(s, x) = x
and d(x̂, x) = ∥x − x̂∥1. When testing algorithms with exponentiated updates (i.e., mirror
descent updates with ω(θ) = ∑n

i=1θi log(θi )), we solve the reformulation (2.17), with κ̃
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(a) Difference between the true cost vector (θtrue)
and the one learned using IO (θIO).

(b) Average error between the decision generated
by θtrue and θIO.

(c) Relative difference between the cost of the de-
cisions generated using θtrue and θIO.

Figure 2.5: Out-of-sample results for the mixed-integer feasible set scenario.

chosen such that (2.10) and (2.17) have the same optimal solution. We compare eight
algorithms, which result from all possible combinations of standard or mirror descent
updates, deterministic or stochastic subgradients, and exact or approximate subgradi-
ents.

(i) Subgradient method (SM): Algorithm 1 with ω(θ) = 1
2∥θ∥2

2 and exact subgradients
computed using the entire dataset;

(ii) Mirror descent (MD) with exponentiated updates: Algorithm 1 with exact subgra-
dients computed using the entire dataset and ω(θ) =∑n

i=1θi log(θi );

(iii) Stochastic subgradient method (SSM): Algorithm 1 with ω(θ) = 1
2∥θ∥2

2 and exact
stochastic subgradients;

(iv) Approximated subgradient method (ASM): Algorithm 1 withω(θ) = 1
2∥θ∥2

2 and ap-
proximate subgradients computed using the entire dataset;

(v) Stochastic mirror descent (SMD) with exponentiated updates: Algorithm 1 with
ω(θ) =∑n

i=1θi log(θi ) and exact stochastic subgradients;

(vi) Approximate mirror descent (AMD) with exponentiated updates: Algorithm 1 with
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(a) Convergence of the first-order optimization algo-
rithms.

(b) Convergence of the SAMD algorithms for different
sizes of batch sizes.

Figure 2.6: Convergence time of different first-order optimization algorithms and for different batch sizes.

ω(θ) = ∑n
i=1θi log(θi ) and and approximate subgradients computed using the en-

tire dataset;

(vii) Stochastic approximate subgradient method (SASM): Algorithm 1 with approxi-
mate stochastic subgradients and ω(θ) = 1

2∥θ∥2
2.

(viii) Stochastic Approximate Mirror Descent (SAMD) with exponentiated updates, i.e.,
Algorithm 1 with ω(θ) =∑n

i=1θi log(θi ) and approximate stochastic subgradients.

For all algorithms, we use ηt = 1/(∥g̃εt (θt )∥∗
p

t ). To compute approximate subgradients
for the ASM and SAMD algorithms, we give the solver (in our case, Gurobi) a time limit
of 0.03 seconds to solve the optimization problem in line 4 of Algorithm 1. If the solver
is not able to find an optimal solution within this time limit, it returns the best feasible
solution found.

Results. To compare the performance of the algorithms, we report their results in
terms of running time instead of the number of iterations. Figure 2.6a shows the con-
vergence of the proposed algorithms in terms of the training loss gap. More precisely,
defining f (θ) := κR(θ)+ 1

N

∑N
i=1ℓθ(ŝ[i ], x̂[i ]), the training loss gap of some θt is defined

as f (θt )−minθ∈Θ f (θ). From this plot, it is clear that each modification of the standard
subgradient method (i.e., mirror descent updates, stochastic subgradients, and approx-
imate subgradients) contributes to improving the convergence speed of the algorithms,
with the fastest convergence achieved by the combination of all of these improvements,
i.e., the SAMD algorithm. In Figure 2.6b, we show the convergence of the SAMD using
different batch sizes to compute stochastic subgradients. That is, instead of using only
one sampled example at each iteration (line 3 of Algorithm 1), we sample a batch of B ex-
amples and use this batch of data to compute the stochastic subgradient, which we call
SAMD-B . From Figure 2.6b we can see that even though smaller batches lead to more
variance in the converge of the algorithm (as expected) it also leads to a faster empirical
convergence for this experiment.
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2.A. THEORETICAL PROPERTIES OF THE AUGMENTED SUBOP-
TIMALITY LOSS

Define Fθ,φ(s, x) := 〈θ,φ(s, x)〉. In this section, we discuss several theoretical properties
of the Augmented Suboptimality Loss (ASL), and show how it can be interpreted as a
convex surrogate of the Generalized Predictability Loss (GPL). The GPL is a natural loss
function for IO problems and is defined as follows.

Definition 2.19 (Generalized Predictability Loss). Given a signal-response pair (ŝ, x̂), the
Generalized Predictability Loss of a cost vector θ is given by

ℓ
pred
θ

(ŝ, x̂) :=min
x

d(x̂, x)

s.t. x ∈ argmin
y∈X(ŝ)

Fθ,φ(ŝ, y),
(2.24)

where d :X×X→R+ is a distance function.

The GPL has an intuitive interpretation for IO problems: given a signal s, it com-
putes how close (in terms of d) are x̂ (the expert’s response) and x (an optimal response
according to Fθ,φ). Consequently, by solving (2.10) using the GPL, we optimize for a cost
Fθ,φ that best reproduces the responses taken by the expert for each signal s. For the
special case when d(x, y) = ∥x − y∥2

2, the GPL reduces to the so-called predictability loss.
Unfortunately, when using the GPL, problem (2.10) is an NP-hard bi-level optimization
problem in general [ASS18].

To come up with losses that are convex w.r.t. θ, and still meaningful for IO problems,
we can use the concept of convex surrogate functions. Informally, given a nonconvex
function g , a convex surrogate function h is a convex upper bound of g . The idea is then
to minimize h instead of g . The hope is that by minimizing h, we also minimize (at least
to some extent) the original nonconvex function g . Interestingly, we can show that the
ASL is a convex surrogate for the GPL and that it possesses several properties attractive
for IO loss functions. In particular, the properties of the ASL shown in Proposition 2.21
are similar to (and in some sense generalizations of) the properties of the Suboptimality
Loss presented in [Moh+18a].

Assumption 2.20 (Optimizer condition). Let the distance function d :X×X→R+ be such
that d(x, y) = 0 if and only if x = y. Then, ∀x ∈X(s) and ∀s ∈S, there exists a θ ∈Θ such
that

y⋆ ∈ argmin
y∈X(s)

Fθ,φ(s, y) =⇒ Fθ,φ(s, x)−Fθ,φ(s, y⋆) ≥ d(x, y⋆).

Assumption 2.20 can be interpreted as a “unique minimizer” condition and it is nec-
essary to prove the “consistency” property of Proposition 2.21. This is a strong assump-
tion and does not hold for general IO problems. However, this assumption is not crit-
ical for the algorithm design and analysis presented in this chapter. Moreover, empir-
ically, IO algorithms based on the ASL perform well even for IO problems that do not
possess the “unique minimizer” property (for example, see the numerical results of Sec-
tion 2.4). Finally, we note that Assumption 2.20 can be interpreted as a generalization
of other assumptions from the literature, which are also used to prove consistency-like
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properties of loss functions. We list three such examples, where we use the notation
y⋆ ∈ argminy∈X(s) Fθ,φ(s, y).

• Let d(x, y) = I (x, y), the 0-1 distance. In this case, Assumption 2.20 reads as

Fθ,φ(s, x)−Fθ,φ(s, y⋆) ≥ 1 ∀(s, x) ∈S×X(s) \ {y⋆}.

The inequality above holds, for instance, in the case Fθ,φ(s, x) = 〈θ, x〉 with θ ∈ Zn+
(a vector of positive integers) and X(x) = {0,1}n [BPS17, Corollary 3.6].

• Let d(x, y) = ∥x − y∥2
2. In this case, Assumption 2.20 reads as

Fθ,φ(s, x)−Fθ,φ(s, y⋆) ≥ ∥x − y⋆∥2
2, ∀(s, x) ∈S×X(s).

Let the set X(s) be µ-strongly convex with µ = 2/∥∇x Fθ,φ(s, y⋆)∥2. Then, one can
show that Assumption 2.20 holds [El +19, Proposition 1]. Particularly, notice that
the inequality holds even when Fθ,φ(s, x) = 〈θ, x〉.

• Let d(x, y) = ∥x − y∥2
2. In this case, Assumption 2.20 reads as

Fθ,φ(s, x)−Fθ,φ(s, y⋆) ≥ ∥x − y⋆∥2
2, ∀(s, x) ∈S×X(s).

One can show that this inequality holds when Fθ,φ(s, x) is 2-strongly convex w.r.t.
x. Thus, one can interpret Assumption 2.20 as a generalization of the strong-
convexity assumption used in [Moh+18a, Proposition 2.5].

Proposition 2.21 (Properties of the ASL). The ASL ℓθ has the following properties:

• (Convex surrogate) ℓpred
θ

(s, x) ≤ ℓθ(s, x) ∀(s, x) ∈S×X(s);

• (Convexity) ℓθ is convex w.r.t. θ;

• (Nonnegativity) ℓθ(s, x) ≥ 0, ∀(s, x) ∈S×X(s);

• (Consistency) ℓθ(s, x) = 0 =⇒ x ∈ argminy∈X(s) Fθ,φ(s, y), ∀s ∈ S. If Assumption
2.20 holds, then ℓθ(s, x) = 0 ⇐= x ∈ argminy∈X(s) Fθ,φ(s, y), ∀s ∈S.

Proof. Let y⋆ ∈ argminy∈X(s) Fθ,φ(s, y).

(Convex surrogate) By the definition of the generalized predictability loss and y⋆,

we have ℓpred
θ

(s, x) ≤ d(x, y⋆) and

Fθ,φ(s, x)−Fθ,φ(s, y⋆) ≥ 0, (2.25)

for all for all x ∈X(s), for all s ∈S. Thus,

ℓ
pred
θ

(s, x) ≤ d(x, y⋆)

≤ d(x, y⋆)+Fθ,φ(s, x)−Fθ,φ(s, y⋆) (Eq. (2.25))

≤ max
y∈X(s)

{
d(x, y)+Fθ,φ(s, x)−Fθ,φ(s, y)

}= ℓθ(s, x).
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(Convexity) Using the fact that Fθ,φ(s, x) = 〈θ,φ(s, x)〉, we conclude that ℓθ(s, x) is the
pointwise maximum of linear functions of θ, which is convex w.r.t. θ.

(Nonnegative) Since ℓpred
θ

(s, x) is nonnegative, and we have shown that the ASL up-
per bounds the GPL, this implies ℓθ(s, x) ≥ 0.

(Consistency =⇒ )

ℓθ(s, x) = 0 =⇒ max
y∈X(s)

{
Fθ,φ(s, x)−Fθ,φ(s, y)+d(x, y)

}= 0

=⇒ Fθ,φ(s, x) = min
y∈X(s)

{
Fθ,φ(s, y)−d(x, y)

}
=⇒ Fθ,φ(s, x) ≤ Fθ,φ(s, y)−d(x, y), for any y ∈X(s)

=⇒ Fθ,φ(s, x) ≤ Fθ,φ(s, y⋆)−d(x, y⋆)

=⇒ Fθ,φ(s, x)−Fθ,φ(s, y⋆) ≤ 0, (2.26)

where the last inequality follows from the facts that d(x, y⋆) is nonnegative. From (2.25)
and (2.26) and the definition of y⋆, we conclude x ∈ argminy∈X(s) Fθ,φ(s, y).

(Consistency ⇐= ) By Assumption 2.20, we have that

x ∈ argmin
y∈X(s)

Fθ,φ(s, y) =⇒ Fθ,φ(s, y)−Fθ,φ(s, x) ≥ d(y, x), for any y ∈X(s)

=⇒ Fθ,φ(s, x)−Fθ,φ(s, y)+d(y, x) ≤ 0, for any y ∈X(s)

=⇒ max
y∈X(s)

{
Fθ,φ(s, x)−Fθ,φ(s, y)+d(y, x)

}≤ 0 =⇒ ℓθ(s, x) ≤ 0.

Since we have already shown that ℓθ(s, x) ≥ 0, this implies ℓθ(s, x) = 0.

2.B. CONTINUOUS PROBLEMS: SPECIAL CASES
A key step in the derivation of the reformulation presented in Theorem 2.12 is dualizing
the maximization problem in the ASL with respect to the continuous part of the decision
vector. For the reformulation to be exact, strong duality needs to hold, i.e., the maximiza-
tion problem needs to be concave w.r.t. the continuous variable. As mentioned in Sec-
tion 2.2.2, using a general ∞-norm penalization comes at the expense of increasing the
number of constraints in the reformulation by a factor of 2u. However, for some special
cases, one can dualize the distance-augmented problem without increasing the num-
ber of constraints of the final problem. Here we briefly discuss two such examples: lin-
ear programs with totally unimodular constraint matrix and quadratically constrained
quadratic programs.

LPs with totally unimodular constraint matrix. Let us consider IO problems with
linear hypothesis 〈θ,φ(s, x)〉 = 〈θ, x〉 and linear constraints Ax ≤ b,0 ≤ x ≤ 1. For this
problem, the inner maximization problem of the ASL with d(x̂, x) = ∥x̂ − x∥1 is of the
form

max
x∈Rn

〈θ, x̂ −x〉+∥x̂ −x∥1

s.t. Ax ≤ b

0 ≤ x ≤1.

(2.27)

Due to the norm in the objective function, this is a nonconcave optimization problem
in general. However, consider the case when the constraint matrix A in (2.27) is totally
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unimodular and b is an integer vector. Totally unimodular constraint matrices appear
in many classical optimization problems, for instance, shortest path problems, bipar-
tite graph matching, and maximum flow problems [CCZ14]. In this case, it is a well-
known result that every extreme point of the polyhedron {x : Ax ≤ b, 0 ≤ x ≤1} is integral
[HK10], thus, (2.27) has integral (in this particular case, binary) optima. Combined with
the fact that, if x̂ and x are binary vectors, we have that ∥x̂ −x∥1 = 〈1−2x̂, x〉+〈1, x̂〉, the
optimization problem (2.27) is equivalent to

max
x∈Rn

〈θ, x̂ −x〉+〈1−2x̂, x〉+〈1, x̂〉
s.t. Ax ≤ b

0 ≤ x ≤1,

that is, problem (2.27) is equivalent to an LP and, thus, can be dualized without increas-
ing the number of constraints in the final IO reformulation.

Quadratically constrained quadratic programs. Next, consider IO problems with
quadratic hypothesis 〈θ,φ(s, x)〉 = 〈x,Qx〉+2〈x, q〉 and one quadratic constraint 〈x, Ax〉+
2〈x,b〉+c ≤ 0. For this problem, the inner maximization problem of the ASL with d(x̂, x) =
∥x̂ −x∥2

2 is of the form

max
x∈Rn

〈x̂,Qx̂〉+2〈x̂, q〉−〈x,Qx〉−2〈x, q〉+∥x̂ −x∥2
2

s.t. 〈x, Ax〉+2〈x,b〉+ c ≤ 0.
(2.28)

Problem (2.28) is sometimes called a Generalized Trust Region Problem, and has nu-
merous applications to, for example, robust optimization, signal processing, and com-
pressed sensing [Mor93; PW14; WK22]. Moreover, (2.28) is not a concave maximization
problem unless Q − I ≽ 0. However, it is a well-known result that strong duality holds for
(2.28) and its dual program is

min
t ,λ

〈x̂,Qx̂〉+2〈x̂, q〉+〈x̂, x̂〉− t

s.t. λ≥ 0[
Q − I +λA q + x̂ +λb

∗ λc − t

]
≽ 0,

provided Slater’s constraint qualification is satisfied, i.e., there exists an x with 〈x, Ax〉+
〈x,b〉+ c ≤ 0 [BV04, Appendix B].

2.C. PROOFS

2.C.1. PROOF OF THEOREM 2.2
Using the facts that ∥θ̃∥2 = ∥θ∥2 = 1, the range of the arccos is [0,π], −cos(γ) is monotone
increasing for γ ∈ [0,π], and −〈θ̃,θ〉 = 1

2∥θ̃−θ∥2
2 −1, evaluating the cost function of (2.3)

is equivalent to
max
θ̃

∥θ− θ̃∥2
2

s.t. θ̃ ∈C, ∥θ̃∥2 = 1.
(2.29)
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Next, applying the change of variables θ̃ 7→ Rθ̃, where R ∈Rn×n is an orthonormal matrix
with its first column equal to θ, (2.29) is equivalent to

max
θ̃

∥e1 − θ̃∥2
2

s.t. Rθ̃ ∈C, ∥θ̃∥2 = 1.
(2.30)

Then, definingC := {
Rθ̃ = (x, y) ∈R×Rn−1 : ai x+〈bi , y〉 ≤ 0∀i ∈ [N ], −x+〈e j , y〉 ≤ 0 and −

x −〈e j , y〉 ≤ 0 ∀ j ∈ [n −1]
}
, we can rewrite (2.30) as

max
x,y

(x −1)2 +∥y∥2
2

s.t. ai x +〈bi , y〉 ≤ 0 ∀i ∈ [N ]

−x +〈e j , y〉 ≤ 0 ∀ j ∈ [n −1]

−x −〈e j , y〉 ≤ 0 ∀ j ∈ [n −1]

x2 +∥y∥2
2 = 1.

(2.31)

Next, we change the objective function of (2.31) from f (x, y) = (x−1)2+∥y∥2
2 to g (x, y) =

∥(1/x)y∥2
2. The resulting optimization problem is equivalent to (2.31) because g is a

strictly positive monotonic transformation of f , that is, for any feasible (x1, y1) and (x2, y2),
we have that

f (x1, y1) < f (x2, y2)

⇐⇒ (x1 −1)2 +∥y1∥2
2 < (x2 −1)2 +∥y2∥2

2

⇐⇒ −2x1 <−2x2

⇐⇒ 1

x2
1

< 1

x2
2

⇐⇒ 1−x2
1

x2
1

< 1−x2
2

x2
2

⇐⇒
∥∥∥∥ 1

x1
y1

∥∥∥∥2

2
<

∥∥∥∥ 1

x2
y2

∥∥∥∥2

2

⇐⇒ g (x1, y1) < g (x2, y2),
Illustration of the monotonicity of the transforma-
tion from f to g .

where we used the fact that from the inequalities −x ±〈e j , y〉 ≤ 0 and the equality x2 +
∥y∥2

2 = 1, any feasible x is strictly larger than 0. Thus, (2.31) is equivalent to

max
x,y,z

∥z∥2
2

s.t. ai x +〈bi , y〉 ≤ 0 ∀i ∈ [N ]

−x +〈e j , y〉 ≤ 0 ∀ j ∈ [n −1]

−x −〈e j , y〉 ≤ 0 ∀ j ∈ [n −1]

x2 +∥y∥2
2 = 1, z = 1

x
y.

(2.32)
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Next, substituting y = xz in the inequality constraints, and using the fact that x > 0 to
rearrange the constraints, we arrive at

max
z

∥z∥2
2

s.t. 〈bi , z〉 ≤−ai ∀i ∈ [N ]

−1 ≤ z ≤ 1,

(2.33)

where we dropped the equality constraints x = 1/
√

1+∥z∥2
2 and y =

(
1/

√
1+∥z∥2

2

)
z,

since they are the only ones that depend on x and y . Therefore, we have shown that
evaluating the cost function of the circumcenter problem is equivalent to a quadratic
maximization problem over a polytope, which is NP-hard [Sah74].

2.C.2. PROOF OF THEOREM 2.5
First, the non-zero constraints can be enforced via ∥θ∥2 = ∥θ̃∥2 = 1, and similar to the
proof of Theorem 2.2, one can show that

argmax
∥θ∥2=1

min
θ̃∈int(C)
∥θ̃∥2=1

a(θ, θ̃) = argmax
∥θ∥2=1

min
θ̃∈int(C)
∥θ̃∥2=1

∥θ− θ̃∥2
2.

Since for any θ ∈ int(C), we can always choose θ̃ = θ and have ∥θ− θ̃∥2
2 = 0, the θ that

maximizes this minimax problem will always be in C. Consequently, to minimize the
distance to any θ ∈ C, we have that the optimal θ̃ will always be in the boundary of C.
Using these observations, one can show the following equivalence for the inner mini-
mization problem:

min
θ̃∈int(C)
∥θ̃∥2=1

∥θ− θ̃∥2
2 = min

x[i ]∈X(ŝ[i ])
i∈[N ]

 min
〈θ̃,φ(ŝ[i ],x[i ])−φ(ŝ[i ],x̂[i ])〉=0

∥θ̃∥2=1

∥θ− θ̃∥2
2

 , (2.34)

which follows from the fact that the optimal θ̃ being in boundary ofC implies 〈θ̃,φ(ŝ[i ], x[i ])−
φ(ŝ[i ], x̂[i ])〉 = 0 for some i ∈ [N ] and x[i ] ∈X(ŝ[i ]) (see Definition 1.2).

Next, we derive a closed-form solution to the minimization problems inside curly
brackets in (2.34). Namely, we show that

argmin
〈θ̃,w〉=0
∥θ̃∥2=1

∥θ− θ̃∥2
2 =

p(θ, w)

∥p(θ, w)∥2
, (2.35)

where

p(θ, w) := argmin
〈θ̃,w〉=0

∥θ− θ̃∥2
2 = θ−

〈θ, w〉
∥w∥2

2

w (2.36)

is the euclidean projection of θ onto the hyperplane defined by w . We prove (2.35) by
contradiction. Namely, we show that if there exists a vector α with lower cost value
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than p(θ, w)/∥p(θ, w)∥2 for (2.35), this contradicts the optimality of p(θ, w) for problem
(2.36). Thus, let α ∈Rp be such that 〈α, w〉 = 0 and ∥α∥2 = 1, and assume∥∥∥∥θ− p(θ, w)

∥p(θ, w)∥2

∥∥∥∥2

2
> ∥θ−α∥2

2.

Consequently, we have that∥∥∥∥θ− p(θ, w)

∥p(θ, w)∥2

∥∥∥∥2

2
> ∥θ−α∥2

2 ⇐⇒ 1+1− 2

∥p(θ, w)∥2
〈θ, p(θ, w)〉 > 1+1−2〈θ,α〉

⇐⇒ −2〈θ, p(θ, w)〉 >−2∥p(θ, w)∥2〈θ,α〉,

which follows by expanding the norm squared and the facts that ∥θ∥2 = ∥α∥2 = 1. Adding
∥θ∥2

2+∥p(θ, w)∥2
2 to both sides and using the identity ∥θ−p(θ, w)∥2

2 = ∥θ∥2
2+∥p(θ, w)∥2

2−
2〈θ, p(θ, w)〉, we get that∥∥∥∥θ− p(θ, w)

∥p(θ, w)∥2

∥∥∥∥2

2
> ∥θ−α∥2

2 ⇐⇒ ∥θ−p(θ, w)∥2
2 > ∥θ∥2

2 +∥p(θ, w)∥2
2 −2∥p(θ, w)∥2〈θ,α〉.

Next, define β := ∥p(θ, w)∥2α, and notice that 〈β, w〉 = 0 and ∥β∥2
2 = ∥p(θ, w)∥2

2. Thus, we
arrive at∥∥∥∥θ− p(θ, w)

∥p(θ, w)∥2

∥∥∥∥2

2
> ∥θ−α∥2

2 ⇐⇒ ∥θ−p(θ, w)∥2
2 > ∥θ∥2

2 +∥β∥2
2 −2〈θ,β〉 = ∥θ−β∥2

2.

Therefore, since ∥θ−p(θ, w)∥2
2 > ∥θ−β∥2

2 contradicts the optimality of p(θ, w) in (2.36),
(2.35) follows by contradiction.

Combining (2.34) and (2.35), we have that

min
θ̃∈int(C)
∥θ̃∥2=1

∥θ− θ̃∥2
2 = min

x[i ]∈X(ŝ[i ])
i∈[N ]

∥∥∥∥θ− p(θ,φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ]))

∥p(θ,φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ]))∥2

∥∥∥∥2

2
.

To conclude the proof, notice that

argmin
w

∥∥∥∥θ− p(θ, w)

∥p(θ, w)∥2

∥∥∥∥2

2
= argmin

w
a

(
θ,

p(θ, w)

∥p(θ, w)∥2

)
(2.37a)

= argmin
w

a
(
θ, p(θ, w)

)
= argmin

w
sin

(
a(θ, p(θ, w))

)
(2.37b)

= argmin
w

∥∥θ−p(θ, w)
∥∥2

2 (2.37c)

= argmin
w

|〈θ, w〉|
∥w∥2

, (2.37d)

where (2.37a) follows from the definition of angle, (2.37b) follows from a(θ, p(θ, w)) ≤
π/2, (2.37c) follows from p(θ, w) ⊥ θ−p(θ, w) and (2.37d) follows from Eq. (2.36). Putting
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it together, we conclude that

θin ∈ argmax
∥θ∥2=1

min
θ̃∈int(C)
∥θ̃∥2=1

a(θ, θ̃) = argmax
∥θ∥2=1

min
x[i ]∈X(ŝ[i ]),i∈[N ]

|〈θ,φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ])〉|
∥φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ])∥2

.

Applying an epigraph reformulation and rearranging the resulting inequality constraints
ends the proof.

2.C.3. PROOF OF COROLLARY 2.6
First, we show that the assumption that int(C) ̸= ; implies that the optimal r of prob-
lem (2.6) is positive. To see this, notice that int(C) ̸= ; implies that there exists some
θ ∈ Rp such that 〈θ,φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ])〉 > 0, ∀x[i ] ∈ X(ŝ[i ]), ∀i ∈ [N ], which follows
Definition 1.2. Next, simply notice that

r = minx[i ]∈X(ŝ[i ]),i∈[N ] 〈θ,φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ])〉
maxx[i ]∈X(ŝ[i ]),i∈[N ] ∥φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ])∥2

> 0

is a feasible r for problem (2.6), which shows that the optimal r > 0. Thus, problem (2.6)
can be written as

min
θ,r

∥θ∥2/r

s.t. 〈θ,φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])〉+ r∥φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ])∥2 ≤ 0 ∀x[i ] ∈X(ŝ[i ]), ∀i ∈ [N ]

∥θ∥2 = 1,

where we used the facts that ∥θ∥2 = 1 and the optimal r > 0. Next, applying the change
of variables θ/r → θ̄, we get

min
θ̄,r

∥θ̄∥2

s.t. 〈θ̄,φ(ŝ[i ], x̂[i ])−φ(ŝ[i ], x[i ])〉+∥φ(ŝ[i ], x[i ])−φ(ŝ[i ], x̂[i ])∥2 ≤ 0 ∀x[i ] ∈X(ŝ[i ]), ∀i ∈ [N ]

∥θ̄∥2 = 1/r.

Finally, notice that since the optimization variable r only appears in the constraint ∥θ̄∥2 =
1/r , and for any θ̄ we can set r = 1/∥θ̄∥2, the optimization variable r does not affect the
optimal value of θ̄, and we can simply drop the constraint ∥θ̄∥2 = 1/r .

2.C.4. PROOF OF THEOREM 2.12
For the feasible set (2.13) and hypothesis function (2.14), the ASL with d(x̂, x) = ∥ŷ −
y∥∞+dz (ẑ, z) can be written as

max
z∈Z(ŵ)

h∈H
max

y
〈θ,φ(ŝ, x̂)〉−〈y,Qy y y〉−〈y,Qφ1(ŵ , z)〉−〈q,φ2(ŵ , z)〉+〈h, ŷ − y〉+dz (ẑ, z)

s.t. Ây + B̂ z ≤ ĉ,
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where we use the identity ∥ŷ−y∥∞ = maxh∈H〈h, ŷ−y〉 withH := {h ∈ {−1,0,1}u : ∥h∥1 = 1}.
Since we assume Qy y ≽ 0, the inner maximization problem is convex, and by strong
duality, we can write its dual as

max
z∈Z(ŵ)

h∈H
min
α,λ

〈θ,φ(ŝ, x̂)〉+α+〈λ, ĉ − B̂ z〉−〈q,φ2(ŵ , z)〉+〈h, ŷ〉+dz (ẑ, z)

s.t. ∥Qφ1(ŵ , z)+h + Â⊤λ∥2
Q†

y y
≤ 4α

Qφ1(ŵ , z)+h + Â⊤λ ∈R(Qy y )

λ≥ 0.

Next, applying a Schur complement transformation (e.g., [BV04, Section A.5.5]) to the
constraints of the optimization problem above, followed by an epigraph transformation,
we have

max
z∈Z(ŵ)

h∈H
min
α,β,λ

β

s.t. 〈θ,φ(ŝ, x̂)〉+α+〈λ, ĉ − B̂ z〉−〈q,φ2(ŵ , z)〉+〈h, ŷ〉+dz (ẑ, z) ≤β[
Qy y Qφ1(ŵ , z)+h + Â⊤λ
∗ 4α

]
≽ 0

λ≥ 0.

(2.38)

To reformulate (2.38) into a single minimization problem, we use the fact that max
x∈{x1,...,xM }

min
t ,δ

t

s.t. g (δ, x) ≤ t

=
 min

t ,δ1,...,δM

t

s.t. g (δ j , x j ) ≤ t , ∀ j ∈ [M ]

 , (2.39)

for a general function g , which follows from the observation that

max
x∈{x1,...,xM }

min
δ

g (δ, x) = max{min
δ1

g (δ1, x1), . . . ,min
δM

g (δM , xM )}

= min
δ1,...,δM

max{g (δ1, x1), . . . , g (δM , xM )}.

Combining (2.38) with (2.39), we arrive at

min β

s.t. θ = (vec(Qy y ),vec(Q), q) ∈Θ, λ j k ≥ 0, α j k ,β ∈R
〈θ,φ(ŝ, x̂)〉+α j k +〈λ j k , ĉ − B̂ z j 〉−〈q,φ2(ŵ , z j )〉+〈hk , ŷ〉+dz (ẑ, z j ) ≤β[

Qy y Qφ1(ŵ , z j )+hk + Â⊤λ j k

∗ 4α j k

]
≽ 0,

(2.40)

where the constraints are ∀( j ,k) ∈ [M ]× [2u], Z(ŵ) := {z1, . . . , zMi }, M := |Z(ŵ)|, and if
k ≤ u (k > u), hk is the vector of zeros except for the k’th k’th ((k −u)’th) element, which
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is equal to 1 (-1). Finally, plugging (2.40) into problem (2.10), we arrive at

min κR(θ)+ 1

N

N∑
i=1

βi

s.t. θ = (vec(Qy y ),vec(Q), q) ∈Θ, λi j k ≥ 0, αi j k ,βi ∈R
〈θ,φ(ŝ[i ], x̂[i ])〉+αi j k +〈λi j k , ĉi − B̂i zi j 〉−〈q,φ2(ŵi , zi j )〉+〈hk , ŷi 〉+dz (ẑi , zi j ) ≤βi[

Qy y Qφ1(ŵi , zi j )+hk + Â⊤
i λi j k

∗ 4αi j k

]
≽ 0,

where the constraints are ∀(i , j ,k) ∈ [N ]× [Mi ]× [2u].

2.C.5. PROOF OF PROPOSITION 2.16
Let θ⋆ ∈ argminθ∈Θ f (θ). By the definition of an ε-subgradient, we have

E
[

f (θt )− f (θ⋆)
]≤ E[〈gεt (θt ),θt −θ⋆〉+εt

]
= E[〈E[

g̃εt (θt ) | θt
]

,θt −θ⋆〉+εt
]

= E[〈g̃εt (θt ),θt −θ⋆〉+εt
]

,

(2.41)

where the first equality follows from the definition of a stochastic approximate subgra-
dient and the second equality follows from the law of total expectation. Next, we use the
standard inequality for the analysis of mirror-descent algorithms [JN11, Proposition 5.1]

〈g̃εt (θt ),θt −θ⋆〉 ≤ 1

ηt
(Bω(θ⋆,θt )−Bω(θ⋆,θt+1))+ ηt

2
∥g̃εt (θt )∥2

∗. (2.42)

Summing (2.42) from t = 1 to T and taking its expectation, we arrive at

E

[
T∑

t=1
〈g̃εt (θt ),θt −θ⋆〉

]
≤ E

[
T∑

t=1

1

ηt
(Bω(θ⋆,θt )−Bω(θ⋆,θt+1))+ 1

2

T∑
t=1

ηt∥g̃εt ∥2
∗

]

≤ R2

η1
+R2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
+ G2

2

T∑
t=1

ηt

= R2

ηT
+ G2

2

T∑
t=1

ηt ≤
(

R2

c
+ cG2

)p
T ,

(2.43)

where the second line follows from rearranging the sum and the boundedness assump-
tions, the third line follows from telescoping the sum, and the fourth line follows from
the definition of ηt and the inequality

∑T
t=1 1/

p
t ≤ 2

p
T . Finally, using Jensen’s inequal-

ity, we arrive at

E

[
f

(
1

T

T∑
t=1

θt

)
− f (θ⋆)

]
≤ 1

T
E

[
T∑

t=1
( f (θt )− f (θ⋆))

]

≤ 1

T
E

[
T∑

t=1
〈g̃εt (θt ),θt −θ⋆〉+

T∑
t=1

εt

]

≤
(

R2

c
+ cG2

)
1p
T

+ 1

T

T∑
t=1

εt ,
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where the second inequality follows from (2.41) and the third inequality follows from
(2.43). Next, we prove an improved convergence bound when f = h+R, and R is relative
α-strongly convex. The proof is based on [LSB12]. In this case, similar to (2.41), we have

E
[

f (θt )− f (θ⋆)
]≤ E[〈g̃εt (θt ),θt −θ⋆〉+εt −αBw (θ⋆,θt )

]
.

Invoking (2.42), multiplying both sides by t , and summing the resulting inequality from
t = 1 to T , we get

E

[
T∑

t=1
t ( f (θt )− f (θ⋆))

]
≤ E

[ T∑
t=1

(
t

ηt
(Bω(θ⋆,θt )−Bω(θ⋆,θt+1))

+ tηt

2
∥g̃εt ∥2

∗+ tεt −αtBw (θ⋆,θt )

)]
≤

(
1

η1
−α

)
Bω(θ⋆,θ1)+

T∑
t=2

(
t

ηt
−αt − t

ηt−1

)
Bω(θ⋆,θt )

+ G2

2

T∑
t=1

tηt +
T∑

t=1
tεt .

Next, by setting ηt = 2/α(t + 1), it is easy to show that the sums between parenthesis
become nonpositive, and we arrive at

E

[
T∑

t=1
t ( f (θt )− f (θ⋆))

]
≤ G2

α

T∑
t=1

t

(t +1)
+

T∑
t=1

tεt ≤ G2T

α
+

T∑
t=1

tεt . (2.44)

Finally, using Jensen’s inequality, we have that

E

[
f

(
2

T (T +1)

T∑
t=1

tθt

)
− f (θ⋆)

]
≤ 2

T (T +1)
E

[
T∑

t=1
t ( f (θt )− f (θ⋆))

]

≤ 2G2

α(T +1)
+ 2

T (T +1)

T∑
t=1

tεt ,

where the second inequality follows from (2.44).

2.C.6. PROOF OF LEMMA 2.17
This proof is based on [Ber15, Example 3.3.1]. Recall the definition of ℓθ:

ℓθ(ŝ, x̂) = max
x∈X(ŝ)

{〈θ,φ(ŝ, x̂)−φ(ŝ, x)〉+d(x̂, x)
}

.

Then, by the definition of xε we have

ℓθ(ŝ, x̂)−ℓν(ŝ, x̂) = max
x∈X(ŝ)

{〈θ,φ(ŝ, x̂)−φ(ŝ, x)〉+d(x̂, x)
}

− max
x∈X(ŝ)

{〈ν,φ(ŝ, x̂)−φ(ŝ, x)〉+d(x̂, x)
}

≤ 〈θ,φ(ŝ, x̂)−φ(ŝ, xε)〉+d(x̂, xε)+ε
− max

x∈X(ŝ)

{〈ν,φ(ŝ, x̂)−φ(ŝ, x)〉+d(x̂, x)
}

.
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Next, by the optimality of the max, we arrive at

ℓθ(ŝ, x̂)−ℓν(ŝ, x̂) ≤ 〈θ,φ(ŝ, x̂)−φ(ŝ, xε)〉+d(x̂, xε)+ε−〈ν,φ(ŝ, x̂)−φ(ŝ, xε)〉+d(x̂, xε)

= 〈φ(ŝ, x̂)−φ(ŝ, xε),θ−ν〉+ε.

This shows that φ(ŝ, x̂)−φ(ŝ, xε) is an ε-subgradient of ℓθ w.r.t. θ.

2.D. FURTHER NUMERICAL RESULTS

2.D.1. BREAST CANCER WISCONSIN PROGNOSTIC DATASET
In this numerical experiment, we present a way to model a real-world decision prob-
lem using our IO approaches. Namely, we use the Breast Cancer Wisconsin Prognostic
(BCWP) dataset from the UCI Machine Learning Repository [DG17]. This dataset con-
sists of real-world data from different breast cancer patients. For each patient, there are
30 features extracted from images of cells taken from breast lumps, plus the tumor size
and the number of involved lymph nodes, for a total of 32 numerical features. More-
over, each case is classified as “recurrent” if the disease has recurred after surgery, and
“non-recurrent” if the disease did not recur by the time of the patient’s last check-up.
For recurrent patients, there is also information on the time to recur (TTR), that is, how
many months it took for the disease to recur. For non-recurrent patients, we have infor-
mation on the disease-free survival time (DFST), that is, how many months it is known
that the patient was disease-free after the surgery. The dataset consists of 198 distinct
cases, 47 of which have recurred. Thus, given the 32 features, the goal is to predict if the
disease will recur or not, as well as the TTR (if recurrent) or the DFST (if non-recurrent).

We interpret this problem as an IO problem: given a signal vector ŵ ∈ R32 (nu-
merical vector with the 32 features), an expert agent (e.g., a doctor) returns a decision
(y, z) ∈ R× {0,1}, where y is the TTR/DFST and z = 1 if the expert predicts the disease to
return (recurrent patient), and z = 0 otherwise (non-recurrent patient). In other words,
given the data on some patients, the expert predicts if the disease will recur or not.
If recurrent, the expert also predicts the TTR; if not recurrent, the expert predicts the
DFST, which can be interpreted as a lower bound on how long the patient is expected
to be disease-free. Thus, given the dataset of signal-decision data, we use IO to learn
a cost function that when minimized, mimics the behavior of the expert. Since the
decision of the expert comprises of continuous and discrete components (i.e., X(ŝ) ={
(y, z) ∈R× {0,1} : y ≥ 0

}
), we tackle this scenario using the mixed-integer approach pro-

posed in Section 2.2.2. Here we note that since the BCWP dataset comes from a real-
world scenario, the choice of hypothesis function we use for the IO approach (in par-
ticular, the feature functions φ1 and φ2) is a modeling choice. We use the hypothesis
function (2.14), with φ1(w, z) = φ2(w, z) = (w, z, zw,1). Thus, we can use the reformula-
tion (2.15) to solve the problem, with Â =−I , B̂ = ĉ = 0, Θ= Rn , dz (ẑi , zi ) = |ẑi − zi |, and
R(θ) = 1

2∥θ∥2
2. We call this approach ASL-yz. Similar to the experiments in Section 2.2.2,

we also test an approach similar to ASL-yz, but with hk = 0 ∀k ∈ [2u] (see discussion in
the paragraph after Corollary 2.13). We call this approach ASL-z. Finally, as a benchmark,
we test a regression+classification approach, where we treat the problem as a separate
regression (prediction of the TTR/DFST) and classification (recurrent/non-recurrent pa-
tient). For the regression task, we tested scikit-learn’s epsilon-support vector regression,
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Approach ASL-z ASL-yz regression+classification
|y − ytrue| 51.17 27.33 27.44
|z − ztrue| 20% 21% 21.25%

Table 2.4: Out-of-sample average error in months of the TTR/DFST prediction and out-of-sample average
percentage error in the prognostic of recurrent vs non-recurrent patients.

ordinary least squares linear regression, kernel ridge regression, multi-layer perceptron
regressor, regression based on k-nearest neighbors, gaussian process regression, and a
decision tree regressor. For the classification task, we tested scikit-learn’s support vector
classifier, logistic regression classifier, classifier implementing the k-nearest neighbors
vote, gaussian process classification based on Laplace approximation, decision tree clas-
sifier, random forest classifier, multi-layer perceptron classifier, and an AdaBoost classi-
fier. For this experiment, using scikit-learn’s default tuning parameters, the methods
with the best out-of-sample performance for the regression and classification tasks were
the kernel ridge regression and support vector classifier, respectively.

To evaluate our approach, we generate 20 training and test datasets, where each
training dataset is generated by randomly sampling 90% of the original dataset, while the
remaining 10% is used as the test dataset, similar to a 20-fold cross-validation procedure.
Table 2.4 shows the out-of-sample results for approaches to this problem. In particular,
it shows the average error for the continuous part of the decision variable (he average er-
ror in months of the TTR/DFST prediction), i.e., (1/N )

∑N
i=1 |yi − ŷi |, where N is the size

of the dataset, yi is the predicted value, and ŷi is the true value from the dataset, and
the percentage error of the discrete part of the decision variable (the average error in the
prognostic of recurrent vs non-recurrent patients), i.e., (100/N )

∑N
i=1 |zi − ẑi |, where N is

the size of the dataset, zi is the predicted value, and ẑi is the true value from the dataset.
From these results, we can see that the ASL-yz approach has slightly better performance
than the regression+classification approach and has a much smaller regression error
than the ASL-y approach. Compared to other works that used the BCWP dataset to pre-
dict the cancer recurrence or recurrence time, our IO approach differs from them in two
major ways: first, our approach requires no pre-processing of the data. For instance,
[ZMA06] splits the data into different classes according to the TTR/DFST and learns
one predictor per class, and [SMW95] pre-processes the dataset using a feature selec-
tion procedure. In contrast, our OI approach requires no pre-processing of the dataset,
although we believe its results may be improved after an appropriate pre-processing of
the dataset. Second, our IO approach can predict the TTR/DFST and recurrence/non-
recurrence simultaneously. In machine learning terms, our IO approach does classifi-
cation and regression at the same time. This differs from the approaches in the liter-
ature, which focus on either predicting the TTR/DFST or predicting recurrence/non-
recurrence. For instance, [SMW95] was able to achieve an average decision error of 13.9
months using leave-one-out testing and a feature selection procedure, and [LM01] was
able to achieve a 16.53% prediction error for positive vs negative cases, where a case is
considered positive if a recurrence occurred before 24 months, and negative otherwise.
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(a) Average error between the decision generated by
θtrue and θIO.

(b) Relative difference between the cost of the deci-
sions generated using θtrue and θIO.

Figure 2.8: In-sample results for consistent data scenario. The results for the incenter approach do not appear
in the plots because they are zero for all number of training examples tested.

2.D.2. IN-SAMPLE RESULTS
In this section, we show the in-sample results for the numerical experiments of Section
2.4. Namely, Figure 2.8 shows the in-sample counterpart of Figure 2.3, Figure 2.9 shows
the in-sample counterpart of Figure 2.4, Figure 2.10 shows the in-sample counterpart
of Figure 2.5, Figure 2.11 shows the in-sample counterpart of Figure 2.12, and Table 2.5
shows the in-sample counterpart of Table 2.4. Notice that since we always learn the IO
cost vector using the training data, the difference between the true cost vector and the
one learned using IO is independent of in- or out-of-sample results, thus, this plot is not
shown in this section. Moreover, for the cases when the training dataset is noisy, we do
not show the plot that compares the difference between the cost of the expert decisions
with the cost of the decisions using θIO.

Approach ASL-z ASL-yz regression+classification
|y − ytrue| 34.27 26.06 25.03
|z − ztrue| 24.16% 24.16% 23.48%

Table 2.5: In-sample average error in months of the TTR/DFST prediction and out-of-sample average percent-
age error in the prognostic of recurrent vs non-recurrent patients.

2.D.3. IO RESULTS FOR SAMD
Figure 2.12 shows the performance of the algorithms tested in Section 2.3.3 in terms of
the IO performance metrics. The discussion on the interpretation of the results of Figure
2.12 mirrors the one related to Figure 2.3 from the previous section, with the difference
that now the x-axis of the figures refers to running time instead of the number of training
examples. In these plots, we can see that the improvements in convergence speed of
mirror descent updates, stochastic subgradients, and approximate subgradients are also
reflected in the performance of the resulting solution for the IO problem.
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Figure 2.9: In-sample results for inconsistent data scenario. Average error between the decision generated by
θtrue and θIO.

(a) Average error between the decision generated by
θtrue and θIO.

(b) Relative difference between the cost of the deci-
sions generated using θtrue and θIO.

Figure 2.10: In-sample results for the mixed-integer feasible set scenario.

(a) Average error between the decision generated by
θtrue and θIO.

(b) Relative difference between the cost of the deci-
sions generated using θtrue and θIO.

Figure 2.11: In-sample results using iterative first-order algorithms.
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(a) Difference between the true cost vector (θtrue) and
the one learned using IO (θIO).

(b) Average error between the decision generated by
θtrue and θIO.

(c) Relative difference between the cost of the deci-
sions generated using θtrue and θIO.

Figure 2.12: Out-of-sample results using first-order algorithms.





3
INVERSE OPTIMIZATION FOR

ROUTING PROBLEMS

Last-mile delivery is the last stage of delivery in which shipments are brought to end cus-
tomers. Optimizing delivery routes is a well-researched topic, but most of the classical
approaches for this problem focus on minimizing the total travel time, distance, and/or
cost of the routes. However, the routes driven by expert drivers often differ from the
routes that minimize a time or distance criterion. This phenomenon is related to the fact
that human drivers take many different factors into consideration when choosing routes,
e.g., good parking spots, support facilities, gas stations, avoiding narrow streets or streets
with slow traffic, etc. This contextual knowledge of expert drivers is hard to model and
incorporate into traditional optimization strategies, leading to expert drivers choosing
potentially more convenient routes under real-life operational conditions, contradict-
ing the optimized route plans. Thus, developing models that capture and effectively
exploit this tactic knowledge could significantly improve the real-world performance of
optimization-based routing tools. For instance, in 2021, Amazon.com, Inc. proposed
the Amazon Last Mile Routing Research Challenge [Ama21a] (referred to as the Amazon
Challenge in the following). For this challenge, Amazon released a dataset of real-world
delivery requests and the respective human routes. The goal was for participants to pro-
pose novel methods that use this historical data to learn how to route like an expert hu-
man driver, thus incorporating their experience and knowledge when routing vehicles
for new delivery requests.

In the literature, several approaches have been proposed to incorporate information
from historical route data into the planning of new routes. Some of those methods use
discrete choice models and the routes of the drivers are used to determine a transition
probability matrix [FFK13]. For instance, in [CG19; Can+21; CMB21; Can+24], a Markov
chain framework is used to learn the weights associated with each edge of the graph,
which are interpreted as the likelihood of that arc appearing in the optimal solution of

This chapter is based on [Zat+24].
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the routing problem. Other approaches use inverse reinforcement learning to learn a
routing policy that approximates the ones from historical data [Wul+17; Liu+20]. The
Technical Proceedings of the Amazon Challenge [WPN21] contains 31 articles with ap-
proaches that were submitted to the Amazon Challenge. Many of these approaches rely
on learning specific patterns in the sequence of predefined geographical city zones vis-
ited by expert drivers. The paper [Wu+22] uses a sequential probability model to encode
the drivers’ behavior and uses a policy iteration method to sample zone sequences from
the learned probability model. The paper [Pit21] develops an Inverse Reinforcement
Learning (IRL) approach for the Amazon Challenge, which despite its name, does not
share many similarities with our Inverse Optimization (IO) approach. In particular, in
this approach, the TSP is interpreted as a Dynamic Programming (DP) problem, thus,
the goal of IRL is to learn the stage cost of this DP from example TPS routes. However,
DPs are known to suffer from the curse of dimensionality, that is, these problems be-
come intractable to solve when the dimension of the problem becomes too large (such
as for the TSP from the challenge). These issues are reflected in the poor performance of
the submissions that use IRL. The IRL method in [SSC21] is closer to our IO methodol-
ogy, in the sense that a weight matrix is learned from data. However, different from our
IO approach, which learns the entire weight matrix simultaneously, they use a Neural
Network to map node features to a single edge weight, thus, not accounting for the fea-
tures of neighboring edges. A successful approach to tackle the challenge was to adjust
the travel time matrix between zones based on patterns observed in the training dataset.
In particular, both the second-place [GMW21] and third-place [AA21] submissions used
this approach. Namely, they extracted rules (i.e., patterns observed in the behavior of the
human drivers) through descriptive analysis of the training dataset, and based on these
rules, they derived “discouragement multipliers”, which are simply constants that mul-
tiply each value of the travel time matrix. These multipliers were tuned so that the TSP
routes computed using the modified travel times enforce the rules previously extracted.

The IO approach presented in this chapter shares similarities with [GMW21] and
[AA21], in the sense that it also uses penalization constants to enforce the behaviors
observed in the data. However, differently from them, we combine these penalizations
with a custom weight matrix learned using IO. The IO methodology in this chapter can
be interpreted as a way to combine information extracted from a descriptive analysis of
the data with information automatically learned from the data. The authors in [CL21]
mention IO as a potential method to effectively tackle the challenge, however, due to
the complexity of developing a tailored IO methodology for routing problems, the au-
thors instead used standard ML techniques. The approach that won the Amazon Chal-
lenge is based on a constrained local search method, where given a new delivery request,
they extract precedence and clustering constraints by analyzing similar historical human
routes in the training dataset [CHH22]. Thus, their model is nonparametric, in the sense
that the entire training dataset is required whenever the route for a new delivery request
needs to be computed. This is in contrast with our parametric IO model, that is, our
model is parametrized by a learned vector of parameters, with a dimension that does
not depend on the number of examples in the training dataset.



3.1. TAILORED INVERSE OPTIMIZATION METHODOLOGY

3

53

3.1. TAILORED INVERSE OPTIMIZATION METHODOLOGY
In this section, we define our IO methodology for routing problems in terms of a tailored
hypothesis class, loss function, and first-order algorithm.

3.1.1. AFFINE HYPOTHESIS CLASS
Since we can only search for cost functions in a restricted function space and given our
focus on routing problems, , in this chapter we consider cost functions in an affine hy-
pothesis space with a nonnegative cost vector

Hθ := {〈θ, x〉+h(ŝ, x) : θ ≥ 0} , (3.1)

where θ ∈ Rp is the cost vector that parametrizes the cost function, and the affine term
h : S×X → R is a function that can be used to model terms in the hypothesis func-
tion 〈θ, x〉 +h(ŝ, x) that do not depend on θ. This affine function class generalizes the
standard linear hypotheses common in the literature of IO and is a key component of
our IO methodology to achieve state-of-the-art results in real-world problems (Section
3.4.1). Moreover, we consider nonnegative cost vectors because, for routing problems,
they represent the weights of the edges of a graph. For instance, given a complete graph
with n nodes, common cost functions to routing problems are the two-index or three-
index formulations

〈θ, x〉 =
n∑

i=1

n∑
j=1

θi j xi j and 〈θ, x〉 =
n∑

i=1

n∑
j=1

K∑
k=1

θi j xi j k ,

where xi j and xi j k are binary variables equal to 1 if the edge connecting node i to node
j is used in the route, and 0 otherwise (for the three-index formulation, we have an extra
index k specifying which of the K available vehicles uses the edge) [TV02]. Moreover,
we could also have an affine term, for instance, h(ŝ, x) =∑n

i=1

∑n
j=1 Mi j (ŝ)xi j in the cost

function, where the term Mi j (ŝ) ∈R can be used to encode some behavior we would like
to enforce in the model. In summary, our goal is to learn a cost vector θ such that when
solving the Forward Optimization Problem (FOP)

FOP(θ, ŝ) := arg min
x∈X(ŝ)

{〈θ, x〉+h(ŝ, x)
}
, (3.2)

we can reproduce (or approximate) the response the expert would have taken when solv-
ing the unknown optimization problem (1.1), given the same signal ŝ.

3.1.2. TAILORED LOSS FUNCTION

Given a signal-response dataset {(ŝ[i ], x̂[i ])}N
i=1, in this chapter we propose to solve the IO

problem (i.e., find a parameter vector θ) by solving a loss minimization problem:

min
θ≥0

1

N

N∑
i=1

ℓθ(ŝ[i ], x̂[i ]), (3.3)

where ℓθ : S×X → R is the loss function. Using the affine hypothesis class (3.1), we
propose the following loss function

ℓθ(ŝ, x̂) := 〈θ, x̂〉+h(ŝ, x̂)− min
x∈X(ŝ)

{〈θ+2x̂ −1, x〉+h(ŝ, x)−〈1, x̂〉}, (3.4)
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where 1 ∈ Rp is the all-ones vector. The loss function (3.4) is related to Augmented Sub-
optimality Loss (ASL), differing from the ASL in two ways: (i) it uses the affine hypothesis
class introduced in Section 3.1.1, which allows us to effectively use it for a wider range of
practical problems (e.g., the Amazon Challenge), and (ii) its inner minimization problem
has a convex objective function w.r.t. to x (assuming h is convex in x), in contrast to the
case for the ASL, which is nonconvex general. Having an inner minimization problem
with convex cost makes its use much more practical since the inner optimization prob-
lem has to be solved to evaluate or compute gradients of (3.4). For example, when using
first-order methods to optimize it, the inner minimization problem must be solved at
each iteration of the algorithm (e.g., see Algorithm 2). This “nonconvex to convex” refor-
mulation is possible by exploiting the fact that routing problems can be modeled using
binary decision variables (e.g., xi j = 1 if the edge connecting nodes i and j is used, and
xi j = 0 otherwise). This reformulation is formalized in Proposition 3.1.

Proposition 3.1 (Connection between the ASL and (3.4)). Assume X ⊆ {0,1}p , that is,
the decision variables of the FOP are binary. Then, the loss function (3.4) is equivalent to
the ASL, if the linear hypothesis 〈θ,φ(ŝ, x̂)〉 is substituted by the affine hypothesis 〈θ, x̂〉+
h(ŝ, x̂), and the distance function d(x̂, x) = ∥x̂ −x∥1.

Proof. The ASL with the linear hypothesis substituted by the affine hypothesis and d(x̂, x) =
∥x̂−x∥1 is equal to 〈θ, x̂〉+h(ŝ, x̂)−minx∈X(ŝ)

{〈θ, x〉+h(ŝ, x)−∥x̂−x∥1
}
. Next, notice that

for binary variables a,b ∈ {0,1}, we have the identity |a −b| = (1− a)b + (1−b)a. Thus,
for two binary vectors x̂, x ∈ {0,1}p , using the definition of the ℓ1-norm, we have that
∥x̂ −x∥1 = 〈1−2x̂, x〉+〈1, x̂〉.

3.1.3. FIRST-ORDER ALGORITHM
In this chapter, we propose to solve problem (3.3) using a stochastic first-order algo-
rithm. In particular, our algorithm uses update steps tailored to the proposed loss func-
tion (3.4) with a nonnegative cost vector. Moreover, it exploits the finite sum structure of
the problem (i.e., the sum over the N examples) by using a single training example per
iteration of the algorithm. To do so, we propose a reshuffled sampling strategy, which
empirically outperforms the uniform sampling strategy of the SAMD algorithm (see re-
sults in Sections 3.2.2 and 3.4.1).

Before presenting our algorithm, we discuss how to compute subgradients of the loss
function (3.4), which is necessary to use first-order methods to minimize it. To this end,
we define

A-FOP(θ, ŝ, x̂) := arg min
x∈X(ŝ)

{〈θ+2x̂ −1, x〉+h(ŝ, x)
}
, (3.5)

that is, the set of optimizers of the FOP with augmented edge weights θ+2x̂ −1 instead
of θ. Being able to solve the augmented FOP (3.5) is important because to compute a
subgradient of the loss (3.4) (and thus, a subgradient of (3.3)), we need to compute an
element of A-FOP(θ, ŝ, x̂), which follows from Danskin’s theorem [Ber08, Section B.5].
Here we emphasize an important consequence of the reformulation that led to our tai-
lored loss function: assuming the affine term is linear in x, say h(ŝ, x) = 〈M(ŝ), x〉, solving
the A-FOP has the same complexity as solving the FOP. For example, if the FOP is a TSP
with edge weights θ, then the A-FOP is also a TSP, but with augmented edge weights
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θ+ 2x̂ −1+ M(ŝ). This is of particular practical interest since the same solver can be
used both for learning the model (i.e., for the A-FOP, which we must be able to solve to
evaluate (3.4), thus, to solve (3.3)) and for using the model (i.e., for the FOP).

Algorithm 2 Reshuffled stochastic first-order algorithm

1: Input: Step-size sequence {ηt }T
t=1, initial point θ[1]

1 ≥ 0, number of epochs T , and

dataset {(ŝ[i ], x̂[i ])}N
i=1

2: for t = 1, . . . ,T do

3: Sample {π1, . . . ,πN }, a permutation of {1, . . . , N }

4: for i = 1, . . . , N do

5: x⋆ ∈ A-FOP
(
θ[i ]

t , ŝ[πi ], x̂[πi ]
)

6: g = x̂[πi ] −x⋆

7:

θ[i+1]
t =


θ[i ]

t ⊙exp(−ηt g ) (exponentiated update)

OR

max
{

0, θ[i ]
t −ηt g

}
(standard update)

8: end for

9: θ[1]
t+1 = θ[N+1]

t

10: end for

11: Output:
{
θ[N+1]

t

}T

t=1

Algorithm 2 shows our reshuffled stochastic first-order algorithm to solve Problem
(3.3) using the loss function (3.4). The algorithm runs for T epochs. The number of
epochs T should be viewed as an input parameter of Algorithm 2. In practice, one can
choose T to be as large as possible and then monitor the performance of the learned
model after each epoch of the algorithm. This way, the algorithm is evaluated for all
epochs up until T , and we can choose the model with the best performance. Alterna-
tively, we can use Algorithm 2 without a predefined number of epochs T and run it until
a stopping criterion is reached. In practice, this could be implemented by running the
algorithm until the difference in the test dataset performance (or any other performance
metric) of the models from epochs t and t +1 is smaller than a minimum value. For in-
stance, in Figure 3.10a, we can see that between epochs T = 4 and T = 5, the Amazon
score of the learned models does not change much, thus, we could use it to stop the
algorithm. In our numerical experiments, we chose a predefined T and monitored the
performance of the model after each epoch. At the beginning of each epoch, we sample
a permutation of [N ] (line 3), which simply means that we shuffle the order of the exam-
ples in the dataset. This is known as random reshuffling, as has been shown to perform
better in practice compared to standard uniform stochastic sampling [MKR20]. More-
over, since our random reshuffling strategy uses only one example per update step, it is
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particularly efficient for problems with large datasets. Next, for each epoch, we perform
one update step for each example in the dataset. In particular, in line 5 we compute one
element of A-FOP, and in line 6 we compute a subgradient of the loss function (3.4). For
the update step (line 7), we offer two possibilities: (i) exponentiated updates, which are
inspired by the exponentiated subgradient algorithm of [KW97] and are specialized for
optimization problems with nonnegative variables, and (ii) standard updates, which can
be interpreted as using the standard projected subgradient method, projecting onto the
nonnegative cone. In practice, the question of what update step is the best should be
answered on a case-by-case basis. An important component of our algorithm (and of
first-order algorithms in general) is the step size ηt . Common choices are ηt = c/

p
t ,

ηt = c/t , or ηt = c, for some fixed constant c > 0. Finally, to turn the output of the

algorithm
{
θ[N+1]

t

}T
t=1 into a single cost vector, we can use standard methods such as

θ = θ[N+1]
T (last iterate), θ = 1

T

∑T
t=1θ

[N+1]
t (average) or θ = 2

T (T+1)

∑T
t=1 tθ[N+1]

t (weighted
average) [LSB12].

Remark 3.2 (Approximate A-FOP). Notice that an element of A-FOP needs to be computed
at each iteration of Algorithm 2 (line 5). However, if the A-FOP is a hard combinatorial
problem (e.g., a large TSP or VRPTW), it may not be computationally feasible to solve it
to optimality multiple times. Thus, in practice, one may use an approximate A-FOP, that
is, in line 5 of Algorithm 2 we compute an approximate solution to the augmented FOP
instead of an optimal one. Fortunately, an approximate solution of the A-FOP can be
used to construct an approximate subgradient, which in turn can be used to compute an
approximate solution of Problem (3.3) (see Section 2.3.3). In practice, using approximate
solvers may lead to a much faster learning algorithm, in exchange for a possibly worse
learned model. This trade-off is explored in the numerical results of Section 3.4.2.

3.2. MODELING EXAMPLES
Next, we present three examples of how our IO methodology can be used for learning
from routing data. Namely, we first exemplify how a CVRP scenario can be modeled with
our IO methodology, and present a simple numerical example to illustrate the intuition
behind how Algorithm 2 works. Second, we show how a larger VRPTW scenario can be
modeled with our IO methodology, and present numerical results using data generated
from real-world instances. Third, we define a class of TSPs, which will later be used to
formalize the Amazon Challenge as an IO problem.

3.2.1. IO FOR CVRPS
We define the K -vehicle Symmetric Capacitated Vehicle Routing Problem (SCVRP) as

min
xe∈{0,1} ∀e∈E

∑
e∈E

we xe ,

s.t.
∑

e∈δ(i )
xe = 2 ∀i ∈V \ {0}∑

e∈δ(0)
xe = 2K∑

e∈δ(S)
xe ≥ 2r (S,D,c) ∀S ⊂V \ {0}, S ̸= ;,

(3.6)
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(a) Optimal SCVRP routes using weights we based on
Euclidean distances.

(b) Representation of the weights of each edge of the
graph, where the smaller the weight, the thicker and
darker the edge.

Figure 3.1: Optimal SCVRP tour and representation of graph weights.

where G = (V ,E ,W ) is an edge-weighted graph, with node set V (node 0 being the depot),
undirected edges E , and edge weights W . For this problem, each node i ∈V represents a
customer with demand di ∈ D . There are K vehicles, each with a capacity of c. Given a set
S ⊂V , let δ(S) denote the set of edges that have only one endpoint in S. Moreover, given
a set S ⊂ V \ {0}, we denote by r (S,D,c) the minimum number of vehicles with capacity
c needed to serve the demands of all customers in S. The xe ’s are binary variables equal
to 1 if the edge e ∈ E is used in the solution, and equal to 0 otherwise, and we ∈W is the
weight of edge e ∈ E [TV02].

Next, we show how to use IO to learn edge weights that can be used to replicate the
behavior of an expert, given a dataset of example routes. Consider the signal ŝ := D ,
where D is a set of demands of the customers, and the response x̂ ∈ {0,1}|E |, which is the
vector with components xe encoding the optimal solution of the Problem (3.6) for the
signal ŝ. Defining the linear hypothesis function (i.e., h(ŝ, x) = 0)

〈θ, x〉 := ∑
e∈E

θe xe , (3.7)

and the constraint set

X(ŝ) :=


x ∈ {0,1}|E | :

∑
e∈δ(i )

xe = 2 ∀i ∈V \ {0},∑
e∈δ(0)

xe = 2K ,∑
e∈δ(S)

xe ≥ 2r (S,D,c) ∀S ⊂V \ {0}, S ̸= ;


, (3.8)

we can interpret the signal-response pair (ŝ, x̂) as coming from an expert agent, which
given the signal ŝ of demands, solves the SCVRP to compute its response x̂. Thus, to
learn a cost function (i.e., learn a vector of edge weights) that replicates the SCVRP route
x̂, we can use Algorithm 2 to solve Problem (3.3) with hypothesis (3.7) and constraint set
(3.8).
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To illustrate how Algorithm 2 works to learn edge weights in routing problems on
graphs, consider a simple SCVRP with K = 2 vehicles, each with capacity c = 3, and 5
customers, each customer i with demand di = 1. In this example, for simplicity, we use
we equal to the Euclidean distance between the customers, however, any other set of
weights could be used instead. We create one training example using these weights. Fig-
ure 3.1a shows the location of the customers (black dots), the depot (red square), and
the optimal SCVRP routes using weights we . Figure 3.1b shows a representation of the
weights of each edge of the graph, where the smaller the weight, the thicker and darker
the edge. We use Algorithm 2 with exponentiated updates, ηt = 0.0002, and we initialize
θ1 with the same weight for all edges. In Figure 3.2, we graphically show two iterations of
the algorithm for this problem. In the first column, we show the evolution of the learned
weights θt . In the second column, we show optimal SCVRP routes computed using the
weights in the first column (i.e., computed by solving the A-FOP in line 5 of Algorithm 2),
and in the third column, we show the difference between the optimal routes using the
true weights (Figure 3.1a) and the optimal routes using the current learned weights (the
route in the second column). The difference between these two routes is the subgradient
computed in line 6 of Algorithm 2, which is used to update the learned weights θt . For
the subgradient representation in the third column, red edges represent a negative sub-
gradient (i.e., edges with weights that should be increased) and green edges represent a
positive subgradient (i.e., edges with weights that should be decreased). This is the main
intuition behind Algorithm 2: at each iteration, we compare the route we want to repli-
cate with the one we get with the current edge weights. Then, comparing which edges
are used in these two routes, we either increase or decrease their respective weights, thus
“pushing” the optimal route using the learned weights to be closer to the route we want
to replicate. In the example shown in Figure 3.2, we can see that after two iterations of
the Algorithm 2, the optimal route using the learned weights coincides with the example
route.

3.2.2. IO FOR VRPTWS
Consider the Vehicle Routing Problem with Time Windows (VRPTW)

min
xi j k∈{0,1} ∀i , j ,k∈[n]×[n]×[K ]

n∑
i=1

n∑
j=1

K∑
k=1

wi j xi j k

s.t. x ∈X(ŝ),

(3.9)

where n is the number of customers, K is the maximum number of vehicles available,
xi j k is a binary variable equal to 1 if the edge from node i to node j is traversed by vehicle
k in the solution, and 0 otherwise, and wi j k is the weight of the edge connecting node i
to node j . In the constraint set of program (3.9), x is the vector containing the variables
xi j k , the signal ŝ is defined to be the list of time windows (one for each customer) that
need to be respected, and X(ŝ) is the set of feasible solutions for the VRPTW for time
windows in ŝ. Notice that the set X(ŝ) may depend on other parameters of the problem,
such as the service time of each customer, the demands of each customer, the travel time
between customers, etc. However, we make the constraint set explicitly dependent only
on the time windows since this is the only external parameter that will change in this
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(a) θ1. (b) Optimal SCVRP routes using the
weights θ1.

(c) Difference between true optimal
route (Figure 3.1) and learned route
(Figure 3.2b).

(d) θ2. (e) Optimal SCVRP routes using the
weights θ2.

(f) Difference between true optimal
route (Figure 3.1) and learned route
(Figure 3.2e).

(g) θ3. (h) Optimal SCVRP routes using the
weights θ3.

(i) Difference between true optimal
route (Figure 3.1) and learned route
(Figure 3.2h).

Figure 3.2: Two iterations of Algorithm 2. The figures in the first column represent the learned weights, the
figures in the second column are optimal SCVRP routes for the respective weights shown in the first column,
and the third column represents the subgradient in line 6 of Algorithm 2, where red (green) edges represent
weights that should be increased (decreased).

example. More details on the different formulations for the constraint set of VRPTWs
can be found in [TV02].

Next, we show how one can model the VRPTW into our IO framework. Consider the
dataset {(ŝ[i ], x̂[i ])}N

i=1, where the signal ŝ[i ] is the list of time windows that need to be

respected and the response x̂[i ] ∈ {0,1}n2K is the respective optimal VRPTW routes (i.e., a
vector with components xi j k ). Defining the linear hypothesis function

〈θ, x〉 :=
n∑

i=1

n∑
j=1

K∑
k=1

θi j xi j k , (3.10)
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we can interpret this dataset as coming from an expert agent, which given the signal ŝ[i ],
solves a VRPTW to compute its response x̂[i ]. Thus, to learn a cost function (i.e., learn
a vector of edge weights) that replicates the VRPTW route x̂, we can use Algorithm 2 to
solve Problem (3.3) with hypothesis (3.10) and the constraint set of (3.9).

To illustrate this formulation, we will use a VRPTW scenario generated using data
from the EURO Meets NeurIPS 2022 Vehicle Routing Competition [ORT22]. The VRPTWs
considered in this competition are real-world instances provided by the company OR-
TEC. To generate the training data to test our IO formulation, we pick one instance from
the competition, which corresponds to a relatively large VRPTW with n = 200 customers
and K = 15 available vehicles. Originally, each customer in this VRPTW instance had
fixed time windows. However, to generate an IO dataset, we shuffled the original time
windows among the 200 customers and computed the optimal VRPTW routes for each
of these new instances. Thus, we generate a dataset {(ŝ[i ], x̂[i ])}N

i=1, where the signal ŝ[i ]

is a random assignment of time-windows to customers, and the response x̂[i ] is the re-
spective optimal VRPTW solution. Using the state-of-the-art solver PyVRP [WLK24], we
generated N = 50 training and test instances. All these instances have the same true edge
weights wi j , which corresponds to the non-euclidean real-world road driving time from
customer i to customer j . Thus, our IO goal is to learn a set of weights θi j that replicate
the routes using wi j as well as possible, given the provided dataset of signal-response
training examples. We learn the weights using the training dataset and evaluate its per-
formance using a test dataset. Moreover, we report the average performance value for 5
randomly generated training/test datasets, as well as the 5th and 95th percentile bounds.
We test three approaches to solve the IO problem, where we set the initial weights in θ1

equal to the Euclidean distance between customers i and j .

• Cutting plane: We use the cutting plane algorithm from [Wan09] to solve

min
θ≥0

∥θ−θ1∥1

s.t. x̂i ∈ FOP(θ, ŝi ) ∀i ∈ [N ],

which is the multi-point IO formulation proposed in [BCZ22].

• SAMD: We use the SAMD algorithm to solve (3.3), with exponentiated updates and
ηt = 0.3/t .

• Algorithm 1: We use Algorithm 2 to solve (3.3), with exponentiated updates and
ηt = 0.3/t . For this example, the difference between the SAMD algorithm and Al-
gorithm 2 is that the former uses uniform stochastic sampling, while the latter uses
the reshuffled sampling strategy.

Our experiments are reproducible, and the underlying source code is available at
[Zat23b]. Figure 3.3 shows the results of this experiment. For all the plots, the x-axis
refers to the epoch t ∈ [1,T ], which consists of N iterations of the method used to solve
the problem. Figure 3.3a shows the normalized difference between the vector of weights
returned by the IO approach (which we name θIO) and the vector of weights used to gen-
erate the data (which we name θtrue). Figure 3.3b shows the average difference between
the optimal routes using θIO (which we name xIO) and the routes from the test dataset
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(which we name xtrue). Figure 3.3c shows the normalized difference between the cost
of the expert decisions and the cost of the decisions using θIO. More precisely, we de-
fine CostIO := ∑N

i=1〈θtrue, x[i ]
IO〉 and Costtrue := ∑N

i=1〈θtrue, x[i ]
true〉 and compare the relative

difference between them. Notice that this difference will always be nonnegative by the
optimality of x[i ]

true. From the results of this experiment, we can see that Algorithm 2 out-
performs the other approaches (i.e., the cutting plane and SAMD) by a relatively large
margin, which shows the efficacy of our proposed reshuffled sampling strategy (i.e., Al-
gorithm 2) for this example.

(a) Difference between the true
weights (θtrue) and the ones learned
using IO (θIO).

(b) Average error between the routes
generated by θtrue and θIO.

(c) Average normalized cost difference
between the routes generated by θtrue
and θIO.

Figure 3.3: Results for the VRPTW scenario.

3.2.3. IO FOR TSPS
Let G = (V ,E ,W ) be a complete edge-weighted directed graph, with node set V , directed
edges E , and edge weights W . Next, given ŝ ⊂ V (i.e., a subset of the nodes of G ), we
define the Restricted Traveling Salesperson Problem (R-TSP) as

min
xi j

∑
i∈V

∑
j∈V

wi j xi j ,

s.t.
∑
j∈ŝ

xi j =
∑
j∈ŝ

x j i = 1 ∀i ∈ ŝ∑
i∈Q

∑
j∈Q

xi j ≤ |Q|−1 ∀Q ⊂ ŝ, Q ̸= ;, Q̄ ̸= ;

xi j ∈ {0,1} ∀(i , j ) ∈ ŝ × ŝ

xi j = 0 ∀(i , j ) ∉ ŝ × ŝ,

(3.11)

where xi j is a binary variable equal to 1 if the edge from node i to node j is used in the
solution, and 0 otherwise, and wi j is the weight of the edge connecting node i to node
j . Problem (3.11) is based on the standard formulation of a TSP as a binary optimization
problem [DFJ54]. The only difference to a standard TSP is that instead of being required
to visit all nodes of the graph, for an R-TSP we compute the optimal tour over a subset
ŝ of the nodes V . Notice that the standard TSP can be interpreted as an R-TSP, for the
special case when ŝ = V . In practice, any TSP solver can be used to solve an R-TSP by
simply ignoring all nodes of the graph that are not required to be visited.

Next, we show how to use IO to learn edge weights that can be used to replicate the
behavior of an expert, given a set of example routes. Consider the dataset {(ŝ[i ], x̂[i ])}N

i=1,
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(a) Nodes of a graph G . (b) Signal. (c) Expert response.

Figure 3.4: Illustration of signal and expert response for an R-TSP.

where the signal ŝ[i ] ∈ V is a set of nodes required to be visited and the response x̂[i ] ∈
{0,1}|V |2 is the respective optimal R-TSP tour (i.e., a vector with components xi j for (i , j ) ∈
V ×V ). Defining the affine hypothesis function

〈θ, x〉+h(ŝ, x) := ∑
i∈V

∑
j∈V

(
θi j +Mi j

)
xi j , (3.12)

and the constraint set

X(ŝ) :=


x ∈ {0,1}|V |2 :

∑
j∈ŝ

xi j = 1, ∀i ∈ ŝ∑
i∈ŝ

xi j = 1, ∀ j ∈ ŝ∑
i∈Q

∑
j∈Q

xi j ≤ |Q|−1, ∀Q ⊂ ŝ,Q ̸= ;,Q̄ ̸= ;

xi j = 0 ∀(i , j ) ∉ ŝ × ŝ


, (3.13)

we can interpret this dataset as coming from an expert agent, which given the signal ŝ[i ],
solves an R-TSP to compute its response x̂[i ]. For the hypothesis function, the term Mi j

can be used as a penalization term to enforce some kind of expected behavior to the
model, e.g., by adding penalizations to some edges of the graph. Figure 3.4 illustrates a
signal and expert response for an R-TSP. Thus, to learn a cost function (i.e., learn a vector
of edge weights) that replicates (or approximates as well as possible) the example routes
in the dataset, we can use Algorithm 2 to solve Problem (3.3) with hypothesis (3.12) and
constraint set (3.13). This formulation will serve as the basis of our IO approach to tackle
the Amazon Challenge.

We conclude this section with some general comments about our IO approach. First,
our IO approach does not require the dataset {(ŝ[i ], x̂[i ])}N

i=1 to be consistent with a single
cost function (i.e. a single set of edge weights), which is to be expected in any realistic set-
ting, due to model uncertainty, noisy measurements or bounded rationality [Moh+18b].
Also, we showed how to use our IO approach for SCVRPs, VRPTWs, and R-TSP scenar-
ios, but we emphasize that the methodology developed in this section could be easily
adapted to different kinds of routing problems. For instance, if the problem was a VRP
with backhauls, or pickup and delivery locations, we could easily account for these char-
acteristics, for example, by changing the constraint setX(ŝ) of our IO model [TV02], or in



3.3. AMAZON CHALLENGE

3

63

other words, by modifying the problem we assumed the expert agent is solving to gen-
erate its response. Notice that in any case, the methodology developed in Sections 3.1.1,
3.1.2, and 3.1.3 would not change, which highlights the generality and flexibility of our
IO approach. As a final comment, we mention that our approach can easily be adapted
to the scenario where new signal-response examples arrive in an online fashion. That
is, instead of learning from an offline dataset of examples, we gradually update the edge
weights (i.e., θt ) with examples that arrive online, similar to [BPS17]. This can be done
straightforwardly by adapting Algorithm 2 to use examples that arrive online in the same
way it uses the signal-response pairs (ŝ[πi ], x̂[πi ]) (see Remark 2.18).

3.3. AMAZON CHALLENGE
In this section, we describe the Amazon Challenge, which we use as a real-world appli-
cation to assess our IO approach. A detailed description of the data provided for the
challenge can be found in [Mer+22]. In summary, Amazon released two datasets for this
challenge: a training dataset and a test dataset. The training dataset consists of 6112
historical routes driven by experienced drivers. This dataset is composed of routes per-
formed in the metropolitan areas of Seattle, Los Angeles, Austin, Chicago, and Boston,
and each route is characterized by several features. Figure 3.5 shows a high-level de-
scription of the features available for each example route. Each of these routes starts at
a depot, visits a collection of drop-off stops assigned to the driver in advance, and ends
at the same depot. Thus, each route can be interpreted as an R-TSP route. Figure 3.6
shows 8 example routes leaving from a depot in Boston, where different colors represent
different routes. Each stop in every route was given a Zone ID, which is a unique iden-
tifier denoting the geographical planning area into which the stop falls, and is devised
internally by Amazon [Mer+22]. Some stops in the dataset are not given a Zone ID, so
for these stops, we assign them the Zone ID of the closest zone (in terms of Euclidean
distance). Turns out, this predefined zoning of the stops is a key piece of information
about the Amazon Challenge. This will be discussed in detail in the subsequent Sections
of this chapter.

As previously mentioned, the goal of the challenge was to incorporate the prefer-
ences of experienced drivers into the routing of last-mile delivery vehicles. Thus, rather
than coming up with TSP strategies that minimize time or distance given a set of stops to
be visited, the goal of the challenge was to learn from historical data how to route like the
expert drivers. To this end, a test dataset consisting of 3072 routes was also made avail-
able to evaluate the proposed approaches. To compare the routes from expert human
drivers to the routes generated by the models submitted to the challenge, Amazon de-
vised a scoring metric that computes the similarity between two routes, where the lower
the score, the more similar the routes. In particular, if A is the historically realized se-
quence of deliveries, sequence B is the sequence of deliveries generated by a model, its
score is defined as follows:

score(A,B) = SD(A,B) ·ERP nor m(A,B)

ERP e (A,B)
, (3.14)

where sequence SD denotes the Sequence Deviation of B with respect to A, ERPnor m

denotes the Edit Distance with Real Penalty applied to sequences A and B with normal-
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Figure 3.5: High-level description of data fields provided in the Amazon Challenge data set [Mer+22].

ized travel times, and ERP e denotes the number of edits prescribed by the ERP algo-
rithm on sequence B with respect to A. If edit distance with real penalty prescribes 0
edits, then the above formula is replaced by the sequence deviation, multiplied by 0.
Thus, the Amazon score combines a similarity measure that takes into account only the
sequence of stops in the routes (i.e., SD) with a similarity measure that also takes the
travel times between stops into account (i.e., ERP ). The details of the score computa-
tion can be found at [Ama21b]. Notice that, instead of using our tailored loss function
(3.4), one could use the scoring function (3.14) directly to learn the routing model, which
makes intuitive sense since minimizing this score is the actual goal of the Amazon Chal-
lenge. However, the resulting IO problem would be an intractable bi-level optimization
problem, similar to the case when using the so-called predictablity loss for IO [ASS18].
This issue highlights one of the big advantages of using our tailored loss function (3.4):
the resulting optimization problem is convex and subgradients of the loss function can
be computed in closed form, thus, making the problem amendable to be solved using
efficient first-order methods, such as Algorithm 2.

In summary, a dataset of 6112 historical routes from expert human drivers was made
available for the Amazon Challenge. Using this dataset, the goal is to come up with rout-
ing methods that replicate the way human drivers route vehicles. To evaluate the pro-
posed approaches, Amazon used a test dataset consisting of 3072 unseen examples. In
order to compare how similar the routes from this dataset are to the ones computed by
the submitted approaches, a similarity score was devised. The final score is the average
score over the 3072 test instances. A summary of the scores of the top 20 submissions
to the Amazon Challenge can be found at [Ama21c]. Since each historical route in the
dataset of the challenge refers to a driver’s route that starts at a depot, visits a predefined
set of customers, and then returns to the depot, the expert human routes from the Ama-
zon Challenge can be interpreted as solutions to R-TSPs, and we can use the IO approach
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Figure 3.6: Example routes from depot DBO1 in Boston, where different colors represent different routes.

to tackle the Amazon Challenge. In other words, we can use IO to estimate the costs they
assign to the street segments connecting stops. Ultimately, this will allow us to learn the
drivers’ preferences, and replicate their behavior when faced with new requests for stops
to be visited.

3.3.1. ZONE IDS AND TIME WINDOWS

In Section 3.2.3, we describe how IO can be used to learn drivers’ preferences from R-
TSP examples. Although the Amazon Challenge training dataset consists of 6,112 his-
torical routes, it is difficult to learn any meaningful preference of the drivers at the stop
level (i.e., individual customer level), since the latitude and longitude coordinates of each
stop have been anonymized and perturbed to protect the privacy of delivery recipients
[Mer+22]. However, recall that each stop in the dataset is assigned a Zone ID, which refers
to a geographical zone in the city (see Figure 3.5), and each zone contains multiple stops.
Analyzing how the human drivers’ routes relate to these zones, a critical observation can
be made: in the vast majority of the examples, the drivers visit all stops within a zone be-
fore moving to another zone (the zone ID of consecutive stops is the same around 85% of
the time). This behavior is illustrated in Figure 3.7a. Also, the same zone is usually visited
in multiple route examples in the dataset. Thus, instead of learning drivers’ preferences
at the stop level, we can learn their preferences at the zone level. In other words, we con-
sider each zone as a hypernode containing all stops with the same Zone ID. Thus, we can
create a hypergraph with nodes corresponding to the zone hypernodes (see Figure 3.7).
This way, we can view the expert human routes as routes over zones, and we can use our
IO approach to learn the weights the drivers use for the edges between zones.

Another piece of information in the dataset is that time window targets for pack-
age delivery are included for a subset of the stops. These constraints are often trivially
satisfied, and ignoring them altogether had minimal impact on the final score of our
approach. This was also observed by other contestants of the Amazon Challenge [AA21;
CHH22]. Therefore, time windows are ignored in our approach. Moreover, we also ignore



3

66 3. INVERSE OPTIMIZATION FOR ROUTING PROBLEMS

(a) Different colors represent different zones. (b) Each zone is substituted by a hypernode containing
all stops within it.

Figure 3.7: Example of an expert human route from the dataset in terms of its stop sequence and zone se-
quence.

all information about the size of the vehicle and the size of the packages to be delivered,
as these do not seem to influence the routes chosen by the drivers.

3.3.2. COMPLETE METHOD

In this section, we outline all the steps involved in our IO approach to the Amazon Chal-
lenge. As explained in the previous section, due to the nature of the provided data, we
focus on learning the preferences of the driver at the zone level. However, the historical
routes of the datasets are given in terms of a sequence of stops. Moreover, given a new
request for stops to be visited, the learned model should return the sequence of stops,
not the sequence of zones. Therefore, intermediate steps need to be taken to go from a
sequence of stops to a sequence of zones, and vice-versa. A block diagram of our method
is shown in Figure 3.8. A detailed description of each step of our method is given in the
following.

Step 1 (pre-process the data). The first step is to transform the datasets from stop-
level information to zone-level information. Namely, for each data pair of stops to be vis-
ited ŝ and respective expert route x̂ (see R-TSP modeling in Section 3.2.3), we transform
them into a signal ŝz

t containing the zones to be visited and respective expert zone se-
quence x̂z

t . This is the process illustrated in Figure 3.7. However, differently from Figure
3.7a, there are cases in the dataset where the human driver visits a certain zone, leaves it,
and later returns to the same zone. Thus, to enforce that the sequence of zones respects
the TSP constraint that each zone is visited only once, when transforming a sequence of
stops into a sequence of zones, we consider that a zone is visited at the time the most
consecutive stops in that zone are visited. To illustrate it, consider the case when a driver
visits 7 stops belonging to zones A,B ,C , where the sequence of visited stops, in terms of
their zones, is A → B → B → A → A →C →C . In this case, the driver visits zone A, leaves
it, and then visits it again. Following our transformation rule, we consider the sequence
of zones to be B → A →C .

Step 2 (Inverse Optimization). Next, considering the hypergraph of zones (i.e., each
node represents a zone), we use our IO approach to learn the weights the expert drivers
give to the edges connecting the zones. Namely, given a dataset of N examples of zones
to be visited and respective zone sequences, we model the problem as an IO problem as
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Figure 3.8: Overview of the proposed method.

in Section 3.2.3, and we solve Problem (3.3) using Algorithm 2 to learn a cost vector θ,
that is, a vector with components corresponding to the learned edge weights between
zones.

Step 3 (compute the zone sequence). Let ŝ be a set of stops to be visited from the test
dataset. To use the weights learned in Step 2 to construct a route for these stops, we first
need to transform the signal from the stops to be visited into the zones that need to be
visited by the driver ŝz (Step 1). Given the signal of zones to be visited, and the weights
θ learned in Step 2, we solve the R-TSP over zones with (3.12) as the cost function and
(3.13) as the constraint set. Specific choices for Mi j will be discussed in Section 3.4.1.
The solution to this problem contains the sequence of zones the driver needs to follow.
In some cases, routes in the test dataset contain zones that are not visited in the training
dataset. In these cases, since the vector of learned weights θ does not contain informa-
tion about these zones, we set their weights equal to the Euclidean distance between the
center of the zones.

Step 4 (from a zone sequence to a stop sequence). The final step of our method
consists of computing the complete route at the stop level. In other words, given the
zone sequence computed in Step 3 (e.g., Figure 3.7b), we want to find a respective stop
sequence (e.g., Figure 3.7a). We do it using a penalization method. Let ci j be the transit
time from stop i to stop j (this information is provided in the Amazon Challenge dataset,
see Figure 3.5). To enforce the zone sequence found in Step 3, we create the penalized
weights c̃i j , defined as

c̃i j :=


ci j , if stops i and j are in the same zone

ci j +R, if the zone of stop j should be visited directly after the zone of stop i

ci j +2R, otherwise,

where R > 0 is a penalization constant. For a large enough R, this modification ensures
that all stops within a zone are visited before moving to another zone and that the se-
quence of zones from Step 3 is respected. Thus, we compute the complete route over a
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set of stops Ŝ by solving the R-TSP over stops

min
x∈X(Ŝ)

m∑
i=1

m∑
j=1

c̃i j xi j ,

where X is the R-TSP constraint set (3.13) and m is the total number of stops.
As explained in Section 3.3, the dataset comprises example routes from 5 cities in the

USA, and each city can have multiple depots. It turns out that each zone is always served
by the same depot, thus, we can learn the preferences of the drivers separately for each
depot. Consequently, when using our approach in the Amazon Challenge, we perform
steps 1 to 4 separately for each depot. More details on the number of zones served by
each depot can be found in Section 3.4.2 and [Mer+22].

3.4. NUMERICAL RESULTS
In this section, we numerically evaluate our Inverse Optimization approach to the Ama-
zon Challenge. To compute the zone sequence (i.e., step 3 of our method) we use a
Gurobi-based TSP solver [Gur21] (except for the experiments in Section 3.4.2) and to
compute the complete route at the stop-level (i.e., step 4 of our method), we use the
LKH-3 solver [Hel17]. The difference between the two is that the Gurobi-based TSP
solver is exact, but usually slower for large TSPs, whereas the LKH-3 solver is approxi-
mate, but usually faster. Thus, the choice of which solver to use is based on the size of
the TSP problem that has to be solved. In our IO approach to the Amazon Challenge, the
TSP problem over zones is usually a relatively small one (less than 50 zones), so we solve
it using the exact Gurobi-based solver. On the other hand, the TSP problem over stops is
usually a larger one (+100 stops), so we solve it using the LKH-3 solver (solving it using
the Gurobi-based solver led to little to no improvement in the final Amazon score, while
taking significantly more time). Our experiments are reproducible, and the underlying
source code is available at [Zat23a]. In particular, we use the InvOpt python package
[Zat23b] for the IO part of our approach.

3.4.1. IO FOR THE AMAZON CHALLENGE
In this section, we present results for two IO approaches: a general approach and the
tailored approach proposed in this chapter. For both approaches, we use ηt = 0.0005/t
and θ1 (that is, the initial point of the used algorithm) as the Euclidean distance between
the center of the zones in the training dataset, where we compute the center of a zone by
taking the mean of the longitudinal and lateral coordinates of all stops within the zone.
All scores reported in this section are the Amazon score of the learned model evaluated
in the test dataset.

General IO approach. As a benchmark for our tailored IO methodology, we apply
a general IO methodology to the Amazon Challenge. This can be interpreted as using
the general IO methodology from Chapter 2. In particular, we have the following design
choices:

• Hypothesis function: We use the linear hypothesis (3.12) with Mi j = 0 ∀i , j ∈V .

• IO algorithm: We use the SAMD algorithm with T = 5N , ω(θ) = 1
2∥θ∥2

2, and Θ= {θ :
θ ≥ 0}.
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W G G G G G G G G G G G H H H H H
x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
y 1 2 3 2 1 1 2 3 3 2 1 1 2 3 3 2
Z E E G G G H H H J J J A A A B B

Table 3.1: Part of the zone sequence from the example route with RouteID f6cf991e-9bb0-46b9-a07d-
8192c2d29bb1.

The final Amazon score of the learned IO model is 0.535. This score ranks 11th compared
to the 48 models that qualified for the final round of the Amazon Challenge [Ama21c].
Although this is already a good result, we can significantly improve this score by using
our IO approach tailored to routing problems.

Tailored IO approach. To apply our tailored IO approach to the Amazon Challenge,
we have the following design choices:

• Hypothesis function: We use the affine hypothesis (3.12). The weights Mi j of the
affine term are defined below.

• IO algorithm: We use Algorithm 2, with standard update steps and T = 5.

As also noticed by some of the contestants of the original Amazon Challenge [WPN21],
by carefully analyzing the sequence of zones followed by the human drivers, one can un-
cover patterns that can be exploited. These patterns are related to the specific encoding
of the Zone ID given to the zones. Namely, the Amazon Zone IDs have the form W-x.yZ,
where W and Z are upper-case letters and x and y are integers. Table 3.1 shows an exam-
ple of a zone sequence from the Amazon Challenge dataset. Although the zone sequence
shown in Table 3.1 is just a small example, it contains the patterns that we exploit to im-
prove our approach, which are the following:

• Area sequence: For a zone with Zone ID W-x.yZ, define its area as W-x.Z. It is ob-
served that the drivers tend to visit all zones within an area before moving to an-
other area.

• Region sequence: For a zone with Zone ID W-x.yZ, define its region as W-x. It is
observed that the drivers tend to visit all areas within a region before moving to
the next region.

• One unit difference: Given two zone IDs z1 = W-x.yZ and z2 = A-b.cD, we define
the difference between two zone IDs as d(z1, z2) := |ord(W )−ord(A)|+|x−b|+|y −
c|+ |ord(Z )−ord(D)|, where the function ord maps characters to integers (in our
numerical results, we use Python’s built-in ord function). In particular, letters that
come after the other in the alphabet are mapped to integers that differ by 1, e.g.,
ord(G) = 71 and ord(H) = 72. It is observed that for subsequent zone IDs in the
zone sequences from the Amazon dataset, the difference between these zone IDs
tends to be small (most often 1).

Next, we incorporate these observations into our IO learning approach. One way to
force the routes from our IO model to respect these behaviors (i.e., the “area sequence”,
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Figure 3.9: Our final score compared to the scores of the top 20 contestants of the Amazon Challenge.

“region sequence” and “one unit difference” behaviors) is to use penalization terms. In a
sense, using these penalizations can be interpreted as modifying what we believe is the
optimization problem the expert human drivers solve to compute their routes. Thus,
we use (3.12) as our hypothesis function, with Mi j = M A

i j + M R
i j + M d

i j , where M A
i j = 0

if zones i and j are in the same area, and M A
i j = 1 otherwise, M R

i j = 0 if zones i and j

are in the same region, and M R
i j = 1 otherwise, and M d

i j = d(i , j ), that is, the difference

between zones i and j . Since for Algorithm 2 we initialize θ1 as the Euclidean distance
between zone centers, where the coordinates of the centers are given by their latitudes
and longitudes, each component of θ1 is much smaller than 1. This makes a penalization
of one unit (such as the ones used for M A

i j and M R
i j ) enough to enforce that the resulting

routes will respect the area sequence and region sequence behaviors. The same idea
applies to the “one unit variance” penalization.

The final Amazon Challenge score achieved by our tailored approach is 0.0302, which
significantly improves the 0.0535 score of the benchmark (i.e., general IO) approach. Fig-
ure 3.9 shows the scores of the top 20 submissions of the Amazon Challenge. As can be
seen, our score ranks 2nd compared to the 48 models that qualified for the final round
of the Amazon Challenge [Ama21c]. Compared to the initial weights fed to the tailored
IO algorithm, considering only the set of weights changed by the first-order method,
the change was 28.6% on average, with the 10th and 90th percentiles equal to 0.8% and
68.8%, respectively. These changes may be interpreted in the following sense: if the first-
order algorithm increases the weight of the edge connecting zones A and B, it means that
according to the data, the expert human driver considers this edge more costly than the
initial weights (i.e., than the Euclidean distance between the zones), or in other words,
the drivers have less preference in using this edge. Similarly, if the algorithm decreases
the weight, we can interpret it as the drivers considering this edge less costly, thus, hav-
ing a stronger preference in using this edge when driving. Moreover, to test the robust-
ness of the learned model, we added Gaussian perturbations to the weights learned and
computed the Amazon score of the perturbed model. Adding Gaussian perturbations
with magnitudes (in expectation) of 0.1% and 1% compared to the average magnitude of
the weight matrix led to an increase of 0.7% and 4% in the Amazon score, respectively.
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Thus, we observed the expected behavior from a robust model: small perturbations lead
to small changes in the model’s output.

In our experience, small perturbations in the learned model do not tend to lead to
significant changes in the resulting route. To evaluate its robustness, we can add Gaus-
sian perturbations to the weights learned for the Amazon Challenge and compute their
effect on the Amazon score of the model. Adding Gaussian perturbations with magni-
tudes (in expectation) of 0.1% and 1% compared to the average magnitude of the weight
matrix led to an increase of 0.7% and 4% in the Amazon score, respectively. Thus, we
observed the expected behavior from a robust model: small perturbations lead to small
changes in the model’s output while increasing the perturbations increases their impact
on the model. We have added a discussion on this point to the revised version of the
paper (page 21).

3.4.2. COMPUTATIONAL AND TIME COMPLEXITY

In this section, we present further numerical experiments using the Amazon Challenge
datasets, focusing on the computational and time complexity of Algorithm 2. Before we
present our results, as discussed at the end of Section 3.3.2, recall that we apply our IO
learning method separately for each depot in the Amazon Challenge training dataset.
Thus, assuming we can run Algorithm 2 in parallel for all depots, the complexity of com-
puting the final IO model for all depots equals the complexity of computing the IO model
for the largest depot in the dataset. For the Amazon Challenge, the largest depot dataset
is DLA7 in Los Angeles, which we thus use to discuss the complexity of our approach.

Dataset size versus performance. First, we study the performance of our IO ap-
proach by changing the size of the training dataset. That is, instead of using the entire
training dataset of the Amazon Challenge to train the IO model, we test the impact of
using only a fraction of the available data. Figure 3.10 shows the results of this experi-
ment. Figure 3.10a shows the Amazon score achieved, per epoch, by Algorithm 2 using
different fractions of the Amazon training dataset. Figure 3.10b shows the time it took
to run Algorithm 2 for 5 epochs, for the different fractions of the training dataset. As ex-
pected, the more data we feed to Algorithm 2, the better the score gets, and the longer
the training takes. Interestingly, notice that using only 20% of the data provided for the
challenge, our IO approach is already able to learn a routing model that scores 0.0334,
which would still rank 2nd compared to the 48 models that qualified for the final round
of the Amazon Challenge.

Time complexity and approximate A-FOP. In practice, the most time-consuming
component of Algorithm 2 is solving the A-FOP (line 5). As previously explained, for
the Amazon Challenge, this problem consists of a TSP over zones (see Step 2 in Section
3.3.2). Thus, for each epoch of Algorithm 2, we need to solve N TSPs, where N is the
number of examples in the training dataset. For the depot DLA7, N = 1133, and each
example contains, on average (rounded up), 23 zones, where the largest instance has
37 zones and the smallest has 9 zones. Thus, for each epoch of Algorithm 2, we need to
solve 1133 TSPs, each with 23 zones on average. Using an exact Gurobi-based TSP solver,
running 5 epochs of Algorithm 2 using the entire training dataset took 78.13 minutes (see
Figure 3.10b).

However, recall that as discussed in Remark 3.2, Algorithm 2 can be used with an
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(a) Amazon score on the test dataset, for mod-
els learned using different fractions of the training
dataset.

(b) Time taken to run 5 epochs of Algorithm 2.

Figure 3.10: Comparison of the Amazon score and learning time of models using different fractions of the
Amazon Challenge training dataset.

TSP solver Gurobi Gurobi LKH-3 LKH-3 OR-Tools OR-Tools
Dataset fraction (%) 20 100 20 100 20 100

Amazon score 0.0334 0.0302 0.0335 0.0302 0.0337 0.0306
Training time (min) 15.59 78.13 17.87 84.62 12.72 69.51

Table 3.2: Summary of the results of Section 3.4.2. The Amazon scores are computed using the test dataset.
The TSP solver refers to the solver used to solve the A-FOP in line 5 of Algorithm 2, and the training time is the
time of running Algorithm 2 for 5 epochs.

approximate A-FOP instead of an exact one. The idea here is that solving A-FOP approx-
imately can be faster in practice, which may compensate for a potentially worse perfor-
mance of the final learned IO model. We test this idea using Algorithm 2 with approx-
imate TSP solvers instead of the exact Gurobi-based one. For the approximate solvers,
we test the LKH-3 [Hel17] and Google OR-Tools [Goo21]. The final Amazon score after 5
epochs of Algorithm 2 using Google OR-Tools is 0.0306, just slightly worse compared to
the Gurobi and LKH-3 solvers, but taking only 69.51 minutes in total. Interestingly, we
can push this time even further. As can be seen in Figure 3.10a, a good IO model can
be achieved using Algorithm 2 for only one epoch. Moreover, from Figure 3.10a, it can
also be seen that a good IO model can be learned using only 20% of the training dataset.
Thus, using 20% of the training dataset and running Algorithm 2 using the Google OR-
Tools TSP solver for 5 epochs, we achieve a final score of 0.0337 (0.0341 after only one
epoch) in only 12.72 minutes (i.e., 2.54 minutes per epoch on average). This showcases
the learning efficiency of our IO methodology, making it also suitable for real-time ap-
plications, where models need to be learned/updated frequently, and the training time
should not take more than a couple of minutes. Table 3.2 summarizes the numerical
results of this section.

3.4.3. FURTHER NUMERICAL RESULTS
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(a) Average error between the routes generated by
θtrue and θIO.

(b) Amazon score of the learned models.

Figure 3.11: Comparison between different initializations of θ[1]
1 for Algorithm 2, for the VRPTW scenario of

Section 3.2.2 and for the Amazon Challenge.

IMPACT OF THE INITIAL POINT

An important parameter of Algorithm 2 is the initial point θ[1]
1 . In practice, the better

the initial point, the faster the algorithm will converge, and perhaps more importantly,
the better the test dataset performance of the final model tends to be. In this section,
we investigate the impact of different choices of θ[1]

1 for the numerical experiment of
Section 3.2.2 and for the Amazon Challenge. In particular, we compare the “Euclidean
distance” initialization used to generate the results shown in Figure 3.3b and Figure 3.10a
with a “uniform” initialization, where θ[1]

1 is a vector with all its components equal to the
same number (this initialization could be used when no prior information on a good
cost vector is known). Figure 3.11 shows the results of this experiment. As can be seen,
using the Euclidean distance can accelerate the convergence of the algorithm, as in the
VRPTW scenario, as well as improve the test dataset performance of the learned model,
as in the case of the final Amazon score of the learned models for the Amazon Chal-
lenge. This means that, although the Euclidean weights do not explain the routes in the
dataset, there is a correlation between the Euclidean distance between nodes and the
true weights used to generate the observed routes.

ALTERNATIVE PERFORMANCE METRIC

In Section 3.4, we evaluated our results for the Amazon Challenge in terms of the Ama-
zon score (see Section 3.3). In this section, we present results in terms of a zone se-
quence prediction error metric. Namely, given a zone sequence obtained from a learned
IO model (i.e., the output of Step 3 of our IO approach, see Figure 3.8), and the zone
sequence x̂ from the training or test dataset, the prediction error Error(x, x̂) counts how
many zones in x̂ are in the wrong position compared to x. For instance, if x = {T-7.1C,
T-7.1B,T-8.1B,T-8.1C,T-8.2C} and x̂ = {T-7.1B,T-7.1C,T-8.1B,T-8.2C,T-8.1C}, then the
Error(x, x̂) = 4. This performance measure can be interpreted as a generalization of
the classical 0-1 error used for classification problems, where 0-1(x, x̂) = 0 if x = x̂, and
0-1(x, x̂) = 1 otherwise. Thus, given a dataset of N examples of zone sequences and the
respective sequences predicted by the IO model, we define the total (percentage) zone
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(a) Performance of the general and tailored IO ap-
proaches using the zone sequence prediction error.

(b) Performance of the general and tailored IO ap-
proaches using the Amazon score.

Figure 3.12: Comparison between the zone sequence prediction error and Amazon score performance metrics.

(a) Route example from the test dataset. (b) Output route from the IO model.

Figure 3.13: Comparisson between the driver’s route from the Amazon Challenge and the output of the IO
model. In this example, the zone sequence predicted by the IO model perfectly matches the one from the
original route.

sequence prediction error across the entire dataset as 100
∑N

i=1 Error(x[i ], x̂[i ])/
∑N

i=1 L[i ],

where L[i ] is the length of the i ’th zone sequence. In other words, this value can be in-
terpreted as the percentage of time the IO approach correctly predicts the position of
a zone in the zone sequence. Figure 3.12a shows the performance of the general and
our tailored IO approaches from Section 3.4.1 in terms of the zone sequence prediction
error. For comparison, we also show their respective Amazon score in Figure 3.12b. As
can be seen, the IO models show (qualitatively) similar performance, in terms of both
prediction error and Amazon score metrics.

ROUTE EXAMPLES

In this section, we show some route examples, comparing the routes of human drivers
from the Amazon Challenge dataset, with the routes from our IO approach. In Figure
3.13, we show an example where the zone sequence predicted by the IO model (i.e., Step
3 in Section 3.3.2) perfectly matches the one from the original route, where nodes of
different colors represent different zones. As can be noticed, even though the zone se-
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(a) Route example from the test dataset. (b) Output route from the IO model.

Figure 3.14: Comparisson between the driver’s route from the Amazon Challenge and the output of the IO
model. In this example, the zone sequence predicted by the IO model does not match the one from the original
route.

quence is the same, the sequence of stops within each zone is different. However, even
with these differences, the Amazon score of the route in Figure 3.13b is still quite small
(0.0046). This phenomenon is generally observed for the Amazon Challenge: perfectly
predicting the zone sequence tends to lead to a small Amazon score, even with differ-
ent sequences of stops within each zone. This observation supports our IO approach to
the challenge, where we focused on predicting the correct zone sequence, instead of the
stop sequences.

In Figure 3.14 we show an example where the zone sequence from the original route
(Figure 3.14a) differs from the one predicted by the IO model (Figure 3.14b). In par-
ticular, the zone prediction error (defined in Section 3.4.3) between these two routes is
31.6%. Still, since the zones predicted in the wrong order are close to each other, the
Amazon score of the route in Figure 3.14b is relatively small (0.0117). This example pro-
vides some intuition on the results from Figure 3.12: even though the average zone pre-
diction error of the proposed tailored IO approach is around 32%, the fact that it still
guarantees a low Amazon score means that even when predicting the wrong zone se-
quence, the predicted zones in general similar (i.e., geographically close) to the actual
ones from the test dataset.





4
CONCLUSION

In this thesis, we have studied the theory of IO, in terms of geometrical understand-
ing, tractable reformulations, loss minimization interpretations, and efficient first-order
algorithms. We also developed tailored IO methodologies to solve learning in routing
problems and showed its real-world potential through the Amazon Challenge. A more
detailed summary of our contributions is as follows.

4.1. SUMMARY
In Chapter 2, we have presented new approaches to tackle IO problems. Based on the
geometry of the set of consistent cost vectors, we proposed the use of an incenter vector
of this set as the solution to the IO problem. Moreover, we proposed a new loss function
for IO problems: the Augmented Suboptimality Loss. This loss can be interpreted as a
relaxation of the incenter approach to tackle problems with inconsistent data. Moreover,
this loss can be used to derive IO approaches tailored for problems with mixed-integer
feasible sets and can be optimized directly using first-order methods. For the latter case,
we proposed new algorithms that combine stochastic, approximate, and mirror descent
updates, all of which can be used to exploit the structure of IO losses. Finally, we nu-
merically evaluated the proposed IO approaches and show that they can outperform
state-of-the-art methods in a variety of scenarios.

In Chapter 3, we have proposed an IO methodology for learning the preferences of
decision-makers in routing problems. To exemplify the potential and flexibility of our
approach, we first applied it to a simple CVRP problem, where we gave insight into how
our IO algorithm works by modifying the learned edge weights by comparing the ex-
ample routes to the optimal route we get using the current learned weights. Then, we
applied it to a larger VRPTW example, comparing the performance of our proposed al-
gorithm with different approaches from the literature. Finally, we have shown the real-
world potential of our approach by using it to tackle the Amazon Challenge, where the
goal of the challenge was to develop routing models that replicate the behavior of real-
world expert human drivers. To do so, we first defined what we call Restricted TSPs (i.e.,

77



4

78 4. CONCLUSION

TSPs for which only a subset of the nodes is required to be visited). Given a dataset of
signals (nodes to be visited) and expert responses (R-TSPs tours), we have shown how
to use IO to learn the edge weights that explain the observed data. In the context of the
Amazon Challenge, learning these edge weights translates to learning the sequence of
city zones preferred by expert human drivers. Then, from a sequence of zones, we con-
structed a complete TSP tour over the required stops. The final score of our approach is
0.0302, which ranks 2nd compared to the 48 models that qualified for the final round of
the Amazon Challenge.

4.2. REFLECTIONS AND FUTURE RESEARCH DIRECTIONS
The work presented in this thesis opens several avenues for future research.

Geometry, optimization algorithms, and structured prediction. One could try differ-
ent ways to choose a vector from the set of consistent costs, for example, using ellip-
soidal cones instead of circular cones. This idea was used in online IO algorithms (see
[BFL23, Section 4.3]), but perhaps it can also be leveraged for better empirical perfor-
mance in the offline case. Also, one could try to adapt and further develop the incenter
approaches presented in this thesis to the online IO scenario, perhaps leveraging the ge-
ometry of the IO problem to prove tighter regret bounds in some specific scenarios, akin
to [BFL23]. Another idea is to come up with different algorithms to tackle the optimiza-
tion problems discussed in this thesis, for instance, using cutting-plane/bundle meth-
ods, extending the related literature of structured prediction problems [Wan09; JFY09;
Teo+10]. Moreover, given the wealth of different first-order methods in the literature, we
feel like designing specialized first-order (or even proximal or second-order) algorithms
tailored for IO problems is an under-explored research direction. Given the newly es-
tablished bridge between IO and structured prediction problems (see Remark 2.10), we
expect that many interesting results can be achieved by combining and extending the
literature of these two, mostly disjoint, communities.

Applications to routing/combinatorial problems. Regarding the application of IO to
routing problems, it would be interesting to apply our methodology to different and
more complex classes of routing problems, for instance, dynamic VRPs, routing prob-
lems with backhauls, as well as routing problems with continuous decision variables.
Moreover, although in this work we focused on routing problems, our methodology could
also be adapted and tailored to different classes of problems with a binary decision
space, such as 0-1 knapsack problems. Given the modularity/flexibility of our IO method-
ology, we believe it has the potential to be used for a wide range of real-world decision-
making problems.

Open-source IO software. A particularly impactful work direction is further to develop
the InvOpt python package for IO [Zat23b]. As of the moment of the writing of this thesis,
InvOpt is still in the development stage and can be greatly improved, e.g., by implement-
ing more IO approaches and replicating numerical results from the literature. Also, the
package can be made more robust by using professional software development tools.
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Currently, the literature of IO is still in constant development and change, thus, having
an open-source implementation of IO algorithms and methods could be of great use to
the IO community.

A priori guarantees. For the most part, the evaluation metrics used in the IO litera-
ture to test the quality of the learned models are based on a posteriori out-of-sample
tests (e.g., the results from Section 2.4). This is common practice for supervised learning
problems (such as IO), and reflects the idea that we want the learned model to general-
ize to unseen data. However, an under-explored area in the IO literature is on a priori
guarantees, that is, looking only at the data and learning method, what guarantees can
we give about the learned model? One possible way to tackle this question is to interpret
the IO problem as a System Identification (SysId) problem. For SysId problems, a classi-
cal concept that allows us to prove a priori results on the learned (i.e., identified) model
is the so-called persistency of excitation of the data. Thus, an interesting research direc-
tion is to develop persistency of excitation conditions in the context of IO data, which
allows us to prove a priori guarantees on the quality of IO methods and models.

IO and Discrete Choice Modelling. In the literature on modeling discrete decision-
making processes, a popular approach is to use so-called Discrete Choice Models (DCM).
These models originate from the econometrics literature and have their roots in random
utility theory. This differs from standard IO models, which are based on deterministic
forward optimization problems. Despite this difference, many parallels can be drawn
between DCM and IO, e.g., both can be interpreted as methods that tackle these mod-
eling problems by choosing a hypothesis class (i.e., cost/utility functions), and optimize
a loss function that computes the likelihood/suboptimality of a model. Thus, a pos-
sibly fruitful research duration is to investigate the connection between these two ap-
proaches, bridging the DCM and IO communities, which are currently mostly unaware
of each other’s literature.
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