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Abstract. The numerical implementation of a recently developed thermome-
chanical constitutive model for fine-grained soils based on hyperelasticity-
hyperplasticity theory (Golchin et al. 2020), is presented. A new unconventional
implicit stress return mapping algorithm, compatible with elasticity derived from
Gibbs (complementary) energy potential, in strain invariant space, is designed
and the consistent tangent operator for use in boundary value problems (such as
in the finite element method) is derived. It is shown that the rate of convergence
of the stress integration algorithm is quadratic. The numerical results are in good
agreement with available data from thermomechanical element tests found in
literature.

Keywords: Gibbs free energy � Hyperplasticity � Implicit integration �
Thermomechanical model

1 Introduction

Boundary-value solvers (BVS) allow simulation of complex geometries, material
behaviour and loading, efficiently giving results for displacements and forces. The
finite element method is one such numerical tool. Constitutive models with sophisti-
cated mathematical formulations have been developed to reproduce the complex
behaviour of soils (e.g. elastoplasticity) as accurately as possible. In materials that yield
and exhibit nonlinearity, numerical algorithms are needed for BVS.

Recently, Golchin et al. (2020) developed a constitutive model that predicts the
thermo-mechanical behaviour of fine-grained soils. These types of constitutive models
are essential for simulating and investigating thermal effects on the behaviour of
thermo-active structures such as energy-piles, thermal quay walls, pipelines and so on.
This model has been developed using the hyperelasticity-hyperplasticity framework
proposed by Collins and Houlsby (1997) and ensures satisfaction of thermodynamics
principles.
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Here, the focus is exclusively on the implicit implementation of the constitutive
model in the finite element method (or any boundary-value solver). This generally
requires the material constitutive equations (stress–strain relationship) to be integrated
over time steps (local integration) (Anandarajah 2010; Borja 2013). These schemes are
broadly categorised as explicit, implicit or combined (Scalet and Auricchio 2018). Both
former approaches can provide accurate solutions; implicit approaches are stable at
bigger time steps, whereas the explicit approach requires small time steps to remain
stable (Scalet and Auricchio 2018). Moreover, the consistency condition is imposed in
the implicit approach to ensure that the stress remains on the yield surface under
elastic–plastic behaviour.

“Elastic predictor-plastic corrector” algorithms incorporate the implicit scheme and
have been developed and used in past decades (Anandarajah 2010; Borja 2013;
Coombs et al. 2013; Coombs and Crouch 2011). As can be inferred by their name,
these algorithms comprise two steps: in the first step an elastic prediction (trial strain or
stress) is applied; in the next step, if the trial state is not possible, i.e. exceeds a yield
criterion, it triggers plasticity, so that the internal variables then evolve and the stress
state is returned back onto the yield surface.

Implicit implementation of hyperelastic-plastic models, with elasticity derived from
Helmholtz free energy, for both isothermal and non-isothermal conditions, have been
addressed in the works of, for example, Anandarajah (2010), Borja (2013), Coombs
and Crouch (2011), and Semnani et al. (2016). In this work, a complementary energy
potential (Gibbs free energy potential) is defined to determine the nonlinear stress-
dependent thermo-elasticity of soils. As a result, an unconventional approach for stress
integration is required in order for the model to be used in boundary-value solvers.

2 Constitutive Equations

The constitutive equations are derived based on the hyperplasticity framework. Only
the necessary equations for numerical implementation in a finite element scheme are
presented here. The complete set of equations are described in Golchin et al. (2020).

Within hyperplasticity-theory the definition of two scalar potentials, namely energy
and dissipation potentials, are sufficient to derive the entire constitutive equations for
the behaviour of materials (Collins and Houlsby 1997). The model adopts a Gibbs-type
free energy potential, which results in expressions that define the elastic behaviour of
the soil by stress terms. The energy potential is defined as:

E p; q; epv ; e
p
s ; T

� � ¼ E1 p; qð Þ � pepv � qeps � 3a�p T � T0ð Þ
E1 p; qð Þ ¼ �jp ln p=pref

� �� 1
� �� q2=6Gp

� � ð1Þ

where p = tr(r)/3 (kPa) and q = (3/2 s:s)1/2 (kPa) are the mean effective and deviatoric
stress, respectively; r and s = r − tr(r)/3:1 are the effective stress and deviatoric stress
tensors, respectively; 1 is the identity tensor; ev

p = tr(ep) and es
p = (2/3 ep:ep)1/2 are

plastic volumetric and plastic deviatoric strain invariants, respectively; ep = ep − tr(ep)/
3:1, ep and ep are plastic strain and plastic deviatoric strain tensors, respectively; a* is
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the linear thermal expansion coefficient of the soil skeleton; T and T0 are the current
and initial absolute temperatures (K), respectively; pref (kPa) is the reference pressure
(normally 1 kPa); G is a material constant related to the elastic shear modulus, and j is
the elastic compressibility index, as used in models such as Modified Cam Clay
(MCC).

The total strain tensor e is determined as the first derivative of the complementary
energy potential (E) with respect to stress:

e ¼ �@E=@r ¼ eeþ eTherm þ ep; ee ¼ �@E1=@r; e
Therm ¼ a� T � T0ð Þ1 ð2Þ

where strains with superscripts e, Therm and p stand for elastic, thermo-elastic and
plastic components of the total strain, respectively. Time differentiation of Eq. (2)
results in rate form of the total strain tensor (the dot represents the rate):

_e ¼ _ee þ _eTherm þ _ep; _ee ¼ �@2E1=@r
2 : _r; _eTherm ¼ a� _T1; _ep ¼ _Kr ð3Þ

_K is the plastic multiplier or consistent parameter and r is the direction of plastic strain
or plastic flow tensor (which will be defined later).

For this model, the dissipation potential (d) is defined as:

d ¼ C _epv þ b_eps
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 _epv þ b_epsð Þ2 þB2 _epsð Þ2
q

A ¼ 1� cð Þpþ c=2ð ÞpcT ; B ¼ M 1� að Þpþ ac=2ð ÞpcTð Þ; C ¼ c=2ð ÞpcT
M ¼ M0 þ p T � T0ð Þ; pcT ¼ pref e

1þ e0
k�jð Þepv e�l T�T0ð Þ

ð4Þ

_epv and _eps are plastic volumetric and deviatoric strain increments, respectively; b rep-
resents the inclination level of the yield surface with respect to the p-axis; A, B and
C are functions defining the shape of the yield function; a and c are parameters that
affect the shape of the yield surface; M0 is the critical state stress ratio at ambient
temperature; p controls the change of M with temperature variation; pcT is the apparent
pre-consolidation pressure; k is the slope of the normal compression line (NCL) in void
ratio, e, versus lnp space; e0 is the initial void ratio; and l is the coefficient of thermal
softening, defining how the size of the yield surface changes by temperature.

The yield surface, y, and non-associated flow rule (rp, rq) can be derived from the
dissipation function (see Golchin et al. 2020), and are respectively, defined as:

y ¼ p� Cð Þ2=A2 þ q� bpð Þ2=B2 � 1 ¼ 0 ð5Þ

rp ¼ 2 p� Cð Þ=A2 � 2b q� bpð Þ=B2; rq ¼ 2 q� bpð Þ=B2 ð6Þ

where rp and rq are the directions of plastic flow parallel to the p- and q- axes,
respectively. The model employs an isotropic hardening rule:
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_pcT ¼ 1þ e0
k� j

_epv � l _T

� �
pcT ð7Þ

3 Implicit Implementation of Constitutive Equations

A combination of different principles (such as virtual work principle) may be employed
to develop finite element equations for a mechanical boundary value problem. The
typical final form of the governing equations is (Anandarajah 2010; Borja 2013):

Ku ¼ P ð8Þ

where K, u and P are the global stiffness matrix, the global unknown nodal dis-
placement vector and the global force vector, respectively. For problems involving
elastoplastic material behaviour, the global stiffness matrix is dependent on the global
displacement u, i.e. is nonlinear. As a result, an iterative algorithm, such as Newton–
Raphson, is required to solve the global finite element problem (Eq. (8)). The global
stiffness matrix K is established by assembling the stiffness matrix ki of all the
elements:

K ¼
Xi¼NE

i¼1

ki ¼
Xi¼NE

i¼1

Z
Xi

BTDOBdv ð9Þ

where i is the number of the corresponding element;
P

represents the assembly
operator; Xi is the element i domain and NE is the number of elements; B is the strain–
displacement matrix; and DO is the consistent tangent operator, defined as:

DO ¼ @Dr=@De ð10Þ

and represents a linearisation of the constitutive relation.
Constitutive relations for elastoplastic materials are mostly developed in rate form:

_r ¼ D _e ð11Þ

where D is the elastoplastic continuum tangent. The tangent operator DO is different
from the continuum tangent D. The tangent operator plays a similar role to the con-
tinuum tangent, but for a discretised problem. After the system of governing equation
(Eq. (8)) is solved, the rate equation (Eq. (11)) needs to be integrated; i.e., an inte-
gration procedure of the rate-form constitutive equations (from _r ¼ D _e) at the Gauss
points is required, to ensure all state variables are consistently solved. Any resulting
imbalanced forces can be solved via iteration of the solution procedure. An updated
tangent operator for the next step then needs to be calculated (depending on the global
solution method).
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3.1 Stress Integration

Assuming that within a typical time step (t, t + Dt) the state variables (e.g. stress and
strain), hardening variables (e.g. apparent pre-consolidation pressure) and absolute
temperature at time t (values at time t are represented by n) (rn, en, pncT , Tn) are
converged and known, and the strain and temperature increments (De, DT) are given.
Then the state variables at time t + Dt (denoted by n + 1) (rn+1, en+1, pnþ 1

cT ) must be
calculated by an integration scheme. Here, an implicit closed point projection method
(CPPM), a sub-class of the elastic predictor-plastic corrector algorithms, is employed to
implement the thermo-mechanical constitutive equations.

Appropriate residual equations are defined and minimised using an iterative
approach such as the Newton–Raphson method. Stress or strain may be selected to
define the first residual equation. For the current model, an unconventional approach is
designed in which strain is considered as the state variable to derive the first residual,
R1, and the residual equation is defined by stress terms with an apparent pre-
consolidation pressure and plastic multiplier:

R1 rnþ 1; p
nþ 1
cT ;DK

� � ¼ eenþ 1 � ee;trial þDepnþ 1 ¼ �@E1=@rnþ 1 � ee;trial þDKr

ð12Þ

where ee,trial is the trial elastic strain defined as:

ee;trial ¼ een þDe� DeTherm ð13Þ

The model hardens isotropically in accordance with Eq. (7). Integrating Eq. (7)
with respect to time results in the second residual expression:

R2 rnþ 1; p
nþ 1
cT ;DK

� � ¼ pnþ 1
cT =pncT � e

1þ e0
k�j De

p
kk�lDT ð14Þ

where epkk is the plastic volumetric strain. The third residual equation imposes the
consistency condition to ensure the stress returns back on the yield surface. This can
easily be interpreted as the yield value (Eq. (5)):

R3 ¼ y rnþ 1; p
nþ 1
cT

� � ð15Þ

These three residual equations are defined by the three unknowns rn+1, pnþ 1
cT and

DK. At the final state, in which convergence is reached and the residuals are zero, the
updated elastic strain and hardening variables are:

eenþ 1 ¼ een þDe� DeTherm � Depnþ 1; p
nþ 1
cT ¼ pncTe

1þ e0
k�j De

p
kk�lDT ð16Þ

The residual equations are required to be minimised and to be solved simultane-
ously. To minimise the residual incrementally, they are linearised using Taylor’s
expansion:
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‘R1 : R1 þ @R1=@rnþ 1ð Þdrþ @R1=@p
nþ 1
cT

� �
dpcT þ @R1=@DKð ÞdK ¼ 0

‘R2 : R2 þ @R2=@rnþ 1ð Þdrþ @R2=@p
nþ 1
cT

� �
dpcT þ @R2=@DKð ÞdK ¼ 0

‘R3 : R3 þ @R3=@rnþ 1ð Þdrþ @R3=@p
nþ 1
cT

� �
dpcT þ @R3=@DKð ÞdK ¼ 0

ð17Þ

Equation (17) can be re-written in a compact form as J � v ¼ R where J, v and
R are the Jacobian matrix, and the increments of unknown and residual vectors,
respectively. The unknown increments in each iteration are solved as:

v ¼ J�1 � R ð18Þ

and are added to the previous increment values. The iteration procedure continues until
the residual values are within an acceptable tolerance range; the final values represent
the values at time t + Dt (Eq. (16)).

3.2 Tangent Operator Stiffness Matrix

The momentum equation for finite elements considering materials with elastoplastic
behaviour is often solved by a Newton-type iteration solution for finite elements
(Eq. (8)). These schemes optimally provide an asymptotic quadratic rate of conver-
gence if the algorithmic tangent operator DO is used (Borja 2013). At the end of the
iteration process, the residuals become zero and the updated variables are those in
Eq. (16). Moving the right hand side of the equations to the left and calling them T1

and T2 respectively, and setting T3 as the yield surface value results in:

T1 ¼ eenþ 1 � een þDe� DeTherm � Depnþ 1

� � ¼ 0

T2 ¼ pnþ 1
cT � pncTe

1þ e0
k�j De

p
kk�lDT ¼ 0; T3 ¼ y ¼ 0:

ð19Þ

It should be noted that the above equations have variables of rn+1, pnþ 1
cT and DK.

Taking the rate of these equations and linearising, yields an equation similar to
Eq. (17). Then, an algorithmic solution similar to Eq. (18) can be employed from
which the algorithmic tangent operator (DO) can be extracted:

dr

dpcT
dK

2
64

3
75 ¼ J�1|{z}

A

de

0

0

2
64

3
75 ¼

DO A12 A13

A21 A22 A23

A31 A32 A33

2
4

3
5 de

0

0

2
64

3
75 ð20Þ

4 Numerical Simulations

The shear behaviour of a fully saturated illitic clay under undrained conditions at two
temperatures, 22 °C and 75 °C, was investigated by Ghahremannejad (2003). Prior to
shearing, the desired temperature was reached (starting from the ambient temperature
of 22 °C), and then the samples were hydrostatically consolidated to 400 kPa. Finally,
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the samples at a normally consolidated state were sheared under undrained compres-
sion to 10%. Figure 1a and b, respectively, show the stress path and shear stress versus
shear strain response of the soil at different temperatures. The parameters used for the
simulations are summarised in Table 1. The predictions of the model, implemented
with the proposed implicit algorithm, are compared with the experimental data in Fig. 1
and are in good agreement, determining the capability of the model to capture the
thermomechanical behaviour of the soil.

Fig. 1. Comparison of model’s predictions with undrained experimental data of Ghahreman-
nejad (2003) at different temperatures; (a) stress path; (b) shear stress vs. shear strain

Table 1. Summary of model parameters

M0(−) k (−) K (−) a (−) c (−) G (kPa) a* (1/K) l (1/K) p (1/K)

0.85 0.15 0.03 1.3 0.96 104 −3 � 10–5 9.09 � 10–4 −1.3 � 10–3

Fig. 2. Normalised residual of the stress by iteration number
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The performance of the stress integration algorithm is shown by the normalised
residual of the stress vector at each iteration (Fig. 2). The residual is Rr = ((r − r*):
(r − r*))1/2, where r is the estimated stress at each iteration and r* is the stress at the
end of the iteration process. The normalised residual follows a quadratic pattern, i.e.,
degrades quadratically, showing the effectiveness of the proposed technique.

5 Conclusions

A new implicit stress integration technique for models with nonlinear elasticity, derived
by Gibbs energy potential, is proposed, and the tangent operator, to be used for finite
elements, is extracted. The stress convergence has been checked and is quadratic. The
integration technique has been employed to implement the hyperelasticity-
hyperplasticity thermomechanical constitutive model developed by Golchin et al.
(2020). The predictions of the model compare well to experimental data available in
literature, representing a satisfying performance of the model and integration technique.
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