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Abstract 
 
Facing the severe air pollution phenomenon in urban areas and the subsequent low 

visibility event in airports, it is urgent to conduct air quality and visibility predictions 

to better reflect their changing trends. However, the variations of PM2.5 and 

visibility involve complicated physical and chemical processes, which make their 

accurate predictions challenging. 

In this thesis, methodologies to predict PM2.5, PM10, and visibility using Long 

Short-Term Memory Neural Networks (LSTM NN) were investigated. The first step 

of the proposed methodology was dataset analysis and preprocessing, which is an 

important step in almost all machine learning problems. Because missing data and 

confusing or incorrect data are common in large datasets, noise and errors were 

corrected and missing rates were calculated at first. Afterward, datasets were 

visualized to evaluate the missing phenomenon of different features. Due to the 

explored strong spatiotemporal correlations, for air quality features with high 

missing rates, linear interpolations were implemented when the missing granularity 

is small and k-Nearest Neighbor (kNN) imputations were used when the missing 

interval is large.  

Furthermore, the PM2.5 or PM10 prediction is usually considered as a 

regression task and aimed at minimizing the mean squared error (MSE) between the 

predicted values and measured ones. However, due to the high variability and 

explored ‘class-imbalance’ phenomenon of visibility data, that is, most of the data 

we have are related to 'normal' situations and extreme conditions are rare events, its 

predictions can be better dealt with as a classification problem. Because the most 

interesting cases to be predicted are those rare extreme events, the target was adapted 

to minimize the weighted cross-entropy.    

The second step of the proposed methodology was to configure the frameworks. 

For PM2.5 predictions, feature engineering was employed to the select appropriate 

features and some model hyperparameters were set through grid searches and 

coordinate descent. A coarse-to-fine sampling scheme was used to determine the 

weights in the loss function of visibility predictions.  



	

The third step of our research was performance evaluation. For PM2.5 

predictions, the proposed spatiotemporal LSTM framework can overcome the 

systematic underestimation that Lotos-Euros (a chemical transport models (CTMs) 

based system) generally produces by analyzing their scatter plots and confusion 

matrices. Additionally, it performs better than an LSTM-based prediction framework 

(Fan J et al. (2017) [9]) that also considers spatial correlations among stations and 

performs a similar task in a similar region when comparing their rooted mean square 

errors (RMSE) and mean absolute errors (MAE). Differences between the 

hyperparameters of these two frameworks were analyzed.  

As for PM10 predictions, the training efficiency can be improved significantly 

by transferring knowledge from PM2.5 predictions to PM10 predictions through 

model fine-tuning. Compared with Lotos-Euros, the LSTM framework also has 

competitive performance in PM10 predictions. As the first attempt at applying 

LSTM NN to predict visibility, forecasts are acceptable in practice. The total 

accuracy rate reaches 90.61%. The recall rate of the normal situation (L1) is 93% 

while its precision rate is 96%, indicating its superior prediction performance in the 

normal situations. Besides, for each visibility level, the number of correct predictions 

is larger than that of negative predictions.  

 

 

Keywords: PM2.5 predictions, PM10 predictions, Visibility predictions, Deep 

learning, LSTM, Transfer learning 
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1. Introduction 
With the rapid development of economy and the process of urbanization, many 

serious environmental pollution problems such as air pollution, water pollution, and 

noise pollution arose. Among these problems, air pollution has received increasing 

attention worldwide in the last decades because many developing countries have 

suffered from serious air pollution. Take China for example, many extreme air 

pollution events happened, especially in the Beijing, Tianjin, and Hebei districts 

(Jing-Jin-Ji area) [1][2]. According to the Reports on the Chinese Air Quality State 

(Dec 2017) (http://www.cnemc.cn/), among 338 monitored cities, the percentage of 

days that below the national healthy air quality standard reached 34.0% on average.  

As for the origins of air pollution, reactive gases and fine particles are two main 

sources. Higher level concentrations of these aerosols can lower visibility and 

increase the frequency of hazy days[3]. In the meanwhile, the occurrence of low 

visibility weather can cause a wide range of airport delays and cancellations[4]. This 

not only brings huge losses for the airlines, but also affects the transit trip. In 

addition, visibility is closely related to flight safety. Low visibility is one of the most 

common causes of flight accidents[4]. 

Facing the severe air pollution phenomenon in urban areas and the subsequent 

low visibility event in airports, it is urgent to conduct air quality and visibility 

predictions to better reflect their changing trends. Timely visibility predictions can 

help the airport operators to take measures to reduce the economic loss and 

passengers inconvenience caused by the air traffic disruption of low visibility. With 

the help of air quality predictions, governments and environmental agencies are able 

to enact policies and provide services to protect their citizens[2]. 

   

1.1 Challenges of PM2.5 Predictions 

Air pollution indicates the introduction of particulates, biological molecules or other 

harmful materials into the Earth’s atmosphere. It can cause disease to humans, 

destruction to other living organisms and also damage to the natural environment[5]. 
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An air pollutant is defined as a substance in the air that can affect humans and the 

ecosystem negatively. As illustrated above, air pollution is mainly due to reactive 

gases and fine particles. According to the World Meteorological Organization 

(WMO) (www.wmo.int), reactive gases as a group are very diverse and include 

surface ozone (O3), carbon monoxide (CO), volatile organic compounds (VOCs), 

oxidisednitrogen compounds (NOx, NOy), and sulfur dioxide (SO2). Parts of reactive 

gases (O3, CO, NO2, and SO2) adding fine particulate matters (PM2.5) and lead form 

the six “criteria pollutants” for air pollution. Among these substances, O3, PM2.5, 

and NO2 are the most widespread health threats[5]. 

PM2.5 represents fine particulate matters that consist of solid or liquid particles 

and are smaller than 2.5 micrometers in diameter. It can traverse the nasal passages 

during inhalation and reach the throat and even the lungs[6]. People who are exposed 

to ambient PM2.5 for a long time are likely to suffer from respiratory and 

cardiovascular diseases and some other illnesses[6]. 

The widespread sources of PM2.5 include industrial processes, energy 

production from power stations, vehicular traffic, residential heating, transport, 

natural disasters, coupled with complicated physical and chemical processes[1]. 

Hence, the determinants of PM2.5 concentrations include: 

• Weather patterns 

• Wind 

• Instability  

• Turbulence 

• Precipitation 

• Topography 

• Temperature of gases 

Due to these complex underlying interactions, the PM2.5 forecast remains a hard 

task. 
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1.2 Challenges of Visibility Predictions 

According to the International Civil Aviation Organization (ICAO) (www.icao.int), 

visibility is defined as the greatest distance at which a black object of suitable 

dimensions, situated near the ground, can be seen and recognized when observed 

against a bright background. On the basis of previous studies, the size, chemical 

composition, and mass concentration of airborne particles substantially lead to the 

variation of visibility[7].  

In the meanwhile, according to WMO (www.wmo.int), fog is defined as the 

reduction in horizontal visibility to less than 1000 m. When the observed horizontal 

visibility is at least 1000 m, but not more than 5000 m, the phenomenon is called 

mist. However, the meteorological causes of mist or fog are hard to be determined[8]. 

Many meteorological features such as relative humidity, pressure, wind, and 

temperature can directly or indirectly contribute to the degradation of visibility[7]. 

To summarize, visibility variations are mainly influenced by airborne particles 

and weather patterns. However, as illustrated in section 1.2, fine particulates like 

PM2.5 are hard to be forecasted because of the complex underlying interactions. In 

addition, since weather patterns are chaotic, it is still a challenging task to predict 

weather accurately and precisely. Because of these two difficulties, up to now, there 

has been no mature physical or mathematical model for the visibility. Its prediction 

remains a challenging task. 

 

1.3 Research Objectives 

The primary objective of this research is determined as follows:  

To develop deep learning architectures that can predict PM2.5 and visibility 

based on historical meteorological and air pollutants information.  

This primary objective can be further divided into several sub-objectives as follows: 

1. To develop frameworks that can predict PM2.5 concentrations and visibility 

several hours in advance, state of the art methods are considered to 

accomplish this objective. 
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2. To explore the configuration of the chosen state-of-the-art method that can 

achieve the best performance. 

3. To compare the methodology performance with other state-of-the-art 

methods in terms of root mean square errors (RMSE), mean absolute errors 

(MAE), confusion matrices and scatter plot diagrams. 

This thesis is organized in the following way. Chapter 1 introduces the problem 

background, research challenges, objectives, and scope. Chapter 2 discusses the 

literature in PM2.5 and visibility predictions. Chapter 3 introduces Recurrent Neural 

Networks (RNN), the network regularization technique dropout and the network 

optimization algorithm Adam. Chapter 4 describes the PM2.5 and visibility 

prediction problem in details and presents the dataset visualization results, statistical 

summaries and data preprocessing method. Chapter 5 evaluates the performance of 

the proposed frameworks in PM2.5, PM10 and visibility predictions separately 

through the case study. Chapter 6 presents conclusions, discussions and further 

research. Figure 1.1 summarizes the outline of this report. 

 

1.4 Research Scope 

The research focuses on developing deep learning architectures for PM2.5 and 

visibility predictions as discussed in section 1.3. Since different approaches can be 

used to achieve these objectives, the scope of this research should be limited. 

1. Limiting input features: Many features are available and can be considered 

as input for the frameworks. In this research, only meteorological and air quality 

features that are crucial in PM2.5 predictions are considered. In addition, some 

characteristics specific to the analyzed area are taken into account. 

2. State of the art approaches: While many neural networks can be applied to 

solve the problem, in this research, the focus is on long short-term memory neural 

networks (LSTM NN). The reason is that this research requires performing 

prediction tasks from spatiotemporal data, which makes LSTM NN the most suitable 

approach[6]. Moreover, many LSTM-based algorithms have been performed in 

similar tasks of atmospheric science with very good performance[2][6][9]. Reasons 
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for using LSTM NN will be illustrated much more specifically in section 2.6. 

3. Study area: Due to the severe air pollution phenomenon and frequent low 

visibility event in Jing-Jin-Ji districts, the research area is limited to Beijing. 

 
Figure 1.1 The outline of the thesis report. 

 

Chapter	1 
• Introduction and research challenges 
• Research objectives and scope 

Chapter	2 

•  Characteristics of spatiotemporal data mining  
•  Literature study on PM2.5 predictions 
•  Chemical transport models based methods 
•  Traditional statistical approaches 
•  Deep learning methods 

• Related work on visibility predictions 

Chapter	3 

• Recurrent neural networks and long short-term memory neural networks 
• Network regularization technique-Dropout 
• Gradient descent optimization algorithm-Adam 
• Performance measures 

Chapter	4 

• Problem description 
• Dataset description and visualization 
• Spatiotemporal correlation analysis 
• Data preprocessing 

Chapter	5 

• PM2.5 predictions at station Guanyuan, Beijing 
• Transfer learning for PM10 predictions at station Guanyuan, Beijing 
• Visibility predictions at Beijing Capital International Airport 

Chapter	6 
• Conclusions 
• Recommendations for future research 
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2. Literature Study 
In recent years, many efforts have been made to enrich approaches for forecasting air 

pollutant concentrations and visibility. For air pollutant predictions, methods are 

generally classified into two categories: Chemical Transport Models (CTMs) based 

and data based methods. CTMs include mechanism models that track how air 

pollutants generate, disperse and transmit while numerical simulations are used to 

produce predictive results. As for data based methods, they avoid sophisticated 

theoretical models and predict air quality based on data[10]. In this review, data 

based methods will be classified into two parts: traditional statistical methods and 

deep learning methods. When it comes to visibility predictions, numerical weather 

prediction (NWP) approaches and statistical methods are widely used[8]. 

 

2.1 Introduction to Spatiotemporal Data Mining 

Because PM2.5 data show strong correlations in both time and space, which will be 

illustrated in section 4.3.3, in this research, instead of time series, we deal with 

spatiotemporal data. Spatiotemporal data mining aims at recognizing interesting and 

useful patterns from large spatiotemporal datasets[11]. Figure 2.1 shows the general 

procedure of spatiotemporal data mining. For a given dataset, the first step is data 

preprocessing to correct noise and errors, impute missing data and implement 

spatiotemporal analysis so as to understand the underlying interactions. Afterward, 

the preprocessed data are fed into an appropriate algorithm to give target patterns. 

Since our research focuses on predictions, the output patterns here are predictive 

variables. 
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Figure 2.1 The procedure of spatiotemporal data mining (redraw based on [11]). 

 

2.1.1 Spatiotemporal Data Properties 

Since air pollutants for all areas are highly correlated, it is important to fully take 

spatiotemporal correlations into account. Spatiotemporal (ST) data refers to the 

spatial and temporal information of every measurement. Two inherent properties of 

ST data introduce challenges as well as opportunities for classical data mining 

algorithms[12]. 

1. Auto-correlation. In terms of ST data, the observations obtained at nearby 

sites and timestamps are correlated rather than independent with each other. This 

auto-correlation leads to a coherence of spatial observations and smoothness in 

temporal observations. 

2. Heterogeneity. For ST data, heterogeneity in both space and time can be 

shown in various ways and levels. Due to this heterogeneity, different models are 

learned in different spatiotemporal regions. 

 

2.1.2 Spatiotemporal Predictive Learning 

Predictive learning as a kind of spatiotemporal data mining, its basic objective is to 

learn a mapping from the input features to the output variables through a 

representative training set[11]. 



	
	
	
	
	
	
	
	

2.	Literature	Study	 9	
	

While traditional methods are able to identify temporal characteristics of input 

features, novel techniques considering spatial information in ST rasters are desired. 

In our research, information about spatial neighborhoods is leveraged to ensure 

spatial consistency among values at nearby sites. Variants of recurrent neural 

networks including spatial information for spatiotemporal predictive learning have 

been investigated[11]. 

 

2.2 Chemical Transport Models for PM2.5 Predictions 

Chemical transport models (CTMs) consist of the differential equations of the 

relevant physical and chemical atmospheric processes. In other words, CTMs are 

prognostic models that, given the emission rates of selected pollutants and their 

precursors and prevailing meteorological conditions, use numerical algorithms to 

predict the pollutant concentrations based on a combination of fundamental and 

empirical representations of the relevant physicochemical atmospheric processes[13]. 

Some processes are required to be simulated in any CTM, which include [15]: 

• Emissions 

• Meteorology 

• Transport and diffusion processes 

• Chemical transformations 

• Representation of PM 

• Deposition processes 

In conclusion, the general formulation of the atmospheric processes that need to 

be simulated in any CTM is presented in Figure 2.2[13]. Even though the major 

physicochemical processes treated in most CTMs are identical, how to characterize 

the chemical composition and size distribution of PM in different CTMs is varied. 

Nowadays, many CTMs have been developed and some widely used open-source 

systems include EMEP, WRF-CHEM, CMAQ, and Lotos-Euros[14]. In this review, 

a brief introduction to Lotos-Euros and CMAQ will be made in section 2.1 and 2.2 

respectively. 
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       Figure 2.2. The components of a PM modeling system（redraw based on[13]） 

 

2.2.1 Lotos-Euros 

Lotos-Euros as a three-dimensional CTMs-based system is originally designed for 

assessing air pollution over Europe. The main prognostic equation treated in 

Lotos-Euros is [15]: 

∂C
∂t

+U ∂C
∂x

+V ∂C
∂y

+W ∂C
∂z

= ∂
∂x

Kh
∂C
∂x

⎛
⎝⎜

⎞
⎠⎟ +

∂
∂y

Kh
∂C
∂y

⎛
⎝⎜

⎞
⎠⎟
+ ∂
∂z

Kz
∂C
∂z

⎛
⎝⎜

⎞
⎠⎟

+ E + R +Q − D − H
 

with C the concentration of a pollutant, U, V and W being the large-scale wind 

components in respectively west-east direction, in south-north direction and in 

vertical direction. Kh and Kz are the horizontal and vertical turbulent diffusion 

coefficients. E represents the entrainment or detrainment due to variations in layer 
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height. R gives the amount of material produced or destroyed as a result of chemistry. 

Q is the contribution by emissions, and D and H are loss terms due to processes of 

dry and wet deposition respectively. In Lotos-Euros, operator splitting is used to 

solve this equation numerically.  

R. Timmermans et al. (2017) [16] applied Lotos-Euros in China to track how the 

predefined source sectors contributed. They pointed out that a systematic 

underestimation of PM concentrations in Beijing using Lotos-Euros existed and 

analyzed the reasons for it. The summary of the mentioned reasons is shown in Table 

2.1. Some components were ignored but indeed contributed to particulate matters 

while other components were taken into account but underestimated. 

Table 2.1 Reasons for the systematic underestimation of Lotos-Euros 

Missing Components Underestimated Components 

road dust resuspension, fugitive dust from deserts, 

construction works, demolition works, secondary 

organic aerosol(SOA), heterogeneous sulphate,… 

all aerosol components(including 

sulphate, organic matter),… 

 

2.2.2 CMAQ 

The Community Multiscale Air Quality Modeling (CMAQ) System 

(www.epa.gov/cmaq) is another CTMs-based method for conducting air quality 

model simulations and as an active open-source project of the United States 

Environmental Protection Agency (U.S. EPA). CMAQ was used to simulate the 

PM2.5 formation and its response to precursor emission reductions in California’s 

San Joaquin Valley (SJV) (J Chen et al., 2014[18]). Prank M et al. (2016) [19] 

evaluated the performance of four CTMs (Lotos-Euros, CMAQ, EMEP, SILAM) in 

forecasting the aerosol chemical composition over Europe. The results showed that 

all these four models systematically underestimated PM10 and PM2.5 by 10–60%, 

depending on the model and the season of the year. 
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2.3 Traditional Statistical Methods for PM2.5 Predictions 

Autoregressive Integrated Moving Average (ARIMA) and Multiple Linear 

Regression (MLR) have been used to predict air pollutant concentrations in many 

regions. However, because of their linear representation of non-linear systems, the 

predictions of these two methods are of variable accuracy[21]. Other commonly used 

methods include Support Vector Regression (SVR) (Osowski S et al., 2007[22]), 

Kalman Filter (KF) (Hoi et al., 2008[23]) and Hidden Markov Model (HMM) (Sun 

W et al., 2013[24]).  

    In addition to the above approaches, Neural Networks (NN), which can perform 

nonlinear mapping, generally provide superior performance for complex systems. 

Therefore, it has been widely used for forecasting tasks. What’s more, in order to 

improve the network performance in specific tasks, many variants of neural networks 

have been put forward. For more detailed description regarding neural networks, see 

section 2.4. 

 

2.4 Deep Learning Methods for PM2.5 Predictions 

Deep learning as a fresh and promising branch of machine learning has received 

immense attention in both academy and industry. It has been successfully applied to 

image classification, natural language processing, prediction tasks, object detection 

and so on[6]. With the usage of multiple layer architectures to extract inherent 

features layer by layer, deep learning algorithms are able to recognize the 

representative characteristics within data. That is, for air pollutant predictions, deep 

learning can be powerful in extracting representative air quality features without 

prior knowledge, which is likely to result in superior prediction performance. 
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2.4.1 Autoencoders 

Autoencoders as a particular form of deep feedforward networks can learn the 

features from unlabeled data in an unsupervised way. For an autoencoder, its output 

is set to be equivalent to its input, after which the network is trained to minimize the 

error between them[25]. Nowadays, many kinds of research have been done by using 

autoencoders as pre-training methods to extract representative spatiotemporal 

features.  

Li X et al. (2016) [10] developed a spatiotemporal deep learning (STDL) based 

air quality prediction method. A stacked autoencoder was used to extract 

representative features. In addition to autoencoder layers, a logistic regression (LR) 

layer was added at the top for the purpose of real-value predictions. It was 

demonstrated by experimental results that the proposed method could have better 

performance than autoregressive moving average (ARMA) and support vector 

regression (SVR). 

Bun Theang Ong et al. (2016) [25] predicted PM2.5 concentrations in 52 cities 

within Japan. A deep recurrent neural network (DRNN) was proposed with a novel 

pre-training method (DynPT) using a specially designed autoencoder. The 

experimental results showed that the proposed DRNN outperformed the PM2.5 

prediction system VENUS, which is based on CTMs. 

 

2.4.2 Deep Belief Networks 

Deep belief networks (DBNs) were one of the first non-convolutional networks to 

successfully admit training of deep architectures. With its introduction in 2006, the 

current deep learning renaissance began[27]. Several restricted Boltzmann machine 

(RBM) layers adding one back-propagation (BP) layer constitute a DBN, which is 

applicable for both classification and prediction problems.  
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A geo-intelligent DBN (Geoi-DBN), which incorporates geographical 

correlation including geographical distance and spatiotemporally correlated PM2.5 

into deep learning, was used to estimate ground-level PM2.5 (Li T et al., 2017[28]). 

It was showed that the Geoi-DBN can capture the essential features associated with 

PM2.5 from the latent factors and perform significantly better than traditional neural 

networks including back propagation neural networks (BPNN) and generalized 

regression neural networks (GRNN). 

 

2.4.3 Recurrent Neural Networks 

Recurrent neural networks (RNN) as a special class of neural networks pose 

feedback connections between units, which lead to directed cycles. These 

connections allow RNN to exhibit dynamic temporal behavior by combining 

information in their past inputs to compute future outputs [25]. The hidden states and 

nonlinear behaviors make RNN particularly suitable for integrating the information 

over many time steps and for explaining complex sequential relationships. More 

detailed description of recurrent networks will be made in section 3.1. 

Fabio Biancofiore et al. (2017) [29] used meteorological information and PM10 

concentrations as input to forecast the daily averaged PM10 concentrations. All 

experiments showed that the neural network with recursive architectures had better 

performance compared to both MLR and the neural network without recursive 

connections. 

 

2.4.4 Long Short-Term Memory Neural Networks 

The basic problem of learning long-term dependencies in RNN is that gradients 

propagated over many stages tend to either vanish or explode. Even though suitable 

methods are adopted to ensure the stability of RNN, the difficulty within long-term 



	
	
	
	
	
	
	
	

2.	Literature	Study	 15	
	

dependencies arises from the exponentially smaller weights given to long-term 

interactions compared to short-term ones[27]. The causes of this phenomenon will be 

further explained in section 3.1. 

To solve these issues, LSTM NN as a special kind of RNN were developed by 

Hochreiter and Schmidhuber[30]. The basic structure of LSTM NN and RNN is 

similar, but the neurons of LSTM NN are replaced by memory blocks. LSTM NN 

introduce gate mechanism to prevent gradients from vanishing or exploding and are 

capable of learning long time series. The formulation of an LSTM block will be 

introduced in section 3.2. 

Fan J et al. (2017) [9] proposed a spatiotemporal prediction framework that 

consists of LSTM layers for PM2.5 predictions. Experiments showed that the 

proposed framework outperformed both deep feedforward neural networks (DFNN) 

and gradient boosting decision trees (GBDT). Xiang Li et al. (2017) [6] used a novel 

long short-term memory neural network extended (LSTME) model that inherently 

considered spatiotemporal correlations for air pollutant predictions. The experiments 

were compared with many data based methods including ARMA, SVR, traditional 

LSTM NN and time delay neural networks (TDNN). The results demonstrated its 

superior performance compared to all of them. Reddy V et al. (2018)[2] used an 

LSTM based seq2seq model to forecast air pollution in Beijing, China. The results 

showed that the LSTM framework produced equivalent accuracy when predicting 

future sequences compared to using SVR for a single timestamp. 

In addition to air quality, many kinds of research for the predictive learning in 

weather and atmospheres have been done based on LSTM NN. Ghaderi A et al. 

(2017) [31] presented a spatiotemporal wind speed forecasting algorithm using deep 

learning and in particular, LSTM NN. Zhang Q et al. (2017) [32] adopted an 

LSTM-based network to predict sea surface temperature (SST). Zaytar M A et al. 

(2016)[33] forecasted weather data including temperature, humidity and wind speed 

24 and 72 hours in advance with the usage of LSTM NN. 
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2.4.5 Hybrid Models 

Recently, many researchers have combined neural networks with other techniques 

such as traditional statistical methods and wavelet transformation so as to improve 

the forecasting accuracy. Some examples are briefly described as follows. 

Díaz-Robles et al. (2008) [21] proposed a novel hybrid model that combines 

ARIMA and Artificial Neural Networks (ANN) to improve the accuracy of PM10 

predictions in Temuco, Chile. Experimental results showed that the hybrid model 

could effectively improve the forecasting accuracy compared to either of the models 

that used separately. Feng X et al. (2015)[1] presented a hybrid model combining air 

mass trajectory analysis and wavelet transformation to improve the ANN forecast 

accuracy of daily average concentrations of PM2.5. It was demonstrated that the 

trajectory-based geographic models and wavelet transformation were effective tools 

for model improvement. Prakash A et al. (2011)[34] proposed a wavelet-based 

recurrent neural network to forecast concentrations of ambient CO, NO2, NO, O3, 

SO2, and PM2.5. According to the experiments, with a judicious selection of wavelet 

network, prediction accuracy could be increased significantly. 

 

2.5 Related Work on Visibility Predictions 

As mentioned in section 1.2, a mature physical or mathematical model for visibility 

predictions does not exist. Up to now, many kinds of research have been carried out 

on visibility through observations, models, climatology analysis and statistical 

methods[35]. For investigating the relationship between visibility and other features, 

Fan G et al. (2016) [36] revealed that relative humidity and PM2.5 concentrations 

were closely related to visibility. The increase of relative humidity and PM2.5 

concentrations can lead to the decline of visibility. Wang X et al. (2016) [37] pointed 

out that a power function relation existed between PM2.5 and visibility while an 

exponential relation existed between relative humidity and visibility.  

As for the prediction of visibility, numerical weather prediction (NWP) 
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approaches are normally considered as large-scale or mesoscale systems while 

statistical methods are commonly used in small-scale problems. 

 

2.5.1 Numerical Weather Prediction 

The motion of viscous fluid substances in the atmosphere is governed by a set of 

equations, known as the Navier-Stokes equations. NWP approaches solve these 

equations numerically by computers and then produce weather forecasts including 

visibility predictions. The most common procedure is to analyze simulation data of 

three-dimensional global models, such as the Global Forecast System (GFS) from the 

National Oceanic and Atmospheric Administration (NOAA), the Integrated 

Forecasting System (IFS) from the European Centre for Medium-Range Weather 

Forecasts (ECMWF), or mesoscale models, such as the Weather Research and 

Forecasting (WRF) model[8]. 

However, sometimes, the forecasts of poor-visibility events by NWP are 

restricted due to the fact that the low-visibility event relies heavily on small-scale 

variations of the atmosphere while extremely high resolutions are required to 

accurately simulate these variations. Hence, statistical methods are commonly used 

to solve small-scale problems. 

 

2.5.2 Statistical Methods 

Dutta D et al. (2015) [35] identified the key environmental and meteorological 

parameters for visibility predictions through decision trees and the selected 

parameters were NO2, wind speed, relative humidity, CO, and temperature. After 

selecting input features, a multi-layer perceptron (MLP) was used to forecast 

visibility 6 hours in advance during winter at Kolkata airport, India. Zhu L et al. 

(2017) [4] also used a MLP to predict the dominant visibility 1 hour in advance at 

Urumqi Airport, China. They pointed out that the absolute error of the hourly 
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prediction was 706 m. When the visibility was smaller than 1000 m, the prediction 

error was 325 m. 

Fuzzy time series combining ARIMA was adopted by Yao J et al. (2013)[7] to 

predict the atmospheric visibility in Shanghai, China and the relative error between 

the model outputs and observations was acceptable in practice. Cornejo-Bueno L et 

al. (2017)[8] used SVR, extreme-learning machines (ELM) and Gaussian-process 

algorithms to efficiently predict low-visibility events at Valladolid airport, Spain. 

Among them, the Gaussian process showed the best performance. 

 

2.6 Summary 

The aim of this chapter is to review the literature on both PM2.5 and visibility 

predictions. According to section 2.4.4, many kinds of research have been done to 

show the powerful performance of LSTM NN in both PM2.5 and weather 

predictions. What’s more, at the beginning of section 2.5, it was mentioned that 

many researchers revealed that there is a strong relationship between PM2.5 and 

visibility. However, as illustrated in section 2.5.2, up to now, we still have not found 

any literature involves using LSTM NN to predict visibility. To summarize, LSTM 

NN have been applied for PM2.5 predictions successfully and it has been revealed 

that there is a strong relationship between PM2.5 and visibility. However, up to now, 

LSTM NN have not been tried for visibility predictions. Since our goal is to establish 

deep learning architectures that can forecast PM2.5 and visibility accurately, 

according to the above analysis, LSTM NN are extremely appropriate for achieving 

this objective. 

As illustrated at the beginning of this chapter, in this research, we deal with ST 

data. Two special properties of ST data are auto-correlation and heterogeneity 

existing in both time and space. Our research leverages information about spatial 

neighborhoods to enforce spatial consistency. 

The literature reviews of PM2.5 predictions were divided into three parts: 

CTMs-based systems, traditional statistical methods and deep learning approaches. 

Famous CTMs-based open-source systems include Lotos-Euros CMAQ, EMEP, and 
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WRF-CHEM. As for traditional statistical methods, ARIMA, MLR, SVM, KF, and 

HMM have been tried by many researchers. When it comes to deep learning 

approaches, autoencoders, DBN, RNN, and LSTM NN have been widely used for air 

pollutant predictions. Some hybrid models combining neural networks with other 

techniques were also described in this review. 

In terms of visibility predictions, current methods include NWP and statistical 

methods. NMP models such as GFS, IFS, and WRF are commonly used. As for 

statistical methods, ARIMA, SVR, ELM, Gaussian-process, and MLP have been 

implemented by other researchers for visibility tasks. 
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3. Theoretical Background for Deep Learning 

Algorithms 
In the following chapter 4 and 5, deep learning architectures for PM2.5 and visibility 

predictions will be built. Some theoretical backgrounds such as how the LSTM block 

looks like, how to minimize the target function, how to avoid overfitting during 

training and how to evaluate the framework performance will be introduced in this 

chapter. 

 

3.1 Recurrent Neural Networks 

Recurrent neural networks (RNN) as a family of neural networks are very suitable 

for processing sequential data. Compared with feedforward neural networks (DFNN), 

essentially any function involving recurrence can be considered as a recurrent neural 

network[27]. Hence, RNN can have many variants. One of the important RNN 

defines the hidden units as Eq 3.1. 

ht = f (ht−1, xt ;θ )  (3.1) 

Here, xt ∈R
K and K is the input dimension. With this recurrence, an arbitrary length 

sequence xt , xt−1,..., x2, x1( )  is mapped into a fixed length vector ht.  

When the recurrent network is trained to perform a task that predicts the future 

according to the past, the network typically learns to use ht as a kind of lossy 

summary of the task-relevant aspects of the past sequence of inputs up to t [27]. Fig 

4.1 shows a recurrent network that is based on Eq 3.1. It consists of one input layer, 

one output layer, and one recurrently connected hidden layer. Notably, each node in 

the graph is a vector representing a layer. In details, the model input is 

x = (x1, x2,..., xT ) , where xi ∈R
K ,i = 1,2,...,T ; K is the input dimension; T represents 

the input time lag; and the model output is . The recurrent network 

processes information from the input sequence x by incorporating it into the state 

vector h that is updated over time. And the corresponding output sequence is the 

y = (y1, y2,..., yT )
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vector y. 

 

 
Figure 3.1 (Left) A circuit diagram. (Right) The same network in an unfolded form. 

(redraw based on [27]) 

 

The mathematical problem of learning long-term dependencies in RNN is that 

gradients propagate over many stages tend to either vanish or explode. As shown in 

Fig 3.1, the function f is involved in each timestamp. If f is considered as a linear 

function and the input xt is ignored, then Eq 3.1 can be rewritten as  

 

This recurrence relation essentially describes the power relationship and can be 

simplified as 

ht = WT( )t h0
= W t( )T h0

 

If W admits the eigendecomposition, then 

 

Therefore, any eigenvalue λi with magnitude less than one will decay to zero and 

eigenvalue with magnitude greater than one tends to explode. The gradient vanishing 

and exploding problem mentioned above refers to the fact that gradients through 

such a process are also scaled according todiag(λ)t . Since gradient descent is the 

most popular algorithm to optimize the network parameters, vanishing gradients 

ht =W
Τht−1

W t = (Qdiag(λ)Q−1)t =Qdiag(λ)tQ−1
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make it difficult to determine which direction the parameters should move to reduce 

the cost function, while exploding gradients can make learning unstable. 

Various techniques have been developed to overcome the above difficulties. The 

gradient explosion problem is usually solved by gradient clipping. That is, the 

gradients are clipped to a threshold value to prevent them from getting too large. As 

for gradient vanishing, the most effective and common methods used in practice are 

gated RNN. These gated units include the LSTM unit and gated recurrent unit 

(GRU)[27]. In the next section, we will make a brief description of LSTM NN. 

 

3.2 LSTM NN Formulation 

LSTM NN as a special type of RNN, in addition to self-recurrent memory cells, 

introduce three units (input, output and forget gates). That is, instead of simply 

applying an element-wise affine transformation of inputs and recurrent units like Eq 

3.1, LSTM NN use “LSTM cells” through these three gates to have an internal 

recurrence. The LSTM memory block can have many variants and these variants 

usually differ in the input for the memory. In our research, the LSTM memory block 

within a single cell is given in Table 3.1[30]. [ht-1,xt] is the input for all gates. 

 In this Table, it , ot , and ft correspond to the activation of the input gate, output 

gate and forget gate, respectively; Ct and ht are the activation for each cell and 

memory block respectively; and W and b represent the corresponding weight matrix 

and bias vector respectively. With the introduction of three gates, adding the 

self-recurrent memory, there are four weight matrices (Wf, Wi, Wc and Wo) in each 

LSTM cell. So the number of parameters for an LSTM neural network increases at 

least four times compared to an origin feedforward network, in which only one 

weight matrix exists. 
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Table 3.1 From Colah blog: The Forward Training Process of the LSTM NN 

 Formula Usage 

Forget Gate 

 

ft =σ Wf ⋅ ht−1, xt[ ]+ bf( )  
Determine what 

information is thrown 

away from the cell 

state. 

Input Gate 

 

it =σ Wi ⋅ ht−1, xt[ ]+ bi( )  

 
!Ct = tanh WC ⋅ ht−1, xt[ ]+ bC( )  

Determine what new 

information is stored in 

the cell state. 

 

Update 

 

 Ct = ft *Ct−1 + it * !Ct  Update the old cell 

state Ct-1, into the new 

cell state Ct. 

Output Gate 

 

ot =σ Wo ht−1, xt[ ]+ bo( )  

ht = ot * tanh(Ct )  

Determine what 

information is 

contained in the output 

 

3.3 Dropout in Recurrent Neural Networks 

Deep neural networks with numerous parameters are indeed very powerful machine 

learning methods. However, such networks easily face the problem of overfitting. As 

discussed at the end of section 3.2, the number of weights for an LSTM neural 

network increases at least four times, which makes it encounter overfitting much 

more easily. 

Srivastava N et al. (2013)[38] put forward dropout, which has been considered 
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as the most powerful regularization method for DFNN to avoid overfitting. Its key 

idea is to randomly drop units along with their connections from the network during 

training.  

 

Figure 3.2 Dropout in a neural network. (Left) Each node in the graph represents a 

layer. (Middle) Every neuron is a node in the graph. (Right) An example of a thinned 

network produced by applying dropout to the network in the middle. Crossed units 

have been dropped. (redraw based on [38]) 

 

In order to successfully apply dropout in RNN, Gal Y et al. (2016)[39] proposed 

a new variational inference based dropout technique for the LSTM. The forward 

training process of the LSTM given in Table 3.1 can be rewritten as: 
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Ct = ft *Ct−1 + it * !Ct

ht = ot * tanh(Ct )
 

(3.2) 

Following[39], implementing approximate inference equals implementing dropout in 

RNN with the same network units dropped at each time step, randomly dropping 

inputs, outputs, and recurrent connections. By means of dropout, the above 

parameterization (Eq 3.2) can be rewritten as  
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with zx and zh represent random masks repeated at all time steps.  

Figure 3.3 shows how to apply this kind of dropout in a recurrent neural network. 

The network contains one input layer, two hidden layers, and one output layer. Each 

circle represents a neuron, with horizontal arrows corresponding to recurrent 

connections. Besides, vertical arrows represent the input and output of each cell. 

Colored connections indicate dropped input and different dropout masks are 

represented by various colors. Notably, the identical dropout mask is used at each 

time step, including the recurrent layers. 

 

 

Figure 3.3 Dropout in a recurrent neural network (redraw based on [39]). 
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3.4 Gradient Descent Optimization Algorithms 

Gradient descent as a popular optimization algorithm minimizes an objective 

function by updating the parameters in the opposite direction of the gradient. The 

learning rate η determines the size of the steps used during an update. The iteration 

formula can be described as: 

θ = θ −η ⋅∇θ J(θ )  

Since numerous neurons exist in neural networks, and the weights between neurons 

in different layers are the parameters we need to calculate, gradient descent as a 

first-order method is feasible to compute in practice and commonly used to optimize 

neural networks.  

 

3.4.1 Mini-batch Gradient Descent 

For neural networks, gradient descent methods can be divided into three types and 

the difference lies in how many data included in the objective function. Batch 

gradient descent (BGD) i.e. vanilla gradient descent computes the gradient of the 

cost function w.r.t. the parameters θ for the entire training dataset (x(i ), y(i ) )
i=1

N

∑ , that 

is 

θ = θ −η ⋅∇θ J(θ;x
(1:N );y(1:N ) )  

Before each parameter update, we need to calculate the gradient of each sample in 

the dataset and then average it or sum it up, so batch gradient descent can be very 

slow sometimes.  

In contrast, stochastic gradient descent (SGD) computes the gradient of a single 

training example (x(i) ,y(i)) only: 

θ = θ −η ⋅∇θ J(θ;x
(i );y(i ) )  

Because SGD performs update according to just one sample, it is usually much faster. 
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However, the selection of training samples is of high variance in this method and it 

sometimes causes the objective function to fluctuate heavily.  

In order to make a trade-off between the accuracy of an update (BGD) and the 

time consumed of an update (SGD), mini-batch gradient descent are popular in 

optimizing neural networks, in which an update is performed according to mini-batch 

n (n<N) training examples: 

θ = θ −η ⋅∇θ J(θ;x
(i:i+n);y(i:i+n) )  

However, good convergence cannot be guaranteed in such a mini-batch gradient 

descent algorithm and several problems are required to be solved[40]: 

• How to choose a proper learning rate. 

• How to adjust learning rates for different parameter updates.  

• Since the target function of the neural network is non-convex, how to avoid 

getting trapped in their numerous suboptimal local minima. 

 

3.4.2 Adam 

Many algorithms have been developed by the Deep Learning community to address 

the problems mentioned above. Adaptive Moment Estimation (Adam) (Kingma D P 

et al. (2014)[41]) is a commonly used method that is able to compute adaptive 

learning rates for each parameter at every time step t. This method has many benefits. 

For example, it is straightforward for implementation, is efficient in terms of 

computation, requires little memory, and is suitable for problems with numerous data 

or parameters[41]. 

There are two key parameters in Adam. vt keeps an exponentially decaying 

average of past squared gradients while mt stores an exponentially decaying average 

of past gradients. 

mt = β1mt−1 + (1− β1)gt
vt = β2vt−1 + (1− β2 )gt

2  

Here, mt and vt estimates the first moment (the mean) and the second moment (the 
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uncentered variance) of the gradients respectively. The term mt increases for 

dimensions whose gradients point in the same directions and reduces updates for 

dimensions whose gradients change directions. By introducing vt, Adam adjusts the 

learning rates according to the parameters, larger updates are performed for small 

gradients while smaller updates are implemented for large gradients.  
However, if these moving averages are initialized as vectors of zeros, the 

moment estimates will be biased towards zero, especially during the initial timesteps, 

and when the decay rates are small[41]. The bias-corrected mt and vt are given as: 

m̂t =
mt

1− β1
t

v̂t =
vt

1− β2
t

 

Here, β1
t andβ2

t meansβ1andβ2 to the power t respectively. Then, the Adam update 

rule is given as  

θt+1 = θt −
η
v̂t + ε

m̂t

 

The authors proposed default values of 0.9 for β1, 0.999 for β2, and 10−8 for ε. 

An important property of Adam lies in its choice of learning rate η. It was 

proved that the effective magnitude of the steps taken in parameter space at each 

timestep is approximately bounded by the stepsize η, that is[41] 

 Δt !η  
According to this property, the right magnitude of η can be determined beforehand. 

 

3.5 Performance Measures 

Because PM2.5 concentrations are predicted as a regression task while visibility 

forecasts are considered as a classification task, the evaluation metrics for these two 

tasks will be mentioned separately in the following two sections. 
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3.5.1 Regression Task 

Since the PM2.5 prediction is considered as a kind of regression tasks, root mean 

square errors (RMSE) and mean absolute errors (MAE) will be used to measure the 

overall closeness of the results with the reference values. The formulations of these 

two indicators are as follows. 

RMSE = 1
n

(yi − yi
*)2

i=1

n

∑  

MAE = 1
n

yi − yi
*

i=1

n

∑  

where yi
* is the observed concentration, yi is the predicted value and n refers to the 

total number of testing samples. In PM2.5 predictions, the mean squared error (MSE), 

which is the square of RMSE, will be selected as the target function that needs to be 

minimized.  

However, RMSE and MAE just show the average performance of the prediction. 

Considering the variability properties of PM2.5 data and the severe influence of high 

PM2.5 concentrations, the regression results will be classified into the corresponding 

air quality level according to the Chinese Technical Regulation on the Ambient Air 

Quality Index (see Table 3.2)[6]. 

Table 3.2 PM2.5 air quality levels 

Rank Range(µg /m3 ) Description 

L1 <35 Good 

L2 (35,75) Moderate 

L3 (75,115) Unhealthy for sensitive groups 

L4 (115,150) Unhealthy 

L5 (150,250) Very unhealthy 

L6 >250 Hazardous 

After the conversion, measures such as the recall rate Jr_i and precision rate Jp_i 

can be utilized. These measures are evaluated per class i as 
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Jr _ i =
tpi

tpi + fni
 

Jp_ i =
tpi

tpi + fpi  

where tpi corresponds to the number of true positive predictions (the sample within 

the class i is predicted as the class i), fpi represents the number of false positive 

predictions (the sample within other classes is predicted as the class i), and fni 

indicates the number of false negative predictions (the sample within the class i is 

predicted as other classes). 

These symbols are summarized in Table 3.3, in which a confusion matrix for a 

binary classifier is shown. Here, True and False can be interpreted as the two classes 

of the binary classifier respectively. This matrix can be extended to the case of more 

than two classes easily. For a confusion matrix, labels in the row direction show the 

measured data while labels in the column direction show the predicted data. 

Table 3.3 A Confusion Matrix 

 Predicted True Predicted False 

Actual True tp fn 

Actual False fp tn 

Afterward, the total accuracy rate Ja is formulated as 

Ja =
tp + tn

tp + tn + fn + fp
 

 

3.5.2 Classification Task 

For visibility predictions, it is considered as a classification task. The reason why we 

convert it into a classification problem will be described in section 5.3. In a 

classification problem, numbers cannot be used to represent classes immediately 

because the difference between these numerical values cannot reflect the difference 

and relationship between different class correctly. Instead, 1-of-N encoding should 
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be used for the target y. So if input x belongs to class Ck, then y is a binary vector of 

length N (the number of classes) containing a single 1 for element k (the correct class) 

and 0 elsewhere.  

According to the Airport Operation Regularization published by the Civil 

Aviation Administration of China (CAAC) (www.caac.gov.cn), the minimum 

visibility ranges for different types of aircrafts to take off are given in Table 3.4. 

Table 3.4 Visibility standards for aircrafts to take off 

Rank Range (m) Description 

L1 (0,800) For aircrafts capable of low visibility flying 

L2 (800,1600) For three-engine aircrafts and four-engine aircrafts 

L3 >1600 For all planes 

Because there are three different classes in our task, then, an input belonging to L2 

will be given a target vector: 

y = 0,1,0( )T  

For visibility predictions, an appropriate activation function, such as softmax 

function, will be selected in the final layer so that the output in each neuron is 

mapped into a value between 0 and 1 and the sum of all output neurons is 1. With the 

help of 1-of-N encoding, the neural network is trained to have a single 

high-activation output when a certain input is present. It can be interpreted as the 

probability that it belongs to each class.  

In order to better minimize the difference between these two probability 

distributions, cross-entropy will be used as the target function. Additionally, since 

there is the ‘class-imbalance’ phenomenon in the visibility dataset, which will be 

described more specifically in section 5.3.1, weighted cross-entropy will be 

employed instead. It is defined as  

C = − α k tnk ln ynk
k=1

K

∑⎡
⎣⎢

⎤
⎦⎥n=1

N

∑  

Here, N refers to the batch size, K refers to the number of classes,α k is the 

corresponding weight for class k, tnk is the 1-of-N encoding of the target while ynk is 

the neural network output.  
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As for the performance evaluation in this classification task, the recall rate, 

precision rate, accuracy rate and confusion matrix described in section 3.5.1 will be 

adopted. 

 

3.6 Summary 

In this chapter, we gave a brief introduction to the theoretical background regarding 

deep learning. In section 3.1, RNN were described and the reason why they easily 

encounter the problem of gradient vanishing or exploding was analyzed. As a 

solution to this problem, LSTM NN were introduced in section 3.2. However, since 

LSTM NN introduce gate mechanism, the number of parameters increases at least 

four times compared to DFNN, which makes LSTM NN encounter the problem of 

overfitting much more easily. Then, dropout as a regularization technique was 

described in section 3.3. One of the most challenging problems of neural networks is 

how to minimize the target function, which leads to the introduction of optimization 

algorithms. In section 3.4, the mini batch gradient descent formula and the learning 

rate update method Adam were introduced. As for section 3.5, we made a brief 

description of the target function and performance indicators for regression and 

prediction task respectively. The cost function of PM2.5 predictions will be MSE 

while the target function of visibility predictions will be weighted cross-entropy. The 

recall rate, precision rate, and confusion matrix will be used to evaluate performance 

in both regression task and classification task. 
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4. Methodology for PM2.5 and Visibility Predictions 

Using Deep Learning 
At the beginning of this chapter, the research problem will be described in details. 

Afterward, data visualization and statistical analysis will be implemented in the two 

corresponding datasets. The data preprocessing method for air quality features with 

high missing rates will be discussed in section 4.5. 

 

4.1 Problem Description of PM2.5 Predictions 

As described in section 2.2, PM2.5 concentrations are related to the relevant physical 

and chemical atmospheric processes. Historical information including air quality and 

meteorological data was collected as input for the proposed network. Given Beijing’s 

geographical location, northerly wind is very beneficial for the dispersion of 

particulates, whereas southerly wind may sometimes aggregate pollution[42].  

Considering the importance of wind direction and the strong spatial correlations 

among these stations (shown in section 4.3.3), not only the meteorological features 

such as wind direction and wind speed at the target station, but also the PM2.5 

concentrations at three geographically nearest monitoring stations will be taken as 

input. To summarize, for the short-term forecast in a single station, data of all 

selected features of this station will be injected, along with PM2.5 data of three 

surrounding stations. Within this framework, spatial and temporal correlations are 

represented by neighboring stations and the ‘memory’ of LSTM respectively.  

In the real world, PM2.5 concentrations should be predicted many hours in 

advance so that there is enough time for warning and taking measures. However, 

with the increase of the prediction interval, the predicting task becomes much more 

difficult and the performance tends to degrade [2]. There is a trade-off between high 

accuracy and a long prediction period. In our proposed LSTM methodology, the goal 

is to forecast PM2.5 12 hours ahead. 

To summarize, for a single station n, the input dataset can be denoted as 
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stn = {x1, x2,..., xT ' }  

T’ refers to the sequential length. If the number of selected features is k, then each 

observation xt is a k + 3 dimensional vector because PM2.5 concentrations at the 

three geographically nearest monitoring stations are considered. The network output 

is the prediction of this single station 12 hours ahead. 

 

4.2 Problem Description of Visibility Predictions 

One obvious difference between PM2.5 and visibility predictions is that PM2.5 data 

is obtained from air quality monitoring stations while visibility data is recorded in 

metrological stations. Due to the limitation of accessibility, meteorological data was 

accessed at just one station, and information at nearby stations was not taken into 

account in this visibility task. 

 As illustrated in section 1.2, visibility is mainly influenced by airborne particles 

and weather patterns. Therefore, air quality and meteorological information will be 

used as input for visibility predictions. Here, the prediction period is fixed to be 4 

hours, which indeed has practical meanings because airport operators can have 

enough time to take measures to reduce the economic loss and passengers 

inconvenience caused by the air traffic disruption of low visibility. 

In conclusion, for the target airport, the input dataset can be denoted as 

st = {x1, x2,..., xT }  

T refers to the sequential length and each observation xt is a k dimensional vector in 

which k refers to the number of selected features. The network output is the predicted 

visibility level of this airport 4 hours ahead. 

 

4.3 Dataset for PM2.5 predictions 

For PM2.5 forecasts, the hourly air quality data for Beijing City from 2013/01/18 

16:00 to 2016/10/31 23:00 at 11 air quality monitoring stations and meteorological 

data every half hour from the same period at Beijing Capital International Airport 

were downloaded from the Qingyue Open Environmental Data Center 
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(https://data.epmap.org). Figure 4.1 shows the distribution of these air quality 

monitoring stations and the meteorological station.  

 
Figure 4.1 The distribution of monitoring stations in Beijing  

 

4.3.1 Meteorological Data Visualization 

Even though the meteorological data was obtained every half hour, it should be 

consistent with the air quality data, which indicates that the final meteorological data 

is hourly. The number of valid data instances at integral time points and half time 

points are given in Table 4.1. According to Table 4.1, in terms of available data size, 

there is no significant difference between these two datasets. However, this just 

shows the comparison quantitatively, the distributions of missing parts for different 

features are investigated in Figure 4.2. 

Table 4.1 Valid data instances for different meteorological features 

Feature Origin minute =0 minute =30 Total Missing Rate 

Wind Direction 51273 25683 25590 22.73% 

Wind Speed 66001 33011 32990 5.29% 

Temperature 65995 33009 32986 5.38% 

Dew Point 65966 32991 32975 5.82% 

Visibility 36587 21015 17772 44.86% 
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Figure 4.2 gives the dataset visualization results, in which white parts 

correspond to missing parts. For the feature wind direction, the missing parts are 

distributed throughout the whole sequence. Besides, it is noticeable that the missing 

phenomenon of visibility is rather severe. We will discuss whether to contain this 

feature as an input feature through experiments in section 5.1.2. 

 
Figure 4.2 The visualization of the meteorological data  

Based on Table 4.1 and Figure 4.2, the number of available data instances at 

integral time points and half time points do not show obvious difference while the 

missing parts do not show significant continuous characteristics. Linear interpolation 

was done in the whole dataset and then the values corresponding to integral time 

points were selected. The statistical summary of the measured meteorological 

features is shown in Table 4.2. 

Table 4.2 The statistical summary of the meteorological data 

Variable Unit Range Mean Std 

Temperature °C  [-16,42] 13.93 11.63 

Wind direction (°)  [10,360] 175.02 111.18 

Wind speed m/s [0,20] 2.89 2.17 

Visibility m [0,30000] 11611.17 8802.04 

Dew point °C  [-40,27] 3.04 13.90 
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4.3.2 Air Quality Data Visualization 

Since datasets corresponding to different monitoring stations are quite similar, 

station S6 (Guanyuan, Beijing) will be used as an example dataset to show air quality 

data. The statistical summary of the measured air quality variables is given in Table 

4.3 while Figure 4.3 shows the data visualization results.  

Table 4.3 The statistical summary of the air quality data 

Variable Unit Range Mean Std Missing rate 

AQI 1 [3,500] 112.34 86.15 10.67% 

PM2.5 µg /m3  [1,666] 81.44 78.00 11.54% 

PM10 µg /m3  [1,1000] 112.27 89.48 34.02% 

O3 µg /m3  [1,356] 58.72 57.71 13.91% 

SO2 µg /m3  [1,297] 18.54 25.98 11.88% 

NO2 µg /m3  [1,270] 56.69 34.51 12.49% 

CO mg /m3  [0.1,10] 1.26 1.14 12.60% 

 

 

Figure 4.3 The visualization of the air quality data (Guanyuan)  

Notably, the missing rate of PM10 is much higher than other features, which 

reaches 34.02%. In order to distinguish whether the missing rates and missing 

intervals of PM10 for other monitoring stations are similar, the PM10 data at all sites 

were visualized in Figure 4.4. 
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Figure 4.4 The visualization of the PM10 Data at stations 

From Figure 4.4, it is obvious that the missing parts appeared at different 

stations are distinct at most of the time. According to Table 4.4, the missing rates of 

PM10 at all stations are higher than 30%. We will discuss how to complete such a 

series in section 4.5.  

Table 4.4 The amount of the PM10 data at stations 

Station S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

Available 

Data 
21057 19534 20406 21112 21476 21892 20931 19508 20556 22523 22369 

Missing 

Rate (%) 
36,53 41,12 38,49 36,36 35,27 34,01 36,91 41,20 38,04 32,11 32,57 

 

4.3.3 Spatiotemporal Correlation Analysis 

The spatial correlation of the PM2.5 data among the selected stations was measured 

by Pearson's correlation coefficient and the results are shown in Table 4.5. All 

correlation values are above 0.79, which demonstrate that strong spatial correlations 

exist among these selected stations.  
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Table 4.5 The Person’s coefficients between stations 

R S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

S1 1.0 0.79 0.95 0.97 0.94 0.94 0.9 0.88 0.82 0.81 0.89 

S2 0.79 1.0 0.81 0.8 0.81 0.83 0.84 0.83 0.87 0.91 0.84 

S3 0.95 0.81 1.0 0.96 0.96 0.96 0.91 0.89 0.84 0.83 0.9 

S4 0.97 0.8 0.96 1.0 0.96 0.95 0.91 0.89 0.83 0.82 0.89 

S5 0.94 0.81 0.96 0.96 1.0 0.94 0.9 0.89 0.83 0.83 0.89 

S6 0.94 0.83 0.96 0.95 0.94 1.0 0.95 0.88 0.85 0.84 0.93 

S7 0.9 0.84 0.91 0.91 0.9 0.95 1.0 0.87 0.85 0.86 0.92 

S8 0.88 0.83 0.89 0.89 0.89 0.88 0.87 1.0 0.9 0.82 0.86 

S9 0.82 0.87 0.84 0.83 0.83 0.85 0.85 0.9 1.0 0.86 0.86 

S10 0.81 0.91 0.83 0.82 0.83 0.84 0.86 0.82 0.86 1.0 0.86 

S11 0.89 0.84 0.9 0.89 0.89 0.93 0.92 0.86 0.86 0.86 1.0 

 

Then, the autocorrelation function was used to evaluate the temporal correlation 

of PM2.5 data at each station. For time delay d, the formulation of the 

autocorrelation coefficient is as following: 

ρd =
Cov(y(t), y(t + d))

σ y(t )σ y(t+d )

 

where y(t) and y(t + d) indicate the PM2.5 data at time t and time t + d respectively, 

Cov(·) represents the covariance and σ  denotes the standard deviation. The 

autocorrelation coefficients of each station are shown in Figure 4.5, in which the 11 

curves correspond to different stations respectively. According to the figure, with the 

increase of time lag d, it has less influence on the status at time t. What’s more, when 

the time lag d is smaller than 18 (d < 18), the autocorrelation coefficient is above 0.5, 

which indicates a strong correlation in time. These findings can be considered as 

reference for determining input intervals. How to determine the most appropriate 

input period will be discussed in section 5.1.3. 
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Figure 4.5 The autocorrelation coefficients of each station 

4.4 Dataset for Visibility Predictions 

Since the missing rate of visibility in the above PM2.5 dataset is pretty high, which 

reaches 44.86%, this dataset cannot be used for visibility forecasts anymore. Instead, 

another dataset was selected for visibility predictions. Compared with the PM2.5 

dataset, which lasts for almost four years, the newly introduced dataset is about half 

of it. The hourly meteorological and air quality data from 2016/01/01 00:00 to 

2017/12/31 23:00 in station 54511 was obtained. This dataset was from the historical 

data archive of the China Meteorological Agency (CMA). ‘54511’ is the WMO id of 

this station and it refers to the Beijing Capital International Airport.  

Figure 4.6 gives the data visualization results. Similarly, white parts indicate 

missing parts. According to Figure 4.6, the missing rates of all features are pretty low. 

Hence, this dataset was completed by linear interpolation immediately. The statistical 

summary of all features is given in Table 4.6. 

 

Figure 4.6 The visualization of the visibility dataset  
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Table 4.6 The statistical summary of the visibility dataset 

Variable Unit Range Mean Std Missing rate 

PM2.5 µg /m3  [1,1000] 83.17 78.39 3.24% 

PM10 µg /m3  [25,1000] 106.86 90.02 1.89% 

Temperature °C  [-16,42] 14.06 11.64 0.24% 

Dew point  °C  [-36,27.7] 2.21 14.11 0.24% 

Relative Humidity % [5,99] 50.63 24.70 0.24% 

Wind direction (°)  [0,360] 166.02 103.28 3.71% 

Wind speed m/s [0,9.5] 2.09 1.36 0.24% 

Visibility m [23,35000] 13763.56 11668.76 0.26% 

 

4.5 Data Preprocessing  

Air quality features with small missing rates were completed by the linear 

interpolation. However, for the features with high missing rates (above 20%), fixing 

them in this simple way is likely to add large bias to the dataset itself. Because the 

missing rates of PM10 at all stations are higher than 30%, their missing parts should 

be fixed in a different way. Considering the strong spatial correlations among 

stations and the obvious autocorrelation in each site, k-Nearest Neighbor (kNN) [43] 

imputations were used when the missing interval is large and linear interpolations 

were implemented when the missing granularity is small. To summarize, the missing 

values were fixed through three steps. 

Step1: Linear interpolations while the missing period is smaller than 3 

hour. 

Step2: kNN imputations when the number of available data at nearby 

stations is larger than 3. 

Step3: Linear interpolations for the series after 1) and 2). 

kNN imputations select stations that are close to the station of interest to fix 

missing values. If the value in timestamp t at station A (xA) is missed, this method 

would find K other stations, which have a value xi presented in timestamp t with a 
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small distance to station A. An inverse distance weighted average of values at 

timestamp t from these K geo-graphically closest stations is then used as an estimate 

for xA. The specific formula is given as follows. 

xA = λi xi
i=1

K

∑  

 
λi =

1
d 2 (x, xi )

1
d 2 (x, xi )i=1

K

∑
 

The distance here refers to the straight-line distance between two sites. 

After applying the method mentioned above to fix the missing values in the 

PM10 series for all stations, Table 4.7 shows how the number of valid data instances 

changes after each step. The missing parts are completed gradually, which 

demonstrates the effectiveness of each step. 

Table 4.7 The number of valid PM10 data instances after each step 

 Available data at all stations Missing data at all stations 

Origin 6730 3762 

After Step1 12644 1685 

After Step2 29811 1685 

After Step3 33176 0 

  

4.6 Summary  

In this chapter, considering the accessibility of data, we introduced the 

methodologies for PM2.5 and visibility predictions using deep learning separately. In 

section 4.1, the PM2.5 predictions problem was formulated. For the short-term 

forecast (12 hours in advance), data of all selected features of the target station along 

with PM2.5 data of three surrounding stations were injected. With this framework, 

spatial and temporal correlations are considered by neighboring stations and the 

‘memory’ of LSTM respectively.  

While air quality data were obtained from 11 air quality monitoring stations, 

meteorological data was accessed at just one point. The problem description of 
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visibility predictions was shown in section 4.2. In this task, data of all selected 

features of the target station were considered. The network output is the predicted 

visibility level 4 hours ahead. 

    Afterward, the data visualization and statistical summary of these two datasets 

were finished separately in section 4.3 and 4.4. Since air quality data was obtained 

from multiple sites, spatiotemporal correlation analysis among these monitoring 

stations was implemented in section 4.3.3. Besides, for air quality variables with high 

missing rates, a data imputation method that fully considers temporal and spatial 

correlations was put forward in section 4.5.   
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5. Performance Evaluation 
In chapter 3, the theoretical knowledge of deep learning that will be mentioned in 

this chapter was provided. In addition, the methodologies for PM2.5 and visibility 

predictions using deep learning were introduced in chapter 4. In this chapter, we will 

configure and tune the LSTM frameworks to our prediction problems and then 

evaluate their performance for three different tasks: PM2.5 predictions, PM10 

predictions and visibility predictions in section 5.1, 5.2 and 5.3 separately. 

 

5.1 PM2.5 Predictions at station Guanyuan, Beijing  

In this section, the spatiotemporal LSTM model for PM2.5 predictions in station 

Guanyuan, Beijing will be built. For a neural network, many hyperparameters are 

required to be configured, including those that specify the structure of the network 

itself and those that determine how the network is trained. These two parts 

correspond to gradient descent hyperparameters and model hyperparameters. Besides, 

feature engineering will be implemented to select appropriate features. After network 

configuration, the proposed spatiotemporal LSTM model will be compared with 

Lotos-Euros and another spatiotemporal prediction framework. 

 

5.1.1 Mini-Batch Gradient Descent Hyperparameters 

When training a neural network, results will depend not only on the chosen network 

structure but also on the selected training method. The training method itself can 

have many hyperparameters. As described in section 3.4.1, mini-batch gradient 

descent was selected and the hyperparameters involved include learning rate, loss 

function, mini-batch size, number of training iterations and so on. These fixed 

training details are described in Table 5.1.  
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Table 5.1 The mini-batch gradient descent hyperparameters 

Parameter Value 

Number of records 33176 

Training set 69.34% 

Validation set 17.34% 

Test set 13.32% 

Parameter update Adam 

Batch size 128 

Loss function Mean Squared Error 

Activation function (Output layer) None 

After data preprocessing, hourly data from 2013/01/18 16:00 to 2016/10/31 

23:00 was obtained completely. Totally, there are 33176 records. For the records 

from 2013/01/18 16:00 to 2015/04/30 23:00, we took the first 80% as training set 

and the last 20% as validations set. The data from 2016/05/01 00:00 to 2016/10/31 

23:00 was considered as the test set. Since the PM2.5 prediction is a regression task, 

the target is to minimize the average errors between the observed concentrations and 

the predicted ones, which is exactly what Mean Squared Error (MSE) represents.  

When it comes to the choice of the batch size, with an appropriate batch size, 

updates can be computed more efficiently due to the use of parallel architectures. 

However, the batch size cannot be too large. Keskar N S et al. (2016)[44] pointed out 

that when using a larger batch there is a degradation in the quality of the network, in 

terms of its ability to generalize. The lack of generalization ability is due to the fact 

that large-batch methods tend to converge to sharp minimizers of the training 

function while small-batch methods converge to flat minimizers. Herewith, 

considering the size of the training set, which is 23004, batch size was set to be 128. 

That is, the parameters update 180 times in each epoch. Besides, Adam method was 

chosen to adjust learning rates when updating weights. The related parameters in 

Adam follow those provided in the original paper[41], which are also given in 

section 3.4.2. We do not use any activation function in the output layer of this 

regression model because any activation function is likely to add a transformation to 
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the numerical outputs and put restrictions on them. 

5.1.2 Feature Selections 

Before doing experiments to select the best model parameters, we will determine the 

input features in this section. According to section 4.1, spatial correlations are 

considered by adding neighboring PM2.5 concentrations. In the case study of station 

Guanyuan, data at S1, S3, and S7 were considered. The effectiveness of containing 

nearby stations will be demonstrated by comparing it with the identical configured 

network but discarding nearby PM2.5 data as input.  

Another concern is about visibility. As described in section 4.3.1, the missing 

rate of visibility is very high, at 44.86%. Since we just got accessibility to 

meteorological data at one location, visibility cannot be completed by kNN 

imputations like PM10. In our research, it was completed by linear interpolation 

immediately. However, in the meanwhile, according to the literature study on 

visibility in section 2.5, there is a strong relationship between PM2.5 and visibility. 

In order to distinguish whether it is necessary to contain visibility as an input feature, 

a similar method as evaluating adding PM2.5 data at nearby stations was used. 

Because the mini-batch gradient descent hyperparameters were already 

determined in section 5.1.1, in order to make the above comparisons, the model 

hyperparameters are also required. In this section, the model hyperparameters were 

set for comparative reasons and the best model hyperparameters will be discussed in 

the next section. The specific structure of this network is shown in Table 5.2. 

In our experiments, whether the number of epochs is suitable for converging 

were checked through comparing the training loss and validation loss in each epoch. 

Through experiments, the appropriate number of iteration times is 50. As described 

in section 3.3, LSTM neural networks with a large number of parameters easily face 

the problem of overfitting and dropout is a powerful method to solve it.  
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Table 5.2 Structure of the configured LSTM framework 

Parameter Value 

Input interval 12 hours 

Number of hidden layers 2 LSTM layer 

Neurons per layer 100 

Epoch 50 

Dropout rate in input 1st layer: 0; 2nd layer: 0 

Dropout rate in recurrent connections 1st layer: 0; 2nd layer: 20% 

Dropout rate in output 1st layer: 0; 2nd layer: 20% 

After setting the model hyperparameters, the related results in the validation set 

are given in Table 5.3. The second and third lines of Table 5.3 give the comparison 

of adding nearby PM2.5 concentrations while the third and fourth lines show the 

comparison of containing visibility. According to the performance indicators RMSE 

and MAE, within the identically configured network, considering PM2.5 at nearby 

stations and visibility as input significantly increase prediction performance. 

Therefore, in the following work, input features are fixed to be 15. 

Table 5.3 Performance measures used for feature selections 

Input Features RMSE MAE 

11 38.97 25.80 

14(add PM2.5 at three nearby stations) 36.82 23.91 

15(add visibility) 33.18 23.02 

 

5.1.3 Model Hyperparameters  

The input features have already been determined by feature engineering. In this 

section, best model hyperparameters including input intervals, number of hidden 

layers and number of hidden units in each hidden layer will be determined by 

hyperparameter space exploration (see Table 5.4). Two common exploration 

methods are coordinate descent and grid searches. 
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Table 5.4 Experimental parameters for the spatiotemporal LSTM framework 

Parameters Value Set 

Number of layers 2,3 

Number of nodes (per layer) 50,100,200 

Input time intervals 12,18,24,30,36,42,48 

In order to find the best values for the number of hidden layers and nodes per 

hidden layer, grid searches were used. Grid searches try every hyperparameter 

setting over a specified range of values and therefore involve a cross-product of all 

intervals. The corresponding network performances (RMSE) in the validation set are 

shown in Table 5.5. The minimal RMSE is 33.01 and it appears in which the number 

of layers is 2 and the number of nodes per layer is 150. However, compared with the 

RMSE when the number of layers is 2 and the number of nodes per layer is 100, 

which is 33.18, results do not improve significantly.  

Table 5.5 Grid searches for the best model hyperparameters 

Number of Nodes Number of Layers 

2 3 

50 35.72 34.12 

100 33.18 33.78 

150 33.01 34.23 

In the meanwhile, according to Table 5.6, when the number of layers is 2, 

adding 50 LSTM neurons per layer will add 153,450 parameters in total. Considering 

the training efficiency, we fixed the number of layers to be 2 and the number of 

neurons per layer to be 100, which are identical to the network structure given in 

Table 5.2. Within this structure, the number of parameters is 126,901 in total. 

Table 5.6 The number of parameters for two different structures 

Number of Layers Number of Nodes(per layer) Number of Parameters 

2 100 126,901 

2 150 280,351 

For the hyperparameter input intervals, the coordinate descent was used, which 

means that we kept all hyperparameters fixed except for input intervals, and adjusted 
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it to minimize the validation error. The corresponding RMSE and MAE are shown in 

Table 5.7, in which the RMSE stays about the same (within 2). This reveals that the 

granularity of the short-term data is significant enough to capture changes in air 

pollution. Similar findings were mentioned by Reddy V (2018) [2], in which the 

LSTM sequence-to-sequence model was used for PM2.5 predictions. Reddy V tried 

to vary past time steps from 20 to 60 to predict further 5 hours and the resulting 

RMSE changes within 5. So for our prediction task, the most appropriate input 

interval is 18. 

Table 5.7 Coordinate descent for the best input length 

Input intervals 12 18 24 30 36 42 48 

RMSE 33.18 31.61 32.26 32.42 32.45 32.56 31.91 

MAE 23.02 21.97 22.28 22.69 22.78 22.33 22.41 

To summarize, the final spatiotemporal LSTM model architecture is given in 

Figure 5.1.  

 
Figure 5.1 The architecture of the configured LSTM framework 
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5.1.4 LSTM against Lotos-Euros 

We assessed the performance of the proposed spatiotemporal LSTM model against 

Lotos-Euros, which is based on CTMs. As mentioned in section 2.2.1, Lotos-Euros is 

a regional model over Europe and is designed on a regular longitude-latitude grid 

( ). However, it can be applied anywhere and with arbitrary grid 

resolution in terms the horizontal resolution is larger than about 3 km[15].  

The reason why the horizontal resolution should be larger than 3 km lies in the 

vertical design of Lotos-Euros. In the vertical direction, the model consists of a static 

surface layer of 25 m, a dynamic layer extending from 25 m to the top of the mixing 

layer, and three dynamic reservoir layers that all together fills the vertical between 

the top of the mixing layer to 5 km altitude. This specially designed vertical structure 

helps a lot in solving the chemical process that is most time consumed in a very 

efficient way. Nevertheless, if higher resolution is desired, the horizontal and vertical 

dimension could be out of balance for the used parameterizations and more layers 

have to be added within the mixing layer[14]. 

Lotos-Euros as a CTMs-based model, predicts PM2.5 in sequence (usually 24 

hours). Take a specific day for example, Lotos-Euros exported the PM2.5 

concentrations on 2016/10/03 from 00:00 to 23:00 at a time on 2016/10/02 at 23:00. 

As for our spatiotemporal LSTM model, PM2.5 concentrations are predicted 12 

hours in advance. We outputted the PM2.5 concentrations on 2016/10/03 at 00:00 on 

2016/10/02 at 12:00 and concentrations at 01:00 on 2016/10/02 at 13:00 and so on. 

Table 5.8 shows this comparison intuitively.  

Since Lotos-Euros exports 24-hour PM2.5 concentrations at a time while the 

spatiotemporal LSTM model predicts PM2.5 concentrations 12 hours in advance, the 

average prediction length of these two methods is equal.  

 

 

 

 

0.5o × 0.25o
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Table 5.8 Running timestamp for two methods 

Target timestamp 
Running timestamp 

of Lotos-Euros 

Running timestamp of the 

proposed LSTM framework 

2016/10/03 00:00 2016/10/02 23:00 2016/10/02 12:00 

2016/10/03 01:00 2016/10/02 23:00 2016/10/02 13:00 

2016/10/03 02:00 2016/10/02 23:00 2016/10/02 14:00 

… … … 

2016/10/03 22:00 2016/10/02 23:00 2016/10/03 10:00 

2016/10/03 23:00 2016/10/02 23:00 2016/10/03 11:00 

As for the location used for comparison, the predicted PM2.5 concentrations 

using Lotos-Euros in the grid point (116.375, 39.9375) were extracted. As illustrated 

above, the horizontal resolution of Lotos-Euros cannot be smaller than 3 km and the 

selected grid point is just 1.31km far away from the Guanyuan station (see Table 5.9), 

we can ignore this distance and consider them as the same point.  

Table 5.9 The location of Guanyuan station and Lotos-Euros grid point 

Guanyuan monitoring station Lotos-Euros grid point Distance 

(116.361 , 39.9425) (116.375 , 39.9375) 1.3182km 

To summarize, the average prediction length of these two methods are both 12 

hours and the selected Lotos-Euros grid point can be considered as in the same 

location as station Guanyuan. Therefore, we can show the powerful performance of 

our spatiotemporal LSTM model through comparing it with Lotos-Euros. The 

prediction performance of these two methods in the test set (2016/05/01 00:00 - 

2016/10/31 23:00), i.e. half-year period are shown in Figure 5.2 and Figure 5.3. 

Intuitively, in Figure 5.2, a point locates in the line y=x means that its observed 

value y equals to its predicted value x, which can be considered as an ideal prediction. 

A point far away from this straight line implies that its predicted value far away from 

its recorded value. A point located in the zone above the line y=x (y>x) corresponds 

to underestimation while a point located in the zone under the line y=x (y<x) means 

overestimation. 

R. Timmermans et al. (2017) [16] pointed out that there is a systematic 
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underestimation of particulate matter concentrations in Beijing using Lotos-Euros. 

This can be reflected in the left scatter plot of Figure 5.2 because many data points 

appear in the zone y > x. Besides, many data points are located in the area y > x and 

y > 200. This indicates the underestimate phenomenon of Lotos-Euros, especially in 

serious air pollution situations. Compared with the scatter plot of Lotos-Euros, data 

points are more concentrated on both side of y = x in the right scatter plot and fewer 

data points appear in the area y > x and y > 200, which shows the competitiveness of 

the proposed spatiotemporal LSTM model in PM2.5 predictions.  

  
Figure 5.2 (left) The scatter plot of Lotos-Euros in PM2.5 predictions; (right) The 

scatter plot of the proposed LSTM framework in PM2.5 predictions 

As mentioned in section 3.5.1, the regression results can be classified into their 

corresponding air quality levels and therefore confusion matrix can be utilized. 

While Figure 5.2 compares the predictions through scatter plotting, Figure 5.3 shows 

this comparison from quantitative perspectives through confusion matrices. 

For a confusion matrix without normalization, values in the main diagonal 

correspond to the total times when the recorded air quality levels are identical to the 

predicted air quality levels, which indicate the ideal prediction times. The values 

under the main diagonal show how the predictions are underestimated corresponding 

to their measured levels while the values above the main diagonal imply 

overestimation. Therefore, an ideal confusion matrix is a diagonal matrix, in which 

the entries outside the main diagonal are all zero. The non-zero entries farther away 

from the main diagonal imply the weaker prediction performance.  
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 As for a confusion matrix with normalization, each value in the matrix is 

divided by the sum of the located row and the sum of a row is the number of records 

in this level. Therefore, values in the main diagonal correspond to recall rates for 

various levels. 

According to Figure 5.3 a), which shows the confusion matrix of Lotos-Euros, 

since L3, the values in the main diagonal are much smaller than the ones under the 

diagonal. This reflects the underestimation phenomenon of Lotos-Euros, especially 

in terms of high air quality levels, which is consistent with what we discovered in the 

left scatter plot of Figure 5.2. Take L4 for example, the entry in the diagonal is 52, 

however, the entries under the diagonal in this row are 150, 136 and 34 respectively. 

These indicate that L4 records were predicted as L3 for 150 times, as L2 for 136 

times and L1 for 34 times. 

When it comes to Figure 5.3 b), which corresponds to the confusion matrix of 

the spatiotemporal LSTM model, values in the main diagonal are larger than those in 

Figure 5.3 a) from L2. Because two confusion matrices are based on the same period, 

the numbers of instances at different levels for these two matrices are identical. 

Larger entries in the main diagonal show better performance.  

What’s more, the comparison is made considering the most severe air quality 

level (L6), which is described as hazardous. In the selected half-year period, 33 

instances were recorded as L6. Lotos-Euros predicted it as L2 for 12 times (most 

often) and L3 for 11 times. But L2 is considered as moderate while L3 is described 

as unhealthy for sensitive groups, which again shows the weak performance of 

Lotos-Euros in predicting extreme situations. As for our proposed LSTM model, 

even though the value in the diagonal at L6 is small, it was predicted as L5 for 23 

times and L5 is thought to be very unhealthy. These discussions reveal that in 

addition to comparing the diagonal elements, the off-diagonal values closer to the 

main diagonal indicate better but not ideal predictions while farther away from the 

main diagonal corresponds to worse prediction performance. 

Similar findings can be obtained according to the confusion matrix with 

normalization. As for the normalized one corresponding to Lotos-Euros (Figure 5.3 

c)), the recall rates at L4 and L5 are pretty low, at 13% and 7% respectively and the 
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recall rate at L6 reaches 0. Besides, the percentages in the zone where the recorded 

level is over L3 while the predicted level is below L3 i.e. under the main diagonal are 

rather high. All these observations reflect the problem of systemic underestimation 

using Lotos-Euros. The normalized confusion matrix of the proposed LSTM model 

is given in Figure 5.3 d). Without a significant difference in the recall rate of L1, 

starting from L2, the recall rates of all levels are higher than Lotos-Euros, indicating 

that the proposed framework can predict the levels accurately much more often. 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 5.3 a) The confusion matrix of Lotos-Euros; b) The confusion matrix of the 

proposed LSTM framework; c) The confusion matrix of Lotos-Euros with 

normalization; d) The confusion matrix of the proposed LSTM model with 

normalization. 

According to Figure 5.2 and 5.3 and the above analysis, the proposed 

spatiotemporal LSTM model can overcome the systematic underestimation problem 

that Lotos-Euros encounters to some extent. In addition to scatter plots and confusion 

matrices, hourly plotting at a shorter period is desired so as to show the predictions 

intuitively. Since much more attention is paid to severe situations and many ‘very 

unhealthy’ records ranging from 150 to 250 (L5) appeared in 2016/10. We plotted 
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the results in three successive periods, in which the ‘very unhealthy’ record existed 

in each day in Figure 5.4. Afterward, the hourly plotting at a longer period (half 

month) is depicted in Figure 5.5. 

 

a) 

 
b) 

 
c) 

 
Figure 5.4 The PM2.5 concentrations in three different periods: a) 

2016/10/01-2016/10/03; b) 2016/10/13-2016/10/16; c) 2016/10/18-2016/10/20. 
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a) 

 
b) 

 
c) 

 
d) 

 
Figure 5.5 The PM2.5 concentrations in four different time period: a) 

2016/06/01-2016/06/15, b) 2016/07/01-2016/07/15,c) 2016/08/01-2016/08/15,d) 

2016/09/01-2016/09/15 

 Following the first picture (Figure 5.4 a)), both the proposed framework and 

Lotos-Euros do not perform well. The reason may lie in the fact that the PM2.5 

concentrations fluctuated a lot in this three-day period, which makes the task much 

more difficult. When it comes to the second and third picture (Figure 5.4 b) and c)), 
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considering the long prediction intervals (12 hours) and the complicated underlying 

interactions of PM2.5, the plotting results of the spatiotemporal framework are 

acceptable because at most of the time, it can capture the trends and the gaps 

between the predictions and the measures are not very large. As for the plotting of 

Lotos-Euros, the underestimation phenomenon is very obvious since many measures 

from 150 to 250 (L5) were predicted to the range between 75 and 150 (L3 and L4). 

This is consistent with the confusion matrix shown in Figure 5.2 c). In that confusion 

matrix, 44 percentages of L5 records were predicted as L3 while 26 percentages of 

records were predicted as L4.  

Additionally, the hourly plotting at half-month periods is shown in Figure 5.5. 

According to these figures, the LSTM can achieve acceptable predictions at most of 

the time. However, for the sharp reductions in the real world, the LSTM plotting 

shows a slight ‘time delay’ phenomenon. Similar degradation phenomenon was 

found by Reddy V (2018) [2], in which the LSTM sequence-to-sequence model was 

employed for PM2.5 predictions, with 30 time steps previous to 10 future time steps.  

 

5.1.5 Comparison with Other Spatiotemporal Prediction Framework 

In addition to comparing the proposed spatiotemporal LSTM model with a 

CTMs-based model like Lotos-Euros, we also compared it with a deep learning 

based model. Fan J et al. (2017) [9] proposed a similar LSTM-based prediction 

framework for Jing-Jin-Ji area, China, which also considers spatial correlations 

among stations and aims at predicting PM2.5 8 hours in advance. The experiments 

showed that their proposed framework outperformed both deep feedforward neural 

networks (DFNN) and gradient boosting decision trees (GBDT). Table 5.10 shows 

the comparisons between our proposed framework and Fan’s framework in terms of 

network hyperparameters and performance indicators. 
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Table 5.10 Framework Comparisons 

 The proposed LSTM framework Fan’s prediction framework [9] 

Input Length 18 48 

Prediction Length 12 8 

Features 15 19 

Layer 2 LSTM layers 
2 fully connected layers & 2 LSTM 

layers 

Dataset Period 2013/01-2016/10 2013/09-2015/01 

Data Preprocessing kNN and linear imputations forward-fix 

RMSE 31.72 35.74 

MAE 22.01 23.72 

 

According to the experiments in section 5.1.3, increasing the input size from 18 

to 48 do not increase the performance noticeably and a short-term input interval is 

enough for capturing changes in air pollution. Besides, in addition to air quality 

properties and meteorological properties, time properties e.g. weekday, date, month 

and hour and spatial properties, e.g. longitude and latitude of stations were 

considered as input features in Fan’s framework. However, the RMSE and MAE 

revealed that adding these features do not help a lot and therefore air quality and 

meteorological features are enough for air pollutant forecast.  

Another important difference between these two frameworks is the dataset size 

and the data preprocessing method. Since the air quality monitoring stations at 

Jing-Jin-Ji area were built in 2013, all accessible air quality data at monitoring 

stations are available from 2013. What’s more, Fan fixed the missing values using 

the latest valid observation while kNN imputations were used during data 

preprocessing in our framework. With larger training dataset and kNN imputations, 

even though our framework structure is simpler than Fan’s framework and the 

prediction task is longer, the RMSE and MAE are smaller. 
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5.2 Transfer Learning for PM10 predictions  

Transfer learning, as the name states, requires the ability to transfer knowledge from 

one domain (source) to another (target). It has used in a large variety of domains 

including Natural Language Processing (NLP) and Computer Vision[27]. In our 

supervised learning task, we consider transferring knowledge from PM2.5 

predictions to PM10 predictions. Since both source data and target data are labeled, 

transfer learning is realized through model fine-tuning. 

Here, the input features of PM10 predictions are the same as the ones used for 

PM2.5 predictions but the target is changed into PM10 concentrations. Since the new 

dataset for PM10 predictions is large and similar to the original one, we fine-tuned 

through the whole network.  

The framework obtained in Section 5.1.3 was considered as a pre-trained 

network and model fine-tuning was done by continuing the mini-batch gradient 

descent. One strong advantage of this method is that it can accelerate the training 

process and the network does not need to learn from the randomly initialized weights. 

The experimental results shown in Table 5.11 reveal how can fine-tuning method 

increase the training efficiency. If network fine-tuning is applied, in order to obtain 

similar results, the number of iterations required is 5 rather than 50. 

Table 5.11 Performance Evaluations 

 The LSTM model without fine-tuning The LSTM model with fine-tuning 

Epoch 50 5 

RMSE 48.91 49.12 

MAE 30.93 31.62 

The scatter plot of the fine-tuned framework in the test set, which is in the same 

period as the one used in PM2.5 predictions (2016/05/01 00:00 - 2016/10/31 23:00) 

is shown in right picture of Figure 5.6. Again, the left picture corresponds to the 

scatter plot of Lotos-Euros. 

a) b) 
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Figure 5.6 (left) The scatter plot of Lotos-Euros in PM10 predictions; (right) The 

scatter plot of the fine-tuned framework in PM10 predictions. 

It is noteworthy that an outliner exists in this selected period, reaches 1000

µg /m3 . This outliner was deleted in these scatter plots so as to restrict the value 

range in both x-axis and y-axis. The scatter plots of PM2.5 predictions were already 

depicted in section 5.1.4. Similarly, a point locates in the line y = x corresponding to 

an ideal prediction and a point farther away from this line indicates a worse 

prediction. Compared with the left picture of Figure 5.6, data points are more 

concentrated on both side of y = x in the right figure.  

In conclusion, the proposed spatiotemporal LSTM model for PM2.5 predictions 

can be easily transferred to PM10 predictions. Besides, compared with Lotos-Euros, 

the LSTM framework not only have competitive performance in PM2.5 predictions 

but also in PM 10 predictions. 

 

5.3 Visibility Predictions at Beijing Capital International 

Airport 

As illustrated in section 4.4, the value of visibility ranges from 23 to 35000 and its 

standard deviation reaches 11668, which indeed indicate the extremely high 

variability property of visibility data. Besides, according to section 5.3.1, the 

visibility predictions face the problem of class-imbalance. Since the objective of this 



	
	
	
	
	
	
	
	

64	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Deep	 Learning	 Architecture	 for	 PM2.5	 and	 Visibility	 Prediction		
	

research is to forecast visibility at airports, that is, to predict visibility levels for 

different kinds of aircraft to take off so that airport operators are able to take 

measures to reduce the economic loss and passengers inconvenience caused by the 

air traffic disruption. Considering the high variability property of visibility data and 

the research objective, the visibility prediction is considered as a classification task. 

 

5.3.1 Dataset Partition 

As described in section 4.4, there are 17544 available records (2016/01/01 00:00 

to 2017/12/31 23:00) in the visibility dataset. Looking at Table 5.11, the total number 

of records in L1 and L2 are very low. The percentages of instances at L1 and L2 are 

2.33% and 6.03% respectively. According to the definition, the percentage of an 

event that is smaller than 5% can be described as a rare event.  

We split this dataset into three parts, aiming at keeping the proportions of 

different levels at these three sets to be consistent. With this partition, the LSTM 

model can learn the patterns from the training set; validation set can be used to 

determine the hyperparameters while test set for performance evaluation. Even 

though we kept the data distribution in these three sets to be similar, visibility 

forecasts still face the problem of class-imbalance because the percentages of 

instances at L1 and L2 are small. 

Table 5.11 Visibility Dataset Partition 

 L1 L2 L3 Sum 

Train set 312 792 10530 11634 

Validation Set 41 101 2815 2957 

Test Set 56 165 2717 2938 

Total 409 1058 16062 17529 
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5.3.2 Framework Parameters 

Most of the mini-batch gradient descent hyperparameters and model 

hyperparameters in visibility task are identical as those mentioned in section 5.1.1 

and 5.1.3. The hyperparameters changed are described in Table 5.12. 

 

Table 5.12 Different Hyperparameters for Two Frameworks 

 Visibility Predictions PM2.5 Predictions 

Prediction Length 4 12 

Batch Size 64 128 

Neurons (per hidden layer) 50 100 

Neurons (Output Layer) 3 1 

Activation Function (Output Layer) Softmax None 

Loss Function Weighted Cross-Entropy Mean Square Error 

 

Predicting airport visibility accurately four hours in advance can be extremely 

useful for passengers because they can have enough time to respond to airport delays 

and cancellations. Additionally, since the size of the visibility dataset is around half 

of the PM2.5 dataset, the number of neurons per layer was reduced to 50 and the 

batch size was changed to 64. Because the visibility forecast is a classification task 

and visibility values were divided into three classes, the number of neurons in the 

output layer is three and the softmax function was used. Since class-imbalance 

phenomenon was explored in the visibility dataset, the target function was weighted 

cross-entropy. One strong advantage of introducing weights is that it can add bias to 

events with small occurrence rates. The final LSTM model architecture for visibility 

forecast is given in Figure 5.6. 
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Figure 5.6 Architecture of the Configured LSTM Model for Visibility Predictions 

  

After the above introduction, the undetermined hyperparameter is α k . A 

coarse-to-fine sampling scheme will be employed to pick it. According to Table 5.11, 

L1:L2:L3 ≈ 1:2:40. One intuitive attempt is to set the proportion of these three 

weights to be the inverse of the proportion of three levels i.e.α1 :α 2 :α 3 = 40 :2 :1 , 

however, by experiments, this would reduce the recall rate of L3 seriously. Then, as 

a coarse sampling solution, we kept the weightsα1 :α 2 = 2 :1and setα 3 to be smaller.  

By comparing the validation performance in terms of confusion matrices, 

α1 :α 2 :α 3 = 20:10:1 was the optimal setting in coarse sampling and after that, in fine 

sampling, the best proportion was α1 :α 2 :α 3 = 18:10:1. The corresponding 

confusion matrix in the test set will be discussed in the next section. 

Table 5.13 The Coarse-to-fine sampling scheme 

Coarse Sampling  Fine Sampling 

10:5:1 

20:10:1 

30:15:1 

 16:10:1 

18:10:1 

20:10:1 

22:10:1 
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5.3.3 Prediction Results 

In the last section, all hyperparameters involved have been discussed. The 

performance of the configured LSTM model in the test set is given in Figure 5.7. 

 

  
Figure 5.7 (left) The confusion matrix in visibility predictions; (right) The confusion 

matrix with normalization in visibility predictions 

For visibility predictions, the total accuracy rate reaches 90.61%, which is 

calculated by dividing the sum of the values in the main diagonal by the sum of the 

values in the confusion matrix. According to the confusion matrix given in the left of 

Figure 5.7, the recall rate of L1 is 93% while its precision rate is 96%, indicating its 

superior prediction performance in the normal situations. When it comes to the low 

visibility level (L2 and L3) that can affect air traffic negatively, their recall rates are 

higher than 50%. That is, the numbers of correct predictions for each class (values in 

the main diagonal) are larger than the numbers of negative predictions for each class 

(non-diagonal entries). Considering the 4-hour prediction period and the extremely 

complicated mechanism of visibility, the above predictions are acceptable in 

practice. 

 

5.4 Summary 

In this chapter, three different prediction tasks including PM2.5 predictions, PM10 

predictions, and visibility predictions were realized separately in section 5.1, 5.2 and 

5.3. In the PM2.5 predictions, network hyperparameters were divided into gradient 
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descent hyperparameters, which determine how the network is trained and model 

hyperparameters that specify the structure of the network itself. Besides, in section 

5.1.2, feature engineering was employed to select appropriate features. Best model 

hyperparameters were determined through experiments in section 5.1.3. After 

network configuration, the proposed spatiotemporal LSTM model was compared 

with Lotos-Euros in section 5.1.4 and another spatiotemporal prediction framework 

in section 5.1.5. All comparison demonstrated the competitive performance of the 

proposed framework. 

 In section 5.2, knowledge from PM2.5 predictions was transferred to PM10 

predictions through fine-tuning. Through experiments, fine-tuning can improve the 

training efficiency significantly. Besides, it was shown that the LSTM framework 

also outperformed Lotos-Euros in terms of PM 10 predictions. 

 When it comes to visibility predictions, in section 5.3.1, the dataset was split into 

three parts (training set, validation set, and test set) and the proportions of different 

levels at these three sets are consistent. In addition, since ‘class-imbalance’ was 

explored, a coarse-to-fine sampling scheme was used to determine the best weights 

for the weighted cross-entropy in section 5.3.2. Finally, the performance of the 

configured LSTM model for visibility forecasts was given in section 5.3.3. Overall, 

the airport visibility predictions are acceptable because the total accuracy rate 

reaches 90.61% and the numbers of correct predictions for each level are larger than 

the numbers of negative predictions for each level. 
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6. Conclusions and Future Research 
In this chapter, our studies on PM2.5, PM10 and visibility predictions are concluded. 

We look back at the research questions posed in Chapter 1, draw conclusions to the 

research objectives and give suggestions for future work. 

 

6.1 Research Work Recap 

In this research, methodologies to predict PM2.5, PM10, and visibility using LSTM 

NN were investigated. Different experiments were performed and several positive 

results were obtained. Our work consists of several main parts. 

 

6.1.1 Dataset Analysis and Preprocessing 

Dataset analysis and preprocessing is an important step in almost all big data and 

machine learning problems. Because missing data and confusing or incorrect data are 

common in large datasets, a proper analysis and preprocessing of the data is crucial 

for the success of a learning task. In the proposed methodology, for given data, the 

first step was to correct noise and errors and calculate the missing rate of each 

variable. Afterward, the dataset were visualized. With the help of visualizations, it 

was easier to evaluate the missing phenomenon of different features.  

Since PM2.5 data were obtained from multiple stations, the spatial and temporal 

correlations were measured by Pearson's correlation coefficients and autocorrelation 

coefficients respectively. The strong spatial correlations among monitoring stations 

resulted in adding nearby PM2.5 data as input in the prediction framework while the 

autocorrelation coefficients were used as the reference for determining input 

intervals. Due to these strong spatiotemporal correlations, for air quality features 

with high missing rates, linear interpolations were implemented when the missing 

granularity is small and k-Nearest Neighbor (kNN) imputations were used when the 

missing interval is large.  
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6.1.2 Framework Configuration  

For a neural network, network hyperparameters can be divided into gradient descent 

hyperparameters and model hyperparameters. In PM2.5 predictions, the gradient 

descent hyperparameters were investigated through the literature study. In addition, 

feature engineering was employed to select the appropriate features. As for the 

model hyperparameters, the best input interval was investigated by coordinate 

descent while grid searches were used to explore the most appropriate number of 

hidden layers and number of hidden units per hidden layer.  

As for PM10 predictions, since transfer learning was applied through model 

fine-tuning, the only hyperparameter that needed to be decided was the number of 

iteration. We checked whether the number of epochs was suitable for converging 

through comparing the training loss and validation loss in each epoch. When it 

comes to the weights in the weighted cross-entropy used for visibility predictions, a 

coarse-to-fine sampling scheme was adopted. 

 

6.1.3 Performance Evaluation 

For PM2.5 predictions, the performance was compared with Lotos-Euros (a regional 

CTMs-based system) and an LSTM-based prediction framework (Fan J et al. (2017) 

[9]) that also considers spatial correlations among stations and aims at predicting 

PM2.5 8 hours in advance in a similar region respectively. The proposed framework 

was compared with Lotos-Euros through their scatter plots and confusion matrices in 

the half-year period. In addition, hourly forecasting results of these two methods 

were compared with records at three-day and half-month periods so as to show the 

prediction accuracy intuitively. RMSE and MAE were used when comparing with 

Fan’s spatiotemporal prediction framework. 

As for PM10 predictions, due to the application of transfer learning, the training 

efficiency was evaluated. After training, the LSTM framework was also compared 



	
	
	
	
	
	
	
	

6.	Conclusion	and	Future	Research	 71	
	

with Lotos-Euros according to their scatter plots. When it comes to visibility 

predictions, since it is a kind of classification problems, the forecast performance 

was evaluated through the confusion matrices. 

 

6.2 Conclusions 

To draw conclusions, the research objectives mentioned at the beginning of this 

thesis (section1.3) are recalled. 

• Are state-of-the-art methods considered to predict PM2.5 concentrations and 

visibility several hours in advance? 

• Can the configuration of the chosen state-of-the-art method achieve the best 

performance? 

• Can the methodology show better performance compared with other 

state-of-the-art methods in terms of root mean square errors (RMSE), mean 

absolute errors (MAE), confusion matrices and scatter plot diagrams? 

 

6.2.1 Research Objective 1 

The first research question is as follows. 

• Are state-of-the-art methods considered to predict PM2.5 concentrations and 

visibility several hours in advance? 

According to the literature study, many efforts have been made to enrich 

approaches for air pollutant and visibility predictions in recent years. These 

approaches can be mainly divided into two categories: differential equations based 

and data based methods. Additionally, as a kind of data based methods, deep learning 

has received immense attention in both academy and industry. Numerous research 

and applications have been done in this area. Therefore, the scope of this research is 

restricted to deep learning approaches in the beginning. 

Furthermore, the focus is limited to LSTM NN. The reasons are as follows. 

LSTM NN have been applied for PM2.5 predictions successfully and it has been 
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revealed that there is a strong relationship between PM2.5 and visibility. However, 

up to now, LSTM NN have not been tried for visibility predictions. Since our goal is 

to establish deep learning architectures that can forecast PM2.5 and visibility 

accurately, according to the above analysis, LSTM NN are very appropriate for 

achieving this objective. 

As for the prediction interval, in the real world, PM2.5 concentrations should be 

predicted many hours in advance so that there is enough time for governments and 

environmental agencies to provide services to protect their citizens. However, with 

the increase of the prediction period, the performance tends to degrade. There is a 

trade-off between high accuracy and a long prediction period. In our proposed LSTM 

methodology, the goal is to predict PM2.5 12 hours in advance. Besides, this 

prediction length is consistent with the average prediction length of Lotos-Euros, so 

that the proposed framework can be evaluated by comparing with Lotos-Euros. 

As mentioned at the beginning of this thesis (section1.2), visibility variations are 

mainly influenced by airborne particles and weather patterns. However, these two 

causes are hard to be determined and no mature physical or mathematical model 

exists for visibility. Since the visibility prediction remains a very challenging task, its 

prediction interval is fixed to be 4 hours, which also indeed has practical meanings 

because airport operators can have enough time to take measures to reduce the 

economic loss and passengers inconvenience caused by the air traffic disruption of 

low visibility. 

 

6.2.2 Research Objective 2 

The second research question is as follows.  

• Can the configuration of the chosen state-of-the-art method achieve the best 

performance? 

LSTM NN as a kind of neural networks, hyperparameters including gradient 

descent hyperparameters and model hyperparameters are required to be configured 

before training. In order to achieve the best prediction performance, different 
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schemes were used for different hyperparameters.  

For PM2.5 predictions, the mini batch gradient descent hyperparameters were 

mainly investigated through the literature study. As for the model hyperparameters, 

the best input interval was determined by coordinate descent. Experiments showed 

that the granularity of the short-term data is significant enough to capture changes in 

air pollution and the best input interval is 18. What’s more, grid searches were used 

for exploring the most appropriate number of hidden layers and hidden units per 

hidden layer. Through experiments, considering the prediction performance and 

training efficiency, we fixed the number of layers to be 2 and the number of neurons 

per layer to be 100. Additionally, feature engineering was implemented to select the 

most suitable input features. The effectiveness of containing nearby stations was 

demonstrated by comparing it with the identical configured network but discarding 

nearby PM2.5 data as input. 

When it comes to PM10 predictions, since transfer learning was realized through 

model fine-tuning, the only hyperparameter that required be configured was the 

epoch, which was determined by comparing the training loss and validation loss in 

each epoch. As for the weights used in the target function of visibility predictions, a 

coarse-to-fine sampling scheme was adopted. All these efforts ensured that the 

configuration of the chosen method could achieve the best performance. 

 

6.2.3 Research Objective 3 

The third research question we discussed here is as follows. 

• Can the methodology show better performance compared with other 

state-of-the-art methods? 

For PM2.5 predictions, the performance was compared with Lotos-Euros (a 

regional CTMs-based system) and an LSTM-based prediction framework (Fan J et al. 

(2017) [9]) that also considers spatial correlations among stations and aims at 

predicting PM2.5 8 hours in advance in a similar region. Through analyzing their 
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scatter plots and confusion matrices in the half-year period, it can be concluded that 

the proposed spatiotemporal LSTM model overcomes the systematic underestimation 

that Lotos-Euros generally encounters and outperforms Lotos-Euros to some extent. 

Besides, the proposed framework has better performance than Fan’s spatiotemporal 

prediction framework in terms of RMSE and MAE. 

As for PM10 predictions, the training efficiency can be improved significantly 

by transferring knowledge from PM2.5 predictions to PM10 predictions through 

model fine-tuning. Besides, with the help of the scatter plots, compared with 

Lotos-Euros, the LSTM framework also has competitive performance in PM10 

predictions. 

As the first attempt at applying LSTM NN for visibility predictions, considering 

the 4-hour prediction period and the extremely complicated mechanism of visibility, 

forecasts are acceptable in practice. The total accuracy rate reaches 90.61%. The 

recall rate of the normal situation (L1) is 93% while its precision rate is 96%, 

indicating its superior prediction performance in the normal situations. Besides, for 

each visibility level, the number of correct predictions is larger than that of negative 

predictions. 

 

6.3 Recommendations for Future Research 

Future work will focus on the generalization and updates of the proposed methods. 

The following activities are recommended as the follow up of this thesis. 

6.3.1 Prototype for Station Selections in China 

In this research, experiments were just implemented in several locations. If more data 

are available, it will be helpful to build a prototype that could automatically collect 

and summarize data from the target station as well as data at nearby stations. 

Because air quality monitoring stations have been built in China since 2013, valid 

time intervals for various stations are required to be considered. Indeed, some works 

for framework generalization have been done. A short description is as follows. 
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We built a prototype that could automatically collect and complete 

meteorological and air quality data from the target station and PM2.5 data at nearby 

stations for all air quality monitoring stations in China. In order to include valid 

PM2.5 data at nearby stations as input, some restrictions should be considered, which 

are given in Table 6.1. Firstly, the searching radius to find nearby stations is limited 

to be 0.8 degrees. Afterward, since the beginning timestamps for different stations 

are not identical, the time gap is set to be three-month. That is, if the beginning 

timestamp of the searched nearby station is three months later than that of the target 

station, then this nearby station will be discarded. If the number of the remaining 

stations is zero, then the corresponding target station will be removed as well. If the 

number of the remaining stations is larger than three, then three nearby stations will 

be selected randomly from these remaining stations.  

Table 6.1 Restrictions for searching nearby stations 

Parameter Value 

Maximum Distance 0.8 degree in radius 

Maximum Period Gap 3 months 

Minimum of Nearby Stations 1 

Maximum of Nearby Stations 3 

After the selection, the distribution of monitoring stations in China is shown in 

the right of Figure 6.1, while the original distribution is shown in the left. According 

to these two pictures, most of the stations are kept, especially in the southeast China. 

  

Figure 6.1 (left) The distribution of monitoring stations in China; (Right) The 

distribution of monitoring stations in China after selection. 
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6.3.2 Framework Generalization 

 In this thesis, for air pollutant predictions, the focus is on PM2.5 or PM10. 

However, the methodology proposed in this thesis is designed to be applicable for a 

wide range of applications; same steps of the methodology can be used to perform 

similar tasks such as predicting other air pollutant concentrations such as SO2, NO2, 

and O3.  

What’s more, the framework output can be extended to multiple stations, 

timesteps or features. For example, we can output the air pollutant concentrations at 

all stations within a city at a time. What’s more, the framework can be designed to 

predict the concentrations of many different air quality features at a station once. 

Experiments can also be done to try to predict the air pollutant concentrations in 

several timesteps at a time. This way, degradation possibility for much more 

complicated tasks should be evaluated. 

 

6.3.3 Framework Update 

In this thesis, data in the specific period were accessed. After splitting the 

obtained dataset into three parts, the training set is used to train the network. Once 

the training set is updated, the framework should be trained again. That is, the 

proposed method is offline. However, in the real world, meteorological and air 

quality data is updated hourly, online methods should be considered for application 

purposes
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