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Optical photons are ideal carriers for long-distance transmission, while state-of-the-art quantum processors, such as supercon-
ducting qubits, operate at microwave frequencies. An important requirement for networked quantum computation is therefore the
ability to coherently convert the quantum information from microwave to optical frequencies and vice-versa. We theoretically address
a scheme to achieve this via an intermediate conversion to magnons that enhances the weak direct magneto-optical coupling. We
wish to demonstrate the feasibility of such a scheme by employing the magnetoelastic coupling between the modes of a magnetic
vortex (vortex breathing mode, VBM) and that of the lattice (elastic breathing mode, EBM), which requires no additional external
bias field. In our setup all but the opto-mechanical coupling can be made resonant. We propose an alternative Mumax3 simulation
post-processing procedure for semi-classical normalization, where we use regression analysis of the the internal energy dependency
on excitation amplitude in a limit cycle motion. We provide estimates for direct resonant coupling between the VBM and the EBM.

Index Terms—magnetostriction, magnetic vortex, breathing mode, nanomagnetism

ALL of the intermediate coupling steps, such as electro-
magnonic, magnetoelastic, etc., have already been

demonstrated separately in macroscopic systems, see for ex-
ample [1]–[3]. However, despite achieving strong cooperativ-
ities, i.e., the measure of the ratio between how efficiently
information is exchanged to the rate of dissipative decay in the
interacting subsystems, it remains difficult to integrate them all
in one setup.

We argue that nanoscopic systems possess unique advan-
tages allowing for the conversion steps to be combined. In
particular we investigate free-standing Yttrium Iron Garnet
(YIG) thin-film structures [4]. Suspended structures confine
the mechanical vibrations and don’t allow them to leak
out into the substrate, which reduces the mechanical losses.
Importantly, at the nanoscale we get into intrinsic, i.e. not
requiring external biases, high frequency oscillatory regimes:
mechanically, a decrease in particle size raises the frequencies
of the standing acoustical waves, and in the magnetic system
magnetic vortices can provide access to high-order gyromodes
[5] and whispering gallery modes [6] among others.

Here we consider free-standing magnetic discs. Breathing
modes are a generic mode type characterized by having m = 0
azimuthal nodes, and l = 0 radial nodes. In the mechanical
sub-system, the Elastic Breathing Mode describes a periodic
shrinking and expansion of the cylindrical nanoparticle radius.
In the center of a magnetic vortex that we call a core, the curl
of the magnetization does not vanish, and magnetic momenta
are oriented out of the plane to minimize the exchange
interaction. It is the core which changes its size in analogy to
EBM forming a Vortex Breathing Mode [7]. We find the VBM
spatial distribution to be quite complex, with the oscillations
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Fig. 1. Frequencies of the EBM, obtained analytically [8], and the VBM,
obtained numerically, versus the diameter of a magnetic nanodisk. Grid lines
point to the crossing points, a simple linear resonance at 2691 nm; and the
nonlinear resonance at fEBM = 2fV BM at double frequency for 969 nm.
The disk has a thickness of 100 nm, and is made of YIG with Ms = 139
kA/m, A = 3.7 pJ/m, and longitudinal sound wave speed of 7.2 km/s.

propagating through the entire particle volume. The non-local
distribution of the VBM plays in our favour, because it has
a bigger overlap with the EBM distribution than one could
imagine when only seeing the dynamics of the vortex core.

As Fig. 1 shows, the two mode frequencies cross. The
crossing point can be tuned with bias fields and is adjustable
at the design stage with geometry. A non-monotonous radius
dependence of the VBM is reported in [7], which ensures that
a crossing with the EBM is always possible.

We will show how for this specific coupling, the interaction
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between the two can be described by the Hamiltonian [9],

H = ℏg(0)me(m̂+ m̂†)(b̂+ b̂†) + ℏg(1)mem̂
†m̂(b̂+ b̂†)

− ℏg(2)me(m̂
†m̂† + m̂m̂)(b̂+ b̂†), (1)

where m̂(†), b̂(†) are bosonic creation (annihilation) operators
of magnons and phonons, respectively, and g

(n)
me describe the

phenomenological magneto-elastic coupling rates. The first
and last terms provide strong resonant coupling at the VBM
frequency and its double correspondingly.

To calculate the coupling coefficients we use the Mumax3
[10] micromagnetics solver. We expand on the ideas presented
previously [11], [12] to do a simple regression analysis of
the internal system energy at various VBM amplitudes and
receive magnon population in a single post-processing step.
In this way we explicitly check if we are within the linear
magnonic regime, and we are able to achieve high precision
by using more accurate distributions and energies from the
high amplitude, but still within linear regime. The coupling
coefficients turn out to be large g

(0)
me/2π ≈ 0.2 MHz, smaller

than those observed for gyrational vortex mode coupling [13],
but with much higher operating frequency, and no external bias
required to shift a vortex into optimal position. These values
for nanosystems, both the gyrational and breathing modes of
the magnetic vortex, beat results for non-resonant interaction
in macroscopic system which yield only ∼ 1 mHz couplings.
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