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Statistical Inference for the Expected Utility Portfolio
in High Dimensions

Taras Bodnar , Solomiia Dmytriv , Yarema Okhrin , Nestor Parolya , and Wolfgang Schmid

Abstract—In this paper, using the shrinkage-based approach for
portfolio weights and modern results from random matrix theory
we construct an effective procedure for testing the efficiency of the
expected utility (EU) portfolio and discuss the asymptotic behavior
of the proposed test statistic under the high-dimensional asymptotic
regime, namely when the number of assets p increases at the same
rate as the sample size n such that their ratio p/n approaches a
positive constant c ∈ (0, 1) as n → ∞. We provide an extensive
simulation study where the power function and receiver operating
characteristic curves of the test are analyzed. In the empirical study,
the methodology is applied to the returns of S&P 500 constituents.

Index Terms—Finance, portfolio analysis, mean-variance
optimal portfolio, statistical test, shrinkage estimator, random
matrix theory.

I. INTRODUCTION

FOLLOWING the mean-variance approach of [1], which is
considered to be one of the most popular portfolio choice

strategies, the weights of an optimal portfolio are obtained by the
mean-variance tradeoff aiming to minimize the portfolio vari-
ance while maximizing the portfolio return. This set of optimal
portfolios determines the efficient frontier in the mean-variance
space. The Markowitz approach formalizes the advantages of
portfolio diversification and has become a benchmark for both
researchers and practitioners in portfolio management.

Markowitz optimal portfolios, also known as mean-variance
optimal portfolios, can also be obtained as solutions of other op-
timization problems (e.g., [2]), like by maximizing the expected
quadratic utility function (see, [3]) expressed as

w′μ− γ

2
w′Σw → max subject to w′1p = 1, (1)
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where w = (w1, . . . , wp)
′ is the vector of portfolio weights, 1p

is the p-dimensional vector of ones,μ andΣ are the mean vector
and the covariance matrix of the random vector of asset returns
x = (x1, . . . , xp)

′. The quantity γ > 0 measures the investors
attitude towards risk. If γ = ∞, then the investor is fully risk
averse and determines the investment strategy by minimizing the
portfolio variance without paying attention to the expected port-
folio return, i.e., she constructs the so-called global minimum
variance (GMV) portfolio. Under the assumption that the asset
returns are normally distributed, the problem of maximization
the mean-variance objective function (1) is equivalent to the
maximization of the expected exponential utility, which implies
constant absolute risk aversion (CARA). In this case, γ is equal
to the investors absolute risk aversion coefficient (see, e.g., [3]).

We denote the solution of (1) by wEU and it is given by

wEU =
Σ−11p

1′
pΣ

−11p
+ γ−1Qμ, (2)

where

Q = Σ−1 − Σ−11p1
′
pΣ

−1

1′
pΣ

−11p
. (3)

The case of fully risk averse investor, i.e., γ = ∞, leads to the
weights of the GMV portfolio expressed as

wGMV =
Σ−11p

1′
pΣ

−11p
. (4)

The derived formulas of optimal portfolio weights (2) and (4)
cannot directly be used in practice, since they both depend on
unknown parameters of the data generating process. The mean
vector μ and the covariance matrix Σ are not observable in
practice and have to be estimated by using historical data for
asset returns. This, however, introduces further sources of risk
into the investment process, namely the estimation risk which
has been ignored for a long time in finance.

The most commonly used approach to estimate the weights of
optimal portfolios is based on simple replacing the unknown first
two moments of the asset returns by their sample counterparts.
As a result, we obtain a “plug-in” estimator for the optimal
portfolio weights also known as its sample estimator, which is
a traditional way to construct a portfolio in practice. Assuming
that the asset returns are independent and normally distributed
[4] obtain the asymptotic distribution of the sample estimator
of the EU portfolio weights, while the corresponding exact
distributional results can be found in [5]. Further theoretical and
practically relevant findings related to the characterization of
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the distribution of the sample estimator of the optimal portfolio
weights and their characteristics can be found in [6], [7], [8],
[9], among others.

The use of the “plug-in” estimators in practice has been widely
criticized in statistical and financial literature. One of the main
drawbacks of the sample estimators is the investor overoptimism
about the optimality of the constructed portfolio. Several studies
(see, e.g., [10], [11], [12]) show with theoretical and empirical
arguments that the plug-in estimator of the efficient frontier
overestimates the location of the true efficient frontier in the
mean-variance space. This leads to too optimistic trading
strategies which perform in practice typically much worse than
expected.

In recent years, other types of estimators for the optimal
portfolio weights have been introduced in the literature. Some
estimators attempt to improve the estimators for the parameters
of the asset returns. Relying on the idea of [13] we can use a
shrinkage estimator for the mean vector and for the covariance
matrix or its inverse (see, e.g., [14] and [15]). Alternatively, one
can apply the shrinkage method directly to portfolio weights as
suggested by [16], [17], [18], etc. The goal of the approach is to
reduce the estimation uncertainty and to decrease the variance
in the estimated portfolio weights.

The problem of assessing the estimation risk, when an optimal
portfolio is constructed, becomes very challenging from the
high-dimensional perspectives, i.e., when both the number of
included assets p and the sample size n tend to infinity simulta-
neously such that p/n tends to the concentration ratio c > 0 as
n → ∞ (see, [19], [20]). Under the classical asymptotic regime,
when the number of assets p is fixed and substantially smaller
then the sample size n, the traditional “plug-in” estimator of
optimal portfolio weights is consistent (see, [4], [5]). On the
other hand, the sample estimators of the mean vector and of
the covariance matrix are not longer feasible under the high-
dimensional asymptotics ([21], [20], [22]), which has a negative
impact on the performance of the asset allocation strategy.
Moreover, the inverse covariance matrix does not exist anymore
for c > 1 and the optimal portfolios cannot be constructed in a
traditional way.

The high-dimensional treatment of the portfolio problem is
not only of theoretical interest, but also of great importance in
practice. Nowadays, the technological advances and the avail-
ability of financial information make the whole universe of
assets easily accessible for private and institutional investors
(see, [23]). As a result, the investors have a possibility to allocate
their wealth into thousands of stocks around the world. However,
the sample size of asset returns at selected frequency cannot
be enlarged without increasing the time span of the collected
data. Typically, one restricts the estimation period to a few
years to mitigate the impact of time-varying characteristics of
the asset returns. This leads to portfolios consisting of hun-
dreds of assets estimated over a relatively short period of time.
Therefore, new results on constructing optimal portfolios in this
high-dimensional setting are in great demand. Similarly as in
the low-dimensional case, the first line of the research deals
with deriving improved estimators for the mean vector and the
covariance matrix of asset returns. These are used to obtain

improved plug-in estimators of the optimal portfolio weights
(see, [24], [25]). The second possibility is to improve the es-
timators of the optimal portfolio weights directly. This can be
achieved by taking their functional dependence on the mean
vector and of covariance matrix into account. Following this
approach [26] suggest the optimal shrinkage estimator for the
GMV portfolio weights, while [27] propose the optimal shrink-
age estimator for the EU portfolio weights. Both estimators are
derived by using recent results in random matrix theory and
appear to be feasible even in the case of c > 1. Other optimal
portfolio choice strategies under the high-dimensional regime
were established by [28], [29], [9].

It is important to note that the statistical methods devel-
oped for estimating optimal portfolio weights can be linked
to the classical methods used in statistical signal processing.
For example, the Capon or minimum variance spatial filter is
equivalent to the GMV portfolio in signal processing literature
(see, [30] and [31]). The estimation risk of the high-dimensional
minimum variance beamformer is studied in [28] and [32], while
its constrained versions are discussed in [33]. Moreover, [34]
discuss the finite-sample size effect on minimum variance filter
and [35] present an improved calibration of the precision matrix.
Further literature on the applications of random matrix theory
to signal processing and portfolio optimization can be found in
[36] and references therein.

We contribute to the recent literature in portfolio theory and
signal processing theory by developing new statistical tests on
the weights of the EU portfolio in a high-dimensional setting.
From practical point of view an investor will have an opportunity
to test if the current large portfolio coincides with a prespecified
benchmark portfolio or there are significant deviations. From
the theoretical perspective we contribute by deriving confidence
intervals and test theory for expressions including functions of
both the mean vector and the covariance matrix. This directly
extends the existent results on testing the structure of the covari-
ance matrix in high-dimensional settings (see, e.g., [37], [38],
[39]). The new approach is based on the shrinkage estimator
of the EU portfolio weights and extends the one derived for
the weights of the GMV portfolio in [40] by taking the uncer-
tainty about the estimated mean vector into account when the
high-dimensional asymptotic distribution of the test statistic is
derived. One of the main advantages of the approach is that the
whole high-dimensional vector of portfolio weights can be tested
in a single step. Moreover, the investor can make a decision about
the efficiency of the holding portfolio based on the result of the
testing procedure.

The rest of paper is organized as follows. In Section II, we
describe the existent approaches in testing the finite number
of the EU portfolio weights in both low and high dimensions.
New test based on the shrinkage approach is suggested in Sec-
tion III. Here, the asymptotic distribution of the test statistic
is derived under both the null and the alternative hypotheses
under high-dimensional settings. In Section IV-A, we com-
pare the new test with the existent approaches in terms of
size and power properties, while an empirical illustration is
provided in Section IV-B. Concluding remarks are presented
in Section V.
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II. SAMPLE ESTIMATOR OF THE EU PORTFOLIO AND

TEST THEORY

We consider a financial market consisting of p risky assets. Let
xt denote the p-dimensional vector of the returns on risky assets
at time t. Suppose that E(xt) = μ and Cov(xt) = Σ where
Σ is assumed to be positive definite. Let x1,x2, . . . ,xn be a
sample of asset return vectors consisting of their n independent
realizations and let Xn = (x1,x2, . . . ,xn) stand for the p×
n data matrix. Throughout the paper we assume that the asset
returns are independent and identically normally distributed, i.e.,
xi ∼ Np(μ,Σ), i = 1, . . . , n.

The sample estimators of μ and Σ are given by

x̄n =
1

n

n∑
j=1

xj and Σ̂n =
1

n− 1

n∑
j=1

(xj − x̄n) (xj − x̄n)
′ .

(5)
Replacing μ and Σ in (2) by their sample estimators from (5),
we obtain the sample estimator of the EU portfolio weights
expressed as

ŵEU =
Σ̂−1

n 1p

1′
pΣ̂

−1
n 1p

+ γ−1Q̂nμ̂n,

where

Q̂n = Σ̂−1
n − Σ̂−1

n 1p1
′
pΣ̂

−1
n

1′
pΣ̂

−1
n 1p

. (6)

In [4], Y. Okhrin and W. Schmid derive the analytical expres-
sion for the expectation and the covariance matrix of ŵEU , and
obtain its asymptotic distribution assuming that the portfolio
size is considerably smaller than the sample size. These results
are extended in [5] who derive the finite-sample distribution of
the estimated EU portfolio weights and use these results in the
derivation of an asymptotic test on the weights which we present
in the next subsection.

A. Tests Based on Mahalanobis Distance

At each time point an investor has to decide whether the
holding portfolio is efficient or it has to be adjusted (see, [41],
[5]). This problem can be presented as a special case of the
general linear hypotheses formulated for the portfolio weights.
Let L denote the k × p dimensional matrix of constants with
k < p− 1 and let r be the k-dimensional vector of constants.
[5] consider the following hypotheses for linear combinations
of the EU portfolio weights

H0 : LwEU = r against H1 : LwEU �= r, (7)

If one setsL = [Ik Ok,p−k] in (7) where Ik is the k-dimensional
identity matrix andOk,p−k is the k × (p− k)matrix with zeros,
then the null hypothesis states that the first k weights inwEU are
equal to the corresponding components defined by r. It also has
to be noted that the whole structure of the EU portfolio cannot
be tested by using (7) because of the restriction imposed on the
number of linear combinations which should be smaller than p−
1. Thus, the test on the whole vector of the EU portfolio weights

should be performed by testing at least two null hypotheses of the
form (7) by selecting matrices L in each of the null hypotheses
such that all elements inwEU are tested. This leads to a multiple
testing problem also discussed below.

In order to test (7) for a given matrix L and a vector r, [5]
suggest the following test statistic:

TL = (n− p+ 1) (ŵL − r)′
(

LQ̂nL
′

1′
pΣ̂

−1
n 1p

+ γ−1 LQ̂nL
′

x̄′
nQ̂nx̄n

+γ−2(LQ̂nL
′x̄′

nQ̂nx̄n − LQ̂nx̄nx̄
′
nQ̂nL

′)

)−1

(ŵL − r),

(8)
where

ŵL = LŵEU =
LΣ̂−1

n 1p

1′
pΣ̂

−1
n 1p

+ γ−1LQ̂nx̄n. (9)

In [5], T. Bodnar and W. Schmid show that the test statistic
TL is asymptotically non-central χ2-distributed with k degrees
of freedom and the non-centrality parameter

λ = n (wL − r)′

×
(

LQL′

1′
pΣ

−11p
+

1

γ

LQL′

μ′Qμ
+

1

γ2
(LQL′μ′Qμ

− LQμμ′QL′)
)−1

(wL − r) (10)

with

wL = LwEU =
LΣ−11p

1′
pΣ

−11p
+ γ−1LQμ, (11)

when both p and k are relatively small with respect to the sample
size n. As a special case, we obtain the asymptotic distribution

of TL under the null hypothesis in (7) given by TL
d→ χ2

k where

the symbol
d→ denotes the convergence in distribution.

Since the asymptotic distribution of the test statistic TL is
obtained under classical asymptotic regime, this test, in general,
is not applicable when the portfolio size is comparable to the
sample size. We illustrate this point in Figure 1. Here we plot
the kernel density estimator (KDE) of the distribution of the
test statistic TL under the null hypothesis together with the
asymptotic χ2-distribution (green and red curves, respectively).
For this purpose we generate samples from a multivariate normal
distribution with mean vector and covariance matrix as specified
in the numerical study of Section IV-A. The vector r consists of
the first k components of the true EU portfolio weights and we
set L = [Ik Ok,p−k]. For each sample we compute the value
of the test statistic TL and then plot the KDE. To robustify
the conclusions we set γ = 5, p = 300, cn = p/n ∈ {0.3, 0.8}
and k ∈ {10, 30, 100}. We observe that already for k = 10 the
difference between the KDE and the asymptotic distribution is
very large and this evidence becomes stronger if k increases.
For k = 100 the KDE shifts strongly to the right and is not
shown to retain the same scaling on the x-axis. Table I gives
the realized sizes (estimated probabilities of type I error) of

Authorized licensed use limited to: TU Delft Library. Downloaded on January 11,2021 at 07:13:26 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. The high-dimensional asymptoticχ2 approximation of the densities of
TL and TL;c together with their kernel density estimators for γ = 5, p = 300,
cn = p/n ∈ {0.3, 0.8} and k ∈ {10, 30, 100}.

TABLE I
EMPIRICAL SIZES OF THE TESTS BASED ON TL AND TL;c USING 104

INDEPENDENT REPLICATIONS

the considered test based on the 104 independent replications
and with the nominal level α = 0.05. For different values of
k ∈ {10, 30, 100}, it can be seen that TL is highly inconsistent
and has a much higher size than the nominal value α. We
conclude that the test is highly unreliable if we wish to test
many or all weights simultaneously.

B. Improvement of the Test Based on Mahalanobis Distance
for Large-Dimensional Portfolios

In [42], T. Bodnar et al. show that the sample estimator
of the EU portfolio weights is not consistent under the high-
dimensional asymptotic regime, i.e., when p/n → c ∈ [0, 1)
as n → ∞. Moreover, they derive a consistent estimator for

the elements of wL and use these findings to construct a
high-dimensional asymptotic test on the finite number of linear
combinations of the EU portfolio weights.

LetL be a k × pmatrix of constants as defined in Section II-A
and let

ŵGMV ;L = LŵGMV =
LΣ̂−1

n 1p

1′
pΣ̂

−1
n 1p

, ŝ = x̄′
nQ̂nx̄n

and η̂L =
LQ̂nx̄n

x̄′
nQ̂nx̄n

. (12)

Assuming that k is finite, i.e., considerably smaller than both p
and n, [42] prove that

ŵGMV ;L
a.s.→ LwGMV , ŝc = (1− cn)ŝ− cn

a.s.→ s (13)

and η̂L;c =
ŝc + cn

ŝc
η̂L

a.s.→ ηL

for cn = p/n → c ∈ [0, 1) as n → ∞ with

s = μ′Qμ and ηL =
LQμ

μ′Qμ
. (14)

The symbol
a.s.→ denotes the almost surely convergence.

Using (13), [42] propose a high-dimensional asymptotic test
on the hypotheses (7) with the test statistic given by

TL;c = (n− p) (ŵL;c − r)′ Ω̂−1
L;c (ŵL;c − r) , (15)

where

ŵL;c = ŵGMV ;L + γ−1ŝcη̂L;c (16)

and

Ω̂L;c =

((
1− cn
ŝc + cn

+(ŝc + cn)γ
−1

)
γ−1+V̂c

)
(1− cn)LQ̂nL

�

+ γ−2

{
2(1− cn)c

3
n

(ŝc + cn)2
+ 4(1− cn)cn

ŝc(ŝc + 2cn)

(ŝc + cn)2

+
2(1− cn)c

2
n(ŝc + cn)

2

ŝ2c
− ŝ2c

}
η̂L;cη̂

′
L;c, (17)

where

V̂c =
V̂GMV

1− cn
with V̂GMV =

1

1′
pΣ̂

−1
n 1p

(18)

are the consistent and the sample estimators of the variance of
the GMV portfolio (4), that is (see, e.g., [26, p.387])

V̂c
a.s.→ VGMV =

1

1′
pΣ

−11p

for cn = p/n → c ∈ [0, 1) as n → ∞.
The application of the results of Theorem 4.4 in [42] leads

to the high-dimensional asymptotic distribution of TL;c under
both hypotheses in (7). Namely, it holds that the asymptotic
distribution of TL;c under H1 is a non-central χ2-distribution

Authorized licensed use limited to: TU Delft Library. Downloaded on January 11,2021 at 07:13:26 UTC from IEEE Xplore.  Restrictions apply. 
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with k degrees of freedom and non-centrality parameter given
by

λc = (n− p)(wL − r)′Ω−1
L;c(wL − r), (19)

where

ΩL;c =

((
1− c

s+ c
+(s+ c)γ−1

)
γ−1 + VGMV

)
(1− c)LQL�

+ γ−2

{
2(1− c)c3

(s+ c)2
+ 4(1− c)c

s(s+ 2c)

(s+ c)2

+
2(1− c)c2(s+ c)2

s2
− s2

}
ηLη

′
L. (20)

Moreover, TL;c
d→ χ2

k under H0.
In Figure 1, we present the KDE of the distribution of TL;c

(blue curve) and compare it to its high-dimensional asymptotic
distribution (red curve). The kernel density estimator as well
as the realized sizes of the test are obtained under the same
simulation setup as one used at the end of Section II-A. The
approximation works well and much better than in the case of
TL for smaller values of k, but discrepancy becomes large if
k increases. The same conclusion can be drawn from Table I.
Here the method proposed by [42] has a much better realized
size which still increases dramatically with growing k.

III. TEST BASED ON THE SHRINKAGE APPROACH

Both tests based on the Mahalanobis distance are designed
to test a finite number of linear restrictions imposed on the EU
portfolio weights. Although the high-dimensional test shows a
considerable improvement in terms of the size (see, Figures 1
and Table I), this test, similarly to the test based on the statis-
tic TL, cannot be applied to test the structure of the whole
EU portfolio. In practice, one has to fix the number k of the
EU portfolio weights (or their linear restrictions) and apply
the test TL;c several times in order to cover the whole vector
wEU . This approach is a single-step multiple test (see, [43])
with the number of marginal hypotheses to be tested equal to
[p/k] + 1. Since the dependence structure between the marginal
tests is very complicated, one has to monitor the overall type
I error rate by using the so-called Bonferroni correction (see,
[43]). This would worse the power properties of each indi-
vidual test, especially when the number of tests is relatively
large.

As a solution to this challenging problem, we suggest a new
approach for testing the structure of the EU portfolio by a single
test. The new procedure is based on the shrinkage estimator of
the EU portfolio weights as suggested by [27] and extend our
previous results obtained for the GMV portfolio in [40], which
is a very special case of the EU portfolio. In contrast to the EU
portfolio, the weights of the GMV portfolio do not depend on
the mean vector. As a result, the derivation of the test for the
EU portfolio becomes a very challenging task and completely
new results in random matrix theory have to be derived to
handle it.

A. Optimal Shrinkage Estimator of the EU Portfolio Weights

The shrinkage estimator for the EU portfolio weights is a
convex combination of the sample estimator and a fixed well
behaved target portfolio b ∈ Rp with bounded expected return
and variance, i.e., Rb = b′μ < ∞ and Vb = b′Σ−1b < ∞ uni-
formly in p. Thus, the shrinkage estimator is expressed as

ŵGSE = αnŵEU + (1− αn)b with b′1p = 1, (21)

whereαn is the shrinkage intensity. One of the main ideas behind
the shrinkage estimator (21) is to reduce the large variability
present in the sample estimator ŵEU by shrinking it to a vector of
constants. This approach might introduce a bias in the estimator,
but on the other side it reduces the variability of the sample
estimator considerably.

In [27], T. Bodnar, Y. Okhrin, and N. Parolya determine the
optimal shrinkage intensity α∗

n as the solution of the maximiza-
tion problem based on the mean-variance objective function. It
is given by

α∗
n =

(ŵEU − b)′(μ− γΣb)

(ŵEU − b)′Σ(ŵEU − b)
. (22)

Since the expression ofα∗
n depends on both the population mean

vector and covariance matrix and on their sample counterparts,
it cannot directly be applied applied in practice. As such,
[27] propose a two-stage procedure. First, the deterministic
quantity α∗ which is asymptotically equivalent to α∗

n is found.
Second, it is consistently estimated under the high-dimensional
asymptotic regime.

It holds that (see, [27, Theorem 2.1])

α∗ =

γ−1
(
(RGMV −Rb)

(
1+ 1

1−c

)
+γ(Vb − VGMV )+

γ−1

1−cs
)

VGMV

1−c − 2
(
VGMV + γ−1

1−c (Rb −RGMV )
)
+γ−2

(
s+c

(1−c)3

)
+Vb

,

(23)

where RGMV =
1′
pΣ

−1μ

1′
pΣ

−11p
is the expected return of the GMV

portfolio. Following [27] we assume throughout the paper that
uniformly in p the quadratic form 1′Σ−11p is bounded away
from zero and μ′Σ−1μ is bounded from above by some pos-
itive constant. These conditions guarantee among others the
boundedness of RGMV , VGMV and s as p → ∞, thus, keeping
the limiting expressions coming further well defined asymp-
totically. Consistent estimators for the variance of the GMV
portfolio VGMV and for the slope parameter of the efficient
frontier s are given in (18) and (13), respectively. [27] show
that the sample estimators of RGMV , Rb, and Vb are consistent,
that is

R̂GMV =
1′
pΣ̂

−1
n x̄n

1′
pΣ̂

−1
n 1p

a.s→ RGMV ,

R̂b = b′x̄n
a.s→ Rb,

V̂b = b′Σ̂nb
a.s→ Vb,

(24)

for p/n → c ∈ [0, 1) as n → ∞.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 11,2021 at 07:13:26 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 69, 2021

Hence, a consistent estimator for α∗ is constructed as

α̂∗
c =

γ−1
(
(R̂GMV − R̂b)

(
1+ 1

1−cn

)
+γ(V̂b − V̂c)+

γ−1

1−cn
ŝc

)
V̂c

1−cn
− 2

(
V̂c+

γ−1

1−cn
(R̂b − R̂GMV )

)
+γ−2

(
ŝc+cn
(1−cn)3

)
+V̂b

,

(25)

while the bona fide shrinkage estimator for the weights of the
EU portfolio is expressed as

ŵBFGSE = α̂∗
cŵEU + (1− α̂∗

c)b. (26)

Next, we prove that α̂∗
c is asymptotically normally distributed.

This result will then be used to derive a test for the structure of
the EU portfolio in Section III-B. Let α∗ = A

B and α̂∗
c =

Ân

B̂n
.

Then, we get

√
n(α̂∗

c − α∗) =
√
n

(
Ân −A

B̂n

− A(B̂n −B)

BB̂n

)

=
1

B̂n

(√
n(Ân −A)− A

B

√
n(B̂n −B)

)
=

d′

B̂n

√
nt+ oP (1) (27)

for p/n = c+ o(n−1/2) as n → ∞ with

t =

⎛⎜⎜⎜⎜⎜⎜⎝
R̂GMV −RGMV

V̂c − VGMV

ŝc − s

R̂b −Rb

V̂b − Vb

⎞⎟⎟⎟⎟⎟⎟⎠ ,d =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ−1 + γ−1

1−cn

(
1− 2A

B

)
−1− A

B

(
1

1−cn
− 2
)

γ−2

1−cn

(
1− 1

(1−cn)2
A
B

)
−γ−1 − γ−1

1−cn

(
1− 2A

B

)
1− A

B

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(28)
where the symbol oP (1) denotes a sequence which tends al-
most surely to zero. In Theorem 1, we derive the asymptotic
distribution of t.

Theorem 1: Let x1, . . . ,xn be independent and identically
distributed with xi ∼ Np(μ,Σ) for i = 1, . . . , n with Σ posi-
tive definite. Then it holds that

√
nt

d→ N5(0,Ωα) (29)

for p/n → c ∈ [0, 1) as n → ∞ where Ωα is given in Eq. (30).
Since

B̂n
a.s→ B for

p

n
→ c ∈ [0, 1) as n → ∞,

the application of Slutsky’s lemma (c.f., [44, Theorem 1.5]) leads
to the asymptotic distribution of α̂∗

c as given in Theorem 2.
Theorem 2: Under the assumptions of Theorem 1, it holds

that
√
n(α̂∗

c − α∗) d→ N (0, Cα), (31)

for p/n → c ∈ [0, 1) as n → ∞ where

Cα =
1

B2
d′Ωαd . (32)

Finally, using (13), (18), and (24) a consistent estimator for
Cα is given by

Ĉα =
1

B̂2
n

d′Ω̂α;cd , (33)

where Ω̂α;c is a consistent estimator for Ωα expressed as Eq.
(34) shown at the bottom of this page.

Remark 1: In the case of the investor who invests into the
GMV portfolio (γ = ∞), the formulas (23) and (25) simplify to

α∗ =
(1− c)(Vb − VGMV )

cVGMV + (1− c)(Vb − VGMV )

and

α̂∗
c =

(1− c)(V̂b − V̂c)

cV̂c + (1− c)(V̂b − V̂c)
.

Moreover, the application of Theorem 1 leads to

√
n(α̂∗

c − α∗) → N
(
0,

2(1− c)c2(Lb + 1)

((1− c)Lb + c)4
((2− c)Lb + c)

)
(35)

for p/n → c ∈ (0, 1) as n → ∞ with Lb = Vb/VGMV − 1,
which coincides with the results obtained in Theorem 2 of [40].

B. Test Based on a Shrinkage Estimator

We use the properties of the shrinkage intensity α∗ and of
its consistent estimator α̂∗

c to derive an asymptotic test on the

Ωα =

⎛⎜⎜⎜⎜⎜⎜⎝

VGMV (s+1)
1−c 0 0 VGMV −2VGMV (Rb −RGMV )

0 2
V 2
GMV

1−c 0 0 2V 2
GMV

0 0 2 ((s+1)2+c−1)
1−c 2(Rb −RGMV ) −2(Rb −RGMV )

2

VGMV 0 2(Rb −RGMV ) Vb 0

−2VGMV (Rb −RGMV ) 2V 2
GMV −2(Rb −RGMV )

2 0 2V 2
b

⎞⎟⎟⎟⎟⎟⎟⎠ (30)

Ω̂α;c =

⎛⎜⎜⎜⎜⎜⎜⎝

V̂c(ŝc+1)
1−c 0 0 V̂c −2V̂c(R̂b − R̂GMV )

0 2 V̂ 2
c

1−c 0 0 2V̂ 2
c

0 0 2 ((ŝc+1)2+c−1)
1−c 2(R̂b − R̂GMV ) −2(R̂b − R̂GMV )

2

V̂c 0 2(R̂b − R̂GMV ) V̂b 0

−2V̂c(R̂b − R̂GMV ) 2V̂ 2
c −2(R̂b − R̂GMV )

2 0 2V̂ 2
b

⎞⎟⎟⎟⎟⎟⎟⎠ (34)
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structure of the EU portfolio. The testing hypotheses are given
by

H0 : wEU = w0 against H1 : wEU �= w0, (36)

which, in contrast to the hypotheses considered in Section II,
allow to test the structure of the whole vector of the EU port-
folio weights by using a single test avoiding the problem of
multiplicity.

Following [40], the idea behind a statistical test based on the
shrinkage approach is the usage of w0 as a fixed target portfolio,
i.e., to set b = w0 in (21). Since w0 is the EU optimal portfolio
under the null hypothesis in (36), its expected return and variance
should satisfy

Rw0
= RGMV + γ−1s and Vw0

= VGMV + γ−2s. (37)

As a result, the numerator in (23) becomes

A(w0) = (RGMV −Rb)

(
γ−1 +

γ−1

1− c

)
+ (Vb − VGMV ) +

γ−2s

1− c

= − γ−2s

(
1 +

1

1− c

)
+ γ−2s+

γ−2

1− c
s = 0,

(38)

proving that

α∗ = 0 under H0. (39)

Hence, for testing (36), one can derive a test on the hypotheses

H0 : α∗(w0) = 0 against H1 : α∗(w0) �= 0, (40)

where the notation α∗(w0) denotes the optimal shrinkage in-
tensity as in (23) computed with target portfolio w0. It has to
be noted that the hypotheses (36) and (40) are not equivalent.
Namely, it is shown in (38) that the null hypothesis in (36)
implies (40), but the implication in the other direction is not
obviously true. Nevertheless, if either the mean or the variance
of the target portfolio coincide with those of the EU portfolio
then the hypotheses (36) and (40) are equivalent. Moreover, the
rejection of the null hypothesis in (40) ensures the rejection of
the null hypothesis in (36) meaning thatw0 is not the EU optimal
portfolio.

Let α̂∗
c(w0) be the consistent estimator of α∗(w0) as con-

structed in (25) when the shrinkage target is b = w0. Then the
application of Theorem 2 shows that

α̂∗
c(w0)

a.s.→ 0 for
p

n
→ c ∈ [0, 1) as n → ∞,

when the null hypothesis in (36) is true.

Moreover, since the numerator in the expression of α∗(w0) in
(23) under the null hypothesis in (40) is equal to zero, i.e. A = 0
where A is defined before (27), we get the following stochastic
representation of

√
nα̂∗

c(w0) expressed as

√
nα̂∗

c(w0) =
1

B̂n

d′
0

√
nt, d0 =

⎛⎜⎜⎜⎜⎜⎜⎝
γ−1 + γ−1

1−cn

−1
γ−2

1−cn

−γ−1 − γ−1

1−cn

1

⎞⎟⎟⎟⎟⎟⎟⎠ (41)

and t is defined in (28). The application of Theorem 1 then leads
to the following result

Theorem 3: Assume that the conditions of Theorem 1 are
fulfilled. Then, under the null hypothesis in (40), it holds that

√
nα̂∗

c(w0)
d→ N (0, Cα;0), (42)

for p/n → c ∈ [0, 1) as n → ∞ with Cα;0 = 1
B2d

′
0Ωαd0

where Ωα is given in (30) and B is defined before (27).
Replacing B2 and Ωα by their consistent estimators B̂2

n and
Ω̂α;c, we get a consistent estimator for Cα;0 expressed as

Ĉα;0 =
1

B̂2
n

d′
0Ω̂α;cd0 . (43)

Then for testing hypotheses (40), we obtain the following test
statistic

Tα =
√
n
α̂∗
c(w0)√
Ĉα;0

=
√
n

α̂∗
c(w0)B̂n√
d′
0Ω̂α;cd0

, (44)

where α̂∗
c(w0)withb = w0 and Ω̂α;c are given in (25) and (34),

respectively. Under the null hypothesis in (40) we get that

Tα
d→ N (0, 1)

for p/n → c ∈ [0, 1) as n → ∞ and, hence, the hypothesis that
w0 are the weights of the EU portfolio is rejected as soon as
|Tα| > z1−β/2 where z1−β/2 is the (1− β/2) quantile of the
standard normal distribution. Under the alternative hypothesis
in (40), it does not hold that α̂∗

c(w0)
a.s.→ 0 and consequently, the

test based on Tα can detect the deviation in the null hypotheses
of both (36) and (40).

Remark 2: Using that s = γ(Rw0
−RGMV ) (see, (37)) and

R̂w0
and R̂GMV are consistent estimators of Rw0

and RGMV ,
respectively (see, (24)), another consistent estimator of Ωα

under H0 in (40) is given by Eq. (46).

Ω̃α;c =

⎛⎜⎜⎜⎜⎜⎜⎝

V̂c(γ(R̂w0
−R̂GMV )+1)

1−c 0 0 V̂c −2V̂c(R̂w0
− R̂GMV )

0 2 V̂ 2
c

1−c 0 0 2V̂ 2
c

0 0 2
((γ(R̂w0

−R̂GMV )+1)2+c−1)

1−c 2(R̂w0
− R̂GMV ) −2(R̂w0

− R̂GMV )
2

V̂c 0 2(R̂w0
− R̂GMV ) V̂w0

0

−2V̂c(R̂w0
− R̂GMV ) 2V̂ 2

c −2(R̂w0
− R̂GMV )

2 0 2V̂ 2
w0

⎞⎟⎟⎟⎟⎟⎟⎠ (46)
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Fig. 2. The high-dimensional asymptotic normal approximation of the den-
sities of Tα and T̃α together with their kernel density estimators for γ = 5,
p = 300 and cn = p/n ∈ {0.3, 0.8}.

TABLE II
EMPIRICAL SIZES OF THE TWO TESTS BASED ON Tα AND T̃α USING 104

INDEPENDENT REPLICATIONS.

Then, the hypotheses in (40) can also be tested by using the
following test statistic

T̃α =
√
n

α̂∗
c(w0)B̂n√
d′
0Ω̃α;cd0

(45)

which is asymptotically standard normally distributed under H0

in (40).
Remark 3: Using the duality between the test theory and

confidence interval (see, [45]), the null hypothesis in (40) and
consequently in (36) are rejected at significance level β as soon
as the (1− β) confidence interval constructed for α∗(w0) does
not include zero. This confidence interval in the case of the test
Tα has the boundaries

α̂∗
c(w0)±

z1−β/2√
n

√
d′
0Ω̂α;cd0

B̂n

, (47)

while for the test based on T̃α we get

α̂∗
c(w0)±

z1−β/2√
n

√
d′
0Ω̃α;cd0

B̂n

. (48)

To assess the precision of the asymptotic distribution we use
a similar setting as in the last section. In Figure 2, we show
the KDEs of the distribution of the test statistics Tα and T̃α

under the null hypothesis together with their high-dimensional
asymptotic distribution. The latter approximates the simulated
exact distributions very precisely, although the fit appears to
be slightly better for Tα. The empirical size on both cases is
close to the nominal size of 5% as it is shown in Table II.
Summarizing, we conclude that the derived high-dimensional
asymptotic distributions provide good approximations for the
distributions of the proposed test statistics for different values
of c.

IV. SIMULATION AND EMPIRICAL STUDY

The performance of the derived tests is investigated through-
out an extensive simulation study. In particular, we explore the
behavior of the tests with respect to their power functions and
receiver operative characteristic curves. Additionally, we apply
in this section the derived inference procedures to real data.

A. Simulation Study

The sample of asset returns x1,x2, . . . ,xn are generated in-
dependently from Np(μ,Σ). To mimic the behavior of real data
we generate the eigenvalues of population covariance matrix Σ
according to the law λi = 0.1eδc(i−1)/p, i = 1, . . . p (see, [27])
and take its eigenvectors from the spectral decomposition of the
standard Wishart random matrix. Then, the covariance matrix is
given as follows

Σ = ΘΛΘ′, (49)

where Λ is a diagonal matrix of the predefined eigenvalues and
Θ is a p× p matrix of eigenvectors. By changing the value of δ,
we can control the conditional index of the covariance matrix for
different values of c. We set condition index equals to 450. This
setting reflects the parametrisation we observed in the empirical
study in the next section. The elements of the mean vector are
randomly generated fromU (−0.2, 0.2), which also corresponds
to the natural behavior of daily asset returns.

We assume that the portfolio weights and thus the shrinkage
intensity change due to a change in the mean of asset returns.
Under the alternative hypothesis, there is an additive shift to the
mean vector of the asset returns defined as

μ1 = μ+ ε, (50)

where

ε = −a · (1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
m

),

where a = 0.01κ, κ ∈ {0, 1, 2, . . . , 35}, m = 0.5p. Thus, we
assume that the expected return on the first m assets decreases.

We conduct the test at the 5% level of significance. We put
p = 300 and c ∈ {0.3, 0.8}. The number of repetitions is 104

and γ = 5. For the ROC curves we fix a at 0.08. The results are
illustrated in Figure 3. It can be seen that both tests Tα and T̃α

display an overall consistency and a good performance in terms
of power functions and ROC curves. The behavior is better for
smaller values of c and not substantially worse in case of c = 0.8.
The test based on the test statistic given in (45) outperforms the
test given in (44) and for this reason it is used in the empirical
illustration in Section IV-B.

B. Empirical Study

In this section, we apply the derived theoretical results to
real data. The objective is to determine the periods where the
shrinkage intensity is significantly different from zero and thus
the EU optimal portfolio is significantly different from the target
or the benchmark portfolio b. This study is based on daily return
data of all companies listed in the S&P 500 index for the period
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Fig. 3. Empirical power functions of the proposed tests as a function of the
change a (left) and ROC curves of two tests for a = 0.08 (right) for different
values of c according to the scenario given in (50) and p = 300.

from April 1999 to March 2020. We assume that the investor
allocates her wealth to portfolios of size p ∈ {100, 300} with
daily reallocation. She selects the firstp assets in alphabetic order
from the available data. Note that due permanent changes in the
index composition, only 369 out of 500 assets were included
in the index over the whole time span. For this reason and to
guarantee comparability of the results we cannot consider all 500
assets. The sample size n is chosen to attain c ∈ {0.3, 0.5, 0.8},
i.e. n = p/c. We put γ = 5 which is a common value for the
risk aversion coefficient in financial literature. As the target
portfolio we consider the equally weighted portfolio with all
weights equal1/p. Despite of its simplicity this portfolio appears
to show a superior long-run performance and dominates many
more sophisticated trading strategies (see, [46]).

Figure 4 shows the time series of estimated shrinkage in-
tensities together with 95% confidence intervals as defined in
(48). If c = 0.3, then the shrinkage intensity is close to one
indicating that the EU portfolio clearly dominates benchmark in
the convex combination. This is due to the fact, that the investor
has more historical data to estimate the unknown parameters and
the estimation risk is relatively low. If c increases, the sample
available for a portfolio of a fixed size gets smaller and the
shrinkage intensity shifts towards zero. The benchmark portfolio
gets higher weight and for c = 0.8 it even becomes dominant.
The same reasoning applies if we analyse the impact of increase
in p from 100 to 300. Fixed c and larger p increase the sample
size n and has a stabilizing impact on the shrinkage intensity.

We cannot reject the null hypothesis of the test based on T̃α

in (45) that the shrinkage intensity is zero if the confidence
intervals cover the zero value (see, Remark 3 above). The figures
reveal that we never opt for H0 if c = 0.3 or 0.5. Thus, for this
parameter constellation the portfolio weights of the EU portfolio
are always significantly different from the weights of the equally
weighted portfolio. The situation changes for c = 0.8 where we
do have periods with not rejected H0 in (40). Similar behavior
is observed for p = 300 too, however, here the intensities and
their variances are more stable leading to less periods with not
rejected H0.

Recall that a non-rejection of H0 in (40) does not guarantee
that the weights of the EU portfolio coincide with the weights
of the target portfolio. To elaborate on the difference between
the two portfolios and to get more economic insight into the
dynamics of the intensities we consider Figure 5. Here we
plot the differences between the means and variances of the
GMV and the equally weighted benchmark. These quantities
determine the behavior of the empirical shrinkage intensity in
(23). On the one hand, we observe in Figure 4 that the shrinkage
intensity increases during a crisis period, e.g., 2002-2003 and
2008-2010. This seems to be surprising since the volatility of
returns is high in this period and the equally weighted port-
folio is believed to reduce the risk. However, Figure 5 shows
that the variance of the benchmark portfolio is much higher
(i.e., V̂b > V̂c) and its return is much lower (i.e., R̂b < R̂GMV )
compared to the GMV portfolio in the crisis period leading to
a higher relative precision and efficiency of the EU portfolio.
On another hand, the mean returns and the variances are almost
indistinguishable in calm periods leading to shrinkage intensities
closer to zero and even insignificant for larger c’s. Thus, we
conclude that non-rejecting H0 is driven by high similarity
between the mean and the variance of the target and GMV
portfolios.

V. SUMMARY

This paper is dedicated to portfolio selection problems driven
by high-dimensional financial data sets. In particular, we deal
with optimal asset allocation in a high-dimensional asymptotic
regime, namely when the number of assets and the sample size
tend to infinity at the same rate. Due to the curse of dimensional-
ity in the parameter estimation process, asset allocation for such
portfolios becomes a challenging task. Using the techniques
from the theory of random matrices, new inferential procedures
based on the optimal shrinkage intensity for testing the efficiency
of the high-dimensional EU portfolio are developed and the
asymptotic distributions of the proposed test statistics are de-
rived. In extensive simulations, we show that the suggested tests
have excellent performance characteristics for various values
of c. The practical advantage of the proposed procedures are
demonstrated in an empirical study based on stocks included
into the S&P 500 index. Namely, we found that depending on
the value of p/n there are periods of time where one can clearly
reject the null hypothesis of equality between the EU portfolio
and the equally weighted portfolio. Moreover, the EU portfolio
is dominating the benchmark in these periods. In particular, we
show that one can undoubtedly beat the naive portfolio during
volatile time periods, which brings some new insights into the
understanding of the expected utility portfolios. This fact is
surprising because if the volatility of returns is high the equally
weighted portfolio is widely believed to reduce the risk. On
the other hand, in calm periods the mean returns and variances
of assets are almost indistinguishable leading to a similarity
between the mean and the variance of the target and GMV
portfolios.

Another issue, which is of central importance is the assump-
tion of normality that we impose on the distribution of the asset
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Fig. 4. Estimated shrinkage intensities for the equally weighted portfolio as the target portfolio (p = 100 on the right and p = 300 on the left) with 95% pointwise
confidence intervals. The black dots indicate the periods with rejected H0 (1-values) and not rejected H0 (0-values).

Fig. 5. Components of the estimated shrinkage intensity given in (25) using
equally weighted target for c = 0.8, p = 300 and γ = 5.

returns. Although the asset returns are clearly not normally
distributed our procedure gives an effective method how to
assess the difference between high-dimensional benchmark and
optimal portfolio in a simplistic way and heavy-tailed returns
might make our conclusions even more extreme. In general, we
expect the asymptotic distribution of optimal shrinkage intensity
to depend of the fourth moment (kurtosis). This interesting topic
will be investigated in a separate paper and is left for future
research. Furthermore, an extension to a multivariate shrinkage
intensity can introduce more flexibility into the model by letting
each asset to be shrunk individually. The asset-specific intensity
mimics the risk of each asset and allows us to evaluate their
individual proximity to the benchmark. Such setting would
allow for more general tests and, particularly, for building
tracking portfolios. This will be also considered in future re-
search projects.
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APPENDIX

In this section the proofs of the theoretical results are given.
The proof of Theorem 1 is based on Lemmas 1-2.

Lemma 1: Let z1, ..., zn be an independent sample from the
p-dimensional standard normal distribution and let

Sn =
1

n− 1

n∑
j=1

(zj − z̄)(zj − z̄)′ (51)

be the corresponding sample covariance matrix. Let m1, m2,
and m3 be the p-dimensional vector of constants with the
Euclidean norms equal to one. Then

√
n

⎛⎜⎜⎝
m′

1Snm1 − 1
m′

2S
−1
n m2 − 1

1−cn
m′

2S
−1
n m3 − 1

1−cn
m′

2m3

m′
3S

−1
n m3 − 1

1−cn

⎞⎟⎟⎠
d→ N4

(
0,

2

c
Θ(m1,m2,m3) ◦Λ

)
, (52)

with

Θ(m1,m2,m3) =

⎛⎜⎜⎝
1 θ212 θ12θ13 θ213
θ212 1 θ23 θ223

θ12θ13 θ23 0.5 + 0.5θ223 θ23
θ213 θ223 θ23 1

⎞⎟⎟⎠ , (53)

where

θ12 = lim
n→∞(m

′
1m2),

θ13 = lim
n→∞(m

′
1m3),

θ23 = lim
n→∞(m

′
2m3)

and

Λ =

⎛⎜⎜⎜⎝
c − c

1−c − c
1−c − c

1−c

− c
1−c

c
(1−c)3

c
(1−c)3

c
(1−c)3

− c
1−c

c
(1−c)3

c
(1−c)3

c
(1−c)3

− c
1−c

c
(1−c)3

c
(1−c)3

c
(1−c)3

⎞⎟⎟⎟⎠ , (54)

where the symbol ◦ denotes the Hadamard (elementwise) prod-
uct of matrices.

Proof of Lemma 1 Since (n− 1)Sn has a p-dimensional
Wishart distribution with the identity covariance matrix, we
get that there exists a p× (n− 1) matrix Z̃ whose entries
are independent and standard normally distributed such that
(n− 1)Sn = Z̃Z̃′. The application of Theorem 2 in [47] leads
to (52) with Θ as in (53) and Λ given by

Λ =

⎛⎜⎜⎜⎝
λ1 λ2 λ2 λ2

λ2 λ3 λ3 λ3

λ2 λ3 λ3 λ3

λ2 λ3 λ3 λ3

⎞⎟⎟⎟⎠
with

λ1 =

∫ a+

a−
z2dFc(z)−

(∫ a+

a−
zdFc(z)

)2

,

λ2 = 1−
∫ a+

a−
zdFc(z)

∫ a+

a−

1

z
dFc(z),

λ3 =

∫ a+

a−

1

z2
dFc(z)−

(∫ a+

a−

1

z
dFc(z)

)2

where the function Fc(z) denotes the cumulative distribution
function of the Marchenko-Pastur law (see, [21]) for c < 1
expressed as

dFc(z) =
1

2πzc

√
(a+ − z)(z − a−)1[a−,a+](z)dz,

where a± = (1±√
c)2. The moments of Fc(z) present in Λ

can be found in [48, Lemma 14]. This completes the proof of
the lemma. �

Lemma 2: Under the conditions of Theorem 1 it holds that

√
nh =

√
n

⎛⎜⎜⎜⎜⎜⎜⎝
1′
pΣ̂

−1
n x̄n − 1

1−cn
1′
pΣ

−1μ

1′
pΣ̂

−1
n 1p − 1

1−cn
1′
pΣ

−11p

x̄′
nΣ̂

−1
n x̄n − 1

1−cn
μ′Σ−1μ− cn

1−cn

b′x̄n − b′μ
b′Σ̂nb− b′Σb

⎞⎟⎟⎟⎟⎟⎟⎠
d→ N5 (0,Ξ) (55)

for cn = p/n → c ∈ [0, 1) as n → ∞ with

Ξ =

⎛⎜⎜⎜⎜⎜⎜⎝
ξ11 ξ12 ξ13 ξ14 ξ15

ξ12 ξ22 ξ23 ξ24 ξ25

ξ13 ξ23 ξ33 ξ34 ξ35

ξ14 ξ24 ξ34 ξ44 ξ45

ξ15 ξ25 ξ35 ξ45 ξ55

⎞⎟⎟⎟⎟⎟⎟⎠ , (56)

where ξ11 = 1
(1−c)3

1
VGMV

(s∗ +
R2

GMV

VGMV
),

ξ22 = 2
(1−c)3

1
V 2
GMV

, ξ33 = 2
(1−c)3 ((s

∗)2 + c− 1),

ξ44 = Vb, ξ55 = 2V 2
b , ξ12 = 2

(1−c)3
RGMV

V 2
GMV

,

ξ13 = 2
(1−c)3

RGMV s∗
VGMV

, ξ14 = 1
1−c , ξ15 = − 2

1−cRb,

ξ23 = 2
(1−c)3

R2
GMV

V 2
GMV

, ξ24 = 0, ξ25 = − 2
1−c , ξ34 = 2Rb

1−c ,

ξ35 = − 2
1−cR

2
b , ξ45 = 0 and s∗ = s+

R2
GMV

VGMV
+ 1.

Proof of Lemma 2 Leta′ = (a1, a2, a3, a4, a5) be an arbitrary

vector of constants. Next, we show that
√
na′h d→ N (0,a′Ξa),

which will prove the statement of the lemma.
Since x1, ...,xn are independent and identically distributed

with xi ∼ Np(μ,Σ), we get that xi = μ+Σzi where
z1, ..., zn are independent standard normally distributed and
Σ1/2 is the symmetric square root of Σ. Moreover, it holds
that

x̄n = μ+Σz̄n and Σ̂n = Σ1/2SnΣ
1/2,

where

z̄n =
1

n

n∑
i=1

zi and Sn =
1

n− 1

n∑
i=1

(zi − z̄n)(zi − z̄n)
′.
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To this end, we have that z̄n and Sn are independent with
√
nz̄n

standard normally distributed and (n− 1)Sn standard Wishart
distributed.

Let ν = Σ−1/2μ. We get

√
na′h = H1(z̄n,Sn) +H2(z̄n),

with

H1(z̄n,Sn) = a1

√
1′
pΣ

−11p

√
x̄′
nΣ

−1x̄n

√
n

×
⎛⎝ 1′

pΣ̂
−1
n x̄n√

1′
pΣ

−11p

√
x̄′
nΣ

−1x̄n

−
1

1−cn
1′
pΣ

−1x̄n√
1′
pΣ

−11p

√
x̄′
nΣ

−1x̄n

⎞⎠
+ a21

′
pΣ

−11p

√
n

(
1′
pΣ̂

−1
n 1p

1′
pΣ

−11p
− 1

1− cn

)

+ a3x̄
′
nΣ

−1x̄n

√
n

(
x̄′
nΣ̂

−1
n x̄n

x̄′
nΣ

−1x̄n
− 1

1− cn

)

+ a5b
′Σb

√
n

(
b′Σ̂nb

b′Σb
− 1

)
= d′

1(z̄n)
√
nh1(z̄n,Sn)

and

H2(z̄n) = a1
1

1− cn

√
n
(
1′
pΣ

−1x̄n − 1′
pΣ

−1μ
)

+ a3
1

1− cn

√
n
(
x̄′
nΣ

−1x̄n − μ′Σ−1μ− cn
)

+ a4
√
n(b′x̄n − b′μ)

=
a3

1− cn

√
n
(
(z̄n + d2)

′ (z̄n + d2)− d′
2d2 − cn

)
with

d1(z̄n) =

⎛⎜⎜⎜⎜⎝
a5b

′Σb

a21
′
pΣ

−11p

a1
√

1′
pΣ

−11p

√
(ν + z̄n)′(ν + z̄n)

a3(ν + z̄n)
′(ν + z̄n)

⎞⎟⎟⎟⎟⎠ ,

d2 =
1− cn
a3

×
(

a3
1− cn

Σ−1/2μ+
a1

2(1− cn)
Σ−1/21p +

a4
2
Σ1/2b

)
,

and

h1(z̄n,Sn) =

⎛⎜⎜⎜⎜⎜⎝
b′Σ1/2SnΣ

1/2b
b′Σb

1′
pΣ

−1/2S−1
n Σ−1/21p

1′
pΣ

−11p

1′
pΣ

−1/2S−1
n (ν+z̄n)√

1′
pΣ

−11p

√
(ν+z̄n)′(ν+z̄n)

(ν+z̄n)
′S−1

n (ν+z̄n)
(ν+z̄n)′(ν+z̄n)

⎞⎟⎟⎟⎟⎟⎠

−

⎛⎜⎜⎜⎜⎝
1
1

1−cn
1

1−cn

1′
pΣ

−1/2(ν+z̄n)√
1′
pΣ

−11p

√
(ν+z̄n)′(ν+z̄n)

1
1−cn

⎞⎟⎟⎟⎟⎠ .

Since Sn and z̄n are independent the conditional distribution
ofH1(z̄n,Sn) given z̄n = v coincides withH1(v,Sn). Further-
more, the application of Lemma 1 to

√
nh1(v,Sn) proves that it

is asymptotically normally distributed and, thus, the asymptotic
stochastic representation of H1(z̄n,Sn) is given by Eq. (57)

shown at the bottom of this page, where ω1
d→ N (0, 1) and is

independent of z̄n and hence of H2(z̄n). Finally, we have that
n(z̄n + d2)

′(z̄n + d2) has a non-central χ2 distribution with
p degrees of freedom and noncentrality parameter nd′

2d2. The
application of [49] leads to

√
p

(
n (z̄n + d2)

′ (z̄n + d2)

p
− nd′

2d2

p
− 1

)
d→ N

(
0, 2 + 4

d′
2d2

c

)
and, consequently,

H2(z̄n)
d
=

√
cn

1− cn
a3

√
2 + 4

d′
2d2

cn
ω2. (58)

where ω2
d→ N (0, 1).

Using that ν ′z̄n
a.s.→ 0 and z̄′nz̄n

a.s.→ c, the application of
Slutsky’s lemma (c.f., [44, Theorem 1.5]) leads to

√
na′h d→ N (0,a′Ξa)

for p/n = c+ o(n−1/2) as n → ∞ where Ξ is given in (56).
Since a is an arbitrary vector, the statement of Lemma 2 is
proved. �

Proof of Theorem 1: It holds that

R̂GMV −RGMV = V̂GMV

((
1′
pΣ̂

−1
n x̄n − 1

1− cn
1′
pΣ

−1μ

)

−RGMV

(
1′
pΣ̂

−1
n 1p − 1

1− cn
1′
pΣ

−11p

))
,

V̂c−VGMV =−VGMV V̂GMV

(
1′
pΣ̂

−1
n 1p − 1

1− cn
1′
pΣ

−11p

)

H1(z̄nv,Sn)
d
=

√
2

c
ω1

√√√√√d′
1

⎛⎝Θ

⎛⎝ Σ1/2b√
b′Σb

,
Σ−1/21p√
1′
pΣ

−11p

,
(ν + z̄n)√

(ν + z̄n)′(ν + z̄n)

⎞⎠ ◦Λ
⎞⎠d1 (57)
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D =

⎛⎜⎜⎜⎜⎜⎜⎝

(1− cn)V̂c −(1− cn)V̂cRGMV 0 0 0

0 −(1− cn)V̂cVGMV 0 0 0

(1− cn)V̂c

(
RGMV

VGMV
− R̂GMV

V̂c

)
(1− cn)V̂c

R2
GMV

VGMV
(1− cn) 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ (59)

ŝc−sGMV =(1− cn)

(
x̄′
nΣ̂

−1
n x̄n− 1

1− cn
μ′Σ−1μ− cn

1− cn

)

− (1− cn)

(
(1′

pΣ̂
−1
n x̄n)

2

1′
pΣ̂

−1
n 1p

− 1

1− cn

(1′
pΣ

−1μ)2

1′
pΣ

−11p

)

= (1− cn)

(
x̄′
nΣ̂

−1
n x̄n − 1

1− cn
μ′Σ−1μ− cn

1− cn

)

− (1− cn)V̂GMV

((
1′
pΣ̂

−1
n x̄n +

1

1− cn

RGMV

VGMV

)

×
(
1′
pΣ̂

−1
n x̄n − 1

1− cn
1′
pΣ

−1μ

)

− 1

1− cn

R2
GMV

VGMV

(
1′
pΣ̂

−1
n 1p − 1

1− cn
1′
pΣ

−11p

))
.

Hence,

√
n

⎛⎜⎜⎜⎜⎜⎜⎝
R̂GMV −RGMV

V̂c − VGMV

ŝc − s

R̂b −Rb

V̂b − Vb

⎞⎟⎟⎟⎟⎟⎟⎠ = D
√
nh,

with h defined in (55) and D in Eq. (59) shown at the top of this
page.

The application of R̂GMV
a.s.→ RGMV and V̂c

a.s.→ VGMV for
p/n → c ∈ [0, 1) as n → ∞, the results of Lemma 2, and Slut-
sky’s lemma (c.f., [44, Theorem 1.5]) complete the proof of the
theorem. �
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