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Abstract
This paper explores the scalability of Graph Neural
Networks (GNNs) in the context of traffic forecast-
ing, a critical area for improving urban mobility and
reducing congestion. Despite GNNs’ demonstrated
effectiveness in handling complex spatiotempo-
ral dependencies in traffic data, scaling them to
large road networks remains challenging due to in-
creased computational requirements. This study
aims to evaluate how the accuracy and computa-
tional cost of a state-of-the-art traffic forecasting
GNN, the Decoupled Dynamic Spatio-Temporal
Graph Neural Network, change with varying road
network sizes and complexities (i.e., sensor den-
sity). Using two real-world datasets, three exper-
iments are conducted: scaling map area, scaling
graph complexity, and testing the geographic loca-
tion effect. Findings show that larger graphs gener-
ally improve accuracy and GPU efficiency. More-
over, geographic location affects accuracy, whereas
sensor density has minimal impact.

1 Introduction
Since the invention of automobiles, people have been waiting
in traffic jams. As cities grew, and the number of vehicles
increased, this became an even more pressing issue. In re-
cent years, traffic forecasting has emerged as a key strategy
to improve the driving experience. It involves predicting the
volume, speed, and behaviour of vehicles on road networks
over a specific time period. Accurate predictions can lead
to more efficient routing, reduced congestion, and improved
public safety. The benefits of traffic forecasting attracted gov-
ernment authorities and logistic firms, leading to the develop-
ment of Intelligent Transportation Systems (ITS) [1].

ITS allowed for the gathering of large amounts of traffic
data, creating a need to analyse them effectively. However,
even with enough available data, forecasting traffic is inher-
ently challenging due to the complex spatial and temporal
dependencies in road networks and the inherent difficulty of
long-term forecasting [2]. To address these problems, mul-
tiple and increasingly more sophisticated models have been
proposed [3] including, more recently, Graph Neural Net-
works (GNNs).

GNNs emerged as a promising solution for traffic fore-
casting [3] with recent studies demonstrating their effective-
ness in various traffic forecasting tasks, including short-term
traffic speed prediction, traffic flow estimation, and conges-
tion detection [4; 5; 6]. Unlike conventional machine learn-
ing models, GNNs are specifically designed to handle graph-
structured data, making them particularly well-suited for nat-
urally representing traffic networks [7].

Despite these advantages, their ability to efficiently scale
to large-scale road networks remains a challenge [3]. As the
size and complexity of the graph increase, so do the com-
putational and memory requirements, which can hinder the
model’s performance and practicality [8]. Multiple sampling-
based [9; 10], historical-embedding-based [11], and parallel-

computing-based [12] methods have been proposed to ad-
dress this growing complexity, but research into GNN com-
putational efficiency, accuracy, and ability to handle varying
road network sizes in the field of traffic forecasting is still
needed [13]. This will help determine if GNNs can be ap-
plied in real-world scenarios with continuously growing road
networks, and the computational resources they may need to
achieve a certain level of accuracy.

This paper’s contribution to the state of knowledge is the
evaluation of the scalability of a state-of-the-art traffic fore-
casting Graph Neural Network. Specifically, it investigates
how accuracy and computational cost change with variations
in road network size, complexity, and geographic location.

The structure of the paper is as follows: Section 2 provides
a background on related work, highlighting the evolution of
traffic forecasting methods, the development of GNNs, and
their scalability problems. Section 3 describes the method-
ology, including model selection, dataset descriptions, and
the experimental design used to assess scalability. Section 4
presents the experimental setup and results, analysing the per-
formance of the selected GNN model across three scenarios.
Section 5 discusses the results and limitations of this research.
Section 6 reflects on the ethical aspects and reproducibility
of the research. Finally, Section 7 concludes with insights
gained from the study and suggestions for future work.

2 Background
This section provides an overview of traffic forecasting meth-
ods, from traditional statistics to GNNs. Additionally, it for-
mally defines the traffic forecasting problem.

2.1 Related Work
Before Graph Neural Networks
Since the 1970s, various algorithms have been proposed for
traffic forecasting, spanning statistical, machine learning, and
deep learning methods. Statistical techniques, primarily used
for traffic flow predictions, include historical moving av-
erage [14], exponential smoothing [15], and autoregressive
integrated moving average (ARIMA) models [16]. Non-
parametric approaches such as k-nearest neighbours [17],
random forests [18], and neural networks [19] also gained
popularity for their ability to handle high-dimensional data
and learn complex patterns.

Deep learning methods, particularly Graph Neural Net-
works [3], Convolutional Neural Networks (CNNs) [20;
21], and Recurrent Neural Networks (RNNs), including Long
Short-Term Memory networks [22; 23], emerged as promis-
ing alternatives for traffic prediction tasks. CNNs can accu-
rately capture spatial dependencies in grid-based traffic data
such as New York City, while RNNs excel at learning tem-
poral dependencies. GNNs, however, currently dominate the
field due to their ability to model both spatial and temporal
complex dependencies.

Graph Neural Networks and Scalability Problems
Despite the promise shown by GNNs in capturing the spa-
tial and temporal dependencies in road networks, their abil-
ity to scale efficiently remains a challenge [3]. Scalability
has consistently been an issue when developing models for



traffic forecasting. Statistical methods, though simple and
fast, struggle with processing multivariate data common in
large-scale traffic networks, resulting in lower accuracy. Fur-
thermore, machine learning and deep learning models lead
to high computational complexity w.r.t. dataset size [24].
GNNs, in particular, require quadratic computational com-
plexity w.r.t. the number of sensors [25]. Addressing the scal-
ability issues of GNNs involves understanding the reasons be-
hind their computational complexity.

Graph Neural Networks use node and edge embeddings
to represent node features and relationships within a graph,
respectively. Additionally, an adjacency matrix stores the
node connections in the graph. This enables GNNs to pre-
dict properties for specific nodes (node-level), connections
(edge-level), or the graph as a whole (graph-level). Their key
mechanism is message passing and aggregation. During each
layer, nodes exchange information with their neighbours to
update their node representations. The result is that as the
number of nodes and edges increases, the amount of oper-
ations needed makes computing the new node embeddings
infeasible and impractical. Moreover, storing the feature rep-
resentations and the adjacency matrix for a large-scale graph
demands substantial GPU memory [8]. To overcome these
issues, recent research has focused on developing efficient
techniques and architectures.

Current Research in Graph Neural Network Scalability
for Traffic Forecasting
An intuitive strategy for addressing scalability involves sam-
pling specific nodes, a successful approach designed for static
graphs [8]. However, in traffic forecasting, the complex-
ity increases further due to temporal dependencies. Spatio-
temporal graph neural networks (STGNNs), designed specifi-
cally to model graphs with time-varying signals, have increas-
ingly become a preferred solution to traffic forecasting [25].

Existing scalable STGNN architectures rely mainly on
sampling or precomputing techniques [26]. Sampling meth-
ods have recently been modified and applied to solve time
series forecasting in large-scale graphs [27; 28]. However,
they struggle to retain the structural information of the graph,
and can fail to capture long-term spatiotemporal dependen-
cies. Precomputation techniques, seen in the Scalable Incep-
tion Graph Network [29], decouple the graph convolution op-
erations from the training process. Graph convolutions for
node features are precomputed and stored to be later used for
training. The Scalable Graph Predictor [30] applies this con-
cept to STGNNs. Precomputation techniques however can
be less effective due to their fixed representations, greater re-
liance on hyperparameter tuning, and potential lack of adapt-
ability to new data patterns [26].

Despite these advancements, there’s a noticeable gap in
research regarding the scalability of STGNNs [30]. Before
proposing new models to solve scalability issues, it is crucial
to evaluate the scalability of existing traffic forecasting mod-
els and identify areas for improvement. Presently, however,
there’s a gap in such evaluations. While new studies often
compare existing traffic forecasting models, they tend to use
the same datasets without introducing variations that could
test the models’ scalability. Notably, there has been only one

large-scale study on traffic forecasting [31], and to the best
of the author’s knowledge, no study systematically scales the
size and complexity of road networks to observe correspond-
ing performance changes for STGNN models. Such evalua-
tions could provide insights into STGNN scalability, poten-
tially leading to the development of more robust and adapt-
able models in traffic forecasting.

2.2 Formal Problem Description
Graph Neural Networks leverage graph structures to repre-
sent road networks, where nodes are sensors placed along
the roads and edges denote connections between them. Each
node vi is represented by a feature vector at time t, which
includes data of dimension C. In this study, C = 1 as only
speed is measured. Traffic speed forecasting can be defined
as a node-level task. Definitions of a traffic network, traffic
signal and the traffic forecasting problem are provided below.
The definitions follow [32].
Definition 2.1 (Traffic Network). A traffic network is a di-
rected or undirected graph G = (V,E), where V is the set of
N nodes (sensors) and E is the set of edges. The reachability
between nodes, expressed as an adjacent matrix A ∈ RN×N ,
is determined by the pairwise road distances between nodes.
Definition 2.2 (Traffic Signal). The traffic signal Xt ∈ RN

denotes the speed observation for all sensors on the traffic
network G at time step t.
Definition 2.3 (Traffic Speed Forecasting). Given historical
traffic signals X = [Xt−Th+1, . . . ,Xt−1,Xt] ∈ RTh×N

from the Th past time steps, traffic forecasting aims to pre-
dict the future traffic signals Y = [Xt+1,Xt+2, . . . ,Xt+Tf

]
of the Tf nearest future time steps.

3 Methodology
An overview of the methodology is illustrated in Figure 2.
Initially, the model and datasets are chosen. These datasets
are then sampled to create four scenarios, which are utilized
in the three experiments detailed in this section. Additionally,
the metrics employed are explained.

3.1 Model Selection
Models Considered
Choosing a state-of-the-art model to test the scalability of
Graph Neural Networks is crucial for drawing valid conclu-
sions. This study considered three models.

The Diffusion Convolutional Recurrent Neural Network
(DCRNN) [2] was initially appealing due to prior research
and reproducibility [33], offering a head start in implemen-
tation and comparative data. However, its computational de-
mands were considerably higher than for the other models.

The Spatio-Temporal Graph Mixformer stood out for its
superior performance [34]. However, it is a mixformer
with a transformer-based architecture, designed for sequence
modelling tasks, whereas GNNs specialize in learning from
graph-structured data. As this study focuses on the scalability
of GNNs, using a mixformer as a model would not accurately
reflect the characteristics of GNNs.

The Decoupled Dynamic Spatio-Temporal Graph Neural
(D2STGNN) [32] appeared to be the most suitable choice,
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Figure 1: Graph-structured data (Figure 1a) and the Decou-
pled Spatial-Temporal Framework (Figure 1b). Source [32].

as it outperformed in accuracy most other models in a large-
scale traffic forecasting benchmarking study [31]. Moreover,
its implementation proved reliable, and its training time was
significantly shorter than that of DCRNN’s.

Decoupled Dynamic Spatio-Temporal Graph Neural
Network
The D2STGNN model [32], is designed to better predict traf-
fic patterns by distinguishing between two types of traffic
signals: inherent and diffusion. Inherent signals are local,
originating near a sensor, while diffusion signals come from
other areas in the network. The model takes as input graph-
structured data shown in Figure 1a and uses a Decoupled
Spatial-Temporal Framework (Figure 1b) to model the two
signal types separately. A detailed illustration of the model
and signals can be seen in Figures 17, 18 of Appendix C.

The model begins by transforming raw traffic signals into
a latent space using a linear layer. It then processes these
signals through a decoupling mechanism that separates them
into diffusion and inherent signals using a residual decompo-
sition mechanism and an estimation gate. The former decom-
poses traffic signals by removing parts of the signals that are
well-approximated by either the diffusion or inherent mod-
els, and retains the rest for further processing. The latter es-
timates the proportion of diffusion and inherent signals in the
traffic data. The diffusion block then uses spatial-temporal
localized convolutional layers to model the impact of neigh-
bouring nodes, while the inherent block uses Gated Recurrent
Units and multi-head self-attention layers to capture short-
term and long-term dependencies, respectively.

Additionally, the model utilizes a dynamic graph learning
module to capture how traffic flow relationships change over
time. Multiple decoupled spatial-temporal layers are stacked
to capture complex patterns, and final predictions are gener-
ated by a regression layer. The model is trained using the
mean absolute error (MAE), as defined in Equation 1.

3.2 Datasets
The experiment is conducted on two real-world datasets com-
monly used for traffic prediction. They contain data on the
average traffic speed of the vehicles. Due to the speed limit
in the areas, the speed value is a float with a range usually
between 0 and 70 miles per hour [33].

1. METR-LA (Figure 3a): collected from the highway of
Los Angeles County, spanning March 1 to June 10,
2012, and includes data from 207 sensors recording av-
erage speed every 5 minutes, totalling 6,519,002 obser-
vations.

Figure 2: Overview of the methodology used. First, a GNN
model, the Decoupled Dynamic Spatio-Temporal Graph Neu-
ral Network, and two datasets, METR-LA and PEMS-BAY,
are selected for the experiments. Then, for each dataset, four
experimental scenarios are created by sampling specific sen-
sors. In Experiment 2, additional subsampling is applied to
Scenario 2. Finally, the results of each experiment are evalu-
ated using three main metrics.

2. PEMS-BAY (Figure 3b): collected by California Trans-
portation Agencies Performance Measurement System
in the Bay Area, spanning January 1 to May 31, 2017. It
includes data from 325 sensors recording average speed
every 5 minutes, totalling 16,937,179 observations.

The selection of datasets was based on the following
three factors; size (number of sensors, map area covered,
time span), type (e.g. speed), and prior use in evaluating
D2STGNN in other studies. Initially, datasets used in the
original D2STGNN paper [32] were considered. Specifically,
PEMS04 and PEMS08, which contain traffic flow data from
the San Francisco Bay Area. However, traffic speed predic-
tion, having been more extensively researched [3] was the
better choice. The METR-LA and PEMS-BAY datasets [2]
were selected for this purpose. These datasets from two dif-
ferent areas in California allowed for better research into how
scalability is affected based on road structure and time span of
data. Additionally, the CA dataset introduced in a large-scale
traffic forecasting benchmarking study [31] was considered
but was not selected due to its extensive size and limited cur-
rent computational resources.

3.3 Scalability Study
To assess the model’s scalability, three experiments were
designed, drawing inspiration from a similar study on the
DCRNN model [33]. Experiment 1 builds upon the study’s
approach of comparing accuracy between the full dataset and
a subset. Experiment 3 investigates the impact of geographic
location on model accuracy, similar to the DCRNN study, but
with an additional focus on efficiency metrics.

Experiment 1: Scaling Map Area
This experiment aims to observe performance changes as the
map area grows. To achieve this, a baseline map size is es-
tablished, and the map area is progressively increased. This
results in three scenarios for each dataset visualized in Fig-
ures 3a and 3b, with the number of sensors sampled in each
scenario shown in Table 1. Specifically, Scenario 1 (small)
involves a small subset of the original dataset, Scenario 2
(large) expands Scenario 1 to include additional sensors, and



(a) METR-LA. (b) PEMS-BAY. (c) Example of scattered sensors, 50% proportion.

Figure 3: Sensors selected for the experiments. In Figures 3a, 3b Scenarios 1, 2, 3 and 4 are represented in red, red and green,
blue, and all colours respectively. Figure 3c shows an example of scattered sensors selected with 50% proportion (in red) from
the Scenario 2 sensors (in green and red) in the METR-LA dataset.

Scenario 3 (original) encompasses the full dataset with all
sensors. Scenario 4 (comparison) is used and explained in
Experiment 3.

The subsets were chosen based on two factors: size and
geographic location. For the PEMS-BAY and METR-LA
datasets, sensors within and outside the city were selected
respectively. Additionally, a similar number of sensors for
the areas across the datasets was ensured, to allow for a fair
comparison of trends. One notable difference is how in the
METR-LA dataset, the smaller area grows into the larger area
along the x-axis, while in the PEMS-BAY dataset, the growth
occurs along both the x and y axes. This is to observe whether
the direction of growth influences performance.

Table 1: Number of sensors sampled in each scenario. The
samples used for Experiment 1 are highlighted.

Scenario Proportion % Number of Sensors

METR-LA PEMS-BAY

(1) Small 100 24 24

(2) Large 25 14 13
50 28 26
75 42 39
100 55 51

(3) Original 100 207 325

(4) Comparison 100 24 24

Experiment 2: Scaling Graph Complexity
The objective of this experiment is to evaluate how the model
scales as graph complexity increases, and the map size re-
mains constant. This means increasing sensor density in the
map. This is highly relevant for real-world scenarios; under-
standing how the model performs with varying sensor den-
sities can reveal whether sparser sensor placement could im-
prove training time and accuracy.

In this experiment, sensors are subsampled from Scenario 2
with varying proportions, namely 100%, 75%, 50%, and 25%
of the original number of sensors in that area. To better cap-
ture the spatial characteristics of the area, points are selected

with maximum scattering. This is done using an approxima-
tion algorithm1 outlined in Algorithm 1 as the high sensor
count renders the greedy approach computationally infeasi-
ble. This algorithm computes the convex hull of the dataset,
selects up to M maximally distant points from it, and itera-
tively adds interior points that maximize their distance until
M points are chosen.

The exact number of sensors selected in each proportion
is shown in Table 1 under Scenario 2. An example of this
sampling is shown in Figure 3c, where a sampling (in red) of
50% is applied on the original sensors in Scenario 2 (in green
and red) for METR-LA.

Algorithm 1 Select n Most Scattered Points (Approximation)
Input: List of points points, integer n
Output: The selected points
1: Compute the convex hull of points
2: selected points← list of points on the convex hull
3: while len(selected points) < n do
4: Find a point p in points that maximizes its distance from the

selected points
5: selected points← selected points ∪ {p}
6: end while
7: return selected points

Experiment 3: Geographic Location Effect
To investigate whether the geographic location affects the
results, Scenario 4 (comparison) samples 24 sensors from
a different area than Scenario 1 and the two are compared.
For METR-LA sensors closer to the city are chosen, and for
PEMS-BAY, sensors outside the city but still near another air-
port. Airports can impact performance in a D2STGNN, as
more inherent signals are expected in such areas. With this
choice, the aim is to mitigate this impact and focus on the ef-
fect of the road structure. The sensors selected for Scenario 4
for each dataset can be seen in blue in Figures 3a and 3b.

3.4 Evaluation Metrics
The evaluation and comparison of the D2STGNN model in
each scenario considers two aspects: accuracy and efficiency.

1https://scicomp.stackexchange.com/questions/20030/selecting-
most-scattered-points-from-a-set-of-points



To assess model accuracy, three common metrics in traffic
forecasting were considered: MAE, root mean squared error
(RMSE), and mean absolute percentage error (MAPE). MAE
was chosen over RMSE for its interpretability and robustness
to outliers. MAPE can be problematic for traffic forecasting,
as broken sensors yield zero or near-zero values. Moreover,
since the sensors are placed on highways with uniform speed
limits, using MAE should not impact result comparability.

The MAE measures the average absolute errors across all
sensors and future time steps. It quantifies the difference be-
tween the predicted traffic signals Ŷ and the actual traffic sig-
nals Y , as defined in Equation 1, adapted from [32]. Its do-
main spans R+, and lower values signify higher accuracy. In
this study, the MAE values presented are measured over the
test set.

MAE =
1

Tf ·N

Tf∑
t=1

N∑
i=1

∣∣∣Ŷti − Yti

∣∣∣ (1)

The model’s efficiency is assessed using the total runtime
in seconds (training plus inference time) and average GPU %
utilized2 during runtime. Additionally, training time per node
measured in seconds (Equation 2) is used to assess the effect
of parallelization techniques.

Training Time per Node =
Total Training Time

N
(2)

4 Experimental Setup and Results
This section outlines the experimental environment, data pre-
processing, and training approach, followed by a detailed de-
scription of the results for each experiment.

4.1 Experiment Setup
Environment and Code Implementation
The experiments were conducted on a Windows 11 computer
with 64GB of RAM, a NVIDIA GeForce RTX 4090 GPU,
and an Intel i9-13900K CPU. The code for the model was
obtained from the official D2STGNN repository [35].

Training and Data Splitting
The same data splits and preprocessing of previous work is
used [32]. In particular, the datasets are chronologically split
into training, validation and testing sets with a ratio of 7:2:1.
The adjacency matrix is obtained by applying a thresholded
Gaussian kernel on the pairwise road distances among sen-
sors. Sequence samples are generated via a sliding win-
dow approach with a width of 24 time steps (equivalent to
2 hours). The first hour is served as input, while the remain-
ing hour is the ground truth. Forecasting is conducted at 5-
minute intervals (equivalent to 12 horizons), and the model’s
performance is assessed by averaging across all horizons for
the MAE metric. Figure 4 shows a visualization of this ap-
proach. Finally, the model parameters are the same as in the
original implementation, except for the warm-up epochs in
PEMS-BAY, which is set to 0 to match METR-LA’s setting.
The batch size is kept at 32, and the epoch count at 80.

2https://docs.wandb.ai/guides/app/features/system-metrics#gpu-
utilization

Figure 4: Overview of training approach. Samples are gener-
ated using a 24-timestep sliding window, with 12 time steps
as input and 12 as ground truth.

4.2 Results
Broken Sensor Values
Broken sensors in the dataset result from malfunctions dur-
ing data collection. Their values can negatively impact model
training and evaluation. To mitigate their impact during eval-
uation, zero values are ignored when calculating the metrics.
However, during the experiment, MAPE values sometimes
abnormally reached negative values. It was discovered that
broken sensors were not filtered out correctly, with their true
value being −3.8146973 × 10−6 in cases due to preprocess-
ing steps in the provided implementation. The metrics in the
code were modified to ignore broken sensor values correctly
during evaluation.

Experiment 1 Results: Scaling Map Size
Figure 6 illustrates the MAE over the running time, measured
after each training epoch, for all scenarios and datasets. In
this experiment, Scenarios 1, 2 and 3 are considered. Initially,
the MAE decreases rapidly, with the improvement rate slow-
ing down as training progresses. Eventually, larger graphs
achieve lower MAE than smaller graphs for both datasets.
The lowest MAE values achieved in each scenario are shown
in Figure 7a. Large graphs achieve performance levels close
to optimal quickly, considering their size. Normalizing train-
ing times by node count (Figure 7b) for a more equitable
comparison, reveals that larger graphs require less training
time per node and maintain higher accuracy. Further analysis
shows larger graphs utilize the GPU more efficiently (Figure
7c), and have a higher average node degree (Figure 7d).

The improved accuracy in larger graphs prompts an inves-
tigation into whether this applies to every sensor within the
network. To explore this, two sensors that are common to
small, large and original scenarios were randomly sampled:
one on the border of the small and large area (in purple), and
another on the south road of the small area (in blue), shown
in Figure 5. The results, portrayed in Table 2, indicate that
larger graphs for both sensors generally yield slightly higher
accuracy, though this is not always the case. The predictions
of the small and large graphs over the same sensors (Figures
12, 11 in Appendix A), illustrate that predictions on the larger
graph tend to be more stable than the small one.

Experiment 2 Results: Scaling Complexity
In contrast to Experiment 1, where the number of nodes in-
creases with the map area, Experiment 2 maintains a fixed
area while varying the number of nodes. This involves pro-
portionally selecting subsets of sensors from Scenario 2 to
examine the quantitative relationship between performance



Figure 5: Sampled sensors in METR-LA Scenario 1 for Ex-
periment 1, with IDs 717816 (Blue) and 717499 (Purple).

Table 2: Mean absolute error (MAE) of sensors in Figure 5.

Sensor ID Scenario MAE

717816 (Blue) (1) Small 3.51
(2) Large 3.33

(3) Original 3.35

717499 (Purple) (1) Small 4.72
(2) Large 4.64

(3) Original 4.09

metrics and sensor count. The results of the experiment are il-
lustrated in Figure 8. For METR-LA, the MAE decreases for
all proportions, with a sharp drop at around 18 minutes, after
which it slowly stabilizes. Higher proportions (75%, 100%)
result in slightly lower MAE. In PEMS-BAY, the MAE has
a similar trend with the MAE decreasing rapidly in the first
16 minutes, and with lower proportions (25%, 50%) show-
ing lower MAE values. The learning speed is similar across
all proportions within each dataset. Figure 9b displays the
best MAE values achieved for each proportion in the datasets,
while Figure 9a illustrates an increase in GPU usage the pro-
portion of the nodes used grows, for both datasets.

Experiment 3 Results: Geographic Location Effect
In this experiment, Scenarios 1 and 4 are compared. Their
runtimes, node count and GPU usage (Figures 6, 7c) are
nearly identical, enabling a comparison of their accuracy.
Scenario 4 shows slightly lower accuracy than Scenario 1 in
METR-LA, while the opposite is observed for PEMS-BAY.
Experiment 1’s findings showed lower MAE in larger graphs,
suggesting Scenario 3 should outperform its subgraph, Sce-
nario 4, in both datasets. However, MAE results for PEMS-
BAY Scenario 4, do not align with this expectation.

Geographical region is a key factor influencing accuracy,
but missing values (broken sensors) also play a role [36]. Af-
ter calculating the percentage of missing values in the train-
ing set of each scenario (Table 3), it’s clear that Scenario 4 of
PEMS-BAY has a significantly lower ratio of missing values
than Scenario 3, resulting in improved accuracy. Nonetheless,
this finding does not discredit other results, as the percentage
of missing values in other scenarios remains similar.

5 Discussion
This section interprets and verifies the experimental results,
and discusses this study’s limitations.

5.1 Interpretation of Results
Scaling Map Size
The results from Experiment 1 indicate that larger graphs
achieve better accuracy, likely due to nodes in these graphs

Figure 6: Mean Absolute Error measured after every epoch
during training for each scenario (Experiments 1, 3).

Table 3: Number of missing values in the training set of each
scenario for Experiment 2.

Scenario Proportion (%) Missing Values %

METR-LA PEMS-BAY

(1) Small 100 5.93 0.0015

(2) Large 25 6.11 0.0017
50 5.93 0.0018
75 5.87 0.0015
100 7.41 0.0017

(3) Original 100 7.13 0.0015

(4) Comparison 100 6.83 0.0007

having on average more neighbours (Figure 7d), and thus
more information to use. This is consistent with results from
another study [37], which found that increasing the number of
sampled neighbours per node led to higher accuracy. A recent
study demonstrates how training on large graphs improves
accuracy by providing more information about the underly-
ing spatial correlations [38]. These findings are also partially
aligned with a large-scale GNN traffic forecasting study [31],
where a large graph generally yielded lower MAE than two
out of three of its subgraphs. Conversely, another study [33]
using the DCRNN model, found lower MAE in a 20-sensor
subgraph of METR-LA than in the original dataset, attribut-
ing it to improved spatial correlation capture in smaller, less
heterogeneous networks. Therefore, this accuracy trend may
not always apply to other models.

This experiment also highlights the better efficiency of
larger graphs in terms of GPU usage and training time per
node (Figures 7c, 7b). As the node count increases, so
does the computational load due to increased node interac-
tions and larger adjacency matrices [3]; operations which
the D2STGNN model parallelizes, resulting in lower train-
ing time per node. Similar observations on increasing mem-
ory consumption have been made in another STGNN traffic
forecasting study [39].

Scaling Complexity
Experiment 2 presents mixed results for different datasets.
For METR-LA, higher proportions result in lower MAE, but
in PEMS-BAY, the opposite is true. For simpler road struc-
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Figure 7: Mean Absolute Error, Training Time per Node
in seconds, Average GPU % Used statistics, and Average
(Node) Degree in each scenario (Experiments 1, 3).

tures and smaller datasets like METR-LA Scenario 2 (two in-
tersections), increasing node count may be beneficial. How-
ever, in more intricate scenarios such as PEMS-BAY Scenario
2 (three intersections, longer time span), it could overwhelm
the model, leading to lower accuracy. Notably, the standard
deviation for MAE values was low (0.06 for METR-LA and
0.08 for PEMS-BAY). In another study [37], adding more
edges to the graph was shown to improve accuracy, though
with increasingly diminishing returns. This could explain
the small differences observed in this experiment. This ex-
periment’s results also align with Experiment 1’s findings on
GPU utilization (Figures 9a, 7c, 10c); larger node count in a
graph results in higher GPU usage.

Geographic Location Effect
In Experiment 3, PEMS-BAY Scenario 1, covering three in-
tersections, shows lower accuracy than Scenario 4, which
covers only one intersection. Similarly, in METR-LA, the
more complex Scenario 4 shows lower accuracy than the
simpler Scenario 1. A related study [33] using DCRNN on
METR-LA, similarly observed this impact, though with find-
ings showing higher accuracy for the more complex scenario.
This could be due to modelling differences, the selection of
sensors or varying missing value ratios. While the data is
insufficient to draw definitive conclusions on whether more
complex road structures consistently yield worse accuracy,
these findings still highlight the influence of geographical lo-
cation on model accuracy.

Figure 8: Mean Absolute Error measured after every epoch
during training by proportion for Scenario 2 (Experiment 2).

25 50 75 100
Proportion %

0

10

20

30

40

50

Av
er

ag
e 

GP
U 

%
 U

se
d

37.47 38.53 40.57 43.22

37.32
37.41 40.68 43.66

Dataset
PEMS-BAY
METR-LA

Average GPU % Used

(a)

25 50 75 100
Proportion %

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n 
Ab

so
lu

te
 E

rro
r (

Ho
riz

on
s A

ve
ra

ge
)

1.51 1.58 1.73
1.68

3.38 3.45
3.37

3.31

Dataset
PEMS-BAY
METR-LA

Mean Absolute Error (Horizons Average)

(b)

Figure 9: Average GPU % used during training and mean
absolute error by proportions of Scenario 2 (Experiment 2).

Furthermore, this experiment on METR-LA supports Ex-
periment 1’s results regarding larger graphs achieving better
accuracy, as Scenario 4 shows inferior accuracy compared to
Scenario 3. However, in PEMS-BAY, there is an observed
improvement in MAE when the ratio of the missing values
is lower. A related study [36], suggests that data complete-
ness influences model performance. Finally, the computa-
tional requirements required for Scenario 4 in both datasets
further support the trends observed in Experiments 1 and 2
and closely resemble those of Scenario 1 (see Figures 7c, 7b).

5.2 Verification of Results
To further verify this study’s results, Experiments 1, 2 were
expanded upon as detailed in Appendix B. Experiment 1’s
extension involved sampling increasingly larger subsets be-
tween Scenarios 2 and 3, which confirmed that the MAE gen-
erally decreases for both datasets (Figure 10a). However, af-
ter about 100 sensors, the MAE remained relatively stable.
For Experiment 2, where sensors were sampled in maximally
scattered fashion with 10% increments, the MAE showed sta-
bility with a low standard deviation of 0.068 for METR-LA,
and 0.025 for PEMS-BAY.

Figure 10d generally verifies the increase in average node
degree observed in Experiment 1. This increase can be at-
tributed to the growing number of edges as more nodes are
added, leading to a denser network. The average node de-
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Figure 10: Mean Absolute Error, Training Time per Node
in seconds, Average GPU % Used statistics, and Average
(Node) Degree for verifying Experiments 1, 2.

gree eventually somewhat stabilizes, and the trends for each
dataset could be linked to the way the subsets grow (see Ap-
pendix B); when denser areas are added, the node degree
tends to increase. Notably, the increase in average node de-
gree appears to correspond with the decrease in MAE, simi-
larly to observations in another study [37]; however, the ev-
idence is insufficient to draw a definitive conclusion. For
Experiment 2, the growth is linear, corresponding to a pro-
portional increase in network density. However, despite the
linear growth in neighbours, the MAE remains stable. This
might be because denser placement of sensors on highways
could potentially offer limited additional information. Thus,
increasing the density of maximally scattered sensors raises
the average node degree, but does not seem to significantly
impact accuracy.

Additionally, Figures 10c, 10b confirm the observed effi-
ciency trends of the experiments and provide additional in-
sights. GPU usage increases linearly with the number of
nodes. Around 325 nodes, as the GPU approaches its lim-
its, training time per node slightly increases. Despite being a
high-accuracy model, D2STGNN has previously struggled to
scale to significantly larger datasets (2×103 nodes) due to its
complexity [31; 38].

5.3 Limitations
Limitations of this study should be acknowledged to under-
stand the context and applicability of the findings. First,
while using two datasets provides a broader perspective, both
are confined to California. This geographic limitation may
restrict the applicability of the results to other regions with
different traffic patterns and infrastructure. Second, the ex-
periments were conducted on a smaller scale, providing ini-
tial insights. Ideally, larger datasets should be used, and ex-
periments should be repeated to minimize the potential im-

pacts of concurrent activities on hardware resources. The
limited availability of such datasets and the computational re-
sources required for larger datasets, given the time constraints
of this study, made fully addressing these limitations unfea-
sible. Third, broken sensors, which can affect the results,
were partially addressed. With more time, advanced tech-
niques [36] could be applied to mitigate their impact more ef-
fectively. Fourth, biases introduced by sensor selection were
accounted for in Experiment 1 using Experiment 3, and par-
tially mitigated in Experiment 2 using Algorithm 1 to ensure
maximal data representation. Algorithm 1 however, may not
always produce the optimal solution. Lastly, while the results
from the D2STGNN may generalize to other GNNs, they can-
not fully generalize to all GNNs as discussed in 5.1.

6 Responsible Research
This section addresses the ethical considerations of this re-
search and discusses the steps taken to ensure the repro-
ducibility of the results.

6.1 Ethical Aspects
Ethical issues related to research advances in traffic forecast-
ing need to be considered. Primarily, data privacy is a critical
concern as traffic forecasting systems gain popularity, the vol-
ume of collected data will increase, leading to greater risks of
data breaches and misuse. The datasets used in this experi-
ment are anonymous and publicly available to mitigate such
risks.

Another significant ethical issue is the potential for in-
creased surveillance. Detailed traffic data collection can
lead to environments where individual movements are closely
monitored. Experiment 2 demonstrates that increasing the
number of sensors in a specific area does not significantly en-
hance accuracy, and may even diminish it. The hope is that
this finding discourages governments from installing unnec-
essary sensors, thus protecting individual privacy rights.

Additionally, the benefits of traffic forecasting systems
may not be equitably distributed, potentially exacerbating so-
cioeconomic disparities. Wealthier areas might experience
more significant improvements due to better infrastructure,
while lower-income regions may continue to suffer from poor
traffic conditions. Research into the scalability of traffic fore-
casting GNNs aims to reduce the resources needed for such
systems, eventually making traffic forecasting more accessi-
ble to lower-income areas.

Traffic forecasting also has a positive impact on the en-
vironment by helping to reduce emissions and improve air
quality. While the effect may be smaller, reducing train-
ing requirements for GNNs also contributes to environmental
goals. Ultimately, traffic forecasting aims to improve the ev-
eryday lives of people, and conducting research to enhance it
while considering ethical implications is beneficial.

6.2 Reproducibility of Methods
Reproducibility is key in responsible research. For this study,
a GitHub repository [40] which includes the implementation
of Algorithm 1, code to generate the sensor subsets, visualiza-
tions, and metrics shown in this paper, as well as instructions



on running the experiments presented, has been made pub-
licly available. In this repository, the indices and IDs of the
sensor subsets are also included. The datasets [41] and source
code for the model [35] are also publicly available. The pro-
vided model sets a random seed to ensure the reproducibility
of the results. However, efficiency metrics can still be biased
due to concurrent activities utilizing hardware resources. To
minimize their impact on the results, only the GPU usage of
the specific process is measured.

7 Conclusions and Future Work
This study evaluated the scalability of the D2STGNN model
for traffic forecasting using two real-world datasets, focus-
ing on how varying map sizes, graph complexities, and ge-
ographic locations affect model accuracy and computational
requirements.
Findings. The findings from Experiment 1, reveal that
larger graphs, result in shorter training times per node, pro-
vided the GPU is not operating at maximum capacity, and
parallelization is implemented, as the efficiency is achieved
through better GPU utilization. Additionally, nodes in larger
graphs have a greater degree, which could contribute to
higher accuracy [37]. In Experiment 2, the model showed
robustness in accuracy when increasing graph complexity,
while GPU usage increased, verifying a direct relationship
between node count and computational demands. Lastly, Ex-
periment 3 showed that the geographic location of the sensors
can impact accuracy.
Future Work. Proposals for future work include (i) Using
larger, more diverse datasets, and repeating the experiments.
This would address the limitations of this study’s geograph-
ical scope, and minimize the potential impacts of concurrent
activities on hardware resources, allowing for more generaliz-
able conclusions. (ii) Evaluating different dimensions of scal-
ability, such as increasing feature count or having more tem-
poral data, to examine if similar patterns occur. (iii) Inves-
tigating methods to make dynamic graph learning modules
more scalable. Models that consider the dynamic character-
istics of traffic networks show exceptional accuracy perfor-
mance. However, their complexity prevents them from scal-
ing to large datasets [31]. Research into enhancing their scal-
ability can potentially help keep their accuracy benefits while
maintaining practical usability.

References
[1] J. Wootton, A. Garcia-Ortiz, and S. Amin, “Intelligent

transportation systems: a global perspective,” Mathe-
matical and computer modelling, vol. 22, no. 4-7, pp.
259–268, 1995.

[2] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion con-
volutional recurrent neural network: Data-driven traffic
forecasting,” arXiv preprint arXiv:1707.01926, 2017.

[3] W. Jiang and J. Luo, “Graph neural network for
traffic forecasting: A survey,” Expert Systems with
Applications, vol. 207, p. 117921, Nov. 2022.
[Online]. Available: http://dx.doi.org/10.1016/j.eswa.
2022.117921

[4] Z. Lu, W. Lv, Z. Xie, B. Du, and R. Huang, “Lever-
aging graph neural network with lstm for traffic
speed prediction,” in 2019 IEEE SmartWorld,
Ubiquitous Intelligence & Computing, Advanced
& Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing,
Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).
IEEE, 2019, pp. 74–81.

[5] M. Li and Z. Zhu, “Spatial-temporal fusion graph neural
networks for traffic flow forecasting,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 35,
no. 5, 2021, pp. 4189–4196.

[6] R. Dai, S. Xu, Q. Gu, C. Ji, and K. Liu, “Hybrid spatio-
temporal graph convolutional network: Improving traf-
fic prediction with navigation data,” in Proceedings of
the 26th acm sigkdd international conference on knowl-
edge discovery & data mining, 2020, pp. 3074–3082.

[7] J. Rico, J. Barateiro, and A. Oliveira, “Graph neural net-
works for traffic forecasting,” 2021.

[8] L. Wu, P. Cui, J. Pei, L. Zhao, and X. Guo, Graph neural
networks: foundation, frontiers and applications. Sin-
gapore: Springer Nature Singapore, 2022, ch. 6, pp.
101–119.

[9] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and
C.-J. Hsieh, “Cluster-gcn: An efficient algorithm for
training deep and large graph convolutional networks,”
in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
ser. KDD ’19. ACM, Jul. 2019. [Online]. Available:
http://dx.doi.org/10.1145/3292500.3330925

[10] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and
V. Prasanna, “Graphsaint: Graph sampling based induc-
tive learning method,” 2020.

[11] M. Fey, J. E. Lenssen, F. Weichert, and J. Leskovec,
“Gnnautoscale: Scalable and expressive graph neural
networks via historical embeddings,” 2021.

[12] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and
Y. Dai, “Towards efficient large-scale graph neural net-
work computing,” 2018.

[13] W. Jiang, J. Luo, M. He, and W. Gu, “Graph neural net-
work for traffic forecasting: The research progress,” IS-
PRS International Journal of Geo-Information, vol. 12,
no. 3, p. 100, 2023.

[14] B. L. Smith and M. J. Demetsky, “Traffic flow forecast-
ing: comparison of modeling approaches,” Journal of
transportation engineering, vol. 123, no. 4, pp. 261–
266, 1997.

[15] B. M. Williams, P. K. Durvasula, and D. E. Brown, “Ur-
ban freeway traffic flow prediction: application of sea-
sonal autoregressive integrated moving average and ex-
ponential smoothing models,” Transportation Research
Record, vol. 1644, no. 1, pp. 132–141, 1998.

http://dx.doi.org/10.1016/j.eswa.2022.117921
http://dx.doi.org/10.1016/j.eswa.2022.117921
http://dx.doi.org/10.1145/3292500.3330925


[16] M. S. Ahmed and A. R. Cook, “Analysis of freeway traf-
fic time-series data by using box-jenkins techniques,”
Transportation Research Record, no. 722, 1979.

[17] L. Zhang, Q. Liu, W. Yang, N. Wei, and D. Dong,
“An improved k-nearest neighbor model for short-term
traffic flow prediction,” Procedia-Social and Behavioral
Sciences, vol. 96, pp. 653–662, 2013.

[18] Y. Liu and H. Wu, “Prediction of road traffic conges-
tion based on random forest,” in 2017 10th International
Symposium on Computational Intelligence and Design
(ISCID), vol. 2, 2017, pp. 361–364.

[19] G. Aifadopoulou, C. Bratsas, K. Koupidis, A. Chat-
zopoulou, J.-M. Salanova, and P. Tzenos, “Short-term
prediction of the traffic status in urban places using neu-
ral network models,” in Data Analytics: Paving the Way
to Sustainable Urban Mobility: Proceedings of 4th Con-
ference on Sustainable Urban Mobility (CSUM2018),
24-25 May, Skiathos Island, Greece. Springer, 2019,
pp. 181–188.

[20] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang,
“Learning traffic as images: A deep convolutional neu-
ral network for large-scale transportation network speed
prediction,” Sensors, vol. 17, no. 4, p. 818, 2017.

[21] R. Toncharoen and M. Piantanakulchai, “Traffic state
prediction using convolutional neural network,” in 2018
15th International Joint Conference on Computer Sci-
ence and Software Engineering (JCSSE), 2018, pp. 1–6.

[22] Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Deep bidirec-
tional and unidirectional lstm recurrent neural network
for network-wide traffic speed prediction,” 2019.

[23] A. Belhadi, Y. Djenouri, D. Djenouri, and J. C.-W. Lin,
“A recurrent neural network for urban long-term traf-
fic flow forecasting,” Applied Intelligence, vol. 50, pp.
3252–3265, 2020.

[24] N. C. Thompson, K. Greenewald, K. Lee, and G. F.
Manso, “The computational limits of deep learning,”
2022.

[25] X. Liu, Y. Liang, C. Huang, H. Hu, Y. Cao, B. Hooi,
and R. Zimmermann, “Do we really need graph neural
networks for traffic forecasting?” 2023.

[26] A. Cini, I. Marisca, D. Zambon, and C. Alippi, “Graph
deep learning for time series forecasting,” 2023.

[27] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge:
Towards deep graph convolutional networks on node
classification,” 2020.

[28] A. Gandhi, Aakankasha, S. Kaveri, and V. Chaoji,
“Spatio-temporal multi-graph networks for de-
mand forecasting in online marketplaces,” in
ECML-PKDD 2021, 2021. [Online]. Available:
https://www.amazon.science/publications/spatio-
temporal-multi-graph-networks-for-demand-
forecasting-in-online-marketplaces

[29] F. Frasca, E. Rossi, D. Eynard, B. Chamberlain,
M. Bronstein, and F. Monti, “Sign: Scalable inception
graph neural networks,” 2020.

[30] A. Cini, I. Marisca, F. M. Bianchi, and C. Alippi, “Scal-
able spatiotemporal graph neural networks,” Proceed-
ings of the 37th AAAI Conference on Artificial Intelli-
gence, 2023.

[31] X. Liu, Y. Xia, Y. Liang, J. Hu, Y. Wang, L. Bai,
C. Huang, Z. Liu, B. Hooi, and R. Zimmermann,
“Largest: A benchmark dataset for large-scale traffic
forecasting,” 2023.

[32] Z. Shao, Z. Zhang, W. Wei, F. Wang, Y. Xu, X. Cao,
and C. S. Jensen, “Decoupled dynamic spatial-temporal
graph neural network for traffic forecasting,” arXiv
preprint arXiv:2206.09112, 2022.

[33] S. Rahmani, “Revisiting DCRNN: Diffusion Con-
volutional Recurrent Neural Network: Data-Driven
Traffic Forecasting,” Apr 2023. [Online]. Available:
https://medium.com/@saeedrmd/revisiting-dcrnn-
diffusion-convolutional-recurrent-neural-network-
data-driven-traffic-forecasting-caeecbe3281b

[34] M. Lablack and Y. Shen, “Spatio-temporal graph mix-
former for traffic forecasting,” Expert Systems with Ap-
plications, vol. 228, p. 120281, 2023.

[35] Z. Shao, Z. Zhang, W. Wei, F. Wang, Y. Xu, X. Cao,
and C. S. Jensen. Decoupled dynamic spatial-temporal
graph neural network for traffic forecasting. [Online].
Available: https://github.com/zezhishao/D2STGNN

[36] J. Zuo, K. Zeitouni, Y. Taher, and S. Garcia-Rodriguez,
“Graph convolutional networks for traffic forecasting
with missing values,” Data Mining and Knowledge Dis-
covery, vol. 37, no. 2, pp. 913–947, 2023.

[37] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive
representation learning on large graphs,” 2018.

[38] Y. Jiang, X. Li, Y. Chen, S. Liu, W. Kong, A. F. Lentza-
kis, and G. Cong, “Sagdfn: A scalable adaptive graph
diffusion forecasting network for multivariate time
series forecasting,” arXiv preprint arXiv:2406.12282,
2024.

[39] J. Han, W. Zhang, H. Liu, T. Tao, N. Tan, and H. Xiong,
“Bigst: Linear complexity spatio-temporal graph neural
network for traffic forecasting on large-scale road net-
works,” Proceedings of the VLDB Endowment, vol. 17,
no. 5, pp. 1081–1090, 2024.

[40] Danae Savvidi. Data processing repository for bach-
elor thesis. [Online]. Available: https://github.com/
danaesav/RP-Data-Preprocessing

[41] R. Jiang, D. Yin, Z. Wang, Y. Wang, J. Deng,
H. Liu, Z. Cai, J. Deng, X. Song, and R. Shibasaki.
Dl-traff: Survey and benchmark of deep learning
models for urban traffic prediction. [Online]. Available:
https://github.com/deepkashiwa20/DL-Traff-Graph

https://www.amazon.science/publications/spatio-temporal-multi-graph-networks-for-demand-forecasting-in-online-marketplaces
https://www.amazon.science/publications/spatio-temporal-multi-graph-networks-for-demand-forecasting-in-online-marketplaces
https://www.amazon.science/publications/spatio-temporal-multi-graph-networks-for-demand-forecasting-in-online-marketplaces
https://medium.com/@saeedrmd/revisiting-dcrnn-diffusion-convolutional-recurrent-neural-network-data-driven-traffic-forecasting-caeecbe3281b
https://medium.com/@saeedrmd/revisiting-dcrnn-diffusion-convolutional-recurrent-neural-network-data-driven-traffic-forecasting-caeecbe3281b
https://medium.com/@saeedrmd/revisiting-dcrnn-diffusion-convolutional-recurrent-neural-network-data-driven-traffic-forecasting-caeecbe3281b
https://github.com/zezhishao/D2STGNN
https://github.com/danaesav/RP-Data-Preprocessing
https://github.com/danaesav/RP-Data-Preprocessing
https://github.com/deepkashiwa20/DL-Traff-Graph


A Detailed Speed Predictions of Two Sensors (Experiment 1)

Figure 11: Real vs Predicted speed values for Sensor 717816 in scenarios 1, 2 for the METR-LA dataset.

Figure 12: Real vs Predicted speed values for Sensor 717499 in scenarios 1, 2 for the METR-LA dataset.



B Verification of Results
B.1 Experiment 1
Figure 13 shows the subsets used to verify the results of Experiment 1. The initial small and large subsets are used, as well as
the whole dataset. For METR-LA the scaling happens first along the x-axis and then along the y-axis to cover more parts of the
dataset. In PEMS-BAY, the expansion occurs generally along both axes. The exact number of sensors, along with their missing
values percentages, and MAE values are presented in Table 4.

(a) METR-LA (b) PEMS-BAY

Figure 13: Subsets taken to verify the results of Experiment 1.



Table 4: Number of sensors sampled, percentage of missing values in the training set, and mean absolute error for each subset.

Subset Number of Sensors Missing Values % Mean Absolute Error

METR-LA PEMS-BAY METR-LA PEMS-BAY METR-LA PEMS-BAY

Subset 1 (Small) 24 24 5.93 0.0015 3.71 1.77
Subset 2 (Large) 55 51 7.41 0.0017 3.31 1.68

Subset 3 78 72 6.71 0.0016 3.2 1.61
Subset 4 102 101 7.41 0.0017 2.86 1.57
Subset 5 127 153 7.4 0.0015 2.79 1.58
Subset 6 154 207 7.36 0.0015 2.77 1.58
Subset 7 179 264 7.2 0.0015 2.8 1.53

Original 207 325 7.13 0.0015 2.88 1.52

B.2 Experiment 2

Figures 14, 15 illustrates the sensors sampled from the original datasets with varying proportions, to verify the results of
Experiment 2. Details on the number of sensors, missing values % in the training sets and the mean absolute errors are shown
in Table 5.

(a) METR-LA proportions 10-50% (b) METR-LA proportions 60-100%

Figure 14: METR-LA: Subsets taken to verify the results of Experiment 2.



(a) PEMS-BAY proportions 10-50% (b) PEMS-BAY proportions 60-100%

Figure 15: PEMS-BAY: Subsets taken to verify the results of Experiment 2.

Table 5: Number of sensors sampled, percentage of missing values in the training set, and mean absolute error for each subset
in Experiment 2.

Scenario Proportion (%) Number of Sensors Missing Values % Mean Absolute Error

METR-LA PEMS-BAY METR-LA PEMS-BAY METR-LA PEMS-BAY

(2) Large 25 14 13 6.11 0.0017 3.38 1.51
50 28 26 5.93 0.0018 3.45 1.58
75 42 39 5.87 0.0015 3.37 1.73

100 55 51 7.41 0.0017 3.31 1.68

(3) Original 10 21 32 7.13 0.0015 3.08 1.50
20 41 65 7.13 0.0015 3.02 1.50
30 62 98 7.13 0.0015 2.96 1.48
40 83 130 7.13 0.0015 2.90 1.54
50 104 162 7.13 0.0015 2.97 1.52
60 124 195 7.13 0.0015 2.90 1.55
70 145 227 7.13 0.0015 2.96 1.56
80 166 260 7.13 0.0015 2.90 1.55
90 186 292 7.13 0.0015 2.86 1.54

100 207 325 7.13 0.0015 2.88 1.53



B.3 Additional Results
The number of edges (Figure 16a) grows linearly with the number of nodes as the network size grows in Experiment 1, while it
grows slightly exponentially in Experiment 2. The average training time in seconds per epoch (Figure 16b) also initially grows
somewhat linearly, with a faster increase at around 325 nodes, which corresponds with the GPU reaching its limits. Clustering
coefficient (Figure 16c) is a measure of the degree to which nodes in a graph tend to cluster together3 (i.e. graph connectivity).
It decreases as the network size grows in Experiment 1. In Experiment 2, it slightly decreases and then remains stable.
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Figure 16: Additional results from verifying Experiments 1, 2.

3https://en.wikipedia.org/wiki/Clustering coefficient

https://en.wikipedia.org/wiki/Clustering_coefficient
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Figure 17: The overall architecture of the proposed D2STGNN. The decouple block (green) decomposes each time series in
traffic signals into two hidden time series, which are subsequently handled by the diffusion block (pink) and inherent block
(blue). Moreover, the dynamic graph learning module generates dynamic spatial dependency for the diffusion model. Taken
from [32].

(a) An example of traffic flow system in
the 8:00 a.m.

(b) Dynamic spatial depen-
dency.

Figure 18: An example of the traffic flow system. Taken from [32].

The following description is modified from [32]. Figure 18 illustrates a traffic flow system with important locations monitored
by sensors that record vehicle counts over time. Each sensor’s data is influenced by two factors: a diffusion signal and a non-
diffusion signal. For instance, vehicles passing Sensor 2 (green arrow) at 8 a.m. originate from two sources shown in Figure
18a: directly nearby (blue arrow) and from adjacent areas (wine-red arrow), such as the industrial district (Sensor 3) and
agricultural area (Sensor 4). The former is independent of other sensors, while the latter is influenced by diffusion processes.
These are referred to as hidden inherent time series and hidden diffusion time series, respectively. Furthermore, the spatial
dependencies within the road network are dynamic. For example, as depicted in Figure 18b, at 8 a.m., the traffic at Sensors 3
and 4 significantly affects Sensor 2, whereas by 10 a.m., the influence diminishes.
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