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Abstract
Thus far the democratization of machine learning,
which resulted in the field of AutoML, has focused
on the automation of model selection and hyper-
parameter optimization. Nevertheless, the need for
high-quality databases to increase performance has
sparked interest in correlation-based feature selec-
tion, a simple and fast, yet effective approach to
removing noise and redundancy in relational data.
However, little to no attention has been paid towhat
correlation metric to choose in order to maximize
the performance of ML systems. Our research in-
vestigates the effectiveness and efficiency of four
widely-known correlation measures, in particular
Pearson, Spearman, Cramér’s V, Symmetric Un-
certainty, in a manner that simulates an AutoML-
like setting. We show that the exact theoretical
assumptions of the methods do not always hold
in practice, as well as shed light on the main as-
pects that need to be considered when integrat-
ing correlation-based feature selection in ML sys-
tems. Notably, the results indicate that the per-
formance obtained by correlation-based methods
is highly tied to the types and number of features
present in the underlying database rather than the
choice of ML algorithm. We devise promising con-
clusions that can further serve the advancement of
AutoML systems by making feature selection fully
automatic and computationally tractable.

1 Introduction
Lately, we have witnessed an ever-growing demand for
the democratization of machine learning (ML): making cus-
tomized state-of-the-art ML algorithms available to every-
one [1, 2]. In response to this demand, the field of automatic
ML (AutoML) aims to automate the process of designing and
optimizing ML pipelines: from data engineering to model se-
lection and hyperparameter tuning [3]. However, how do Au-
toML systems identify the most relevant and high-performing
features that enhance the algorithms?
Feature engineering. In the context of ML models work-

ing with relational databases, performance highly relies on
both the quantity and quality of the data [4]. Thus, any effec-
tive AutoML system incorporates two essential feature engi-
neering tasks: (i) feature discovery, so that the potential of all
available data is exploited, and (ii) feature selection, so that
data redundancy and noise are minimized.
Feature discovery aims to search for candidate tables that

can be joined with the base table on a common column (i.e.
feature), as well as contain other columns that are correlated
with the target [5]. As feature discovery augments the data
with new features from the same domain, it can result in a
database characterized by noise, irrelevancy and high dimen-
sionality [6]. To further enhance the efficiency and effective-
ness of AutoML systems, it is crucial that feature selection
follows feature discovery in the ML pipeline, process that is
depicted in Fig. 1.
Feature selection assesses the relevance of all columns

in the base table, ranks them, and then returns an optimal
subset of columns [7]. The retained column subset is able
to efficiently describe the input data while removing noise
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Figure 1: Visual representation of (a) feature discovery and (b) fea-
ture selection.

and redundancy. The main objectives of feature selection are
manifold: (i) keeping only the features useful in discriminat-
ing the target classes, (ii) defying the curse of dimensionality
to improve the performance of ML algorithms, (iii) reducing
computation and storage costs [8, 9], and (iv) improving the
system’s generalization to new data instances. While there
are many types of feature selection, correlation-based selec-
tion holds particular importance due to its simplicity and ef-
fectiveness.

Correlation-based feature selection is a field that has
already been extensively discussed and employed in prac-
tice, with many correlation metrics being proposed or de-
vised [6, 8, 10, 11]. However, different correlation measures
lead to different variants of the optimal feature subset, which
can, in turn, positively or negatively impact the performance
of the ML algorithm. To the best of our knowledge, no ex-
isting publication has evaluated which correlation measure,
more specifically Pearson, Spearman, Cramér’s V, Symmetric
Uncertainty (SU), should be used for feature selection in order
to maximize the performance of ML systems. To target this
niche, our study investigates the following research question:

How do correlation-based feature selection tech-
niques, in particular Pearson, Spearman, Cramér’s
V, Symmetric Uncertainty, influence the performance
of Decision trees, Linear ML algorithms and Support
vector machines?

With a vision to discover what factors in the ML pipeline
affect the performance of the proposed correlation measures,
we aim to conduct our research with the following two sub-
questions in mind:
(i) What is the best correlation-based feature selection tech-

nique to be used considering the dimensionality and fea-
ture types (discrete, continuous, nominal or ordinal) that
characterize the data?

(ii) How much does the choice of ML algorithm that will con-
sume the data influence the performance of correlation-
based feature selection techniques?

Pointwise, the main contributions of our research can be
summarized as follows:

• The design and implementation of a pipeline that aims to
simulate an AutoML-like setting and is able to efficiently
analyze multiple configurations of ML tasks.
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• The formalization and implementation of two heuristic
approaches for correlation-based feature selection theo-
retically described in previous work [6,8,9] and used for
our experiments.

• An empirical and statistical analysis showing how dif-
ferent dataset attributes (types of features, ratio of rows
to columns) correlate with variations in the effective-
ness and efficiency of correlation-based feature selection
techniques.

• An assessment of whether data encoding can alleviate
the downsides of breaking the theoretical assumptions
of correlation measures.

• An empirical analysis evaluating whether feature selec-
tion, given the ML algorithm, can automatically infer a
de facto correlation-based technique to apply in order to
maximize performance.

Our findings add to the existing literature on feature selec-
tion presented in Section 2. Section 3 provides an overview
of the proposed correlation techniques and other concepts
involved in the evaluation. Following, the ML pipeline em-
ployed throughout our research is introduced in Section 4.
Section 5 presents the results obtained by testing correlation-
based feature selection on top of a plethora of algorithms and
datasets. Complementarily, in Section 6 the key findings are
analysed and novel conclusions are drawn. Finally, Section
7 concludes by summarizing our paper and suggesting some
directions for further research.

2 Related work
In the field of AutoML, feature selection constitutes an un-
derdeveloped literature topic in comparison to other stages
of the ML pipeline, such as algorithm selection and hyper-
parameter optimization. Hence, no golden rules have been
devised in prior work, and the exploration of many different
methods best defines the literature’s current state. Neverthe-
less, four categories of feature selection can be identified, with
filter methods being the focus of our study.

2.1 Feature selection
Feature selection methods designed with different evaluation
criteria fall into four broad categories:
(i) Filter methods [7–9, 11–15]. These assess the relevance

of the features by relying only on the characteristics of
the data, thus being independent of the ML algorithm.

(ii) Wrapper methods [4,8,9,13,14,16]. They employ the ML
algorithm as a black box to generate and score promising
feature subsets according to the predictive power they
give.

(iii) Embedded methods [4, 9, 13, 17]. These integrate feature
selection in the entire process of training the ML algo-
rithm.

(iv) Hybrid methods [6, 14]. They attempt to take advantage
of the other methodologies by exploiting their specific
evaluation criteria in different stages of the search for
relevant features.

It has been argued that the filter-based techniques offer ”a
simple and powerful way to address the problem of variable
selection” [9], which is reflected in the existing body of liter-
ature [10, 13, 18]. Thus, we make filter feature selection the
focal point of our research.

2.2 Filter techniques
Filter-based feature selection techniques solely consider the
association between the set of features and the target. In the
first step, a suitable evaluation function is employed to assign
all features with a relevance score, using either a univariate
or a multivariate scheme. In the univariate case, each feature
is evaluated individually based on its usefulness in discrimi-
nating the classes of the response feature [19]. In the multi-
variate case, multiple features are evaluated as a batch, thus
additionally considering the interdependencies between fea-
tures. In the second step, all features are ordered in ascending
order of their relevance score, while the concluding step in-
volves using a heuristic approach to select the best columns
to be used for training [4, 7, 8, 13].

The advantages of filter techniques are manifold, and we
mention the ones empirically shown through our work: (i)
The feature selection step only needs to be performed once
for a certain dataset, and then multiple algorithms can be
trained and evaluated in parallel. (ii) These methods easily
scale to high-dimensional databases, making them indispens-
able in finding reduced subsets in those cases where databases
possess a large number of features. (iii) They take little com-
putational power to select the optimal subset of features, es-
pecially when compared to other feature selection methods.
Nevertheless, filter techniques bring a prominent disadvan-
tage: due to the absence of a specific ML model guiding fea-
ture selection, the selected column subset might give little
predictive power for the target algorithm [4, 7, 13, 15].

Following the classification of [16], correlation-based tech-
niques are a filter approach in the context of feature selec-
tion [4, 7] since they use a correlation metric to assess the
importance of the features and, subsequently, filter out the
columns that are useless in predicting the target. While
feature selection based on correlation has been extensively
considered before, a prevalent aspect of existing research is
the proposition of various correlation measures, accompa-
nied by an evaluation based on their capability to improve
the performance of ML classifiers [13, 18, 20, 21]. However,
these publications lack an analysis of the underlying factors
in the ML pipeline that can contribute to the performance
discrepancies observed when employing different correlation
measures. Thus, they do not cover a crucial consideration,
namely, which correlation metric to choose in order to obtain
the most high-performing feature subset tailored to each spe-
cific ML problem. Our research aims to fill in this gap by in-
vestigatingwhich factors of theML pipeline, such as the char-
acteristics of the data or the choice of ML algorithm, influence
the performance obtained by some of the most common cor-
relation metrics, in particular Pearson, Spearman, Cramér’s
V and Symmetric Uncertainty.

3 Preliminaries
In this section we provide (i) an overview of the proposed cor-
relation measures, (ii) a formalization of two approaches for
correlation-based feature selection defined in existing litera-
ture, (iii) a brief introduction to three well-known classes of
ML algorithms and (iv) an outline of the evaluation metrics
employed throughout our experiments.

In order to facilitate a consistent and coherent explanation
of the formulas and algorithms that are involved in our work,
for the rest of the paperwe adopt a standard notation to repre-
sent relational data in two-dimensional (row and column) for-
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Table 1: Notations.

Notation Description or Definition

𝐷 ∈ R𝑁𝑋𝑀 data table with N rows and M columns
𝑀 number of columns in data table
𝑁 number of rows in data table
𝑋 full column set
𝑋 ∗ selected column subset
𝑋𝑖 𝑖𝑡ℎ column, where 𝑖 ∈ [1, 𝑀]
𝑓 function to assess correlation
𝑓𝑖 correlation score of 𝑖𝑡ℎ column
𝑥𝑖 𝑗 𝑗𝑡ℎ row of 𝑖𝑡ℎ column,

where 𝑖 ∈ [1, 𝑀] and 𝑗 ∈ [1, 𝑁 ]
𝑌 ∈ R𝑁 target column for all N rows
𝑦 𝑗 value of target column for 𝑗𝑡ℎ row,

where 𝑗 ∈ [1, 𝑁 ]
𝑦 𝑗 predicted value of target column for 𝑗𝑡ℎ row,

where 𝑗 ∈ [1, 𝑁 ]

mat. The symbols are uniformly described in Table 1, where
rows and columns correspond to instances and features in the
data, respectively.

3.1 Correlation-based techniques
We propose four correlation metrics that can successfully be
incorporated into feature selection in order to compute the
relevancy of any feature 𝑋𝑖 with regard to the target 𝑌 .
Pearson
Definition. Historically, the Pearson correlation has not only
been the first formal measure of correlation but has also
emerged as the prevailing method for computing the asso-
ciation between two continuous variables [22, 23]. The cor-
relation coefficient of the population is formally defined in
Equation 1 [8, 9]:

𝑃 (𝑋𝑖 , 𝑌 ) =
𝑐𝑜𝑣 (𝑋𝑖 , 𝑌 )√︁

𝑣𝑎𝑟 (𝑋𝑖 ) · 𝑣𝑎𝑟 (𝑌 )
, (1)

where 𝑐𝑜𝑣 () designates the covariance and 𝑣𝑎𝑟 () the variance
between the two features 𝑋𝑖 and 𝑌 .
Equivalently, the correlation coefficient estimate of a sam-

ple is defined in Equation 2 [9, 22–24]:

𝑃 (𝑋𝑖 , 𝑌 ) =
∑𝑁

𝑗=1 (𝑥𝑖 𝑗 − 𝑋𝑖 ) · (𝑦 𝑗 − 𝑌 )√︃∑𝑁
𝑗=1 (𝑥𝑖 𝑗 − 𝑋𝑖 )2 ·

√︃∑𝑁
𝑗=1 (𝑦 𝑗 − 𝑌 )2

, (2)

where𝑋𝑖 =
1
𝑁
·∑𝑁

𝑗=1 𝑥𝑖 𝑗 and 𝑌 = 1
𝑁
·∑𝑁

𝑗=1 𝑦 𝑗 , representing the
mean values of 𝑋𝑖 and 𝑌 . In the numerator, the raw values of
the table cells are centered by subtracting the mean value of
the respective column, and then the sum of cross-products of
the centered columns is accumulated. By adjusting the scales
of the columns in the denominator, the relationship between
columns that have been measured in different units can be
established [24].
Interpretation and assumptions. The Pearson correlation

𝑃 (𝑋𝑖 , 𝑌 ) ranges from -1 to 1 and measures the linear compo-
nent of the relationship between the two columns under con-
sideration [9, 24]. If 𝑃 (𝑋𝑖 , 𝑌 ) = 0, then the features are con-
sidered to be uncorrelated. The closer the value of |𝑃 (𝑋𝑖 , 𝑌 ) |
is to 1, the stronger the linear correlation between the two
columns is [22, 25]. It is important to note that the Pearson
correlation entails certain assumptions: 𝑋𝑖 and 𝑌 should be

continuous, follow a bivariate normal distribution and have a
linear relationship [26]. Furthermore, because of its known
sensitivity to outliers, data without outliers is preferred if
Pearson is used for computing the correlation [23, 27].
Spearman
Definition. Widely used to compute the association of vari-
ables measured in an interval or ordinal scale [23, 26], the
Spearman rank correlation is computed in the same manner
as the Pearson correlation, given by Equations 1 and 2. How-
ever, a key distinction exists: while the calculation of 𝑃 (𝑋𝑖 , 𝑌 )
involves using the actual sample values, the computation of
𝑆 (𝑋𝑖 , 𝑌 ) involves transforming the sample values to ranks in
the range [1, N]. To perform a rank transformation, the values
in each of 𝑋𝑖 and 𝑌 are ordered in ascending order and then
assigned an integer 𝑟 ∈ [1, 𝑁 ] [26], with equal values being
assigned the average rank [23, 28].

Interpretation and assumptions. By converting the values
into ranks, Spearman correlation focuses on the relative mag-
nitude of the values, allowing it to assess the strength of gen-
eral monotonicity of the relationship between 𝑋𝑖 and 𝑌 [26]
and to be robust to outliers in the data [23]. Consequently, the
assumptions are less restrictive: 𝑋𝑖 and 𝑌 should be contin-
uous or ordinal and have a monotonic relationship [27]. The
range of values, as well as the corresponding interpretation,
remains consistent with that of Pearson correlation.
Cramér’s V
Definition and assumptions. When the features 𝑋𝑖 and 𝑌 are
nominal and have at least two categories (i.e. distinct val-
ues), their association can be assessed by cross-tabulating the
data in a contingency table and computing Cramér’s V cor-
relation value. Cramér’s V is derived from the chi-squared
statistic, denoted by 𝜒2, which tests whether the association
between two columns is significant, with the null hypothe-
sis that the variables are independent. More specifically, it
compares the observed frequencies, which are taken from the
contingency table, to the expected frequencies generated fol-
lowing the null hypothesis [29]. The formula for Cramér’s V
is given in Equation 3:

𝐶 (𝑋𝑖 , 𝑌 ) =

√︄
𝜒2

𝑁 ·𝑚𝑖𝑛(𝐶𝑋𝑖
− 1,𝐶𝑌 − 1) , (3)

where 𝐶𝑋𝑖
and 𝐶𝑌 denote the number of categories of 𝑋𝑖 and

𝑌 , respectively [30–32].
Interpretation. Cramér’s V correlation𝐶 (𝑋𝑖 , 𝑌 ) ranges from

0 to 1. A value of 0 for 𝐶 (𝑋𝑖 , 𝑌 ) indicates little to no associ-
ation between column 𝑋𝑖 and target 𝑌 . Conversely, a value
of 1 reflects a perfect relationship between the two features
[30,31,33]. However, the interpretation of the measures of as-
sociation (i.e. “weak”, “moderate”, “strong”) is always relative
to the domain and size of the data [32].
Symmetric Uncertainty
Definition. SU is a correlation measure based on the
information-theoretical concept of entropy, which quantifies
the uncertainty of a discrete random variable. The entropy of
feature 𝑋𝑖 can be computed from Equation 4:

𝐻 (𝑋𝑖 ) = −
𝑁∑︁
𝑗=1

𝑃 (𝑥𝑖 𝑗 ) · 𝑙𝑜𝑔(𝑃 (𝑥𝑖 𝑗 )), (4)

where 𝑃 (𝑥𝑖 𝑗 ) refers to the prior probabilities for all values of
𝑋𝑖 . After observing the values of the target column 𝑌 , the
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Table 1: Feature types assumptions of the proposed correlationmea-
sures.

Numerical Categorical
Discrete Continuous Nominal Ordinal

Pearson x
Spearman x x
Cramér’s V x
Symmetric Uncertainty x

entropy of column 𝑋𝑖 can be defined using Equation 5:

𝐻 (𝑋𝑖 |𝑌 ) = −
𝑁∑︁
𝑗=1

𝑃 (𝑦 𝑗 ) ·
𝑁∑︁
𝑗=1

𝑃 (𝑥𝑖 𝑗 |𝑦 𝑗 ) · 𝑙𝑜𝑔(𝑃 (𝑥𝑖 𝑗 |𝑦 𝑗 )), (5)

where 𝑃 (𝑦 𝑗 ) denotes the prior probabilities for the values of
𝑌 , whereas 𝑃 (𝑥𝑖 𝑗 |𝑦 𝑗 ) refers to the posterior probabilities of
𝑋𝑖 given 𝑌 . The amount by which the uncertainty of 𝑋𝑖 de-
creases represents howmuch information the feature and tar-
get share together. This amount is referred to as information
gain and is given by Equation 6:

𝐼𝐺 (𝑋𝑖 , 𝑌 ) = 𝐻 (𝑋𝑖 ) − 𝐻 (𝑋𝑖 |𝑌 ) . (6)

Finally, by normalizing the information gain 𝐼 (𝑋𝑖 , 𝑌 ) to the
entropies 𝐻 (𝑋𝑖 ) and 𝐻 (𝑌 ), the formula for computing SU is
obtained in Equation 7 [7, 19, 34, 35]:

𝑆𝑈 (𝑋𝑖 , 𝑌 ) =
2 · 𝐼𝐺 (𝑋𝑖 , 𝑌 )
𝐻 (𝑋𝑖 ) + 𝐻 (𝑌 )

. (7)

Interpretation and assumptions. SU is an extension to infor-
mation gain that normalizes its values within the range [0, 1]
and compensates for its bias when the features 𝑋𝑖 and 𝑌 have
many distinct values. 𝑆𝑈 (𝑋𝑖 , 𝑌 ) = 0 means that the columns
are independent, while 𝑆𝑈 (𝑋𝑖 , 𝑌 ) = 1 denotes that knowl-
edge of the value of𝑋𝑖 completely predicts the value of 𝑌 and
vice versa [19, 34]. The entropy-based correlation of the SU
measure requires nominal features [35, 36].
The main assumption of the proposed correlation methods

refers to the type(s) of features. As this represents the focus
of our study, we provide an overview of the types of variables
the methods are designed for in Table 2.

3.2 Heuristics for filter-based feature selection
Established literature introduces a plethora of both univari-
ate andmultivariate heuristic approaches for feature selection
which rely on statistical measures. Given the limited scope of
our paper, we solely base our experiments on univariate ap-
proaches, and do not delve into multivariate approaches such
as the well-known CFS (Correlation-Based Feature Selection)
algorithm [10].
We now formalize two simple, yet effective, univariate

heuristic approaches theoretically described in existing liter-
ature [6,8,9], which we further refer to as Select 𝑘 best and
Select above 𝑐 . Both approaches can be used to select a sub-
set of features 𝑋 ∗ from any data table 𝐷 by computing the
absolute value of the correlation between each feature𝑋𝑖 and
the target 𝑌 . However, while Select 𝑘 best ranks the vari-
ables with regard to the correlation and then selects the 𝑘 top-
performing ones, Select above 𝑐 chooses all features where
the correlation is above a defined threshold 𝑐 . Evidently, in-
corporating higher values of 𝑘 or lower values of 𝑐 will pro-
gressively add to the selected feature subset more and more
variables of decreasing relevance to the target 𝑌 .

Heuristic approach 1: Select 𝑘 best
Data: Full feature set 𝑋 . Target feature 𝑌 .
Correlation function 𝑓 . Number of features to select 𝑘
Result: Optimal feature subset 𝑋 ∗
𝑋 ∗ ← ∅
𝑀 ← length of 𝑋
𝑆 ← {(𝑋1, 𝑓 (𝑋1, 𝑌 )), (𝑋2, 𝑓 (𝑋2, 𝑌 )), ..., (𝑋𝑀 , 𝑓 (𝑋𝑀 , 𝑌 ))}
sort 𝑆 in descending order of 𝑎𝑏𝑠 (𝑓 ), where (𝑋, 𝑓 ) ∈ 𝑆
for 𝑖 ← 1 to 𝑘 do

add 𝑆 [𝑖] to 𝑋 ∗
end
return 𝑋 ∗

Heuristic approach 2: Select above 𝑐
Data: Full feature set 𝑋 . Target feature 𝑌 .
Correlation function 𝑓 . Correlation threshold 𝑐
Result: Optimal feature subset 𝑋 ∗
𝑋 ∗ ← ∅
for 𝑋𝑖 ∈ 𝑋 do

if 𝑎𝑏𝑠 (𝑓 (𝑋𝑖 , 𝑌 )) ≥ 𝑐 then
add 𝑋𝑖 to 𝑋 ∗

end
end
return 𝑋 ∗

3.3 Machine learning algorithms
We introduce five widely-employed ML algorithms, in partic-
ular LightGBM, Random forest, XGBoost, Linear model, and
Support vector machine, that will be utilised throughout our
research due to their ability to handle high-dimensional data,
robustness against overfitting and ability to capture complex
data relationships [37].
(i) Decision trees. Gradient boosting decision tree (GBDT)

[38] and Random forest (RF) [39] are instances of en-
semble learning. While GBDT sequentially combines
decision trees to achieve a robust model, RF constructs
multiple decision trees in parallel and aggregates their
predictions. Recent literature introduces quite a few
high-performing, enhanced implementations of GBDT,
among which we choose XGBoost [40] and LightGBM
[41]. In comparison to traditional implementations, XG-
Boost and LightGBM incorporate sparse data optimiza-
tion techniques, allowing them to handle data tables
with a large number of rows and columns more effi-
ciently.

(ii) Linear model [42] is a supervised learning model that
aims to explain the target feature in terms of a linear
combination of the explanatory features plus an error
term, incorporating both Logistic regression and Linear
regression. Whereas Logistic regression solely supports
predictions for binary classification tasks by estimating
the relationship between input features and class prob-
abilities, Linear model extends this concept to support
linear regression tasks, with the goal of predicting con-
tinuous target features.

(iii) Support vector machines (SVMs) [43] are combination of
linear modeling and instance-based learning. SVMs se-
lect a number of critical boundary samples from each
class and build a linear discriminant function that sep-
arates them as widely as possible. When no linear
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Table 1: Experimental datasets.

Dataset Rows Columns ↓ Column type Task
(excluding target) Discrete Continuous Nominal Ordinal

Census Income 48,842 14 0 6 8 0 Binary classification
Breast Cancer 569 31 0 31 0 0 Binary classification

Steel Plates Faults 1,941 33 8 25 0 0 Binary classification
Internet Advertisements 3,279 1,558 0 3 1,555 0 Binary classification

Gisette 6,000 5,000 5,000 0 0 0 Binary classification
Nursery 12,960 8 0 0 1 7 Multi-class classification
Connect-4 67,557 42 0 0 42 0 Multi-class classification
Arrhythmia 452 279 86 120 73 0 Multi-class classification
Bike Sharing 17,379 16 8 7 0 1 Regression
Housing Prices 1,460 80 3 33 27 17 Regression

separation is possible, the technique of “kernel” is em-
ployed to automatically inject the samples into a higher-
dimensional space, and to learn a separator, called hy-
perplane, in that space [44].

3.4 Machine learning metrics
The assessment of ML algorithms is twofold: (i) efficiency-
based: how many computational resources are required to train
the model?, and (ii) effectiveness-based: how accurate is the
model in making classifications or predictions? We provide a
brief overview of the metrics that were deemed suitable to
quantify both efficiency and effectiveness.
(i) Effectiveness. As our study concerns the two most com-

mon ML problems on tabular data (i.e. regression and
classification), we rely on two regularly employed met-
rics in ML evaluation studies: (a) accuracy [45] for clas-
sification tasks, and (b) root mean square error [46] for
regression tasks. Accuracy, computed using Equation 8,
represents the ratio of correct predictions to the total
number of predictions𝑁 for a dataset𝐷 ; a higher value is
desirable [47]. Complementarily, root-mean-square er-
ror (RMSE), formally defined in Equation 9, measures
the average deviation between all 𝑁 predictions of the
model and the actual values of the target𝑌 ; a lower value
is preferred.

accuracy =

∑𝑁
𝑗=1

{
1 if 𝑦 𝑗 = 𝑦 𝑗
0 otherwise
𝑁

(8)

RMSE =

√︄∑𝑁
𝑗=1 (𝑦 𝑗 − 𝑦 𝑗 )2

𝑁
(9)

(ii) Efficiency. In order to evaluate the efficiency and, implic-
itly, the usefulness of correlation-based feature selection
in AutoML systems, we empirically compare the execu-
tion times of different tasks in the ML pipeline.

4 Methodology
In this section, we present the key components of our evalua-
tion: (i) ten datasets with diverse characteristics, and (ii) a ML
pipeline designed to streamline the experiments and analyse
the four correlation-based feature selection techniques in a
manner that simulates an AutoML-like setting.

4.1 Data
To conduct a robust evaluation of the correlation-basedmeth-
ods proposed in this study, we have selected ten datasets.

Even though they all adhere to the tabular format introduced
in Section 3, their properties vary in terms of (i) domain
(medicine, education, economy, social science), (ii) ratio of
rows to columns, (iii) number of numerical and categorical
columns and (iv) task (binary classification, multi-class clas-
sification and regression). A general overview of the datasets,
grouped by the type of task and ordered ascendingly by the
number of columns, can be visualized in Table 3. Selecting
these ten datasets has been deemed reasonable for our ex-
periments, and space considerations keep us from presenting
results with other data characteristics.

4.2 Machine learning pipeline
At its core, every effectiveML system needs to address certain
decisions: which ML algorithm to use and what hyperparam-
eters to set for a given database, whether and how to prepro-
cess the columns, and what evaluation metric to choose [48].
With a vision to automatically infer which correlation-based
feature selection technique to apply given a data table and
an algorithm, we design a ML pipeline that can efficiently
analyze multiple configurations of ML tasks. The proposed
pipeline, depicted in Fig. 2, can be divided into three stages
that encompass all the necessary sub-tasks:
(i) Pre-ML, that attempts to achieve high-quality, appro-

priate data. In order to do so, it utilises the following
techniques:
(a) Imputation. In the context of real-world data, miss-

ing values are frequently encountered, yet the ex-
isting implementations of correlation methods and
ML algorithms typically do not support such miss-
ing values. Consequently, it becomes necessary to
address this issue by imputing the missing values.
Our preliminary results have shown that the impu-
tationmethod does not affect the conclusion drawn;
thus, in order to streamline our experiments, we
proceed exclusivelywith the imputation of themost
common value.

(b) Normalization. In the case of SVMs, the prediction
results are dramatically influenced by the feature
scales [49]. Consequently, in order to avoid subop-
timal results, it is necessary to normalize the fea-
tures, for which we employ min-max scaling.

(c) Encoding. Given that most real-world datasets do
not contain a singular type of feature, our research
aims to explore the potential benefit of employing
data encoding techniques to enhance correlation-
based feature selection and alleviate the potential
negative effects of breaking the assumptions listed
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in Table 2. By default, we investigate all datasets
keeping the original columns. If it is deemed nec-
essary to further investigate whether the perfor-
mance of a correlation method could be improved,
we can investigate the datasets by (i) transforming
all columns to continuous using one-hot encoding
or (ii) transforming all columns to nominal through
K-bins discretization.

(ii) In-ML aims to perform feature selection with the pro-
posed techniques and train the selected model on the ad-
justed data table but only using the train set. It comprises
the following two stages: (a) Feature selection, where
for each pipeline configuration we choose one heuris-
tic approach (Select 𝑘 best or Select above 𝑐) and one
correlation method (Pearson, Spearman, Cramér’s V or
SU). (b)Model selection and training, where we deploy an
ML algorithm (LightGBM, RF, XGBoost, Linear model or
SVM) on the dataset after feature selection.

(iii) Post-ML, that assesses performance with regard to
other model variants. It consists of the following two
sub-tasks: (a)Model evaluation, where we look at the ac-
curacy or RMSE on the test set and the runtime of the
training stage of the ML algorithm. (b) Feature selection
evaluation, where we analyse the runtime of the feature
selection stage, in order to gain insights into how each
correlation technique is affected by the dimensionality
of the data.

5 Evaluation
This section incorporates together the different aspects of a
data-driven empirical evaluation: (i) the technical setup of the
experiments, and (ii) an overview of the results, accompanied
by the configuration of the ML pipeline employed for con-
ducting the experiments.
It is worth mentioning that, due to space considerations,

only a subset of the datasets and one heuristic approach
will be used to report and reason about each experiment.
Nonetheless, the conclusions derived within the scope of an
experiment extend to all the datasets that are not mentioned.

5.1 Experimental setup
We ran our experiments on a server provided by the EEMCS
Faculty at Delft University of Technology. Two 64-core AMD
Epyc 7H12 processors were made available to us, along with
511 GiB of memory. Besides the hardware resources, we
built the ML pipeline employed for conducting the experi-
ments in Python 3.10. The correlation-based feature selection
techniques were developed using the SciPy package and the
Scikit-feature GitHub repository [7]. The SVM algorithmwas
evaluated using the implementation from the Scikit-learn li-
brary, whereas the otherML algorithmswere employed using
their AutoGluon implementations [37].

5.2 Empirical results
Data characteristics
Effectiveness. The experiments visualized in Fig. 3 and Fig. 4
examine the ability of the considered correlation methods to
deal with the different types of features. We consider the ac-
curacy achieved by each correlationmethod averaged over all
five ML algorithms, thus eliminating potential algorithm de-
pendency. We employ the Select 𝑘 best heuristic approach,

Post-ML

In-ML

Pre-ML

column preprocessor column selection

none correlation-based

Select k best

row preprocessor

imputation

most common 

value

encoding

KBinsDiscretizer

model model selection & training

Decision tree SVMLinear model

LightGBM XGBoost Random forest

evaluation model evaluation

runtimeaccuracy/RMSE

OneHotnone

Pearson Spearman Cramér V SU Pearson Spearman Cramér V SU

Select above c

normalization

none MinMax

train data

test data

Figure 2: Configuration space for the ML pipeline. The blue-
coloured hyperparameters form an instance of the baseline ML
pipeline (no feature selection). Each configuration of the pipeline
comprises up to two row preprocessors, none or one column pre-
processor, one model and two evaluation metrics.

with increasing values of 𝑘 , the value that corresponds to the
number of variables retained after feature selection. Addi-
tionally, two-tailed independent t-tests are employed to as-
sess the significance of the difference in accuracy among two
correlation methods for the different values of the number of
features. A p-value below 0.05 is considered indicative of a
significant difference in accuracy.
(i) Numerical features. On one hand, when we consider

datasets containing only discrete features (Gisette), com-
puting the optimal feature subset with the SU measure
leads to the best accuracy for most values of 𝑘 . How-
ever, we note that the difference in accuracy for the four
methods is insignificant here. On the other hand, for
datasets with continuous features (Breast Cancer), Pear-
son and Spearman exhibit higher accuracy compared
to the other methods. Even more so, with only half
the features, Pearson achieves a 1.57% higher accuracy
than the baseline. We note, however, the surprisingly
good results given by Cramér’s V and SU, considering
that they are normally suitable for categorical features.
Whenwe combine discrete and continuous features (Steel
Plates Faults), the accuracy obtained deviates signifi-
cantly when Cramér’s V and SU are employed for feature
selection. We investigate the effects of encoding all fea-
tures to categorical, and we notice that the performance
of these twomethods is greatly improved on the encoded
dataset, as depicted in Fig. 4.

(ii) Categorical features. In the case of datasets with pre-
dominantly nominal features (Internet Advertisements,
Connect-4) Cramér’s V and SU are the better choices for
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Figure 3: Accuracy obtained by the four correlation-based feature
selection techniques averaged over all five ML algorithms and com-
puted for an increasing number of features retained by feature se-
lection. For each dataset, the feature types present in the data are
mentioned next to the title.
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Figure 4: Accuracy obtained by the four correlation-based feature
selection methods on the original datasets (left) and the encoded
datasets (right). In the lower figure on the left, the Pearson line ex-
actly overlaps the Spearman one.

computing the correlation between features and target
at different levels of 𝑘 . However, the difference between
the four methods is not statistically significant. When it
comes to predominantly ordinal data (Nursery), the sta-
tistical correlation measures of Pearson and Spearman
perform significantly worse, as can be observed in Fig.
4. That being said, this is a surprising result for Spear-
man, which is designed for ordinal features. Neverthe-
less, when applying one-hot encoding, the accuracy ob-
tained by Pearson and Spearman improves, as shown in
Fig. 4.

(iii) Mixed features. Upon combining continuous and nomi-
nal features (Census Income), we notice, once again, the
lower performance of Cramér’s V on datasets that con-
tain continuous data. When we also consider discrete
features (Arrhythmia), all methods are able to perform
the best at different levels of 𝑘 , and on average their be-
haviour is similar. However, SU is able to achieve a 0.65%
higher accuracy than the baselinewith only a third of the
total number of features.
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Figure 5: Execution time of the feature selection stage using the
four correlation methods computed for increasing percentage of the
number of samples. For each dataset, the ratio of rows to columns is
mentioned next to the title.

Efficiency. To assess the variability of the execution time
of feature selection for each correlation method, we exam-
ine the computational time required by the Select above
𝑐 heuristic to compute all correlation values and select the
features with a correlation above 0.5 with the target. Addi-
tionally, we systematically vary the percentage of data in-
stances utilized by feature selection. The results, depicted in
Fig. 5, show that Pearson and Spearman are quite insensi-
tive to both the number of columns and the number of rows
in the data, being able to achieve the lowest runtime for all
datasets. In fact, in most cases, they require less than 0.1
seconds to compute the ranked set of features and to return
the top-performing ones. SU is the most sensitive method to
the number of instances used for feature selection, with the
computational cost growing exponentially. Here we notice a
trade-off between effectiveness and efficiency, as our findings
show that SU gives higher accuracy as the number of samples
is increased. Lastly, Cramér’s V, though less sensitive to the
number of samples than SU, is the most time-expensive corre-
lation measure for computing correlation when compared to
the other three. Lastly, in our experiments, we observe that
the types of features do not greatly influence the execution
time of the correlation-based techniques.

Machine learning algorithm
Effectiveness. The experiments obtained by running Select 𝑘
best on all datasets and algorithms show that the behaviour
of the correlation-based techniques is consistent across all al-
gorithms employed on the same dataset, as can be seen in
the figures included in Appendix A. Nevertheless, as previ-
ously mentioned, the behaviour across different datasets fluc-
tuates significantly. Thus, we conclude that the effectiveness
of correlation-based methods is primarily influenced by the
inherent characteristics of the dataset rather than the choice
of algorithm.

Efficiency. To analyse the effects of including correlation-
based feature selection in the training stage of ML algorithms,
we investigate the execution time of the In-ML stage of the
pipeline in Fig. 6. We compare the training time with feature
selection, averaged across all five models, to the baseline. We
observe that, in the case of datasets with lower numbers of
features (Breast Cancer, Steel Plates Faults), including feature
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Figure 6: Execution time of the In-ML stage using the four correla-
tion methods computed for an increasing number of features.

selection in the training stage is always more computation-
ally costly than the baseline. However, with more features
(Arrhythmia), the execution time actually benefits from em-
ploying feature selection.

6 Discussion and limitations
Notably, the results indicate that the values of effective-
ness obtained when applying the proposed correlation-based
methods are highly tied to the ratio of numerical and cate-
gorical columns and the feature types characteristic to the
data. Additionally, we have empirically demonstrated that
the theoretical assumptions of the correlation measures re-
garding the nature of features do not always hold in prac-
tice. Consequently, it is necessary that we devise new ones,
that are shown in Table 4. Moreover, no specific correlation
method has been identified to exhibit superior performance
exclusively for a particular algorithm. This behaviour is un-
surprising since filter methods do not take into consideration
the ML algorithm in the feature selection process. In regard
to the correlation measures, we note the key findings:
(i) SU is the only correlation measure that has performed

relatively well on all datasets, being suitable for all types
of features. However, it fails to outperform statistical
measures of correlation for numerical features, with the
most significant outlier being Steel Plates Faults. We no-
tice a trade-off in the case of datasets of high dimen-
sionality: even though the estimated probabilities and,
hence, entropy values involved in the calculation of SU
aremore accurate in the presence ofmore data instances,
the computational cost can grow exponentially.

(ii) Pearson and Spearman exhibit similar behaviour, with a
common limitation of not effectively improving the ac-
curacy when used on ordinal data. Between the two
methods, Spearman emerges as the preferred choice due
to its advantage of requiring less computational time.

(iii) Cramér’s V is the lowest-performing measure of correla-
tion, achieving on multiple datasets the lowest accuracy,
as well as the highest runtime. We deem it unsuitable
for continuous features due to its tendency to yield low
accuracy when the number of features is limited.

There exist a few limitations worth exploring in the eval-
uation presented thus far. These include (i) K-fold cross-
validation omission. Due to the inherent complexity of the
proposed ML pipeline and the multitude of potential configu-
rations, k-fold cross-validation was not employed during the
execution of the experiments. However, we implemented this
technique in our codebase, so that it can be incorporated in
future experiments. (ii) Limited scope of feature preprocess-
ing techniques that were utilized throughout our research.

Table 6: Feature types suitable in practice for the proposed correla-
tion measures.

Numerical Categorical
Discrete Continuous Nominal Ordinal

Pearson x x x
Spearman x x x
Cramér’s V x x x
Symmetric Uncertainty x x x x

Our choices of imputation, normalization and encoding tech-
niques may not fully capture the variability and impact of em-
ploying other preprocessing approaches.

7 Concluding remarks and future directions
In this paper, we provided a data-driven empirical analysis of
four widely-known correlation-based feature selection tech-
niques: Pearson, Spearman, Cramér’s V and Symmetric Un-
certainty. In particular, we focused on investigating which
correlation measure should be used for feature selection in
order tomaximize the performance ofML systems, while con-
sidering the choice of dataset and algorithm. To this end, we
devised an ML pipeline that resembles an AutoML-like set-
ting, and we formalized two heuristic approaches for feature
selection in order to conduct the experimental evaluation.

By addressing the first research sub-question, we discov-
ered that the effectiveness and efficiency of the correlation-
based feature selection techniques are highly influenced by
two main data characteristics, in particular, the ratio of rows
to columns and the feature types characteristic to the dataset.
As future recommendations for AutoML systems, if effective-
ness is desired, SU should be employed, as it usually works
well with all types of features. However, if efficiency is pri-
oritized, Spearman is the best choice that can handle high-
dimensional datasets without compromising a significant de-
gree of effectiveness.

The exploration of the second research sub-question re-
vealed that the performance of correlation-based techniques
is independent of the ML model, remaining consistent across
different algorithms on the same dataset. Nonetheless, our
empirical work demonstrates that incorporating feature se-
lection in AutoML systems, in spite of a small increase in ex-
ecution time, can yield similar or higher accuracy compared
to the baseline when retaining as few as one-third of the total
number of features.

Finally, some propositions of futurework include (i) The ex-
ploration of other existing heuristic approaches for correlation-
based feature selection. In particular, based on preliminary
results, we propose the investigation of a promising novel
heuristic approach that takes the union of the optimal fea-
ture subsets returned by each of the correlation measures. (ii)
The exploration of other correlation metrics. Our work can be
extended with other promising correlation measures, such as
Kendall’s Tau [20], for which the devised ML pipeline could
still be employed for their evaluation. (iii) The evaluation of
the techniques on a diverse collection of real-world datasets.
Given that our research lies the foundational work for de-
termining the most suitable correlation metric based on the
type(s) of features present in the data, we encourage future
researchers to explore more datasets and undertake further
investigations on other data characteristics, such as the exis-
tence of outliers or the type of distribution.
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8 Responsible research
To maintain the integrity of our results and to uphold high
ethical standards of our research, several precautions and
concerns have been considered. We review our process based
on two criteria: (i) ethical implications in ML, and (ii) repro-
ducibility of our research outcomes.

8.1 Ethical implications in machine learning
Our research aims to analyse how correlation-based fea-
ture selection techniques, in particular Pearson, Spearman,
Cramér’s V, Symmetric Uncertainty, can influence the per-
formance of ML systems, considering the dataset character-
istics and the ML algorithm. We strongly believe that our
work can increase explainability, interpretability, and justi-
fiability of decision-making in AutoML systems for two main
reasons. (i) By using correlation-based feature selection, the
ML pipeline can provide a transparent explanation of the rel-
evant features, their relationship with the target variable, and
how they contribute to the model’s predictions. (ii) By exam-
ining the selected features, researchers can identify potential
biases or errors in the ML pipeline, therefore addressing any
unintended consequences. In this sense, we acknowledge the
possibility of a particular feature that has been historically
discriminated against, such as ethnicity, age or gender, to be
found highly correlated with the response feature. Conse-
quently, users may draw conclusions that correlation-based
feature selection reinforces this discrimination. Nevertheless,
the oppositemight also happen: feature selection can uncover
and bring to attention certain types of discrimination, allow-
ing data engineers to take action against them.
It is worth noting that the choice of datasets encompasses

various fields, such as medicine, economy and engineering, to
ensure the generalization of the results across domains. The
data used in our research is publicly available, and was ob-
tained from widely-used sources: OpenML, Kaggle and UC
Irvine. In addition, while selecting the data sources, several
factorswere considered: consent, copyright, re-identification,
data storage and manipulation. As part of these considera-
tions, all the datasets are available under a permissive license
and, for datasets involving human data, strict anonymization
protocols have been implemented in order to ensure the con-
fidentiality and privacy of the participants.
We note that our study was conducted without external

funding or any conflicts of interest. While the results in and
of themselves are notmalicious, this does not prevent the pro-
posed techniques and heuristics from being utilised by mali-
cious users. However, according to the tripartite model [50],
engineers can only be held ethically liable for the technical
decision and engineering choices that theymake. Thus, while
we strongly condemn malicious actions and emphasize that
the purpose of our research is to improve the performance of
ethical AutoML systems, we cannot be held ethically respon-
sible for the actions of those making use of our research.

8.2 Reproducibility of results
To ensure that the integrity of the results is guaranteed, the
entire experimental process and results discussed in our paper
are reproducible. In this sense, the following aspects have
been considered:
(i) Data availability. Ten datasets were employed through-

out our paper. To enhance the reusability of the datasets

by future researchers, they adhere to the FAIR princi-
ples [51]: (i) findability, as all the data is available
on our GitHub repository, (ii) accessibility, because
the GitHub repository is public, no authentication is re-
quired to have access to the data, (iii) interoperability,
as all datasets are stored in a common CSV format, and
(iv) reusability, as the repository contains a summary of
the datasets, which details on their characteristics (ratio
of columns to rows, distribution of feature types, type of
ML task) and contains easy-to-understand explanations.

(ii) Source code availability and quality. We provide the code
required to run the exact versions of our experiments
as a branch on our GitHub repository. We have ad-
ditionally included all the files with results that have
been generated throughout our research. In order to fa-
cilitate future researchers who may want to reproduce
or extend our work, we provide: (i) a comprehensive
overview of the ML pipeline that has been employed for
running the experiments, and (ii) a detailed ReadMe file,
which can be found on our GitHub repository. Lastly,
the implementation of the ML pipeline adheres to the
best practices of software development, incorporating
explanatory comments to enhance comprehensibility for
users without a technical background. While we cannot
guarantee that our software is completely bug-free since
the underlying libraries (e.g. AutoGluon, Scikit-learn et
cetera) are under active development, we did conduct
thorough manual testing to mitigate any risks posed by
software bugs.

(iii) Effectiveness metric reproducibility. All pseudo-random
number generators used in the experimental setup use a
fixed seed, with a value of 0. That being said, we expect
future runs of the experiments to generate identical out-
comes for the metrics of effectiveness (i.e. accuracy and
RMSE) or other parameters involved in our study, such
as the number of selected features or the correlation val-
ues.

(iv) Efficiency metric reproducibility. It is important to ac-
knowledge that biases with regard to the reported met-
ric of efficiency (i.e. execution time) may have occurred
during the evaluation process due to factors such as, but
not limited to, the shared nature of the server employed
for the experiments. To minimize the potential impacts
of the limitation created by concurrent activities on the
hardware resources, all experiments have been repeated
three times and the presented results are averaged over
all runs. Nevertheless, we note that the execution times
might differ when the experiments are rerun by other
researchers.

(v) Citations. All ideas borrowed from other works are prop-
erly cited in our paper, thus allowing readers to dive fur-
ther in-depth into the topics of interest.
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A Feature selection and machine learning
algorithm analysis results

This appendix presents a visual summary of the results ob-
tained by running the Select 𝐾 best feature selection ap-
proach on each dataset and algorithm. For each one of the
ten datasets, five algorithms are considered: (i) decision tree
algorithms: LightGBM, Random forest, XGBoost; (ii) Linear
model; and (iii) Support vector machine. Additionally, each
algorithm is evaluated in five forms: (i) without feature se-
lection, denoted as baseline; (ii) with feature selection using
Pearson correlation technique; (iii) with feature selection us-
ing Spearman correlation technique; (iv) with feature selec-
tion using Cramér’s V correlation technique; and (v) with fea-
ture selection using Symmetric Uncertainty correlation tech-
nique. The number of features chosen by feature selection, 𝑘 ,
takes all the possible subset sizes in the dataset. The excep-
tions are Internet advertisements and Gisette datasets, where
the maximum sizes considered are 250 and 200, respectively,
due to space considerations. Further analysis was performed
on the figures in this appendix, but it was decided to be
summed up enough to support the results and design of Sec-
tion 5.

A.1 Census Income dataset
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Figure 7: Accuracy for Census Income dataset.

A.2 Breast Cancer dataset
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Figure 8: Accuracy for Breast Cancer dataset.

A.3 Steel Plates Faults dataset
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Figure 9: Accuracy for Steel Plate Faults dataset.

A.4 Arrhythmia dataset
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Figure 10: Accuracy for Arrhythmia dataset.

A.5 Internet Advertisements dataset
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Figure 11: Accuracy for Internet Advertisements dataset.



A.6 Gisette dataset
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Figure 12: Accuracy for Gisette dataset.

A.7 Nursery dataset
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Figure 13: Accuracy for Nursery dataset.

A.8 Connect-4 dataset
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Figure 14: Accuracy for Connect-4 dataset.

A.9 Bike Sharing dataset
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Figure 15: RSME for Bike Sharing dataset.

A.10 Housing Prices dataset
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Figure 16: RSME for Housing Prices dataset.
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